Sample records for stem cell msc

  1. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    DTIC Science & Technology

    2012-07-01

    Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases as a function of age and may contribute to age-related...problem of age-related reduced availability of MSC we propose to examine the bone anabolic potential of induced pluripotent stem cell (iPS) derived MSC

  2. Agonism of Wnt/β-catenin signaling promotes mesenchymal stem cell (MSC) expansion

    PubMed Central

    Hoffman, Michael D.; Benoit, Danielle S.W.

    2014-01-01

    Promoting mesenchymal stem cell (MSC) proliferation has numerous applications in stem cell therapies, particularly in the area of regenerative medicine. In order for cell-based regenerative approaches to be realized, MSC proliferation must be achieved in a controlled manner without compromising stem cell differentiation capacities. Here we demonstrate that 6-bromoindirubin-3’-oxime (BIO) increases MSC β-catenin activity 106-fold and stem cell-associated gene expression ~33-fold respectively over untreated controls. Subsequently, BIO treatment increases MSC populations 1.8-fold in typical 2D culture conditions, as well as 1.3-fold when encapsulated within hydrogels compared to untreated cells. Furthermore, we demonstrate that BIO treatment does not reduce MSC multipotency, where MSCs maintain their ability to differentiate into osteoblasts, chondrocytes, and adipocytes using standard conditions. Taken together, our results demonstrate BIOs potential utility as a proliferative agent for cell transplantation and tissue regeneration. PMID:23554411

  3. Anti-Inflammatory Effects of Adult Stem Cells in Sustained Lung Injury: A Comparative Study

    PubMed Central

    Moodley, Yuben; Vaghjiani, Vijesh; Chan, James; Baltic, Svetlana; Ryan, Marisa; Tchongue, Jorge; Samuel, Chrishan S.; Murthi, Padma; Parolini, Ornella; Manuelpillai, Ursula

    2013-01-01

    Lung diseases are a major cause of global morbidity and mortality that are treated with limited efficacy. Recently stem cell therapies have been shown to effectively treat animal models of lung disease. However, there are limitations to the translation of these cell therapies to clinical disease. Studies have shown that delayed treatment of animal models does not improve outcomes and that the models do not reflect the repeated injury that is present in most lung diseases. We tested the efficacy of amnion mesenchymal stem cells (AM-MSC), bone marrow MSC (BM-MSC) and human amniotic epithelial cells (hAEC) in C57BL/6 mice using a repeat dose bleomycin-induced model of lung injury that better reflects the repeat injury seen in lung diseases. The dual bleomycin dose led to significantly higher levels of inflammation and fibrosis in the mouse lung compared to a single bleomycin dose. Intravenously infused stem cells were present in the lung in similar numbers at days 7 and 21 post cell injection. In addition, stem cell injection resulted in a significant decrease in inflammatory cell infiltrate and a reduction in IL-1 (AM-MSC), IL-6 (AM-MSC, BM-MSC, hAEC) and TNF-α (AM-MSC). The only trophic factor tested that increased following stem cell injection was IL-1RA (AM-MSC). IL-1RA levels may be modulated by GM-CSF produced by AM-MSC. Furthermore, only AM-MSC reduced collagen deposition and increased MMP-9 activity in the lung although there was a reduction of the pro-fibrogenic cytokine TGF-β following BM-MSC, AM-MSC and hAEC treatment. Therefore, AM-MSC may be more effective in reducing injury following delayed injection in the setting of repeated lung injury. PMID:23936322

  4. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering.

    PubMed

    Reppel, Loïc; Schiavi, Jessica; Charif, Naceur; Leger, Léonore; Yu, Hao; Pinzano, Astrid; Henrionnet, Christel; Stoltz, Jean-François; Bensoussan, Danièle; Huselstein, Céline

    2015-12-30

    Due to their intrinsic properties, stem cells are promising tools for new developments in tissue engineering and particularly for cartilage tissue regeneration. Although mesenchymal stromal/stem cells from bone marrow (BM-MSC) have long been the most used stem cell source in cartilage tissue engineering, they have certain limits. Thanks to their properties such as low immunogenicity and particularly chondrogenic differentiation potential, mesenchymal stromal/stem cells from Wharton's jelly (WJ-MSC) promise to be an interesting source of MSC for cartilage tissue engineering. In this study, we propose to evaluate chondrogenic potential of WJ-MSC embedded in alginate/hyaluronic acid hydrogel over 28 days. Hydrogels were constructed by the original spraying method. Our main objective was to evaluate chondrogenic differentiation of WJ-MSC on three-dimensional scaffolds, without adding growth factors, at transcript and protein levels. We compared the results to those obtained from standard BM-MSC. After 3 days of culture, WJ-MSC seemed to be adapted to their new three-dimensional environment without any detectable damage. From day 14 and up to 28 days, the proportion of WJ-MSC CD73(+), CD90(+), CD105(+) and CD166(+) decreased significantly compared to monolayer marker expression. Moreover, WJ-MSC and BM-MSC showed different phenotype profiles. After 28 days of scaffold culture, our results showed strong upregulation of cartilage-specific transcript expression. WJ-MSC exhibited greater type II collagen synthesis than BM-MSC at both transcript and protein levels. Furthermore, our work highlighted a relevant result showing that WJ-MSC expressed Runx2 and type X collagen at lower levels than BM-MSC. Once seeded in the hydrogel scaffold, WJ-MSC and BM-MSC have different profiles of chondrogenic differentiation at both the phenotypic level and matrix synthesis. After 4 weeks, WJ-MSC, embedded in a three-dimensional environment, were able to adapt to their environment and express specific cartilage-related genes and matrix proteins. Today, WJ-MSC represent a real alternative source of stem cells for cartilage tissue engineering.

  5. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells.

    PubMed

    Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven

    2017-12-01

    Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.

  6. Pluripotent Stem Cells as a Robust Source of Mesenchymal Stem Cells.

    PubMed

    Luzzani, Carlos D; Miriuka, Santiago G

    2017-02-01

    Mesenchymal stem cells (MSC) have been extensively studied over the past years for the treatment of different diseases. Most of the ongoing clinical trials currently involve the use of MSC derived from adult tissues. This source may have some limitations, particularly with therapies that may require extensive and repetitive cell dosage. However, nowadays, there is a staggering growth in literature on a new source of MSC. There is now increasing evidence about the mesenchymal differentiation from pluripotent stem cell (PSC). Here, we summarize the current knowledge of pluripotent-derived mesenchymal stem cells (PD-MSC). We present a historical perspective on the subject, and then discuss some critical questions that remain unanswered.

  7. [Mesenchymal stem cells: weapons or dangers for cancer treatment?].

    PubMed

    Lazennec, Gwendal

    2011-03-01

    Mesenchymal stem cells (MSC) have attracted recent attention for their cell therapy potential, based in particular on their immunosuppressive properties, which have served as the basis for the treatment of autoimmune diseases. Interestingly, MSC have been used in cell therapy strategies to deliver therapeutical genes. Cell therapy approaches taking advantages of MSC have been proposed, as MSC display a potential tropsim for tumors. However, all these strategies raise a series of questions about the safety of MSC, as MSC could enhance tumor growth and metastasis. This review summarizes recent findngs about MSC in carcinogenesis. © 2011 médecine/sciences - Inserm / SRMS.

  8. Mesenchymal stromal cell derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells

    PubMed Central

    Wen, Sicheng; Dooner, Mark; Cheng, Yan; Papa, Elaine; Del Tatto, Michael; Pereira, Mandy; Deng, Yanhui; Goldberg, Laura; Aliotta, Jason; Chatterjee, Devasis; Stewart, Connor; Carpanetto, Andrea; Collino, Federica; Bruno, Stefania; Camussi, Giovanni; Quesenberry, Peter

    2016-01-01

    Mesenchymal stromal cells (MSC) have been shown to reverse radiation damage to marrow stem cells. We have evaluated the capacity of MSC-derived extracellular vesicles (MSC-EVs) to mitigate radiation injury to marrow stem cells at 4 hours to 7 days after irradiation. Significant restoration of marrow stem cell engraftment at 4, 24 and 168 hours post-irradiation by exposure to MSC-EVs was observed at 3 weeks to 9 months after transplant and further confirmed by secondary engraftment. Intravenous injection of MSC-EVs to 500cGy exposed mice led to partial recovery of peripheral blood counts and restoration of the engraftment of marrow. The murine hematopoietic cell line, FDC-P1 exposed to 500 cGy, showed reversal of growth inhibition, DNA damage and apoptosis on exposure to murine or human MSC-EVs. Both murine and human MSC-EVs reverse radiation damage to murine marrow cells and stimulate normal murine marrow stem cell/progenitors to proliferate. A preparation with both exosomes and microvesicles was found to be superior to either microvesicles or exosomes alone. Biologic activity was seen in freshly isolated vesicles and in vesicles stored for up to 6 months in 10% DMSO at −80°C. These studies indicate that MSC-EVs can reverse radiation damage to bone marrow stem cells. PMID:27150009

  9. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis.

    PubMed

    Zhu, Yu; Wang, Yuchen; Zhao, Bizeng; Niu, Xin; Hu, Bin; Li, Qing; Zhang, Juntao; Ding, Jian; Chen, Yunfeng; Wang, Yang

    2017-03-09

    Osteoarthritis (OA) is the most common joint disease worldwide. In the past decade, mesenchymal stem cells (MSCs) have been used widely for the treatment of OA. A potential mechanism of MSC-based therapies has been attributed to the paracrine secretion of trophic factors, in which exosomes may play a major role. In this study, we aimed to compare the effectiveness of exosomes secreted by synovial membrane MSCs (SMMSC-Exos) and exosomes secreted by induced pluripotent stem cell-derived MSCs (iMSC-Exos) on the treatment of OA. Induced pluripotent stem cell-derived MSCs and synovial membrane MSCs were characterized by flow cytometry. iMSC-Exos and SMMSC-Exos were isolated using an ultrafiltration method. Tunable resistive pulse-sensing analysis, transmission electron microscopy, and western blots were used to identify exosomes. iMSC-Exos and SMMSC-Exos were injected intra-articularly in a mouse model of collagenase-induced OA and the efficacy of exosome injections was assessed by macroscopic, histological, and immunohistochemistry analysis. We also evaluated the effects of iMSC-Exos and SMMSC-Exos on proliferation and migration of human chondrocytes by cell-counting and scratch assays, respectively. The majority of iMSC-Exos and SMMSC-Exos were approximately 50-150 nm in diameter and expressed CD9, CD63, and TSG101. The injection of iMSC-Exos and SMMSC-Exos both attenuated OA in the mouse OA model, but iMSC-Exos had a superior therapeutic effect compared with SMMSC-Exos. Similarly, chondrocyte migration and proliferation were stimulated by both iMSC-Exos and SMMSC-Exos, with iMSC-Exos exerting a stronger effect. The present study demonstrated that iMSC-Exos have a greater therapeutic effect on OA than SMMSC-Exos. Because autologous iMSCs are theoretically inexhaustible, iMSC-Exos may represent a novel therapeutic approach for the treatment of OA.

  10. Nanotechnology for mesenchymal stem cell therapies.

    PubMed

    Corradetti, Bruna; Ferrari, Mauro

    2016-10-28

    Mesenchymal stem cells (MSC) display great proliferative, differentiative, chemotactic, and immune-modulatory properties required to promote tissue repair. Several clinical trials based on the use of MSC are currently underway for therapeutic purposes. The aim of this article is to examine the current trends and potential impact of nanotechnology in MSC-driven regenerative medicine. Nanoparticle-based approaches are used as powerful carrier systems for the targeted delivery of bioactive molecules to ensure MSC long-term maintenance in vitro and to enhance their regenerative potential. Nanostructured materials have been developed to recapitulate the stem cell niche within a tissue and to instruct MSC toward the creation of regeneration-permissive environment. Finally, the capability of MSC to migrate toward the site of injury/inflammation has allowed for the development of diagnostic imaging systems able to monitor transplanted stem cell bio-distribution, toxicity, and therapeutic effectiveness. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers.

    PubMed

    Lin, Mei-Na; Shang, De-Shu; Sun, Wei; Li, Bo; Xu, Xin; Fang, Wen-Gang; Zhao, Wei-Dong; Cao, Liu; Chen, Yu-Hua

    2013-06-04

    Bone marrow-derived mesenchymal stem cells (MSC) represent an important and easily available source of stem cells for potential therapeutic use in neurological diseases. The entry of circulating cells into the central nervous system by intravenous administration requires, firstly, the passage of the cells across the blood-brain barrier (BBB). However, little is known of the details of MSC transmigration across the BBB. In the present study, we employed an in vitro BBB model constructed using a human brain microvascular endothelial cell monolayer to study the mechanism underlying MSC transendothelial migration. Transmigration assays, transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) flux assays showed that MSC could transmigrate through human brain microvascular endothelial cell monolayers by a paracellular pathway. Cell fractionation and immunofluorescence assays confirmed the disruption of tight junctions. Inhibition assays showed that a Rho-kinase (ROCK) inhibitor (Y27632) effectively promoted MSC transendothelial migration; conversely, a PI3K inhibitor (LY294002) blocked MSC transendothelial migration. Interestingly, adenovirus-mediated interference with ROCK in MSC significantly increased MSC transendothelial migration, and overexpression of a PI3K dominant negative mutant in MSC cells could block transendothelial migration. Our findings provide clear evidence that the PI3K and ROCK pathways are involved in MSC migration through human brain microvascular endothelial cell monolayers. The information yielded by this study may be helpful in constructing gene-modified mesenchymal stem cells that are able to penetrate the BBB effectively for cell therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. 3D Bioprinted Artificial Trachea with Epithelial Cells and Chondrogenic-Differentiated Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Bae, Sang-Woo; Lee, Kang-Woog; Park, Jae-Hyun; Lee, JunHee; Jung, Cho-Rok; Yu, JunJie; Kim, Hwi-Yool; Kim, Dae-Hyun

    2018-05-31

    Tracheal resection has limited applicability. Although various tracheal replacement strategies were performed using artificial prosthesis, synthetic stents and tissue transplantation, the best method in tracheal reconstruction remains to be identified. Recent advances in tissue engineering enabled 3D bioprinting using various biocompatible materials including living cells, thereby making the product clinically applicable. Moreover, clinical interest in mesenchymal stem cell has dramatically increased. Here, rabbit bone marrow-derived mesenchymal stem cells (bMSC) and rabbit respiratory epithelial cells were cultured. The chondrogenic differentiation level of bMSC cultured in regular media (MSC) and that in chondrogenic media (d-MSC) were compared. Dual cell-containing artificial trachea were manufactured using a 3D bioprinting method with epithelial cells and undifferentiated bMSC (MSC group, n = 6) or with epithelial cells and chondrogenic-differentiated bMSC (d-MSC group, n = 6). d-MSC showed a relatively higher level of glycosaminoglycan (GAG) accumulation and chondrogenic marker gene expression than MSC in vitro. Neo-epithelialization and neo-vascularization were observed in all groups in vivo but neo-cartilage formation was only noted in d-MSC. The epithelial cells in the 3D bioprinted artificial trachea were effective in respiratory epithelium regeneration. Chondrogenic-differentiated bMSC had more neo-cartilage formation potential in a short period. Nevertheless, the cartilage formation was observed only in a localized area.

  13. Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta.

    PubMed

    Qin, Sharon Q; Kusuma, Gina D; Al-Sowayan, Batla; Pace, Rishika A; Isenmann, Sandra; Pertile, Mark D; Gronthos, Stan; Abumaree, Mohamed H; Brennecke, Shaun P; Kalionis, Bill

    2016-03-01

    Human placental mesenchymal stem/stromal cells (MSC) are an attractive source of MSC with great therapeutic potential. However, primary MSC are difficult to study in vitro due to their limited lifespan and patient-to-patient variation. Fetal and maternal MSC were prepared from cells of the chorionic and basal plates of the placenta, respectively. Fetal and maternal MSC were transduced with the human telomerase reverse transcriptase (hTERT). Conventional stem cell assays assessed the MSC characteristics of the cell lines. Functional assays for cell proliferation, cell migration and ability to form colonies in soft agar were used to assess the whether transduced cells retained properties of primary MSC. Fetal chorionic and maternal MSC were successfully transduced with hTERT to create the cell lines CMSC29 and DMSC23 respectively. The lifespans of CMSC29 and DMSC23 were extended in cell culture. Both cell lines retained important MSC characteristics including cell surface marker expression and multipotent differentiation potential. Neither of the cell lines was tumourigenic in vitro. Gene expression differences were observed between CMSC29 and DMSC23 cells and their corresponding parent, primary MSC. Both cell lines show similar migration potential to their corresponding primary, parent MSC. The data show that transduced MSC retained important functional properties of the primary MSC. There were gene expression and functional differences between cell lines CMSC29 and DMSC23 that reflect their different tissue microenvironments of the parent, primary MSC. CMSC29 and DMSC23 cell lines could be useful tools for optimisation and functional studies of MSC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule-1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury.

    PubMed

    Zou, Xiangyu; Jiang, Kai; Puranik, Amrutesh S; Jordan, Kyra L; Tang, Hui; Zhu, Xiangyang; Lerman, Lilach O

    2018-05-01

    Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell-surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue-derived MSC with antibodies directed against kidney injury molecule-1 (ab-KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab-KIM1-coated MSC (KIM-MSC), or vehicle, were injected systemically into the carotid artery of 2-kidneys, 1-clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab-KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM-MSC compared to untreated MSC and compared to other organs. KIM-MSC-injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab-KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell-based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394-403. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  15. [Basic biological characteristics of mesenchymal stem cells derived from bone marrow and human umbilical cord].

    PubMed

    Han, Zhen-Xia; Shi, Qing; Wang, Da-Kun; Li, Dong; Lyu, Ming

    2013-10-01

    Bone marrow (BM) and umbilical cord (UC) are the major sources of mesenchymal stem cells for therapeutics. This study was aimed to compare the basic biologic characteristics of bone marrow-derived and umbilical cord derived-mesenchymal stem cells (BM-MSC and UC-MSC) and their immunosuppressive capability in vitro. The BM-MSC and UC-MSC were cultured and amplified under same culture condition. The growth kinetics, phenotypic characteristics and immunosuppressive effects of UC-MSC were compared with those of BM-MSC.Gene chip was used to compare the genes differentially expressed between UC-MSC and BM-MSC. The results showed that UC-MSC shared most of the characteristics of BM-MSC, including morphology and immunophenotype. UC-MSC could be ready expanded for 30 passages without visible changes. However, BM-MSC grew slowly, and the mean doubling time increased notably after passage 6. Both UC-MSC and BM-MSC could inhibit phytohemagglutinin-stimulated peripheral blood mononuclear cell proliferation, in which BM-MSC mediated more inhibitory effect. Compared with UC-MSC, BM-MSC expressed more genes associated with immune response. Meanwhile, the categories of up-regulated genes in UC-MSC were concentrated in organ development and growth. It is concluded that the higher proliferation capacity, low human leukocyte antigen-ABC expression and immunosuppression make UC-MSC an excellent alternative to BM-MSC for cell therapy. The differences between BM-MSC and UC-MSC gene expressions can be explained by their ontogeny and different microenvironment in origin tissue. These differences can affect their efficacy in different therapeutic applications.

  16. Aging of bone marrow mesenchymal stromal/stem cells: Implications on autologous regenerative medicine.

    PubMed

    Charif, N; Li, Y Y; Targa, L; Zhang, L; Ye, J S; Li, Y P; Stoltz, J F; Han, H Z; de Isla, N

    2017-01-01

    With their proliferation, differentiation into specific cell types, and secretion properties, mesenchymal stromal/stem cells (MSC) are very interesting tools to be used in regenerative medicine. Bone marrow (BM) was the first MSC source characterized. In the frame of autologous MSC therapy, it is important to detect donor's parameters affecting MSC potency. Age of the donors appears as one parameter that could greatly affect MSC properties. Moreover, in vitro cell expansion is needed to obtain the number of cells necessary for clinical developments. It will lead to in vitro cell aging that could modify cell properties. This review recapitulates several studies evaluating the effect of in vitro and in vivo MSC aging on cell properties.

  17. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    PubMed

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells.

    PubMed

    Steens, Jennifer; Zuk, Melanie; Benchellal, Mohamed; Bornemann, Lea; Teichweyde, Nadine; Hess, Julia; Unger, Kristian; Görgens, André; Klump, Hannes; Klein, Diana

    2017-04-11

    The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Immunomodulatory Properties of Induced Pluripotent Stem Cell-Derived Mesenchymal Cells.

    PubMed

    Ng, Jia; Hynes, Kim; White, Gregory; Sivanathan, Kisha Nandini; Vandyke, Kate; Bartold, Peter Mark; Gronthos, Stan

    2016-12-01

    MSC-like populations derived from induced pluripotent stem cells (iPSC-MSC) serve as an alternative stem cell source due to their high proliferative capacity. In this study, we assessed the immunomodulatory potential of iPSC-MSC generated from periodontal ligament (PDL) and gingival (GF) tissue. The iPSC-MSC lines exhibited a similar level of suppression of mitogen-stimulated peripheral blood mononuclear cells (PBMNC) proliferation compared to their respective parental fibroblast populations in vitro. Moreover, iPSC-MSC demonstrated the ability to suppress T-cells effector cells, Th1/Th2/Th17 populations, and increase levels of Treg cells. In order to investigate the mechanisms involved, expression of common MSC-derived soluble factors known to supress lymphocyte proliferation were assessed in iPSC-MSC cultured with PBMNC with direct cell-cell contact or separated in transwells. Real-time PCR analysis of factors known to be involved in MSC mediated immune regulation, found a general trend of elevated IDO1 and IL6 transcript levels in iPSC-MSC lines and their respective primary cells co-cultured with activated PBMNC, with a wide range of gene expression levels between the different mesenchymal cell types. The results suggest that different iPSC-MSC may be useful as a potential alternative source of cells for future clinical use in therapeutic applications because of their potent immunosuppressive properties. J. Cell. Biochem. 117: 2844-2853, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangxin; Yu, XiYong; Lin, ShuGuang

    2007-05-11

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response tomore » SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.« less

  1. Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential

    PubMed Central

    Pieber, Thomas Rudolf

    2017-01-01

    It has always been an ambitious goal in medicine to repair or replace morbid tissues for regaining the organ functionality. This challenge has recently gained momentum through considerable progress in understanding the biological concept of the regenerative potential of stem cells. Routine therapeutic procedures are about to shift towards the use of biological and molecular armamentarium. The potential use of embryonic stem cells and invention of induced pluripotent stem cells raised hope for clinical regenerative purposes; however, the use of these interventions for regenerative therapy showed its dark side, as many health concerns and ethical issues arose in terms of using these cells in clinical applications. In this regard, adult stem cells climbed up to the top list of regenerative tools and mesenchymal stem cells (MSC) showed promise for regenerative cell therapy with a rather limited level of risk. MSC have been successfully isolated from various human tissues and they have been shown to offer the possibility to establish novel therapeutic interventions for a variety of hard-to-noncurable diseases. There have been many elegant studies investigating the impact of MSC in regenerative medicine. This review provides compact information on the role of stem cells, in particular, MSC in regeneration. PMID:28286525

  2. A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype.

    PubMed

    Joddar, Binata; Kumar, Shweta Anil; Kumar, Alok

    2018-06-01

    Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.

  3. Reprogramming to a pluripotent state modifies mesenchymal stem cell resistance to oxidative stress

    PubMed Central

    Asensi, Karina D; Fortunato, Rodrigo S; dos Santos, Danúbia S; Pacheco, Thaísa S; de Rezende, Danielle F; Rodrigues, Deivid C; Mesquita, Fernanda C P; Kasai-Brunswick, Tais H; de Carvalho, Antonio C Campos; Carvalho, Denise P; Carvalho, Adriana B; Goldenberg, Regina C dos S

    2014-01-01

    Properties of induced pluripotent stem cells (iPSC) have been extensively studied since their first derivation in 2006. However, the modification in reactive oxygen species (ROS) production and detoxification caused by reprogramming still needs to be further elucidated. The objective of this study was to compare the response of iPSC generated from menstrual blood–derived mesenchymal stem cells (mb-iPSC), embryonic stem cells (H9) and adult menstrual blood–derived mesenchymal stem cells (mbMSC) to ROS exposure and investigate the effects of reprogramming on cellular oxidative stress (OS). mbMSC were extremely resistant to ROS exposure, however, mb-iPSC were 10-fold less resistant to H2O2, which was very similar to embryonic stem cell sensitivity. Extracellular production of ROS was also similar in mb-iPSC and H9 and almost threefold lower than in mbMSC. Furthermore, intracellular amounts of ROS were higher in mb-iPSC and H9 when compared with mbMSC. As the ability to metabolize ROS is related to antioxidant enzymes, we analysed enzyme activities in these cell types. Catalase and superoxide dismutase activities were reduced in mb-iPSC and H9 when compared with mbMSC. Finally, cell adhesion under OS conditions was impaired in mb-iPSC when compared with mbMSC, albeit similar to H9. Thus, reprogramming leads to profound modifications in extracellular ROS production accompanied by loss of the ability to handle OS. PMID:24528612

  4. Cell therapy in joint disorders.

    PubMed

    Counsel, Peter D; Bates, Daniel; Boyd, Richard; Connell, David A

    2015-01-01

    Articular cartilage possesses poor natural healing mechanisms, and a variety of non-cell-based and cell-based treatments aim to promote regeneration of hyaline cartilage. A review of the literature to December 2013 using PubMed with search criteria including the keywords stem cell, cell therapy, cell transplantation, cartilage, chondral, and chondrogenic. Forty-five articles were identified that employed local mesenchymal stem cell (MSC) therapy for joint disorders in humans. Nine comparative studies were identified, consisting of 3 randomized trials, 5 cohort studies, and 1 case-control study. Clinical review. Level 4. Studies were assessed for stem cell source, method of implantation, comparison groups, and concurrent surgical techniques. Two studies comparing MSC treatment to autologous chondrocyte implantation found similar efficacy. Three studies reported clinical benefits with intra-articular MSC injection over non-MSC controls for cases undergoing debridement with or without marrow stimulation, although a randomized study found no significant clinical difference at 2-year follow-up but reported better 18-month magnetic resonance imaging and histologic scores in the MSC group. No human studies have compared intra-articular MSC therapy to non-MSC techniques for osteoarthritis in the absence of surgery. Mesenchymal stem cell-based therapies appear safe and effective for joint disorders in large animal preclinical models. Evidence for use in humans, particularly, comparison with more established treatments such as autologous chondrocyte implantation and microfracture, is limited.

  5. Mesenchymal Stem Cells from Fetal Heart Attenuate Myocardial Injury after Infarction: An In Vivo Serial Pinhole Gated SPECT-CT Study in Rats

    PubMed Central

    Garikipati, Venkata Naga Srikanth; Jadhav, Sachin; Pal, Lily; Prakash, Prem; Dikshit, Madhu; Nityanand, Soniya

    2014-01-01

    Mesenchymal stem cells (MSC) have emerged as a potential stem cell type for cardiac regeneration after myocardial infarction (MI). Recently, we isolated and characterized mesenchymal stem cells derived from rat fetal heart (fC-MSC), which exhibited potential to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. In the present study, we investigated the therapeutic efficacy of intravenously injected fC-MSC in a rat model of MI using multi-pinhole gated SPECT-CT system. fC-MSC were isolated from the hearts of Sprague Dawley (SD) rat fetuses at gestation day 16 and expanded ex vivo. One week after induction of MI, 2×106 fC-MSC labeled with PKH26 dye (n = 6) or saline alone (n = 6) were injected through the tail vein of the rats. Initial in vivo tracking of 99mTc-labeled fC-MSC revealed a focal uptake of cells in the anterior mid-ventricular region of the heart. At 4 weeks of fC-MSC administration, the cells labeled with PKH26 were located in abundance in infarct/peri-infarct region and the fC-MSC treated hearts showed a significant increase in left ventricular ejection fraction and a significant decrease in the end diastolic volume, end systolic volume and left ventricular myo-mass in comparison to the saline treated group. In addition, fC-MSC treated hearts had a significantly better myocardial perfusion and attenuation in the infarct size, in comparison to the saline treated hearts. The engrafted PKH26-fC-MSC expressed cardiac troponin T, endothelial CD31 and smooth muscle sm-MHC, suggesting their differentiation into all major cells of cardiovascular lineage. The fC-MSC treated hearts demonstrated an up-regulation of cardio-protective growth factors, anti-fibrotic and anti-apoptotic molecules, highlighting that the observed left ventricular functional recovery may be due to secretion of paracrine factors by fC-MSC. Taken together, our results suggest that fC-MSC therapy may be a new therapeutic strategy for MI and multi-pinhole gated SPECT-CT system may be a useful tool to evaluate cardiac perfusion, function and cell tracking after stem cell therapy in acute myocardial injury setting. PMID:24971627

  6. Mesenchymal stem cell sheets exert anti-stenotic effects in a rat arterial injury model.

    PubMed

    Homma, Jun; Sekine, Hidekazu; Matsuura, Katsuhisa; Kobayashi, Eiji; Shimizu, Tatsuya

    2018-05-04

    Restenosis after catheter or surgical intervention substantially affects the prognosis of arterial occlusive disease. Mesenchymal stem cells (MSCs) may have anti-stenotic effects on injured arteries. MSC transplantation from the adventitial side of an artery is safer than endovascular transplantation but has not been extensively examined. In this study, a rat model of femoral artery injury was used to compare the anti-stenotic effects of transplanted cell sheets and transplanted cell suspensions. Rat adipose-derived stem cells (ASCs) were used as the source of MSCs. For both cell sheets and suspensions, 6×106 MSCs were transplanted on the day of arterial injury. MSC sheets attenuated neointimal hyperplasia more than MSC suspensions (intima-to-media ratio in haematoxylin/eosin-stained sections: 0.55±0.13 vs. 1.14±0.12; P<0.05). Cell engraftment (assessed by immunohistochemistry or bioluminescence imaging of luciferase-expressing cells), arterial re-endothelialisation (evaluated by immunohistochemical staining for rat endothelial cell antigen-1) and restriction of vascular smooth muscle cell proliferation in the neointima (double-staining of alpha-smooth muscle actin and phospho-histone H3) were greater when MSC sheets were applied than when MSC suspensions were used. In conclusion, MSC sheets exhibited better anti-stenotic and cell engraftment properties than MSC suspensions. MSC sheet transplantation from the adventitial side is a promising therapy for prevention of arterial restenosis.

  7. Novel application of stem cell-derived factors for periodontal regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inukai, Takeharu, E-mail: t-inukai@med.nagoya-u.ac.jp; Katagiri, Wataru, E-mail: w-kat@med.nagoya-u.ac.jp; Yoshimi, Ryoko, E-mail: lianzi@med.nagoya-u.ac.jp

    Highlights: Black-Right-Pointing-Pointer Mesenchymal stem cells (MSCs) secrete a variety of cytokines. Black-Right-Pointing-Pointer Cytokines were detected in conditioned medium from cultured MSCs (MSC-CM). Black-Right-Pointing-Pointer MSC-CM enhanced activation of dog MSCs and periodontal ligament cells. Black-Right-Pointing-Pointer MSC-CM significantly promoted alveolar bone and cementum regeneration. Black-Right-Pointing-Pointer Multiple cytokines contained in MSC-CM promote periodontal regeneration. -- Abstract: The effect of conditioned medium from cultured mesenchymal stem cells (MSC-CM) on periodontal regeneration was evaluated. In vitro, MSC-CM stimulated migration and proliferation of dog MSCs (dMSCs) and dog periodontal ligament cells (dPDLCs). Cytokines such as insulin-like growth factor, vascular endothelial growth factor, transforming growth factor-{beta}1, andmore » hepatocyte growth factor were detected in MSC-CM. In vivo, one-wall critical-size, intrabony periodontal defects were surgically created in the mandible of dogs. Dogs with these defects were divided into three groups that received MSC-CM, PBS, or no implants. Absorbable atelo-collagen sponges (TERUPLUG Registered-Sign ) were used as a scaffold material. Based on radiographic and histological observation 4 weeks after transplantation, the defect sites in the MSC-CM group displayed significantly greater alveolar bone and cementum regeneration than the other groups. These findings suggest that MSC-CM enhanced periodontal regeneration due to multiple cytokines contained in MSC-CM.« less

  8. Avoidance of Maternal Cell Contamination and Overgrowth in Isolating Fetal Chorionic Villi Mesenchymal Stem Cells from Human Term Placenta

    PubMed Central

    Sardesai, Varda S.; Shafiee, Abbas; Fisk, Nicholas M.

    2017-01-01

    Abstract Human placenta is rich in mesenchymal stem/stromal cells (MSC), with their origin widely presumed fetal. Cultured placental MSCs are confounded by a high frequency of maternal cell contamination. Our recent systematic review concluded that only a small minority of placental MSC publications report fetal/maternal origin, and failed to discern a specific methodology for isolation of fetal MSC from term villi. We determined isolation conditions to yield fetal and separately maternal MSC during ex vivo expansion from human term placenta. MSCs were isolated via a range of methods in combination; selection from various chorionic regions, different commercial media, mononuclear cell digest and/or explant culture. Fetal and maternal cell identities were quantitated in gender‐discordant pregnancies by XY chromosome fluorescence in situ hybridization. We first demonstrated reproducible maternal cell contamination in MSC cultures from all chorionic anatomical locations tested. Cultures in standard media rapidly became composed entirely of maternal cells despite isolation from fetal villi. To isolate pure fetal cells, we validated a novel isolation procedure comprising focal dissection from the cotyledonary core, collagenase/dispase digestion and explant culture in endothelial growth media that selected, and provided a proliferative environment, for fetal MSC. Comparison of MSC populations within the same placenta confirmed fetal to be smaller, more osteogenic and proliferative than maternal MSC. We conclude that in standard media, fetal chorionic villi‐derived MSC (CV‐MSC) do not grow readily, whereas maternal MSC proliferate to result in maternal overgrowth during culture. Instead, fetal CV‐MSCs require isolation under specific conditions, which has implications for clinical trials using placental MSC. Stem Cells Translational Medicine 2017;6:1070–1084 PMID:28205414

  9. Persistence of human parvovirus B19 in multipotent mesenchymal stromal cells expressing the erythrocyte P antigen: implications for transplantation

    PubMed Central

    Sundin, Mikael; Lindblom, Anna; Örvell, Claes; Barrett, A.John; Sundberg, Berit; Watz, Emma; Wikman, Agneta; Broliden, Kristina; Le Blanc, Katarina

    2014-01-01

    Multipotent mesenchymal stromal cells (MSC) are used to improve the outcome of hematopoietic stem cell transplantation and in regenerative medicine. However, MSC may harbor persistent viruses that may compromise their clinical benefit. Retrospectively screened, 1 of 20 MSC from healthy donors contained parvovirus B19 (B19) DNA. We found that MSC express the B19 receptor (the globoside P antigen) and a co-receptor (Ku 80), and can transmit B19 to bone marrow cells in vitro, suggesting that the virus can persist in the marrow stroma of healthy individuals. Two stem cell transplant patients received the B19 positive MSC as treatment for graft-versus-host disease. Neither developed viremia nor symptomatic B19 infection. These results demonstrate for the first time that persistent B19 in MSC can infect hematopoietic cells and underscore the importance of monitoring B19 transmission by MSC products. PMID:18804048

  10. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector.

    PubMed

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2005-10-04

    The goal of this study was to modify mesenchymal stem cells (MSCs) cells with a hypoxia-regulated heme oxygenase-1 (HO-1) plasmid to enhance the survival of MSCs in acute myocardial infarction (MI) heart. Although stem cells are being tested clinically for cardiac repair, graft cells die in the ischemic heart because of the effects of hypoxia/reoxygenation, inflammatory cytokines, and proapoptotic factors. Heme oxygenase-1 is a key component in inhibiting most of these factors. Mesenchymal stem cells from bone marrow were transfected with either HO-1 or LacZ plasmids. Cell apoptosis was assayed in vitro after hypoxia-reoxygen treatment. In vivo, 1 x 10(6) of male MSC(HO-1), MSC(LacZ), MSCs, or medium was injected into mouse hearts 1 h after MI (n = 16/group). Cell survival was assessed in a gender-mismatched transplantation model. Apoptosis, left ventricular remodeling, and cardiac function were tested in a gender-matched model. In the ischemic myocardium, the MSC(HO-1) group had greater expression of HO-1 and a 2-fold reduction in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick end labeling-positive cells compared with the MSC(LacZ) group. At seven days after implantation, the survival MSC(HO-1) was five-fold greater than the MSC(LacZ) group; MSC(HO-1) also attenuated left ventricular remodeling and enhanced the functional recovery of infarcted hearts two weeks after MI. A hypoxia-regulated HO-1 vector modification of MSCs enhances the tolerance of engrafted MSCs to hypoxia-reoxygen injury in vitro and improves their viability in ischemic hearts. This demonstration is the first showing that a physiologically inducible vector expressing of HO-1 genes improves the survival of stem cells in myocardial ischemia.

  11. Mesenchymal stem cells: biological characteristics and potential clinical applications.

    PubMed

    Kassem, Moustapha

    2004-01-01

    Mesenchymal stem cells (MSC) are clonogenic, non-hematpoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages, for example, osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages, for example, neuronal-like cells. Several methods are currently available for isolation of the MSC based on their physical and physico-chemical characteristics, for example, adherence to plastics or other extracellular matrix components. Because of the ease of their isolation and their extensive differentiation potential, MSC are among the first stem cell types to be introduced in the clinic. Several studies have demonstrated the possible use of MSC in systemic transplantation for systemic diseases, local implantation for local tissue defects, as a vehicle for genes in gene therapy protocols or to generate transplantable tissues and organs in tissue engineering protocols. Before their widespread use in therapy, methods allowing the generation of large number of cells without affecting their differentiation potential as well as technologies that overcome immunological rejection (in case allogenic transplantation) must be developed.

  12. The effect of stem cell from human exfoliated deciduous teeth on T lymphocyte proliferation.

    PubMed

    Alipour, Razieh; Adib, Minoo; Hashemi-Beni, Batool; Sadeghi, Farzaneh

    2014-01-01

    Mesenchymal stem cells (MSC), a specific type of adult tissue stem cell; have the immunosuppressive effects that make them valuable targets for regenerative medicine and treatment of many human illnesses. Hence, MSC have been the subject of numerous studies. The classical source of MSC is adult bone marrow (BM). Due to many shortcomings of harvesting MSC from BM, finding the alternative sources for MSC is an urgent. Stem cells from human exfoliated deciduous teeth (SHED) are relative new MSC populations that fulfill these criteria but their potential immunosuppressive effect has not been studied enough yet. Thus, in this work the effect of SHED on the proliferation of in vitro activated T lymphocytes were explored. In this study, both mitogen and alloantigen activated T cells were cultured in the presence of different numbers of SHED. In some co-cultures, activated T cells were in direct contact to MSCs and in other co-cultures; they were separated from SHED by a permeable membrane. In all co-cultures, the proliferation of T cells was measured by ELISA Bromodeoxyuridine proliferation assay. In general, our results showed that SHED significantly suppress the proliferation of activated T cells in a dose-dependent manner. Moreover, the suppression was slightly stronger when MSCs were in physical contact to activated T cells. This study showed that SHED likewise other MSC populations can suppress the activation of T lymphocytes, which can be used instead of BM derived MSCs in many investigational and clinical applications.

  13. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less

  14. Complementarity of SOMAscan to LC-MS/MS and RNA-seq for quantitative profiling of human embryonic and mesenchymal stem cells.

    PubMed

    Billing, Anja M; Ben Hamidane, Hisham; Bhagwat, Aditya M; Cotton, Richard J; Dib, Shaima S; Kumar, Pankaj; Hayat, Shahina; Goswami, Neha; Suhre, Karsten; Rafii, Arash; Graumann, Johannes

    2017-01-06

    Dynamic range limitations are challenging to proteomics, particularly in clinical samples. Affinity proteomics partially overcomes this, yet suffers from dependence on reagent quality. SOMAscan, an aptamer-based platform for over 1000 proteins, avoids that issue using nucleic acid binders. Targets include low expressed proteins not easily accessible by other approaches. Here we report on the potential of SOMAscan for the study of differently sourced mesenchymal stem cells (MSC) in comparison to LC-MS/MS and RNA sequencing. While targeting fewer analytes, SOMAscan displays high precision and dynamic range coverage, allowing quantification of proteins not measured by the other platforms. Expression between cell types (ESC and MSC) was compared across techniques and uncovered the expected large differences. Sourcing was investigated by comparing subtypes: bone marrow-derived, standard in clinical studies, and ESC-derived MSC, thought to hold similar potential but devoid of inter-donor variability and proliferating faster in vitro. We confirmed subtype-equivalency, as well as vesicle and extracellular matrix related processes in MSC. In contrast, the proliferative nature of ESC was captured less by SOMAscan, where nuclear proteins are underrepresented. The complementary of SOMAscan allowed the comprehensive exploration of CD markers and signaling molecules, not readily accessible otherwise and offering unprecedented potential in subtype characterization. Mesenchymal stem cells (MSC) represent promising stem cell-derived therapeutics as indicated by their application in >500 clinical trials currently registered with the NIH. Tissue-derived MSC require invasive harvesting and imply donor-to-donor differences, to which embryonic stem cell (ESC)-derived MSC may provide an alternative and thus warrant thorough characterization. In continuation of our previous study where we compared in depth embryonic stem cells (ESC) and MSC from two sources (bone marrow and ESC-derived), we included the aptamer-based SOMAscan assay, complementing LC-MS/MS and RNA-seq data. Furthermore, SOMAscan, a targeted proteomics platform developed for analyzing clinical samples, has been benchmarked against established analytical platforms (LC-MS/MS and RNA-seq) using stem cell comparisons as a model. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner.

    PubMed

    Munir, Hafsa; Ward, Lewis S C; Sheriff, Lozan; Kemble, Samuel; Nayar, Saba; Barone, Francesca; Nash, Gerard B; McGettrick, Helen M

    2017-06-01

    Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFβ1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646. © 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  16. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-07-26

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.

  17. Cell-based Therapy for Acute Organ Injury: Preclinical Evidence and On-going Clinical Trials Using Mesenchymal Stem Cells

    PubMed Central

    Monsel, Antoine; Zhu, Ying-gang; Gennai, Stephane; Hao, Qi; Liu, Jia; Lee, Jae W.

    2014-01-01

    Critically ill patients often suffer from multiple organ failures involving lung, kidney, liver or brain. Genomic, proteomic and metabolomic approaches highlight common injury mechanisms leading to acute organ failure. This underlines the need to focus on therapeutic strategies affecting multiple injury pathways. The use of adult stem cells such as mesenchymal stem or stromal cells (MSC) may represent a promising new therapeutic approach as increasing evidence shows that MSC can exert protective effects following injury through the release of pro-mitotic, anti-apoptotic, anti-inflammatory and immunomodulatory soluble factors. Furthermore, they can mitigate metabolomic and oxidative stress imbalance. In this work, we review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to determine their optimal clinical use. PMID:25211170

  18. HORSE SPECIES SYMPOSIUM: Use of mesenchymal stem cells in fracture repair in horses.

    PubMed

    Govoni, K E

    2015-03-01

    Equine bone fractures are often catastrophic, potentially fatal, and costly to repair. Traditional methods of healing fractures have limited success, long recovery periods, and a high rate of reinjury. Current research in the equine industry has demonstrated that stem cell therapy is a promising novel therapy to improve fracture healing and reduce the incidence of reinjury; however, reports of success in horses have been variable and limited. Stem cells can be derived from embryonic, fetal, and adult tissue. Based on the ease of collection, opportunity for autologous cells, and proven success in other models, adipose- or bone marrow-derived mesenchymal stem cells (MSC) are often used in equine therapies. Methods for isolation, proliferation, and differentiation of MSC are well established in rodent and human models but are not well characterized in horses. There is recent evidence that equine bone marrow MSC are able to proliferate in culture for several passages in the presence of autologous and fetal bovine serum, which is important for expansion of cells. Mesenchymal stem cells have the capacity to differentiate into osteoblasts, the bone forming cells, and this complex process is regulated by a number of transcription factors including runt-related transcription factor 2 (Runx2) and osterix (Osx). However, it has not been well established if equine MSC are regulated in a similar manner. The data presented in this review support the view that equine bone marrow MSC are regulated by the same transcription factors that control the differentiation of rodent and human MSC into osteoblasts. Although stem cell therapy is promising in equine bone repair, additional research is needed to identify optimal methods for reintroduction and potential manipulations to improve their ability to form new bone.

  19. Encapsulated Glucagon-Like Peptide-1-Producing Mesenchymal Stem Cells Have a Beneficial Effect on Failing Pig Hearts

    PubMed Central

    Wright, Elizabeth J.; Farrell, Kelly A.; Malik, Nadim; Kassem, Moustapha; Lewis, Andrew L.; Wallrapp, Christine

    2012-01-01

    Stem cell therapy is an exciting and emerging treatment option to promote post-myocardial infarction (post-MI) healing; however, cell retention and efficacy in the heart remain problematic. Glucagon-like peptide-1 (GLP-1) is an incretin hormone with cardioprotective properties but a short half-life in vivo. The effects of prolonged GLP-1 delivery from stromal cells post-MI were evaluated in a porcine model. Human mesenchymal stem cells immortalized and engineered to produce a GLP-1 fusion protein were encapsulated in alginate (bead-GLP-1 MSC) and delivered to coronary artery branches. Control groups were cell-free beads and beads containing unmodified MSCs (bead-MSC), n = 4–5 per group. Echocardiography confirmed left ventricular (LV) dysfunction at time of delivery in all groups. Four weeks after intervention, only the bead-GLP-1 MSC group demonstrated LV function improvement toward baseline and showed decreased infarction area compared with controls. Histological analysis showed reduced inflammation and a trend toward reduced apoptosis in the infarct zone. Increased collagen but fewer myofibroblasts were observed in infarcts of the bead-GLP-1 MSC and bead-MSC groups, and significantly more vessels per mm2 were noted in the infarct of the bead-GLP-1 MSC group. No differences were observed in myocyte cross-sectional area between groups. Post-MI delivery of GLP-1 encapsulated genetically modified MSCs provided a prolonged supply of GLP-1 and paracrine stem cell factors, which improved LV function and reduced epicardial infarct size. This was associated with increased angiogenesis and an altered remodeling response. Combined benefits of paracrine stem cell factors and GLP-1 were superior to those of stem cells alone. These results suggest that encapsulated genetically modified MSCs would be beneficial for recovery following MI. PMID:23197668

  20. [Mesenchymal stem cell therapy, a new hope for eye disease].

    PubMed

    Roubeix, C; Denoyer, A; Brignole-Baudouin, F; Baudouin, C

    2015-10-01

    Mesenchymal stem cells (MSC) are adult stem cells, first identified in skeletal tissues and then found in the entire body. MSC are able to not only differentiate into specialized cells within skeletal tissue - chondrocytes, osteocytes, adipocytes and fibroblasts - but also secrete a large range of soluble mediators defining their secretome and allowing their interaction with a number of cell protagonists. Thus, in a general sense, MSC are involved in tissue homeostasis through their secretome and are specifically responsible for cell turn-over in skeletal tissues. For a decade and a half, safety and efficiency of MSC has led to the development of many clinical trials in various fields. However, results were often disappointing, probably because of difficulties in methods and evaluation. At a time when the first clinical trials using MSC are emerging in ophthalmology, the goal of this literature review is to gather and put into perspective preclinical and clinical results in order to better predict the future of this innovative therapeutic pathway. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Receptor control in mesenchymal stem cell engineering

    NASA Astrophysics Data System (ADS)

    Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel

    2018-03-01

    Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.

  2. In vitro-microenvironment directs preconditioning of human chorion derived MSC promoting differentiation of OPC-like cells.

    PubMed

    Periasamy, Ramesh; Surbek, Daniel V; Schoeberlein, Andreina

    2018-06-01

    The loss of oligodendrocyte progenitor cells (OPC) is a hallmark of perinatal brain injury. Our aim was to develop an in vitro culture condition for human chorion-derived mesenchymal stem cells (MSC) that enhances their stem cell properties and their capability to differentiate towards OPC-like cells. MSC were grown either in serum replacement medium (SRM) or serum-containing medium (SM) and tested for their morphology, proliferation, secretome, migration, protein expression and differentiation into OPC-like cells. MSC cultured in SRM condition have distinct morphology/protein expression profile, increased cell proliferation/migration and capacity to differentiate into OPC-like cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantovani, Cristina; Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea; Department of Surgical and Perioperative Science, Umea University, Umea

    2012-10-01

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 atmore » similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker{sup Registered-Sign} staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: Black-Right-Pointing-Pointer Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. Black-Right-Pointing-Pointer p53 expression does not appreciably influence the biology of Schwann or stem cells. Black-Right-Pointing-Pointer Notch 2 expression was similar in cells derived from animals of different ages. Black-Right-Pointing-Pointer Proliferation rates of dMSC varied little over time or with animal age.« less

  4. Mesenchymal Stem Cell Derived Secretome and Extracellular Vesicles for Acute Lung Injury and Other Inflammatory Lung Diseases

    PubMed Central

    Monsel, Antoine; Zhu, Ying-gang; Gudapati, Varun; Lim, Hyungsun; Lee, Jae W.

    2017-01-01

    Introduction Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. Areas covered The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. Expert opinion While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification. PMID:27011289

  5. Evidence for Transfer of Membranes from Mesenchymal Stem Cells to HL-1 Cardiac Cells.

    PubMed

    Boomsma, Robert A; Geenen, David L

    2014-01-01

    This study examined the interaction of mouse bone marrow mesenchymal stem cells (MSC) with cardiac HL-1 cells during coculture by fluorescent dye labeling and then flow cytometry. MSC were layered onto confluent HL-1 cell cultures in a 1 : 4 ratio. MSC gained gap junction permeant calcein from HL-1 cells after 4 hours which was partially reduced by oleamide. After 20 hours, 99% MSC gained calcein, unaffected by oleamide. Double-labeling HL-1 cells with calcein and the membrane dye DiO resulted in transfer of both calcein and DiO to MSC. When HL-1 cells were labeled with calcein and MSC with DiO, MSC gained calcein while HL-1 cells gained DiO. Very little fusion was observed since more than 90% Sca-1 positive MSC gained DiO from HL-1 cells while less than 9% gained gap junction impermeant CMFDA after 20 hours with no Sca-1 transfer to HL-1 cells. Time dependent transfer of membrane DiD was observed from HL-1 cells to MSC (100%) and vice versa (50%) after 20 hours with more limited transfer of CMFDA. These results demonstrate that MSC and HL-1 cells exchange membrane components which may account for some of the beneficial effect of MSC in the heart after myocardial infarction.

  6. The effect of stem cell from human exfoliated deciduous teeth on T lymphocyte proliferation

    PubMed Central

    Alipour, Razieh; Adib, Minoo; Hashemi-Beni, Batool; Sadeghi, Farzaneh

    2014-01-01

    Background: Mesenchymal stem cells (MSC), a specific type of adult tissue stem cell; have the immunosuppressive effects that make them valuable targets for regenerative medicine and treatment of many human illnesses. Hence, MSC have been the subject of numerous studies. The classical source of MSC is adult bone marrow (BM). Due to many shortcomings of harvesting MSC from BM, finding the alternative sources for MSC is an urgent. Stem cells from human exfoliated deciduous teeth (SHED) are relative new MSC populations that fulfill these criteria but their potential immunosuppressive effect has not been studied enough yet. Thus, in this work the effect of SHED on the proliferation of in vitro activated T lymphocytes were explored. Materials and Methods: In this study, both mitogen and alloantigen activated T cells were cultured in the presence of different numbers of SHED. In some co-cultures, activated T cells were in direct contact to MSCs and in other co-cultures; they were separated from SHED by a permeable membrane. In all co-cultures, the proliferation of T cells was measured by ELISA Bromodeoxyuridine proliferation assay. Results: In general, our results showed that SHED significantly suppress the proliferation of activated T cells in a dose-dependent manner. Moreover, the suppression was slightly stronger when MSCs were in physical contact to activated T cells. Conclusion: This study showed that SHED likewise other MSC populations can suppress the activation of T lymphocytes, which can be used instead of BM derived MSCs in many investigational and clinical applications. PMID:25337532

  7. Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4+ T cells

    PubMed Central

    Yang, Zhou Xin; Chi, Ying; Ji, Yue Ru; Wang, You Wei; Zhang, Jing; Luo, Wei Feng; Li, Li Na; Hu, Cai Dong; Zhuo, Guang Sheng; Wang, Li Fang; Han, Zhi-Bo; Han, Zhong Chao

    2017-01-01

    Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhanced IL-9 production by CD4+ T cells. Transwell experiments suggested that UC-MSC promotion of IL-9 production by CD4+ T cells was dependent on cell-cell contact. Upregulated expression of CD106 was observed in UC-MSC co-cultured with CD4+ T cells, and the addition of a blocking antibody of CD106 significantly impaired the ability of UC-MSC to promote IL-9 production by CD4+ T cells. Therefore, the results of the present study demonstrated that UC-MSC promoted the generation of IL-9 producing cells, which may be mediated, in part by CD106. The findings may act to expand understanding and knowledge of the immune modulatory role of UC-MSC. PMID:29042945

  8. Umbilical cord fibroblasts: Could they be considered as mesenchymal stem cells?

    PubMed Central

    Zeddou, Mustapha; Relic, Biserka; Malaise, Michel G

    2014-01-01

    In cell therapy protocols, many tissues were proposed as a source of mesenchymal stem cells (MSC) isolation. So far, bone marrow (BM) has been presented as the main source of MSC despite the invasive isolation procedure related to this source. During the last years, the umbilical cord (UC) matrix was cited in different studies as a reliable source from which long term ex vivo proliferating fibroblasts were isolated but with contradictory data about their immunophenotype, gene expression profile, and differentiation potential. Hence, an interesting question emerged: Are cells isolated from cord matrix (UC-MSC) different from other MSCs? In this review, we will summarize different studies that isolated and characterized UC-MSC. Considering BM-MSC as gold standard, we will discuss if UC-MSC fulfill different criteria that define MSC, and what remain to be done in this issue. PMID:25126385

  9. Osteoblastic mesenchymal stem cell sheet combined with Choukroun platelet-rich fibrin induces bone formation at an ectopic site.

    PubMed

    Wang, Zhifa; Weng, Yanming; Lu, Shengjun; Zong, Chunlin; Qiu, Jianyong; Liu, Yanpu; Liu, Bin

    2015-08-01

    To analyze the effects of platelet-rich fibrin (PRF) on mesenchymal stem cells (MSCs) in vitro and investigate in vivo bone formation by MSC sheets with PRF. Cell proliferation and expression of osteogenesis-related genes within MSC sheets were assessed upon exposure to PRF from the same donors. We then injected MSC sheet fragments with or without PRF subcutaneously in nude mice and assessed bone formation by micro-computed tomography and histological analyses. PRF significantly stimulated MSC proliferation and osteogenesis in vitro. MSC sheets injected with or without PRF formed new bone, but those with PRF produced significantly more and denser bone. MSC sheets can be used to generate tissue engineered bone upon injection, and PRF increases the osteogenic capacity of MSC sheets in vitro and in vivo. © 2014 Wiley Periodicals, Inc.

  10. BMP2 repression and optimized culture conditions promote human bone marrow-derived mesenchymal stem cell isolation.

    PubMed

    Kay, Alasdair Gawain; Dale, Tina Patricia; Akram, Khondoker Mehedi; Mohan, Param; Hampson, Karen; Maffulli, Nicola; Spiteri, Monica A; El Haj, Alicia Jennifer; Forsyth, Nicholas Robert

    2015-01-01

    Human mesenchymal stem cells (hMSC) are multipotent progenitor cells. We propose the optimization of hMSC isolation and recovery using the application of a controlled hypoxic environment. We evaluated oxygen, glucose and serum in the recovery of hMSC from bone marrow (BMhMSC). Colony forming units-fibroblastic, cell numbers, tri-lineage differentiation, immunofluorescence and microarray were used to confirm and characterize BMhMSC. In an optimized (2% O(2), 4.5 g/l glucose and 5% serum) environment both colony forming units-fibroblastic (p = 0.01) and cell numbers (p = 0.0001) were enhanced over standard conditions. Transcriptional analysis identified differential expression of bone morphogenetic protein 2 (BMP2) and, putatively, chemokine (C-X-C motif) receptor 2 (CXCR2) signaling pathways. We have detailed a potential milestone in the process of refinement of the BMhMSC isolation process.

  11. Human mesenchymal stem cells suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease.

    PubMed

    Tobin, L M; Healy, M E; English, K; Mahon, B P

    2013-05-01

    Acute graft-versus-host disease (aGVHD) is a life-threatening complication following allogeneic haematopoietic stem cell transplantation (HSCT), occurring in up to 30-50% of patients who receive human leucocyte antigen (HLA)-matched sibling transplants. Current therapies for steroid refractory aGVHD are limited, with the prognosis of patients suboptimal. Mesenchymal stem or stromal cells (MSC), a heterogeneous cell population present in many tissues, display potent immunomodulatory abilities. Autologous and allogeneic ex-vivo expanded human MSC have been utilized to treat aGVHD with promising results, but the mechanisms of therapeutic action remain unclear. Here a robust humanized mouse model of aGVHD based on delivery of human peripheral blood mononuclear cells (PBMC) to non-obese diabetic (NOD)-severe combined immunodeficient (SCID) interleukin (IL)-2rγ(null) (NSG) mice was developed that allowed the exploration of the role of MSC in cell therapy. MSC therapy resulted in the reduction of liver and gut pathology and significantly increased survival. Protection was dependent upon the timing of MSC therapy, with conventional MSC proving effective only after delayed administration. In contrast, interferon (IFN)-γ-stimulated MSC were effective when delivered with PBMC. The beneficial effect of MSC therapy in this model was not due to the inhibition of donor PBMC chimerism, as CD45(+) and T cells engrafted successfully in this model. MSC therapy did not induce donor T cell anergy, FoxP3(+) T regulatory cells or cause PBMC apoptosis in this model; however, it was associated with the direct inhibition of donor CD4(+) T cell proliferation and reduction of human tumour necrosis factor-α in serum. © 2012 British Society for Immunology.

  12. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion.

    PubMed

    Neumann, Anne; Lavrentieva, Antonina; Heilkenbrinker, Alexandra; Loenne, Maren; Kasper, Cornelia

    2014-11-27

    Recruitment of mesenchymal stromal cells (MSC) into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use) disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC) were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

  13. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation.

    PubMed

    Kulterer, Birgit; Friedl, Gerald; Jandrositz, Anita; Sanchez-Cabo, Fatima; Prokesch, Andreas; Paar, Christine; Scheideler, Marcel; Windhager, Reinhard; Preisegger, Karl-Heinz; Trajanoski, Zlatko

    2007-03-12

    Human mesenchymal stem cells (MSC) with the capacity to differentiate into osteoblasts provide potential for the development of novel treatment strategies, such as improved healing of large bone defects. However, their low frequency in bone marrow necessitate ex vivo expansion for further clinical application. In this study we asked if MSC are developing in an aberrant or unwanted way during ex vivo long-term cultivation and if artificial cultivation conditions exert any influence on their stem cell maintenance. To address this question we first developed human oligonucleotide microarrays with 30.000 elements and then performed large-scale expression profiling of long-term expanded MSC and MSC during differentiation into osteoblasts. The results showed that MSC did not alter their osteogenic differentiation capacity, surface marker profile, and the expression profiles of MSC during expansion. Microarray analysis of MSC during osteogenic differentiation identified three candidate genes for further examination and functional analysis: ID4, CRYAB, and SORT1. Additionally, we were able to reconstruct the three developmental phases during osteoblast differentiation: proliferation, matrix maturation, and mineralization, and illustrate the activation of the SMAD signaling pathways by TGF-beta2 and BMPs. With a variety of assays we could show that MSC represent a cell population which can be expanded for therapeutic applications.

  14. Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro

    PubMed Central

    Zhou, Hao; Li, Dandan; Shi, Chen; Xin, Ting; Yang, Junjie; Zhou, Ying; Hu, Shunyin; Tian, Feng; Wang, Jing; Chen, Yundai

    2015-01-01

    Mesenchymal stem cells (MSC) are regarded as an attractive source of therapeutic stem cells for myocardial infarction. However, their limited self-renewal capacity, low migration capacity and poor viability after transplantation hamper the clinical use of MSC; thus, a strategy to enhance the biological functions of MSC is required. Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, exerts cell-protective effects on many types of cells. However, little information is available regarding the influence of Ex-4 on MSC. In our study, MSC were isolated from bone marrow and cultured in vitro. After treatment with Ex-4, MSC displayed a higher proliferative capacity, increased C-X-C motif receptor 4 (CXCR4) expression and an enhanced migration response. Moreover, in H2O2-induced apoptosis, Ex-4 preserved mitochondrial function through scavenging ROS and balancing the expression of anti- and pro-apoptotic proteins, leading to the inhibition of the mitochondria-dependent cell death pathways and increased cell survival. Moreover, higher phospho-Akt (p-Akt) expression was observed after Ex-4 intervention. However, blockade of the PI3K/Akt pathway with inhibitors suppressed the above cytoprotective effects of Ex-4, suggesting that the PI3K/Akt pathway is partly responsible for Ex-4-mediated MSC growth, mobilization and survival. These findings provide an attractive method of maximizing the effectiveness of MSC-based therapies in clinical applications. PMID:26250571

  15. Guided Cardiopoiesis Enhances Therapeutic Benefit of Bone Marrow Human Mesenchymal Stem Cells in Chronic Myocardial Infarction

    PubMed Central

    Behfar, Atta; Yamada, Satsuki; Crespo-Diaz, Ruben; Nesbitt, Jonathan J.; Rowe, Lois A.; Perez-Terzic, Carmen; Gaussin, Vinciane; Homsy, Christian; Bartunek, Jozef; Terzic, Andre

    2010-01-01

    Objective The goal of this study was to guide bone marrow-derived human mesenchymal stem cells (hMSC) into a cardiac progenitor phenotype, and assess therapeutic benefit in chronic myocardial infarction. Background Adult stem cells, delivered in their naïve state, demonstrate a limited benefit in patients with ischemic heart disease. Preemptive lineage pre-specification may optimize therapeutic outcome. Methods hMSC were harvested from a coronary artery disease patient cohort. A recombinant cocktail consisting of TGFβ1, BMP-4, Activin-A, retinoic acid, IGF-1, FGF-2, α-thrombin and IL-6 was formulated to engage hMSC into cardiopoiesis. Derived hMSC were injected into the myocardium of a nude infarcted murine model, and followed over 1-year for functional and structural end-points. Results While the majority of patient-derived hMSC in their native state demonstrated limited effect on ejection fraction, stem cells from rare individuals harbored a spontaneous capacity to improve contractile performance. This reparative cytotype was characterized by high expression of Nkx2.5, Tbx5, Mesp-1 and Mef2C, markers of cardiopoiesis. Recombinant cardiogenic cocktail guidance secured the cardiopoietic phenotype across the patient cohort. Compared to unguided counterparts, cardiopoietic hMSC delivered into infarcted myocardium achieved superior functional and structural benefit without adverse side effects. Engraftment into murine hearts was associated with increased human-specific nuclear, sarcomeric and gap junction content along with induction of myocardial cell cycle activity. Conclusions Guided cardiopoiesis thus enhances the therapeutic benefit of bone marrow-derived human mesenchymal stem cells in chronic ischemic cardiomyopathy. PMID:20723802

  16. Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells.

    PubMed

    Ishihara, Seiichiro; Inman, David R; Li, Wan-Ju; Ponik, Suzanne M; Keely, Patricia J

    2017-11-15

    In response to chemical stimuli from cancer cells, mesenchymal stem cells (MSC) can differentiate into cancer-associated fibroblasts (CAF) and promote tumor progression. How mechanical stimuli such as stiffness of the extracellular matrix (ECM) contribute to MSC phenotype in cancer remains poorly understood. Here, we show that ECM stiffness leads to mechano-signal transduction in MSC, which promotes mammary tumor growth in part through secretion of the signaling protein prosaposin. On a stiff matrix, MSC cultured with conditioned media from mammary cancer cells expressed increased levels of α-smooth muscle actin, a marker of CAF, compared with MSC cultured on a soft matrix. By contrast, MSC cultured on a stiff matrix secreted prosaposin that promoted proliferation and survival of mammary carcinoma cells but inhibited metastasis. Our findings suggest that in addition to chemical stimuli, increased stiffness of the ECM in the tumor microenvironment induces differentiation of MSC to CAF, triggering enhanced proliferation and survival of mammary cancer cells. Cancer Res; 77(22); 6179-89. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. The association of human mesenchymal stem cells with BMP-7 improves bone regeneration of critical-size segmental bone defects in athymic rats.

    PubMed

    Burastero, Giorgio; Scarfì, Sonia; Ferraris, Chiara; Fresia, Chiara; Sessarego, Nadia; Fruscione, Floriana; Monetti, Francesco; Scarfò, Francesca; Schupbach, Peter; Podestà, Marina; Grappiolo, Guido; Zocchi, Elena

    2010-07-01

    Critical size segmental bone defects are still a major challenge in reconstructive orthopedic surgery. Transplantation of human mesenchymal stem cells (hMSC) has been proposed as an alternative to autogenous bone graft, as MSC can be expanded in vitro and induced to differentiate into bone-regenerating osteoblasts by several bone morphogenetic proteins (BMP). The aim of this study was to investigate whether the association of hMSC and BMP-7, with providing the necessary scaffold to fill the bone loss, improved bone regeneration in a rat model of critical size segmental bone defect, compared to treatment with either hMSC or BMP-7 and the matrix. In addition, we tested whether pre-treatment of hMSC with cyclic ADP-ribose (cADPR), an intracellular Ca2+ mobilizer previously shown to accelerate the in vitro expansion of hMSC (Scarfì S et al, Stem Cells, 2008), affected the osteoinductive capacity of the cells in vivo. X-ray analysis, performed 2, 10 and 16 weeks after transplantation, revealed a significantly higher score in the rats treated with hMSC and BMP-7 compared to controls, receiving either hMSC or BMP-7. Microtomography and histological analysis, performed 16weeks after transplantation, confirmed the improved bone regeneration in the animals treated with the association of hMSC and BMP-7 compared to controls. Pre-treatment with cADPR to stimulate hMSC proliferation in vitro did not affect the bone regenerating capacity of the cells in vivo. These results indicate that the association of in vitro expanded hMSC with BMP-7 provide a better osteoinductive graft compared to either hMSC or BMP-7 alone. Moreover, cADPR may be used to stimulate hMSC proliferation in vitro in order to reduce the time required to obtain a transplantable number of cells, with no adverse effect on the bone regenerating capacity of hMSC. 2010 Elsevier Inc. All rights reserved.

  18. Bi-directional activation between mesenchymal stem cells and CLL B-cells: implication for CLL disease progression.

    PubMed

    Ding, Wei; Nowakowski, Grzegorz S; Knox, Traci R; Boysen, Justin C; Maas, Mary L; Schwager, Susan M; Wu, Wenting; Wellik, Linda E; Dietz, Allan B; Ghosh, Asish K; Secreto, Charla R; Medina, Kay L; Shanafelt, Tait D; Zent, Clive S; Call, Timothy G; Kay, Neil E

    2009-11-01

    It was hypothesized that contact between chronic lymphocytic leukaemia (CLL) B-cells and marrow stromal cells impact both cell types. To test this hypothesis, we utilized a long-term primary culture system from bone biopsies that reliably generates a mesenchymal stem cell (MSC). Co-culture of MSC with CLL B-cells protected the latter from both spontaneous apoptosis and drug-induced apoptosis. The CD38 expression in previously CD38 positive CLL B-cells was up-regulated with MSC co-culture. Upregulation of CD71, CD25, CD69 and CD70 in CLL B-cells was found in the co-culture. CD71 upregulation was more significantly associated with high-risk CLL, implicating CD71 regulation in the microenvironment predicting disease progression. In MSC, rapid ERK and AKT phosphorylation (within 30 min) were detected when CLL B-cells and MSC were separated by transwell; indicating that activation of MSC was mediated by soluble factors. These findings support a bi-directional activation between bone marrow stromal cells and CLL B-cells.

  19. Physiologically Low Oxygen Enhances Biomolecule Production and Stemness of Mesenchymal Stem Cell Spheroids

    PubMed Central

    Shearier, Emily; Xing, Qi; Qian, Zichen

    2016-01-01

    Multicellular human mesenchymal stem cell (hMSC) spheroids have been demonstrated to be valuable in a variety of applications, including cartilage regeneration, wound healing, and neoangiogenesis. Physiological relevant low oxygen culture can significantly improve in vitro hMSC expansion by preventing cell differentiation. We hypothesize that hypoxia-cultured hMSC spheroids can better maintain the regenerative properties of hMSCs. In this study, hMSC spheroids were fabricated using hanging drop method and cultured under 2% O2 and 20% O2 for up to 96 h. Spheroid diameter and viability were examined, as well as extracellular matrix (ECM) components and growth factor levels between the two oxygen tensions at different time points. Stemness was measured among the spheroid culture conditions and compared to two-dimensional cell cultures. Spheroid viability and structural integrity were studied using different needle gauges to ensure no damage would occur when implemented in vivo. Spheroid attachment and integration within a tissue substitute were also demonstrated. The results showed that a three-dimensional hMSC spheroid cultured at low oxygen conditions can enhance the production of ECM proteins and growth factors, while maintaining the spheroids' stemness and ability to be injected, attached, and potentially be integrated within a tissue. PMID:26830500

  20. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    PubMed

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. © 2016 AlphaMed Press.

  1. Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: a comprehensive study with different immune cells

    PubMed Central

    Quelhas, Pedro

    2016-01-01

    Despite the importance of immune cell–biomaterial interactions for the regenerative outcome, few studies have investigated how distinct three-dimensional biomaterials modulate the immune cell-mediated mesenchymal stem/stromal cells (MSC) recruitment and function. Thus, this work compares the response of varied primary human immune cell populations triggered by different model scaffolds and describes its functional consequence on recruitment and motility of bone marrow MSC. It was found that polylactic acid (PLA) and chitosan scaffolds lead to an increase in the metabolic activity of macrophages but not of peripheral blood mononuclear cells (PBMC), natural killer (NK) cells or monocytes. PBMC and NK cells increase their cell number in PLA scaffolds and express a secretion profile that does not promote MSC recruitment. Importantly, chitosan increases IL-8, MIP-1, MCP-1 and RANTES secretion by macrophages while PLA stimulates IL-6, IL-8 and MCP-1 production, all chemokines that can lead to MSC recruitment. This secretion profile of macrophages in contact with biomaterials correlates with the highest MSC invasion. Furthermore, macrophages enhance stem cell motility within chitosan scaffolds by 44% but not in PLA scaffolds. Thus, macrophages are the cells that in contact with engineered biomaterials become activated to secrete bioactive molecules that stimulate MSC recruitment. PMID:27628173

  2. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    PubMed Central

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  3. Mesenchymal Stem Cells – Sources and Clinical Applications

    PubMed Central

    Klingemann, Hans; Matzilevich, David; Marchand, James

    2008-01-01

    Summary Although mesenchymal stem cells (MSC) from different tissue sources share many characteristics and generally fulfill accepted criteria for MSC (plastic adherence, certain surface marker expression, and ability to differentiate into mesenchymal tissues), we are increasingly learning that they can be distinguished at the level of cytokine production and gene expression profiles. Their ability to differentiate into different tissues including endodermal and ectodermal lineages, also varies according to tissue origin. Importantly, MSC from fetal sources can undergo more cell divisions before they reach senescence than MSC from adult tissue such as bone marrow or adipose tissue. As we learn more about the differentiation and plasticity of MSC from different sources, health care providers in the future will use them tailored to different medical indications. PMID:21512642

  4. Mesenchymal stem cell mechanobiology and emerging experimental platforms

    PubMed Central

    MacQueen, Luke; Sun, Yu; Simmons, Craig A.

    2013-01-01

    Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms. PMID:23635493

  5. Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes.

    PubMed

    He, Zhisong; Li, Hongxia; Zuo, Shi; Pasha, Zeeshan; Wang, Yigang; Yang, Yueting; Jiang, Wenping; Ashraf, Muhammad; Xu, Meifeng

    2011-10-01

    Transplantation of mesenchymal stem cells (MSCs) has emerged as a potential treatment for ischemic heart repair. Previous studies have suggested that Wnt11 plays a critical role in cardiac specification and morphogenesis. In this study, we examined whether transduction of Wnt11 directly increases MSC differentiation into cardiac phenotypes. MSCs harvested from rat bone marrow were transduced with both Wnt11 and green fluorescent protein (GFP) (MSC(Wnt11)) using the murine stem cell virus (pMSCV) retroviral expression system; control cells were only GFP-transfected (MSC(Null)). Compared with control cells, MSC(Wnt11) was shown to have higher expression of Wnt11 by immunofluorescence, real-time polymerase chain reaction, and western blotting. MSC(Wnt11) shows a higher expression of cardiac-specific genes, including GATA-4, brain natriuretic peptide (BNP), islet-1, and α-actinin, after being cultured with cardiomyocytes (CMs) isolated from ventricles of neonatal (1-3 day) SD rats. Some MSC(Wnt11) were positive for α-actinin when MSCs were cocultured with native CMs for 7 days. Electron microscopy further confirmed the appearance of sarcomeres in MSC(Wnt11). Connexin 43 was found between GFP-positive MSCs and neonatal rat CMs labeled with red fluorescent probe PKH26. The transdifferentiation rate was significantly higher in MSC(Wnt11) than in MSC(Null), as assessed by flow cytometry. Functional studies indicated that the differentiation of MSC(Wnt11) was diminished by knockdown of GATA-4 with GATA-4-siRNA. Transduction of Wnt11 into MSCs increases their differentiation into CMs by upregulating GATA-4.

  6. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro.

    PubMed

    Sun, Liping; Li, Dong; Song, Kun; Wei, Jianlu; Yao, Shu; Li, Zhao; Su, Xuantao; Ju, Xiuli; Chao, Lan; Deng, Xiaohui; Kong, Beihua; Li, Li

    2017-05-31

    Human umbilical cord mesenchymal stem cells (huMSCs) can treat primary ovarian insufficiency (POI) related to ovarian granulosa cell (OGC) apoptosis caused by cisplatin chemotherapy. Exosomes are a class of membranous vesicles with diameters of 30-200 nm that are constitutively released by eukaryotic cells. Exosomes mediate local cell-to-cell communication by transferring microRNAs and proteins. In the present study, we demonstrated the effects of exosomes derived from huMSCs (huMSC-EXOs) on a cisplatin-induced OGC model in vitro and discussed the preliminary mechanisms involved in these effects. We successfully extracted huMSC-EXOs from huMSC culture supernatant and observed the effective uptake of exosomes by cells with fluorescent staining. Using flow cytometry (with annexin-V/PI labelling), we found that huMSC-EXOs increased the number of living cells. Western blotting showed that the expression of Bcl-2 and caspase-3 were upregulated, whilst the expression of Bax, cleaved caspase-3 and cleaved PARP were downregulated to protect OGCs. These results suggest that huMSC-EXOs can be used to prevent and treat chemotherapy-induced OGC apoptosis in vitro. Therefore, this work provides insight and further evidence of stem cell function and indicates that huMSC-EXOs protect OGCs from cisplatin-induced injury in vitro.

  7. Mesenchymal Stem or Stromal Cells from Amnion and Umbilical Cord Tissue and Their Potential for Clinical Applications

    PubMed Central

    Lindenmair, Andrea; Hatlapatka, Tim; Kollwig, Gregor; Hennerbichler, Simone; Gabriel, Christian; Wolbank, Susanne; Redl, Heinz; Kasper, Cornelia

    2012-01-01

    Mesenchymal stem or stromal cells (MSC) have proven to offer great promise for cell-based therapies and tissue engineering applications, as these cells are capable of extensive self-renewal and display a multilineage differentiation potential. Furthermore, MSC were shown to exhibit immunomodulatory properties and display supportive functions through parakrine effects. Besides bone marrow (BM), still today the most common source of MSC, these cells were found to be present in a variety of postnatal and extraembryonic tissues and organs as well as in a large variety of fetal tissues. Over the last decade, the human umbilical cord and human amnion have been found to be a rich and valuable source of MSC that is bio-equivalent to BM-MSC. Since these tissues are discarded after birth, the cells are easily accessible without ethical concerns. PMID:24710543

  8. Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory Arthritis.

    PubMed

    Kay, Alasdair G; Long, Grace; Tyler, George; Stefan, Andrei; Broadfoot, Stephen J; Piccinini, Anna M; Middleton, Jim; Kehoe, Oksana

    2017-12-21

    We evaluated the therapeutic potential of mesenchymal stem cell-conditioned medium (CM-MSC) as an alternative to cell therapy in an antigen-induced model of arthritis (AIA). Disease severity and cartilage loss were evaluated by histopathological analysis of arthritic knee joints and immunostaining of aggrecan neoepitopes. Cell proliferation was assessed for activated and naïve CD4+ T cells from healthy mice following culture with CM-MSC or co-culture with MSCs. T cell polarization was analysed in CD4+ T cells isolated from spleens and lymph nodes of arthritic mice treated with CM-MSC or MSCs. CM-MSC treatment significantly reduced knee-joint swelling, histopathological signs of AIA, cartilage loss and suppressed TNFα induction. Proliferation of CD4+ cells from spleens of healthy mice was not affected by CM-MSC but reduced when cells were co-cultured with MSCs. In the presence of CM-MSC or MSCs, increases in IL-10 concentration were observed in culture medium. Finally, CD4+ T cells from arthritic mice treated with CM-MSC showed increases in FOXP3 and IL-4 expression and positively affected the Treg:Th17 balance in the tissue. CM-MSC treatment reduces cartilage damage and suppresses immune responses by reducing aggrecan cleavage, enhancing Treg function and adjusting the Treg:Th17 ratio. CM-MSC may provide an effective cell-free therapy for inflammatory arthritis.

  9. Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids

    NASA Astrophysics Data System (ADS)

    Ankrum, James A.; Dastidar, Riddhi G.; Ong, Joon Faii; Levy, Oren; Karp, Jeffrey M.

    2014-04-01

    Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy.

  10. Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids

    PubMed Central

    Ankrum, James A.; Dastidar, Riddhi G.; Ong, Joon Faii; Levy, Oren; Karp, Jeffrey M.

    2014-01-01

    Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy. PMID:24717973

  11. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.

    PubMed

    Iyer, Sonia; Brooks, Robert; Gumbleton, Matthew; Kerr, William G

    2015-05-01

    Hematopoietic stem cell (HSC) self-renewal and lineage choice are subject to intrinsic control. However, this intrinsic regulation is also impacted by external cues provided by niche cells. There are multiple cellular components that participate in HSC support with the mesenchymal stem cell (MSC) playing a pivotal role. We had previously identified a role for SH2 domain-containing inositol 5'-phosphatase-1 (SHIP1) in HSC niche function through analysis of mice with germline or induced SHIP1 deficiency. In this study, we show that the HSC compartment expands significantly when aged in a niche that contains SHIP1-deficient MSC; however, this expanded HSC compartment exhibits a strong bias toward myeloid differentiation. In addition, we show that SHIP1 prevents chronic G-CSF production by the aging MSC compartment. These findings demonstrate that intracellular signaling by SHIP1 in MSC is critical for the control of HSC output and lineage commitment during aging. These studies increase our understanding of how myeloid bias occurs in aging and thus could have implications for the development of myeloproliferative disease in aging.

  12. A comparison between placental and amniotic mesenchymal stem cells for transamniotic stem cell therapy (TRASCET) in experimental spina bifida.

    PubMed

    Feng, Christina; D Graham, Christopher; Connors, John Patrick; Brazzo, Joseph; Zurakowski, David; Fauza, Dario O

    2016-06-01

    We compared placental-derived and amniotic fluid-derived mesenchymal stem cells (pMSCs and afMSCs, respectively) in transamniotic stem cell therapy (TRASCET) for experimental spina bifida. Pregnant dams (n=29) exposed to retinoic acid for the induction of fetal spina bifida were divided into four groups. Three groups received volume-matched intraamniotic injections of either saline (n=38 fetuses) or a suspension of 2×10(6) cells/mL of syngeneic, labeled afMSCs (n=73) or pMSCs (n=115) on gestational day 17 (term=21-22days). Untreated fetuses served as controls. Animals were killed before term. Statistical comparisons were by Fisher's exact test (p<0.05). Survival was similar across treatment groups (p=0.08). In fetuses with isolated spina bifida (n=100), there were higher percentages of defect coverage (either partial or complete) in both afMSC and pMSC groups compared with saline and untreated groups (p<0.001-0.03 in pairwise comparisons). There were no differences in coverage rates between afMSC and pMSC groups (p=0.94) or between saline and untreated groups (p=0.98). Both pMSC and afMSC can induce comparable rates of coverage of experimental spina bifida after concentrated intraamniotic injection in the rodent model. This broadens the options for timing and cell source for TRASCET as a potential alternative in the prenatal management of spina bifida. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice

    PubMed Central

    2011-01-01

    Background Short half-life and low levels of growth factors in the niche of injured microenvironment necessitates the exogenous and sustainable delivery of growth factors along with stem cells to augment the regeneration of injured tissues. Methods Here, recombinant human hepatocyte growth factor (HGF) was incorporated into chitosan nanoparticles (CNP) by ionic gelation method and studied for its morphological and physiological characteristics. Cirrhotic mice received either hematopoietic stem cells (HSC) or mesenchymal stemcells (MSC) with or without HGF incorporated chitosan nanoparticles (HGF-CNP) and saline as control. Biochemical, histological, immunostaining and gene expression assays were carried out using serum and liver tissue samples. One way analysis of variance was used for statics application Results Serum levels of selected liver protein and enzymes were significantly increased in the combination of MSC and HGF-CNP (MSC+HGF-CNP) treated group. Immunopositive staining for albumin (Alb) and cytokeratin 18 (CK18), and reverse transcription-polymerase chain reaction (RT-PCR) for Alb, alpha fetoprotein (AFP), CK18, cytokeratin 19 (CK19) ascertained that MSC-HGF-CNP treatment could be an effective combination to repopulate liver parenchymal cells in the liver cirrhosis. Zymogram and western blotting for matrix metalloproteinases 2 and 9 (MMP2 and MMP9) revealed that MMP2 actively involved in the fibrolysis of cirrhotic tissue. Immunostaining for alpha smooth muscle actin (αSMA) and type I collagen showed decreased expression in the MSC+HGF-CNP treatment. These results indicated that HGF-CNP enhanced the differentiation of stem cells into hepatocytes and supported the reversal of fibrolysis of extracellular matrix (ECM). Conclusion Bone marrow stem cells were isolated, characterized and transplanted in mice model. Biodegradable biopolymeric nanoparticles were prepared with the pleotrophic protein molecule and it worked well for the differentiation of stem cells, especially mesenchymal phenotypic cells. Transplantation of bone marrow MSC in combination with HGF-CNP could be an ideal approach for the treatment of liver cirrhosis. PMID:21526984

  14. Designing the stem cell microenvironment for guided connective tissue regeneration.

    PubMed

    Bogdanowicz, Danielle R; Lu, Helen H

    2017-12-01

    Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.

  15. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation.

    PubMed

    Avnet, Sofia; Di Pompo, Gemma; Chano, Tokuhiro; Errani, Costantino; Ibrahim-Hashim, Arig; Gillies, Robert J; Donati, Davide Maria; Baldini, Nicola

    2017-03-15

    The role of mesenchymal stem cells (MSC) in osteosarcoma (OS), the most common primary tumor of bone, has not been extensively elucidated. We have recently shown that OS is characterized by interstitial acidosis, a microenvironmental condition that is similar to a wound setting, in which mesenchymal reactive cells are activated to release mitogenic and chemotactic factors. We therefore intended to test the hypothesis that, in OS, acid-activated MSC influence tumor cell behavior. Conditioned media or co-culture with normal MSC previously incubated with short-term acidosis (pH 6.8 for 10 hr, H + -MSC) enhanced OS clonogenicity and invasion. This effect was mediated by NF-κB pathway activation. In fact, deep-sequencing analysis, confirmed by Real-Time PCR and ELISA, demonstrated that H + -MSC differentially induced a tissue remodeling phenotype with increased expression of RelA, RelB and NF-κB1, and downstream, of CSF2/GM-CSF, CSF3/G-CSF and BMP2 colony-promoting factors, and of chemokines (CCL5, CXCL5 and CXCL1), and cytokines (IL6 and IL8), with an increased expression of CXCR4. An increased expression of IL6 and IL8 were found only in normal stromal cells, but not in OS cells, and this was confirmed in tumor-associated stromal cells isolated from OS tissue. Finally, H + -MSC conditioned medium differentially promoted OS stemness (sarcosphere number, stem-associated gene expression), and chemoresistance also via IL6 secretion. Our data support the hypothesis that the acidic OS microenvironment is a key factor for MSC activation, in turn promoting the secretion of paracrine factors that influence tumor behavior, a mechanism that holds the potential for future therapeutic interventions aimed to target OS. © 2016 UICC.

  16. Stem cell treatment of degenerative eye disease.

    PubMed

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A H; Leadbeater, Wendy; Scheven, Ben A

    2015-05-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

  17. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.

    PubMed

    Fierro, Fernando A; Sierralta, Walter D; Epuñan, Maria J; Minguell, José J

    2004-01-01

    Marrow stroma represents an advantageous environment for development of micrometastatic cells. Within the cellular structure of marrow stroma, mesenchymal stem cells (MSC) have been postulated as an interacting target for disseminated cancer cells. The studies reported here were performed to gain more information on the interaction of the human breast cancer cell line MCF-7 with human bone marrow-derived MSC cells and to investigate whether this interaction affects tumor cell properties. The results showed that after co-culture with MSC, changes were detected in the morphology, proliferative capacity and aggregation pattern of MCF-7 cells, but these parameters were not affected after the co-culture of MSC cells with a non-tumorigenic breast epithelial cell line, MCF-10. Since the indirect culture of MCF-7 with MSC or its products also resulted in functional changes in the tumor cells, we evaluated whether these effects could be attributed to growth factors produced by MSC cells. It was found that VEGF and IL-6 mimic the effects produced by MSC or its products on the proliferation and aggregation properties of MCF-7, cells, respectively. Thus, it seems that after entry of disseminated tumor cells into the marrow space, their proliferative and morphogenetic organization patterns are modified after interaction with distinct stromal cells and/or with specific signals from the marrow microenvironment.

  18. Hepatic differentiation potential of commercially available human mesenchymal stem cells.

    PubMed

    Ong, Shin-Yeu; Dai, Hui; Leong, Kam W

    2006-12-01

    The ready availability and low immunogenicity of commercially available mesenchymal stem cells (MSC) render them a potential cell source for the development of therapeutic products. With cell source a major bottleneck in hepatic tissue engineering, we investigated whether commercially available human MSC (hMSC) can transdifferentiate into the hepatic lineage. Based on previous studies that find rapid gain of hepatic genes in bone marrow-derived stem cells cocultured with liver tissue, we used a similar approach to drive hepatic differentiation by coculturing the hMSC with rat livers treated or untreated with gadolinium chloride (GdCl(3)). After a 24-hour coculture period with liver tissue injured by GdCl(3) in a Transwell configuration, approximately 34% of the cells differentiated into albumin-expressing cells. Cocultured cells were subsequently maintained with growth factors to complete the hepatic differentiation. Cocultured cells expressed more hepatic gene markers, and had higher metabolic functions and P450 activity than cells that were only differentiated with growth factors. In conclusion, commercially available hMSC do show hepatic differentiation potential, and a liver microenvironment in culture can provide potent cues to accelerate and deepen the differentiation. The ability to generate hepatocyte-like cells from a commercially available cell source would find interesting applications in liver tissue engineering.

  19. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium.

    PubMed

    Letouzey, Vincent; Tan, Ker Sin; Deane, James A; Ulrich, Daniela; Gurung, Shanti; Ong, Y Rue; Gargett, Caroline E

    2015-01-01

    Mesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation. Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated. There was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells. This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.

  20. [Experimental study on dog's bone marrow stem cells transfected by pIRES2-EGFP-IGF-1 gene].

    PubMed

    Zhu, Guo-qiang; Wu, Zhi-fen; Li, Yuan-fei; Hu, De-hua; Wang, Qin-tao

    2006-12-01

    To establish the bone marrow stem cells (MSC) model which could highly express the insulin-like growth factor 1 (IGF-1) transfected by dog's IGF-1 gene. pIRES2-EGFP-IGF-1 was transfected into MSC by lipofectamine. Positive clones were selected with G418. The expression of IGF-1 protein in the MSC was determined by immunohistochemistry and Western blot analysis. The IGF-1 in the supernatant of the transfected MSC was detected by sandwich-in ELISA. The periodontal ligament cells (PDLC) were cultured in the supernatant of the transfected MSC. The changes of PDLC' proliferation were observed by MTT. IGF-1-transfected MSC could apparently express IGF-1. The IGF-1 protein in the supernatant of the transfected MSC was confirmed by sandwich-in ELISA. IGF-1 could promote the PDLC' proliferation. The MSC transfected by dog's IGF-1 gene can highly express IGF-1, which may lay the foundation for further study on periodontal regeneration.

  1. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer

    PubMed Central

    Ji, Runbi; Zhang, Bin; Zhang, Xu; Xue, Jianguo; Yuan, Xiao; Yan, Yongmin; Wang, Mei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2015-01-01

    Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer. PMID:26091251

  2. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer.

    PubMed

    Ji, Runbi; Zhang, Bin; Zhang, Xu; Xue, Jianguo; Yuan, Xiao; Yan, Yongmin; Wang, Mei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2015-08-03

    Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.

  3. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis.

    PubMed

    Liu, Xiaolin; Li, Qing; Niu, Xin; Hu, Bin; Chen, Shengbao; Song, Wenqi; Ding, Jian; Zhang, Changqing; Wang, Yang

    2017-01-01

    Background: Local ischemia is the main pathological performance in osteonecrosis of the femoral head (ONFH). There is currently no effective therapy to promote angiogenesis in the femoral head. Recent studies revealed that exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSC-Exos) have great therapeutic potential in ischemic tissues, but whether they could promote angiogenesis in ONFH has not been reported, and little is known regarding the underlying mechanism. Methods: iPS-MSC-Exos were intravenously injected to a steroid-induced rat osteonecrosis model. Samples of the femoral head were obtained 3 weeks after all the injections. The effects were assessed by measuring local angiogenesis and bone loss through histological and immunohistochemical (IHC) staining, micro-CT and three-dimensional microangiography. The effects of exosomes on endothelial cells were studied through evaluations of proliferation, migration and tube-forming analyses. The expression levels of angiogenic related PI3K/Akt signaling pathway of endothelial cells were evaluated following stimulation of iPS-MSC-Exos. The promoting effects of exosomes were re-evaluated following blockade of PI3K/Akt. Results: The in vivo study revealed that administration of iPS-MSC-Exos significantly prevented bone loss, and increased microvessel density in the femoral head compared with control group. We found that iPS-MSC-Exos significantly enhanced the proliferation, migration and tube-forming capacities of endothelial cells in vitro . iPS-MSC-Exos could activate PI3K/Akt signaling pathway in endothelial cells. Moreover, the promoting effects of iPS-MSC-Exos were abolished after blockade of PI3K/Akt on endothelial cells. Conclusions: Our findings suggest that transplantation of iPS-MSC-Exos exerts a preventative effect on ONFH by promoting local angiogenesis and preventing bone loss. The promoting effect might be attributed to activation of the PI3K/Akt signaling pathway on endothelial cells. The data provide the first evidence for the potential of iPS-MSC-Exos in treating ONFH.

  4. Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ - update and future development.

    PubMed

    Lui, Pauline Po Yee

    2015-06-02

    The efficacy of tendon-derived stem cells (TDSCs) for the promotion of tendon and tendon-bone junction repair has been reported in animal studies. Modulation of the tendon stem cell niche in vivo has also been reported to influence tendon structure. There is a need to have specific and reliable markers that can define TDSCs in vitro and tendon stem cells in situ for several reasons: to understand the basic biology of TDSCs and their subpopulations in vitro; to understand the identity, niches and functions of tendon/progenitor stem cells in vivo; to meet the governmental regulatory requirements for quality of TDSCs when translating the exciting preclinical findings into clinical trial/practice; and to develop new treatment strategies for mobilizing endogenous stem/progenitor cells in tendon. TDSCs were reported to express the common mesenchymal stem cell (MSC) markers and some embryonic stem cell (ESC) markers, and there were attempts to use these markers to label tendon stem cells in situ. Are these stem cell markers useful for the identification of TDSCs in vitro and tracking of tendon stem cells in situ? This review aims to discuss the values of the panel of MSC, ESC and tendon-related markers for the identification of TDSCs in vitro. Important factors influencing marker expression by TDSCs are discussed. The usefulness and limitations of the panel of MSC, ESC and tendon-related markers for tracking stem cells in tendon, especially tendon stem cells, in situ are then reviewed. Future research directions are proposed.

  5. Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells.

    PubMed

    Zhao, Zhi-Gang; Xu, Wen; Sun, Li; You, Yong; Li, Fang; Li, Qiu-Bai; Zou, Ping

    2012-01-01

    Mesenchymal stem cells (MSCs) provide an excellent model for development of stem cell therapeutics, and their potential treatment in the immunopathogenic diseases have gained further interest after demonstration of immunomodulatory effects on complicated interactions between T cells and even dendritic cells (DCs). However, the mechanisms underlying these immunoregulatory effects of MSCs are poorly understood. In this study, we show that bone marrow derived MSCs can differentiate mature DCs (mDCs) into a distinct regulatory DC population. Compared with mDCs, they have lower expression of CD1a, CD80, CD86 and CD40, but higher expression of CD11b. MSCs induced DCs (MSC-DCs) can hardly stimulate T-cell proliferation even when MSC-DCs are stimulated by LPS. In addition, high endocytosic capacity, low immunogenicity, and strong immunoregulatory function of MSC-DCs are also observed. Moreover, MSC-DCs can efficiently generate CD4+CD25+Foxp3+ Treg cells from CD4+CD25-Foxp3-T cells. The inhibitory function of MSC-DCs is mediated not only through TGF-β1, but also by inducing the production of Treg cells or T-cell anergy. These results demonstrate that the immunomodulatory effects of regulatory DCs induced by MSCs provide efficacious treatment for immunopathogenic diseases.

  6. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells

    PubMed Central

    Chen, Song; Zhang, Wei; Wang, Ji-Ming; Duan, Hong-Tao; Kong, Jia-Hui; Wang, Yue-Xin; Dong, Meng; Bi, Xue; Song, Jian

    2016-01-01

    AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases. PMID:26949608

  7. A fat option for the pig: Hepatocytic differentiated mesenchymal stem cells for translational research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de; Tautenhahn, Hans-Michael, E-mail: hans-michael.tautenhahn@medizin.uni-leipzig.de; TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103

    Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention inmore » the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The hepatocyte differentiation of porcine adipose tissue-derived MSC was shown for the first time yielding hepatocyte-like cells with specific functions similar in bone marrow and subcutaneous adipose tissue-derived MSC. That makes them good pre-clinical candidates for supportive approaches after liver resection in the pig. - Highlights: • First time to show hepatocytic differentiation of porcine adipose tissue-derived MSC. • Hepatocytic-differentiated MSC display metabolic qualities of primary hepatocytes. • Metabolic potency varies between differentiated MSC from different tissues. • MSC are good candidates for pre-clinical evaluation of stem cell-based therapies.« less

  8. Interactions of Human Endothelial and Multipotent Mesenchymal Stem Cells in Cocultures

    PubMed Central

    Ern, Christina; Krump-Konvalinkova, Vera; Docheva, Denitsa; Schindler, Stefanie; Rossmann, Oliver; Böcker, Wolfgang; Mutschler, Wolf; Schieker, Matthias

    2010-01-01

    Current strategies for tissue engineering of bone rely on the implantation of scaffolds, colonized with human mesenchymal stem cells (hMSC), into a recipient. A major limitation is the lack of blood vessels. One approach to enhance the scaffold vascularisation is to supply the scaffolds with endothelial cells (EC). The main goal of this study was to establish a coculture system of hMSC and EC for the purposes of bone tissue engineering. Therefore, the cell behaviour, proliferation and differentiation capacity in various cell culture media as well as cell interactions in the cocultures were evaluated. The differentiation capacity of hMSC along osteogenic, chondrogenic, and adipogenic lineage was impaired in EC medium while in a mixed EC and hMSC media, hMSC maintained osteogenic differentiation. In order to identify and trace EC in the cocultures, EC were transduced with eGFP. Using time-lapse imaging, we observed that hMSC and EC actively migrated towards cells of their own type and formed separate clusters in long term cocultures. The scarcity of hMSC and EC contacts in the cocultures suggest the influence of growth factor-mediated cell interactions and points to the necessity of further optimization of the coculture conditions. PMID:21625373

  9. Biomimetic chimeric peptide-tethered hydrogels for human mesenchymal stem cell delivery.

    PubMed

    Shim, Gayong; Kim, Gunwoo; Choi, Junhyeok; Yi, TacGhee; Cho, Yun Kyoung; Song, Sun Uk; Byun, Youngro; Oh, Yu-Kyoung

    2015-12-01

    Here, we report a chimeric peptide-tethered fibrin hydrogel scaffold for delivery of human mesenchymal stem cells (hMSC). Osteopontin-derived peptide (OP) was used as an hMSC-tethering moiety. OP showed hMSC adhesion properties and enhanced hMSC proliferation. A natural fibrin-binding protein-derived peptide (FBP) was tested for its ability to tether hMSC to the fibrin gel matrix. FBP loading on fibrin gels was 8.2-fold higher than that of a scrambled peptide (scFBP). FBP-loaded fibrin gels were retained at injection sites longer than scFBP-loaded fibrin gels, showing a 15.9-fold higher photon intensity of fluorescent FBP-grafted fibrin gels than fluorescent scFBP-loaded fibrin gels 48 h after injection. On the basis of the fibrin gel-binding properties of FBP and the hMSC-binding and proliferation-supporting properties of OP, we constructed chimeric peptides containing FBP and OP linked with a spacer (FBPsOP). Four days after transplantation, the survival of hMSC in FBPsOP-grafted fibrin gels was 3.9-fold higher than hMSC in fibrin gels alone. Our results suggest the potential of FBPsOP-grafted fibrin gels as a bioactive delivery system for enhanced survival of stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule‐1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury

    PubMed Central

    Zou, Xiangyu; Jiang, Kai; Puranik, Amrutesh S.; Jordan, Kyra L.; Tang, Hui

    2018-01-01

    Abstract Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell‐surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue‐derived MSC with antibodies directed against kidney injury molecule‐1 (ab‐KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab‐KIM1‐coated MSC (KIM‐MSC), or vehicle, were injected systemically into the carotid artery of 2‐kidneys, 1‐clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab‐KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM‐MSC compared to untreated MSC and compared to other organs. KIM‐MSC‐injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab‐KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell‐based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394–403 PMID:29446551

  11. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    PubMed

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  12. Disruption of Cell-Cell Contact-mediated Notch Signaling via Hydrogel Encapsulation Reduces Mesenchymal Stem Cell Chondrogenic Potential

    PubMed Central

    Chen, Amanda X.; Hoffman, Michael D.; Chen, Caressa S.; Shubin, Andrew D.; Reynolds, Daniel S.; Benoit, Danielle S. W.

    2015-01-01

    Cell-cell contact-mediated Notch signaling is essential for mesenchymal stem cell (MSC) chondrogenesis during development. However, subsequent deactivation of Notch signaling is also required to allow for stem cell chondrogenic progression. Recent literature has shown that Notch signaling can also influence Wnt/β-catenin signaling, critical for MSC differentiation, through perturbations in cell-cell contacts. Traditionally, abundant cell-cell contacts, consistent with development, are emulated in vitro using pellet cultures for chondrogenesis. However, cells are often encapsulated within biomaterials-based scaffolds, such as hydrogels, to improve therapeutic cell localization in vivo. To explore the role of Notch and Wnt/β-catenin signaling in the context of hydrogel-encapsulated MSC chondrogenesis, we compared signaling and differentiation capacity of MSCs in both hydrogels and traditional pellet cultures. We demonstrate that encapsulation within poly(ethylene glycol) (PEG) hydrogels reduces cell-cell contacts, and both Notch (7.5-fold) and Wnt/β-catenin (84.7-fold) pathway activation. Finally, we demonstrate that following establishment of cell-cell contacts and transient Notch signaling in pellet cultures, followed by Notch signaling deactivation, resulted in a 1.5-fold increase in MSC chondrogenesis. Taken together, these findings support that cellular condensation, and the establishment of initial cell-cell contacts is critical for MSC chondrogenesis, and this process is inhibited by hydrogel encapsulation. PMID:25504509

  13. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss.

    PubMed

    Bellantuono, Ilaria; Aldahmash, Abdullah; Kassem, Moustapha

    2009-04-01

    Marrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of aging in vivo, leading to decreased ability to form and maintain bone homeostasis with age. In this review we summarize evidence of MSC involvement in age related bone loss and suggest new emerging targets for intervention.

  14. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de; Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de; Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, andmore » CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but strong in MSC. • Osteogenic differentiation is significantly stronger for CDC than for MSC.« less

  15. Mesenchymal stem cells display hepato-protective activity in lymphoma bearing xenografts.

    PubMed

    Secchiero, Paola; Corallini, Federica; Zavan, Barbara; Tripodo, Claudio; Vindigni, Vincenzo; Zauli, Giorgio

    2012-04-01

    A disseminated model of non-Hodgkin's lymphoma with prevalent liver metastasis was generated by intraperitoneal (i.p.) injection of EBV(+) B lymphoblastoid SKW6.4 in nude-SCID mice. The survival of SKW6.4 xenografts (median survival = 27 days) was significantly improved when hyaluronan scaffolds embedded with mesenchimal stem cells (MSC) were implanted in the abdominal area 4 days after SKW6.4 injection (median survival = 39.5 days). Mice implanted with MSC showed a significant improvement of hepatic functionality in lymphoma xenografts, as demonstrated by measurement of serum ALT/AST levels. Co-culture of MSC with lymphoma cells enhanced the release of hepatocyte growth factor (HGF) by MSC. These data suggest that hyaluronan-embedded MSC exert anti-lymphoma activity by ameliorating hepatic functionality.

  16. Inverse Relationship between Tumor Proliferation Markers and Connexin Expression in a Malignant Cardiac Tumor Originating from Mesenchymal Stem Cell Engineered Tissue in a Rat in vivo Model

    PubMed Central

    Spath, Cathleen; Schlegel, Franziska; Leontyev, Sergey; Mohr, Friedrich-Wilhelm; Dhein, Stefan

    2013-01-01

    Background: Recently, we demonstrated the beneficial effects of engineered heart tissues for the treatment of dilated cardiomyopathy in rats. For further development of this technique we started to produce engineered tissue (ET) from mesenchymal stem cells. Interestingly, we observed a malignant tumor invading the heart with an inverse relationship between proliferation markers and connexin expression. Methods: Commercial CD54+/CD90+/CD34−/CD45− bone marrow derived mesenchymal rat stem cells (cBM-MSC), characterized were used for production of mesenchymal stem-cell-ET (MSC-ET) by suspending them in a collagen I, matrigel-mixture and cultivating for 14 days with electrical stimulation. Three MSC-ET were implanted around the beating heart of adult rats for days. Another three MSC-ET were produced from freshly isolated rat bone marrow derived stem cells (sBM-MSC). Results: Three weeks after implantation of the MSC-ETs the hearts were surgically excised. While in 5/6 cases the ET was clearly distinguishable and was found as a ring containing mostly connective tissue around the heart, in 1/6 the heart was completely surrounded by a huge, undifferentiated, pleomorphic tumor originating from the cMSC-ET (cBM-MSC), classified as a high grade malignant sarcoma. Quantitatively we found a clear inverse relationship between cardiac connexin expression (Cx43, Cx40, or Cx45) and increased Ki-67 expression (Cx43: p < 0.0001, Cx45: p < 0.03, Cx40: p < 0.014). At the tumor-heart border there were significantly more Ki-67 positive cells (p = 0.001), and only 2% Cx45 and Ki-67-expressing cells, while the other connexins were nearly completely absent (p < 0.0001). Conclusion and Hypothesis: These observations strongly suggest the hypothesis, that invasive tumor growth is accompanied by reduction in connexins. This implicates that gap junction communication between tumor and normal tissue is reduced or absent, which could mean that growth and differentiation signals can not be exchanged. PMID:23616767

  17. Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells.

    PubMed

    Okolicsanyi, Rachel K; Oikari, Lotta E; Yu, Chieh; Griffiths, Lyn R; Haupt, Larisa M

    2018-01-01

    Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.

  18. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses.

    PubMed

    Carrade, Danielle D; Owens, Sean D; Galuppo, Larry D; Vidal, Martin A; Ferraro, Gregory L; Librach, Fred; Buerchler, Sabine; Friedman, Michael S; Walker, Naomi J; Borjesson, Dori L

    2011-04-01

    The development of an allogeneic mesenchymal stem cell (MSC) product to treat equine disorders would be useful; however, there are limited in vivo safety data for horses. We hypothesized that the injection of self (autologous) and non-self (related allogeneic or allogeneic) MSC would not elicit significant alterations in physical examination, gait or synovial fluid parameters when injected into the joints of healthy horses. Sixteen healthy horses were used in this study. Group 1 consisted of foals (n = 6), group 2 consisted of their dams (n = 5) and group 3 consisted of half-siblings (n = 5) to group 1 foals. Prior to injection, MSC were phenotyped. Placentally derived MSC were injected into contralateral joints and MSC diluent was injected into a separate joint (control). An examination, including lameness evaluation and synovial fluid analysis, was performed at 0, 24, 48 and 72 h post-injection. MSC were major histocompatibility complex (MHC) I positive, MHC II negative and CD86 negative. Injection of allogeneic MSC did not elicit a systemic response. Local responses such as joint swelling or lameness were minimal and variable. Intra-articular MSC injection elicited marked inflammation within the synovial fluid (as measured by nucleated cell count, neutrophil number and total protein concentration). However, there were no significant differences between the degree and type of inflammation elicited by self and non-self-MSC. The healthy equine joint responds similarly to a single intra-articular injection of autologous and allogeneic MSC. This pre-clinical safety study is an important first step in the development of equine allogeneic stem cell therapies.

  19. Use of the second harmonic generation microscopy to evaluate chondrogenic differentiation of mesenchymal stem cells for cartilage repair

    NASA Astrophysics Data System (ADS)

    Bordeaux-Rego, P.; Baratti, M. O.; Duarte, A. S. S.; Ribeiro, T. B.; Andreoli-Risso, M. F.; Vidal, B.; Miranda, J. B.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Costa, F. F.; Carvalho, H. F.; Cesar, C. L.; Luzo, A.; Olalla Saad, S. T.

    2012-03-01

    Articular cartilage injury remains one of the major concerns in orthopedic surgery. Mesenchymal stem cell (MSC) transplantation has been introduced to avoid some of the side effects and complications of current techniques.. With the aim to evaluate chondrogenic differentiation of mesenchymal stem cells, we used Second Harmonic Generation (SHG) microscopy to analyze the aggregation and orientation of collagen fibrils in the hyaline cartilage of rabbit knees. The experiment was performed using implants with type II collagen hydrogel (a biomaterial that mimics the microenvironment of the cartilage), one implant containing MSC and one other without MSC (control). After 10 weeks, the rabbit knees were dissected and fibril collagen distribution and spatial organization in the extracellular matrix of the lesions were verified by SHG. The result showed significant differences, whereas in histological sections of the cartilaginous lesions with MSC the collagen fibers are organized and regular; in the control sections the collagen fibers are more irregular, with absence of cells. A macroscopic analysis of the lesions confirmed this difference, showing a greater percentage of lesions filling in knees treated with MSC than in the knees used as controls. This study demonstrates that SHG microscopy will be an excellent tool to help in the evaluation of the effectiveness of MSC-based cell therapy for cartilage repair.

  20. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells.

    PubMed

    de Soure, António M; Fernandes-Platzgummer, Ana; da Silva, Cláudia L; Cabral, Joaquim M S

    2016-10-20

    Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [Mesenchymal stem/stroma cells : Therapeutic potential in the treatment of autoimmune diseases].

    PubMed

    Schäfer, R; Daikeler, T

    2016-10-01

    Mesenchymal stem and stromal cells (MSC) are propagated for the treatment of autoimmune and autoinflammatory processes. These cells can be relatively easily obtained from various tissues. The MSC feature anti-inflammatory and immunosuppressive properties in vitro as well as in animal models. Initial reports on the clinical application of MSC for various diseases are available, some with promising results and so far no reported toxicity; however, data from phase III studies are still lacking and crucial questions are still unanswered. The MSC preparations used are heterogeneous and also differ depending on the source and it is unclear whether autologous (own) or allogeneic (foreign) MSC are more suitable for therapeutic use. Long-term consequences, such as possible malignant transformation and possible endogenous tumor growth stimulation cannot be completely excluded. Ultimately, these questions can only be answered through randomized controlled trials for defined clinical indications with defined MSC.

  2. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells.

    PubMed

    Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Toro, Lenka; Durinikova, Erika; Tyciakova, Silvia; Demkova, Lucia; Gursky, Jan; Kucerova, Lucia

    2016-01-12

    Cells of the tumor microenvironment are recognized as important determinants of the tumor biology. The adjacent non-malignant cells can regulate drug responses of the cancer cells by secreted paracrine factors and direct interactions with tumor cells. Human mesenchymal stromal cells (MSC) actively contribute to tumor microenvironment. Here we focused on their response to chemotherapy as during the treatment these cells become affected. We have shown that the secretory phenotype and behavior of mesenchymal stromal cells influenced by cisplatin differs from the naïve MSC. MSC were more resistant to the concentrations of cisplatin, which was cytotoxic for tumor cells. They did not undergo apoptosis, but a part of MSC population underwent senescence. However, MSC pretreatment with cisplatin led to changes in phosphorylation profiles of many kinases and also increased secretion of IL-6 and IL-8 cytokines. These changes in cytokine and phosphorylation profile of MSC led to increased chemoresistance and stemness of breast cancer cells. Taken together here we suggest that the exposure of the chemoresistant cells in the tumor microenvironment leads to substantial alterations and might lead to promotion of acquired microenvironment-mediated chemoresistance and stemness.

  3. Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion.

    PubMed

    Kadle, Rohini L; Abdou, Salma A; Villarreal-Ponce, Alvaro P; Soares, Marc A; Sultan, Darren L; David, Joshua A; Massie, Jonathan; Rifkin, William J; Rabbani, Piul; Ceradini, Daniel J

    2018-01-01

    Mesenchymal stem cells (MSCs) are known to both have powerful immunosuppressive properties and promote allograft tolerance. Determining the environmental oxygen tension and inflammatory conditions under which MSCs are optimally primed for this immunosuppressive function is essential to their utilization in promoting graft tolerance. Of particular interest is the mechanisms governing the interaction between MSCs and regulatory T cells (Tregs), which is relatively unknown. We performed our experiments utilizing rat bone marrow derived MSCs. We observed that priming MSCs in hypoxia promotes maintenance of stem-like characteristics, with greater expression of typical MSC cell-surface markers, increased proliferation, and maintenance of differentiation potential. Addition of autologous MSCs to CD4+/allogeneic endothelial cell (EC) co-culture increases regulatory T cell (Treg) proliferation, which is further enhanced when MSCs are primed in hypoxia. Furthermore, MSC-mediated Treg expansion does not require direct cell-cell contact. The expression of indolamine 2,3-dioxygenase, a mediator of MSC immunomodulation, increases when MSCs are primed in hypoxia, and inhibition of IDO significantly decreases the expansion of Tregs. Priming with inflammatory cytokines IFNγ and TNFα increases also expression of markers associated with MSC immunomodulatory function, but decreases MSC proliferation. The expression of IDO also increases when MSCs are primed with inflammatory cytokines. However, there is no increase in Treg expansion when MSCs are primed with IFNγ, suggesting an alternate mechanism for inflammatory-stimulated MSC immunomodulation. Overall, these results suggest that MSCs primed in hypoxia or inflammatory conditions are optimally primed for immunosuppressive function. These results provide a clearer picture of how to enhance MSC immunomodulation for clinical use.

  4. Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion

    PubMed Central

    Abdou, Salma A.; Villarreal-Ponce, Alvaro P.; Soares, Marc A.; Sultan, Darren L.; David, Joshua A.; Massie, Jonathan; Rabbani, Piul

    2018-01-01

    Mesenchymal stem cells (MSCs) are known to both have powerful immunosuppressive properties and promote allograft tolerance. Determining the environmental oxygen tension and inflammatory conditions under which MSCs are optimally primed for this immunosuppressive function is essential to their utilization in promoting graft tolerance. Of particular interest is the mechanisms governing the interaction between MSCs and regulatory T cells (Tregs), which is relatively unknown. We performed our experiments utilizing rat bone marrow derived MSCs. We observed that priming MSCs in hypoxia promotes maintenance of stem-like characteristics, with greater expression of typical MSC cell-surface markers, increased proliferation, and maintenance of differentiation potential. Addition of autologous MSCs to CD4+/allogeneic endothelial cell (EC) co-culture increases regulatory T cell (Treg) proliferation, which is further enhanced when MSCs are primed in hypoxia. Furthermore, MSC-mediated Treg expansion does not require direct cell-cell contact. The expression of indolamine 2,3-dioxygenase, a mediator of MSC immunomodulation, increases when MSCs are primed in hypoxia, and inhibition of IDO significantly decreases the expansion of Tregs. Priming with inflammatory cytokines IFNγ and TNFα increases also expression of markers associated with MSC immunomodulatory function, but decreases MSC proliferation. The expression of IDO also increases when MSCs are primed with inflammatory cytokines. However, there is no increase in Treg expansion when MSCs are primed with IFNγ, suggesting an alternate mechanism for inflammatory-stimulated MSC immunomodulation. Overall, these results suggest that MSCs primed in hypoxia or inflammatory conditions are optimally primed for immunosuppressive function. These results provide a clearer picture of how to enhance MSC immunomodulation for clinical use. PMID:29513756

  5. Isolation and hepatocyte differentiation of mesenchymal stem cells from porcine bone marrow--"surgical waste" as a novel MSC source.

    PubMed

    Brückner, S; Tautenhahn, H-M; Winkler, S; Stock, P; Jonas, S; Dollinger, M; Christ, B

    2013-06-01

    Mesenchymal stem cells (MSC) isolated from bone marrow and differentiated into hepatocyte-like cells have increasingly gained attention for clinical cell therapy of liver diseases because of their high regenerative capacity. They are available from bone marrow aspirates of the os coxae after puncture of the crista iliaca or from bone marrow "surgical waste" gained from amputations or knee and hip operations. Thus, the aim of the study was to demonstrate whether these pBM-MSC (porcine bone marrow-derived mesenchymal stem cells) displayed mesenchymal features and hepatocyte differentiation potential. MSC were isolated either from crista iliaca punctures or after sampling and collagenase digestion of bone marrow from the os femoris. Mesenchymal features were assessed by flow cytometry for specific surface antigens and their ability to differentiate into at least 3 lineages. Functional properties, such as urea or glycogen synthesis and cytochrome P450 activity, as well as the cell morphology were examined during hepatocyte differentiation. pBM-MSC from both sources lacked the hematopoietic markers CD14 and CD45 but expressed the typical mesenchymal markers CD44, CD29, CD90, and CD105. Both cell types could differentiate into adipocyte, osteocyte, and hepatocyte lineages. After hepatocyte differentiation, CD105 expression decreased significantly and cells changed morphology from fibroblastoid into polygonal, displaying significantly increased glycogen storage, urea synthesis, and cytochrome activity. pBM-MSC from various sources were identical in respect to their mesenchymal features and their hepatocyte differentiation potential. Hence, long bones might be a particularly useful resource to isolate bone marrow mesenchymal stem cells for transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Analysis of migration rate and chemotaxis of human adipose-derived mesenchymal stem cells in response to LPS and LTA in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzmann, Nicole; Salamon, Achim; Fiedler, Tomas

    Mesenchymal stem cells (MSC) are able to stimulate the regeneration of injured tissue. Since bacterial infections are common complications in wound healing, bacterial pathogens and their components come into direct contact with MSC. The interaction with bacterial structures influences the proliferation, differentiation and migratory activity of the MSC, which might be of relevance during regeneration. Studies on MSC migration in response to bacterial components have shown different results depending on the cell type. Here, we analyzed the migration rate and chemotaxis of human adipose-derived MSC (adMSC) in response to the basic cell-wall components lipopolysaccharide (LPS) of Gram-negative bacteria and lipoteichoicmore » acid (LTA) of Gram-positive bacteria in vitro. To this end, we used transwell and scratch assays, as well as a specific chemotaxis assay combined with live-cell imaging. We found no significant influence of LPS or LTA on the migration rate of adMSC in transwell or scratch assays. Furthermore, in the µ-slide chemotaxis assay, the stimulation with LPS did not exert any chemotactic effect on adMSC. - Highlights: • LPS increased the release of IL-6 and IL-8 in adMSC significantly. • The migration rate of adMSC was not influenced by LPS or LTA. • LPS or LTA did not exert a chemotactic effect on adMSC.« less

  7. Clonal population of adult stem cells: life span and differentiation potential.

    PubMed

    Seruya, Mitchel; Shah, Anup; Pedrotty, Dawn; du Laney, Tracey; Melgiri, Ryan; McKee, J Andrew; Young, Henry E; Niklason, Laura E

    2004-01-01

    Adult stem cells derived from bone marrow, connective tissue, and solid organs can exhibit a range of differentiation potentials. Some controversy exists regarding the classification of mesenchymal stem cells as bona fide stem cells, which is in part derived from the limited ability to propagate true clonal populations of precursor cells. We isolated putative mesenchymal stem cells from the connective tissue of an adult rat (rMSC), and generated clonal populations via three rounds of dilutional cloning. The replicative potential of the clonal rMSC line far exceeded Hayflick's limit of 50-70 population doublings. The high capacity for self-renewal in vitro correlated with telomerase activity, as demonstrated by telomerase repeat amplification protocol (TRAP) assay. Exposure to nonspecific differentiation culture medium revealed multilineage differentiation potential of rMSC clones. Immunostaining confirmed the appearance of mesodermal phenotypes, including adipocytes possessing lipid-rich vacuoles, chondrocytes depositing pericellular type II collagen, and skeletal myoblasts expressing MyoD1. Importantly, the spectrum of differentiation capability was sustained through repeated passaging. Furthermore, serum-free conditions that led to high-efficiency smooth muscle differentiation were identified. rMSCs plated on collagen IV-coated surfaces and exposed to transforming growth factor-beta1 (TGF-beta1) differentiated into a homogeneous population expressing alpha-actin and calponin. Hence, clonogenic analysis confirmed the presence of a putative MSC population derived from the connective tissue of rat skeletal muscle. The ability to differentiate into a smooth muscle cell (SMC) phenotype, combined with a high proliferative capacity, make such a connective tissue-derived MSC population ideal for applications in vascular tissue construction.

  8. Evaluation of GMP-compliant culture media for in vitro expansion of human bone marrow mesenchymal stromal cells.

    PubMed

    Wuchter, Patrick; Vetter, Marcel; Saffrich, Rainer; Diehlmann, Anke; Bieback, Karen; Ho, Anthony D; Horn, Patrick

    2016-06-01

    Mesenchymal stromal cells (MSCs) from human bone marrow serve as a resource for cell-based therapies in regenerative medicine. Clinical applications require standardized protocols according to good manufacturing practice (GMP) guidelines. Donor variability as well as the intrinsic heterogeneity of MSC populations must be taken into consideration. The composition of the culture medium is a key factor in successful MSC expansion. The aim of this study was to comparatively assess the efficiency of xeno-free human platelet lysate (HPL)-based cell expansion with two commercially available media-StemPro MSC SFM CTS (for human ex vivo tissue and cell culture processing applications) and MSCGM (non-GMP-compliant, for research only)-in an academic setting as the first optimization step toward GMP-compliant manufacturing. We report the feasibility of MSC expansion up to the yielded cell number with all three media. MSCs exhibited the typical fibroblastoid morphology, with distinct differences in cell size depending on the medium. The differentiation capacity and characteristic immunophenotype were confirmed for all MSC populations. Proliferation was highest using StemPro MSC SFM CTS, whereas HPL medium was more cost-effective and its composition could be adjusted individually according to the respective needs. In summary, we present a comprehensive evaluation of GMP-compatible culture media for MSC expansion. Both StemPro and HPL medium proved to be suitable for clinical application and allowed sufficient cell proliferation. Specific differences were observed and should be considered according to the intended use. This study provides a detailed cost analysis and tools that may be helpful for the establishment of GMP-compliant MSC expansion. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  9. Generation of immunosuppressive mesenchymal stem cells in allogeneic human serum.

    PubMed

    Le Blanc, Katarina; Samuelsson, Håkan; Lönnies, Lena; Sundin, Mikael; Ringdén, Olle

    2007-10-27

    Mesenchymal stem cells (MSC) may be used to treat acute graft-versus-host disease and for tissue repair. In vitro expansion of MSC has been achieved in the presence of fetal calf serum (FCS). For safety and regulatory reasons, we explored if FCS could be replaced by human blood group AB serum. Proliferation and fold increase of MSC was higher in the presence of AB-serum, compared to FCS. Similar to cells generated in FCS media, MSC from AB-serum media were more than 95% positive for CD90, CD105 and human leukocyte antigen (HLA) class I, and negative for hematopoietic and endothelial markers CD14, CD31, CD34, CD45, and CD80. HLA class II expression was higher in MSC generated in AB-serum, but decreased with higher passage numbers. MSC generated in AB-serum suppressed lymphocyte proliferation in mixed lymphocyte cultures and after stimulation with phytohemagglutinin. MSC expanded in AB-serum and FCS have similar in vitro properties.

  10. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de; Navarrete Santos, Anne; Navarrete Santos, Alexander

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study,more » we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.« less

  11. Intra-femoral injection of human mesenchymal stem cells.

    PubMed

    Mohanty, Sindhu T; Bellantuono, Ilaria

    2013-01-01

    In vivo transplantation of putative populations of hematopoietic stem cells (HSC) and assessment of their engraftment is considered the golden standard to assess their quality and degree of stemness. Transplantation is usually carried out by intravenous injection in murine models and assessment of engraftment is performed by monitoring the number and type of mature blood cells produced by the donor cells in time. In contrast intravenous injection of mesenchymal stem cells (MSC), the multipotent stem cells present in bone marrow and capable of differentiating to osteoblasts, chondrocytes and adipocytes, has not been successful. This is due to limited or absent engraftment levels. Here, we describe the use of intra-femoral injection as an improved method to assess MSC engraftment to bone and bone marrow and their quality.

  12. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

    PubMed

    Weber, Marlen; Apostolova, Galina; Widera, Darius; Mittelbronn, Michel; Dechant, Georg; Kaltschmidt, Barbara; Rohrer, Hermann

    2015-02-01

    Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage. © 2014 AlphaMed Press.

  13. High targeted migration of human mesenchymal stem cells grown in hypoxia is associated with enhanced activation of RhoA

    PubMed Central

    2013-01-01

    Introduction A feature which makes stem cells promising candidates for cell therapy is their ability to migrate effectively into damaged or diseased tissues. Recent reports demonstrated the increased motility of human mesenchymal stem cells (hMSC) grown under hypoxic conditions compared to normoxic cells. However, the directional migration of hMSC cultured in hypoxia has not been investigated. In this study we examined the in vitro transmembrane migration of hMSC permanently cultured in hypoxia in response to various cytokines. We also studied the involvement of RhoA, a molecule believed to play an essential role in the migration of MSC via reorganization of the cytoskeleton. Methods We compared the directional migration of human hMSCs grown permanently under normal (21%, normoxic) and low O2 (5%, hypoxic) conditions until passage 4 using an in vitro transmembrane migration assay. A series of 17 cytokines was used to induce chemotaxis. We also compared the level of GTP-bound RhoA in the cell extracts of calpeptin-activated hypoxic and normoxic hMSC. Results We found that hMSC cultured in hypoxia demonstrate markedly higher targeted migration activity compared to normoxic cells, particularly towards wound healing cytokines, including those found in ischemic and myocardial infarction. We also demonstrated for the first time that hMSC are dramatically more sensitive to activation of RhoA. Conclusions The results of this study indicate that high directional migration of hMSCs permanently grown in hypoxia is associated with the enhanced activation of RhoA. The enhanced migratory capacity of hypoxic hMSC would further suggest their potential advantages for clinical applications. PMID:23295150

  14. Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol promotes angiogenesis in a mouse model.

    PubMed

    Chen, Young-Bin; Lan, Ying-Wei; Hung, Tsai-Hsien; Chen, Lih-Geeng; Choo, Kong-Bung; Cheng, Winston T K; Lee, Hsuan-Shu; Chong, Kowit-Yu

    2015-07-01

    Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or MSC transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. In the present study, we aimed to develop an approach in MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, the protective effects of our approach were investigated by using ex vivo aortic ring coculture system and a 3D scaffolds in vivo model. Results of this investigation demonstrated that HSP promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by cis-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. These observations support a hypothesis that VEGFA expression induced by cis-RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects of stem cell gene therapy. The use of an inducible system also vastly reduces possible clinical risks associated with constitutive VEGFA expression.

  15. Cellular and molecular interactions of mesenchymal stem cells in innate immunity.

    PubMed

    Spaggiari, Grazia Maria; Moretta, Lorenzo

    2013-01-01

    In recent years, human mesenchymal stem/stromal cells (MSC) have attracted major attention for their possible clinical applications. In addition to their tissue regenerative capacity, they display immune-modulatory properties for which they have been used in the treatment of acute graft-versus-host disease and autoimmune diseases. Various studies have analyzed the inhibitory effect exerted by MSC on cells belonging to acquired or to innate immunity. In this context, MSC have been shown to inhibit proliferation and function of natural killer (NK) cells and to hinder the generation of dendritic cells and macrophages, thus interfering with inflammatory processes and with the generation of type I immune responses. In addition, MSC promote the differentiation of regulatory cells and participate in the regeneration of tissues damaged as a consequence of the inflammatory process. Different molecular mechanisms are involved in the immunosuppressive effect. Further investigation on the biology of MSC and on the regulatory events involved in their functional activities can help to optimize their use in clinical practice.

  16. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Hay, Jake J.; Rodrigo-Navarro, Aleixandre; Hassi, Karoliina; Moulisova, Vladimira; Dalby, Matthew J.; Salmeron-Sanchez, Manuel

    2016-02-01

    Lactococcus lactis, a non-pathogenic bacteria, has been genetically engineered to express the III7-10 fragment of human fibronectin as a membrane protein. The engineered L. lactis is able to develop biofilms on different surfaces (such as glass and synthetic polymers) and serves as a long-term substrate for mammalian cell culture, specifically human mesenchymal stem cells (hMSC). This system constitutes a living interface between biomaterials and stem cells. The engineered biofilms remain stable and viable for up to 28 days while the expressed fibronectin fragment induces hMSC adhesion. We have optimised conditions to allow long-term mammalian cell culture, and found that the biofilm is functionally equivalent to a fibronectin-coated surface in terms of osteoblastic differentiation using bone morphogenetic protein 2 (BMP-2) added to the medium. This living bacteria interface holds promise as a dynamic substrate for stem cell differentiation that can be further engineered to express other biochemical cues to control hMSC differentiation.

  17. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function

    PubMed Central

    Isern, Joan; García-García, Andrés; Martín, Ana M; Arranz, Lorena; Martín-Pérez, Daniel; Torroja, Carlos; Sánchez-Cabo, Fátima; Méndez-Ferrer, Simón

    2014-01-01

    Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin− MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin+ cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ Pdgfrα− cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation. DOI: http://dx.doi.org/10.7554/eLife.03696.001 PMID:25255216

  18. Functional characterization of cell hybrids generated by induced fusion of primary porcine mesenchymal stem cells with an immortal murine cell line.

    PubMed

    Islam, M Q; Ringe, J; Reichmann, E; Migotti, R; Sittinger, M; da S Meirelles, L; Nardi, N B; Magnusson, P; Islam, K

    2006-10-01

    Bone marrow mesenchymal stem cells (MSC) integrate into various organs and contribute to the regeneration of diverse tissues. However, the mechanistic basis of the plasticity of MSC is not fully understood. The change of cell fate has been suggested to occur through cell fusion. We have generated hybrid cell lines by polyethylene-glycol-mediated cell fusion of primary porcine MSC with the immortal murine fibroblast cell line F7, a derivative of the GM05267 cell line. The hybrid cell lines display fibroblastic morphology and proliferate like immortal cells. They contain tetraploid to hexaploid porcine chromosomes accompanied by hypo-diploid murine chromosomes. Interestingly, many hybrid cell lines also express high levels of tissue-nonspecific alkaline phosphatase, which is considered to be a marker of undifferentiated embryonic stem cells. All tested hybrid cell lines retain osteogenic differentiation, a few of them also retain adipogenic potential, but none retain chondrogenic differentiation. Conditioned media from hybrid cells enhance the proliferation of both early-passage and late-passage porcine MSC, indicating that the hybrid cells secrete diffusible growth stimulatory factors. Murine F7 cells thus have the unique property of generating immortal cell hybrids containing unusually high numbers of chromosomes derived from normal cells. These hybrid cells can be employed in various studies to improve our understanding of regenerative biology. This is the first report, to our knowledge, describing the generation of experimentally induced cell hybrids by using normal primary MSC.

  19. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia

    PubMed Central

    Sui, Bing-Dong; Hu, Cheng-Hu; Zheng, Chen-Xi; Shuai, Yi; He, Xiao-Ning; Gao, Ping-Ping; Zhao, Pan; Li, Meng; Zhang, Xin-Yi; He, Tao; Xuan, Kun; Jin, Yan

    2017-01-01

    Therapeutic effects of mesenchymal stem cell (MSC) infusion have been revealed in various human disorders, but impacts of diseased micro-environments are only beginning to be noticed. Donor diabetic hyperglycemia is reported to impair therapeutic efficacy of stem cells. However, whether recipient diabetic condition also affects MSC-mediated therapy is unknown. We and others have previously shown that MSC infusion could cure osteopenia, particularly in ovariectomized (OVX) mice. Here, we discovered impaired MSC therapeutic effects on osteopenia in recipient type 1 diabetes (T1D). Through intensive glycemic control by daily insulin treatments, therapeutic effects of MSCs on osteopenia were maintained. Interestingly, by only transiently restoration of recipient euglycemia using single insulin injection, MSC infusion could also rescue T1D-induced osteopenia. Conversely, under recipient hyperglycemia induced by glucose injection in OVX mice, MSC-mediated therapeutic effects on osteopenia were diminished. Mechanistically, recipient hyperglycemic micro-environments reduce anti-inflammatory capacity of MSCs in osteoporotic therapy through suppressing MSC interaction with T cells via the Adenosine monophosphate-activated protein kinase (AMPK) pathway. We further revealed in diabetic micro-environments, double infusion of MSCs ameliorated osteopenia by anti-inflammation, attributed to the first transplanted MSCs which normalized the recipient glucose homeostasis. Collectively, our findings uncover a previously unrecognized role of recipient glycemic conditions controlling MSC-mediated therapy, and unravel that fulfillment of potent therapeutic effects of MSCs requires tight control of recipient micro-environments. PMID:28435461

  20. No evidence for circulating mesenchymal stem cells in patients with organ injury.

    PubMed

    Hoogduijn, Martin J; Verstegen, Monique M A; Engela, Anja U; Korevaar, Sander S; Roemeling-van Rhijn, Marieke; Merino, Ana; Franquesa, Marcella; de Jonge, Jeroen; Ijzermans, Jan N; Weimar, Willem; Betjes, Michiel G H; Baan, Carla C; van der Laan, Luc J W

    2014-10-01

    Mesenchymal stem cells (MSC) are present in the bone marrow, from where they are thought to migrate through the blood stream to the sites of injury. However, virtually all tissues contain resident MSC that may contribute to local regenerative and immunomodulatory processes, thereby hypothetically preempting the need for recruiting MSC through the bloodstream. Although there is some indication for circulating MSC in animal models, there is little solid evidence for the mobilization and migration of MSC in the human circulation. In the present study, we were unable to detect MSC in the blood of healthy individuals. We then searched for MSC in the blood of ten patients with end-stage renal disease, ten patients with end-stage liver disease, and in eight heart transplant patients with biopsy-proven rejection by culturing of mononuclear cells under MSC-supporting culture conditions. In none of these patient categories, MSC were identified in the blood. MSC were, however, found in the blood of a severe trauma patient with multiple fractures, suggesting that disruption of bone marrow leads to the release of MSC into the blood stream. The conclusion of this study is that MSC are not recruited into the circulation in patients with injured solid organs and during aggressive immune responses after transplantation.

  1. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media.

    PubMed

    Le Pape, Fiona; Cosnuau-Kemmat, Lucie; Richard, Gaëlle; Dubrana, Frédéric; Férec, Claude; Zal, Franck; Leize, Elisabeth; Delépine, Pascal

    2017-04-01

    Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three-dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)-supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%-increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two-fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and "stemness." These features will be further tested within three-dimensional scaffolds. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Comparison of Long Noncoding RNA and mRNA Expression Profiles in Mesenchymal Stem Cells Derived from Human Periodontal Ligament and Bone Marrow

    PubMed Central

    Dong, Rui; Du, Juan; Wang, Liping; Wang, Jinsong; Ding, Gang; Wang, Songlin; Fan, Zhipeng

    2014-01-01

    Mesenchymal stem cells (MSCs) in different anatomic locations possess diverse biological activities. Maintaining the pluripotent state and differentiation depend on the expression and regulation of thousands of genes, but it remains unclear which molecular mechanisms underlie MSC diversity. Thus, potential MSC applications are restricted. Long noncoding RNAs (lncRNAs) are implicated in the complex molecular circuitry of cellular processes. We investigated differences in lncRNA and mRNA expression profiles between bone marrow stem cells (BMSCs) and periodontal ligament stem cells (PDLSCs) with lncRNA microarray assays and bioinformatics analysis. In PDLSCs, numerous lncRNAs were significantly upregulated (n = 457) or downregulated (n = 513) compared to BMSCs. Furthermore, 1,578 mRNAs were differentially expressed. These genes implicated cellular pathways that may be associated with MSC characteristics, including apoptosis, MAPK, cell cycle, and Wnt signaling pathway. Signal-net analysis indicated that phospholipase C beta 4, filamin B beta, calcium/calmodulin-dependent protein kinase II gamma, and the ionotropic glutamate receptor, AMPA 1, had the highest betweenness centrality among significant genes in the differential gene profile network. A comparison between the coding-noncoding gene coexpression networks of PDLSCs and BMSCs identified chemokine (C-X-C motif) ligand 12 as a core regulatory factor in MSC biology. These results provided insight into the mechanisms underlying MSC biology. PMID:24790996

  3. [Simulated uterus microenvironment induced human placental mesenchymal stem cells differentiation to uterus smooth muscle cells in vitro].

    PubMed

    Li, Chang-dong; Zhang, Wei-yuan; Yuan, Chun-li; Han, Li-ying

    2008-12-09

    To develop a new method to promote the differentiation of mesenchymal stem cells derived from human placenta (pMSC) to uterus smooth muscle cells (uSMC) in simulated uterus microenvironment. MSCs were isolated from human placenta, cultivated, and analyzed for their phenotype by flow cytometry. The multipotential differentiation of the pMSC was examined by chondrogenic, adipogenic, and osteogenetic induction. uSMC were isolated from uteri resected during operation and co-cultivated with the pMSC in a Transwell chamber simulating Two, 4, and 8 days later RT-PCR and Western blotting were used to detect the mRNA and protein expression of alpha-actin, calmodulin, and myosin heavy chains (MHC), the markers of smooth muscle differentiation at the early, middle, and late stages. On day 8 RT-PCR was used to detect the expression of estrogen receptor in these 2 groups of cells, then estrogen was used to stimulate these cells and the protein kinase C (PKC) activity was examined. The pMSC could be induced into adipocytes, osteocytes, and chondrocytes respectively. After co-culture with uSMC, the morphology of the pMSC changed closely into that of the uSMC, and MHC was expressed in the pMSC. Estrogen receptor was positive in both groups of cells. The PKC activity increased, especially in the cell membrane, after stimulation of estrogen. The postpartum human placenta can be used as an important and novel source of multipotent stem cells for tissue engineering and genetic engineering. Placental MSC have the potential to differentiate into smooth muscle cells under the simulated uterus microenvironment in vitro.

  4. Comparative effects of mesenchymal stem cell therapy in distinct stages of chronic renal failure.

    PubMed

    Caldas, Heloisa Cristina; de Paula Couto, Thaís Amarante Peres; Fernandes, Ida Maria Maximina; Baptista, Maria Alice Sperto Ferreira; Kawasaki-Oyama, Rosa Sayoko; Goloni-Bertollo, Eny Maria; Braile, Domingo Marcolino; Abbud-Filho, Mario

    2015-10-01

    The therapeutic potential of adult stem cells in the treatment of chronic diseases is becoming increasingly evident. In the present study, we sought to assess whether treatment with mesenchymal stem cells (MSCs) efficiently retards progression of chronic renal failure (CRF) when administered to experimental models of less severe CRF. We used two renal mass reduction models to simulate different stages of CRF (5/6 or 2/3 mass renal reduction). Renal functional parameters measured were serum creatinine (SCr), creatinine clearance (CCr), rate of decline in CCr (RCCr), and 24-h proteinuria (PT24h). We also evaluated renal morphology by histology and immunohistochemistry. MSCs were obtained from bone marrow aspirates and injected into the renal parenchyma of the remnant kidneys of both groups of rats with CRF (MSC5/6 or MSC2/3). Animals from groups MSC5/6 and CRF2/3 seemed to benefit from MSC therapy because they showed significantly reduction in SCr and PT24h, increase in CCr and slowed the RCCr after 90 days. Treatment reduced glomerulosclerosis but significant improvement did occur in the tubulointerstitial compartment with much less fibrosis and atrophy. MSC therapy reduced inflammation by decreasing macrophage accumulation proliferative activity (PCNA-positive cells) and fibrosis (α-SM-actin). Comparisons of renal functional and morphological parameters responses between the two groups showed that rats MSC2/3 were more responsive to MSC therapy than MSC5/6. This study showed that MSC therapy is efficient to retard CRF progression and might be more effective when administered during less severe stages of CRF.

  5. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing.

    PubMed

    Zhao, Guifang; Liu, Feilin; Lan, Shaowei; Li, Pengdong; Wang, Li; Kou, Junna; Qi, Xiaojuan; Fan, Ruirui; Hao, Deshun; Wu, Chunling; Bai, Tingting; Li, Yulin; Liu, Jin Yu

    2015-03-19

    Successful stem cell therapy relies on large-scale generation of stem cells and their maintenance in a proliferative multipotent state. This study aimed to establish a three-dimension culture system for large-scale generation of hWJ-MSC and investigated the self-renewal activity, genomic stability and multi-lineage differentiation potential of such hWJ-MSC in enhancing skin wound healing. hWJ-MSC were seeded on gelatin microbeads and cultured in spinning bottles (3D). Cell proliferation, karyotype analysis, surface marker expression, multipotent differentiation (adipogenic, chondrogenic, and osteogenic potentials), and expression of core transcription factors (OCT4, SOX2, NANOG, and C-MYC), as well as their efficacy in accelerating skin wound healing, were investigated and compared with those of hWJ-MSC derived from plate cultres (2D), using in vivo and in vitro experiments. hWJ-MSC attached to and proliferated on gelatin microbeads in 3D cultures reaching a maximum of 1.1-1.30×10(7) cells on 0.5 g of microbeads by days 8-14; in contrast, hWJ-MSC derived from 2D cultures reached a maximum of 6.5 -11.5×10(5) cells per well in a 24-well plate by days 6-10. hWJ-MSC derived by 3D culture incorporated significantly more EdU (P<0.05) and had a significantly higher proliferation index (P<0.05) than those derived from 2D culture. Immunofluorescence staining, real-time PCR, flow cytometry analysis, and multipotency assays showed that hWJ-MSC derived from 3D culture retained MSC surface markers and multipotency potential similar to 2D culture-derived cells. 3D culture-derived hWJ-MSC also retained the expression of core transcription factors at levels comparable to their 2D culture counterparts. Direct injection of hWJ-MSC derived from 3D or 2D cultures into animals exhibited similar efficacy in enhancing skin wound healing. Thus, hWJ-MSC can be expanded markedly in gelatin microbeads, while retaining MSC surface marker expression, multipotent differential potential, and expression of core transcription factors. These cells also efficiently enhanced skin wound healing in vivo, in a manner comparable to that of hWJ-MSC obtained from 2D culture.

  6. Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis Through the Wnt4/β-Catenin Pathway

    PubMed Central

    Zhang, Bin; Wu, Xiaodan; Zhang, Xu; Sun, Yaoxiang; Yan, Yongmin; Shi, Hui; Zhu, Yanhua; Wu, Lijun; Pan, Zhaoji; Zhu, Wei

    2015-01-01

    Human umbilical cord mesenchymal stem cells (hucMSCs) and their exosomes have been considered as potential therapeutic tools for tissue regeneration; however, the underlying mechanisms are still not well understood. In this study, we isolated and characterized the exosomes from hucMSCs (hucMSC-Ex) and demonstrated that hucMSC-Ex promoted the proliferation, migration, and tube formation of endothelial cells in a dose-dependent manner. Furthermore, we demonstrated that hucMSC-Ex promoted wound healing and angiogenesis in vivo by using a rat skin burn model. We discovered that hucMSC-Ex promoted β-catenin nuclear translocation and induced the increased expression of proliferating cell nuclear antigen, cyclin D3, N-cadherin, and β-catenin and the decreased expression of E-cadherin. The activation of Wnt/β-catenin is critical in the induction of angiogenesis by hucMSC-Ex, which could be reversed by β-catenin inhibitor ICG-001. Wnt4 was delivered by hucMSC-Ex, and the knockdown of Wnt4 in hucMSC-Ex abrogated β-catenin nuclear translocation in endothelial cells. The in vivo proangiogenic effects were also inhibited by interference of Wnt4 expression in hucMSC-Ex. Taken together, these results suggest that hucMSC-Ex-mediated Wnt4 induces β-catenin activation in endothelial cells and exerts proangiogenic effects, which could be an important mechanism for cutaneous wound healing. PMID:25824139

  7. Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis.

    PubMed

    Matthay, Michael A; Pati, Shibani; Lee, Jae-Woo

    2017-02-01

    Several experimental studies have provided evidence that bone-marrow derived mesenchymal stem (stromal) cells (MSC) may be effective in treating critically ill surgical patients who develop traumatic brain injury, acute renal failure, or the acute respiratory distress syndrome. There is also preclinical evidence that MSC may be effective in treating sepsis-induced organ failure, including evidence that MSC have antimicrobial properties. This review considers preclinical studies with direct relevance to organ failure following trauma, sepsis or major infections that apply to critically ill patients. Progress has been made in understanding the mechanisms of benefit, including MSC release of paracrine factors, transfer of mitochondria, and elaboration of exosomes and microvesicles. Regardless of how well they are designed, preclinical studies have limitations in modeling the complexity of clinical syndromes, especially in patients who are critically ill. In order to facilitate translation of the preclinical studies of MSC to critically ill patients, there will need to be more standardization regarding MSC production with a focus on culture methods and cell characterization. Finally, well designed clinical trials will be needed in critically ill patient to assess safety and efficacy. Stem Cells 2017;35:316-324. © 2016 AlphaMed Press.

  8. Mesenchymal stem cells induce epithelial proliferation within the inflamed stomach.

    PubMed

    Donnelly, Jessica M; Engevik, Amy; Feng, Rui; Xiao, Chang; Boivin, Gregory P; Li, Jing; Houghton, JeanMarie; Zavros, Yana

    2014-06-15

    Bone marrow-derived mesenchymal stem cells (MSCs) sustain cancer cells by creating a microenvironment favorable for tumor growth. In particular, MSCs have been implicated in gastric cancer development. There is extensive evidence suggesting that Hedgehog signaling regulates tumor growth. However, very little is known regarding the precise roles of Hedgehog signaling and MSCs in tumor development within the stomach. The current study tests that hypothesis that Sonic Hedgehog (Shh), secreted from MSCs, provides a proliferative stimulus for the gastric epithelium in the presence of inflammation. Red fluorescent protein-expressing MSCs transformed in vitro (stMSCs) were transduced with lentiviral constructs containing a vector control (stMSC(vect)) or short hairpin RNA (shRNA) targeting the Shh gene (stMSC(ShhKO)). Gastric submucosal transplantation of wild-type MSCs (wtMSCs), wild-type MSCs overexpressing Shh (wtMSC(Shh)), stMSC(vect), or stMSC(ShhKO) cells in C57BL/6 control (BL/6) or gastrin-deficient (GKO) mice was performed and mice analyzed 30 and 60 days posttransplantation. Compared with BL/6 mice transplanted with wtMSC(Shh) and stMSC(vect) cells, inflamed GKO mice developed aggressive gastric tumors. Tumor development was not observed in mouse stomachs transplanted with wtMSC or stMSC(ShhKO) cells. Compared with stMSC(ShhKO)-transplanted mice, within the inflamed GKO mouse stomach, Shh-expressing stMSC(vect)- and wtMSC(Shh)-induced proliferation of CD44-positive cells. CD44-positive cells clustered in gland-like structures within the tumor stroma and were positive for Patched (Ptch) expression. We conclude that Shh, secreted from MSCs, provides a proliferative stimulus for the gastric epithelium that is associated with tumor development, a response that is sustained by chronic inflammation. Copyright © 2014 the American Physiological Society.

  9. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action.

    PubMed

    Ionescu, Lavinia; Byrne, Roisin N; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S; Rey-Parra, Gloria J; Weissmann, Gaia; Hall, Adam; Eaton, Farah; Thébaud, Bernard

    2012-12-01

    Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 "healer" phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I.

  10. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action

    PubMed Central

    Ionescu, Lavinia; Byrne, Roisin N.; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S.; Rey-Parra, Gloria J.; Weissmann, Gaia; Hall, Adam; Eaton, Farah

    2012-01-01

    Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 “healer” phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I. PMID:23023971

  11. Influence of long-term gravity vector changes on mesenchymal stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Merzlikina, N. V.; Romanov, Yu. A.; Buravkov, S. V.

    2005-08-01

    In vivo and in vitro studies have identified the bone marrow as the primary source of a multipotential mesenchymal stem cells (MSC) that give rise to progenitors for several mesenchymal tissues, including bone, cartilage, tendon, adipose, muscle and hematopoietic-supporting stroma. It is known that MSC are sensitive to chemical signals and mechanical stimuli. It was also suggested that microgravity may influence on progenitor cells and induce abnormalities in cellular differentiation in muscle and skeletal components leading to the changes in physiological regeneration of these tissues. To prove gravitational sensitivity of MSC, we studied the effects of prolonged clinorotation on cultured human MSC (hMSC) morphology, actin cytoskeleton organization and phenotype. It was found that the proliferation rate was significantly decreased during clinorotation but augmented during recovery. The cell cytoskeleton displayed actin filament thinning and altered morphology at clinorotation. The production of interleukin-6 was increased and expression of surface molecules was modified by simulated microgravity. Observed changes of cultured hMSC behavior suggest the gravitational sensitivity of human stromal progenitor cells.

  12. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armesilla-Diaz, Alejandro, E-mail: aarmesilla@cib.csic.es; Elvira, Gema; Silva, Augusto

    2009-12-10

    Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, amore » shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.« less

  13. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    PubMed

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells. © 2015 Wiley Periodicals, Inc.

  14. Comparison of Uncultured Marrow Mononuclear Cells and Culture-Expanded Mesenchymal Stem Cells in 3D Collagen-Chitosan Microbeads for Orthopedic Tissue Engineering

    PubMed Central

    Wise, Joel K.; Alford, Andrea I.; Goldstein, Steven A.

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25×106 cells/mL, containing an estimated 5×104 MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2×105 cells/mL) were added to a 65–35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead-based approach to culturing and delivering cells for tissue regeneration, and suggests that fresh BMMC may be an alternative to using culture-expanded MSC for bone tissue engineering. PMID:23879621

  15. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering.

    PubMed

    Wise, Joel K; Alford, Andrea I; Goldstein, Steven A; Stegemann, Jan P

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25 × 10(6) cells/mL, containing an estimated 5 × 10(4) MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2 × 10(5) cells/mL) were added to a 65-35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead-based approach to culturing and delivering cells for tissue regeneration, and suggests that fresh BMMC may be an alternative to using culture-expanded MSC for bone tissue engineering.

  16. Cell Encapsulating Biomaterial Regulates Mesenchymal Stromal/Stem Cell Differentiation and Macrophage Immunophenotype

    PubMed Central

    Cantu, David Antonio; Hematti, Peiman

    2012-01-01

    Bone marrow mesenchymal stromal/stem cell (MSC) encapsulation within a biomatrix could improve cellular delivery and extend survival and residence time over conventional intravenous administration. Although MSCs modulate monocyte/macrophage (Mø) immunophenotypic properties, little is known about how such interactions are influenced when MSCs are entrapped within a biomaterial. Furthermore, the impact of the cell-encapsulating matrix on MSC multipotency and on Møs, which infiltrate biomaterials, remains poorly understood. Here we elucidate this three-way interaction. The Mø immunophenotype and MSC differentiation were examined with regard to established and experimental collagen-based biomaterials for MSC entrapment. Tumor necrosis factor-α secretion was acutely inhibited at 4 days. MSCs cocultured with Møs demonstrated attenuated chondrocyte differentiation, whereas osteoblast differentiation was enhanced. Adipocyte differentiation was considerably enhanced for MSCs entrapped within the gelatin/polyethylene glycol-based matrix. A better understanding of the effect of cell encapsulation on differentiation potency and immunomodulation of MSCs is essential for MSC-based, biomaterial-enabled therapies. PMID:23197666

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factorsmore » was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the significant functional impact of Mesenchymal Stem Cell-secreted PAI-1 on colon cancer cells.« less

  18. [Construction of fetal mesenchymal stem cell cDNA subtractive library].

    PubMed

    Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao

    2002-04-01

    To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.

  19. The Transcriptional Profile of Mesenchymal Stem Cell Populations in Primary Osteoporosis Is Distinct and Shows Overexpression of Osteogenic Inhibitors

    PubMed Central

    Benisch, Peggy; Schilling, Tatjana; Klein-Hitpass, Ludger; Frey, Sönke P.; Seefried, Lothar; Raaijmakers, Nadja; Krug, Melanie; Regensburger, Martina; Zeck, Sabine; Schinke, Thorsten; Amling, Michael; Ebert, Regina; Jakob, Franz

    2012-01-01

    Primary osteoporosis is an age-related disease characterized by an imbalance in bone homeostasis. While the resorptive aspect of the disease has been studied intensely, less is known about the anabolic part of the syndrome or presumptive deficiencies in bone regeneration. Multipotent mesenchymal stem cells (MSC) are the primary source of osteogenic regeneration. In the present study we aimed to unravel whether MSC biology is directly involved in the pathophysiology of the disease and therefore performed microarray analyses of hMSC of elderly patients (79–94 years old) suffering from osteoporosis (hMSC-OP). In comparison to age-matched controls we detected profound changes in the transcriptome in hMSC-OP, e.g. enhanced mRNA expression of known osteoporosis-associated genes (LRP5, RUNX2, COL1A1) and of genes involved in osteoclastogenesis (CSF1, PTH1R), but most notably of genes coding for inhibitors of WNT and BMP signaling, such as Sclerostin and MAB21L2. These candidate genes indicate intrinsic deficiencies in self-renewal and differentiation potential in osteoporotic stem cells. We also compared both hMSC-OP and non-osteoporotic hMSC-old of elderly donors to hMSC of ∼30 years younger donors and found that the transcriptional changes acquired between the sixth and the ninth decade of life differed widely between osteoporotic and non-osteoporotic stem cells. In addition, we compared the osteoporotic transcriptome to long term-cultivated, senescent hMSC and detected some signs for pre-senescence in hMSC-OP. Our results suggest that in primary osteoporosis the transcriptomes of hMSC populations show distinct signatures and little overlap with non-osteoporotic aging, although we detected some hints for senescence-associated changes. While there are remarkable inter-individual variations as expected for polygenetic diseases, we could identify many susceptibility genes for osteoporosis known from genetic studies. We also found new candidates, e.g. MAB21L2, a novel repressor of BMP-induced transcription. Such transcriptional changes may reflect epigenetic changes, which are part of a specific osteoporosis-associated aging process. PMID:23028809

  20. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jiamin; Wu, Kewen; Lin, Feng

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study,more » MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.« less

  1. Mesenchymal Stromal Cell Therapy in Crohn's Disease.

    PubMed

    Forbes, Geoffrey M

    2017-01-01

    Mesenchymal stromal cells (MSC) are multipotent adult stem cells with immunomodulatory properties. They uniquely express HLA class I antigen at a low level, and do not express HLA class II. Hence, for allogeneic administration, donor to recipient matching is not required; yet a prolonged chimeric state does not occur. Contrary to haematopoietic stem cell transplantation, cytotoxic drug therapy is not required to harvest, or administer, cells. Key Messages: MSC are obtained from marrow, adipose tissue or placenta. In our centre, MSC are isolated from a 10 ml donor marrow aspirate, by virtue of their adherence to plastic. They are expanded in culture, cryopreserved, and subjected to strict quality controls before release for intravenous administration. These activities occur in a dedicated, nationally accredited, laboratory. Initial observations of allogeneic MSC efficacy were in graft-versus-host disease. Both autologous and allogeneic MSC have since been evaluated in biologic refractory luminal and fistulising Crohn's disease (CD). Data from early-phase studies have suggested efficacy for luminal disease when allogeneic MSC were given intravenously and also suggested efficacy for fistulising disease when either allogeneic or autologous MSC were administered into fistulas. MSC treatment is not reported to have caused serious adverse events. Although in vitro criteria for defining MSC exist, a major challenge lies in how to define MSC for clinical use. MSC function in vivo is likely to be dependent upon donor immunological characteristics, and widely varying manufacturing processes between laboratories. MSC dose, frequency of administration, stage of disease, and presence of concomitant immunosuppression also require to be defined. MSC therapy may have future utility in CD, but considerable work is first required to determine appropriate phenotypic and functional characteristics of administered cells. © 2017 S. Karger AG, Basel.

  2. Platelet-Derived Growth Factor-BB Protects Mesenchymal Stem Cells (MSCs) Derived From Immune Thrombocytopenia Patients Against Apoptosis and Senescence and Maintains MSC-Mediated Immunosuppression

    PubMed Central

    Zhang, Jia-min; Feng, Fei-er; Wang, Qian-ming; Zhu, Xiao-lu; Fu, Hai-xia; Xu, Lan-ping; Liu, Kai-yan

    2016-01-01

    Immune thrombocytopenia (ITP) is characterized by platelet destruction and megakaryocyte dysfunction. Mesenchymal stem cells (MSCs) from ITP patients (MSC-ITP) do not exhibit conventional proliferative abilities and thus exhibit defects in immunoregulation, suggesting that MSC impairment might be a mechanism involved in ITP. Platelet-derived growth factor (PDGF) improves growth and survival in various cell types. Moreover, PDGF promotes MSC proliferation. The aim of the present study was to analyze the effects of PDGF-BB on MSC-ITP. We showed that MSC-ITP expanded more slowly and appeared flattened and larger. MSC-ITP exhibited increased apoptosis and senescence compared with controls. Both the intrinsic and extrinsic pathways account for the enhanced apoptosis. P53 and p21 expression were upregulated in MSC-ITP, but inhibition of p53 with pifithrin-α markedly inhibited apoptosis and senescence. Furthermore, MSCs from ITP patients showed a lower capacity for inhibiting the proliferation of activated T cells inducing regulatory T cells (Tregs) and suppressing the synthesis of anti-glycoprotein (GP)IIb-IIIa antibodies. PDGF-BB treatment significantly decreased the expression of p53 and p21 and increased survivin expression in MSC-ITP. In addition, the apoptotic rate and number of senescent cells in ITP MSCs were reduced. Their impaired ability for inhibiting activated T cells, inducing Tregs, and suppressing the synthesis of anti-GPIIb-IIIa antibodies was restored after PDGF-BB treatment. In conclusion, we have demonstrated that PDGF-BB protects MSCs derived from ITP patients against apoptosis, senescence, and immunomodulatory defects. This protective effect of PDGF-BB is likely mediated via the p53/p21 pathway, thus potentially providing a new therapeutic approach for ITP. Significance Immune thrombocytopenia (ITP) is characterized by platelet destruction and megakaryocyte dysfunction. Platelet-derived growth factor (PDGF) improves growth and survival in various cell types and promotes mesenchymal stem cell (MSC) proliferation. PDGF-BB protects MSCs derived from ITP patients against apoptosis, senescence, and immunomodulatory defects. This protective effect of PDGF-BB is likely mediated via the p53/p21 pathway, thus potentially providing a new therapeutic approach for ITP. PMID:27471307

  3. Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7

    PubMed Central

    Lock, Jaclyn; Liu, Huinan

    2011-01-01

    Background Nanomaterials have unique advantages in controlling stem cell function due to their biomimetic characteristics and special biological and mechanical properties. Controlling adhesion and differentiation of stem cells is critical for tissue regeneration. Methods This in vitro study investigated the effects of nano-hydroxyapatite, nano-hydroxyapatite-polylactide- co-glycolide (PLGA) composites, and a bone morphogenetic protein (BMP-7)- derived short peptide (DIF-7c) on osteogenic differentiation of human mesenchymal stem cells (MSC). The peptide was chemically functionalized onto nano-hydroxyapatite, incorporated into a nanophase hydroxyapatite-PLGA composite or PLGA control, or directly injected into culture media. Results Unlike the PLGA control, the nano-hydroxyapatite-PLGA composites promoted adhesion of human MSC. Importantly, nano-hydroxyapatite and nano-hydroxyapatite-PLGA composites promoted osteogenic differentiation of human MSCs, comparable with direct injection of the DIF-7c peptide into culture media. Conclusion Nano-hydroxyapatite and nano-hydroxyapatite-PLGA composites provide a promising alternative in directing the adhesion and differentiation of human MSC. These nanocomposites should be studied further to clarify their effects on MSC functions and bone remodeling in vivo, eventually translating to clinical applications. PMID:22114505

  4. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.

    PubMed

    Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A

    2004-08-27

    The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.

  5. Autonomous magnetic labelling of functional mesenchymal stem cells for improved traceability and spatial control in cell therapy applications.

    PubMed

    Harrison, Richard; Markides, Hareklea; Morris, Robert H; Richards, Paula; El Haj, Alicia J; Sottile, Virginie

    2017-08-01

    Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and targeting. This study shows efficient live MSC labelling using silica-coated magnetic particles (MPs), which enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP-based approaches to cell targeting. The potential of these silica-coated MPs for MRI cell tracking of MSC populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight silica-coated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for therapeutic applications and improve patient outcomes. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.

  6. High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression.

    PubMed

    Oh, Ji Young; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Chae, Chang Woo; Kim, Jun Sung; Kim, Seo Yihl; Lim, Jae Ryong; Lee, Chang-Kyu; Han, Ho Jae

    2018-01-01

    Glucose plays an important role in stem cell fate determination and behaviors. However, it is still not known how glucose contributes to the precise molecular mechanisms responsible for stem cell migration. Thus, we investigate the effect of glucose on the regulation of the human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) migration, and analyze the mechanism accompanied by this effect. Western blot analysis, wound healing migration assays, immunoprecipitation, and chromatin immunoprecipitation assay were performed to investigate the effect of high glucose on hUCB-MSC migration. Additionally, hUCB-MSC transplantation was performed in the mouse excisional wound splinting model. High concentration glucose (25 mM) elicits hUCB-MSC migration compared to normal glucose and high glucose-pretreated hUCB-MSC transplantation into the wound sites in mice also accelerates skin wound repair. We therefore elucidated the detailed mechanisms how high glucose induces hUCB-MSC migration. We showed that high glucose regulates E-cadherin repression through increased Snail and EZH2 expressions. And, we found high glucose-induced reactive oxygen species (ROS) promotes two signaling; JNK which regulates γ-secretase leading to the cleavage of Notch proteins and PI3K/Akt signaling which enhances GSK-3β phosphorylation. High glucose-mediated JNK/Notch pathway regulates the expression of EZH2, and PI3K/Akt/GSK-3β pathway stimulates Snail stabilization, respectively. High glucose enhances the formation of EZH2/Snail/HDAC1 complex in the nucleus, which in turn causes E-cadherin repression. This study reveals that high glucose-induced ROS stimulates the migration of hUCB-MSC through E-cadherin repression via Snail and EZH2 signaling pathways. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Selective sensitiveness of mesenchymal stem cells to shock waves leads to anticancer effect in human cancer cell co-cultures.

    PubMed

    Foglietta, Federica; Duchi, Serena; Canaparo, Roberto; Varchi, Greta; Lucarelli, Enrico; Dozza, Barbara; Serpe, Loredana

    2017-03-15

    Mesenchymal stem cells (MSC) possess the distinctive feature of homing in on and engrafting into the tumor stroma making their therapeutic applications in cancer treatment very promising. Research into new effectors and external stimuli, which can selectively trigger the release of cytotoxic species from MSC toward the cancer cells, significantly raises their potential. Shock waves (SW) have recently gained recognition for their ability to induce specific biological effects, such as the local generation of cytotoxic reactive oxygen species (ROS) in a non-invasive and tunable manner. We thus investigate whether MSC are able to generate ROS and, in turn, affect cancer cell growth when in co-culture with human glioblastoma (U87) or osteosarcoma (U2OS) cells and exposed to SW. MSC were found to be the cell line that was most sensitive to SW treatment as shown by SW-induced ROS production and cytotoxicity. Notably, U87 and U2OS cancer cell growth was unaffected by SW exposure. However, significant decreases in cancer cell growth, 1.8 fold for U87 and 2.3 fold for U2OS, were observed 24h after the SW treatment of MSC co-cultures with cancer cells. The ROS production induced in MSC by SW exposure was then responsible for lipid peroxidation and cell death in U87 and U2OS cells co-cultured with MSC. This experiment highlights the unique ability of MSC to generate ROS upon SW treatment and induce the cell death of co-cultured cancer cells. SW might therefore be proposed as an innovative tool for MSC-mediated cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart.

    PubMed

    Trial, JoAnn; Entman, Mark L; Cieslik, Katarzyna A

    2016-02-01

    Pathologic fibrosis in the aging mouse heart is associated with dysregulated resident mesenchymal stem cells (MSC) arising from reduced stemness and aberrant differentiation into dysfunctional inflammatory fibroblasts. Fibroblasts derived from aging MSC secrete higher levels of 1) collagen type 1 (Col1) that directly contributes to fibrosis, 2) monocyte chemoattractant protein-1 (MCP-1) that attracts leukocytes from the blood and 3) interleukin-6 (IL-6) that facilitates transition of monocytes into myeloid fibroblasts. The transcriptional activation of these proteins is controlled via the farnesyltransferase (FTase)-Ras-Erk pathway. The intrinsic change in the MSC phenotype acquired by advanced age is specific for the heart since MSC originating from bone wall (BW-MSC) or fibroblasts derived from them were free of these defects. The potential therapeutic interventions other than clinically approved strategies based on findings presented in this review are discussed as well. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling". Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Multifactorial Experimental Design to Optimize the Anti-Inflammatory and Proangiogenic Potential of Mesenchymal Stem Cell Spheroids.

    PubMed

    Murphy, Kaitlin C; Whitehead, Jacklyn; Falahee, Patrick C; Zhou, Dejie; Simon, Scott I; Leach, J Kent

    2017-06-01

    Mesenchymal stem cell therapies promote wound healing by manipulating the local environment to enhance the function of host cells. Aggregation of mesenchymal stem cells (MSCs) into three-dimensional spheroids increases cell survival and augments their anti-inflammatory and proangiogenic potential, yet there is no consensus on the preferred conditions for maximizing spheroid function in this application. The objective of this study was to optimize conditions for forming MSC spheroids that simultaneously enhance their anti-inflammatory and proangiogenic nature. We applied a design of experiments (DOE) approach to determine the interaction between three input variables (number of cells per spheroid, oxygen tension, and inflammatory stimulus) on MSC spheroids by quantifying secretion of prostaglandin E 2 (PGE 2 ) and vascular endothelial growth factor (VEGF), two potent molecules in the MSC secretome. DOE results revealed that MSC spheroids formed with 40,000 cells per spheroid in 1% oxygen with an inflammatory stimulus (Spheroid 1) would exhibit enhanced PGE 2 and VEGF production versus those formed with 10,000 cells per spheroid in 21% oxygen with no inflammatory stimulus (Spheroid 2). Compared to Spheroid 2, Spheroid 1 produced fivefold more PGE 2 and fourfold more VEGF, providing the opportunity to simultaneously upregulate the secretion of these factors from the same spheroid. The spheroids induced macrophage polarization, sprout formation with endothelial cells, and keratinocyte migration in a human skin equivalent model-demonstrating efficacy on three key cell types that are dysfunctional in chronic non-healing wounds. We conclude that DOE-based analysis effectively identifies optimal culture conditions to enhance the anti-inflammatory and proangiogenic potential of MSC spheroids. Stem Cells 2017;35:1493-1504. © 2017 AlphaMed Press.

  10. Mesenchymal Stem Cells: New Players in Retinopathy Therapy

    PubMed Central

    Rajashekhar, Gangaraju

    2014-01-01

    Retinopathies in human and animal models have shown to occur through loss of pericytes resulting in edema formation, excessive immature retinal angiogenesis, and neuronal apoptosis eventually leading to blindness. In recent years, the concept of regenerating terminally differentiated organs with a cell-based therapy has evolved. The cells used in these approaches are diverse and include tissue-specific endogenous stem cells, endothelial progenitor (EPC), embryonic stem cells, induced pluripotent stem cells (iPSC) and mesenchymal stem cells (MSC). Recently, MSC derived from the stromal fraction of adipose tissue have been shown to possess pluripotent differentiation potential in vitro. These adipose stromal cells (ASC) have been differentiated in a number of laboratories to osteogenic, myogenic, vascular, and adipocytic cell phenotypes. In vivo, ASC have been shown to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues. Furthermore, these cells either in paracrine mode or physical proximity with endothelial cells, promoted angiogenesis, improved ischemia–reperfusion, protected from myocardial infarction, and were neuroprotective. Owing to the easy isolation procedure and abundant supply, fat-derived ASC are a more preferred source of autologous mesenchymal cells compared to bone marrow MSC. In this review, we present evidence that these readily available ASC from minimally invasive liposuction will facilitate translation of ASC research into patients with retinal diseases in the near future. PMID:24795699

  11. Gilz-Activin A as a Novel Signaling Axis Orchestrating Mesenchymal Stem Cell and Th17 Cell Interplay

    PubMed Central

    Luz-Crawford, Patricia; Espinosa-Carrasco, Gabriel; Ipseiz, Natacha; Contreras, Rafael; Tejedor, Gautier; Medina, Daniel A.; Vega-Letter, Ana-Maria; Ngo, Devi; Morand, Eric F.; Pène, Jérôme; Hernandez, Javier; Jorgensen, Christian; Djouad, Farida

    2018-01-01

    Mesenchymal stem cells (MSC) are highly immunosuppressive cells able to reduce chronic inflammation through the active release of mediators. Recently, we showed that glucocorticoid-induced leucine zipper (Gilz) expression by MSC is involved in their therapeutic effect by promoting the generation of regulatory T cells. However, the mechanisms underlying this pivotal role of Gilz remain elusive. Methods and Results In this study, we have uncovered evidence that Gilz modulates the phenotype and function of Th1 and Th17 cells likely by upregulating the level of Activin A and NO2 secreted by MSC. Adoptive transfer experiments sustained this Gilz-dependent suppressive effect of MSC on Th1 and Th17 cell functions. In immunoregulatory MSC, obtained by priming with IFN-γ and TNF-α, Gilz was translocated to the nucleus and bound to the promoters of inos and Activin βA to induce their expression. The increased expression of Activin A directly impacted on Th17 cells fate by repressing their differentiation program through the activation of Smad3/2 and enhancing IL-10 production. Conclusion Our results reveal how Gilz controls inos and Activin βA gene expression to ultimately assign immunoregulatory status to MSC able to repress the pathogenic Th17 cell differentiation program and uncover Activin A as a novel mediator of MSC in this process. PMID:29344311

  12. Gilz-Activin A as a Novel Signaling Axis Orchestrating Mesenchymal Stem Cell and Th17 Cell Interplay.

    PubMed

    Luz-Crawford, Patricia; Espinosa-Carrasco, Gabriel; Ipseiz, Natacha; Contreras, Rafael; Tejedor, Gautier; Medina, Daniel A; Vega-Letter, Ana-Maria; Ngo, Devi; Morand, Eric F; Pène, Jérôme; Hernandez, Javier; Jorgensen, Christian; Djouad, Farida

    2018-01-01

    Mesenchymal stem cells (MSC) are highly immunosuppressive cells able to reduce chronic inflammation through the active release of mediators. Recently, we showed that glucocorticoid-induced leucine zipper (Gilz) expression by MSC is involved in their therapeutic effect by promoting the generation of regulatory T cells. However, the mechanisms underlying this pivotal role of Gilz remain elusive. Methods and Results In this study, we have uncovered evidence that Gilz modulates the phenotype and function of Th1 and Th17 cells likely by upregulating the level of Activin A and NO 2 secreted by MSC. Adoptive transfer experiments sustained this Gilz-dependent suppressive effect of MSC on Th1 and Th17 cell functions. In immunoregulatory MSC, obtained by priming with IFN-γ and TNF-α, Gilz was translocated to the nucleus and bound to the promoters of inos and Activin βA to induce their expression. The increased expression of Activin A directly impacted on Th17 cells fate by repressing their differentiation program through the activation of Smad3/2 and enhancing IL-10 production. Conclusion Our results reveal how Gilz controls inos and Activin βA gene expression to ultimately assign immunoregulatory status to MSC able to repress the pathogenic Th17 cell differentiation program and uncover Activin A as a novel mediator of MSC in this process.

  13. Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2

    NASA Astrophysics Data System (ADS)

    Caires, Hugo R.; Gomez-Lazaro, Maria; Oliveira, Carla M.; Gomes, David; Mateus, Denisa D.; Oliveira, Carla; Barrias, Cristina C.; Barbosa, Mário A.; Almeida, Catarina R.

    2015-05-01

    Mesenchymal Stem/Stromal Cells (MSC) are a promising cell type for cell-based therapies - from tissue regeneration to treatment of autoimmune diseases - due to their capacity to migrate to damaged tissues, to differentiate in different lineages and to their immunomodulatory and paracrine properties. Here, a simple and reliable imaging technique was developed to study MSC dynamical behavior in natural and bioengineered 3D matrices. Human MSC were transfected to express a fluorescent photoswitchable protein, Dendra2, which was used to highlight and follow the same group of cells for more than seven days, even if removed from the microscope to the incubator. This strategy provided reliable tracking in 3D microenvironments with different properties, including the hydrogels Matrigel and alginate as well as chitosan porous scaffolds. Comparison of cells mobility within matrices with tuned physicochemical properties revealed that MSC embedded in Matrigel migrated 64% more with 5.2 mg protein/mL than with 9.6 mg/mL and that MSC embedded in RGD-alginate migrated 51% faster with 1% polymer concentration than in 2% RGD-alginate. This platform thus provides a straightforward approach to characterize MSC dynamics in 3D and has applications in the field of stem cell biology and for the development of biomaterials for tissue regeneration.

  14. Engineering mesenchymal stem cells for regenerative medicine and drug delivery.

    PubMed

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W

    2015-08-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential

    PubMed Central

    Han, Juhee; Mistriotis, Panagiotis; Lei, Pedro; Wang, Dan; Liu, Song; Andreadis, Stelios T.

    2012-01-01

    Although the therapeutic potential of mesenchymal stem cells (MSC) is widely accepted, loss of cell function due to donor aging or culture senescence are major limiting factors hampering their clinical application. Our laboratory recently showed that MSC originating from older donors suffer from limited proliferative capacity and significantly reduced myogenic differentiation potential. This is a major concern, as the patients most likely to suffer from cardiovascular disease are elderly. Here we tested the hypothesis that a single pluripotency associated transcription factor, namely Nanog, may reverse the proliferation and differentiation potential of BM-MSC from adult donors. Microarray analysis showed that adult (a)BM-MSC expressing Nanog clustered close to Nanog-expressing neonatal cells. Nanog markedly upregulated genes involved in cell cycle, DNA replication and DNA damage repair and enhanced the proliferation rate and clonogenic capacity of aBM-MSC. Notably, Nanog reversed the myogenic differentiation potential and restored the contractile function of aBM-MSC to a similar level as that of neonatal (n)BM-MSC. The effect of Nanog on contractility was mediated – at least in part - through activation of the TGF-β pathway by diffusible factors secreted in the conditioned medium of Nanog-expressing BM-MSC. Overall, our results suggest that Nanog may be used to overcome the effects of organismal aging on aBM-MSC, thereby increasing the potential of MSC from aged donors for cellular therapy and tissue regeneration. PMID:22949105

  16. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection

    PubMed Central

    Liu, Zhenwen; Wang, Ying; Xu, Rounan; Sun, Yanling; Zhang, Min; Yu, Xi; Wang, Hongbo; Meng, Lingzhan; Su, Haibin; Jin, Lei

    2017-01-01

    Abstract Acute allograft rejection remains common after liver transplantation despite modern immunosuppressive agents. In addition, the long‐term side effects of these regimens, including opportunistic infections, are challenging. This study evaluated the safety and clinical feasibility of umbilical cord‐derived mesenchymal stem cell (UC‐MSC) therapy in liver transplant patients with acute graft rejection. Twenty‐seven liver allograft recipients with acute rejection were randomly assigned into the UC‐MSC infusion group or the control group. Thirteen patients received one infusion of UC‐MSCs (1 × 106/kg body weight); one patient received multiple UC‐MSC infusions; 13 patients were used as controls. All enrolled patients received conventional immunosuppressive agents with follow‐up for 12 weeks after UC‐MSC infusions. No side effects occurred in treated patients. Four weeks after UC‐MSC infusions, alanine aminotransferase levels had decreased markedly and remained lower throughout the 12‐week follow‐up period. Importantly, allograft histology was improved after administration of UC‐MSCs. The percentage of regulatory T cells (Tregs) and the Treg/T helper 17 (Th17) cell ratio were significantly increased 4 weeks after infusions; in contrast, the percentage of Th17 cells showed a decreasing trend. In controls, the percentages of Tregs and Th17 cells and the Treg/Th17 ratio were statistically unchanged from the baseline measurements. Transforming growth factor beta 1 and prostaglandin E2 were increased significantly after UC‐MSC infusions; by contrast, there were no significant changes in controls. Our data suggest that UC‐MSC infusion for acute graft rejection following liver transplantation is feasible and may mediate a therapeutic immunosuppressive effect. Stem Cells Translational Medicine 2017;6:2053–2061 PMID:29178564

  17. Autologous c-Kit+ Mesenchymal Stem Cell Injections Provide Superior Therapeutic Benefit as Compared to c-Kit+ Cardiac-Derived Stem Cells in a Feline Model of Isoproterenol-Induced Cardiomyopathy.

    PubMed

    Taghavi, Sharven; Sharp, Thomas E; Duran, Jason M; Makarewich, Catherine A; Berretta, Remus M; Starosta, Tim; Kubo, Hajime; Barbe, Mary; Houser, Steven R

    2015-10-01

    Cardiac- (CSC) and mesenchymal-derived (MSC) CD117+ isolated stem cells improve cardiac function after injury. However, no study has compared the therapeutic benefit of these cells when used autologously. MSCs and CSCs were isolated on day 0. Cardiomyopathy was induced (day 28) by infusion of L-isoproterenol (1,100 ug/kg/hour) from Alzet minipumps for 10 days. Bromodeoxyuridine (BrdU) was infused via minipumps (50 mg/mL) to identify proliferative cells during the injury phase. Following injury (day 38), autologous CSC (n = 7) and MSC (n = 4) were delivered by intracoronary injection. These animals were compared to those receiving sham injections by echocardiography, invasive hemodynamics, and immunohistochemistry. Fractional shortening improved with CSC (26.9 ± 1.1% vs. 16.1 ± 0.2%, p = 0.01) and MSC (25.1 ± 0.2% vs. 12.1 ± 0.5%, p = 0.01) as compared to shams. MSC were superior to CSC in improving left ventricle end-diastolic (LVED) volume (37.7 ± 3.1% vs. 19.9 ± 9.4%, p = 0.03) and ejection fraction (27.7 ± 0.1% vs. 19.9 ± 0.4%, p = 0.02). LVED pressure was less in MSC (6.3 ± 1.3 mmHg) as compared to CSC (9.3 ± 0.7 mmHg) and sham (13.3 ± 0.7); p = 0.01. LV BrdU+ myocytes were higher in MSC (0.17 ± 0.03%) than CSC (0.09 ± 0.01%) and sham (0.06 ± 01%); p < 0.001. Both CD117+ isolated CSC and MSC therapy improve cardiac function and attenuate pathological remodeling. However, MSC appear to confer additional benefit. © 2015 Wiley Periodicals, Inc.

  18. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations.

    PubMed

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas; Isa, Adiba; Kassem, Moustapha

    2016-01-11

    Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC population. Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone marrow elements enriched in implants containing hMSC-CD146(+) cells (0.5 % versus 0.05 %). hMSC-CD146(+) cells exhibited greater chemotactic attraction in a transwell migration assay and, when injected intravenously into immune-deficient mice following closed femoral fracture, exhibited wider tissue distribution and significantly increased migration ability as demonstrated by bioluminescence imaging. Our studies demonstrate that CD146 defines a subpopulation of hMSCs capable of bone formation and in vivo trans-endothelial migration and thus represents a population of hMSCs suitable for use in clinical protocols of bone tissue regeneration.

  19. [Effects of rapamycin on biological characteristics of bone marrow mesenchymal stem cells from patients with aplastic anemia].

    PubMed

    Wang, Xin; Ma, Feng-Xia; Lu, Shi-Hong; Chi, Ying; Chen, Fang; Li, Xue; Li, Juan-Juan; Du, Wen-Jing; Feng, Ying; Cui, Jun-Jie; Song, Bao-Quan; Han, Zhong-Chao

    2014-06-01

    This study was aimed to investigate the effects of rapamycin on biological function and autophagy of bone marrow mesenchymal stem cells (BM-MSC) from patients with aplastic anemia so as to provide experimental basis for the clinical treatment of aplastic anemia (AA) with rapamycin. BM-MSC were treated with different concentrations of rapamycin (0, 10, 50, 100 nmol/L) for 48 h, the expression of LC3B protein was detected by Western blot to observe the effect of rapamycin on cell autophagy; cell apoptosis and cell cycles were detected by flow cytometry; the proliferation of BM-MSC of AA patients was measured by cell counting kit-8; the adipogenic differentiation of BM-MSC were tested by oil red O staining after adipogenic induction for 2 weeks; the adipogenic related genes (LPL, CFD, PPARγ) were detected by real-time PCR. The results showed that the proliferation and adipogenesis of BM-MSC of AA patients were inhibited by rapamycin. Moreover, the autophagy and apoptosis of BM-MSC were increased by rapamycin in a dose-dependent way.Rapamycin arrested the BM-MSC in G0/G1 phase and prevented them into S phase (P < 0.05). It is concluded that rapamycin plays an critical role in inhibiting cell proliferation, cell cycles, and adipogenesis, these effects may be related with the autophagy activation and mTOR inhibition resulting from rapamycin.

  20. Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control.

    PubMed

    Honda, Yoshitomo; Ding, Xianting; Mussano, Federico; Wiberg, Akira; Ho, Chih-Ming; Nishimura, Ichiro

    2013-12-05

    Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering.

  1. Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control

    PubMed Central

    Honda, Yoshitomo; Ding, Xianting; Mussano, Federico; Wiberg, Akira; Ho, Chih-ming; Nishimura, Ichiro

    2013-01-01

    Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering. PMID:24305548

  2. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cellsmore » were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.« less

  3. PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects.

    PubMed

    Dashtdar, Havva; Murali, Malliga Raman; Abbas, Azlina Amir; Suhaeb, Abdulrazzaq Mahmod; Selvaratnam, Lakshmi; Tay, Liang Xin; Kamarul, Tunku

    2015-05-01

    To investigate whether mesenchymal stem cells (MSCs) seeded in novel polyvinyl alcohol (PVA)-chitosan composite hydrogel can provide comparable or even further improve cartilage repair outcomes as compared to previously established alginate-transplanted models. Medial femoral condyle defect was created in both knees of twenty-four mature New Zealand white rabbits, and the animals were divided into four groups containing six animals each. After 3 weeks, the right knees were transplanted with PVA-chitosan-MSC, PVA-chitosan scaffold alone, alginate-MSC construct or alginate alone. The left knee was kept as untreated control. Animals were killed at the end of 6 months after transplantation, and the cartilage repair was assessed through Brittberg morphological score, histological grading by O'Driscoll score and quantitative glycosaminoglycan analysis. Morphological and histological analyses showed significant (p < 0.05) tissue repair when treated with PVA-chitosan-MSC or alginate MSC as compared to the scaffold only and untreated control. In addition, safranin O staining and the glycosaminoglycan (GAG) content were significantly higher (p < 0.05) in MSC treatment groups than in scaffold-only or untreated control group. No significant difference was observed between the PVA-chitosan-MSC- and alginate-MSC-treated groups. PVA-chitosan hydrogel seeded with mesenchymal stem cells provides comparable treatment outcomes to that of previously established alginate-MSC construct implantation. This study supports the potential use of PVA-chitosan hydrogel seeded with MSCs for clinical use in cartilage repair such as traumatic injuries.

  4. Enhanced Healing of Diabetic Wounds by Subcutaneous Administration of Human Umbilical Cord Derived Stem Cells and Their Conditioned Media

    PubMed Central

    Shrestha, Chandrama; Zhao, Liling; Chen, Ke; He, Honghui; Mo, Zhaohui

    2013-01-01

    Objective. Mesenchymal stem cells (MSCs) isolated from the umbilical cord and their conditioned media (CM) can be easily obtained and refined compared with stem cells from other sources. Here, we explore the possibility of the benefits of these cells in healing diabetic wounds. Methodology and Results. Delayed wound healing animal models were established by making a standard wound on the dorsum of eighteen db/db mice, which were divided into three groups with six mice in each: groups I, II, and III received PBS, UC-MSC, and CM, respectively. UC-MSC and their CM significantly accelerated wound closure compared to PBS-treated wounds, and it was most rapid in CM-injected wounds. In day-14 wounds, significant difference in capillary densities among the three groups was noted (n = 6; P < 0.05), and higher levels of VEGF, PDGF, and KGF expression in the CM- and UC-MSC-injected wounds compared to the PBS-treated wounds were seen. The expression levels of PDGF-β and KGF were higher in CM-treated wounds than those in UC-MSC-treated wounds. Conclusion. Both the transplantation of UC-MSC and their CM are beneficial to diabetic wound healing, and CM has been shown to be therapeutically better than UC-MSC, at least in the context of diabetic wound healing. PMID:24089612

  5. Successful transplant of mesenchymal stem cells in induced osteonecrosis of the ovine femoral head: preliminary results.

    PubMed

    Feitosa, Matheus Levi Tajra; Fadel, Leandro; Beltrão-Braga, Patrícia Cristina Baleeiro; Wenceslau, Cristiane Valverde; Kerkis, Irina; Kerkis, Alexandre; Birgel Júnior, Eduardo Harry; Martins, João Flávio Panattoni; Martins, Daniele dos Santos; Miglino, Maria Angélica; Ambrósio, Carlos Eduardo

    2010-10-01

    Evaluate the bone tissue recovery following transplantation of ovine mesenchymal stem cells (MSC) from bone marrow and human immature dental-pulp stem cells (hIDPSC) in ovine model of induced osteonecrosis of femoral head (ONFH). Eight sheep were divided in three experimental groups. First group was composed by four animals with ONFH induced by ethanol through central decompression (CD), for control group without any treatment. The second and third group were compose by two animals, six weeks after ONFH induction received transplantation of heterologous ovine MSC (CD + oMSC), and hIDPSC (CD + hIDPSC), respectively. In both experiments the cells were transplanted without application of any type of immunosupression protocol. Our data indicate that both cell types used in experiments were able to proliferate within injured site providing bone tissue recovery. The histological results obtained from CD+hIDPSC suggested that the bone regeneration in such animals was better than that observed in CD animals. Mesenchymal stem cell transplant in induced ovine osteonecrosis of femoral head by central decompression technique is safe, and apparently favors bone regeneration of damaged tissues.

  6. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate.

    PubMed

    Moon, Mi-Young; Kim, Hyun Jung; Choi, Bo Young; Sohn, Min; Chung, Tae Nyoung; Suh, Sang Won

    2018-01-01

    Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs) are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30  μ M and 100  μ M of ZnCl 2 . Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin) in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth.

  7. Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy.

    PubMed

    Aggerholm-Pedersen, Ninna; Demuth, Christina; Safwat, Akmal; Meldgaard, Peter; Kassem, Moustapha; Sandahl Sorensen, Boe

    2016-01-01

    Background. One of the major challenges affecting sarcoma treatment outcome, particularly that of metastatic disease, is resistance to chemotherapy. Cancer-initiating cells are considered a major contributor to this resistance. Methods. An immortalised nontransformed human stromal (mesenchymal) stem cell line hMSC-TERT4 and a transformed cell line hMSC-TERT20-CE8, known to form sarcoma-like tumours when implanted in immune-deficient mice, were used as models. Receptor tyrosine kinase (RTK) activation was analysed by RTK arrays and cellular viability after tyrosine kinases inhibitor (TKI) treatment with or without doxorubicin was assessed by MTS assay. Results. Initial results showed that the hMSC-TERT4 was more doxorubicin-sensitive while hMSC-TERT20-CE8 was less doxorubicin-sensitive evidenced by monitoring cell viability in the presence of doxorubicin at different doses. The epidermal growth factor receptor (EGFR) was activated in both cell lines. However hMSC-TERT20-CE8 exhibited significantly higher expression of the EGFR ligands. EGFR inhibitors such as erlotinib and afatinib alone or in combination with doxorubicin failed to further decrease cell viability of hMSC-TERT20-CE8. However, inhibition with the TKI dasatinib in combination with doxorubicin decreased cell viability of the hMSC-TERT20-CE8 cell line. Conclusion. Our results demonstrate that dasatinib, but not EGFR-directed treatment, can decrease cell viability of stromal cancer stem cells less sensitive to doxorubicin.

  8. Antitumor Activity of a Mesenchymal Stem Cell Line Stably Secreting a Tumor-Targeted TNF-Related Apoptosis-Inducing Ligand Fusion Protein

    PubMed Central

    Marini, Irene; Siegemund, Martin; Hutt, Meike; Kontermann, Roland E.; Pfizenmaier, Klaus

    2017-01-01

    Mesenchymal stem cells (MSCs) are currently exploited as gene delivery systems for transient in situ expression of cancer therapeutics. As an alternative to the prevailing viral expression, we here describe a murine MSC line stably expressing a therapeutic protein for up to 42 passages, yet fully maintaining MSC features. Because of superior antitumoral activity of hexavalent TNF-related apoptosis-inducing ligand (TRAIL) formats and the advantage of a tumor-targeted action, we choose expression of a dimeric EGFR-specific diabody single-chain TRAIL (Db-scTRAIL) as a model. The bioactivity of Db-scTRAIL produced from an isolated clone (MSC.TRAIL) was revealed from cell death induction in Colo205 cells treated with either culture supernatants from or cocultured with MSC.TRAIL. In vivo, therapeutic activity of MSC.TRAIL was shown upon peritumoral injection in a Colo205 xenograft tumor model. Best antitumor activity in vitro and in vivo was observed upon combined treatment of MSC.TRAIL with bortezomib. Importantly, in vivo combination treatment did not cause apparent hepatotoxicity, weight loss, or behavioral changes. The development of well characterized stocks of stable drug-producing human MSC lines has the potential to establish standardized protocols of cell-based therapy broadly applicable in cancer treatment. PMID:28553285

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de; Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de; Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. Themore » aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.« less

  10. Vaccination efficacy with marrow mesenchymal stem cell against cancer was enhanced under simulated microgravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Chen, Jun; Li, Xiuyu

    Stem cell vaccination can induce consistent and strong anti-tumor immunity against cancer in mice model. The antigenic similarity between tumors and embryos has been appreciated for many years and reflects the expression of embryonic gene products by cancer cells and/or cancer-initiating stem cells. Taking advantage of this similarity, we have tested a prophylactic lung cancer vaccine composed of allogeneic murine MSCs. Based on this conception, we first compared their tumor vaccines intervention effects of adult MSCs and MSCs under simulated microgravity (MSC/SMG). In this study, BALB/c mice were vaccinated with MSCs or MSC/SMG, compared with mice vaccinated with phosphate bufferedmore » saline (PBS) as negative controls. We then subcutaneously implanted the A549 human lung cancer cell line into vaccinated mice and monitored tumor growth potential in vivo. The smaller tumor size and less tumor weight were observed in mice vaccinated with MSCs or MSC/SMG, compared with that of the Control group. Particularly, it was much more significant in the group of MSC/SMG than that group of the MSCs. Vaccination with SMG treated MSCs inhibited proliferation and promoted apoptosis of tumor tissue. SMG/MSC vaccination induced bothTh1-mediated cytokine response; CD8-dependent cytotoxic response which reduced the proportion of Treg cells. Furthermore, SMG/MSC vaccination significantly increased MHC1 and HSPs proteins expression. In conclusion, we demonstrated the SMG could improve tumor-suppressive activity of MSC. The enhanced anti-tumor immune response of MSCs/SMG was strongly associated with the higher expression of MHC class I molecule on DCs, and the abundance of HSPs in the SMG treated MSCs may make antigens in the MSC more cross-presentable to the host DCs for generating protective antitumor activity. This study gains an insight into the mechanism of MSCs anti-tumor efficacy and gives a new strategy for cancer therapies in the future. - Highlights: • Vaccination with SMG treated MSCs inhibited tumor growth. • SMG/MSC vaccination induced Th1-mediated cytokine response, elicited CD8-dependent cytotoxic response and reduced the proportion of Treg cells. • SMG/MSC vaccination increased MHC1 and HSPs proteins expression.« less

  11. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    PubMed

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G

    2017-06-01

    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity.

    PubMed

    Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie

    2016-11-01

    The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.

  13. Distinct spatial distribution of microglia and macrophages following mesenchymal stem cell implantation in mouse brain.

    PubMed

    Le Blon, Debbie; Hoornaert, Chloé; Daans, Jasmijn; Santermans, Eva; Hens, Niel; Goossens, Herman; Berneman, Zwi; Ponsaerts, Peter

    2014-09-01

    Although implantation of cellular material in the central nervous system (CNS) is a key direction in CNS regenerative medicine, this approach is currently limited by the occurrence of strong endogenous immune cell responses. In a model of mesenchymal stem cell (MSC) grafting in the CNS of immune-competent mice, we previously described that MSC grafts become highly surrounded and invaded by Iba1(+) myeloid cells (microglia and/or macrophages). Here, following grafting of blue fluorescent protein (BFP)-expressing MSC in the CNS of CX3CR1(+/-) and CX3CR1(-/-) mice, our results indicate: (1) that the observed inflammatory response is independent of the fractalkine signalling axis, and (2) that a significant spatial distribution of Iba1(+) inflammatory cells occurs, in which Iba1(+) CX3CR1(+) myeloid cells mainly surround the MSC graft and Iba1(+) CX3CR1(-) myeloid cells mainly invade the graft at 10 days post transplantation. Although Iba1(+) CX3CR1(+) myeloid cells are considered to be of resident microglial origin, Iba1(+) CX3CR1(-) myeloid cells are most likely of peripheral monocyte/macrophage origin. In order to confirm the latter, we performed MSC-BFP grafting experiments in the CNS of eGFP(+) bone marrow chimeric C57BL/6 mice. Analysis of MSC-BFP grafts in the CNS of these mice confirmed our observation that peripheral monocytes/macrophages invade the MSC graft and that resident microglia surround the MSC graft site. Furthermore, analysis of major histocompatibility complex class II (MHCII) expression revealed that mainly macrophages, but not microglia, express this M1 pro-inflammatory marker in the context of MSC grafting in the CNS. These results again highlight the complexity of cell implantation immunology in the CNS.

  14. Role of stem cell derived exosomes in tumor biology.

    PubMed

    Sharma, Aman

    2018-03-15

    Exosomes are nano-scale messengers loaded with bio-molecular cargo of RNA, DNA, and Proteins. As a master regulator of cellular signaling, stem cell (both normal, and cancer stem cells) secreted exosome orchestrate various autocrine and paracrine functions which alter tumor micro-environment, growth and progression. Exosomes secreted by one of the two important stem cell phenotypes in cancers a) Mesenchymal stem cells, and b) Cancer stem cells not only promote cancerous growth but also impart therapy resistance in cancer cells. In tumors, normal or mesenchymal stem cell (MSCs) derived exosomes (MSC-exo) modulate tumor hallmarks by delivering unique miRNA species to neighboring cells and help in tumor progression. Apart from regulating tumor cell fate, MSC-exo are also capable of inducing physiological processes, for example, angiogenesis, metastasis and so forth. Similarly, cancer stem cells (CSCs) derived exosomes (CSC-exo) contain stemness-specific proteins, self-renewal promoting regulatory miRNAs, and survival factors. CSC-exo specific cargo maintains tumor heterogeneity and alters tumor progression. In this review we critically discuss the importance of stem cell specific exosomes in tumor cell signaling pathways with their role in tumor biology. © 2017 UICC.

  15. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in the Treatment of Eye Diseases.

    PubMed

    Harrell, C Randall; Simovic Markovic, Bojana; Fellabaum, Crissy; Arsenijevic, Aleksandar; Djonov, Valentin; Arsenijevic, Nebojsa; Volarevic, Vladislav

    2018-05-18

    Mesenchymal stem cells (MSCs) were, due to their immunomodulatory and pro-angiogenic characteristics, extensively explored as new therapeutic agents in cell-based therapy of uveitis, glaucoma, retinal and ocular surface diseases.Since it was recently revealed that exosomes play an important role in biological functions of MSCs, herewith we summarized current knowledge about the morphology, structure, phenotype and functional characteristics of MSC-derived exosomes emphasizing their therapeutic potential in the treatment of eye diseases.MSC-derived exosomes were as efficient as transplanted MSCs in limiting the extent of eye injury and inflammation. Immediately after intravitreal injection, MSC-derived exosomes, due to nano-dimension, diffused rapidly throughout the retina and significantly attenuated retinal damage and inflammation. MSC-derived exosomes successfully delivered trophic and immunomodulatory factors to the inner retina and efficiently promoted survival and neuritogenesis of injured retinal ganglion cells. MSC-derived exosomes efficiently suppressed migration of inflammatory cells, attenuated detrimental Th1 and Th17 cell-driven immune response and ameliorated experimental autoimmune uveitis. MSC-derived exosomes were able to fuse with the lysosomes within corneal cells, enabling delivering of MSC-derived active β-glucuronidase and consequent catabolism of accumulated glycosaminoglycans, indicating their therapeutic potential in the treatment of Mucopolysaccharidosis VII (Sly Syndrome). Importantly, beneficent effects were noticed only in animals that received MSC-derived exosomes and were not seen after therapy with fibroblasts-derived exosomes confirming specific therapeutic potential of MSCs and their products in the treatment of eye diseases.In conclusion, MSC-derived exosomes represent potentially new therapeutic agents in the therapy of degenerative and inflammatory ocular diseases.

  16. Route of Delivery Modulates the Efficacy of Mesenchymal Stem Cell Therapy for Myocardial Infarction: A Meta-Analysis of Preclinical Studies and Clinical Trials.

    PubMed

    Kanelidis, Anthony J; Premer, Courtney; Lopez, Juan; Balkan, Wayne; Hare, Joshua M

    2017-03-31

    Accumulating data support a therapeutic role for mesenchymal stem cell (MSC) therapy; however, there is no consensus on the optimal route of delivery. We tested the hypothesis that the route of MSC delivery influences the reduction in infarct size and improvement in left ventricular ejection fraction (LVEF). We performed a meta-analysis investigating the effect of MSC therapy in acute myocardial infarction (AMI) and chronic ischemic cardiomyopathy preclinical studies (58 studies; n=1165 mouse, rat, swine) which revealed a reduction in infarct size and improvement of LVEF in all animal models. Route of delivery was analyzed in AMI swine studies and clinical trials (6 clinical trials; n=334 patients). In AMI swine studies, transendocardial stem cell injection reduced infarct size (n=49, 9.4% reduction; 95% confidence interval, -15.9 to -3.0), whereas direct intramyocardial injection, intravenous infusion, and intracoronary infusion indicated no improvement. Similarly, transendocardial stem cell injection improved LVEF (n=65, 9.1% increase; 95% confidence interval, 3.7 to 14.5), as did direct intramyocardial injection and intravenous infusion, whereas intracoronary infusion demonstrated no improvement. In humans, changes of LVEF paralleled these results, with transendocardial stem cell injection improving LVEF (n=46, 7.0% increase; 95% confidence interval, 2.7 to 11.3), as did intravenous infusion, but again intracoronary infusion demonstrating no improvement. MSC therapy improves cardiac function in animal models of both AMI and chronic ischemic cardiomyopathy. The route of delivery seems to play a role in modulating the efficacy of MSC therapy in AMI swine studies and clinical trials, suggesting the superiority of transendocardial stem cell injection because of its reduction in infarct size and improvement of LVEF, which has important implications for the design of future studies. © 2016 American Heart Association, Inc.

  17. Ultrasound and photoacoustic imaging to monitor ocular stem cell delivery and tissue regeneration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kubelick, Kelsey; Snider, Eric; Yoon, Heechul; Ethier, C. Ross; Emelianov, Stanislav Y.

    2017-03-01

    Glaucoma is associated with dysfunction of the trabecular meshwork (TM), a fluid drainage tissue in the anterior eye. A promising treatment involves delivery of stem cells to the TM to restore tissue function. Currently histology is the gold standard for tracking stem cell delivery and differentiation. To expedite clinical translation, non-invasive longitudinal monitoring in vivo is desired. Our current research explores a technique combining ultrasound (US) and photoacoustic (PA) imaging to track mesenchymal stem cells (MSCs) after intraocular injection. Adipose-derived MSCs were incubated with gold nanospheres to label cells (AuNS-MSCs) for PA imaging. Successful labeling was first verified with in vitro phantom studies. Next, MSC delivery was imaged ex vivo in porcine eyes, while intraocular pressure was hydrostatically clamped to maintain a physiological flow rate through the TM. US/PA imaging was performed before, during, and after AuNS-MSC delivery. Additionally, spectroscopic PA imaging was implemented to isolate PA signals from AuNS-MSCs. In vitro cell imaging showed AuNS-MSCs produce strong PA signals, suggesting that MSCs can be tracked using PA imaging. While the cornea, sclera, iris, and TM region can be visualized with US imaging, pigmented tissues also produce PA signals. Both modalities provide valuable anatomical landmarks for MSC localization. During delivery, PA imaging can visualize AuNS-MSC motion and location, creating a unique opportunity to guide ocular cell delivery. Lastly, distinct spectral signatures of AuNS-MSCs allow unmixing, with potential for quantitative PA imaging. In conclusion, results show proof-of-concept for monitoring MSC ocular delivery, raising opportunities for in vivo image-guided cell delivery.

  18. Human Mesenchymal Stem Cell Spheroids in Fibrin Hydrogels Exhibit Improved Cell Survival and Potential for Bone Healing

    PubMed Central

    Murphy, Kaitlin C.; Fang, Sophia Y.; Leach, J. Kent

    2014-01-01

    Mesenchymal stem cells (MSC) have great therapeutic potential for the repair of nonhealing bone defects due to their proliferative capacity, multilineage potential, trophic factor secretion, and lack of immunogenicity. However, a major barrier to the translation of cell-based therapies into clinical practice is ensuring their survival and function upon implantation into the defect site. We hypothesized that forming MSC into more physiologic 3-dimensional spheroids, rather than employing dissociated cells from 2-dimensional monolayer culture, would enhance their survival when exposed to a harsh microenvironment while maintaining their osteogenic potential. MSC spheroids were formed using the hanging drop method with increasing cell numbers. Compared to larger spheroids, the smallest spheroids which contained 15,000 cells exhibited increased metabolic activity, reduced apoptosis, and the most uniform distribution of proliferating cells. Spheroids were then entrapped in fibrin gels and cultured in serum-free media and 1% oxygen. Compared to identical numbers of dissociated MSC in fibrin gels, spheroids exhibited significantly reduced apoptosis and secreted up to 100-fold more VEGF. We also observed that fibrin gels containing spheroids and those containing an equivalent number of dissociated cells exhibited similar expression levels of early and late markers of osteogenic differentiation. These data demonstrate that MSC spheroids exhibit greater resistance to apoptosis and enhanced proangiogenic potential, while maintaining similar osteogenic potential to dissociated MSC entrapped in a clinically relevant biomaterial, supporting the use of MSC spheroids in cell-based approaches to bone repair. PMID:24781147

  19. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization

    PubMed Central

    Elsafadi, M; Manikandan, M; Dawud, R A; Alajez, N M; Hamam, R; Alfayez, M; Kassem, M; Aldahmash, A; Mahmood, A

    2016-01-01

    Regenerative medicine is a novel approach for treating conditions in which enhanced bone regeneration is required. We identified transgelin (TAGLN), a transforming growth factor beta (TGFβ)-inducible gene, as an upregulated gene during in vitro osteoblastic and adipocytic differentiation of human bone marrow-derived stromal (skeletal) stem cells (hMSC). siRNA-mediated gene silencing of TAGLN impaired lineage differentiation into osteoblasts and adipocytes but enhanced cell proliferation. Additional functional studies revealed that TAGLN deficiency impaired hMSC cell motility and in vitro transwell cell migration. On the other hand, TAGLN overexpression reduced hMSC cell proliferation, but enhanced cell migration, osteoblastic and adipocytic differentiation, and in vivo bone formation. In addition, deficiency or overexpression of TAGLN in hMSC was associated with significant changes in cellular and nuclear morphology and cytoplasmic organelle composition as demonstrated by high content imaging and transmission electron microscopy that revealed pronounced alterations in the distribution of the actin filament and changes in cytoskeletal organization. Molecular signature of TAGLN-deficient hMSC showed that several genes and genetic pathways associated with cell differentiation, including regulation of actin cytoskeleton and focal adhesion pathways, were downregulated. Our data demonstrate that TAGLN has a role in generating committed progenitor cells from undifferentiated hMSC by regulating cytoskeleton organization. Targeting TAGLN is a plausible approach to enrich for committed hMSC cells needed for regenerative medicine application. PMID:27490926

  20. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro.

    PubMed

    Zhang, Yingchi; Yan, Jiyuan; Xu, Haoran; Yang, Yong; Li, Wenkai; Wu, Hua; Liu, Chaoxu

    2018-05-21

    The ability of mesenchymal stem cells (MSCs) to migrate to the desired tissues or lesions is crucial for stem cell-based regenerative medicine and tissue engineering. Optimal therapeutics for promoting MSC migration are expected to become an effective means for tissue regeneration. Electromagnetic fields (EMF), as a noninvasive therapy, can cause a lot of biological changes in MSCs. However, whether EMF can promote MSC migration has not yet been reported. We evaluated the effects of EMF on cell migration in human bone marrow-derived MSCs. With the use of Helmholtz coils and an EMF stimulator, 7.5, 15, 30, 50, and 70 Hz/1 mT EMF was generated. Additionally, we employed the L-type calcium channel blocker verapamil and the focal adhesion kinase (FAK) inhibitor PF-573228 to investigate the role of intracellular calcium content, cell adhesion proteins, and the Rho GTPase protein family (RhoA, Rac1, and Cdc42) in EMF-mediated MSC migration. Cell adhesion proteins (FAK, talin, and vinculin) were detected by Western blot analysis. The Rho GTPase protein family activities were assessed by G-LISA, and F-actin levels, which reflect actin cytoskeletal organization, were detected using immunofluorescence. All the 7.5, 15, 30, 50, and 70 Hz/1 mT EMF promoted MSC migration. EMF increased MSC migration in an intracellular calcium-dependent manner. Notably, EMF-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased talin and vinculin expression. Moreover, RhoA, Rac1, and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. EMF promoted MSC migration by increasing intracellular calcium and activating the FAK/Rho GTPase signaling pathways. This study provides insights into the mechanisms of MSC migration and will enable the rational design of targeted therapies to improve MSC engraftment.

  1. Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells or Their Conditioned Medium Prevents Bone Loss in Ovariectomized Nude Mice

    PubMed Central

    An, Jee Hyun; Park, Hyojung; Song, Jung Ah; Ki, Kyung Ho; Yang, Jae-Yeon; Choi, Hyung Jin; Cho, Sun Wook; Kim, Sang Wan; Kim, Seong Yeon; Yoo, Jeong Joon; Baek, Wook-Young; Kim, Jung-Eun; Choi, Soo Jin; Oh, Wonil

    2013-01-01

    Umbilical cord blood (UCB) has recently been recognized as a new source of mesenchymal stem cells (MSCs) for use in stem cell therapy. We studied the effects of systemic injection of human UCB-MSCs and their conditioned medium (CM) on ovariectomy (OVX)-induced bone loss in nude mice. Ten-week-old female nude mice were divided into six groups: Sham-operated mice treated with vehicle (Sham-Vehicle), OVX mice subjected to UCB-MSCs (OVX-MSC), or human dermal fibroblast (OVX-DFB) transplantation, OVX mice treated with UCB-MSC CM (OVX-CM), zoledronate (OVX-Zol), or vehicle (OVX-Vehicle). Although the OVX-Vehicle group exhibited significantly less bone mineral density (BMD) gain compared with the Sham-Vehicle group, transplantation of hUCB-MSCs (OVX-MSC group) has effectively prevented OVX-induced bone mass attenuation. Notably, the OVX-CM group also showed BMD preservation comparable to the OVX-MSC group. In addition, microcomputed tomography analysis demonstrated improved trabecular parameters in both the OVX-MSC and OVX-CM groups compared to the OVX-Vehicle or OVX-DFB group. Histomorphometric analysis showed increased bone formation parameters, accompanied by increased serum procollagen type-I N-telopeptide levels in OVX-MSC and OVX-CM mice. However, cell-trafficking analysis failed to demonstrate engraftment of MSCs in bone tissue 48 h after cell infusion. In vitro, hUCB-MSC CM increased alkaline phosphatase (ALP) activity in human bone marrow-derived MSCs and mRNA expression of collagen type 1, Runx2, osterix, and ALP in C3H10T1/2 cells. Furthermore, hUCB-MSC CM significantly increased survival of osteocyte-like MLO-Y4 cells, while it inhibited osteoclastic differentiation. To summarize, transplantation of hUCB-MSCs could effectively prevent OVX-mediated bone loss in nude mice, which appears to be mediated by a paracrine mechanism rather than direct engraftment of the MSCs. PMID:23215868

  2. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect.

    PubMed

    Kumar, Sanjay; Ponnazhagan, Selvarangan

    2012-04-01

    Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Effects Of Hypoxia in Long-Term In Vitro Expansion of Human Bone Marrow Derived Mesenchymal Stem Cells.

    PubMed

    Pezzi, Annelise; Amorin, Bruna; Laureano, Álvaro; Valim, Vanessa; Dahmer, Alice; Zambonato, Bruna; Sehn, Filipe; Wilke, Ianaê; Bruschi, Lia; Silva, Maria Aparecida Lima da; Filippi-Chiela, Eduardo; Silla, Lucia

    2017-10-01

    Mesenchymal stem cells (MSC) are considered multipotent stromal, non-hematopoietic cells with properties of self-renovation and differentiation. Optimal conditions for culture of MSC have been under investigation. The oxygen tension used for cultivation has been studied and appears to play an important role in biological behavior of mesenchymal cells. The aim is characterize MSC in hypoxia and normoxia conditions comparing their morphological and functional characteristics. Bone marrow-derived mesenchymal stem cells obtained from 15 healthy donors and cultured. MSC obtained from each donor were separated into two cultivation conditions normoxia (21% O 2 ) and hypoxia (three donors at 1%, three donors at 2%, five donors at 3%, and four donors at 4% O 2 ) up to second passage. MSC were evaluated for proliferation, differentiation, immunophenotyping, size and cell complexity, oxidative stress, mitochondrial activity, and autophagy. Culture conditions applied did not seem to affect immunophenotypic features and cellular plasticity. However, cells subjected to hypoxia showed smaller size and greater cellular complexity, besides lower proliferation (P < 0.002). Furthermore, cells cultured in low O 2 tension had lower mitochondrial activity (P < 0.03) and a reduced tendency to autophagy, although oxidative stress did not vary among groups (P < 0.39). Oxygen tension seems to be a key regulator of cellular adaptation in vitro, and metabolic effects underlying this variable remain undescribed. Heterogeneity or even lack of results on the impact of oxygen concentration used for expanding MSC highlights the need for further research, in order to optimize conditions of cultivation and expansion and achieve greater safety and therapeutic efficacy. J. Cell. Biochem. 118: 3072-3079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    PubMed Central

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  5. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    PubMed

    Kim, Eun Sung; Jeon, Hong Bae; Lim, Hoon; Shin, Ji Hyun; Park, So Jung; Jo, Yoon Kyung; Oh, Wonil; Yang, Yoon Sun; Cho, Dong-Hyung; Kim, Ju-Yeon

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF) expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  6. Direct head-to-head comparison of cationic liposome-mediated gene delivery to mesenchymal stem/stromal cells of different human sources: a comprehensive study.

    PubMed

    Boura, Joana S; Santos, Francisco Dos; Gimble, Jeffrey M; Cardoso, Carla M P; Madeira, Catarina; Cabral, Joaquim M S; Silva, Cláudia Lobato da

    2013-02-01

    Nonviral gene delivery to human mesenchymal stem/stromal cells (MSC) can be considered a very promising strategy to improve their intrinsic features, amplifying the therapeutic potential of these cells for clinical applications. In this work, we performed a comprehensive comparison of liposome-mediated gene transfer efficiencies to MSC derived from different human sources-bone marrow (BM MSC), adipose tissue-derived cells (ASC), and umbilical cord matrix (UCM MSC). The results obtained using a green fluorescent protein (GFP)-encoding plasmid indicated that MSC isolated from BM and UCM are more amenable to genetic modification when compared to ASC as they exhibited superior levels of viable, GFP(+) cells 48 hr post-transfection, 58 ± 7.1% and 54 ± 3.8%, respectively, versus 33 ± 4.7%. For all cell sources, high cell recoveries (≈50%) and viabilities (>85%) were achieved, and the transgene expression was maintained for 10 days. Levels of plasmid DNA uptake, as well as kinetics of transgene expression and cellular division, were also determined. Importantly, modified cells were found to retain their characteristic immunophenotypic profile and multilineage differentiation capacity. By using the lipofection protocol optimized herein, we were able to maximize transfection efficiencies to human MSC (maximum of 74% total GFP(+) cells) and show that lipofection is a promising transfection strategy for MSC genetic modification, especially when a transient expression of a therapeutic gene is required. Importantly, we also clearly demonstrated that intrinsic features of MSC from different sources should be taken into consideration when developing and optimizing strategies for MSC engineering with a therapeutic gene.

  7. Mechanisms of cellular therapy in respiratory diseases.

    PubMed

    Abreu, Soraia C; Antunes, Mariana A; Pelosi, Paolo; Morales, Marcelo M; Rocco, Patricia R M

    2011-09-01

    Stem cells present a variety of clinical implications in the lungs. According to their origin, these cells can be divided into embryonic and adult stem cells; however, due to the important ethical and safety limitations that are involved in the embryonic stem cell use, most studies have chosen to focus on adult stem cell therapy. This article aims to present and clarify the recent advances in the field of stem cell biology, as well as to highlight the effects of mesenchymal stem cell (MSC) therapy in the context of acute lung injury/acute respiratory distress syndrome and chronic disorders such as lung fibrosis and chronic obstructive pulmonary disease. For this purpose, we performed a critical review of adult stem cell therapies, covering the main clinical and experimental studies published in Pubmed databases in the past 11 years. Different characteristics were extracted from these articles, such as: the experimental model, strain, cellular type and administration route used as well as the positive or negative effects obtained. There is evidence for beneficial effects of MSC on lung development, repair, and remodeling. The engraftment in the injured lung does not occur easily, but several studies report that paracrine factors can be effective in reducing inflammation and promoting tissue repair. MSC releases several growth factors and anti-inflammatory cytokines that regulate endothelial and epithelial permeability and reduce the severity of inflammation. A better understanding of the mechanisms that control cell division and differentiation, as well as of their paracrine effects, is required to enable the optimal use of bone marrow-derived stem cell therapy to treat human respiratory diseases.

  8. Nicotine alters MicroRNA expression and hinders human adult stem cell regenerative potential.

    PubMed

    Ng, Tsz Kin; Carballosa, Carlos M; Pelaez, Daniel; Wong, Hoi Kin; Choy, Kwong Wai; Pang, Chi Pui; Cheung, Herman S

    2013-03-01

    Adult stem cells are critical for the healing process in regenerative medicine. However, cigarette smoking inhibits stem cell recruitment to tissues and delays the wound-healing process. This study investigated the effect of nicotine, a major constituent in the cigarette smoke, on the regenerative potentials of human mesenchymal stem cells (MSC) and periodontal ligament-derived stem cells (PDLSC). The cell proliferation of 1.0 μM nicotine-treated MSC and PDLSC was significantly reduced when compared to the untreated control. Moreover, nicotine also retarded the locomotion of these adult stem cells. Furthermore, their osteogenic differentiation capabilities were reduced in the presence of nicotine as evidenced by gene expression (RUNX2, ALPL, BGLAP, COL1A1, and COL1A2), calcium deposition, and alkaline phosphatase activity analyses. In addition, the microRNA (miRNA) profile of nicotine-treated PDLSC was altered; suggesting miRNAs might play an important role in the nicotine effects on stem cells. This study provided the possible mechanistic explanations on stem cell-associated healing delay in cigarette smoking.

  9. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells.

    PubMed

    Lee, Jin-Ho; Park, Hun-Kuk; Kim, Kyung Sook

    2016-05-06

    Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    PubMed

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety.

  11. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy

    PubMed Central

    Dong, Huajiang; Li, Gang; Shang, Chongzhi; Yin, Huijuan; Luo, Yuechen; Meng, Huipeng; Li, Xiaohong; Wang, Yali; Lin, Ling; Zhao, Mingliang

    2018-01-01

    This study reports a case of a 4-year-old boy patient with abnormalities of muscle tone, movement and motor skills, as well as unstable gait leading to frequent falls. The results of the electroencephalogram (EEG) indicate moderately abnormal EEG, accompanied by irregular seizures. Based on these clinical characteristics, the patient was diagnosed with cerebral palsy (CP) in our hospital. In this study, the patient was treated with umbilical cord mesenchymal stem cell (UC-MSC) transplantation therapy. This patient received UC-MSC transplantation 3 times (5.3*107) in total. After three successive cell transplantations, the patient recovered well and showed obvious improvements in EEG and limb strength, motor function, and language expression. However, the improvement in intelligence quotient (IQ) was less obvious. These results indicate that UC-MSC transplantation is a promising treatment for cerebral palsy. PMID:29636880

  12. Gastro-intestinal autoimmunity: preclinical experiences and successful therapy of fistulizing bowel diseases and gut Graft versus host disease by mesenchymal stromal cells.

    PubMed

    Voswinkel, Jan; Francois, Sabine; Gorin, Norbert-Claude; Chapel, Alain

    2013-07-01

    Mesenchymal stromal cells (MSC) are multipotent adult stem cells with the potential to regenerate tissue damage and inhibit inflammation and fibrosis in parallel. As they are non-immunogenic, MSC can be safely auto- and allotransplanted and consequently represent a therapeutic option for refractory connective tissue diseases and fistulizing colitis like Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, 22 are on autoimmune diseases and 27 are actually recruiting bowel disease' patients. More than 1,500 patients with bowel diseases like Crohn's disease were treated in clinical trials by local as well as systemic MSC therapy. Phase I and II trials on fistula documented the feasibility and safety of MSC therapy, and a significant superiority compared to fibrin glue in fistulizing bowel diseases was demonstrated. Autologous as well as allogeneic use of Bone marrow as well as of adipose tissue-derived MSC are feasible. In refractory Graft versus host disease, especially in refractory gut Graft versus host diseases, encouraging results were reported using MSC. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets toward an increase in T regulatory cells and a decrease in activated effector T cells. Mesenchymal stem cells represent a safe therapy for patients with refractory inflammatory bowel diseases.

  13. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ying; Liu, Jin; Liu, Yang

    2015-08-21

    Mesenchymal stem cells (MSC) are a kind of stromal cell within the tumor microenvironment. In our research, MSC derived from acute myeloid leukemia patients' bone marrow (AML-MSC) and lung cancer tissues (LC-MSC) as well as normal bone marrow-derived MSC (BM-MSC) cultured in conditioned medium of HeLa cells were found to have higher expressions of Toll-like receptor (TLR4) mRNA compared with BM-MSC. The sorted TLR4-positive MSC (TLR4+ MSC) differed in cytokine (interleukin-6, interleukin-8, and monocyte chemoattractant protein-1) secretion from those of unsorted MSC. MSC was reported to inhibit natural killer (NK) cell proliferation and function. In this research, we confirmed thatmore » TLR4+ MSC aggravate this suppression. Furthermore, when TLR4 in the sorted cells were stimulated by LPS or following blocked by antibody, the suppression on NK cell proliferation and cytotoxicity were more intensive or recovered respectively. Compared to unsorted MSC, NKG2D receptor expression on NK cells were also inhibited by TLR4+ MSC. These findings suggest that activation of TLR4 pathway is important for TLR4+ MSC and MSC to obstruct anti-tumor immunity by inhibiting NK cell function, which may provide a potential stroma-targeted tumor therapy. - Highlights: • TLR4+ MSC inhibit NK cell proliferation in vivo and in vitro. • TLR4+ MSC inhibit NKG2D expression on NK cells and NK cell cytotoxicity. • The distinguished cytokine expression of TLR4+ MSC may contribute to the inhibition on NK cell function.« less

  14. A small molecule modulator of prion protein increases human mesenchymal stem cell lifespan, ex vivo expansion, and engraftment to bone marrow in NOD/SCID mice.

    PubMed

    Mohanty, Sindhu T; Cairney, Claire J; Chantry, Andrew D; Madan, Sanjeev; Fernandes, James A; Howe, Steven J; Moore, Harry D; Thompson, Mark J; Chen, Beining; Thrasher, Adrian; Keith, W Nicol; Bellantuono, Ilaria

    2012-06-01

    Human mesenchymal stem cells (hMSCs) have been shown to have potential in regenerative approaches in bone and blood. Most protocols rely on their in vitro expansion prior to clinical use. However, several groups including our own have shown that hMSCs lose proliferation and differentiation ability with serial passage in culture, limiting their clinical applications. Cellular prion protein (PrP) has been shown to enhance proliferation and promote self-renewal of hematopoietic, mammary gland, and neural stem cells. Here we show, for the first time, that expression of PrP decreased in hMSC following ex vivo expansion. When PrP expression was knocked down, hMSC showed significant reduction in proliferation and differentiation. In contrast, hMSC expanded in the presence of small molecule 3/689, a modulator of PrP expression, showed retention of PrP expression with ex vivo expansion and extended lifespan up to 10 population doublings. Moreover, cultures produced a 300-fold increase in the number of cells generated. These cells showed a 10-fold increase in engraftment levels in bone marrow 5 weeks post-transplant. hMSC treated with 3/689 showed enhanced protection from DNA damage and enhanced cell cycle progression, in line with data obtained by gene expression profiling. Moreover, upregulation of superoxide dismutase-2 (SOD2) was also observed in hMSC expanded in the presence of 3/689. The increase in SOD2 was dependent on PrP expression and suggests increased scavenging of reactive oxygen species as mechanism of action. These data point to PrP as a good target for chemical intervention in stem cell regenerative medicine. Copyright © 2012 AlphaMed Press.

  15. Mesenchymal stem cells reside in anterior cruciate ligament remnants in situ.

    PubMed

    Fu, Weili; Li, Qi; Tang, Xin; Chen, Gang; Zhang, Chenghao; Li, Jian

    2016-07-01

    It has been reported that the anterior cruciate ligament (ACL) has certain self-healing ability after acute injury or with primary suture repair. Many studies have confirmed that a remnant preservation technique with ACL reconstruction contributes to biological augmentation for ACL healing. However, it remains unclear whether mesenchymal stem cells (MSC) reside in ACL remnants in situ. The aim of this study was to investigate the methods of culture and identification of MSC derived from the remnants of ACL rupture patients and to analyse these MSC's properties. The cells of ACL remnants from the ACL rupture patients were isolated by the methods of enzymatic digestion and cultured in vitro to the third passage under the microscope to observe their morphology and growth status. The third passage of isolated cells was analysed for the identification of immunophenotype, osteogenic, adipogenic and chondrogenic differentiation. On the third to fifth days of in vitro culture, a few cells of long fusiform shape appeared and were adherent to the plastic walls. On the sixth to ninth days, cells clustered and colonies were observed. The third passage cells showed uniform cell morphology and good proliferation, with appearance of the typical surface markers of MSC, CD29, CD44, CD90 and CD105. The surface markers of CD34 and CD45 of haematopoietic stem cells were not expressed. Under appropriate conditions of in vitro culture, isolated cells could be differentiated into osteoblasts that deposit mineralised matrix and express early osteogenic markers, adipocytes that accumulate lipid droplets in cytoplasm and chondrocytes that secrete chondrogenic-specific matrix aggrecan and collagen II. Real-time polymerase chain reaction (PCR) analysis demonstrated that the specific mRNA expression of osteogenesis, adipogenesis and chondrogenesis increased significantly compared with the control groups at day zero. Stem cells derived in situ from the human ACL stump were successfully isolated and characterised. Those isolated cells were identified as MSC according to their adherent ability, morphology, surface markers and multilineage differentiation potential. MSC derived from ACL remnants could be a potential source of seeding cells for ligament regeneration.

  16. Betacellulin overexpression in mesenchymal stem cells induces insulin secretion in vitro and ameliorates streptozotocin-induced hyperglycemia in rats.

    PubMed

    Paz, Ana H; Salton, Gabrielle Dias; Ayala-Lugo, Ana; Gomes, Cristiano; Terraciano, Paula; Scalco, Rosana; Laurino, Claudia Cilene Fernandes Correia; Passos, Eduardo Pandolfi; Schneider, Marlon R; Meurer, Luise; Cirne-Lima, Elizabeth

    2011-02-01

    Betacellulin (BTC), a ligand of the epidermal growth factor receptor, has been shown to promote growth and differentiation of pancreatic β-cells and to improve glucose metabolism in experimental diabetic rodent models. Mesenchymal stem cells (MSCs) have been already proved to be multipotent. Recent work has attributed to rat and human MSCs the potential to differentiate into insulin-secreting cells. Our goal was to transfect rat MSCs with a plasmid containing BTC cDNA to guide MSC differentiation into insulin-producing cells. Prior to induction of cell MSC transfection, MSCs were characterized by flow cytometry and the ability to in vitro differentiate into mesoderm cell types was evaluated. After rat MSC characterization, these cells were electroporated with a plasmid containing BTC cDNA. Transfected cells were cultivated in Dulbecco's modified Eagle medium high glucose (H-DMEM) with 10 mM nicotinamide. Then, the capability of MSC-BTC to produce insulin in vitro and in vivo was evaluated. It was possible to demonstrate by radioimmunoassay analysis that 10(4) MSC-BTC cells produced up to 0.4 ng/mL of insulin, whereas MSCs transfected with the empty vector (negative control) produced no detectable insulin levels. Moreover, MSC-BTC were positive for insulin in immunohistochemistry assay. In parallel, the expression of pancreatic marker genes was demonstrated by molecular analysis of MSC-BTC. Further, when MSC-BTC were transplanted to streptozotocin diabetic rats, BTC-transfected cells ameliorated hyperglycemia from over 500 to about 200 mg/dL at 35 days post-cell transplantation. In this way, our results clearly demonstrate that BTC overabundance enhances glucose-induced insulin secretion in MSCs in vitro as well as in vivo.

  17. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C

    2016-07-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy.

  18. Phenotypic, Functional, and Safety Control at Preimplantation Phase of MSC-Based Therapy.

    PubMed

    Lech, Wioletta; Figiel-Dabrowska, Anna; Sarnowska, Anna; Drela, Katarzyna; Obtulowicz, Patrycja; Noszczyk, Bartlomiej Henryk; Buzanska, Leonora; Domanska-Janik, Krystyna

    2016-01-01

    Mesenchymal stem cells (MSC) exhibit enormous heterogeneity which can modify their regenerative properties and therefore influence therapeutic effectiveness as well as safety of these cells transplantation. In addition the high phenotypic plasticity of MSC population makes it enormously sensitive to any changes in environmental properties including fluctuation in oxygen concentration. We have shown here that lowering oxygen level far below air atmosphere has a beneficial impact on various parameters characteristic for umbilical cord Wharton Jelly- (WJ-) MSC and adipose tissue- (AD-) derived MSC cultures. This includes their cellular composition, rate of proliferation, and maintenance of stemness properties together with commitment to cell differentiation toward mesodermal and neural lineages. In addition, the culture genomic stability increased significantly during long-term cell passaging and eventually protected cells against spontaneous transformation. Also by comparing of two routinely used methods of MSCs isolation (mechanical versus enzymatic) we have found substantial divergence arising between cell culture properties increasing along the time of cultivation in vitro. Thus, in this paper we highlight the urgent necessity to develop the more sensitive and selective methods for prediction and control cells fate and functioning during the time of growth in vitro.

  19. Mobilization of human mesenchymal stem cells through different cytokines and growth factors after their immobilization by sulfur mustard.

    PubMed

    Schreier, Cassandra; Rothmiller, Simone; Scherer, Michael A; Rummel, Christoph; Steinritz, Dirk; Thiermann, Horst; Schmidt, Annette

    2018-09-01

    The chemical warfare agent sulfur mustard (SM), also known as mustard gas, was first used in World War I. Although prohibited by the chemical warfare convention, significant amounts of SM still exist and have still to be regarded as a threat for military personnel and civilians. After SM exposure, the most prominent clinical symptom is the development of extensive non-healing skin wounds. This chronic wound healing dysfunction is persisting over long time. Mesenchymal stem cells (MSC) are known to play an important role in wound healing. Moreover, it is also known that patients with chronic wound healing diseases have compromised mesenchymal stem cell functionality. Based on these observations and the known relationship between wound healing dysfunction and MSC function we investigated the impact of sulfur mustard on human MSC. Mesenchymal stem cells (MSC) were isolated from femoral heads of healthy donors. They were cultured for less than four passages. MSC were exposed towards different sulfur mustard concentrations. After exposure we analyzed the secretome and the migration capacity. The migration capacity under influence of SM was analyzed after treatment with various cytokines. SM exposure (even at very low concentrations) showed negative effects on the migration capability. Many cytokines that are necessary for MSC migration were secreted in a reduced manner. The reduced migratory capacity can be compensated in part by the addition of cytokines. Here especially IL-8 (e and m) and IL-6 significantly compensated the SM induced migration reduction. The effect of sulfur mustard on MSC might play an important role in the persistence of long-term adverse effects; here the reduced migration could particularly be important. The compensation of the SM-induced migration reduction by addition of cytokines could possibly solve this problem. Moreover, our current results will help to understand the relationship between alkylating agents and MSC and thus will also give guidance in the future perspective for the therapeutic use of MSC in patients suffering from sulfur mustard induced chronic skin wounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Differentiating Human Multipotent Mesenchymal Stromal Cells Regulate microRNAs: Prediction of microRNA Regulation by PDGF During Osteogenesis

    PubMed Central

    Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893

  1. Conditioned medium from human bone marrow-derived mesenchymal stem cells promotes skin moisturization and effacement of wrinkles in UVB-irradiated SKH-1 hairless mice.

    PubMed

    Kwon, Tae-Rin; Oh, Chang Taek; Choi, Eun Ja; Kim, Soon Re; Jang, Yu-Jin; Ko, Eun Jung; Yoo, Kwang Ho; Kim, Beom Joon

    2016-05-01

    Mesenchymal stem cells (MSCs) are promising therapeutic agents for various diseases. To investigate the effects of conditioned medium from human bone marrow-derived mesenchymal stem cells (MSC-CdM) on pro-collagen production and wrinkle formation, we performed in vitro and in vivo experiments. We assessed the effects of MSC-CdM on proliferation and photo-aging in human dermal fibroblasts after UVB exposure using enzyme activity assays for collagen type I secretion and MMP-1. To determine the effect of topically applied MSC-CdM on wrinkle formation, MSC-CdM (1% and 10%) and vehicle (propylene glycol: ethanol, 7 : 3) were applied to the dorsal skin of UVB-irradiated hairless mice for 8 weeks. We examined the effects on wrinkle formation by assessing visual skin grading, replica, tape stripping, transepidermal water loss (TEWL), and skin hydration measurement. We also examined histology of the lesions using hematoxylin-eosin, Masson's trichrome, and immunohistochemical staining. MSC-CdM markedly reduced UV-induced matrix metalloproteinase-1 expression and increased pro-collagen synthesis in a dose-dependent manner. Our findings suggest that MSC-CdM induces repair of dermal damage and effacement of wrinkles on UVB-irradiated hairless mice through protective effect of hydration. These results support an anti-wrinkle effect of MSC-CdM that involves increased collagen synthesis and suggest that MSC-CdM might be a potential candidate for preventing UV-induced skin damage. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion.

    PubMed

    Sheriff, Lozan; Alanazi, Asma; Ward, Lewis S C; Ward, Carl; Munir, Hafsa; Rayes, Julie; Alassiri, Mohammed; Watson, Steve P; Newsome, Phil N; Rainger, G E; Kalia, Neena; Frampton, Jon; McGettrick, Helen M; Nash, Gerard B

    2018-02-28

    We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018. © 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine.

    PubMed

    Wu, Xiuwen; Ren, Jianan; Li, Jieshou

    2012-05-01

    The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.

  4. Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence

    PubMed Central

    2016-01-01

    Mesenchymal stem cells form a population of self-renewing, multipotent cells that can be isolated from several tissues. Multiple preclinical studies have demonstrated that the administration of exogenous MSC could prevent renal injury and could promote renal recovery through a series of complex mechanisms, in particular via immunomodulation of the immune system and release of paracrine factors and microvesicles. Due to their therapeutic potentials, MSC are being evaluated as a possible player in treatment of human kidney disease, and an increasing number of clinical trials to assess the safety, feasibility, and efficacy of MSC-based therapy in various kidney diseases have been proposed. In the present review, we will summarize the current knowledge on MSC infusion to treat acute kidney injury, chronic kidney disease, diabetic nephropathy, focal segmental glomerulosclerosis, systemic lupus erythematosus, and kidney transplantation. The data obtained from these clinical trials will provide further insight into safety, feasibility, and efficacy of MSC-based therapy in renal pathologies and allow the design of consensus protocol for clinical purpose. PMID:27721835

  5. Homing of mesenchymal stem cells: mechanistic or stochastic? Implications for targeted delivery in arthritis.

    PubMed

    Eseonu, Onyedikachi I; De Bari, Cosimo

    2015-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells with the capacity to undergo chondrogenic differentiation. Systemically administered MSCs have been shown to preferentially accumulate at sites of tissue damage and inflammation, thus MSC-based therapy holds great promise for the treatment of inflammatory diseases such as RA. Modulation of MSC homing may allow targeted delivery of systemically administered MSCs to damaged articular cartilage, where they can suppress immune-mediated cartilage destruction and contribute to cartilage repair via a combination of chondrogenic differentiation and paracrine stimulation of intrinsic residual repair. To harness the potential of MSC homing, a thorough understanding of the mechanism is key. This review discusses current knowledge of the mechanism of MSC homing to injured/inflamed tissue and its implications for targeted MSC-based therapy in arthritis. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Canine and Equine Mesenchymal Stem Cells Grown in Serum Free Media Have Altered Immunophenotype.

    PubMed

    Clark, Kaitlin C; Kol, Amir; Shahbenderian, Salpi; Granick, Jennifer L; Walker, Naomi J; Borjesson, Dori L

    2016-04-01

    Mesenchymal stem cell (MSC) therapy is being increasingly used to treat dogs and horses with naturally-occurring diseases. However these animals also serve as critical large animal models for ongoing translation of cell therapy products to the human market. MSC manufacture for clinical use mandates improvement in cell culture systems to meet demands for higher MSC numbers and removal of xeno-proteins (i.e. fetal bovine serum, FBS). While serum-free media (SFM) is commercially available, its affects on MSC phenotype and immunomodulatory functions are not fully known. The objective of this study was to determine if specific MSC culture conditions, MSC expansion in HYPERFlasks® or MSC expansion in a commercially available SFM, would alter MSC proliferation, phenotype or immunomodulatory properties in vitro. MSCs cultured in HYPERFlasks® were similar in phenotype, proliferative capacity and immunomodulatory functions to MSCs grown in standard flasks however MSC yield was markedly increased. HYPERFlasks® therefore provide a viable option to generate greater cell numbers in a streamlined manner. Canine and equine MSCs expanded in SFM displayed similar proliferation, surface phenotype and inhibitory effect on lymphocyte proliferation in vitro. However, MSCs cultured in the absence of FBS secreted significantly less PGE2, and were significantly less able to inhibit IFNγ secretion by activated T-cells. Immunomodulatory functions altered by expansion in SFM were species dependent. Unlike equine MSCs, in canine adipose-derived MSCs, the inhibition of lymphocyte proliferation was not principally modulated by PGE2. The removal of FBS from both canine and equine MSC culture systems resulted in altered immunomodulatory properties in vitro and warrants further investigation prior to moving towards FBS-free culture conditions.

  7. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.

    PubMed

    Dos Santos, Francisco; Campbell, Andrew; Fernandes-Platzgummer, Ana; Andrade, Pedro Z; Gimble, Jeffrey M; Wen, Yuan; Boucher, Shayne; Vemuri, Mohan C; da Silva, Cláudia L; Cabral, Joaquim M S

    2014-06-01

    The large cell doses (>1 × 10(6)  cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex-vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost-effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)-free microcarrier-based culture system was successfully established for bone marrow (BM) MSC and adipose tissue-derived stem/stromal cell (ASC) cultivation using a 1L-scale controlled stirred-tank bioreactor, allowing the production of (1.1 ± 0.1) × 10(8) and (4.5 ± 0.2) × 10(7) cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat ) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat . Also, the three different feeding regimes studied-(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed-batch addition of concentrated nutrients and growth factors every 2 days-yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA-DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier-based stirred culture system under xeno-free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP-compliant clinical-scale MSC production system. © 2014 Wiley Periodicals, Inc.

  8. Stem cell factor supports migration in canine mesenchymal stem cells.

    PubMed

    Enciso, Nathaly; Ostronoff, Luciana L K; Mejías, Guillermo; León, Leticia G; Fermín, María Luisa; Merino, Elena; Fragio, Cristina; Avedillo, Luis; Tejero, Concepción

    2018-03-01

    Adult Mesenchymal Stem Cells (MSC) are cells that can be defined as multipotent cells able to differentiate into diverse lineages, under appropriate conditions. These cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Initially discovered in bone marrow, MSC can now be isolated from a wide spectrum of adult and foetal tissues. Studies to evaluate the therapeutic potential of these cells are based on their ability to arrive to damaged tissues. In this paper we have done a comparative study analyzing proliferation, surface markers and OCT4, SOX9, RUNX2, PPARG genes expression in MSC cells from Bone marrow (BMMSC) and Adipose tissue (ASC). We also analyzed the role of Stem Cell Factor (SCF) on MSC proliferation and on ASCs metalloproteinases MMP-2, MMP-9 secretion. Healthy dogs were used as BMMSC donors, and ASC were collected from omentum during elective ovariohysterectomy surgery. Both cell types were cultured in IMDM medium with or without SCF, 10% Dog Serum (DS), and incubated at 38 °C with 5% CO2. Growth of BMMSCs and ASCs was exponential until 25-30 days. Flow citometry of MSCs revealed positive results for CD90 and negative for CD34, CD45 and MCH-II. Genes were evaluated by RT-PCR and metalloproteinases by zymografy. Our findings indicate morphological and immunological similarities as well as expression of genes from both origins on analyzed cells. Furthermore, SCF did not affect proliferation of MSCs, however it up-regulated MMP-2 and MMP-9 secretion in ASCs. These results suggest that metalloproteinases are possibly essential molecules pivoting migration.

  9. The effect of mesenchymal stem cell sheets on structural allograft healing of critical-sized femoral defects in mice

    PubMed Central

    Long, Teng; Zhu, Zhenan; Awad, Hani A.; Schwarz, Edward M.; Hilton, Matthew J.; Dong, Yufeng

    2014-01-01

    Structural bone allografts are widely used in the clinic to treat critical sized bone defects, despite lacking the osteoinductive characteristics of live autografts. To address this, we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets, which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates, as a tissue engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets, suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo, allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of x-ray plain radiography, 3D microCT, histology, and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation, as well as graft-host osteointegration. Moreover, a large periosteal callus was observed spanning the allografts with MSC sheets, which partially mimics live autograft healing. Finally, biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together, MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair, demonstrating the feasibility of this tissue engineering solution for massive allograft healing. PMID:24393269

  10. Optimizing patient derived mesenchymal stem cells as virus carriers for a Phase I clinical trial in ovarian cancer

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells (MSC) can serve as carriers to deliver oncolytic measles virus (MV) to ovarian tumors. In preparation for a clinical trial to use MSC as MV carriers, we obtained cells from ovarian cancer patients and evaluated feasibility and safety of this approach. Methods MSC from adipose tissues of healthy donors (hMSC) and nine ovarian cancer patients (ovMSC) were characterized for susceptibility to virus infection and tumor homing abilities. Results Adipose tissue (range 0.16-3.96 grams) from newly diagnosed and recurrent ovarian cancer patients yielded about 7.41×106 cells at passage 1 (range 4–9 days). Phenotype and doubling times of MSC were similar between ovarian patients and healthy controls. The time to harvest of 3.0×108 cells (clinical dose) could be achieved by day 14 (range, 9–17 days). Two of nine samples tested had an abnormal karyotype represented by trisomy 20. Despite receiving up to 1.6×109 MSC/kg, no tumors were seen in SCID beige mice and MSC did not promote the growth of SKOV3 human ovarian cancer cells in mice. The ovMSC migrated towards primary ovarian cancer samples in chemotaxis assays and to ovarian tumors in athymic mice. Using non-invasive SPECT-CT imaging, we saw rapid co-localization, within 5–8 minutes of intraperitoneal administration of MV infected MSC to the ovarian tumors. Importantly, MSC can be pre-infected with MV, stored in liquid nitrogen and thawed on the day of infusion into mice without loss of activity. MV infected MSC, but not virus alone, significantly prolonged the survival of measles immune ovarian cancer bearing animals. Conclusions These studies confirmed the feasibility of using patient derived MSC as carriers for oncolytic MV therapy. We propose an approach where MSC from ovarian cancer patients will be expanded, frozen and validated to ensure compliance with the release criteria. On the treatment day, the cells will be thawed, washed, mixed with virus, briefly centrifuged and incubated for 2 hours with virus prior to infusion of the virus/MSC cocktail into patients. PMID:23347343

  11. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications

    PubMed Central

    Jakubikova, Jana; Cholujova, Danka; Hideshima, Teru; Gronesova, Paulina; Soltysova, Andrea; Harada, Takeshi; Joo, Jungnam; Kong, Sun-Young; Szalat, Raphael E.; Richardson, Paul G.; Munshi, Nikhil C.; Dorfman, David M.; Anderson, Kenneth C.

    2016-01-01

    Specific niches within the tumor bone marrow (BM) microenvironment afford a sanctuary for multiple myeloma (MM) clones due to stromal cell-tumor cell interactions, which confer survival advantage and drug resistance. Defining the sequelae of tumor cell interactions within the MM niches on an individualized basis may provide the rationale for personalized therapies. To mimic the MM niche, we here describe a new 3D co-culture ex-vivo model in which primary MM patient BM cells are co-cultured with mesenchymal stem cells (MSC) in a hydrogel 3D system. In the 3D model, MSC with conserved phenotype (CD73+CD90+CD105+) formed compact clusters with active fibrous connections, and retained lineage differentiation capacity. Extracellular matrix molecules, integrins, and niche related molecules including N-cadherin and CXCL12 are expressed in 3D MSC model. Furthermore, activation of osteogenesis (MMP13, SPP1, ADAMTS4, and MGP genes) and osteoblastogenic differentiation was confirmed in 3D MSC model. Co-culture of patient-derived BM mononuclear cells with either autologous or allogeneic MSC in 3D model increased proliferation of MM cells, CXCR4 expression, and SP cells. We carried out immune profiling to show that distribution of immune cell subsets was similar in 3D and 2D MSC model systems. Importantly, resistance to novel agents (IMiDs, bortezomib, carfilzomib) and conventional agents (doxorubicin, dexamethasone, melphalan) was observed in 3D MSC system, reflective of clinical resistance. This 3D MSC model may therefore allow for studies of MM pathogenesis and drug resistance within the BM niche. Importantly, ongoing prospective trials are evaluating its utility to inform personalized targeted and immune therapy in MM. PMID:27764795

  12. Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges

    PubMed Central

    Law, Sujata; Chaudhuri, Samaresh

    2013-01-01

    Mesenchymal Stem cells (MSC) are now presented with the opportunities of multifunctional therapeutic approaches. Several reports are in support of their self-renewal, capacity for multipotent differentiation, and immunomodulatory properties. They are unique to contribute to the regeneration of mesenchymal tissues such as bone, cartilage, muscle, ligament, tendon, and adipose. In addition to promising trials in regenerative medicine, such as in the treatment of major bone defects and myocardial infarction, MSC has shown a therapeutic effect other than direct hematopoiesis support in hematopoietic reconstruction. MSCs are identified by the expression of many molecules including CD105 (SH2) and CD73(SH3/4) and are negative for the hematopoietic markers CD34, CD45, and CD14. Manufacturing of MSC for clinical trials is also an important aspect as their differentiation, homing and Immunomodulatory properties may differ. Their suppressive effects on immune cells, including T cells, B cells, NK cells and DC cells, suggest MSCs as a novel therapy for GVHD and other autoimmune disorders. Since the cells by themselves are non-immunogenic, tissue matching between MSC donor and recipient is not essential and, MSC may be the first cell type able to be used as an “off-the-shelf” therapeutic product. Following a successful transplantation, the migration of MSC to the site of injury refers to the involvement of chemokines and chemokine receptors of respective specificity. It has been demonstrated that cultured MSCs have the ability to engraft into healthy as well as injured tissue and can differentiate into several cell types in vivo, which facilitates MSC to be an ideal tool for regenerative therapy in different disease types. However, some observations have raised questions about the limitations for proper use of MSC considering some critical factors that warn regular clinical use. PMID:23671814

  13. Co-culture of Adult Mesenchymal Stem Cells and Nucleus Pulposus Cells in Bilaminar Pellets for Intervertebral Disc Regeneration.

    PubMed

    Allon, Aliza A; Schneider, Richard A; Lotz, Jeffrey C

    2009-01-01

    Our goal is to optimize stem cell-based tissue engineering strategies in the context of the intervertebral disc environment. We explored the benefits of co-culturing nucleus pulposus cells (NPC) and adult mesenchymal stem cells (MSC) using a novel spherical bilaminar pellet culture system where one cell type is enclosed in a sphere of the other cell type. Our 3D system provides a structure that exploits embryonic processes such as tissue induction and condensation. We observed a unique phenomenon: the budding of co-culture pellets and the formation of satellite pellets that separate from the main pellet. MSC and NPC co-culture pellets were formed with three different structural organizations. The first had random organization. The other two had bilaminar organization with either MSC inside and NPC outside or NPC inside and MSC outside. By 14 days, all co-culture pellets exhibited budding and spontaneously generated satellite pellets. The satellite pellets were composed of both cell types and, surprisingly, all had the same bilaminar organization with MSC on the inside and NPC on the outside. This organization was independent of the structure of the main pellet that the satellites stemmed from. The main pellets generated satellite pellets that spontaneously organized into a bilaminar structure. This implies that structural organization occurs naturally in this cell culture system and may be inherently favorable for cell-based tissue engineering strategies. The occurrence of budding and the organization of satellite pellets may have important implications for the use of co-culture pellets in cell-based therapies for disc regeneration. From a therapeutic point of view, the generation of satellite pellets may be a beneficial feature that would serve to spread donor cells throughout the host matrix and restore normal matrix composition in a sustainable way, ultimately renewing tissue function.

  14. Xeno-Free Strategies for Safe Human Mesenchymal Stem/Stromal Cell Expansion: Supplements and Coatings

    PubMed Central

    Gonçalves, R. M.; Barrias, C. C.

    2017-01-01

    Human mesenchymal stem/stromal cells (hMSCs) have generated great interest in regenerative medicine mainly due to their multidifferentiation potential and immunomodulatory role. Although hMSC can be obtained from different tissues, the number of available cells is always low for clinical applications, thus requiring in vitro expansion. Most of the current protocols for hMSC expansion make use of fetal bovine serum (FBS) as a nutrient-rich supplement. However, regulatory guidelines encourage novel xeno-free alternatives to define safer and standardized protocols for hMSC expansion that preserve their intrinsic therapeutic potential. Since hMSCs are adherent cells, the attachment surface and cell-adhesive components also play a crucial role on their successful expansion. This review focuses on the advantages/disadvantages of FBS-free media and surfaces/coatings that avoid the use of animal serum, overcoming ethical issues and improving the expansion of hMSC for clinical applications in a safe and reproducible way. PMID:29158740

  15. The Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells

    PubMed Central

    Bressan, Eriberto; Gardin, Chiara; Ferroni, Letizia; Soldini, Maria Costanza; Mandelli, Federico; Soldini, Claudio

    2017-01-01

    Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI) surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC). MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells) were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment. PMID:29149082

  16. Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    PubMed Central

    Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha

    2011-01-01

    Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature. PMID:21779348

  17. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate

    PubMed Central

    Moon, Mi-Young; Kim, Hyun Jung; Choi, Bo Young; Sohn, Min

    2018-01-01

    Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs) are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30 μM and 100 μM of ZnCl2. Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin) in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth. PMID:29765417

  18. Gastric cancer tissue-derived mesenchymal stem cells impact peripheral blood mononuclear cells via disruption of Treg/Th17 balance to promote gastric cancer progression.

    PubMed

    Wang, Mei; Chen, Bin; Sun, Xiao-Xian; Zhao, Xiang-Dong; Zhao, Yuan-Yuan; Sun, Li; Xu, Chang-Gen; Shen, Bo; Su, Zhao-Liang; Xu, Wen-Rong; Zhu, Wei

    2017-12-01

    Gastric cancer tissue-derived mesenchymal stem cells (GC-MSCs) are important resident stromal cells in the tumor microenvironment (TME) and have been shown to play a key role in gastric cancer progression. Whether GC-MSCs exert a tumor-promoting function by affecting anti-tumor immunity is still unclear. In this study, we used GC-MSC conditioned medium (GC-MSC-CM) to pretreat peripheral blood mononuclear cells (PBMCs) from healthy donors. We found that GC-MSC-CM pretreatment markedly reversed the inhibitory effect of PBMCs on gastric cancer growth in vivo, but did not affect functions of PBMCs on gastric cancer cell proliferation, cell cycle and apoptosis in vitro. PBMCs pretreated with GC-MSC-CM significantly promoted gastric cancer migration and epithelial-mesenchymal transition in vitro and liver metastases in vivo. Flow cytometry analysis showed that GC-MSC-CM pretreatment increased the proportion of Treg cells and reduced that of Th17 cells in PBMCs. CFSE labeling and naïve CD4 + T cells differentiation analysis revealed that GC-MSC-CM disrupted the Treg/Th17 balance in PBMCs by suppressing Th17 cell proliferation and inducing differentiation of Treg cells. Overall, our collective results indicate that GC-MSCs impair the anti-tumor immune response of PBMCs through disruption of Treg/Th17 balance, thus providing new evidence that gastric cancer tissue-derived MSCs contribute to the immunosuppressive TME. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor.

    PubMed

    Egger, Dominik; Schwedhelm, Ivo; Hansmann, Jan; Kasper, Cornelia

    2017-05-23

    Extensive expansion of mesenchymal stem cells (MSCs) for cell-based therapies remains challenging since long-term cultivation and excessive passaging in two-dimensional conditions result in a loss of essential stem cell properties. Indeed, low survival rate of cells, alteration of surface marker profiles, and reduced differentiation capacity are observed after in vitro expansion and reduce therapeutic success in clinical studies. Remarkably, cultivation of MSCs in three-dimensional aggregates preserve stem cell properties. Hence, the large scale formation and cultivation of MSC aggregates is highly desirable. Besides other effects, MSCs cultivated under hypoxic conditions are known to display increased proliferation and genetic stability. Therefore, in this study we demonstrate cultivation of adipose derived human MSC aggregates in a stirred tank reactor under hypoxic conditions. Although aggregates were exposed to comparatively high average shear stress of 0.2 Pa as estimated by computational fluid dynamics, MSCs displayed a viability of 78-86% and maintained their surface marker profile and differentiation potential after cultivation. We postulate that cultivation of 3D MSC aggregates in stirred tank reactors is valuable for large-scale production of MSCs or their secreted compounds after further optimization of cultivation parameters.

  20. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells.

    PubMed

    Karpov, Andrey A; Udalova, Daria V; Pliss, Michael G; Galagudza, Michael M

    2017-04-01

    Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct-limiting effects in numerous experimental and clinical studies. However, recent meta-analyses of randomized clinical trials on MSC-based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three-dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non-genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury. © 2016 John Wiley & Sons Ltd.

  1. Hypoxia Inducible Factor-Stabilizing Bioactive Glasses for Directing Mesenchymal Stem Cell Behavior

    PubMed Central

    Azevedo, Maria M.; Tsigkou, Olga; Nair, Rekha; Jones, Julian R.; Jell, Gavin

    2015-01-01

    Oxygen tension is a known regulator of mesenchymal stem cell (MSC) plasticity, differentiation, proliferation, and recruitment to sites of injury. Materials capable of affecting the MSC oxygen-sensing pathway, independently of the environmental oxygen pressure, are therefore of immense interest to the tissue engineering (TE) and regenerative medicine community. In this study, we describe the evaluation of the effect of hypoxia inducible factor (HIF)-stabilizing bioactive glasses (BGs) on human MSCs. The dissolution products from these hypoxia-mimicking BGs stabilized HIF-1α in a concentration-dependent manner, altered cell proliferation and metabolism, and upregulated a number of genes involved in the hypoxic response (HIF1A, HIF2A, and VHL), MSC survival (SAG and BCL2), extracellular matrix remodeling (MMP1), and angiogenesis (VEGF and PDGF). These HIF-stabilizing materials can therefore be used to improve MSC survival and enhance regeneration in a number of TE strategies. PMID:25167933

  2. Defining adipose tissue-derived stem cells in tissue and in culture.

    PubMed

    Lin, Ching-Shwun; Xin, Zhong-Cheng; Deng, Chun-Hua; Ning, Hongxiu; Lin, Guiting; Lue, Tom F

    2010-06-01

    Adipose tissue-derived stem cells (ADSC) are routinely isolated from the stromal vascular fraction (SVF) of homogenized adipose tissue. Similar to other types of mesenchymal stem cells (MSC), ADSC remain difficult to define due to the lack of definitive cellular markers. Still, many types of MSC, including ADSC, have been shown to reside in a perivascular location, and increasing evidence shows that both MSC and ADSC may in fact be vascular stem cells (VSC). Locally, these cells differentiate into smooth muscle and endothelial cells that are assembled into newly formed blood vessels during angiogenesis and neovasculogenesis. Additionally, MSC or ADSC can also differentiate into tissue cells such as adipocytes in the adipose tissue. Systematically, MSC or ADSC are recruited to injury sites where they participate in the repair/regeneration of the injured tissue. Due to the vasculature's dynamic capacity for growth and multipotential nature for diversification, VSC in tissue are individually at various stages and on different paths of differentiation. Therefore, when isolated and put in culture, these cells are expected to be heterogeneous in marker expression, renewal capacity, and differentiation potential. Although this heterogeneity of VSC does impose difficulties and cause confusions in basic science studies, its impact on the development of VSC as a therapeutic cell source has not been as apparent, as many preclinical and clinical trials have reported favorable outcomes. With this understanding, ADSC are generally defined as CD34+CD31- although loss of CD34 expression in culture is well documented. In adipose tissue, CD34 is localized to the intima and adventitia of blood vessels but not the media where cells expressing alpha-smooth muscle actin (SMA) exist. By excluding the intima, which contains the CD34+CD31+ endothelial cells, and the media, which contains the CD34-CD31- smooth muscle cells, it leaves the adventitia as the only possible location for the CD34+ ADSC. In the capillary, CD34 and CD140b (a pericyte marker) are mutually exclusively expressed, thus suggesting that pericytes are not the CD34+ ADSC. Many other cellular markers for vascular cells, stem cells, and stem cell niche have also been investigated as possible ADSC markers. Particularly the best-known MSC marker STRO-1 has been found either expressed or not expressed in cultured ADSC. In the adipose tissue, STRO-1 appears to be expressed exclusively in the endothelium of certain but not all blood vessels, and thus not associated with the CD34+ ADSC. In conclusion, we believe that ADSC exist as CD34+CD31-CD104b-SMA- cells in the capillary and in the adventitia of larger vessels. In the capillary these cells coexist with pericytes and endothelial cells, both of which are possibly progenies of ADSC (or more precisely VSC). In the larger vessels, these ADSC or VSC exist as specialized fibroblasts (having stem cell properties) in the adventitia.

  3. Ovariectomized Rats with Established Osteopenia have Diminished Mesenchymal Stem Cells in the Bone Marrow and Impaired Homing, Osteoinduction and Bone Regeneration at the Fracture Site.

    PubMed

    Tewari, Deepshikha; Khan, Mohd Parvez; Sagar, Nitin; China, Shyamsundar P; Singh, Atul K; Kheruka, Subhash C; Barai, Sukanta; Tewari, Mahesh C; Nagar, Geet K; Vishwakarma, Achchhe L; Ogechukwu, Omeje E; Bellare, Jayesh R; Gambhir, Sanjay; Chattopadhyay, Naibedya

    2015-04-01

    We investigated deleterious changes that take place in mesenchymal stem cells (MSC) and its fracture healing competence in ovariectomy (Ovx)-induced osteopenia. MSC from bone marrow (BM) of ovary intact (control) and Ovx rats was isolated. (99m)Tc-HMPAO (Technitium hexamethylpropylene amine oxime) labeled MSC was systemically transplanted to rats and fracture tropism assessed by SPECT/CT. PKH26 labeled MSC (PKH26-MSC) was bound in scaffold and applied to fracture site (drill-hole in femur metaphysis). Osteoinduction was quantified by calcein binding and microcomputed tomography. Estrogen receptor (ER) antagonist, fulvestrant was used to determine ER dependence of osteo-induction by MSC. BM-MSC number was strikingly reduced and doubling time increased in Ovx rats compared to control. SPECT/CT showed reduced localization of (99m)Tc-HMPAO labeled MSC to the fracture site, 3 h post-transplantation in Ovx rats as compared with controls. Post-transplantation, Ovx MSC labeled with PKH26 (Ovx PKH26-MSC) localized less to fracture site than control PKH26-MSC. Transplantation of either control or Ovx MSC enhanced calcein binding and bone volume at the callus of control rats over placebo group however Ovx MSC had lower efficacy than control MSC. Fulvestrant blocked osteoinduction by control MSC. When scaffold bound MSC was applied to fracture, osteoinduction by Ovx PKH26-MSC was less than control PKH26-MSC. In Ovx rats, control MSC/E2 treatment but not Ovx MSC showed osteoinduction. Regenerated bone was irregularly deposited in Ovx MSC group. In conclusion, Ovx is associated with diminished BM-MSC number and its growth, and Ovx MSC displays impaired engraftment to fracture and osteoinduction besides disordered bone regeneration.

  4. β1 Integrins Mediate Attachment of Mesenchymal Stem Cells to Cartilage Lesions

    PubMed Central

    Zwolanek, Daniela; Flicker, Magdalena; Kirstätter, Elisabeth; Zaucke, Frank; van Osch, Gerjo J.V.M.; Erben, Reinhold G.

    2015-01-01

    Abstract Mesenchymal stem cells (MSC) may have great potential for cell-based therapies of osteoarthritis. However, after injection in the joint, only few cells adhere to defective articular cartilage and contribute to cartilage regeneration. Little is known about the molecular mechanisms of MSC attachment to defective articular cartilage. Here, we developed an ex vivo attachment system, using rat osteochondral explants with artificially created full-thickness cartilage defects in combination with genetically labeled MSC isolated from bone marrow of human placental alkaline phosphatase transgenic rats. Binding of MSC to full-thickness cartilage lesions was improved by serum, but not hyaluronic acid, and was dependent on the presence of divalent cations. Additional in vitro tests showed that rat MSC attach, in a divalent cation-dependent manner, to collagen I, collagen II, and fibronectin, but not to collagen XXII or cartilage oligomeric matrix protein (COMP). RGD peptides partially blocked the adhesion of MSC to fibronectin in vitro and to cartilage lesions ex vivo. Furthermore, the attachment of MSC to collagen I and II in vitro and to cartilage lesions ex vivo was almost completely abolished in the presence of a β1 integrin blocking antibody. In conclusion, our data suggest that attachment of MSC to ex vivo full-thickness cartilage lesions is almost entirely β1 integrin-mediated, whereby both RGD- and collagen-binding integrins are involved. These findings suggest a key role of integrins during MSC attachment to defective cartilage and may pave the way for improved MSC-based therapies in the future. PMID:26309781

  5. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation.

    PubMed

    Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura

    2015-12-10

    Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.

  6. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    DTIC Science & Technology

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  7. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates.

    PubMed

    Ma, Anlun; Jiang, Li; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang

    2013-07-01

    Articular cartilage defects are commonly associated with trauma, inflammation and osteoarthritis. Mesenchymal stem cell (MSC)-based therapy is a promising novel approach for repairing articular cartilage. Direct intra-articular injection of uncommitted MSCs does not regenerate high-quality cartilage. This study explored utilization of a new three-dimensional, selected chondrogenic clonal MSC-loaded monkey acellular dermal matrix (MSC-ADM) scaffold to repair damaged cartilage in an experimental model of knee joint cartilage defect in Cynomolgus monkeys. MSCs were characterized for cell size, cell yield, phenotypes, proliferation and chondrogenic differentiation capacity. Chondrogenic differentiation assays were performed at different MSC passages by sulfated glycosaminoglycans (sGAG), collagen, and fluorescence activated cell sorter (FACS) analysis. Selected chondrogenic clonal MSCs were seeded onto ADM scaffold with the sandwich model and MSC-loaded ADM grafts were analyzed by confocal microscopy and scanning electron microscopy. Cartilage defects were treated with normal saline, clonal MSCs and clonal MSC-ADM grafts, respectively. The clinical parameters, and histological and immunohistochemical examinations were evaluated at weeks 8, 16, 24 post-treatment, respectively. Polyclonal and clonal MSCs could differentiate into the chondrogenic lineage after stimulation with suitable chondrogenic factors. They expressed mesenchymal markers and were negative for hematopoietic markers. Articular cartilage defects were considerably improved and repaired by selected chondrogenic clonal MSC-based treatment, particularly, in MSC-ADM-treated group. The histological scores in MSC-ADM-treated group were consistently higher than those of other groups. Our results suggest that selected chondrogenic clonal MSC-loaded ADM grafts could improve the cartilage lesions in Cynomolgus monkey model, which may be applicable for repairing similar human cartilage defects. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed Central

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C.

    2016-01-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy. PMID:27721701

  9. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis.

    PubMed

    Komaki, Motohiro; Numata, Yuri; Morioka, Chikako; Honda, Izumi; Tooi, Masayuki; Yokoyama, Naoki; Ayame, Hirohito; Iwasaki, Kengo; Taki, Atsuko; Oshima, Noriko; Morita, Ikuo

    2017-10-03

    The therapeutic potential of mesenchymal stem cells (MSCs) may be attributed partly to humoral factors such as growth factors, cytokines, and chemokines. Human term placental tissue-derived MSCs (PlaMSCs), or conditioned medium left over from cultures of these cells, have been reported to enhance angiogenesis. Recently, the exosome, which can transport a diverse suite of macromolecules, has gained attention as a novel intercellular communication tool. However, the potential role of the exosome in PlaMSC therapeutic action is not well understood. The purpose of this study was to evaluate PlaMSC-derived exosome angiogenesis promotion in vitro and in vivo. MSCs were isolated from human term placental tissue by enzymatic digestion. Conditioned medium was collected after 48-h incubation in serum-free medium (PlaMSC-CM). Angiogenic factors present in PlaMSC-CM were screened by a growth factor array. Exosomes were prepared by ultracentrifugation of PlaMSC-CM, and confirmed by transmission electron microscopy, dynamic light scattering, and western blot analyses. The proangiogenic activity of PlaMSC-derived exosomes (PlaMSC-exo) was assessed using an endothelial tube formation assay, a cell migration assay, and reverse transcription-PCR analysis. The in-vivo angiogenic activity of PlaMSC-exo was evaluated using a murine auricle ischemic injury model. PlaMSC-CM contained both angiogenic and angiostatic factors, which enhanced endothelial tube formation. PlaMSC-exo were incorporated into endothelial cells; these exosomes stimulated both endothelial tube formation and migration, and enhanced angiogenesis-related gene expression. Laser Doppler blood flow analysis showed that PlaMSC-exo infusion also enhanced angiogenesis in an in-vivo murine auricle ischemic injury model. PlaMSC-exo enhanced angiogenesis in vitro and in vivo, suggesting that exosomes play a role in the proangiogenic activity of PlaMSCs. PlaMSC-exo may be a novel therapeutic approach for treating ischemic diseases.

  10. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells.

    PubMed

    Luther, Kristin M; Haar, Lauren; McGuinness, Myc; Wang, Yang; Lynch Iv, Thomas L; Phan, Anh; Song, Yang; Shen, Zilong; Gardner, George; Kuffel, Gina; Ren, Xiaoping; Zilliox, Michael J; Jones, W Keith

    2018-06-01

    Though experimental, stem cell transplantation has the potential to improve the condition of the heart after myocardial infarction. It does so by reducing infarct size and inducing repair of heart muscle and its blood supply. Mesenchymal stem cells (MSC) have been found to be effective in pre-clinical animal models and clinical trials, but the mechanisms by which they induce cardioprotection and repair are still not fully understood. Small extracellular vesicles known as exosomes are now recognized to be key mediators of beneficial MSC paracrine effects, and the concept that they transfer miRNA to change gene expression in recipient cells is of current therapeutic interest. We present complete deep miRNA sequencing of MSC exosome cargo, and found that of several cardioprotective miRNAs, miR-21a-5p was the most abundant. Because miR-21a-5p is a well-known cardioprotective miRNA, we investigated the hypothesis that MSC exosomes can cardioprotect the heart by increasing the level of miR-21a-5p in recipient cardiac cells, thereby downregulating expression of the pro-apoptotic gene products PDCD4, PTEN, Peli1 and FasL in the myocardium. Using miR-21 mimic transfection and treatment with wild type and miR-21a knockout MSC exosomes, we confirmed that exosomal miR-21a-5p is transferred into myocardium and is a major cardioprotective paracrine factor produced by MSCs acting via synergistic activity on multiple pathways. The data supports that residual cardioprotective effect may be due to other ncRNA or protein cargo. In silico analyses support that MSC exosomes may also contribute to angiogenesis, cell proliferation and other aspects of cardiac repair. Copyright © 2018. Published by Elsevier Ltd.

  11. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells.

    PubMed

    Lu, Kang; Li, Hai-Yin; Yang, Kuang; Wu, Jun-Long; Cai, Xiao-Wei; Zhou, Yue; Li, Chang-Qing

    2017-05-10

    The stem cell-based therapies for intervertebral disc degeneration have been widely studied. However, the mechanisms of mesenchymal stem cells interacting with intervertebral disc cells, such as nucleus pulposus cells (NPCs), remain unknown. Exosomes as a vital paracrine mechanism in cell-cell communication have been highly focused on. The purpose of this study was to detect the role of exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) and NPCs in their interaction with corresponding cells. The exosomes secreted by BM-MSCs and NPCs were purified by differential centrifugation and identified by transmission electron microscope and immunoblot analysis of exosomal marker proteins. Fluorescence confocal microscopy was used to examine the uptake of exosomes by recipient cells. The effects of NPC exosomes on the migration and differentiation of BM-MSCs were determined by transwell migration assays and quantitative RT-PCR analysis of NPC phenotypic genes. Western blot analysis was performed to examine proteins such as aggrecan, sox-9, collagen II and hif-1α in the induced BM-MSCs. Proliferation and the gene expression profile of NPCs induced by BM-MSC exosomes were measured by Cell Counting Kit-8 and qRT-PCR analysis, respectively. Both the NPCs and BM-MSCs secreted exosomes, and these exosomes underwent uptake by the corresponding cells. NPC-derived exosomes promoted BM-MSC migration and induced BM-MSC differentiation to a nucleus pulposus-like phenotype. BM-MSC-derived exosomes promoted NPC proliferation and healthier extracellular matrix production in the degenerate NPCs. Our study indicates that the exosomes act as an important vehicle in information exchange between BM-MSCs and NPCs. Given a variety of functions and multiple advantages, exosomes alone or loaded with specific genes and drugs would be an appropriate option in a cell-free therapy strategy for intervertebral disc degeneration.

  12. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    PubMed

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity <5 kPa showed α-actin markers. The ability to control MSC differentiation into either endothelial or smooth muscle-like cells based purely on the local elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review

    PubMed Central

    Hernández-Monjaraz, Beatriz; Santiago-Osorio, Edelmiro; Monroy-García, Alberto; Ledesma-Martínez, Edgar; Mendoza-Núñez, Víctor Manuel

    2018-01-01

    Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC) can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC. PMID:29565801

  14. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs ormore » VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.« less

  15. Mesenchymal stem cell-derived microparticles: a promising therapeutic strategy.

    PubMed

    Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long

    2014-08-18

    Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs.

  16. Mesenchymal Stem Cell-Derived Microparticles: A Promising Therapeutic Strategy

    PubMed Central

    Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long

    2014-01-01

    Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs. PMID:25196436

  17. The heterogeneity of human mesenchymal stem cell preparations--evidence from simultaneous analysis of proteomes and transcriptomes.

    PubMed

    Wagner, Wolfgang; Feldmann, Robert E; Seckinger, Anja; Maurer, Martin H; Wein, Frederik; Blake, Jonathon; Krause, Ulf; Kalenka, Armin; Bürgers, Heinrich F; Saffrich, Rainer; Wuchter, Patrick; Kuschinsky, Wolfgang; Ho, Anthony D

    2006-04-01

    Mesenchymal stem cells (MSC) raise high hopes in clinical applications. However, the lack of common standards and a precise definition of MSC preparations remains a major obstacle in research and application of MSC. Whereas surface antigen markers have failed to precisely define this population, a combination of proteomic data and microarray data provides a new dimension for the definition of MSC preparations. In our continuing effort to characterize MSC, we have analyzed the differential transcriptome and proteome expression profiles of MSC preparations isolated from human bone marrow under two different expansion media (BM-MSC-M1 and BM-MSC-M2). In proteomics, 136 protein spots were unambiguously identified by MALDI-TOF-MS and corresponding cDNA spots were selected on our "Human Transcriptome cDNA Microarray." Combination of datasets revealed a correlation in differential gene expression and protein expression of BM-MSC-M1 vs BM-MSC-M2. Genes involved in metabolism were more highly expressed in BM-MSC-M1, whereas genes involved in development, morphogenesis, extracellular matrix, and differentiation were more highly expressed in BM-MSC-M2. Interchanging culture conditions for 8 days revealed that differential expression was retained in several genes whereas it was altered in others. Our results have provided evidence that homogeneous BM-MSC preparations can reproducibly be isolated under standardized conditions, whereas culture conditions exert a prominent impact on transcriptome, proteome, and cellular organization of BM-MSC.

  18. Surface Functionalization of Polymeric Nanoparticles with Umbilical Cord-Derived Mesenchymal Stem Cell Membrane for Tumor-Targeted Therapy.

    PubMed

    Yang, Na; Ding, Yanping; Zhang, Yinlong; Wang, Bin; Zhao, Xiao; Cheng, Keman; Huang, Yixin; Taleb, Mohammad; Zhao, Jing; Dong, Wen-Fei; Zhang, Lirong; Nie, Guangjun

    2018-06-15

    Multiple cell plasma membranes have been utilized for surface functionalization of synthetic nanomaterials and construction of biomimetic drug delivery systems for cancer treatment. The natural characters and facile isolation of original cells facilitate the biomedical applications of plasma membranes in functionalizing nanocarriers. Human umbilical cord-derived mesenchymal stem cells (MSC) have been identified to show tropism towards malignant lesions and have great advantages in ease of acquisition, low immunogenicity, and high proliferative ability. Here we developed a poly(lactic-co-glycolic acid) (PLGA) nanoparticle with a layer of plasma membrane from umbilical cord MSC coating on the surface for tumor-targeted delivery of chemotherapy. Functionalization of MSC plasma membrane significantly enhanced the cellular uptake efficiency of PLGA nanoparticles, the tumor cell killing efficacy of PLGA-encapsulated doxorubicin, and most importantly the tumor-targeting and accumulation of the nanoparticles. As a result, this MSC-mimicking nanoformulation led to remarkable tumor growth inhibition and induced obvious apoptosis within tumor lesions. This study for the first time demonstrated the great potential of umbilical cord MSC plasma membranes in functionalizing nanocarriers with inherent tumor-homing features, and the high feasibility of such biomimetic nanoformulations in cancer therapy.

  19. Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems.

    PubMed

    Fernandes-Platzgummer, Ana; Carmelo, Joana G; da Silva, Cláudia Lobato; Cabral, Joaquim M S

    2016-01-01

    The therapeutic potential of mesenchymal stem/stromal cells (MSC) has triggered the need for high cell doses in a vast number of clinical applications. This demand requires the development of good manufacturing practices (GMP)-compliant ex vivo expansion protocols that should be effective to deliver a robust and reproducible supply of clinical-grade cells in a safe and cost-effective manner. Controlled stirred-tank bioreactor systems under xenogeneic (xeno)-free culture conditions offer ideal settings to develop and optimize cell manufacturing to meet the standards and needs of human MSC for cellular therapies. Herein we describe two microcarrier-based stirred culture systems using spinner flasks and controlled stirred-tank bioreactors under xeno-free conditions for the efficient ex vivo expansion of human bone marrow and adipose tissue-derived MSC.

  20. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion.

    PubMed

    Futrega, Kathryn; Atkinson, Kerry; Lott, William B; Doran, Michael R

    2017-04-01

    While two-dimensional (2D) monolayers of mesenchymal stem/stromal cells (MSCs) have been shown to enhance hematopoietic stem/progenitor cell (HSPC) expansion in vitro, expanded cells do not engraft long term in human recipients. This outcome is attributed to the failure of 2D culture to recapitulate the bone marrow (BM) niche signal milieu. Herein, we evaluated the capacity of a novel three-dimensional (3D) coculture system to support HSPC expansion in vitro. A high-throughput polydimethylsiloxane (PDMS) microwell platform was used to manufacture thousands of uniform 3D multicellular coculture spheroids. Relative gene expression in 3D spheroid versus 2D adherent BM-derived MSC cultures was characterized and compared with literature reports. We evaluated coculture spheroids, each containing 25-400 MSCs and 10 umbilical cord blood (CB)-derived CD34 + progenitor cells. At low exogenous cytokine concentrations, 2D and 3D MSC coculture modestly improved overall hematopoietic cell and CD34 + cell expansion outcomes. By contrast, a substantial increase in CD34 + CD38 - cell yield was observed in PDMS microwell cultures, regardless of the presence or absence of MSCs. This outcome indicated that CD34 + CD38 - cell culture yield could be increased using the microwell platform alone, even without MSC coculture support. We found that the increase in CD34 + CD38 - cell yield observed in PDMS microwell cultures did not translate to enhanced engraftment in NOD/SCID gamma (NSG) mice or a modification in the relative human hematopoietic lineages established in engrafted mice. In summary, there was no statistical difference in CD34 + cell yield from 2D or 3D cocultures, and MSC coculture support provided only modest benefit in either geometry. While the high-throughput 3D microwell platform may provide a useful model system for studying cells in coculture, further optimization will be required to generate HSPC yields suitable for use in clinical applications.

  1. Mesenchymal Stem Cells Promote the Osteogenesis in Collagen-Induced Arthritic Mice through the Inhibition of TNF-α

    PubMed Central

    Liu, Chang; Tang, Xiaojun; Feng, Ruihai; Yao, Genhong; Chen, Weiwei; Li, Wenchao; Liang, Jun; Feng, Xuebing

    2018-01-01

    Objective To investigate the effects of umbilical cord mesenchymal stem cell (UC-MSC) transplantation on joint damage and osteoporosis in collagen-induced arthritis (CIA) mice and to explore the mechanisms by which UC-MSCs modulate the osteogenic differentiation. Methods CIA mice were divided into the following treated groups: UC-MSC transplantation group, antitumor necrosis factor- (TNF-) α group, and zoledronic acid (ZA) group. Microcomputed tomography (micro-CT) was used to analyze the bone morphology parameters. Osteogenic differentiation of treated CIA mice was determined. Bone marrow mesenchymal stem cells (BM-MSCs) from CIA mice were treated with TNF-α in vitro to explore their effects on osteogenesis. Results The arthritis score was significantly reduced in the UC-MSC transplantation and anti-TNF-α-treated CIA groups, compared with control mice (P < 0.001). Micro-CT showed that CIA mice developed osteoporosis at 12 weeks after immunization. The bone morphology parameters were partially improved in UC-MSC-treated CIA mice. Impaired osteogenic differentiation functions were indicated by decreased ALP activity (P < 0.001) and reduced mRNA and protein levels of osteogenic marker genes (P < 0.05) in CIA mice compared with DBA/1 mice. UC-MSC treatment significantly upregulated the impaired osteogenic differentiation ability in CIA mice. Meanwhile, the serum TNF-α level was decreased significantly in the UC-MSC group. The osteogenesis was reduced with the addition of TNF-α in vitro. Conclusion This study demonstrated that UC-MSC transplantation not only significantly improved the joint damage but also played a beneficial role in osteoporosis in CIA mice. Mechanistically, the improved osteogenic differentiation of CIA under UC-MSC treatment may be achieved by inhibition of TNF-α. PMID:29853911

  2. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine

    PubMed Central

    Murphy, Matthew B; Moncivais, Kathryn; Caplan, Arnold I

    2013-01-01

    Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications. PMID:24232253

  3. Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease.

    PubMed

    Uchida, Naoya; Haro-Mora, Juan J; Fujita, Atsushi; Lee, Duck-Yeon; Winkler, Thomas; Hsieh, Matthew M; Tisdale, John F

    2017-03-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596. © 2016 AlphaMed Press.

  4. Isolation and Characterization of Exosome from Human Embryonic Stem Cell-Derived C-Myc-Immortalized Mesenchymal Stem Cells.

    PubMed

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; de Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular between 2006 and 2012. However, defined mechanisms of action underpinning the therapeutic efficacy of MSCs are lacking, but they are increasingly attributed to MSC trophic secretion rather than their differentiation potential. A promising secreted therapeutic candidate is an extracellular vesicle (EV) known as the exosome. The use of exosomes instead of cells as a therapeutic agent provides several advantages. A critical advantage is the prospect of a conventional pharmaceutical manufacturing process that is highly scalable and amenable to the stringent manufacturing process. For example, MSCs used as producers of therapeutics, and not as therapeutics per se, could be immortalized to generate infinitely expansible clonal lines to enhance the reproducible production of therapeutic exosomes. In this chapter, we will describe the immortalization of MSCs, and the production, isolation, and characterization of exosomes from immortalized MSC.

  5. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury.

    PubMed

    Haga, Hiroaki; Yan, Irene K; Borrelli, David A; Matsuda, Akiko; Parasramka, Mansi; Shukla, Neha; Lee, David D; Patel, Tushar

    2017-06-01

    Hepatic ischemia/reperfusion injury (IRI) and associated inflammation contributes to liver dysfunction and complications after liver surgery and transplantation. Mesenchymal stem cells (MSCs) have been reported to reduce hepatic IRI because of their reparative immunomodulatory effects in injured tissues. Recent studies have highlighted beneficial effects of extracellular vesicles from mesenchymal stem cells (MSC-EV) on tissue injury. The effects of systemically administered mouse bone marrow-derived MSC-EV were evaluated in an experimental murine model of hepatic IRI induced by cross-clamping the hepatic artery and portal vein for 90 minutes followed by reperfusion for periods of up to 6 hours. Compared with controls, intravenous administration of MSC-EV 30 minutes prior to IRI dramatically reduced the extent of tissue necrosis, decreased caspase 3-positive and apoptotic cells, and reduced serum aminotransferase levels. MSC-EV increased hepatic messenger RNA (mRNA) expression of NACHT, LRR, and PYD domains-containing protein 12, and the chemokine (C-X-C motif) ligand 1, and reduced mRNA expression of several inflammatory cytokines such as interleukin 6 during IRI. MSC-EV increased cell viability and suppressed both oxidative injury and nuclear factor kappa B activity in murine hepatocytes in vitro. In conclusion, the administration of extracellular vesicles derived from bone marrow-derived MSCs may ameliorate hepatic IRI by reducing hepatic injury through modulation of the inflammatory response.Liver Transplantation 23 791-803 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  6. Porcine uterus contains a population of mesenchymal stem cells.

    PubMed

    Miernik, Katarzyna; Karasinski, Janusz

    2012-02-01

    The uterus has a remarkable ability of cycling remodeling throughout the reproductive life of the female. Recent findings in the human and mouse indicate that adult stem/progenitor cells may play a prominent role in the maintenance of uterine endometrial and myometrial homeostasis. We aimed to characterize the prospective stem/progenitor cells in the porcine uterus and establish a new model for uterine stem cell research. In this study, we demonstrated that cells isolated from porcine uterus have capacity for in vitro differentiation into adipogenic and osteogenic lineages and express the mesenchymal stem cell (MSC) markers CD29, CD44, CD144, CD105, and CD140b as revealed by RT-PCR. Moreover, we showed that some cells isolated from the porcine uterus when cultured at low density produce large clones with an efficiency of 0.035%. Simultaneously, they were negative for hematopoietic stem cell markers such as CD34 and CD45. Low expression of nestin, which is specific for neural stem cells and various progenitor cells, was also detected. We conclude that the porcine uterus contains a small population of undifferentiated cells with MSC-like properties similar to human and mouse uteri.

  7. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria-Martinez, Albert; Universitat de Barcelona, Barcelona; Barquinero, Jordi

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture andmore » sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.« less

  8. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis.

    PubMed

    Santamaria-Martínez, Albert; Barquinero, Jordi; Barbosa-Desongles, Anna; Hurtado, Antoni; Pinós, Tomàs; Seoane, Joan; Poupon, Marie-France; Morote, Joan; Reventós, Jaume; Munell, Francina

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45(-), CD81(+) and Sca-1(+)). We also demonstrated that SP clonal cells secrete transforming growth factor beta1 (TGF-beta1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-beta1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  9. Bioprocess integration for human mesenchymal stem cells: From up to downstream processing scale-up to cell proteome characterization.

    PubMed

    Cunha, Bárbara; Aguiar, Tiago; Carvalho, Sofia B; Silva, Marta M; Gomes, Ricardo A; Carrondo, Manuel J T; Gomes-Alves, Patrícia; Peixoto, Cristina; Serra, Margarida; Alves, Paula M

    2017-04-20

    To deliver the required cell numbers and doses to therapy, scaling-up production and purification processes (at least to the liter-scale) while maintaining cells' characteristics is compulsory. Therefore, the aim of this work was to prove scalability of an integrated streamlined bioprocess compatible with current good manufacturing practices (cGMP) comprised by cell expansion, harvesting and volume reduction unit operations using human mesenchymal stem cells (hMSC) isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). BM-MSC and AT-MSC expansion and harvesting steps were scaled-up from spinner flasks to 2L scale stirred tank single-use bioreactor using synthetic microcarriers and xeno-free medium, ensuring high cellular volumetric productivities (50×10 6 cellL -1 day -1 ), expansion factors (14-16 fold) and cell recovery yields (80%). For the concentration step, flat sheet cassettes (FSC) and hollow fiber cartridges (HF) were compared showing a fairly linear scale-up, with a need to slightly decrease the permeate flux (30-50 LMH, respectively) to maximize cell recovery yield. Nonetheless, FSC allowed to recover 18% more cells after a volume reduction factor of 50. Overall, at the end of the entire bioprocess more than 65% of viable (>95%) hMSC could be recovered without compromising cell's critical quality attributes (CQA) of viability, identity and differentiation potential. Alongside the standard quality assays, a proteomics workflow based on mass spectrometry tools was established to characterize the impact of processing on hMSC's CQA; These analytical tools constitute a powerful tool to be used in process design and development. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mesenchymal stromal cells in the antimicrobial host response of hematopoietic stem cell recipients with graft-versus-host disease--friends or foes?

    PubMed

    Balan, A; Lucchini, G; Schmidt, S; Schneider, A; Tramsen, L; Kuçi, S; Meisel, R; Bader, P; Lehrnbecher, T

    2014-10-01

    Mesenchymal stromal cells (MSCs) are multipotent cells, which exhibit broad immunosuppressive activities. Moreover, they may be administered irrespectively of human leukocyte antigen (HLA) compatibility, without inducing life-threatening immunological reactions, as they express no HLA class II and limited HLA class I antigens under resting conditions. These characteristics have made MSC an appealing candidate for cell therapy after hematopoietic stem cell transplantation (HSCT), for example, for treatment of graft-versus-host disease (GvHD) or for graft rejection prevention/treatment in allogeneic HSCT recipients. Unfortunately, information regarding the effect of MSC infusion on the host response to infectious agents is scarce, and study results on infectious complications in patients receiving MSC are conflicting. The present review focuses on the available data from in vitro studies and animal models regarding the interaction of MSC with bacterial, viral and fungal pathogens. In a clinical part, we present the current information on infectious complications in allogeneic HSCT recipients who had received MSCs as prophylaxis or treatment of GvHD disease.

  11. Therapeutic potential of mesenchymal stem cell transplantation in a nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Yuniartha, Ratih; Alatas, Fatima Safira; Nagata, Kouji; Kuda, Masaaki; Yanagi, Yusuke; Esumi, Genshiro; Yamaza, Takayoshi; Kinoshita, Yoshiaki; Taguchi, Tomoaki

    2014-09-01

    The aim of this study was to evaluate the efficacy of mesenchymal stem cells (MSCs) in a nitrofen-induced congenital diaphragmatic hernia (CDH) rat model. Pregnant rats were exposed to nitrofen on embryonic day 9.5 (E9.5). MSCs were isolated from the enhanced green fluorescent protein (eGFP) transgenic rat lungs. The MSCs were transplanted into the nitrofen-induced E12.5 rats via the uterine vein, and the E21 lung explants were harvested. The study animals were divided into three: the control group, the nitrofen-induced left CDH (CDH group), and the MSC-treated nitrofen-induced left CDH (MSC-treated CDH group). The specimens were morphologically analyzed using HE and immunohistochemical staining with proliferating cell nuclear antigen (PCNA), surfactant protein-C (SP-C), and α-smooth muscle actin. The alveolar and medial walls of the pulmonary arteries were significantly thinner in the MSC-treated CDH group than in the CDH group. The alveolar air space areas were larger, while PCNA and the SP-C positive cells were significantly higher in the MSC-treated CDH group, than in the CDH group. MSC engraftment was identified on immunohistochemical staining of the GFP in the MSC-treated CDH group. MSC transplantation potentially promotes alveolar and pulmonary artery development, thereby reducing the severity of pulmonary hypoplasia.

  12. Hypoxic Preconditioning Results in Increased Motility and Improved Therapeutic Potential of Human Mesenchymal Stem Cells

    PubMed Central

    Rosová, Ivana; Dao, Mo; Capoccia, Ben; Link, Daniel; Nolta, Jan A.

    2010-01-01

    Mesenchymal stem cells (MSC) are adult multipotent cells found in bone marrow, adipose tissue, and other adult tissues. MSC have been shown to improve regeneration of injured tissues in vivo, but the mechanisms remain unclear. Typically, MSC are cultured under ambient, or normoxic, conditions (21% oxygen). However, the physiological niches for MSC in the bone marrow and other sites have much lower oxygen tension. When used as a therapeutic tool to repair tissue injuries, MSC cultured in standard conditions must adapt from 21% oxygen in culture to less than 1% oxygen in the ischemic tissue. We therefore examined the effects of preculturing human bone marrow-derived MSC in hypoxic conditions (1%–3% oxygen) to elucidate the best conditions that enhance their tissue regenerative potential. We demonstrated that MSC cultured in hypoxia activate the Akt signaling pathway while maintaining their viability and cell cycle rates. We also showed that MSC cultured in hypoxia induced expression of cMet, the major receptor for hepatocyte growth factor (HGF), and enhanced cMet signaling. MSC cultured in hypoxic conditions increased their migration rates. Since migration and HGF responsiveness are thought to be key mediators of MSC recruitment and/or activation in vivo, we next examined the tissue regenerative potential of MSC cultured under hypoxic conditions, using a murine hind limb ischemia model. We showed that local expression of HGF is increased in ischemic muscle in this model. Intra-arterial injection of MSC cultured in either normoxic or hypoxic conditions 24 hours after surgical induction of hind limb ischemia enhanced revascularization compared with saline controls. However, restoration of blood flow was observed significantly earlier in mice that had been injected with hypoxic preconditioned MSC. Collectively, these data suggest that preculturing MSC under hypoxic conditions prior to transplantation improves their tissue regenerative potential. PMID:18511601

  13. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice.

    PubMed

    Long, Teng; Zhu, Zhenan; Awad, Hani A; Schwarz, Edward M; Hilton, Matthew J; Dong, Yufeng

    2014-03-01

    Structural bone allografts are widely used in the clinic to treat critical sized bone defects, despite lacking the osteoinductive characteristics of live autografts. To address this, we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets, which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates, as a tissue-engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets, suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo, allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of X-ray plain radiography, 3D microCT, histology, and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation, as well as graft-host osteointegration. Moreover, a large periosteal callus was observed spanning the allografts with MSC sheets, which partially mimics live autograft healing. Finally, biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together, MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair, demonstrating the feasibility of this tissue engineering solution for massive allograft healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. β3-Adrenergic Regulation of EPC Features Through Manipulation of the Bone Marrow MSC Niche.

    PubMed

    Vafaei, Rana; Nassiri, Seyed Mahdi; Siavashi, Vahid

    2017-12-01

    Mesenchymal stem cells (MSCs) reside in a specific niche in the bone marrow, however, biological features of this niche are still not fully understood. Given the interactions of MSCs with endothelial cells in different tissues, bone marrow MSC niche may influence the biological features of endothelial progenitor cells (EPCs). To understand the role of the sympathetic nervous system in regulation of the MSC niche, we examined whether the manipulation of the MSC niche via β3-adrenergic signals will affect EPC features. A selective β3 agonist (BRL37344) or a β3 antagonist (SR59230A) was administered in mice for 2 weeks to determine the potential effects of these regimens on the population of CD133 + stem cells in the bone marrow. Then, bone marrow-derived MSCs and EPCs were harvested and expanded from the mice to examine the effect of changes in the MSC niche on EPC features. Improved MSC colony forming potency with increased bone marrow stromal cell-derived factor 1 (SDF-1) (also known as C-X-C motif chemokine 12 [CXCL12]) expression was shown as a result of intensification of the bone marrow adrenergic signals through BRL37344 injection. On the other hand, the blockage of these signals limited the expression level of SDF-1 and resulted in bone marrow enrichment of CD133 + cells. Manipulation of the MSC niche and decreased SDF-1 expression via SR59230A injection also prompted EPCs to form more colonies with augmented proliferation and differentiation capacity. Overall, our results indicate that the β3-adrenergic signals regulate the MSC niche, thereby resulting in modulation of EPC biological features. J. Cell. Biochem. 118: 4753-4761, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds

    PubMed Central

    Subramony, Siddarth D.; Su, Amanda; Yeager, Keith; Lu, Helen H.

    2014-01-01

    Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation. PMID:24267271

  16. Extracellular Vesicles Released from Human Umbilical Cord-Derived Mesenchymal Stromal Cells Prevent Life-Threatening Acute Graft-Versus-Host Disease in a Mouse Model of Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Wang, Li; Gu, Zhenyang; Zhao, Xiaoli; Yang, Nan; Wang, Feiyan; Deng, Ailing; Zhao, Shasha; Luo, Lan; Wei, Huaping; Guan, Lixun; Gao, Zhe; Li, Yonghui; Wang, Lili; Liu, Daihong; Gao, Chunji

    2016-12-15

    Mesenchymal stromal cells (MSCs) are attractive agents for the prophylaxis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, safety concerns remain about their clinical application. In this study, we explored whether extracellular vesicles released from human umbilical cord-derived MSCs (hUC-MSC-EVs) could prevent aGVHD in a mouse model of allo-HSCT. hUC-MSC-EVs were intravenously administered to recipient mice on days 0 and 7 after allo-HSCT, and the prophylactic effects of hUC-MSC-EVs were assessed by observing the in vivo manifestations of aGVHD, histologic changes in target organs, and recipient mouse survival. We evaluated the effects of hUC-MSC-EVs on immune cells and inflammatory cytokines by flow cytometry and ProcartaPlex™ Multiplex Immunoassays, respectively. The in vitro effects of hUC-MSC-EVs were determined by mitogen-induced proliferation assays. hUC-MSC-EVs alleviated the in vivo manifestations of aGVHD and the associated histologic changes and significantly reduced the mortality of the recipient mice. Recipients treated with hUC-MSC-EVs had significantly lower frequencies and absolute numbers of CD3 + CD8 + T cells; reduced serum levels of IL-2, TNF-α, and IFN-γ; a higher ratio of CD3 + CD4 + and CD3 + CD8 + T cells; and higher serum levels of IL-10. An in vitro experiment demonstrated that hUC-MSC-EVs inhibited the mitogen-induced proliferation of splenocytes in a dose-dependent manner, and the cytokine changes were similar to those observed in vivo. This study indicated that hUC-MSC-EVs can prevent life-threatening aGVHD by modulating immune responses. These data provide the first evidence that hUC-MSC-EVs represent an ideal alternative in the prophylaxis of aGVHD after allo-HSCT.

  17. Human Umbilical Cord Mesenchymal Stem Cells: Subpopulations and Their Difference in Cell Biology and Effects on Retinal Degeneration in RCS Rats.

    PubMed

    Wang, L; Li, P; Tian, Y; Li, Z; Lian, C; Ou, Q; Jin, C; Gao, F; Xu, J-Y; Wang, J; Wang, F; Zhang, J; Zhang, J; Li, W; Tian, H; Lu, L; Xu, G-T

    2017-01-01

    Human umbilical cord mesenchymal stem cells (hUC-MSCs) are potential candidates for treating retinal degeneration (RD). To further study the biology and therapeutic effects of the hUC-MSCs on retinal degeneration. Two hUC-MSC subpopulations, termed hUC-MSC1 and hUC-MSC2, were isolated by single-cell cloning method and their therapeutic functions were compared in RCS rat, a RD model. Although both subsets satisfied the basic requirements for hUC-MSCs, they were significantly different in morphology, proliferation rate, differentiation capacity, phenotype and gene expression. Furthermore, only the smaller, fibroblast-like, faster growing subset hUC-MSC1 displayed stronger colony forming potential as well as adipogenic and osteogenic differentiation capacities. When the two subsets were respectively transplanted into the subretinal spaces of RCS rats, both subsets survived, but only hUC-MSC1 expressed RPE cell markers Bestrophin and RPE65. More importantly, hUC-MSC1 showed stronger rescue effect on the retinal function as indicated by the higher b-wave amplitude on ERG examination, thicker retinal nuclear layer, and decreased apoptotic photoreceptors. When both subsets were treated with interleukin-6, mimicking the inflammatory environment when the cells were transplanted into the eyes with degenerated retina, hUC-MSC1 expressed much higher levels of trophic factors in comparison with hUC-MSC2. The data here, in addition to prove the heterogeneity of hUC-MSCs, confirmed that the stronger therapeutic effects of hUC-MSC1 were attributed to its stronger anti-apoptotic effect, paracrine of trophic factors and potential RPE cell differentiation capacity. Thus, the subset hUC-MSC1, not the other subset or the ungrouped hUC-MSCs should be used for effective treatment of RD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. The essential role of inorganic substrate in the migration and osteoblastic differentiation of mesenchymal stem cells.

    PubMed

    He, Jing; Meng, Guolong; Yao, Ruijuan; Jiang, Bo; Wu, Yao; Wu, Fang

    2016-06-01

    The physical environment, which is an integral part of the stem cell niche, is critical in regulating stem cell functions and differentiation into specific lineages. Previous studies have primarily focused on modulating the polymeric matrixes, including the extracellular matrix. Here, we report that the presence of the inorganic substrate (Ti and hydroxyapatite (HA)) in addition to the collagen overlayer plays an essential role in cytoskeletal organization, migration and differentiation of mesenchymal stem cells (MSCs). The osteogenic differentiation of MSCs was suppressed on pure collagen substrate alone, despite collagen greatly enhancing the MSC adhesion and proliferation. The results indicated a strong correlation between MSC motility and osteoblastic differentiation. In particular, the presence of the inorganic matrix promoted the activation of the canonical WNT-β-Catenin pathway and stimulated transcription, leading to osteoblastic differentiation, which was likely due to the internal forces generated "dynamically" during cell migration. Compared to the Ti substrate, hydroxyapatite promoted the collagen self-assembly and the formation of the collagen fibrous network, which is critical for MSC motility and osteogenic differentiation. The HA-collagen matrix exhibited the most favourable stress fibre formation, the longest migration distance (2.8-fold higher than that of the pure collagen sample and 1.9-fold higher than that of Ti-collagen), and the best osteogenic differentiation activities. These findings might have important implications for our understanding of the fundamental MSC functions and the optimal design of bone regeneration materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    PubMed Central

    Succar, Peter; Medynskyj, Michael; Breen, Edmond J.; Batterham, Tony; Molloy, Mark P.; Herbert, Benjamin R.

    2016-01-01

    Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC) therapy are gaining acceptance for knee-osteoarthritis (OA) treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL). At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA. PMID:26981136

  20. Safety Profile of Good Manufacturing Practice Manufactured Interferon γ-Primed Mesenchymal Stem/Stromal Cells for Clinical Trials.

    PubMed

    Guess, Adam J; Daneault, Beth; Wang, Rongzhang; Bradbury, Hillary; La Perle, Krista M D; Fitch, James; Hedrick, Sheri L; Hamelberg, Elizabeth; Astbury, Caroline; White, Peter; Overolt, Kathleen; Rangarajan, Hemalatha; Abu-Arja, Rolla; Devine, Steven M; Otsuru, Satoru; Dominici, Massimo; O'Donnell, Lynn; Horwitz, Edwin M

    2017-10-01

    Mesenchymal stem/stromal cells (MSCs) are widely studied by both academia and industry for a broad array of clinical indications. The collective body of data provides compelling evidence of the clinical safety of MSC therapy. However, generally accepted proof of therapeutic efficacy has not yet been reported. In an effort to generate a more effective therapeutic cell product, investigators are focused on modifying MSC processing protocols to enhance the intrinsic biologic activity. Here, we report a Good Manufacturing Practice-compliant two-step MSC manufacturing protocol to generate MSCs or interferon γ (IFNγ) primed MSCs which allows freshly expanded cells to be infused in patients on a predetermined schedule. This protocol eliminates the need to infuse cryopreserved, just thawed cells which may reduce the immune modulatory activity. Moreover, using (IFNγ) as a prototypic cytokine, we demonstrate the feasibility of priming the cells with any biologic agent. We then characterized MSCs and IFNγ primed MSCs prepared with our protocol, by karyotype, in vitro potential for malignant transformation, biodistribution, effect on engraftment of transplanted hematopoietic cells, and in vivo toxicity in immune deficient mice including a complete post-mortem examination. We found no evidence of toxicity attributable to the MSC or IFNγ primed MSCs. Our data suggest that the clinical risk of infusing MSCs or IFNγ primed MSCs produced by our two-step protocol is not greater than MSCs currently in practice. While actual proof of safety requires phase I clinical trials, our data support the use of either cell product in new clinical studies. Stem Cells Translational Medicine 2017;6:1868-1879. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion

    PubMed Central

    Kusuma, Gina D.; Brennecke, Shaun P.; O’Connor, Andrea J.; Kalionis, Bill

    2017-01-01

    Mesenchymal stem/stromal cells (MSCs) exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM) prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower) to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25) human telomerase reverse transcriptase (hTERT) transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs) and decidua basalis (DMSCs), respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies. PMID:28152107

  2. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion.

    PubMed

    Kusuma, Gina D; Brennecke, Shaun P; O'Connor, Andrea J; Kalionis, Bill; Heath, Daniel E

    2017-01-01

    Mesenchymal stem/stromal cells (MSCs) exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM) prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower) to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25) human telomerase reverse transcriptase (hTERT) transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs) and decidua basalis (DMSCs), respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies.

  3. Evaluation of the In Vitro Cytotoxicity of Crosslinked Biomaterials

    PubMed Central

    Wang, Martha O.; Etheridge, Julie M.; Thompson, Joshua A.; Vorwald, Charlotte E.; Dean, David; Fisher, John P.

    2013-01-01

    This study evaluated the in vitro cytotoxicity of poly(propylene fumarate) (PPF). PPF is an aliphatic biodegradable polymer that has been well characterized for use in bone tissue engineering scaffolds. Four different cell types, human mesenchymal stem cells (hMSC), fibroblasts (L929), pre-osteoblasts (MC3T3), and canine mesenchymal stem cells (cMSC), were used to evaluate the cytotoxicity of PPF. These cell types represent the tissues that PPF would interact with in vivo as a bone tissue scaffold. The sol fraction of the PPF films was measured and then utilized to estimate crosslinking density. Cytotoxicity was evaluated using XTT assay and fluorescence imaging. Results showed that PPF supported similar cell metabolic activities of hMSC, L929, MC3T3 and cMSC compared to the non-cytotoxic control, high density polyethylene (HDPE) and were statistically different than those cultured with the cytotoxic control, a polyurethane film containing 0.1% zinc diethyldithiocarbamate (ZCF). Results showed differing cellular responses to ZCF, the cytotoxic control. The L929 cells had the lowest cell metabolic activity levels after exposure to ZCF compared to the cell metabolic activity levels of the MC3T3, hMSC or cMSC cells. Qualitative verification of the results using fluorescence imaging demonstrated no change in cell morphology, vacuolization, or detachment when cultured with PPF compared to HDPE or blank media cultures. Overall the cytotoxicity response of the cells to PPF was demonstrated to be similar to the cytotoxic response of cells to known non-cytotoxic materials (HDPE). PMID:23627804

  4. Extracellular Vesicles from Bone Marrow‐Derived Mesenchymal Stem Cells Improve Survival from Lethal Hepatic Failure in Mice

    PubMed Central

    Haga, Hiroaki; Yan, Irene K.; Takahashi, Kenji; Matsuda, Akiko

    2017-01-01

    Abstract Stem cell‐based therapies have potential for treatment of liver injury by contributing to regenerative responses, through functional tissue replacement or paracrine effects. The release of extracellular vesicles (EV) from cells has been implicated in intercellular communication, and may contribute to beneficial paracrine effects of stem cell‐based therapies. Therapeutic effects of bone‐marrow derived mesenchymal stem cells (MSC) and vesicles released by these cells were examined in a lethal murine model of hepatic failure induced by d‐galactosamine/tumor necrosis factor‐α (TNF‐α). Systemically administered EV derived from MSC accumulated within the injured liver following systemic administration, reduced hepatic injury, and modulated cytokine expression. Moreover, survival was dramatically increased by EV derived from either murine or human MSC. Similar results were observed with the use of cryopreserved mMSC‐EV after 3 months. Y‐RNA‐1 was identified as a highly enriched noncoding RNA within hMSC‐EV compared to cells of origin. Moreover, siRNA mediated knockdown of Y‐RNA‐1 reduced the protective effects of MSC‐EV on TNF‐α/ActD‐mediated hepatocyte apoptosis in vitro. These data support a critical role for MSC‐derived EV in mediating reparative responses following hepatic injury, and provide compelling evidence to support the therapeutic use of MSC‐derived EV in fulminant hepatic failure. Stem Cells Translational Medicine 2017;6:1262–1272 PMID:28213967

  5. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium.

    PubMed

    Huang, Jing; Zhang, Zhiping; Guo, Jian; Ni, Aiguo; Deb, Arjun; Zhang, Lunan; Mirotsou, Maria; Pratt, Richard E; Dzau, Victor J

    2010-06-11

    Although mesenchymal stem cell (MSC) transplantation has been shown to promote cardiac repair in acute myocardial injury in vivo, its overall restorative capacity appears to be restricted mainly because of poor cell viability and low engraftment in the ischemic myocardium. Specific chemokines are upregulated in the infarcted myocardium. However the expression levels of the corresponding chemokine receptors (eg, CCR1, CXCR2) in MSCs are very low. We hypothesized that this discordance may account for the poor MSC engraftment and survival. To determine whether overexpression of CCR1 or CXCR2 chemokine receptors in MSCs augments their cell survival, migration and engraftment after injection in the infarcted myocardium. Overexpression of CCR1, but not CXCR2, dramatically increased chemokine-induced murine MSC migration and protected MSC from apoptosis in vitro. Moreover, when MSCs were injected intramyocardially one hour after coronary artery ligation, CCR1-MSCs accumulated in the infarcted myocardium at significantly higher levels than control-MSCs or CXCR2-MSCs 3 days postmyocardial infarction (MI). CCR1-MSC-injected hearts exhibited a significant reduction in infarct size, reduced cardiomyocytes apoptosis and increased capillary density in injured myocardium 3 days after MI. Furthermore, intramyocardial injection of CCR1-MSCs prevented cardiac remodeling and restored cardiac function 4 weeks after MI. Our results demonstrate the in vitro and in vivo salutary effects of genetic modification of stem cells. Specifically, overexpression of chemokine receptor enhances the migration, survival and engraftment of MSCs, and may provide a new therapeutic strategy for the injured myocardium.

  6. NANOG Plays a Hierarchical Role in the Transcription Network Regulating the Pluripotency and Plasticity of Adipose Tissue-Derived Stem Cells

    PubMed Central

    Pitrone, Maria; Pizzolanti, Giuseppe; Tomasello, Laura; Coppola, Antonina; Morini, Lorenzo; Pantuso, Gianni; Ficarella, Romina; Guarnotta, Valentina; Perrini, Sebastio; Giorgino, Francesco; Giordano, Carla

    2017-01-01

    The stromal vascular cell fraction (SVF) of visceral and subcutaneous adipose tissue (VAT and SAT) has increasingly come into focus in stem cell research, since these compartments represent a rich source of multipotent adipose-derived stem cells (ASCs). ASCs exhibit a self-renewal potential and differentiation capacity. Our aim was to study the different expression of the embryonic stem cell markers NANOG (homeobox protein NANOG), SOX2 (SRY (sex determining region Y)-box 2) and OCT4 (octamer-binding transcription factor 4) and to evaluate if there exists a hierarchal role in this network in ASCs derived from both SAT and VAT. ASCs were isolated from SAT and VAT biopsies of 72 consenting patients (23 men, 47 women; age 45 ± 10; BMI between 25 ± 5 and 30 ± 5 range) undergoing elective open-abdominal surgery. Sphere-forming capability was evaluated by plating cells in low adhesion plastic. Stem cell markers CD90, CD105, CD29, CD31, CD45 and CD146 were analyzed by flow cytometry, and the stem cell transcription factors NANOG, SOX2 and OCT4 were detected by immunoblotting and real-time PCR. NANOG, SOX2 and OCT4 interplay was explored by gene silencing. ASCs from VAT and SAT confirmed their mesenchymal stem cell (MSC) phenotype expressing the specific MSC markers CD90, CD105, NANOG, SOX2 and OCT4. NANOG silencing induced a significant OCT4 (70 ± 0.05%) and SOX2 (75 ± 0.03%) downregulation, whereas SOX2 silencing did not affect NANOG gene expression. Adipose tissue is an important source of MSC, and siRNA experiments endorse a hierarchical role of NANOG in the complex transcription network that regulates pluripotency. PMID:28545230

  7. Enhanced metastatic capacity of breast cancer cells after interaction and hybrid formation with mesenchymal stroma/stem cells (MSC).

    PubMed

    Melzer, Catharina; von der Ohe, Juliane; Hass, Ralf

    2018-01-05

    Fusion of breast cancer cells with tumor-associated populations of the microenvironment including mesenchymal stroma/stem-like cells (MSC) represents a rare event in cell communication whereby the metastatic capacity of those hybrid cells remains unclear. Functional changes were investigated in vitro and in vivo following spontaneous fusion and hybrid cell formation between primary human MSC and human MDA-MB-231 breast cancer cells. Thus, lentiviral eGFP-labeled MSC and breast cancer cells labeled with mcherry resulted in dual-fluorescing hybrid cells after co-culture. Double FACS sorting and single cell cloning revealed two different aneuploid male hybrid populations (MDA-hyb1 and MDA-hyb2) with different STR profiles, pronounced telomerase activities, and enhanced proliferative capacities as compared to the parental cells. Microarray-based mRNA profiling demonstrated marked regulation of genes involved in epithelial-mesenchymal transition and increased expression of metastasis-associated genes including S100A4. In vivo studies following subcutaneous injection of the breast cancer and the two hybrid populations substantiated the in vitro findings by a significantly elevated tumor growth of the hybrid cells. Moreover, both hybrid populations developed various distant organ metastases in a much shorter period of time than the parental breast cancer cells. Together, these data demonstrate spontaneous development of new tumor cell populations exhibiting different parental properties after close interaction and subsequent fusion of MSC with breast cancer cells. This formation of tumor hybrids contributes to continuously increasing tumor heterogeneity and elevated metastatic capacities.

  8. Bone engineering in dog mandible: Coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor.

    PubMed

    Khojasteh, Arash; Fahimipour, Farahnaz; Jafarian, Mohammad; Sharifi, Davoud; Jahangir, Shahrbanoo; Khayyatan, Fahimeh; Baghaban Eslaminejad, Mohamadreza

    2017-10-01

    We sought to assess the effects of coculturing mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) in the repair of dog mandible bone defects. The cells were delivered in β-tricalcium phosphate scaffolds coated with poly lactic co-glycolic acid microspheres that gradually release vascular endothelial growth factor (VEGF). The complete scaffold and five partial scaffolds were implanted in bilateral mandibular body defects in eight beagles. The scaffolds were examined histologically and morphometrically 8 weeks after implantation. Histologic staining of the decalcified scaffolds demonstrated that bone formation was greatest in the VEGF/MSC scaffold (63.42 ± 1.67), followed by the VEGF/MSC/EPC (47.8 ± 1.87) and MSC/EPC (45.21 ± 1.6) scaffolds, the MSC scaffold (34.59 ± 1.49), the VEGF scaffold (20.03 ± 1.29), and the untreated scaffold (7.24 ± 0.08). Hence, the rate of new bone regeneration was highest in scaffolds containing MSC, either mixed with EPC or incorporating VEGF. Adding both EPC and VEGF with the MSC was not necessary. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1767-1777, 2017. © 2016 Wiley Periodicals, Inc.

  9. Loss of the hematopoietic stem cell factor GATA2 in the osteogenic lineage impairs trabecularization and mechanical strength of bone.

    PubMed

    Tolkachov, Alexander; Fischer, Cornelius; Ambrosi, Thomas H; Bothe, Melissa; Han, Chung-Ting; Muenzner, Matthias; Mathia, Susanne; Salminen, Marjo; Seifert, Georg; Thiele, Mario; Duda, Georg N; Meijsing, Sebastiaan H; Sauer, Sascha; Schulz, Tim J; Schupp, Michael

    2018-03-26

    The transcription factor GATA2 is required for expansion and differentiation of hematopoietic stem cells (HSCs). In mesenchymal stem cells (MSCs) GATA2 blocks adipogenesis, but its biological relevance and underlying genomic events are unknown. We report a dual function of GATA2 in bone homeostasis. GATA2 in MSCs binds near genes involved in skeletal system development and co-localizes with motifs for FOX and HOX transcription factors, known regulators of skeletal development. Ectopic GATA2 blocks osteoblastogenesis by interfering with SMAD1/5/8 activation. MSC-specific deletion of GATA2 in mice increases numbers and differentiation capacity of bone-derived precursors, resulting in elevated bone formation. Surprisingly, MSC-specific GATA2 deficiency impairs trabecularization and mechanical strength of bone, involving reduced MSC expression of the osteoclast inhibitor osteoprotegerin and increased osteoclast numbers. Thus, GATA2 affects bone turnover via MSC-autonomous and indirect effects. By regulating bone trabecularization, GATA2 expression in the osteogenic lineage may contribute to the anatomical and cellular microenvironment of the HSC niche required for hematopoiesis. Copyright © 2018 American Society for Microbiology.

  10. Tracking fusion of human mesenchymal stem cells after transplantation to the heart.

    PubMed

    Freeman, Brian T; Kouris, Nicholas A; Ogle, Brenda M

    2015-06-01

    Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i.e., the heart) and in distal organs. This study shows, for the first time, evidence of fusion products at sites distal from the target organ and data to suggest that migration occurs via the vasculature. These results will inform and improve future, MSC-based therapeutics. ©AlphaMed Press.

  11. Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up.

    PubMed

    Rodrigo, Sander F; van Ramshorst, Jan; Hoogslag, Georgette E; Boden, Helèn; Velders, Matthijs A; Cannegieter, Suzanne C; Roelofs, Helene; Al Younis, Imad; Dibbets-Schneider, Petra; Fibbe, Willem E; Zwaginga, Jaap Jan; Bax, Jeroen J; Schalij, Martin J; Beeres, Saskia L; Atsma, Douwe E

    2013-10-01

    In experimental studies, mesenchymal stem cell (MSC) transplantation in acute myocardial infarction (AMI) models has been associated with enhanced neovascularization and myogenesis. Clinical data however, are scarce. Therefore, the present study evaluates the safety and feasibility of intramyocardial MSC injection in nine patients, shortly after AMI during short-term and 5-year follow-up. Periprocedural safety analysis demonstrated one transient ischemic attack. No other adverse events related to MSC treatment were observed during 5-year follow-up. Clinical events were compared to a nonrandomized control group comprising 45 matched controls. A 5-year event-free survival after MSC-treatment was comparable to controls (89 vs. 91 %, P = 0.87). Echocardiographic imaging for evaluation of left ventricular function demonstrated improvements up to 5 years after MSC treatment. These findings were not significantly different when compared to controls. The present safety and feasibility study suggest that intramyocardial injection of MSC in patients shortly after AMI is feasible and safe up to 5-year follow-up.

  12. Expansion of mesenchymal stem cells under atmospheric carbon dioxide.

    PubMed

    Brodsky, Arthur Nathan; Zhang, Jing; Visconti, Richard P; Harcum, Sarah W

    2013-01-01

    Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system - which relies upon an elevated CO2 environment - typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self-renewal properties, and the ability to differentiate into multiple lineages after expansion. © 2013 American Institute of Chemical Engineers.

  13. Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses

    PubMed Central

    2014-01-01

    Background Mesenchymal stem cells (MSC) are multipotent progenitor cells characterized by their ability to both self-renew and differentiate into tissues of mesodermal origin. The plasticity or transdifferentiation potential of MSC is not limited to mesodermal derivatives, since under appropriate cell culture conditions and stimulation by bioactive factors, MSC have also been differentiated into endodermal (hepatocytes) and neuroectodermal (neurons) cells. The potential of MSC for hepatogenic and neurogenic differentiation has been well documented in different animal models; however, few reports are currently available on large animal models. In the present study we sought to characterize the hepatogenic and neurogenic differentiation and multipotent potential of bovine MSC (bMSC) isolated from bone marrow (BM) of abattoir-derived fetuses. Results Plastic-adherent bMSC isolated from fetal BM maintained a fibroblast-like morphology under monolayer culture conditions. Flow cytometric analysis demonstrated that bMSC populations were positive for MSC markers CD29 and CD73 and pluripotency markers OCT4 and NANOG; whereas, were negative for hematopoietic markers CD34 and CD45. Levels of mRNA of hepatic genes α-fetoprotein (AFP), albumin (ALB), alpha1 antitrypsin (α1AT), connexin 32 (CNX32), tyrosine aminotransferase (TAT) and cytochrome P450 (CYP3A4) were up-regulated in bMSC during a 28-Day period of hepatogenic differentiation. Functional analyses in differentiated bMSC cultures evidenced an increase (P < 0.05) in albumin and urea production and glycogen storage. bMSC cultured under neurogenic conditions expressed NESTIN and MAP2 proteins at 24 h of culture; whereas, at 144 h also expressed TRKA and PrPC. Levels of MAP2 and TRKA mRNA were up-regulated at the end of the differentiation period. Conversely, bMSC expressed lower levels of NANOG mRNA during both hepatogenic and neurogenic differentiation processes. Conclusion The expression patterns of linage-specific markers and the production of functional metabolites support the potential for hepatogenic and neurogenic differentiation of bMSC isolated from BM of abattoir-derived fetuses. The simplicity of isolation and the potential to differentiate into a wide variety of cell lineages lays the foundation for bMSC as an interesting alternative for investigation in MSC biology and eventual applications for regenerative therapy in veterinary medicine. PMID:25011474

  14. Effects of intra-articular injection of mesenchymal stem cells associated with platelet-rich plasma in a rabbit model of osteoarthritis.

    PubMed

    Hermeto, L C; DeRossi, R; Oliveira, R J; Pesarini, J R; Antoniolli-Silva, A C M B; Jardim, P H A; Santana, A E; Deffune, E; Rinaldi, J C; Justulin, L A

    2016-09-02

    The current study aims to evaluate the macroscopic and histological effects of autologous mesenchymal stem cells (MSC) and platelet-rich plasma on knee articular cartilage regeneration in an experimental model of osteoarthritis. Twenty-four rabbits were randomly divided into four groups: control group, platelet-rich plasma group, autologous MSC undifferentiated group, and autologous MSC differentiated into chondrocyte group. Collagenase solution was used to induce osteoarthritis, and treatments were applied to each group at 6 weeks following osteoarthritis induction. After 60 days of therapy, the animals were euthanized and the articular surfaces were subjected to macroscopic and histological evaluations. The adipogenic, chondrogenic, and osteogenic differentiation potentials of MSCs were evaluated. Macroscopic and histological examinations revealed improved tissue repair in the MSC-treated groups. However, no difference was found between MSC-differentiated and undifferentiated chondrocytes. We found that MSCs derived from adipose tissue and platelet-rich plasma were associated with beneficial effects in articular cartilage regeneration during experimental osteoarthritis.

  15. Donor Age of Human Platelet Lysate Affects Proliferation and Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Lohmann, Michael; Walenda, Gudrun; Hemeda, Hatim; Joussen, Sylvia; Drescher, Wolf; Jockenhoevel, Stefan; Hutschenreuter, Gabriele; Zenke, Martin; Wagner, Wolfgang

    2012-01-01

    The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet lysate (HPL). In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old) were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1), but it was significantly higher with HPLs from younger donors (<35 years) as compared to older donors (>45 years). Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal). HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f) frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1) or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3) were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation. PMID:22662236

  16. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis.

    PubMed

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-06-21

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.

  17. Development of Novel Monoclonal Antibodies that Define Differentiation Stages of Human Stromal (Mesenchymal) Stem Cells

    PubMed Central

    Andersen, Ditte C.; Kortesidis, Angela; Zannettino, Andrew C.W.; Kratchmarova, Irina; Chen, Li; Jensen, Ole N.; Teisner, Børge; Gronthos, Stan; Jensen, Charlotte H.; Kassem, Moustapha

    2011-01-01

    Human mesenchymal stem cells (hMSC) are currently being introduced for cell therapy, yet, antibodies specific for native and differentiated MSCs are required for their identification prior to clinical use. Herein, high quality antibodies against MSC surface proteins were developed by immunizing mice with hMSC, and by using a panel of subsequent screening methods. Flow cytometry analysis revealed that 83.5, 1.1, and 8.5% of primary cultures of hMSC were double positive for STRO-1 and either of DJ 3, 9, and 18, respectively. However, none of the three DJ antibodies allowed enrichment of clonogenic hMSC from BMMNCs as single reagents. Using mass-spectrometric analysis, we identified the antigen recognised by DJ3 as CD44, whereas DJ9 and DJ18 recognized HLA-DRB1 and Collagen VI, respectively. The identified proteins were highly expressed throughout in vitro osteogenic- and adipogenic differentiation. Interestingly, undifferentiated cells revealed a sole cytoplasmic distribution pattern of Collagen VI, which however changed to an extracellular matrix appearance upon osteogenic- and adipogenic differentiation. In relation to this, we found that STRO-1+/-/Collagen VI- sorted hMSC contained fewer differentiated alkaline phosphatase + cells compared to STRO-1+/-/Collagen VI+ hMSC, suggesting that Collagen VI on the cell membrane exclusively defines differentiated MSCs. In conclusion, we have generated a panel of high quality antibodies to be used for characterization of MSCs, and in addition our results may suggest that the DJ18 generated antibody against Collagen VI can be used for negative selection of cultured undifferentiated MSCs. PMID:21614487

  18. Dynamic compaction of human mesenchymal stem/precursor cells (MSC) into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6 and STC1)

    PubMed Central

    Bazhanov, Nikolay; Kuhlman, Jessica; Prockop, Darwin J.

    2013-01-01

    Human mesenchymal stem/precursor cells (MSC) are similar to some other stem/progenitor cells in that they compact into spheres when cultured in hanging drops or on non-adherent surfaces. Assembly of MSC into spheres alters many of their properties, including enhanced secretion of factors that mediate inflammatory and immune responses. Here we demonstrated that MSC spontaneously aggregated into sphere-like structures after injection into a subcutaneous air pouch or the peritoneum of mice. The structures were similar to MSC spheres formed in cultures demonstrated by the increased expression of genes for inflammation-modulating factors TSG6, STC1, and COX2, a key enzyme in production of PGE2. To identify the signaling pathways involved, hanging drop cultures were used to follow the time-dependent changes in the cells as they compacted into spheres. Among the genes up-regulated were genes for the stress-activated signaling pathway for IL1α/β, and the contact-dependent signaling pathway for Notch. An inhibitor of caspases reduced the up-regulation of IL1A/B expression, and inhibitors of IL1 signaling decreased production of PGE2, TSG6 and STC1. Also, inhibition of IL1A/B expression and secretion of PGE2 negated the anti-inflammatory effects of MSC spheres on stimulated macrophages. Experiments with γ-secretase inhibitors suggested that Notch signaling was also required for production of PGE2 but not TSG6 or STC1. The results indicated that assembly of MSC into spheres triggers caspase-dependent IL1 signaling and the secretion of modulators of inflammation and immunity. Similar aggregation in vivo may account for some of the effects observed with administration of the cells in animal models. PMID:23922312

  19. Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]).

    PubMed

    Bartolucci, Jorge; Verdugo, Fernando J; González, Paz L; Larrea, Ricardo E; Abarzua, Ema; Goset, Carlos; Rojo, Pamela; Palma, Ivan; Lamich, Ruben; Pedreros, Pablo A; Valdivia, Gloria; Lopez, Valentina M; Nazzal, Carolina; Alcayaga-Miranda, Francisca; Cuenca, Jimena; Brobeck, Matthew J; Patel, Amit N; Figueroa, Fernando E; Khoury, Maroun

    2017-10-27

    Umbilical cord-derived mesenchymal stem cells (UC-MSC) are easily accessible and expanded in vitro, possess distinct properties, and improve myocardial remodeling and function in experimental models of cardiovascular disease. Although bone marrow-derived mesenchymal stem cells have been previously assessed for their therapeutic potential in individuals with heart failure and reduced ejection fraction, no clinical trial has evaluated intravenous infusion of UC-MSCs in these patients. Evaluate the safety and efficacy of the intravenous infusion of UC-MSC in patients with chronic stable heart failure and reduced ejection fraction. Patients with heart failure and reduced ejection fraction under optimal medical treatment were randomized to intravenous infusion of allogenic UC-MSCs (Cellistem, Cells for Cells S.A., Santiago, Chile; 1×10 6 cells/kg) or placebo (n=15 per group). UC-MSCs in vitro, compared with bone marrow-derived mesenchymal stem cells, displayed a 55-fold increase in the expression of hepatocyte growth factor, known to be involved in myogenesis, cell migration, and immunoregulation. UC-MSC-treated patients presented no adverse events related to the cell infusion, and none of the patients tested at 0, 15, and 90 days presented alloantibodies to the UC-MSCs (n=7). Only the UC-MSC-treated group exhibited significant improvements in left ventricular ejection fraction at 3, 6, and 12 months of follow-up assessed both through transthoracic echocardiography ( P =0.0167 versus baseline) and cardiac MRI ( P =0.025 versus baseline). Echocardiographic left ventricular ejection fraction change from baseline to month 12 differed significantly between groups (+7.07±6.22% versus +1.85±5.60%; P =0.028). In addition, at all follow-up time points, UC-MSC-treated patients displayed improvements of New York Heart Association functional class ( P =0.0167 versus baseline) and Minnesota Living with Heart Failure Questionnaire ( P <0.05 versus baseline). At study completion, groups did not differ in mortality, heart failure admissions, arrhythmias, or incident malignancy. Intravenous infusion of UC-MSC was safe in this group of patients with stable heart failure and reduced ejection fraction under optimal medical treatment. Improvements in left ventricular function, functional status, and quality of life were observed in patients treated with UC-MSCs. URL: https://www.clinicaltrials.gov/ct2/show/NCT01739777. Unique identifier: NCT01739777. © 2017 The Authors.

  20. Osteoarthritis and stem cell therapy in humans: a systematic review.

    PubMed

    Jevotovsky, D S; Alfonso, A R; Einhorn, T A; Chiu, E S

    2018-06-01

    Osteoarthritis (OA) is a leading cause of disability in the world. Mesenchymal stem cells (MSCs) have been studied to treat OA. This review was performed to systematically assess the quality of literature and compare the procedural specifics surrounding MSC therapy for osteoarthritis. PubMed, CINAHL, EMBASE and Cochrane Central Register of Controlled Trials were searched for studies using MSCs for OA treatment (final search December 2017). Outcomes of interest included study evidence level, patient demographics, MSC protocol, treatment results and adverse events. Level I and II evidence articles were further analyzed. Sixty-one of 3,172 articles were identified. These studies treated 2,390 patients with osteoarthritis. Most used adipose-derived stem cells (ADSCs) (n = 29) or bone marrow-derived stem cells (BMSCs) (n = 30) though the preparation varied within group. 57% of the sixty-one studies were level IV evidence, leaving five level I and nine level II studies containing 288 patients to be further analyzed. Eight studies used BMSCs, five ADSCs and one peripheral blood stem cells (PBSCs). The risk of bias in these studies showed five level I studies at low risk with seven level II at moderate and two at high risk. While studies support the notion that MSC therapy has a positive effect on OA patients, there is limited high quality evidence and long-term follow-up. The present study summarizes the specifics of high level evidence studies and identifies a lack of consistency, including a diversity of MSC preparations, and thus a lack of reproducibility amongst these articles' methods. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. Clinical trial perspective for adult and juvenile Huntington's disease using genetically-engineered mesenchymal stem cells

    PubMed Central

    Deng, Peter; Torrest, Audrey; Pollock, Kari; Dahlenburg, Heather; Annett, Geralyn; Nolta, Jan A.; Fink, Kyle D.

    2016-01-01

    Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells (MSC) to secrete brain-derived neurotrophic factor (BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease (HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system. PMID:27335539

  2. Autologous mesenchymal stem cell therapy for progressive supranuclear palsy: translation into a phase I controlled, randomized clinical study

    PubMed Central

    2014-01-01

    Background Progressive Supranuclear Palsy (PSP) is a sporadic and progressive neurodegenerative disease which belongs to the family of tauopathies and involves both cortical and subcortical structures. No effective therapy is to date available. Methods/design Autologous bone marrow (BM) mesenchymal stem cells (MSC) from patients affected by different type of parkinsonisms have shown their ability to improve the dopaminergic function in preclinical and clinical models. It is also possible to isolate and expand MSC from the BM of PSP patients with the same proliferation rate and immuphenotypic profile as MSC from healthy donors. BM MSC can be efficiently delivered to the affected brain regions of PSP patients where they can exert their beneficial effects through different mechanisms including the secretion of neurotrophic factors. Here we propose a randomized, placebo-controlled, double-blind phase I clinical trial in patients affected by PSP with MSC delivered via intra-arterial injection. Discussion To our knowledge, this is the first clinical trial to be applied in a no-option parkinsonism that aims to test the safety and to exploit the properties of autologous mesenchymal stem cells in reducing disease progression. The study has been designed to test the safety of this “first-in-man” approach and to preliminarily explore its efficacy by excluding the placebo effect. Trial registration NCT01824121 PMID:24438512

  3. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells.

    PubMed

    Mizukami, Amanda; Fernandes-Platzgummer, Ana; Carmelo, Joana G; Swiech, Kamilla; Covas, Dimas T; Cabral, Joaquim M S; da Silva, Cláudia L

    2016-08-01

    Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis.

    PubMed

    Maria, Alexandre T J; Toupet, Karine; Maumus, Marie; Fonteneau, Guillaume; Le Quellec, Alain; Jorgensen, Christian; Guilpain, Philippe; Noël, Danièle

    2016-06-01

    Displaying immunosuppressive and trophic properties, mesenchymal stem/stromal cells (MSC) are being evaluated as promising therapeutic options in a variety of autoimmune and degenerative diseases. Although benefits may be expected in systemic sclerosis (SSc), a rare autoimmune disease with fibrosis-related mortality, MSC have yet to be evaluated in this specific condition. While autologous approaches could be inappropriate because of functional alterations in MSC from patients, the objective of the present study was to evaluate allogeneic and xenogeneic MSC in the HOCl-induced model of diffuse SSc. We also questioned the source of human MSC and compared bone marrow- (hBM-MSC) and adipose-derived MSC (hASC). HOCl-challenged BALB/c mice received intravenous injection of BM-MSC from syngeneic BALB/c or allogeneic C57BL/6 mice, and xenogeneic hBM-MSC or hASC (3 donors each). Skin thickness was measured during the experiment. At euthanasia, histology, immunostaining, collagen determination and RT-qPCR were performed in skin and lungs. Xenogeneic hBM-MSC were as effective as allogeneic or syngeneic BM-MSC in decreasing skin thickness, expression of Col1, Col3, α-Sma transcripts, and collagen content in skin and lungs. This anti-fibrotic effect was not associated with MSC migration to injured skin or with long-term MSC survival. Interestingly, compared with hBM-MSC, hASC were significantly more efficient in reducing skin fibrosis, which was related to a stronger reduction of TNFα, IL1β, and enhanced ratio of Mmp1/Timp1 in skin and lung tissues. Using primary cells isolated from 3 murine and 6 human individuals, this preclinical study demonstrated similar therapeutic effects using allogeneic or xenogeneic BM-MSC while ASC exerted potent anti-inflammatory and remodeling properties. This sets the proof-of-concept prompting to evaluate the therapeutic efficacy of allogeneic ASC in SSc patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype.

    PubMed

    Balaji, Swathi; Keswani, Sundeep G; Crombleholme, Timothy M

    2012-08-01

    Mesenchymal stem cells (MSCs) are key to regenerative wound healing. MSCs have spatial memory and respond to local environment. MSCs orchestrate wound repair by: (1) structural repair via cellular differentiation; (2) immune-modulation; (3) secretion of growth factors that drive neovascularization and re-epithelialization; and (4) mobilization of resident stem cells. Autologous bone-marrow-derived cells and MSCs demonstrate improved healing and tissue-integrity in animal models and clinical trials. However, the effects are variable and the mechanisms of MSC-mediated wound healing are not fully understood. The mammalian MSC niche and signaling sequences and factors affecting their homing, differentiation, viability, and safety need to be characterized to get full benefits of MSC cellular therapy. MSCs can be isolated from bone-marrow, and less-invasive tissues such as adipose, gingiva, muscle, and umbilical cord, with similar functional effects. However, isolation, culture conditions, and markers used to identify and trace the lineage of these MSCs have not been standardized, which is crucial to determine the extent to which MSCs act as multipotent stem cells or sources of secreted factors in wounds. In chronic nonhealing wounds, where efficacy of conventional therapies is unsatisfactory, autotransplantation of MSCs could accelerate wound healing, promote regeneration and restoration of tissue integrity, and reduce recurrence of wounds at characteristically predisposed sites. Regenerative medicine and novel wound therapies using autologous stem cells holds great promise for clinical management of difficult wounds. The ideal candidate stem cells can be used to repopulate the wound bed to mediate appropriate epidermal and dermal regeneration and promote efficient wound repair, while modulating the immune system to prevent infection.

  6. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS

    PubMed Central

    Suzuki, Masatoshi; McHugh, Jacalyn; Tork, Craig; Shelley, Brandon; Hayes, Antonio; Bellantuono, Ilaria; Aebischer, Patrick; Svendsen, Clive N.

    2008-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease in which there is a progressive loss of motor neurons and their connections to muscle leading to paralysis. To maintain muscle connections in a rat model of familial ALS, we performed intramuscular transplantation with human mesenchymal stem cells (hMSC) as “Trojan horses” to deliver growth factors to the terminals of motor neurons as well as the skeletal muscles. hMSC engineered to secrete glial cell line derived neurotrophic factor (hMSC-GDNF) were transplanted bilaterally into three muscle groups. The cells survived within the muscle, released GDNF, and significantly increased the number of neuromuscular connections and motor neuron cell bodies in the spinal cord at mid stages of the disease. Furthermore, intramuscular transplantation with hMSC-GDNF could ameliorate motor neuron loss within the spinal cord which connected to the limb muscles with transplants. While disease onset was similar in all animals, hMSC-GDNF significantly delayed disease progression, increasing overall lifespan by up to 28 days, which is one of the longest effects on survival noted for this rat model of familial ALS. This pre-clinical data provides a novel and practical approach towards ex vivo gene therapy for ALS. PMID:18797452

  7. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.

    PubMed

    Iudicone, Paola; Fioravanti, Daniela; Bonanno, Giuseppina; Miceli, Michelina; Lavorino, Claudio; Totta, Pierangela; Frati, Luigi; Nuti, Marianna; Pierelli, Luca

    2014-01-27

    Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures.

  8. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells

    PubMed Central

    2014-01-01

    Background Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. Methods PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. Results PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. Conclusion The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures. PMID:24467837

  9. Signal Factors Secreted by 2D and Spheroid Mesenchymal Stem Cells and by Cocultures of Mesenchymal Stem Cells Derived Microvesicles and Retinal Photoreceptor Neurons

    PubMed Central

    Mao, Mao; Zhou, Liang

    2017-01-01

    We aim to identify levels of signal factors secreted by MSCs cultured in 2D monolayers (2D-MSCs), spheroids (spheroids MSCs), and cocultures of microvesicles (MVs) derived from 2D-MSCs or spheroid MSCs and retinal photoreceptor neurons. We seeded 2D-MSCs, spheroid MSCs, and cells derived from spheroids MSCs at equal numbers. MVs isolated from all 3 culture conditions were incubated with 661W cells. Levels of 51 signal factors in conditioned medium from those cultured conditions were quantified with bead-based assay. We found that IL-8, IL-6, and GROα were the top three most abundant signal factors. Moreover, compared to 2D-MSCs, levels of 11 cytokines and IL-2Rα were significantly increased in conditioned medium from spheroid MSCs. Finally, to test if enhanced expression of these factors reflects altered immunomodulating activities, we assessed the effect of 2D-MSC-MVs and 3D-MSC-MVs on CD14+ cell chemoattraction. Compared to 2D-MSC-MVs, 3D-MSC-MVs significantly decreased the chemotactic index of CD14+ cells. Our results suggest that spheroid culture conditions improve the ability of MSCs to selectively secrete signal factors. Moreover, 3D-MSC-MVs also possessed an enhanced capability to promote signal factors secretion compared to 2D-MSC-MVs and may possess enhanced immunomodulating activities and might be a better regenerative therapy for retinal degenerative diseases. PMID:28194184

  10. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair

    PubMed Central

    Fellows, Christopher R.; Matta, Csaba; Zakany, Roza; Khan, Ilyas M.; Mobasheri, Ali

    2016-01-01

    Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple “one size fits all,” but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue. PMID:28066501

  11. Treprostinil indirectly regulates endothelial colony forming cell angiogenic properties by increasing VEGF-A produced by mesenchymal stem cells.

    PubMed

    Smadja, David M; Levy, Marilyne; Huang, Lan; Rossi, Elisa; Blandinières, Adeline; Israel-Biet, Dominique; Gaussem, Pascale; Bischoff, Joyce

    2015-10-01

    Pulmonary vasodilators and prostacyclin therapy in particular, have markedly improved the outcome of patients with pulmonary hypertension (PH). Endothelial dysfunction is a key feature of PH, and we previously reported that treprostinil therapy increases number and proliferative potential of endothelial colony forming cells (ECFC) isolated from PH patients' blood. In the present study, the objective was to determine how treprostinil contributes to the proangiogenic functions of ECFC. We examined the effect of treprostinil on ECFC obtained from cord blood in terms of colony numbers, proliferative and clonogenic properties in vitro, as well as in vivo vasculogenic properties. Surprisingly, treprostinil inhibited viability of cultured ECFC but did not modify their clonogenic properties or the endothelial differentiation potential from cord blood stem cells. Treprostinil treatment significantly increased the vessel-forming ability of ECFC combined with mesenchymal stem cells (MSC) in Matrigel implanted in nude mice. In vitro, ECFC proliferation was stimulated by conditioned media from treprostinil-pretreated MSC, and this effect was inhibited either by the use of VEGF-A blocking antibodies or siRNA VEGF-A in MSC. Silencing VEGF-A gene in MSC also blocked the pro-angiogenic effect of treprostinil in vivo. In conclusion, increased VEGF-A produced by MSC can account for the increased vessel formation observed during treprostinil treatment. The clinical relevance of these data was confirmed by the high level of VEGF-A detected in plasma from patients with paediatric PH who had been treated with treprostinil. Moreover, our results suggest that VEGF-A level in patients could be a surrogate biomarker of treprostinil efficacy.

  12. Time-Dependent Recovery of Human Synovial Membrane Mesenchymal Stem Cell Function After High-Dose Steroid Therapy: Case Report and Laboratory Study.

    PubMed

    Yasui, Yukihiko; Hart, David A; Sugita, Norihiko; Chijimatsu, Ryota; Koizumi, Kota; Ando, Wataru; Moriguchi, Yu; Shimomura, Kazunori; Myoui, Akira; Yoshikawa, Hideki; Nakamura, Norimasa

    2018-03-01

    The use of mesenchymal stem cells from various tissue sources to repair injured tissues has been explored over the past decade in large preclinical models and is now moving into the clinic. To report the case of a patient who exhibited compromised mesenchymal stem cell (MSC) function shortly after use of high-dose steroid to treat Bell's palsy, who recovered 7 weeks after therapy. Case report and controlled laboratory study. A patient enrolled in a first-in-human clinical trial for autologous implantation of a scaffold-free tissue engineered construct (TEC) derived from synovial MSCs for chondral lesion repair had a week of high-dose steroid therapy for Bell's palsy. Synovial tissue was harvested for MSC preparation after a 3-week recovery period and again at 7 weeks after therapy. The MSC proliferation rates and cell surface marker expression profiles from the 3-week sample met conditions for further processing. However, the cells failed to generate a functional TEC. In contrast, MSCs harvested at 7 weeks after steroid therapy were functional in this regard. Further in vitro studies with MSCs and steroids indicated that the effect of in vivo steroids was likely a direct effect of the drug on the MSCs. This case suggests that MSCs are transiently compromised after high-dose steroid therapy and that careful consideration regarding timing of MSC harvest is critical. The drug profiles of MSC donors and recipients must be carefully monitored to optimize opportunities to successfully repair damaged tissues.

  13. Attenuation of aortic aneurysms with stem cells from different genders.

    PubMed

    Davis, John P; Salmon, Morgan; Pope, Nicolas H; Lu, Guanyi; Su, Gang; Sharma, Ashish K; Ailawadi, Gorav; Upchurch, Gilbert R

    2015-11-01

    No medical therapies are yet available to slow abdominal aortic aneurysm (AAA) growth. This study sought to investigate the effect of different genders of bone marrow-derived mesenchymal stem cells (MSC) on AAA growth in a murine AAA model. Given the decreased rate of AAA in women, it is hypothesized that female MSC would attenuate AAA growth more so than male MSC. Aortas of 8-10-wk-old male C57Bl/6 mice were perfused with purified porcine pancreatic elastase to induce AAA formation. Bone marrow-derived MSC from male and female mice were dosed via tail vein injection (3 million cells per dose, 500 μL of volume per injection) on postaortic perfusion days 1, 3, and 5. Aortas were harvested after 14 d. Mean aortic dilation in the elastase group was 121 ± 5.2% (mean ± standard error of the mean), while male MSC inhibited AAA growth (87.8 ± 6.9%, P = 0.008) compared with that of elastase. Female MSC showed the most marked attenuation of AAA growth (75.2 ± 8.3% P = 0.0004). Proinflammatory cytokines tumor necrosis factor α, interleukin 1β, and monocyte chemotactic protein-1 (MCP-1) were only decreased in tissues treated with female MSC (P = 0.017, P = 0.001, and P < 0.0001, respectively, when compared with elastase). These data exhibit that female MSC more strongly attenuate AAA growth in the murine model. Furthermore, female MSC and male MSC inhibit proinflammatory cytokines at varying levels. The effects of MSC on aortic tissue offer a promising insight into biologic therapies for future medical treatment of AAAs in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Mesenchymal Stem Cell Spheroids Retain Osteogenic Phenotype Through α2β1 Signaling

    PubMed Central

    Murphy, Kaitlin C.; Hoch, Allison I.; Harvestine, Jenna N.; Zhou, Dejie

    2016-01-01

    The induction of mesenchymal stem cells (MSCs) toward the osteoblastic lineage using osteogenic supplements prior to implantation is one approach under examination to enhance their bone-forming potential. MSCs rapidly lose their induced phenotype upon removal of the soluble stimuli; however, their bone-forming potential can be sustained when provided with continued instruction via extracellular matrix (ECM) cues. In comparison with dissociated cells, MSC spheroids exhibit improved survival and secretion of trophic factors while maintaining their osteogenic potential. We hypothesized that entrapment of MSC spheroids formed from osteogenically induced cells would exhibit better preservation of their bone-forming potential than would dissociated cells from monolayer culture. Spheroids exhibited comparable osteogenic potential and increased proangiogenic potential with or without osteogenic preconditioning versus monolayer-cultured MSCs. Spheroids were then entrapped in collagen hydrogels, and the osteogenic stimulus was removed. In comparison with entrapped dissociated MSCs, spheroids exhibited significantly increased markers of osteogenic differentiation. The capacity of MSC spheroids to retain their osteogenic phenotype upon withdrawal of inductive cues was mediated by α2β1 integrin binding to cell-secreted ECM. These results demonstrate the capacity of spheroidal culture to sustain the mineral-producing phenotype of MSCs, thus enhancing their contribution toward bone formation and repair. Significance Despite the promise of mesenchymal stem cells (MSCs) for cell-based therapies for tissue repair and regeneration, there is little evidence that transplanted MSCs directly contribute to new bone formation, suggesting that induced cells rapidly lose their osteogenic phenotype or undergo apoptosis. In comparison with dissociated cells, MSC spheroids exhibit increased trophic factor secretion and improved cell survival. The loss of phenotype represents a significant clinical challenge for cell therapies, yet there is no evidence for whether MSC spheroids retain their osteogenic phenotype upon entrapment in a clinically relevant biomaterial. These findings demonstrate that MSC spheroids retain their osteogenic phenotype better than do dissociated MSCs, and this is due to integrin engagement with the cell-secreted extracellular matrix. These data provide evidence for a novel approach for potentiating the use of MSCs in bone repair. PMID:27365484

  15. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    PubMed Central

    Sundelacruz, Sarah; Levin, Michael

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na+/K+ ATPase inhibitor, or by treatment with high concentrations of extracellular K+. To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved ability to achieve correct adipocyte morphology compared with nondepolarized osteoblasts. The present study thus demonstrates that depolarization reduces the differentiated phenotype of hMSC-derived cells and improves their transdifferentiation capacity, but does not restore a stem-like genetic profile. Through global transcript profiling of depolarized osteoblasts, we identified pathways that may mediate the effects of voltage signaling on cell state, which will require a detailed mechanistic inquiry in future studies. PMID:23738690

  16. Mesenchymal stem cells do not suppress lymphoblastic leukemic cell line proliferation.

    PubMed

    Mousavi Niri, Neda; Jaberipour, Mansooreh; Razmkhah, Mahboobeh; Ghaderi, Abbas; Habibagahi, Mojtaba

    2009-12-01

    Several studies have demonstrated the immunosuppresive effects of mesenchymal stem cells (MSCs) in allogeneic or mitogenic interactions. Cell-cell contact inhibition and secretion of suppressive soluble factors have been suggested in this regard. To investigate if adipose derived MSCs could inhibit Jurkat lymphoblastic leukemia T cell proliferation during coculture. Adherent cells with the ability of cellular growth were isolated from normal adipose tissues. Initial characterization of growing cells by flow cytometry suggested their mesenchymal stem cell characteristics. Cells were maintained in culture and used during third to fifth culture passages. Jurkat or allogeneic peripheral blood mononuclear cells (PBMCs) were labeled with carboxy fluorescein diacetate succinimidyl ester and cocultured with increasing doses of MSCs or MSC culture supernatant. Proliferation of PBMCs or Jurkat cells under these conditions was assessed by flow cytometry after 2 and 3 days of coculture, respectively. Results showed the expression of CD105, CD166 and CD44, and the absence of CD45, CD34 and CD14 on the surface of MSC like cells. Moreover, initial differentiation studies showed the potential of cell differentiation into hepatocytes. Comparison of Jurkat cell proliferation in the presence and absence of MSCs showed no significant difference, with 70% of cells displaying signs of at least one cell division. Similarly, the highest concentration of MSC culture supernatant (50% vol/vol) had no significant effect on Jurkat cell proliferation (p>0.6). The same MSC lots significantly suppressed the allogeneic PHA activated PBMCs under similar culture conditions. Using Jurkat cells as a model of leukemia T cells, our results indicated an uncertainty about the suppressive effect of MSCs and their inhibitory metabolites on tumor or leukemia cell proliferation. Additional systematic studies with MSCs of different sources are needed to fully characterize the immunological properties of MSCs before planning clinical applications.

  17. Advances of human bone marrow-derived mesenchymal stem cells in the treatment of cartilage defects: a systematic review.

    PubMed

    Gopal, Kaliappan; Amirhamed, Haji Alizadeh; Kamarul, Tunku

    2014-06-01

    Mesenchymal stem cell (MSC)-based therapies represent a new option for treating damaged cartilage. However, the outcomes following its clinical application have seldom been previously compared. The present paper presents the systematic review of current literatures on MSC-based therapy for cartilage repair in clinical applications. Ovid, Scopus, PubMed, ISI Web of Knowledge and Google Scholar online databases were searched using several keywords, which include "cartilage" and "stem cells". Only studies using bone marrow-derived MSC (BM-MSC) to treat cartilage defects clinically were included in this review. The clinical outcomes were compared, and the quality of the tissue repair was analysed where possible. Of the 996 articles, only six (n = 6) clinical studies have described the use of BM-MSC in clinical applications. Two studies were cohort observational trials, three were case series, and one was a case report. In the two comparative trials, BM-MSCs produced superior repair to cartilage treatment without cells and have comparable outcomes to autologous chondrocyte implantation. The case series and case-control studies have demonstrated that use of BM-MSCs resulted in better short- to long-term clinical outcomes with minimal complications. In addition, histological analyses in two studies have resulted in good repair tissue formation at the damaged site, composed mainly of hyaline-like cartilage. Although results of the respective studies are highly indicative that BM-MSC-based therapy is superior, due to the differences in methods and selection criteria used, it was not possible to make direct comparison between the studies. In conclusion, published studies do suggest that BM-MSCs could provide superior cartilage repair. However, due to limited number of reports, more robust studies might be required before a definitive conclusion can be drawn.

  18. Quantitative Raman spectral changes of the differentiation of mesenchymal stem cells into islet-like cells by biochemical component analysis and multiple peak fitting

    NASA Astrophysics Data System (ADS)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; He, Yingtian; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-12-01

    Mesenchymal stem cells (MSCs) differentiate into islet-like cells, providing a possible solution for type I diabetes treatment. To search for the precise molecular mechanism of the directional differentiation of MSC-derived islet-like cells, biomolecular composition, and structural conformation information during MSC differentiation, is required. Because islet-like cells lack specific surface markers, the commonly employed immunostaining technique is not suitable for their identification, physical separation, and enrichment. Combining Raman spectroscopic data, a fitting accuracy-improved biochemical component analysis, and multiple peaks fitting approach, we identified the quantitative biochemical and intensity change of Raman peaks that show the differentiation of MSCs into islet-like cells. Along with increases in protein and glycogen content, and decreases in deoxyribonucleic acid and ribonucleic acid content, in islet-like cells relative to MSCs, it was found that a characteristic peak of insulin (665 cm-1) has twice the intensity in islet-like cells relative to MSCs, indicating differentiation of MSCs into islet-like cells was successful. Importantly, these Raman signatures provide useful information on the structural and pathological states during MSC differentiation and help to develop noninvasive and label-free Raman sorting methods for stem cells and their lineages.

  19. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    PubMed

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells

    PubMed Central

    2012-01-01

    Background Various by-products of the cellular metabolism, such as reactive carbonyl species (RCS) are potentially harmful to cells and tissues, and play a role in many physiological and pathological processes. Among various RCS is the highly reactive dicarbonyl glyoxal (GO), which is a natural physiological metabolite produced by the auto-oxidation of glucose, and can form covalent adducts known as advanced glycation endproducts (AGE). We have previously reported that GO accelerates ageing and causes premature senescence in normal human skin fibroblasts. Results Using a bone marrow-derived telomerase-immortalised mesenchymal stem cell line hMSC-TERT we have observed that an exposure of cells to 0.75 mM and 1 mM GO induces irreversible cellular senescence within 3 days. Induction of senescence in hMSC-TERT was demonstrated by a variety of markers, including characteristic cell morphology and enlargement, vacuolisation, multinucleation, induction of senescence associated β-galactosidase, cell cycle arrest, and increased levels of a cell cycle inhibitor p16. These changes were accompanied by increased extent of DNA breaks as measured by the comet assay, and increased levels of the AGE product, carboxymethyl-lysine (CML). Furthermore, the in vitro differentiation potential of hMSC-TERT to become functional osteoblasts was highly reduced in GO-treated stem cells, as determined by alkaline phosphatase (ALP) activity and mineralized matrix (MM) formation. Conclusions The results of our study imply that an imbalanced glucose metabolism can reduce the functioning ability of stem cells in vivo both during ageing and during stem cell-based therapeutic interventions. PMID:22424056

  1. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model.

    PubMed

    Gómez-Mauricio, Guadalupe; Moscoso, Isabel; Martín-Cancho, María-Fernanda; Crisóstomo, Verónica; Prat-Vidal, Cristina; Báez-Díaz, Claudia; Sánchez-Margallo, Francisco M; Bernad, Antonio

    2016-07-16

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration.

  2. Aging of mesenchymal stem cell in vitro

    PubMed Central

    Bonab, Mandana Mohyeddin; Alimoghaddam, Kamran; Talebian, Fatemeh; Ghaffari, Syed Hamid; Ghavamzadeh, Ardeshir; Nikbin, Behrouz

    2006-01-01

    Background A hot new topic in medical treatment is the use of mesenchymal stem cells (MSC) in therapy. The low frequency of this subpopulation of stem cells in bone marrow (BM) necessitates their in vitro expansion prior to clinical use. We evaluated the effect of long term culture on the senescence of these cells. Results The mean long term culture was 118 days and the mean passage number was 9. The average number of PD decreased from 7.7 to 1.2 in the 10th passage. The mean telomere length decreased from 9.19 Kbp to 8.7 kbp in the 9th passage. Differentiation potential dropped from the 6th passage on. The culture's morphological abnormalities were typical of the Hayflick model of cellular aging. Conclusion We believe that MSC enter senescence almost undetectably from the moment of in vitro culturing. Simultaneously these cells are losing their stem cell characteristics. Therefore, it is much better to consider them for cell and gene therapy early on. PMID:16529651

  3. Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587.

    PubMed

    Figueroa, Javier; Phillips, Lynette M; Shahar, Tal; Hossain, Anwar; Gumin, Joy; Kim, Hoon; Bean, Andrew J; Calin, George A; Fueyo, Juan; Walters, Edgar T; Kalluri, Raghu; Verhaak, Roel G; Lang, Frederick F

    2017-11-01

    Tumor-stromal communications impact tumorigenesis in ways that are incompletely understood. Here, we show that glioma-associated human mesenchymal stem cells (GA-hMSC), a newly identified stromal component of glioblastoma, release exosomes that increase the proliferation and clonogenicity of tumor-initiating glioma stem-like cells (GSC). This event leads to a significantly greater tumor burden and decreased host survival compared with untreated GSCs in orthotopic xenografts. Analysis of the exosomal content identified miR-1587 as a mediator of the exosomal effects on GSCs, in part via downregulation of the tumor-suppressive nuclear receptor corepressor NCOR1. Our results illuminate the tumor-supporting role for GA-hMSCs by identifying GA-hMSC-derived exosomes in the intercellular transfer of specific miRNA that enhance the aggressiveness of glioblastoma. Cancer Res; 77(21); 5808-19. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Anti-Tumor Effect of Adipose Tissue Derived-Mesenchymal Stem Cells Expressing Interferon-β and Treatment with Cisplatin in a Xenograft Mouse Model for Canine Melanoma

    PubMed Central

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors. PMID:24040358

  5. Concomitant inhibition of prolyl hydroxylases and ROCK initiates differentiation of mesenchymal stem cells and PC12 towards the neuronal lineage.

    PubMed

    Pacary, Emilie; Petit, Edwige; Bernaudin, Myriam

    2008-12-12

    This study demonstrates that a prolyl hydroxylase inhibitor, FG-0041, is able, in combination with the ROCK inhibitor, Y-27632, to initiate differentiation of mesenchymal stem cells (MSCs) into neuron-like cells. FG-0041/Y-27632 co-treatment provokes morphological changes into neuron-like cells, increases neuronal marker expression and provokes modifications of cell cycle-related gene expression consistent with a cell cycle arrest of MSC, three events showing the engagement of MSC towards the neuronal lineage. Moreover, as we observed in our previous studies with cobalt chloride and desferroxamine, the activation of HIF-1 by this prolyl hydroxylase inhibitor is potentiated by Y-27632 which could explain at least in part the effect of this co-treatment on MSC neuronal differentiation. In addition, we show that this co-treatment enhances neurite outgrowth and tyrosine hydroxylase expression in PC12 cells. Altogether, these results evidence that concomitant inhibition of prolyl hydroxylases and ROCK represents a relevant protocol to initiate neuronal differentiation.

  6. Comparison of allogeneic platelet lysate and fetal bovine serum for in vitro expansion of equine bone marrow-derived mesenchymal stem cells.

    PubMed

    Seo, Jong-pil; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-10-01

    Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy and tissue engineering approaches. Fetal bovine serum (FBS) is commonly used for in vitro MSC expansion; however, the use of FBS may be associated with ethical, scientific, and safety issues. This study aimed to compare the ability of allogeneic platelet lysate (PL) and FBS to cause equine bone marrow-derived MSC expansion. MSCs were isolated from bone marrow aspirate in media supplemented with either PL or FBS, and cell proliferation properties and characteristics were examined. There were no significant differences in MSC yield, colony-forming unit-fibroblast (CFU-F) assay, and population doubling time between PL and FBS cultures. In addition, both PL-MSCs and FBS-MSCs showed similar results in term of ALP staining, osteogenic differentiation, and RT-PCR, although there were subtle differences in morphology, growth pattern, and adhesive properties. These results suggest that PL is a suitable alternative to FBS for use in equine MSC expansion, without the problems related to FBS use. Published by Elsevier India Pvt Ltd.

  7. Injection of human mesenchymal stem cells improves healing of vocal folds after scar excision--a xenograft analysis.

    PubMed

    Svensson, Bengt; Nagubothu, Srinivasa R; Cedervall, Jessica; Chan, Roger W; Le Blanc, Katrina; Kimura, Miwako; Ährlund-Richter, Lars; Tolf, Anna; Hertegård, Stellan

    2011-10-01

    Using a xenograft model the aim was to analyze if injection of human mesenchymal stem cells (hMSC) into the rabbit vocal fold (VF), after excision of an established scar, can improve the functional healing of the VF. Prospective design with an experimental xenograft model. The VFs of 12 New Zealand rabbits were injured by a bilateral localized resection. After 9 weeks the scar after the resection was excised and hMSC were injected into the VFs. After another 10 weeks 10 VFs were dissected and stained for histology. Lamina propria thickness and relative content of collagen type I were measured. Viscoelasticity of 14 VFs at phonatory frequencies was quantified by a simple-shear rheometer. The hMSC survival was determined using a human DNA specific reference probe, that is, FISH analysis. The viscoelastic measurements, that is, dynamic viscosity and elastic shear modulus for the hMSC-treated VFs, were found to be similar to those of normal controls and were significantly lower than those of untreated controls (P < .05). A significant reduction in lamina propria thickness was also shown for the hMSC treated VFs compared with the untreated VFs (P < .05). This histologic finding corresponded with the viscoelastic results. No hMSC survived 10 weeks after the injection. Human mesenchymal stem cells injected into the rabbit VF following the excision of a chronic scar, were found to enhance the functional healing of the VF with reduced lamina propria thickness and restored viscoelastic shear properties. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. The effect of ATM kinase inhibition on the initial response of human dental pulp and periodontal ligament mesenchymal stem cells to ionizing radiation.

    PubMed

    Cmielova, Jana; Havelek, Radim; Kohlerova, Renata; Soukup, Tomas; Bruckova, Lenka; Suchanek, Jakub; Vavrova, Jirina; Mokry, Jaroslav; Rezacova, Martina

    2013-07-01

    This study evaluates early changes in human mesenchymal stem cells (MSC) isolated from dental pulp and periodontal ligament after γ-irradiation and the effect of ataxia-telangiectasia mutated (ATM) inhibition. MSC were irradiated with 2 and 20 Gy by (60)Co. For ATM inhibition, specific inhibitor KU55933 was used. DNA damage was measured by Comet assay and γH2AX detection. Cell cycle distribution and proteins responding to DNA damage were analyzed 2-72 h after the irradiation. The irradiation of MSC causes an increase in γH2AX; the phosphorylation was ATM-dependent. Irradiation activates ATM kinase, and the level of p53 protein is increased due to its phosphorylation on serine15. While this phosphorylation of p53 is ATM-dependent in MSC, the increase in p53 was not prevented by ATM inhibition. A similar trend was observed for Chk1 and Chk2. The increase in p21 is greater without ATM inhibition. ATM inhibition also does not fully abrogate the accumulation of irradiated MSC in the G2-phase of the cell-cycle. In irradiated MSC, double-strand breaks are tagged quickly by γH2AX in an ATM-dependent manner. Although phosphorylations of p53(ser15), Chk1(ser345) and Chk2(thr68) are ATM-dependent, the overall amount of these proteins increases when ATM is inhibited. In both types of MSC, ATM-independent mechanisms for cell-cycle arrest in the G2-phase are triggered.

  9. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair.

    PubMed

    Li, Yueying; Liu, Tie; Van Halm-Lutterodt, Nicholas; Chen, JiaYu; Su, Qingjun; Hai, Yong

    2016-02-17

    An attempt was made to reprogram peripheral blood cells into human induced pluripotent stem cell (hiPSCs) as a new cell source for cartilage repair. We generated chondrogenic lineage from human peripheral blood via hiPSCs using an integration-free method. Peripheral blood cells were either obtained from a human blood bank or freshly collected from volunteers. After transforming peripheral blood cells into iPSCs, the newly derived iPSCs were further characterized through karyotype analysis, pluripotency gene expression and cell differentiation ability. iPSCs were differentiated through multiple steps, including embryoid body formation, hiPSC-mesenchymal stem cell (MSC)-like cell expansion, and chondrogenic induction for 21 days. Chondrocyte phenotype was then assessed by morphological, histological and biochemical analysis, as well as the chondrogenic expression. hiPSCs derived from peripheral blood cells were successfully generated, and were characterized by fluorescent immunostaining of pluripotent markers and teratoma formation in vivo. Flow cytometric analysis showed that MSC markers CD73 and CD105 were present in monolayer cultured hiPSC-MSC-like cells. Both alcian blue and toluidine blue staining of hiPSC-MSC-chondrogenic pellets showed as positive. Immunohistochemistry of collagen II and X staining of the pellets were also positive. The sulfated glycosaminoglycan content was significantly increased, and the expression levels of the chondrogenic markers COL2, COL10, COL9 and AGGRECAN were significantly higher in chondrogenic pellets than in undifferentiated cells. These results indicated that peripheral blood cells could be a potential source for differentiation into chondrogenic lineage in vitro via generation of mesenchymal progenitor cells. This study supports the potential applications of utilizing peripheral blood cells in generating seed cells for cartilage regenerative medicine in a patient-specific and cost-effective approach.

  10. Bone Marrow Mesenchymal Stem Cells Enhance the Differentiation of Human Switched Memory B Lymphocytes into Plasma Cells in Serum-Free Medium

    PubMed Central

    Gervais-St-Amour, Catherine

    2016-01-01

    The differentiation of human B lymphocytes into plasma cells is one of the most stirring questions with regard to adaptive immunity. However, the terminal differentiation and survival of plasma cells are still topics with much to be discovered, especially when targeting switched memory B lymphocytes. Plasma cells can migrate to the bone marrow in response to a CXCL12 gradient and survive for several years while secreting antibodies. In this study, we aimed to get closer to niches favoring plasma cell survival. We tested low oxygen concentrations and coculture with mesenchymal stem cells (MSC) from human bone marrow. Besides, all cultures were performed using an animal protein-free medium. Overall, our model enables the generation of high proportions of CD38+CD138+CD31+ plasma cells (≥50%) when CD40-activated switched memory B lymphocytes were cultured in direct contact with mesenchymal stem cells. In these cultures, the secretion of CXCL12 and TGF-β, usually found in the bone marrow, was linked to the presence of MSC. The level of oxygen appeared less impactful than the contact with MSC. This study shows for the first time that expanded switched memory B lymphocytes can be differentiated into plasma cells using exclusively a serum-free medium. PMID:27872867

  11. Imaging mesenchymal stem cells containing single wall nanotube nanoprobes in a 3D scaffold using photo-thermal optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Connolly, Emma; Subhash, Hrebesh M.; Leahy, Martin; Rooney, Niall; Barry, Frank; Murphy, Mary; Barron, Valerie

    2014-02-01

    Despite the fact, that a range of clinically viable imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), photo emission tomography (PET), ultrasound and bioluminescence imaging are being optimised to track cells in vivo, many of these techniques are subject to limitations such as the levels of contrast agent required, toxic effects of radiotracers, photo attenuation of tissue and backscatter. With the advent of nanotechnology, nanoprobes are leading the charge to overcome these limitations. In particular, single wall nanotubes (SWNT) have been shown to be taken up by cells and as such are effective nanoprobes for cell imaging. Consequently, the main aim of this research is to employ mesenchymal stem cells (MSC) containing SWNT nanoprobes to image cell distribution in a 3D scaffold for cartilage repair. To this end, MSC were cultured in the presence of 32μg/ml SWNT in cell culture medium (αMEM, 10% FBS, 1% penicillin/streptomycin) for 24 hours. Upon confirmation of cell viability, the MSC containing SWNT were encapsulated in hyaluronic acid gels and loaded on polylactic acid polycaprolactone scaffolds. After 28 days in complete chondrogenic medium, with medium changes every 2 days, chondrogenesis was confirmed by the presence of glycosaminoglycan. Moreover, using photothermal optical coherence tomography (PT-OCT), the cells were seen to be distributed through the scaffold with high resolution. In summary, these data reveal that MSC containing SWNT nanoprobes in combination with PT-OCT offer an exciting opportunity for stem cell tracking in vitro for assessing seeding scaffolds and in vivo for determining biodistribution.

  12. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation.

    PubMed

    Zhao, Ke; Lou, Rui; Huang, Fen; Peng, Yanwen; Jiang, Zujun; Huang, Ke; Wu, Xiuli; Zhang, Yu; Fan, Zhiping; Zhou, Hongsheng; Liu, Can; Xiao, Yang; Sun, Jing; Li, Yangqiu; Xiang, Peng; Liu, Qifa

    2015-01-01

    Refractory acute graft-versus-host disease (aGVHD) is a major cause of death after allogeneic hematopoietic stem cell transplantation. This study evaluated the immunomodulation effects of mesenchymal stromal cells (MSCs) from bone marrow of a third-party donor for refractory aGVHD. Forty-seven patients with refractory aGVHD were enrolled: 28 patients receiving MSC and 19 patients without MSC treatment. MSCs were given at a median dose of 1 × 10(6) cells/kg weekly until patients got complete response or received 8 doses of MSCs. After 125 doses of MSCs were administered, with a median of 4 doses (range, 2 to 8) per patient, overall response rate was 75% in the MSC group compared with 42.1% in the non-MSC group (P = .023). The incidence of cytomegalovirus, Epstein-Barr virus infections, and tumor relapse was not different between the 2 groups during aGVHD treatment and follow-up. The incidence and severity of chronic GVHD in the MSC group were lower than those in the non-MSC group (P = .045 and P = .005). The ratio of CD3(+)CD4(+)/CD3(+)CD8(+) T cells, the frequencies of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), and the levels of signal joint T cell-receptor excision DNA circles (sjTRECs) after MSCs treatment were higher than those pretreatment. MSC-treated patients exhibited higher Tregs frequencies and sjTRECs levels than those in the non-MSC group at 8 and 12 weeks after treatment. MSCs derived from bone marrow of a third-party donor are effective to refractory aGVHD. It might reduce the incidence and severity of chronic GVHD in aGVHD patients by improving thymic function and induction of Tregs but not increase the risks of infections and tumor relapse. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    PubMed

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.

  14. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion

    PubMed Central

    Futrega, Kathryn; Atkinson, Kerry; Lott, William B.

    2017-01-01

    While two-dimensional (2D) monolayers of mesenchymal stem/stromal cells (MSCs) have been shown to enhance hematopoietic stem/progenitor cell (HSPC) expansion in vitro, expanded cells do not engraft long term in human recipients. This outcome is attributed to the failure of 2D culture to recapitulate the bone marrow (BM) niche signal milieu. Herein, we evaluated the capacity of a novel three-dimensional (3D) coculture system to support HSPC expansion in vitro. A high-throughput polydimethylsiloxane (PDMS) microwell platform was used to manufacture thousands of uniform 3D multicellular coculture spheroids. Relative gene expression in 3D spheroid versus 2D adherent BM-derived MSC cultures was characterized and compared with literature reports. We evaluated coculture spheroids, each containing 25–400 MSCs and 10 umbilical cord blood (CB)-derived CD34+ progenitor cells. At low exogenous cytokine concentrations, 2D and 3D MSC coculture modestly improved overall hematopoietic cell and CD34+ cell expansion outcomes. By contrast, a substantial increase in CD34+CD38− cell yield was observed in PDMS microwell cultures, regardless of the presence or absence of MSCs. This outcome indicated that CD34+CD38− cell culture yield could be increased using the microwell platform alone, even without MSC coculture support. We found that the increase in CD34+CD38− cell yield observed in PDMS microwell cultures did not translate to enhanced engraftment in NOD/SCID gamma (NSG) mice or a modification in the relative human hematopoietic lineages established in engrafted mice. In summary, there was no statistical difference in CD34+ cell yield from 2D or 3D cocultures, and MSC coculture support provided only modest benefit in either geometry. While the high-throughput 3D microwell platform may provide a useful model system for studying cells in coculture, further optimization will be required to generate HSPC yields suitable for use in clinical applications. PMID:28406754

  15. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model

    PubMed Central

    Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2011-01-01

    Abstract Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29+, CD44+ and CD166+ after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. PMID:20636333

  16. Comparison of Tumor- and Bone Marrow-Derived Mesenchymal Stromal/Stem Cells from Patients with High-Grade Osteosarcoma

    PubMed Central

    Le Nail, Louis-Romée; Brennan, Meadhbh; Rosset, Philippe; Piloquet, Philippe; Pichon, Olivier; Le Caignec, Cédric; Crenn, Vincent; Layrolle, Pierre; Hérault, Olivier; De Pinieux, Gonzague

    2018-01-01

    Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments. PMID:29494553

  17. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    PubMed

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  18. Mesenchymal Stem Cells Attenuate Cisplatin-Induced Nephrotoxicity in iNOS-Dependent Manner

    PubMed Central

    Simovic Markovic, Bojana; Gazdic, Marina; Arsenijevic, Aleksandar; Jovicic, Nemanja; Jeremic, Jovana; Djonov, Valentin; Arsenijevic, Nebojsa; Lukic, Miodrag L.

    2017-01-01

    Mesenchymal stem cells (MSCs) are, due to their immunomodulatory characteristics, utilized in therapy of immune-mediated diseases. We used murine model of cisplatin nephrotoxicity to explore the effects of MSCs on immune cells involved in the pathogenesis of this disease. Intraperitoneal application of MSCs significantly attenuated cisplatin nephrotoxicity, decreased inflammatory cytokines TNF-α and IL-17, and increased anti-inflammatory IL-10, IL-6, nitric oxide (NO), and kynurenine in sera of cisplatin-treated mice. MSC treatment significantly attenuated influx of leukocytes, macrophages, dendritic cells (DCs), neutrophils, CD4+ T helper (Th), and CD8+ cytotoxic T lymphocytes (CTLs) in damaged kidneys and attenuated the capacity of renal-infiltrated DCs, CD4+ Th, and CD8+ CTLs to produce TNF-α and IL-17. Similar effects were observed after intraperitoneal injection of MSC-conditioned medium (MSC-CM) indicating that MSCs exert their beneficial effects in paracrine manner. Inhibition of inducible nitric oxide synthase (iNOS) in MSC-CM resulted with increased number of TNF-α-producing DCs and IL-17-producing CTLs, decreased number of IL-10-producing tolerogenic DCs and regulatory CD4+FoxP3+ T cells, and completely diminished renoprotective effects of MSC-CM. In conclusion, MSCs, in iNOS-dependent manner, attenuated inflammation in cisplatin nephrotoxicity by reducing the influx and capacity of immune cells, particularly DCs and T lymphocytes, to produce inflammatory cytokines. PMID:28828008

  19. Improving washing strategies of human mesenchymal stem cells using negative mode expanded bed chromatography.

    PubMed

    Cunha, Bárbara; Silva, Ricardo J S; Aguiar, Tiago; Serra, Margarida; Daicic, John; Maloisel, Jean-Luc; Clachan, John; Åkerblom, Anna; Carrondo, Manuel J T; Peixoto, Cristina; Alves, Paula M

    2016-01-15

    The use of human mesenchymal stem cells (hMSC) in clinical applications has been increasing over the last decade. However, to be applied in a clinical setting hMSC need to comply with specific requirements in terms of identity, potency and purity. This study reports the improvement of established tangential flow filtration (TFF)-based washing strategies, further increasing hMSC purity, using negative mode expanded bed adsorption (EBA) chromatography with a new multimodal prototype matrix based on core-shell bead technology. The matrix was characterized and a stable, expanded bed could be obtained using standard equipment adapted from what is used for conventional packed bed chromatography processes. The effect of different expansion rates on cell recovery yield and protein removal capacity was assessed. The best trade-off between cell recovery (89%) and protein clearance (67%) was achieved using an intermediate expansion bed rate (1.4). Furthermore, we also showed that EBA chromatography can be efficiently integrated on the already established process for the downstream processing (DSP) of hMSC, where it improved the washing efficiency more than 10-fold, recovering approximately 70% of cells after global processing. This strategy showed not to impact cell viability (>95%), neither hMSC's characteristics in terms of morphology, immunophenotype, proliferation, adhesion capacity and multipotent differentiation potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Exploring continuous and integrated strategies for the up- and downstream processing of human mesenchymal stem cells.

    PubMed

    Cunha, Bárbara; Aguiar, Tiago; Silva, Marta M; Silva, Ricardo J S; Sousa, Marcos F Q; Pineda, Earl; Peixoto, Cristina; Carrondo, Manuel J T; Serra, Margarida; Alves, Paula M

    2015-11-10

    The integration of up- and downstream unit operations can result in the elimination of hold steps, thus decreasing the footprint, and ultimately can create robust closed system operations. This type of design is desirable for the bioprocess of human mesenchymal stem cells (hMSC), where high numbers of pure cells, at low volumes, need to be delivered for therapy applications. This study reports a proof of concept of the integration of a continuous perfusion culture in bioreactors with a tangential flow filtration (TFF) system for the concentration and washing of hMSC. Moreover, we have also explored a continuous alternative for concentrating hMSC. Results show that expanding cells in a continuous perfusion operation mode provided a higher expansion ratio, and led to a shift in cells' metabolism. TFF operated either in continuous or discontinuous allowed to concentrate cells, with high cell recovery (>80%) and viability (>95%); furthermore, continuous TFF permitted to operate longer with higher cell concentrations. Continuous diafiltration led to higher protein clearance (98%) with lower cell death, when comparing to discontinuous diafiltration. Overall, an integrated process allowed for a shorter process time, recovering 70% of viable hMSC (>95%), with no changes in terms of morphology, immunophenotype, proliferation capacity and multipotent differentiation potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint.

    PubMed

    Chen, K; Man, C; Zhang, B; Hu, J; Zhu, S S

    2013-02-01

    This study investigated the effects of in vitro chondrogenic differentiated mesenchymal stem cells (MSCs) on cartilage and subchondral cancellous bone in temporomandibular joint osteoarthritis (TMJOA). Four weeks after induction of osteoarthritis (OA), the joints received hylartin solution, non-chondrogenic MSCs or in vitro chondrogenic differentiated MSCs. The changes in cartilage and subchondral cancellous bone were evaluated by histology, reverse transcription polymerase chain reaction and micro-computed tomography (CT). Implanted cells were tracked using Adeno-LacZ labelling. The differentiated MSC-treated group had better histology than the MSC-treated group at 4 and 12 weeks, but no difference at 24 weeks. Increased mRNA expression of collegan II, aggeran, Sox9 and decreased matrix metalloproteinase 13 (MMP13) were observed in differentiated MSC-treated groups compared to the undifferentiated MSC-treated group at 4 weeks. The differentiated MSC-treated group had decreased bone volume fraction, trabecular thickness and bone surface density, and increased trabecular spacing in the subchondral cancellous bone than the undifferentiated MSC-treated group. Transplanted cells were observed at cartilage, subchondral bone, and the synovial membrane lining at 4 weeks. Intra-articular injection of MSCs could delay the progression of TMJOA, and in vitro chondrogenic induction of MSCs could enhance the therapeutic effects. This provides new insights into the role of MSCs in cell-based therapies for TMJOA. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. [Mesenchymal stem cells: definitions, culture and potential applications].

    PubMed

    Ceron, Willy; Lozada-Requena, Iván; Ventocilla, Kiomi; Jara, Sandra; Pinto, Milagros; Cabello, Marco; Aguilar, José L

    2016-01-01

    In recent years, mesenchymal stem cells (MSC) have become very important due to their high plasticity and their ability to release paracrine factors able to interact with various cell types, tissues and organs. The use of MSC in regenerative medicine became of vital importance, since they do not express histocompatibility MHC molecules class II nor costimulant molecules, and low expression of MHC class I, will not be rejected by individuals of same species, they could be used in an autologous, and eventually, allogeneic manner. However, it is important to scientifically demonstrate many properties, including immunomodulatory ones. Having several sources of obtaining, it should be standardized the best one to ensure the purity and quality of these cells. Finally, it is important when working with these cells, that characteristics of cell culture, immunophenotyping and differentiation capacity are fully demonstrated. MSC have been applied in several clinical uses. Among them, their ability to improve, and even heal chronic ulcers, as diabetic, has attracted attention for its potential therapeutic impact.

  3. Implications of the Endothelial Cell Response in Glioblastoma to Stimulation by Mesenchymal Stem Cells and Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Tansy Y.

    Heightened angiogenesis is both the pathophysiologic hallmark and the potential cause of therapy resistance for glioblastoma (GBM), a deadly brain tumor. It is thought that mesenchymal stem cells (MSCs) play important roles in neovascularization and tumor progression. We postulated that MSCs protect ECs against radiotherapy, which subsequently enhances tumor angiogenesis, and promotes GBM tumor recurrence following therapy. We therefore sought to establish the in-vitro endothelial cell response to stimulation by MSC condition media and ionizing radiation (IR) treatment. We established the gene expression profiles of endothelial cells in response to IR, MSCs and the combination of both. Within the same gene profiles, we identified a unique gene signature that was highly predictive of response to Bevacizumab for GBM patients. We also demonstrated that MSC increased the viability of ECs in response to IR. Protein analysis in ECs suggested MSC-mediated cell cycle arrest as a mechanism for radio-resistance in ECs.

  4. BONE MARROW MESENCHYMAL STEM CELLS ARE PROGENITORS IN VITRO FOR INNER EAR HAIR CELLS

    PubMed Central

    Jeon, Sang-Jun; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2011-01-01

    Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating differentiation to inner ear sensory cells. Some of the cells displayed F-actin positive protrusions in the morphology characteristic of hair cell stereociliary bundles. Hair cell markers were also induced by culture of mouse MSC-derived cells in contact with embryonic chick inner ear cells, and this induction was not due to a cell fusion event, because the chick hair cells could be identified with a chick-specific antibody and chick and mouse antigens were never found in the same cell. PMID:17113786

  5. Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century

    PubMed Central

    Stoltz, J.-F.; de Isla, N.; Li, Y. P.; Bensoussan, D.; Zhang, L.; Huselstein, C.; Chen, Y.; Decot, V.; Magdalou, J.; Li, N.; Reppel, L.; He, Y.

    2015-01-01

    Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC. PMID:26300923

  6. Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses

    PubMed Central

    Textor, Jamie A.; Clark, Kaitlin C.; Walker, Naomi J.; Aristizobal, Fabio A.; Kol, Amir; LeJeune, Sarah S.; Bledsoe, Andrea; Davidyan, Arik; Gray, Sarah N.; Bohannon‐Worsley, Laurie K.; Woolard, Kevin D.

    2017-01-01

    Abstract Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full‐thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord‐blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic‐ or (b) hypoxic‐preconditioned cells injected into wound margins, or (c) normoxic‐ or (d) hypoxic‐preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel‐treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic‐preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase‐2 expression at week 1. Histologically, significantly more MSC‐treated wounds were categorized as pro‐healing than pro‐inflammatory. Wound area was significantly affected by treatment: MSC‐injected wounds were consistently smaller than gel‐treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. stem cells translational medicine 2018;7:98–108 PMID:29063737

  7. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells.

    PubMed

    Ge, Jianfeng; Burnier, Laurent; Adamopoulou, Maria; Kwa, Mei Qi; Schaks, Matthias; Rottner, Klemens; Brakebusch, Cord

    2018-06-15

    Mesenchymal stem cells (MSC) are suggested to be important progenitors of myofibroblasts in fibrosis. To understand the role of Rho GTPase signaling in TGFβ-induced myofibroblast differentiation of MSC, we generated a novel MSC line and its descendants lacking functional Rho GTPases and Rho GTPase signaling components. Unexpectedly, our data revealed that Rho GTPase signaling is required for TGFβ-induced expression of α-smooth muscle actin (αSMA) but not of collagen I α1 ( col1a1 ). Whereas loss of RhoA and Cdc42 reduced αSMA expression, ablation of the Rac1 gene had the opposite effect. Although actin polymerization and MRTFa were crucial for TGFβ-induced αSMA expression, neither Arp2/3-dependent actin polymerization nor cofilin-dependent severing and depolymerization of F-actin were required. Instead, F-actin levels were dependent on cell contraction, and TGFβ-induced actin polymerization correlated with increased cell contraction mediated by RhoA and Cdc42. Finally, we observed impaired collagen I secretion in MSC lacking RhoA or Cdc42. These data give novel molecular insights into the role of Rho GTPases in TGFβ signaling and have implications for our understanding of MSC function in fibrosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles.

    PubMed

    Bonafede, Roberta; Mariotti, Raffaella

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.

  9. Combination of butylphthalide with umbilical mesenchymal stem cells for the treatment of delayed encephalopathy after carbon monoxide poisoning.

    PubMed

    Wang, Huanjun; Li, Yan; Wu, Qiang; Xu, Chenglong; Liu, Qingran

    2016-12-01

    Delayed encephalopathy after carbon monoxide (CO) poisoning (DEACMP) is still a clinical challenge. This study aimed to investigate the efficacy of combined therapy of mesenchymal stem cell (MSC) transplantation and butylphthalide in DEACMP patients.Forty-two DEACMP patients were treated with 1 of the 3 therapies: combined therapy of MSC transplantation and butylphthalide; MSC transplantation alone; or hyperbaric oxygen therapy. The MSCs were alternatively injected into the subarachnoid space and the carotid artery using a self-made high-pressure injector. The Mini-Mental State Examination and the Barthel index of activities of daily living were administered before the treatment, and at 1 month, 3 months, and 6 months after the treatment. Computed tomography and magnetic resonance imaging results before and after the treatment were compared.At 1 month, 3 months, and 6 months after the treatment, the Mini-Mental State Examination scores and the Barthl scores were significantly higher in patients with the combined therapy of MSC transplantation and butylphthalide than those in patients with MSC transplantation alone or hyperbaric oxygen therapy (all P < 0.0001). No significant adverse events occurred.The combination of MSC transplantation and butylphthalide is safe and effective in treating DEACMP.

  10. Morphological and Functional Attenuation of Degeneration of Peripheral Neurons by Mesenchymal Stem Cell-Conditioned Medium in Spinocerebellar Ataxia Type 1-Knock-in Mice.

    PubMed

    Suto, Nana; Mieda, Tokue; Iizuka, Akira; Nakamura, Kazuhiro; Hirai, Hirokazu

    2016-08-01

    Spinocerebellar ataxia type 1 (SCA1) is caused by the ataxin-1 protein (ATXN1) with an abnormally expanded polyglutamine tract and is characterized by progressive neurodegeneration. We previously showed that intrathecal injection of mesenchymal stem cells (MSCs) during the nonsymptomatic stage mitigates the degeneration of the peripheral nervous system (PNS) neurons in SCA1-knock-in (SCA1-KI) mice. We tested in this study whether the therapeutic effects of MSCs in SCA1-KI mice could be reproduced with MSC-releasing factor(s). To test the effects of MSC-releasing factor(s), we used MSC-conditioned medium (MSC-CM). MSC-CM was intrathecally and/or intravenously injected into young SCA1-KI mice, and the therapeutic effects were assessed in the PNS at later ages using immunostaining, electrophysiology, and behavioral tests. MSC-CM attenuated the degeneration of axons and myelin of spinal motor neurons. Consequently, the injected SCA1-KI mice exhibited smaller reductions in nerve conduction velocity in spinal motor neurons and reduced motor incoordination than the untreated mice. These results suggest that factors released from MSC mitigate the morphological and functional abnormalities in the PNS that are observed in SCA1-KI mice in a paracrine manner. © 2016 John Wiley & Sons Ltd.

  11. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture.

    PubMed

    Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko

    2016-01-01

    The objective of this study is to design hydrogels whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture and evaluate the effect of hydrogel elasticity on an osteogenic gene expression of cells. Hydrogels were prepared by the radical polymerization of acrylamide (AAm), N,N'-methylenebisacrylamide (BIS), and Phosmer™M containing phosphate groups (PE-PAAm hydrogels). The storage modulus of PE-PAAm hydrogels prepared was changed by the preparation conditions. When human mesenchymal stem cells (hMSC) were cultured on the ALP-responsive PE-PAAm hydrogels in the presence or absence of ALP, the morphology of hMSC was observed and one of the osteogenic differentiation markers, Runx2, was evaluated. By ALP addition into the culture medium, the morphology of hMSC was changed into an elongated shape without cell damage. ALP addition modified the level of Runx2 gene expression, which was influenced by the modulus of PE-PAAm hydrogels. It is concluded that the elasticity change of hydrogel substrates in cell culture had an influence on the Runx2 gene expression of hMSC. Stem cells sense the surface elasticity of culture substrates, and their differentiation fate is biologically modified by substrate properties. Most of experiments have been performed in static conditions during cell culture, while the in vivo microenvironment is dynamically changed. In this study, we established to design an enzyme-responsive hydrogel whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture to mimic in vivo conditions. As a result, the cells were deformed and the gene expression level of an osteogenic maker, Runx2, was modified by ALP treatment. This is the novel report describing to demonstrate that the dynamic alteration of hydrogel substrate elasticity could modulate the osteoblastic gene expression of human MSC in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Aggregation of Culture Expanded Human Mesenchymal Stem Cells in Microcarrier-based Bioreactor.

    PubMed

    Yuan, Xuegang; Tsai, Ang-Chen; Farrance, Iain; Rowley, Jon; Ma, Teng

    2018-03-15

    Three-dimensional aggregation of human mesenchymal stem cells (hMSCs) has been used to enhance their therapeutic properties but current fabrication protocols depend on laboratory methods and are not scalable. In this study, we developed thermal responsive poly(N-isopropylacrylamide) grafted microcarriers (PNIPAM-MCs), which supported expansion and thermal detachment of hMSCs at reduced temperature (23.0 °C). hMSCs were cultured on the PNIPAM-MCs in both spinner flask (SF) and PBS Vertical-Wheel (PBS-VW) bioreactors for expansion. At room temperature, hMSCs were detached as small cell sheets, which subsequently self-assembled into 3D hMSC aggregates in PBS-VW bioreactor and remain as single cells in SF bioreactor owing to different hydrodynamic conditions. hMSC aggregates generated from the bioreactor maintained comparable immunomodulation and cytokine secretion properties compared to the ones made from the AggreWell ® . The results of the current study demonstrate the feasibility of scale-up production of hMSC aggregates in the suspension bioreactor using thermal responsive microcarriers for integrated cell expansion and 3D aggregation in a close bioreactor system and highlight the critical role of hydrodynamics in self-assembly of detached hMSC in suspension.

  13. Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model.

    PubMed

    Patrascu, Jenel M; Krüger, Jan Philipp; Böss, Hademar G; Ketzmar, Anna-Katharina; Freymann, Undine; Sittinger, Michael; Notter, Michael; Endres, Michaela; Kaps, Christian

    2013-10-01

    In cartilage repair, scaffold-assisted one-step approaches are used to improve the microfracture (Mfx) technique. Since the number of progenitors in Mfx is low and may further decrease with age, aim of our study was to analyze the chondrogenic potential of freeze-dried polyglycolic acid-hyaluronan (PGA-HA) implants preloaded with mesenchymal stem cells (MSCs) in vitro and in a rabbit articular cartilage defect model. Human bone marrow-derived MSC from iliac crest were cultured in freeze-dried PGA-HA implants for chondrogenic differentiation. In a pilot study, implants were loaded with autologous rabbit MSC and used to cover 5 mm × 6 mm full-thickness femoral articular cartilage defects (n = 4). Untreated defects (n = 3) served as controls. Gene expression analysis and histology showed induction of typical chondrogenic marker genes like type II collagen and formation of hyaline-like cartilaginous tissue in MSC-laden PGA-HA implants. Histological evaluation of rabbit repair tissue formation after 30 and 45 days showed formation of repair tissue, rich in chondrocytic cells and of a hyaline-like appearance. Controls showed no articular resurfacing, tissue repair in the subchondral zone and fibrin formation. These results suggest that MSC-laden PGA-HA scaffolds have chondrogenic potential and are a promising option for stem cell-mediated cartilage regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  14. Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo

    PubMed Central

    Zheng, Bo; von See, Marc P.; Yu, Elaine; Gunel, Beliz; Lu, Kuan; Vazin, Tandis; Schaffer, David V.; Goodwill, Patrick W.; Conolly, Steven M.

    2016-01-01

    Stem cell therapies have enormous potential for treating many debilitating diseases, including heart failure, stroke and traumatic brain injury. For maximal efficacy, these therapies require targeted cell delivery to specific tissues followed by successful cell engraftment. However, targeted delivery remains an open challenge. As one example, it is common for intravenous deliveries of mesenchymal stem cells (MSCs) to become entrapped in lung microvasculature instead of the target tissue. Hence, a robust, quantitative imaging method would be essential for developing efficacious cell therapies. Here we show that Magnetic Particle Imaging (MPI), a novel technique that directly images iron-oxide nanoparticle-tagged cells, can longitudinally monitor and quantify MSC administration in vivo. MPI offers near-ideal image contrast, depth penetration, and robustness; these properties make MPI both ultra-sensitive and linearly quantitative. Here, we imaged, for the first time, the dynamic trafficking of intravenous MSC administrations using MPI. Our results indicate that labeled MSC injections are immediately entrapped in lung tissue and then clear to the liver within one day, whereas standard iron oxide particle (Resovist) injections are immediately taken up by liver and spleen. Longitudinal MPI-CT imaging also indicated a clearance half-life of MSC iron oxide labels in the liver at 4.6 days. Finally, our ex vivo MPI biodistribution measurements of iron in liver, spleen, heart, and lungs after injection showed excellent agreement (R2 = 0.943) with measurements from induction coupled plasma spectrometry. These results demonstrate that MPI offers strong utility for noninvasively imaging and quantifying the systemic distribution of cell therapies and other therapeutic agents. PMID:26909106

  15. In vitro expression of erythropoietin by transfected human mesenchymal stromal cells.

    PubMed

    Mok, P-L; Cheong, S-K; Leong, C-F; Othman, A

    2008-01-01

    Mesenchymal stromal cells (MSC) are pluripotent progenitor cells that can be found in human bone marrow (BM). These cells have low immunogenicity and could suppress alloreactive T-cell responses. In the current study, MSC were tested for their capacity to carry and deliver the erythropoietin (EPO) gene in vitro. Expanded BM MSC was transfected with EPO-encoded plasmid pMCV1.2 and EPO-encoded MIDGE (minimalistic immunologically defined gene expression) vector by electroporation. The expressed EPO was used to induce hematopoietic stem cells (HSC) into erythroid colonies. The results showed that the MIDGE vector was more effective and stable than the plasmid (pMCV1.2) in delivering EPO gene into MSC. The supernatants containing EPO obtained from the transfected cell culture were able to induce the differentiation of HSC into erythroid colonies. MSC hold promise as a cell factory for the production of biologic molecules, and MIDGE vector is more effective and stable than the plasmid in nucleofection involving the EPO gene.

  16. Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods

    PubMed Central

    Lin, Hong Reng; Heish, Chao-Wen; Liu, Cheng-Hui; Muduli, Saradaprasan; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Hsu, Shih-Tien; Chen, Da-Chung; Benelli, Giovanni; Murugan, Kadarkarai; Cheng, Nai-Chen; Wang, Han-Chow; Wu, Gwo-Jang

    2017-01-01

    Human adipose-derived stem cells (hADSCs) are easily isolated from fat tissue without ethical concerns, but differ in purity, pluripotency, differentiation ability, and stem cell marker expression, depending on the isolation method. We isolated hADSCs from a primary fat tissue solution using: (1) conventional culture, (2) a membrane filtration method, (3) a membrane migration method where the primary cell solution was permeated through membranes, adhered hADSCs were cultured, and hADSCs migrated out from the membranes. Expression of mesenchymal stem cell markers and pluripotency genes, and osteogenic differentiation were compared for hADSCs isolated by different methods using nylon mesh filter membranes with pore sizes ranging from 11 to 80 μm. hADSCs isolated by the membrane migration method had the highest MSC surface marker expression and efficient differentiation into osteoblasts. Osteogenic differentiation ability of hADSCs and MSC surface marker expression were correlated, but osteogenic differentiation ability and pluripotent gene expression were not. PMID:28071738

  17. Metabolic syndrome alters expression of insulin signaling-related genes in swine mesenchymal stem cells.

    PubMed

    Conley, Sabena M; Zhu, Xiang-Yang; Eirin, Alfonso; Tang, Hui; Lerman, Amir; van Wijnen, Andre J; Lerman, Lilach O

    2018-02-20

    Metabolic syndrome (MetS) is associated with insulin resistance (IR) and impaired glucose metabolism in muscle, fat, and other cells, and may induce inflammation and vascular remodeling. Endogenous reparative systems, including adipose tissue-derived mesenchymal stem/stromal cells (MSC), are responsible for repair of damaged tissue. MSC have also been proposed as an exogenous therapeutic intervention in patients with cardiovascular and chronic kidney disease (CKD). The feasibility of using autologous cells depends on their integrity, but whether in MetS IR involves adipose tissue-derived MSC remains unknown. The aim of this study was to examine the expression of mRNA involved in insulin signaling in MSC from subjects with MetS. Domestic pigs consumed a lean or obese diet (n=6 each) for 16weeks. MSC were collected from subcutaneous abdominal fat and analyzed using high-throughput RNA-sequencing for expression of genes involved in insulin signaling. Expression profiles for enriched (fold change>1.4, p<0.05) and suppressed (fold change<0.7, p<0.05) mRNAs in MetS pigs were functionally interpreted by gene ontology analysis. The most prominently upregulated and downregulated mRNAs were further probed. We identified in MetS-MSC 168 up-regulated and 51 down-regulated mRNAs related to insulin signaling. Enriched mRNAs were implicated in biological pathways including hepatic glucose metabolism, adipocyte differentiation, and transcription regulation, and down-regulated mRNAs in intracellular calcium signaling and cleaving peptides. Functional analysis suggested that overall these alterations could increase IR. MetS alters mRNA expression related to insulin signaling in adipose tissue-derived MSC. These observations mandate caution during administration of autologous MSC in subjects with MetS. Copyright © 2017. Published by Elsevier B.V.

  18. Differentiation of Mesenchymal Stem Cells Derived from Pancreatic Islets and Bone Marrow into Islet-Like Cell Phenotype

    PubMed Central

    Zanini, Cristina; Bruno, Stefania; Mandili, Giorgia; Baci, Denisa; Cerutti, Francesco; Cenacchi, Giovanna; Izzi, Leo; Camussi, Giovanni; Forni, Marco

    2011-01-01

    Background Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs) for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. Methodology/Principal Findings In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs) and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs) were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs). HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1), insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs) to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM) were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. Conclusions/Significance Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of protein assets may provide insights required to master the differentiation process of HI-MSCs to functional beta cells based only upon culture conditioning. These findings may open new strategies for the clinical use of BM-MSCs in diabetes. PMID:22194812

  19. Subcellular distribution and mitogenic effect of basic fibroblast growth factor in mesenchymal uncommitted stem cells.

    PubMed

    Benavente, Claudia A; Sierralta, Walter D; Conget, Paulette A; Minguell, José J

    2003-06-01

    Uncommitted mesenchymal stem cells (MSC), upon commitment and differentiation give rise to several mature mesenchymal lineages. Although the involvement of specific growth factors, including FGF2, in the development of committed MSC is known, the effect of FGF2 on uncommitted progenitors remains unclear. We have analyzed on a comparative basis, the subcellular distribution and mitogenic effect of FGF2 in committed and uncommitted MSC prepared from human bone marrow. Indirect immunofluorescence studies showed strong nuclear FGF2 staining in both progenitors; however, cytoplasmic staining was only detected in committed cells. Western blot analysis revealed the presence of 22.5 and 21-22 kDa forms of FGF2 in the nucleus of both progenitors; however, their relative content was higher in uncommitted than in committed cells. Exogenous FGF2 stimulated proliferation and sustained quiescence in committed and uncommitted cells, respectively. These results show that both type of progenitors, apart from morphological and proliferative differences, display specific patterns of response to FGF2.

  20. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  1. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells

    PubMed Central

    Mohd Ali, Norlaily; Boo, Lily; Yeap, Swee Keong; Ky, Huynh; Satharasinghe, Dilan A.; Liew, Woan Charn; Cheong, Soon Keng; Kamarul, Tunku

    2016-01-01

    Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia). PMID:26788424

  2. [Use of allogeneic mesenchymal stem cells in the treatment of intestinal inflammatory diseases].

    PubMed

    Lazebnik, L B; Konopliannikov, A G; Kniazev, O V; Parfenov, A I; Tsaregorodtseva, T M; Ruchkina, I N; Khomeriki, S G; Rogozina, V A; Konopliannikova, O A

    2010-01-01

    to determine the whether mesenchymal stem cells (MSC) may be used in the treatment of patients with chrOnic intestinal inflammatory diseases (IID). Thirty-nine patients with ulcerative colitis (UC) (Group 1) and 11 with Crohn's disease (CD) (Group 2) were examined. Comparative groups included 30 patients with UC (Group 2) and 10 with CD (Group 4). Two-three days before MSC administration, immunodepressants were discontinued, the dosage of corticosteroids was reduced to 15-20 mg/day, and that of aminosalicylates remained to be 2 g/day. The results were quantified using the mean values of the Rachmilewich clinical activity index, the Crohn's disease activity index and the Mayo and Gebs scales. The patients were followed up for 4-8 months. Humoral immunological indices (cytokines, autologous antibodies) were determined. Bone marrow cells were obtained from the donor sternum or iliac crest. Cultivation at the end of weeks 5-6 provided a population of allogeneic donor MSC in a quantity of (1.5-2) x 10(8) tells required for transplantation to a patient. MSC cultures were once injected intravenously in a dropwise fashion. A statistically significant decrease in the indices of the clinical and morphological activities of an inflammatory process was noted in 39 patients with UC and in 11 patients with CD as compared with the comporison groups after MSC transplantation. Clinicomorphological remission occurred in 40 patients. Inclusion of MSC into the treatment program was ineffective in 8 patients with UC and in 2 patients with CD. The use of MSC made it possible to discontinue corticosteroids in 34 of the 50 patients with the hormone-dependent and hormone-resistant forms of UC and CD and to reduce the dose of prednisolone to 5 mg/day in 7 patients, by administering 5-aminosalicylic acid only. The use of MSC may be appreciated as a new strategic direction of therapy for IID. The intravenously administered stem cells exert a potent immunomodulatory effect, reduce the activity of autoimmune inflammation, and stimulate a reparative process in the intestinal mucosa.

  3. Characterization of Mesenchymal Stem Cell-Like Cells Derived From Human iPSCs via Neural Crest Development and Their Application for Osteochondral Repair

    PubMed Central

    Ikeya, Makoto; Yasui, Yukihiko; Ikeda, Yasutoshi; Ebina, Kosuke; Moriguchi, Yu; Shimomura, Kazunori; Hideki, Yoshikawa

    2017-01-01

    Mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) are a promising cell source for the repair of skeletal disorders. Recently, neural crest cells (NCCs) were reported to be effective for inducing mesenchymal progenitors, which have potential to differentiate into osteochondral lineages. Our aim was to investigate the feasibility of MSC-like cells originated from iPSCs via NCCs for osteochondral repair. Initially, MSC-like cells derived from iPSC-NCCs (iNCCs) were generated and characterized in vitro. These iNCC-derived MSC-like cells (iNCMSCs) exhibited a homogenous population and potential for osteochondral differentiation. No upregulation of pluripotent markers was detected during culture. Second, we implanted iNCMSC-derived tissue-engineered constructs into rat osteochondral defects without any preinduction for specific differentiation lineages. The implanted cells remained alive at the implanted site, whereas they failed to repair the defects, with only scarce development of osteochondral tissue in vivo. With regard to tumorigenesis, the implanted cells gradually disappeared and no malignant cells were detected throughout the 2-month follow-up. While this study did not show that iNCMSCs have efficacy for repair of osteochondral defects when implanted under undifferentiated conditions, iNCMSCs exhibited good chondrogenic potential in vitro under appropriate conditions. With further optimization, iNCMSCs may be a new source for tissue engineering of cartilage. PMID:28607560

  4. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering.

    PubMed

    Kremer, Antje; Ribitsch, Iris; Reboredo, Jenny; Dürr, Julia; Egerbacher, Monika; Jenner, Florien; Walles, Heike

    2017-05-01

    Meniscal injuries are the most frequently encountered soft tissue injuries in the equine stifle joint. Due to the inherent limited repair potential of meniscal tissue, meniscal injuries do not only affect the meniscus itself but also lead to impaired joint homeostasis and secondary osteoarthritis. The presented study compares 3D coculture constructs of primary equine mesenchymal stem cells (MSC) and meniscus cells (MC) seeded on three different scaffolds-a cell-laden collagen type I hydrogel (Col I gel), a tissue-derived small intestinal matrix scaffold (SIS-muc) and a combination thereof-for their qualification to be applied for meniscus tissue engineering. To investigate cell attachment of primary MC and MSC on SIS-muc matrix SEM pictures were performed. For molecular analysis, lyophilized samples of coculture constructs with different cell ratios (100% MC, 100% MSC, and 50% MC and 50% MSC, 20% MC, and 80% MSC) were digested and analyzed for DNA and GAG content. Active matrix remodeling of 3D coculture models was indicated by matrix metalloproteinases detection. For comparison of tissue-engineered constructs with the histologic architecture of natural equine menisci, paired lateral and medial menisci of 15 horses representing different age groups were examined. A meniscus phenotype with promising similarity to native meniscus tissue in its GAG/DNA expression in addition to Col I, Col II, and Aggrecan production was achieved using a scaffold composed of Col I gel on SIS-muc combined with a coculture of MC and MSC. The results encourage further development of this scaffold-cell combination for meniscus tissue engineering.

  5. Progenitor Cells from Cartilage: Grade Specific Differences in Stem Cell Marker Expression

    PubMed Central

    Mazor, Marija; Cesaro, Annabelle; Ali, Mazen; Best, Thomas M.; Lespessaille, Eric; Toumi, Hechmi

    2017-01-01

    Recent research has confirmed the presence of Mesenchymal stem cell (MSC)-like progenitors (MPC) in both normal and osteoarthritic cartilage. However, there is only limited information concerning how MPC markers are expressed with osteoarthritis (OA) progression. The purpose of this study was to compare the prevalence of various MPC markers in different OA grades. Human osteoarthritic tibial plateaus were obtained from ten patients undergoing total knee replacement. Each sample had been classified into a mild or severe group according to OARSI scoring. Tissue was taken from each specimen and mRNA expression levels of CD105, CD166, Notch 1, Sox9, Acan and Col II A1 were measured at day 0 and day 14 (2 weeks in vitro). Furthermore, MSC markers: Nucleostemin, CD90, CD73, CD166, CD105 and Notch 1 were studied by immunofluorescence. mRNA levels of MSC markers did not differ between mild and severe OA at day 0. At day 14, protein analysis showed that proliferated cells from both sources expressed all 6 MSC markers. Only cells from the mild OA subjects resulted in a significant increase of mRNA CD105 and CD166 after in vitro expansion. Moreover, cells from the mild OA subjects showed significantly higher levels of CD105, Sox9 and Acan compared with those from severe OA specimens. Results confirmed the presence of MSC markers in mild and severe OA tissue at both mRNA and protein levels. We found significant differences between cells obtained from mild compared to severe OA specimens suggests that mild OA derived cells may have a greater MSC potential. PMID:28805694

  6. Two complementary strategies to improve cell engraftment in mesenchymal stem cell-based therapy: Increasing transplanted cell resistance and increasing tissue receptivity.

    PubMed

    Ezquer, Fernando E; Ezquer, Marcelo E; Vicencio, Jose M; Calligaris, Sebastián D

    2017-01-02

    Over the past 2 decades, therapies based on mesenchymal stem cells (MSC) have been tested to treat several types of diseases in clinical studies, due to their potential for tissue repair and regeneration. Currently, MSC-based therapy is considered a biologically safe procedure, with the therapeutic results being very promising. However, the benefits of these therapies are not stable in the long term, and the final outcomes manifest with high inter-patient variability. The major cause of these therapeutic limitations results from the poor engraftment of the transplanted cells. Researchers have developed separate strategies to improve MSC engraftment. One strategy aims at increasing the survival of the transplanted MSCs in the recipient tissue, rendering them more resistant to the hostile microenvironment (cell-preconditioning). Another strategy aims at making the damaged tissue more receptive to the transplanted cells, favoring their interactions (tissue-preconditioning). In this review, we summarize several approaches using these strategies, providing an integral and updated view of the recent developments in MSC-based therapies. In addition, we propose that the combined use of these different conditioning strategies could accelerate the process to translate experimental evidences from pre-clinic studies to the daily clinical practice.

  7. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges.

    PubMed

    Jossen, Valentin; van den Bos, Christian; Eibl, Regine; Eibl, Dieter

    2018-05-01

    Human mesenchymal stem cell (hMSC)-based therapies are of increasing interest in the field of regenerative medicine. As economic considerations have shown, allogeneic therapy seems to be the most cost-effective method. Standardized procedures based on instrumented single-use bioreactors have been shown to provide billion of cells with consistent product quality and to be superior to traditional expansions in planar cultivation systems. Furthermore, under consideration of the complex nature and requirements of allogeneic hMSC-therapeutics, a new equipment for downstream processing (DSP) was successfully evaluated. This mini-review summarizes both the current state of the hMSC production process and the challenges which have to be taken into account when efficiently producing hMSCs for the clinical scale. Special emphasis is placed on the upstream processing (USP) and DSP operations which cover expansion, harvesting, detachment, separation, washing and concentration steps, and the regulatory demands.

  8. Intercellular cytosolic transfer correlates with mesenchymal stromal cell rescue of umbilical cord blood cell viability during ex vivo expansion

    PubMed Central

    Chu, Pat P. Y.; Bari, Sudipto; Fan, Xiubo; Gay, Florence P. H.; Ang, Justina M. L.; Chiu, Gigi N. C.; Lim, Sai K.; Hwang, William Y. K.

    2012-01-01

    Background aims. Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. Methods. In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). Results. Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P<0.01). This was associated with significant enhancement of mitochondrial membrane potential (P<0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P< 0.0001). Conclusions. Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture. PMID:22775077

  9. Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: analysis of cell shape, matrix production, and mechanical performance.

    PubMed

    McCorry, Mary Clare; Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-03-12

    Bone marrow mesenchymal stem cells (MSCs) have shown positive therapeutic effects for meniscus regeneration and repair. Preliminary in vitro work has indicated positive results for MSC applications for meniscus tissue engineering; however, more information is needed on how to direct MSC behavior. The objective of this study was to examine the effect of MSC co-culture with primary meniscal fibrochondrocytes (FCCs) in a three-dimensional collagen scaffold in fibrochondrogenic media. Co-culture of MSCs and FCCs was hypothesized to facilitate the transition of MSCs to a FCC cell phenotype as measured by matrix secretion and morphology. MSCs and FCCs were isolated from bovine bone marrow and meniscus, respectively. Cells were seeded in a 20 mg/mL high-density type I collagen gel at MSC:FCC ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. Constructs were cultured for up to 2 weeks and then analyzed for cell morphology, glycosaminoglycan content, collagen content, and production of collagen type I, II, and X. Cells were homogeneously mixed throughout the scaffold and cells had limited direct cell-cell contact. After 2 weeks in culture, MSCs transitioned from a spindle-like morphology toward a rounded phenotype, while FCCs remained rounded throughout culture. Although MSC shape changed with culture, the overall size was significantly larger than FCCs throughout culture. While 75:25 and 100:0 (MSC mono-culture) culture groups produced significantly more glycosaminoglycan (GAG)/DNA than FCCs in mono-culture, GAG retention was highest in 50:50 co-cultures. Similarly, the aggregate modulus was highest in 100:0 and 50:50 co-cultures. All samples contained both collagen types I and II after 2 weeks, and collagen type X expression was evident only in MSC mono-culture gels. MSCs shift to a FCC morphology in both mono- and co-culture. Co-culture reduced hypertrophy by MSCs, indicated by collagen type X. This study shows that MSC phenotype can be influenced by indirect homogeneous cell culture in a three-dimensional gel, demonstrating the applicability of MSCs in meniscus tissue engineering applications.

  10. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, M.N.M.; School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ; Wright, K.T.

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditionsmore » significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.« less

  11. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays.

    PubMed

    Walter, M N M; Wright, K T; Fuller, H R; MacNeil, S; Johnson, W E B

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

    PubMed

    Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan

    2015-06-01

    Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model.

    PubMed

    Qi, Yiying; Du, Yi; Li, Weixu; Dai, Xuesong; Zhao, Tengfei; Yan, Weiqi

    2014-06-01

    The integration of regenerated cartilage with surrounding native cartilage is a major challenge for the success of cartilage tissue-engineering strategies. The purpose of this study is to investigate whether incorporation of the power of mesenchymal stem cell (MSC) sheet to MSCs-loaded bilayer poly-(lactic-co-glycolic acid) (PLGA) scaffolds can improve the integration and repair of cartilage defects in a rabbit model. Rabbit bone marrow-derived MSCs were cultured and formed cell sheet. Full-thickness cylindrical osteochondral defects (4 mm in diameter, 3 mm in depth) were created in the patellar groove of 18 New Zealand white rabbits and the osteochondral defects were treated with PLGA scaffold (n = 6), PLGA/MSCs (n = 6) or MSC sheet-encapsulated PLGA/MSCs (n = 6). After 6 and 12 weeks, the integration and tissue response were evaluated histologically. The MSC sheet-encapsulated PLGA/MCSs group showed significantly more amounts of hyaline cartilage and higher histological scores than PLGA/MSCs group and PLGA group (P < 0.05). In addition, the MSC sheet-encapsulated PLGA/MCSs group showed the best integration between the repaired cartilage and surrounding normal cartilage and subchondral bone compared to other two groups. The novel method of incorporation of MSC sheet to PLGA/MCSs could enhance the ability of cartilage regeneration and integration between repair cartilage and the surrounding cartilage. Transplantation of autologous MSC sheet combined with traditional strategies or cartilage debris might provide therapeutic opportunities for improving cartilage regeneration and integration in humans.

  14. Integrated Immunotherapy for Breast Cancer

    DTIC Science & Technology

    2015-09-01

    patterns in these reconstructed co-cultured cancer cell /stromal cell 3D organoids (Figure 2). The role of mesenchymal stem cells in cancer Bone...marrow-derived mesenchymal stem cells (MSC) have been the subject of interest in solid tumor. Because of their ability to migrate to sites of inflammation...10 Figure 3. Characterization of ex-vivo expanded C57 B6 derived bone marrow mesenchymal stem cells . The cells are positive for CD44, CD140β

  15. Ischemia postconditioning and mesenchymal stem cells engraftment synergistically attenuate ischemia reperfusion-induced lung injury in rats.

    PubMed

    Chen, Shuchen; Chen, Liangwan; Wu, Xiaonan; Lin, Jiangbo; Fang, Jun; Chen, Xiangqi; Wei, Shijin; Xu, Jianxin; Gao, Qin; Kang, Mingqiang

    2012-11-01

    It has been reported that ischemic postconditioning (IPO) or mesenchymal stem cell (MSC) engraftment could protect organs from ischemia/reperfusion (I/R) injury. We investigated the synergetic effects of combined treatment on lung injury induced by I/R. Adult Sprague-Dawley rats were randomly assigned to one of the following groups: sham-operated control, I/R, IPO, MSC engraftment, and IPO plus MSC engraftment. Lung injury was assessed by arterial blood gas analysis, the wet/dry lung weight ratio, superoxide dismutase level, malondialdehyde content, myeloperoxidase activity, and tissue histologic changes. Cytokine expression was detected using real-time polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end assay and annexin V staining. MSC engraftment or IPO alone markedly attenuated the lung wet/dry weight ratio, malondialdehyde and myeloperoxidase production, and lung pathologic injury and enhanced arterial partial oxygen pressure, superoxide dismutase content, inhibited pro-inflammatory cytokine levels, and decreased cell apoptosis in lung tissue, compared with the I/R group. In contrast, IPO pretreatment enhanced the protective effects of MSC on I/R-induced lung injury compared with treatment alone. Moreover, in the combined treatment group, the number of MSC engraftments in the lung tissue was increased, associated with enhanced survival of MSCs compared with MSC treatment alone. Additional investigation showed that IPO treatment increased expression of vascular endothelial growth factor and stromal cell-derived factor-1 in I/R lung tissue. IPO might contribute to the homing and survival of transplanted MSCs and enhance their therapeutic effects through improvement of the microenvironment of I/R injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice.

    PubMed

    Hu, Weihua; Wang, Jing; He, Xiangfeng; Zhang, Hongyi; Yu, Fangliu; Jiang, Longwei; Chen, Dengyu; Chen, Junsong; Dou, Jun

    2011-01-01

    Ovarian cancer causes more deaths than any other cancer of the female reproductive system, and its overall cure rate remains low. The present study investigated human umbilical blood mononuclear cell (UBMC)-derived mesenchymal stem cells (UBMC-MSCs) as interleukin-21 (IL-21) gene delivery vehicles for ovarian cancer therapy in nude mice. MSCs were isolated from UBMCs and the expanded cells were phenotyped by flow cytometry. Cultured UBMCs were differentiated into osteocytes and adipocytes using appropriate media and then the UBMC-MSCs were transfected with recombinant pIRES2-IL-21-enhancement green fluorescent protein. UBMC-MSCs expressing IL-21 were named as UBMC-MSC-IL-21. Mice with A2780 ovarian cancer were treated with UBMC-MSC-IL-21 intravenously, and the therapeutic efficacy was evaluated by the tumor volume and mouse survival. To address the mechanism of UBMC-MSC-IL-21 against ovarian cancer, the expression of IL-21, natural killer glucoprotein 2 domain and major histocompatibility complex class I chain-related molecules A/B were detected in UBMC-MSC-IL-21 and in the tumor sites. Interferon-γ-secreting splenocyte numbers and natural killer cytotoxicity were significantly increased in the UBMC-MSC-IL-21-treated mice as compared with the UBMC-MSCs or the UBMC-MSC-mock plasmid-treated mice. Most notably, tumor growth was delayed and survival was prolonged in ovarian-cancer-bearing mice treated with UBMC-MSC-IL-21. Our data provide important evidence that UBMC-MSCs can serve as vehicles for IL-21 gene delivery and inhibit the established tumor. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  17. Regenerative medicine using dental pulp stem cells for liver diseases.

    PubMed

    Ohkoshi, Shogo; Hara, Hajime; Hirono, Haruka; Watanabe, Kazuhiko; Hasegawa, Katsuhiko

    2017-02-06

    Acute liver failure is a refractory disease and its prognosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells (MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti-inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review.

  18. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis.

    PubMed

    Conrad, Claudius; Hüsemann, Yves; Niess, Hanno; von Luettichau, Irene; Huss, Ralf; Bauer, Christian; Jauch, Karl-Walter; Klein, Christoph A; Bruns, Christiane; Nelson, Peter J

    2011-03-01

    To specifically target tumor angiogenesis by linking transgene expression of engineered mesenchymal stem cells to angiopoietin-1-induced differentiation. Mesenchymal stem cells (MSCs) have been used to deliver therapeutic genes into solid tumors. These strategies rely on their homing mechanisms only to deliver the therapeutic agent. We engineered murine MSC to express reporter genes or therapeutic genes under the selective control of the Tie2 promoter/enhancer. This approach uses the differentiative potential of MSCs induced by the tumor microenvironment to drive therapeutic gene expression only in the context of angiogenesis. When injected into the peripheral circulation of mice with either, orthotopic pancreatic or spontaneous breast cancer, the engineered MSCs were actively recruited to growing tumor vasculature and induced the selective expression of either reporter red florescent protein or suicide genes [herpes simplex virus-thymidine kinase (TK) gene] when the adoptively transferred MSC developed endothelial-like characteristics. The TK gene product in combination with the prodrug ganciclovir (GCV) produces a potent toxin, which affects replicative cells. The homing of engineered MSC with selective induction of TK in concert with GCV resulted in a toxic tumor-specific environment. The efficacy of this approach was demonstrated by significant reduction in primary tumor growth and prolongation of life in both tumor models. This "Trojan Horse" combined stem cell/gene therapy represents a novel treatment strategy for tailored therapy of solid tumors.

  19. Mesenchymal stem cells are highly resistant to sulfur mustard.

    PubMed

    Schmidt, Annette; Scherer, Michael; Thiermann, Horst; Steinritz, Dirk

    2013-12-05

    The effect of sulfur mustard (SM) to the direct injured tissues of the skin, eyes and airways is well investigated. Little is known about the effect of SM to mesenchymal stem cells (MSC). However, this is an interesting aspect. Comparing the clinical picture of SM it is known today that MSC play an important role e.g. in chronic impaired wound healing. Therefore we wanted to get an understanding about how SM affects MSC and if these findings might become useful to get a better understanding of the effect of sulfur mustard gas with respect to skin wounds. We used mesenchymal stem cells, isolated from femoral heads from healthy donors and treated them with a wide range of SM to ascertain the dose-response-curve. With the determined inhibitory concentrations IC1 (1μM), IC5 (10μM), IC10 (20μM) and IC25 (40μM) we did further investigations. We analyzed the migratory ability and the differentiation capacity under influence of SM. Already very low concentrations of SM demonstrated a strong effect to the migratory activity whereas the differentiation capacity seemed not to be affected. Putting these findings together it seems to be likely that a link between MSC and the impaired wound healing after SM exposure might exist. Same as in patients with chronic impaired wound healing MSC had shown a reduced migratory activity. The fact that MSC are able to tolerate very high concentrations of SM and still do not lose their differentiation capacity may reveal new ways of treating wounds caused by sulfur mustard. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis

    PubMed Central

    Sánchez-Abarca, Luis Ignacio; Rosón-Burgo, Beatriz; Redondo, Alba; Rico, Ana; Preciado, Silvia; Ortega, Rebeca; Rodríguez, Concepción; Muntión, Sandra; Hernández-Hernández, Ángel; De Las Rivas, Javier; González, Marcos; González Porras, José Ramón; del Cañizo, Consuelo; Sánchez-Guijo, Fermín

    2017-01-01

    There is evidence of continuous bidirectional cross-talk between malignant cells and bone marrow-derived mesenchymal stromal cells (BM-MSC), which favors the emergence and progression of myeloproliferative neoplastic (MPN) diseases. In the current work we have compared the function and gene expression profile of BM-MSC from healthy donors (HD-MSC) and patients with MPN (JAK2V617F), showing no differences in the morphology, proliferation and differentiation capacity between both groups. However, BM-MSC from MPN expressed higher mean fluorescence intensity (MIF) of CD73, CD44 and CD90, whereas CD105 was lower when compared to controls. Gene expression profile of BM-MSC showed a total of 169 genes that were differentially expressed in BM-MSC from MPN patients compared to HD-MSC. In addition, we studied the ability of BM-MSC to support the growth and survival of hematopoietic stem/progenitor cells (HSPC), showing a significant increase in the number of CFU-GM colonies when MPN-HSPC were co-cultured with MPN-MSC. Furthermore, MPN-MSC showed alteration in the expression of genes associated to the maintenance of hematopoiesis, with an overexpression of SPP1 and NF-kB, and a downregulation of ANGPT1 and THPO. Our results suggest that BM-MSC from JAK2+ patients differ from their normal counterparts and favor the maintenance of malignant clonal hematopoietic cells. PMID:28796790

  1. Downregulation of Melanoma Cell Adhesion Molecule (MCAM/CD146) Accelerates Cellular Senescence in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

    PubMed

    Jin, Hye Jin; Kwon, Ji Hye; Kim, Miyeon; Bae, Yun Kyung; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Jeon, Hong Bae

    2016-04-01

    Therapeutic applications of mesenchymal stem cells (MSCs) for treating various diseases have increased in recent years. To ensure that treatment is effective, an adequate MSC dosage should be determined before these cells are used for therapeutic purposes. To obtain a sufficient number of cells for therapeutic applications, MSCs must be expanded in long-term cell culture, which inevitably triggers cellular senescence. In this study, we investigated the surface markers of human umbilical cord blood-derived MSCs (hUCB-MSCs) associated with cellular senescence using fluorescence-activated cell sorting analysis and 242 cell surface-marker antibodies. Among these surface proteins, we selected the melanoma cell adhesion molecule (MCAM/CD146) for further study with the aim of validating observed expression differences and investigating the associated implications in hUCB-MSCs during cellular senescence. We observed that CD146 expression markedly decreased in hUCB-MSCs following prolonged in vitro expansion. Using preparative sorting, we found that hUCB-MSCs with high CD146 expression displayed high growth rates, multilineage differentiation, expression of stemness markers, and telomerase activity, as well as significantly lower expression of the senescence markers p16, p21, p53, and senescence-associated β-galactosidase, compared with that observed in hUCB-MSCs with low-level CD146 expression. In contrast, CD146 downregulation with small interfering RNAs enhanced the senescence phenotype. In addition, CD146 suppression in hUCB-MSCs caused downregulation of other cellular senescence regulators, including Bmi-1, Id1, and Twist1. Collectively, our results suggest that CD146 regulates cellular senescence; thus, it could be used as a therapeutic marker to identify senescent hUCB-MSCs. One of the fundamental requirements for mesenchymal stem cell (MSC)-based therapies is the expansion of MSCs during long-term culture because a sufficient number of functional cells is required. However, long-term growth inevitably induces cellular senescence, which potentially causes poor clinical outcomes by inducing growth arrest and the loss of stem cell properties. Thus, the identification of markers for evaluating the status of MSC senescence during long-term culture may enhance the success of MSC-based therapy. This study provides strong evidence that CD146 is a novel and useful marker for predicting senescence in human umbilical cord blood-derived MSCs (hUCB-MSCs), and CD146 can potentially be applied in quality-control assessments of hUCB-MSC-based therapy. ©AlphaMed Press.

  2. Intraarticularly-Injected Mesenchymal Stem Cells Stimulate Anti-Inflammatory Molecules and Inhibit Pain Related Protein and Chondrolytic Enzymes in a Monoiodoacetate-Induced Rat Arthritis Model

    PubMed Central

    Ichiseki, Toru; Shimasaki, Miyako; Ueda, Yoshimichi; Tsuchiya, Masanobu; Souma, Daisuke; Kaneuji, Ayumi; Kawahara, Norio

    2018-01-01

    Persistent inflammation is well known to promote the progression of arthropathy. mesenchymal stem cells (MSCs) have been shown to possess anti-inflammatory properties and tissue differentiation potency. Although the experience so far with the intraarticular administration of mesenchymal stem cell (MSC) to induce cartilage regeneration has been disappointing, MSC implantation is now being attempted using various surgical techniques. Meanwhile, prevention of osteoarthritis (OA) progression and pain control remain important components of the treatment of early-stage OA. We prepared a shoulder arthritis model by injecting monoiodoacetate (MIA) into a rat shoulder, and then investigated the intraarticular administration of MSC from the aspects of the cartilage protective effect associated with their anti-inflammatory property and inhibitory effect on central sensitization of pain. When MIA was administered in this rat shoulder arthritis model, anti-Calcitonin Gene Related Peptide (CGRP) was expressed in the joint and C5 spinal dorsal horn. Moreover, expression of A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), a marker of joint cartilage injury, was similarly elevated following MIA administration. When MSC were injected intraarticularly after MIA, the expression of CGRP in the spinal dorsal horn was significantly deceased, indicating suppression of the central sensitization of pain. The expression of ADAMTS 5 in joint cartilage was also significantly inhibited by MSC administration. In contrast, a significant increase in the expression of TNF-α stimulated gene/protein 6 (TSG-6), an anti-inflammatory and cartilage protective factor shown to be produced and secreted by MSC intraarticularly, was found to extend to the cartilage tissue following MSC administration. In this way, the intraarticular injection of MSC inhibited the central sensitization of pain and increased the expression of the anti-inflammatory and cartilage protective factor TSG-6. As the least invasive conservative strategies possible are desirable in the actual clinical setting, the intraarticular administration of MSC, which appears to be effective for the treatment of pain and cartilage protection in early-stage arthritis, may achieve these aims. PMID:29315262

  3. Anti-Donor Immune Responses Elicited by Allogeneic Mesenchymal Stem Cells and Their Extracellular Vesicles: Are We Still Learning?

    PubMed Central

    Lohan, Paul; Treacy, Oliver; Griffin, Matthew D.; Ritter, Thomas; Ryan, Aideen E.

    2017-01-01

    Mesenchymal stromal cells (MSC) have been used to treat a broad range of disease indications such as acute and chronic inflammatory disorders, autoimmune diseases, and transplant rejection due to their potent immunosuppressive/anti-inflammatory properties. The breadth of their usage is due in no small part to the vast quantity of published studies showing their ability to modulate multiple immune cell types of both the innate and adaptive immune response. While patient-derived (autologous) MSC may be the safer choice in terms of avoiding unwanted immune responses, factors including donor comorbidities may preclude these cells from use. In these situations, allogeneic MSC derived from genetically unrelated individuals must be used. While allogeneic MSC were initially believed to be immune-privileged, substantial evidence now exists to prove otherwise with multiple studies documenting specific cellular and humoral immune responses against donor antigens following administration of these cells. In this article, we will review recent published studies using non-manipulated, inflammatory molecule-activated (licensed) and differentiated allogeneic MSC, as well as MSC extracellular vesicles focusing on the immune responses to these cells and whether or not such responses have an impact on allogeneic MSC-mediated safety and efficacy. PMID:29225601

  4. A Halogen-Containing Stilbene Derivative from the Leaves of Cajanus cajan that Induces Osteogenic Differentiation of Human Mesenchymal Stem Cells.

    PubMed

    Cai, Jia-Zhong; Tang, Rong; Ye, Gui-Fu; Qiu, Sheng-Xiang; Zhang, Nen-Ling; Hu, Ying-Jie; Shen, Xiao-Ling

    2015-06-11

    A new natural halogen-containing stilbene derivative was isolated from the leaves of Cajanus cajan (L.) Millsp. and identified as 3-O-(3-chloro-2-hydroxyl-propanyl)-longistylin A by comprehensive spectroscopic and chemical analysis, and named cajanstilbene H (1). It is the first halogen-containing stilbene derivative found from plants. In human mesenchymal stem cells (hMSC) from bone marrow, 1 did not promote cell proliferation, but distinctly enhanced osteogenic differentiation of hMSC in time- and dose-dependent manners. In six human cancer cell lines, 1 showed a moderate inhibitory effect on cell proliferation, with IC50 values of 21.42-25.85 μmol·L(-1).

  5. External beam radiation therapy enhances mesenchymal stem cell-mediated sodium iodide symporter gene delivery.

    PubMed

    Schug, Christina; Sievert, Wolfgang; Urnauer, Sarah; Müller, Andrea Maria; Schmohl, Kathrin Alexandra; Wechselberger, Alexandra; Schwenk, Nathalie; Lauber, Kirsten; Schwaiger, Markus; Multhoff, Gabriele; Wagner, Ernst; Nelson, Peter J; Spitzweg, Christine

    2018-05-04

    The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium iodide symporter (NIS) to solid tumors. External beam radiation therapy (EBRT) may represent an ideal setting for the application of engineered MSC-based gene therapy as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7) (1-10 Gy) showed a strong dose-dependent increase in steady state mRNA levels of CXCL8, CXCL12/SDF-1, FGF2, PDGFβ, TGFβ1, TSP-1 and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration was tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index (yFMI), mean center of mass (yCoM) and mean directionality of MSCs towards supernatants was seen from irradiated as compared to nonirradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in qPCR and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2 or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. Our results demonstrate that EBRT enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.

  6. Synergistic Effects of Electroacupuncture and Mesenchymal Stem Cells on Intestinal Ischemia/Reperfusion Injury in Rats.

    PubMed

    Geng, Yanxia; Chen, Dong; Zhou, Jiang; Lu, Jun; Chen, Mingqi; Zhang, Haidong; Wang, Xing

    2016-08-01

    Electroacupuncture (EA) and transplantation of bone marrow mesenchymal stem cells (MSCs) are both promising therapeutic applications for intestinal disorders. The current study examined their combined effect on rat intestinal ischemia/reperfusion (I/R) injury and the possible mechanism. Five groups were performed: con group (shame operation),I/R group (model group), MSC group (I/R + MSC), EA group (I/R + EA), and combined group (I/R + MSC + EA). Intestinal histological damage, crypt cell proliferation degree, mucosal cytokines expression, and levels of inflammation factors were studied for each group. Compared with the I/R group, crypt cell proliferation index and mucosal mRNA concentration of SDF-1, CXCR4, EGF, EGFR in MSC group and EA group were significantly increased, with mucosal NF-кBp65 and serum inflammation factor (TNF-α, IL-6) levels significantly decreased. Above all of these indicators except NF-кBp65 were improved more notably in combined group than the other two treatment groups. Chiu's score was only ameliorated remarkably in the combined group. The combined treatment of MSC transplantion and electroacupuncture could protect intestinal mucosal barrier from I/R injury.

  7. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    PubMed Central

    Snykers, Sarah; Vanhaecke, Tamara; De Becker, Ann; Papeleu, Peggy; Vinken, Mathieu; Van Riet, Ivan; Rogiers, Vera

    2007-01-01

    Background The capability of human mesenchymal stem cells (hMSC) derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF), insulin-transferrin-sodium-selenite (ITS) and dexamethasone)] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone), however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK)18 expression. Additional exposure of the cells to trichostatin A (TSA) considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF)-3β, alpha-fetoprotein (AFP), CK18, albumin (ALB), HNF1α, multidrug resistance-associated protein (MRP)2 and CCAAT-enhancer binding protein (C/EBP)α, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP)-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells. PMID:17407549

  8. Human adipose-derived stem cells (ADSC) and human periodontal ligament stem cells (PDLSC) as cellular substrates of a toxicity prediction assay.

    PubMed

    Corrêa, Natássia Caroline Resende; Kuligovski, Crisciele; Paschoal, Ariane Caroline Campos; Abud, Ana Paula Ressetti; Rebelatto, Carmen Lucia Kuniyoshi; Leite, Lidiane Maria Boldrini; Senegaglia, Alexandra Cristina; Dallagiovanna, Bruno; Aguiar, Alessandra Melo de

    2018-02-01

    With the increasing need to develop in vitro assays to replace animal use, human stem cell-derived methods are emerging and showing outstanding contributions to the toxicological screening of substances. Adult human stem cells such as adipose-derived stem cells (ADSC) and periodontal ligament stem cells (PDLSC) were used as cell substrates for a cytotoxicity assay and toxicity prediction using the neutral red uptake (NRU) assay. First, primary cell cultures from three independent donors, from each tissue source, were characterized as mesenchymal stem cells (MSC) by plastic adherence and appropriate immunophenotype for MSC markers (positive for CD90, CD73, and CD105 and negative for CD11b, CD34, CD45, HLADR, and CD19). Furthermore, ADSC and PDLSC were able to differentiate into adipocytes and osteoblasts when maintained under the same culture conditions previously established for the NRU assay. NRU assays for three reference test substances were performed. R 2 was higher than 0.85 for all conditions, showing the feasibility to calculate IC 50 values. The IC 50 values were then used to predict the LD 50 of the test substances, which were comparable to previous results and the ICCVAM standard test report. Primary ADSC and PDLSC showed the potential to be considered as additional models for use in cytotoxicity assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus.

    PubMed

    Horn, Ana Paula; Bernardi, Andressa; Luiz Frozza, Rudimar; Grudzinski, Patrícia Bencke; Hoppe, Juliana Bender; de Souza, Luiz Fernando; Chagastelles, Pedro; de Souza Wyse, Angela Terezinha; Bernard, Elena Aida; Battastini, Ana Maria Oliveira; Campos, Maria Martha; Lenz, Guido; Nardi, Nance Beyer; Salbego, Christianne

    2011-07-01

    Cell therapy using bone marrow-derived mesenchymal stem cells (MSCs) seems to be a new alternative for the treatment of neurodegenerative diseases. Despite several promising results with their use, possible side effects are still unknown. In a previous work, we have shown that MSC-conditioned medium is toxic to hippocampal slice cultures and aggravates cell death induced by oxygen and glucose deprivation. In this work, we investigated whether the inflammatory response and/or reactive species formation could be involved in that toxicity. Rat organotypic hippocampal cultures were exposed for 24 h to conditioned medium from MSCs isolated from rat bone marrow. A marked glial activation was observed after exposure of cultures to MSC-conditioned medium, as evidenced by glial fibrillary acid protein (GFAP) and isolectin B(4) increase. Tumor necrosis factor-α and interleukin-6 levels were increased in the culture medium, and 2,7-dihydrodichlorofluorescein diacetate oxidation (indicating reactive species generation) and inducible nitric oxide synthase (iNOS) immunocontent were also higher after exposure of cultures to MSC-conditioned medium. Antioxidants (ascorbic acid and TROLOX(®)), N(ω)-nitro-l-arginine methyl ester hydrochloride, and anti-inflammatory drugs (indomethacin and dexamethasone) reduced cell death in hippocampal organotypic cultures after their exposure to MSC-conditioned medium. The results obtained here suggest that MSC-secreted factors trigger reactive species generation and neuroinflammation in organotypic cultures of hippocampus, introducing a note of caution in the use of these cells for neurological application.

  10. In vitro differentiation of neural cells from human adipose tissue derived stromal cells.

    PubMed

    Dave, Shruti D; Patel, Chetan N; Vanikar, Aruna V; Trivedi, Hargovind L

    2018-01-01

    Stem cells, including neural stem cells (NSCs), are endowed with self-renewal capability and hence hold great opportunity for the institution of replacement/protective therapy. We propose a method for in vitro generation of stromal cells from human adipose tissue and their differentiation into neural cells. Ten grams of donor adipose tissue was surgically resected from the abdominal wall of the human donor after the participants' informed consents. The resected adipose tissue was minced and incubated for 1 hour in the presence of an enzyme (collagenase-type I) at 37 0 C followed by its centrifugation. After centrifugation, the supernatant and pellets were separated and cultured in a medium for proliferation at 37 0 C with 5% CO2 for 9-10 days in separate tissue culture dishes for generation of mesenchymal stromal cells (MSC). At the end of the culture, MSC were harvested and analyzed. The harvested MSC were subjected for further culture for their differentiation into neural cells for 5-7 days using differentiation medium mainly comprising of neurobasal medium. At the end of the procedure, culture cells were isolated and studied for expression of transcriptional factor proteins: orthodenticle homolog-2 (OTX-2), beta-III-tubulin (β3-Tubulin), glial-fibrillary acid protein (GFAP) and synaptophysin-β2. In total, 50 neural cells-lines were generated. In vitro generated MSC differentiated neural cells' mean quantum was 5.4 ± 6.9 ml with the mean cell count being, 5.27 ± 2.65 × 10 3/ μl. All of them showed the presence of OTX-2, β3-Tubulin, GFAP, synaptophysin-β2. Neural cells can be differentiated in vitro from MSC safely and effectively. In vitro generated neural cells represent a potential therapy for recovery from spinal cord injuries and neurodegenerative disease.

  11. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com; Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS; Deus Wagatsuma, Virgínia Mara de

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with anmore » AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.« less

  12. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.

    PubMed

    Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio

    2017-10-01

    Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29 + , CD44 + , CD73 + , CD90 + , CD34 - , CD45 - and MHC-II - with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90 + , CD73 + , CD105 + , CD44 + , CD13 + , CD29 + , Oct-4 + gene and CD31 - and CD45 - expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mesenchymal stem cells in cartilage regeneration.

    PubMed

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment.

  14. Three-dimensional collagenous niche and azacytidine selectively promote time-dependent cardiomyogenesis from human bone marrow-derived MSC spheroids.

    PubMed

    Joshi, Jyotsna; Mahajan, Gautam; Kothapalli, Chandrasekhar R

    2018-04-17

    Endogenous adult cardiac regenerative machinery is not capable of replacing the lost cells following myocardial infarction, often leading to permanent alterations in structure-function-mechanical properties. Regenerative therapies based on delivering autologous stem cells within an appropriate 3D milieu could meet such demand, by enabling homing and directed differentiation of the transplanted cells into lost specialized cell populations. Since type I collagen is the predominant cardiac tissue matrix protein, we here optimized the 3D niche which could promote time-dependent evolution of cardiomyogenesis from human bone marrow-derived mesenchymal stem cells (BM-MSC). 3D collagen gel physical and mechanical characteristics were assessed using SEM and AFM, respectively, while the standalone and combined effects of collagen concentration, culture duration, and 5-azacytidine (aza) dose on the phenotype and genotype of MSC spheroids were quantified using immunofluorescence labeling and RT-PCR analysis. Increasing collagen concentration led to a significant increase in Young's modulus (p < 0.01) but simultaneous decrease in the mean pore size, resulting in stiffer gels. Spheroid formation significantly modulated MSC differentiation and genotype, mostly due to better cell-cell interactions. Among the aza dosages tested, 10 μM appears to be optimal, while 3 mg/ml gels resulted in significantly lower cell viability compared to 1 or 2 mg/ml gels. Stiffer gels (2 and 3 mg/ml) and exposure to 10 μM aza upregulated early and late cardiac marker expressions in a time-dependent fashion. On the other hand, cell-cell signaling within the MSC spheroids seem to have a strong role in influencing mature cardiac markers expression, since neither aza nor gel stiffness seem to significantly improve their expression. Western blot analysis suggested that canonical Wnt/β-catenin signaling pathway might be primarily mediating the observed benefits of aza on cardiac differentiation of MSC spheroids. In conclusion, 2 mg/ml collagen and 10 μM aza appears to offer optimal 3D microenvironment in terms of cell viability and time-dependent evolution of cardiomyogenesis from human BM-MSCs, with significant applications in cardiac tissue engineering and stem cell transplantation for regenerating lost cardiac tissue. © 2018 Wiley Periodicals, Inc.

  15. Stromal Tissue Rigidity Promotes Mesenchymal Stem Cell-Mediated Corneal Wound Healing Through the Transforming Growth Factor β Signaling Pathway.

    PubMed

    Yang, Yun-Hsiang; Hsieh, Ting-Lieh; Ji, Andrea Tung-Qian; Hsu, Wei-Tse; Liu, Chia-Yu; Lee, Oscar Kuang-Sheng; Ho, Jennifer Hui-Chun

    2016-10-01

    The healing of a corneal epithelial defect is essential for preventing infectious corneal ulcers and subsequent blindness. We previously demonstrated that mesenchymal stem cells (MSCs) in the corneal stroma, through a paracrine mechanism, yield a more favorable therapeutic benefit for corneal wound re-epithelialization than do MSCs in the corneal epithelium. In this study, MSCs were grown on a matrix with the rigidity of the physiological human vitreous (1 kPa), corneal epithelium (8 kPa), or corneal stroma (25 kPa) for investigating the role of corneal tissue rigidity in MSC functions regarding re-epithelialization promotion. MSC growth on a 25-kPa dish significantly promoted the wound healing of human corneal epithelial (HCE-T) cells. Among growth factors contributing to corneal epithelial wound healing, corneal stromal rigidity selectively enhanced transforming growth factor-beta (TGF-β) secretion from MSCs. Inhibitors of TGF-β pan receptor, TGF-β receptor 1, and Smad2 dose dependently abrogated MSC-mediated HCE-T wound healing. Furthermore, MSCs growth on a matrix with corneal stromal rigidity enhanced the ability of themselves to promote corneal re-epithelialization by activating matrix metalloproteinase (MMP) expression and integrin β1 production in HCE-T cells through TGF-β signaling pathway activation. Smad2 activation resulted in the upregulation of MMP-2 and -13 expression in HCE-T cells, whereas integrin β1 production favored a Smad2-independent TGF-β pathway. Altogether, we conclude that corneal stromal rigidity is a critical factor for MSC-induced promotion of corneal re-epithelialization. The activation of the TGF-β signaling pathway, which maintains the balance between integrin and MMP expression, in HCE-T cells is the major pathway responsible for MSC-mediated wound healing. Stem Cells 2016;34:2525-2535. © 2016 AlphaMed Press.

  16. Applications of Stem Cells in Interdisciplinary Dentistry and Beyond: An Overview

    PubMed Central

    Rai, S; Kaur, M; Kaur, S

    2013-01-01

    In medicine stem cell–based treatments are being used in conditions like Parkinson's disease, neural degeneration following brain injury, cardiovascular diseases, diabetes, and autoimmune diseases. In dentistry, recent exciting discoveries have isolated dental stem cells from the pulp of the deciduous and permanent teeth, from the periodontal ligament, and an associated healthy tooth structure, to cure a number of diseases. The aim of the study was to review the applications of stem cells in various fields of dentistry, with emphasis on its banking, and to understand how dental stem cells can be used for regeneration of oral and non-oral tissues conversely. A Medline search was done including the international literature published between 1989 and 2011. It was restricted to English language articles and published work of past researchers including in vitro and in vivo studies. Google search on dental stem cell banking was also done. Our understanding of mesenchymal stem cells (MSC) in the tissue engineering of systemic, dental, oral, and craniofacial structures has advanced tremendously. Dental professionals have the opportunity to make their patients aware of these new sources of stem cells that can be stored for future use, as new therapies are developed for a range of diseases and injuries. Recent findings and scientific research articles support the use of MSC autologously within teeth and other accessible tissue harvested from oral cavity without immunorejection. A future development of the application of stem cells in interdisciplinary dentistry requires a comprehensive research program. PMID:23919198

  17. The role of oxygen as a regulator of stem cell fate during fracture repair in TSP2-null mice.

    PubMed

    Burke, Darren; Dishowitz, Michael; Sweetwyne, Mariya; Miedel, Emily; Hankenson, Kurt D; Kelly, Daniel J

    2013-10-01

    It is often difficult to decouple the relative importance of different factors in regulating MSC differentiation. Genetically modified mice provide model systems whereby some variables can be manipulated while others are kept constant. Fracture repair in thrombospondin-2 (TSP2)-null mice is characterized by reduced endochondral ossification and enhanced intramembranous bone formation. The proposed mechanism for this shift in MSC fate is that increased vascular density and hence oxygen availability in TSP2-null mice regulates differentiation. However, TSP2 is multifunctional and regulates other aspects of the regenerative cascade, such as MSC proliferation. The objective of this study is to use a previously developed computational model of tissue differentiation, in which substrate stiffness and oxygen tension regulate stem cell differentiation, to simulate potential mechanisms which may drive alterations in MSC fate in TSP2-null mice. Four models (increased cell proliferation, increased numbers of MSCs in the marrow decreased cellular oxygen consumption, and an initially stiffer callus) were not predictive of experimental observations in TSP2-null mice. In contrast, increasing the rate of angiogenic progression led to a prediction of greater intramembranous ossification, diminished endochondral ossification, and a reduced region of hypoxia in the fracture callus similar to that quantified experimentally by the immunohistochemical detection of pimonidazole adducts that develop with hypoxia. This study therefore provides further support for the hypothesis that oxygen availability during early fracture healing is a key regulator of MSC bipotential differentiation, and furthermore, it highlights the advantages of integrating computational models with genetically modified mouse studies for further elucidating mechanisms regulating stem cell fate. Copyright © 2013 Orthopaedic Research Society.

  18. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.

    PubMed

    Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia

    2015-04-01

    Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.

  19. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars

    PubMed Central

    Balic, Anamaria; Aguila, H. Leonardo; Caimano, Melissa J.; Francone, Victor P.; Mina, Mina

    2010-01-01

    In the past few years there have been significant advances in the identification of putative stem cells also referred to as “mesenchymal stem cells” (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulp from erupted molars displayed a reduced number of cells, contained higher percentage of CD45+ and lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts. PMID:20193787

  20. Human Mesenchymal Stem Cell Transfusion Is Safe and Improves Liver Function in Acute-on-Chronic Liver Failure Patients

    PubMed Central

    Shi, Ming; Zhang, Zheng; Xu, Ruonan; Lin, Hu; Fu, Junliang; Zou, Zhengsheng; Zhang, Aimin; Shi, Jianfei; Chen, Liming; Lv, Sa; He, Weiping; Geng, Hua; Jin, Lei; Liu, Zhenwen

    2012-01-01

    Acute-on-chronic liver failure (ACLF) is a severe, life-threatening complication, and new and efficient therapeutic strategies for liver failure are urgently needed. Mesenchymal stem cell (MSC) transfusions have been shown to reverse fulminant hepatic failure in mice and to improve liver function in patients with end-stage liver diseases. We assessed the safety and initial efficacy of umbilical cord-derived MSC (UC-MSC) transfusions for ACLF patients associated with hepatitis B virus (HBV) infection. A total of 43 ACLF patients were enrolled for this open-labeled and controlled study; 24 patients were treated with UC-MSCs, and 19 patients were treated with saline as controls. UC-MSC therapy was given three times at 4-week intervals. The liver function, adverse events, and survival rates were evaluated during the 48-week or 72-week follow-up period. No significant side effects were observed during the trial. The UC-MSC transfusions significantly increased the survival rates in ACLF patients; reduced the model for end-stage liver disease scores; increased serum albumin, cholinesterase, and prothrombin activity; and increased platelet counts. Serum total bilirubin and alanine aminotransferase levels were significantly decreased after the UC-MSC transfusions. UC-MSC transfusions are safe in the clinic and may serve as a novel therapeutic approach for HBV-associated ACLF patients. PMID:23197664

  1. Additive effect of mesenchymal stem cells and defibrotide in an arterial rat thrombosis model.

    PubMed

    Dilli, Dilek; Kılıç, Emine; Yumuşak, Nihat; Beken, Serdar; Uçkan Çetinkaya, Duygu; Karabulut, Ramazan; Zenciroğlu, Ayşegu L

    2017-06-01

    In this study, we aimed to investigate the additive effect of mesenchymal stem cells (MSC) and defibrotide (DFT) in a rat model of femoral arterial thrombosis. Thirty Sprague Dawley rats were included. An arterial thrombosis model by ferric chloride (FeCl3) was developed in the left femoral artery. The rats were equally assigned to 5 groups: Group 1-Sham-operated (without arterial injury); Group 2-Phosphate buffered saline (PBS) injected; Group 3-MSC; Group 4-DFT; Group 5-MSC + DFT. All had two intraperitoneal injections of 0.5 ml: the 1st injection was 4 h after the procedure and the 2nd one 48 h after the 1st injection. The rats were sacrificed 7 days after the 2nd injection. Although the use of human bone marrow-derived (hBM) hBM-MSC or DFT alone enabled partial resolution of the thrombus, combining them resulted in near-complete resolution. Neovascularization was two-fold better in hBM-MSC + DFT treated rats (11.6 ± 2.4 channels) compared with the hBM-MSC (3.8 ± 2.7 channels) and DFT groups (5.5 ± 1.8 channels) (P < 0.0001 and P= 0.002, respectively). The combined use of hBM-MSC and DFT in a rat model of arterial thrombosis showed additive effect resulting in near-complete resolution of the thrombus.

  2. Combination therapy with intra-articular injection of mesenchymal stem cells and articulated joint distraction for repair of a chronic osteochondral defect in the rabbit.

    PubMed

    Harada, Yohei; Nakasa, Tomoyuki; Mahmoud, Elhussein Elbadry; Kamei, Goki; Adachi, Nobuo; Deie, Masataka; Ochi, Mitsuo

    2015-10-01

    The present study investigated intra-articular injection of bone-marrow-derived mesenchymal stem cells (MSCs) combined with articulated joint distraction as treatment for osteochondral defects. Large osteochondral defects were created in the weight-bearing area of the medial femoral condyle in rabbit knees. Four weeks after defect creation, rabbits were divided into six groups: control group, MSC group, distraction group, distraction + MSC group, temporary distraction group, and temporary distraction + MSC group. Groups with MSC received intra-articular injection of MSCs. Groups with distraction underwent articulated distraction arthroplasty. Groups with temporary distraction discontinued the distraction after 4 weeks. The rabbits were euthanized at 4, 8, and 12 weeks after treatment except temporary distraction groups which were euthanized at only 12 weeks. Histological scores in the distraction + MSC group were significantly better than in the control, MSC group or distraction group at 4 and 8 weeks, but showed no further improvement. At 12 weeks, the temporary distraction + MSC group showed the best results, demonstrating hyaline cartilage repair with regeneration of the osteochondral junction. In conclusion, joint distraction with intra-articular injection of MSCs promotes early cartilage repair, and compressive loading of the repair tissue after temporary distraction stimulates articular cartilage regeneration. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Cellular Encapsulation Enhances Cardiac Repair

    PubMed Central

    Levit, Rebecca D.; Landázuri, Natalia; Phelps, Edward A.; Brown, Milton E.; García, Andrés J.; Davis, Michael E.; Joseph, Giji; Long, Robert; Safley, Susan A.; Suever, Jonathan D.; Lyle, Alicia N.; Weber, Collin J.; Taylor, W. Robert

    2013-01-01

    Background Stem cells for cardiac repair have shown promise in preclinical trials, but lower than expected retention, viability, and efficacy. Encapsulation is one potential strategy to increase viable cell retention while facilitating paracrine effects. Methods and Results Human mesenchymal stem cells (hMSC) were encapsulated in alginate and attached to the heart with a hydrogel patch in a rat myocardial infarction (MI) model. Cells were tracked using bioluminescence (BLI) and cardiac function measured by transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR). Microvasculature was quantified using von Willebrand factor staining and scar measured by Masson's Trichrome. Post‐MI ejection fraction by CMR was greatly improved in encapsulated hMSC‐treated animals (MI: 34±3%, MI+Gel: 35±3%, MI+Gel+hMSC: 39±2%, MI+Gel+encapsulated hMSC: 56±1%; n=4 per group; P<0.01). Data represent mean±SEM. By TTE, encapsulated hMSC‐treated animals had improved fractional shortening. Longitudinal BLI showed greatest hMSC retention when the cells were encapsulated (P<0.05). Scar size at 28 days was significantly reduced in encapsulated hMSC‐treated animals (MI: 12±1%, n=8; MI+Gel: 14±2%, n=7; MI+Gel+hMSC: 14±1%, n=7; MI+Gel+encapsulated hMSC: 7±1%, n=6; P<0.05). There was a large increase in microvascular density in the peri‐infarct area (MI: 121±10, n=7; MI+Gel: 153±26, n=5; MI+Gel+hMSC: 198±18, n=7; MI+Gel+encapsulated hMSC: 828±56 vessels/mm2, n=6; P<0.01). Conclusions Alginate encapsulation improved retention of hMSCs and facilitated paracrine effects such as increased peri‐infarct microvasculature and decreased scar. Encapsulation of MSCs improved cardiac function post‐MI and represents a new, translatable strategy for optimization of regenerative therapies for cardiovascular diseases. PMID:24113327

  4. Improvement in hemodynamic performance, exercise capacity, inflammatory profile, and left ventricular reverse remodeling after intracoronary delivery of mesenchymal stem cells in an experimental model of pressure overload hypertrophy.

    PubMed

    Molina, Ezequiel J; Palma, Jon; Gupta, Dipin; Torres, Denise; Gaughan, John P; Houser, Steven; Macha, Mahender

    2008-02-01

    In a rat model of pressure overload hypertrophy, we studied the effects of intracoronary delivery of mesenchymal stem cells on hemodynamic performance, exercise capacity, systemic inflammation, and left ventricular reverse remodeling. Sprague-Dawley rats underwent aortic banding and were followed up by echocardiographic scanning. After a decrease in fractional shortening of 25% from baseline, animals were randomized to intracoronary injection of mesenchymal stem cells (MSC group; n = 28) or phosphate-buffered saline solution (control group; n = 20). Hemodynamic and echocardiographic assessment, swim testing to exhaustion, and measurement of inflammatory markers were performed before the rats were humanely killed on postoperative day 7, 14, 21, or 28. Injection of mesenchymal stem cells improved systolic function in the MSC group compared with the control group (mean +/- standard deviation: maximum dP/dt 3048 +/- 230 mm Hg/s vs 2169 +/- 97 mm Hg/s at 21 days and 3573 +/- 741 mm Hg/s vs 1363 +/- 322 mm Hg/s at 28 days: P < .001). Time to exhaustion was similarly increased in the MSC group compared with controls (487 +/- 35 seconds vs 306 +/- 27 seconds at 28 days; P < .01). Serum levels of interleukins 1 and 6, tumor necrosis factor-alpha, and brain natriuretic peptide-32 were significantly decreased in animals treated with mesenchymal stem cells. Stem cell transplantation improved left ventricular fractional shortening at 21 and 28 days. Left ventricular end-systolic and end-diastolic diameters were also improved at 28 days. In this model of pressure overload hypertrophy, intracoronary delivery of mesenchymal stem cells during heart failure was associated with an improvement in hemodynamic performance, maximal exercise tolerance, systemic inflammation, and left ventricular reverse remodeling. This study suggests a potential role of this treatment strategy for the management of hypertrophic heart failure resulting from pressure overload.

  5. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    PubMed

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Human Umbilical Cord MSC-Derived Exosomes Suppress the Development of CCl4-Induced Liver Injury through Antioxidant Effect.

    PubMed

    Jiang, Wenqian; Tan, Youwen; Cai, Mengjie; Zhao, Ting; Mao, Fei; Zhang, Xu; Xu, Wenrong; Yan, Zhixin; Qian, Hui; Yan, Yongmin

    2018-01-01

    Mesenchymal stem cells (MSCs) have been increasingly applied into clinical therapy. Exosomes are small (30-100 nm in diameter) membrane vesicles released by different cell types and possess the similar functions with their derived cells. Human umbilical cord MSC-derived exosomes (hucMSC-Ex) play important roles in liver repair. However, the effects and mechanisms of hucMSC-Ex on liver injury development remain elusive. Mouse models of acute and chronic liver injury and liver tumor were induced by carbon tetrachloride (CCl 4 ) injection, followed by administration of hucMSC-Ex via the tail vein. Alleviation of liver injury by hucMSC-Ex was determined. We further explored the production of oxidative stress and apoptosis in the development of liver injury and compared the antioxidant effects of hucMSC-Ex with frequently used hepatic protectant, bifendate (DDB) in liver injury. hucMSC-Ex alleviated CCl 4 -induced acute liver injury and liver fibrosis and restrained the growth of liver tumors. Decreased oxidative stress and apoptosis were found in hucMSC-Ex-treated mouse models and liver cells. Compared to bifendate (DDB) treatment, hucMSC-Ex presented more distinct antioxidant and hepatoprotective effects. hucMSC-Ex may suppress CCl 4 -induced liver injury development via antioxidant potentials and could be a more effective antioxidant than DDB in CCl 4 -induced liver tumor development.

  7. Cigarette Smoke Inhibits Recruitment of Bone-Marrow-Derived Stem cells to The Uterus

    PubMed Central

    Zhou, Yuping; Gan, Ye; Taylor, Hugh S.

    2011-01-01

    Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues. PMID:20955787

  8. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9,more » and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.« less

  9. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.

    PubMed

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-12-01

    Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. Copyright © 2013 Acta Materialia Inc. All rights reserved.

  10. From pericytes to perivascular tumours: correlation between pathology, stem cell biology, and tissue engineering.

    PubMed

    Mravic, Marco; Asatrian, Greg; Soo, Chia; Lugassy, Claire; Barnhill, Raymond L; Dry, Sarah M; Peault, Bruno; James, Aaron W

    2014-09-01

    Pericytes were once thought only to aid in angiogenesis and blood pressure control. Gradually, the known functions of pericytes and other perivascular stem cells (PSC) have broadly increased. The following review article will summarize the known functions and importance of pericytes across disciplines of pathology, stem cell biology, and tissue engineering. A literature review was performed for studies examining the importance of pericytes in pathology, stem cell biology, and tissue engineering. The importance of pericytes most prominently includes the identification of the perivascular identity of mesenchymal stem cells (or MSC). Now, pericytes and other PSC are known to display surface markers and multilineage differentiation potential of MSC. Accordingly, interest in the purification and use of PSC for mesenchymal tissue formation and regeneration has increased. Significant demonstration of in vivo efficacy in bone and muscle regeneration has been made in laboratory animals. Contemporaneously with the uncovering of an MSC identity for pericytes, investigators in tumour biology have found biologically relevant roles for pericytes in tumor formation, lymphovascular invasion, and perivascular tumor spread. As well, the contribution of pericytes to perivascular tumors has been examined (and debated), including glomus tumour, myopericytoma and solitary fibrous tumour/hemangiopericytoma. In addition, an expanding recognition of pericyte mimicry and perivascular tumour invasion has occurred, encompassing common malignancies of the brain and skin. In summary, pericytes have a wide range of roles in health and disease. Pericytes are being increasingly studied for their role in tumour formation, growth and invasion. Likewise, the application of pericytes/PSC for mesenchymal tissue engineering is an expanding field of interest.

  11. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model.

    PubMed

    Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2011-06-01

    Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+) after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  12. Dynamic Fluid Flow Mechanical Stimulation Modulates Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Hu, Minyi; Yeh, Robbin; Lien, Michelle; Teeratananon, Morgan; Agarwal, Kunal; Qin, Yi-Xian

    2013-03-01

    Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decreases MSC growth and osteogenic potentials, mechanical signals enhance MSC quantity and bias their differentiation toward osteoblastogenesis. Through a non-invasive dynamic hydraulic stimulation (DHS), we have found that DHS can mitigate trabecular bone loss in a functional disuse model via rat hindlimb suspension (HLS). To further elucidate the downstream cellular effect of DHS and its potential mechanism underlying the bone quality enhancement, a longitudinal in vivo study was designed to evaluate the MSC populations in response to DHS over 3, 7, 14, and 21 days. Five-month old female Sprague Dawley rats were divided into three groups for each time point: age-matched control, HLS, and HLS+DHS. DHS was delivered to the right mid-tibiae with a daily "10 min on-5 min off-10 min on" loading regime for five days/week. At each sacrifice time point, bone marrow MSCs of the stimulated and control tibiae were isolated through specific cell surface markers and quantified by flow cytometry analysis. A strong time-dependent manner of bone marrow MSC induction was observed in response to DHS, which peaked on day 14. After 21 days, this effect of DHS was diminished. This study indicates that the MSC pool is positively influenced by the mechanical signals driven by DHS. Coinciding with our previous findings of mitigation of disuse bone loss, DHS induced changes in MSC number may bias the differentiation of the MSC population towards osteoblastogenesis, thereby promoting bone formation under disuse conditions. This study provides insights into the mechanism of time-sensitive MSC induction in response to mechanical loading, and for the optimal design of osteoporosis treatments.

  13. Zoledronic acid prevents the tumor-promoting effects of mesenchymal stem cells via MCP-1 dependent recruitment of macrophages.

    PubMed

    Jia, Xiao-Hua; Du, Yang; Mao, Duo; Wang, Zhong-Liang; He, Zhen-Qiang; Qiu, Jing-Dan; Ma, Xi-Bo; Shang, Wen-Ting; Ding, Dan; Tian, Jie

    2015-09-22

    Zoledronic acid (ZA) has been tested in clinical trials as an additive therapy for early-stage breast cancer. However, the mechanism by which ZA exerts its antitumor activity is still unclear. The aim of this study is to investigate whether the prevention of tumor growth by ZA is through regulating the mesenchymal stem cells (MSC)-monocyte chemotactic protein 1 (MCP-1)-macrophages axis in the tumor microenvironment. To address this issue, MDA-MB-231-FLUC human breast cancer cells were cultured and injected either alone, or coupled with MSC into the mammary fat pads of nude mice. MSC were treated with either ZA or untreated. Tumor growth was determined by using an in vivo bioluminescence imaging (BLI) and the tumor-associated macrophages (TAMs) in tumor tissues were immunohistochemically analyzed by using CD206 antibody. The effects of ZA on the cytokine related gene expression of MSC were assessed by using real-time PCR. In this study, we found that ZA-treated mice showed a significant delay in tumor growth. In addition, our data revealed that ZA weakened the ability of MSC to promote tumor growth by impairing TAMs recruitment and tumor vascularization. Furthermore, it was found that ZA decreased MCP-1 expression of MSC, and therefore reduced the recruitment of TAMs to the tumor sites and hence inhibited the tumor growth. Altogether, our study demonstrated ZA can prevent the tumor-promoting effects of MSC. The antitumor effects of ZA were caused by decreasing the MCP-1 expression of MSC, which further decreased the infiltration of TAMs into tumor sites, and therefore inhibited the tumor growth.

  14. Viscoelastic and histologic properties in scarred rabbit vocal folds after mesenchymal stem cell injection.

    PubMed

    Hertegård, S; Cedervall, J; Svensson, B; Forsberg, K; Maurer, F H J; Vidovska, D; Olivius, P; Ahrlund-Richter, L; Le Blanc, K

    2006-07-01

    The aim of this study was to analyze the short-term viscoelastic and histologic properties of scarred rabbit vocal folds after injection of human mesenchymal stem cells (MSC) as well as the degree of MSC survival. Because MSCs are antiinflammatory and regenerate mesenchymal tissues, can MSC injection reduce vocal fold scarring after injury? Twelve vocal folds from 10 New Zealand rabbits were scarred by a localized resection and injected with human MSC or saline. Eight vocal folds were left as controls. After 4 weeks, 10 larynges were stained for histology and evaluation of the lamina propria thickness. Collagen type I content was analyzed from six rabbits. MSC survival was analyzed by fluorescent in situ hybridization staining from three rabbits. Viscoelasticity for 10 vocal folds was analyzed in a parallel-plate rheometer. The rheometry on fresh-frozen samples showed decreased dynamic viscosity and lower elastic modulus (P<.01) in the scarred samples injected with MSC as compared with the untreated scarred group. Normal controls had lower dynamic viscosity and elastic modulus as compared with the scarred untreated and treated vocal folds (P<.01). Histologic analysis showed a higher content of collagen type 1 in the scarred samples as compared with the normal vocal folds and with the scarred folds treated with MSC. MSCs remained in all samples analyzed. The treated scarred vocal folds showed persistent MSC. Injection of scarred rabbit vocal folds with MSC rendered improved viscoelastic parameters and less signs of scarring expressed as collagen content in comparison to the untreated scarred vocal folds.

  15. Quantitative characterization of mesenchymal stem cell adhesion to the articular cartilage surface.

    PubMed

    Hung, Ben P; Babalola, Omotunde M; Bonassar, Lawrence J

    2013-12-01

    There has been great interest in use of mesenchymal stem cell (MSC)-based therapies for cartilage repair. Most recently, treatments involving intra-articular injection of MSCs have shown great promise for cartilage repair and arthritis therapy, which rely on MSC adhesion to cartilage. While there is some information on chondrocyte adhesion to cartilage, there is relatively little known about the kinetics and strength of MSC adhesion to cartilage. The goals of this study were as follows: (1) to quantify the kinetics and strength of adhesion of marrow-derived MSCs to articular cartilage using standard laboratory hardware; (2) to compare this adhesion behavior to that of articular chondrocytes; and (3) to assess the effect of serial monolayer culture on MSC adhesion. First through fourth passage MSCs and primary articular chondrocytes were allowed to adhere to the articular surface of cartilage disks for up to 30 h and the number of adhered cells was recorded to quantify adhesion kinetics. After 30 h, adherent cells were subjected to centrifugal shear to determine adhesion strength, quantified as the shear necessary to detach half the adhered cells (σ50 ). The number of adhered MSCs and adhesion strength increased with passage number and MSCs adhered more strongly than did primary articular chondrocytes. As such, the kinetics and strength of MSC adhesion to cartilage is not dramatically lower than that for articular chondrocytes. This protocol for assessing cell adhesion to cartilage is simple to implement and may represent an important screening tool for assessing the efficacy of cell-based therapies for cartilage repair. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  16. Impaired redox environment modulates cardiogenic and ion-channel gene expression in cardiac-resident and non-resident mesenchymal stem cells.

    PubMed

    Subramani, Baskar; Subbannagounder, Sellamuthu; Ramanathanpullai, Chithra; Palanivel, Sekar; Ramasamy, Rajesh

    2017-03-01

    Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H 2 O 2 ) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H 2 O 2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H 2 O 2 . The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( I KDR , I KCa , I to and I Na.TTX ) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H 2 O 2 . Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H 2 O 2 . Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.

  17. Scintigraphic Tracking of Allogeneic Mesenchymal Stem Cells in the Distal Limb After Intra-Arterial Injection in Standing Horses.

    PubMed

    Espinosa, Pablo; Spriet, Mathieu; Sole, Albert; Walker, Naomi J; Vaughan, Betsy; Galuppo, Larry D

    2016-07-01

    To assess the feasibility of intra-arterial administration of allogeneic mesenchymal stem cells (MSC) in the median artery of standing horses and evaluate the distribution and retention of radiolabeled cells. In vivo experimental study. Six research horses. Technetium(99m) -HexaMethyl-Propylene-Amine Oxime-labeled MSC were injected under ultrasound guidance in the median artery of 6 front limbs of 3 horses, standing under sedation. Scintigraphic images were obtained at the time of injection, and at 1, 6, and 24 hours postinjection. Six additional limbs from 3 horses were similarly injected with unlabeled MSC. Ultrasound was performed the following day for assessment of vascular changes. Intra-arterial injection was performed successfully in 11 of 12 limbs. In 1 limb, partial periarterial injection compromised the success of the procedure. Homogeneous distribution of radiolabeled MSC was observed through the entire distal limb, including within the hoof. Partial venous thrombosis was found in both groups of horses, but was subjectively less severe in horses injected with unlabeled MSC. No lameness was observed. Transient swelling of the distal limb occurred in only 1 limb. Intra-arterial injection of MSC can be performed in standing horses under sedation and successfully distribute MSC to the distal limb. A risk of periarterial injection was identified but can be reduced with proper sedation, local anesthesia, and increased experience. Partial venous thrombosis was observed as a complication, but did not cause changes of clinical importance, other than rare transient swelling. © Copyright 2016 by The American College of Veterinary Surgeons.

  18. Dual targeting and enhanced cytotoxicity to HER2-overexpressing tumors by immunoapoptotin-armored mesenchymal stem cells.

    PubMed

    Cai, Yanhui; Xi, Yujing; Cao, Zhongyuan; Xiang, Geng; Ni, Qingrong; Zhang, Rui; Chang, Jing; Du, Xiao; Yang, Angang; Yan, Bo; Zhao, Jing

    2016-10-10

    Mesenchymal stem cells (MSCs) are promising vehicles for the delivery of anticancer agents in cancer therapy. However, the tumor targeting of loaded therapeutics is essential. Here, we explored a dual-targeting strategy to incorporate tumor-tropic MSC delivery with HER2-specific killing by the immunoapoptotin e23sFv-Fdt-tBid generated in our previous studies. The MSC engineering allowed simultaneous immunoapoptotin secretion and bioluminescence detection of the modified MSCs. Systemic administration of the immunoapoptotin-engineered MSCs was investigated in human HER2-reconstituted syngeneic mouse models of orthotopic and metastatic breast cancer, as well as in a xenograft nude mouse model of orthotopic gastric cancer. In vivo dual tumor targeting was confirmed by local accumulation of the bioluminescence-imaged MSCs and persistence of His-immunostained immunoapoptotins in tumor sites. The added tumor preference of MSC-secreted immunoapoptotins resulted in a significantly stronger antitumor effect compared with purified immunoapoptotins and Jurkat-delivered immunoapoptotins. This immunoapoptotin-armored MSC strategy provides a rationale for its use in extended malignancies by combining MSC mobility with redirected immunoapoptotins against a given tumor antigen. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Development of 3D in vitro platform technology to engineer mesenchymal stem cells.

    PubMed

    Hosseinkhani, Hossein; Hong, Po-Da; Yu, Dah-Shyong; Chen, Yi-Ru; Ickowicz, Diana; Farber, Ira-Yudovin; Domb, Abraham J

    2012-01-01

    This study aims to develop a three-dimensional in vitro culture system to genetically engineer mesenchymal stem cells (MSC) to express bone morphogenic protein-2. We employed nanofabrication technologies borrowed from the spinning industry, such as electrospinning, to mass-produce identical building blocks in a variety of shapes and sizes to fabricate electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen. Homogenous nanoparticles of cationic biodegradable natural polymer were formed by simple mixing of an aqueous solution of plasmid DNA encoded bone morphogenic protein-2 with the same volume of cationic polysaccharide, dextran-spermine. Rat bone marrow MSC were cultured on electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen prior to the incorporation of the nanoparticles into the nanofiber sheets. Bone morphogenic protein-2 was significantly detected in MSC cultured on nanofiber sheets incorporated with nanoparticles after 2 days compared with MSC cultured on nanofiber sheets incorporated with naked plasmid DNA. We conclude that the incorporation of nanoparticles into nanofiber sheets is a very promising strategy to genetically engineer MSC and can be used for further applications in regenerative medicine therapy.

  20. Overexpression of Gremlin1 in Mesenchymal Stem Cells Improves Hindlimb Ischemia in Mice by Enhancing Cell Survival.

    PubMed

    Xiang, Qiuling; Hong, Dongxi; Liao, Yan; Cao, Yong; Liu, Muyun; Pang, Jun; Zhou, Junjie; Wang, Guang; Yang, Renhao; Wang, Maosheng; Xiang, Andy Peng

    2017-05-01

    Mesenchymal stem cells (MSCs) are a promising cell resource for the treatment of ischemic diseases, partially through paracrine effects. One of the major obstacles of MSC treatment is the poor survival rate and low efficiency of transplanted stem cells due to ischemic or inflammatory environments. Gremlin1 (GREM1), a regulator of growth, differentiation and development, has been identified as a novel proangiogenic factor. However, the role and mechanism of GREM1 in MSCs remains unclear. Therefore, we assessed the putative beneficial effects of GREM1 on MSC-based therapy for hindlimb ischemia. The lentiviral vector, EF1a-GREM1, was constructed using the Multisite Gateway System and used to transduce MSCs. In vitro studies demonstrated increased survival of GREM1-MSCs exposed to H 2 O 2 , which is consistent with the activation of caspase-3. Conditional medium from GREM1-MSCs (GREM1-MSC-CM) increased the anti-apoptotic effects of human umbilical vein endothelial cells (HUVECs), and this effect was attenuated by treatment with the PI3K/Akt pathway inhibitor LY294002. MSCs modified with GREM1 could significantly increase blood perfusion of the ischemic hindlimb in vivo in a mouse model, which was correlated to improved MSC survival. This study demonstrates that overexpression of GREM1 in MSCs have greater therapeutic effects against ischemia compared with wild-type MSCs by enhancing the survival of MSCs and ECs, which may provide new tools for studies investigating the treatment of ischemic diseases. J. Cell. Physiol. 232: 996-1007, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Functional Effects of TGF-beta1 on Mesenchymal Stem Cell Mobilization in Cockroach Allergen Induced Asthma

    PubMed Central

    Xian, Lingling; Li, Changjun; Xu, Ting; Plunkett, Beverly; Huang, Shau-Ku; Wan, Mei; Cao, Xu

    2014-01-01

    Mesenchymal stem cells (MSCs) have been suggested to participate in immune regulation and airway repair/remodeling. Transforming growth factor β1 (TGFβ1) is critical in the recruitment of stem/progenitor cells for tissue repair, remodeling and cell differentiation. In this study, we sought to investigate the role of TGFβ1 in MSC migration in allergic asthma. We examined nestin expression (a marker for MSCs) and TGFβ1 signaling activation in airways in cockroach allergen (CRE) induced mouse models. Compared with control mice, there were increased nestin+ cells in airways, and higher levels of active TGFβ1 in serum and p-Smad2/3 expression in lungs of CRE-treated mice. Increased activation of TGFβ1 signaling was also found in CRE-treated MSCs. We then assessed MSC migration induced by conditioned medium (ECM) from CRE-challenged human epithelium in air/liquid interface (ALI) culture in Transwell assays. MSC migration was stimulated by ECM, but was significantly inhibited by either TGFβ1 neutralizing antibody or TβR1 inhibitor. Intriguingly, increased migration of MSCs from blood and bone marrow to the airway was also observed after systemic injection of GFP+-MSCs, and from bone marrow of Nes-GFP mice following CRE challenge. Furthermore, TGFβ1 neutralizing antibody inhibited the CRE-induced MSC recruitment, but promoted airway inflammation. Finally, we investigated the role of MSCs in modulating CRE induced T cell response, and found that MSCs significantly inhibited CRE-induced inflammatory cytokine secretion (IL-4, IL13, IL17 and IFN-γ) by CD4+ T cells. These results suggest that TGFβ1 may be a key pro-migratory factor in recruiting MSCs to the airways in mouse models of asthma. PMID:24711618

  2. Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma.

    PubMed

    Mead, Ben; Hill, Lisa J; Blanch, Richard J; Ward, Kelly; Logan, Ann; Berry, Martin; Leadbeater, Wendy; Scheven, Ben A

    2016-04-01

    Glaucoma is a leading cause of irreversible blindness involving loss of retinal ganglion cells (RGC). Mesenchymal stromal cells (MSC) have shown promise as a paracrine-mediated therapy for compromised neurons. It is, however, unknown whether dental pulp stem cells (DPSC) are effective as a cellular therapy in glaucoma and how their hypothesized influence compares with other more widely researched MSC sources. The present study aimed to compare the efficacy of adipose-derived stem cells, bone marrow-derived MSC (BMSC) and DPSC in preventing the loss of RGC and visual function when transplanted into the vitreous of glaucomatous rodent eyes. Thirty-five days after raised intraocular pressure (IOP) and intravitreal stem cell transplantation, Brn3a(+) RGC numbers, retinal nerve fibre layer thickness (RNFL) and RGC function were evaluated by immunohistochemistry, optical coherence tomography and electroretinography, respectively. Control glaucomatous eyes that were sham-treated with heat-killed DPSC had a significant loss of RGC numbers, RNFL thickness and function compared with intact eyes. BMSC and, to a greater extent, DPSC provided significant protection from RGC loss and RNFL thinning and preserved RGC function. The study supports the use of DPSC as a neuroprotective cellular therapy in retinal degenerative disease such as glaucoma. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    DTIC Science & Technology

    2013-09-01

    formation, are associated with gastrointestinal problems when taken orally and may cause osteonecrosis in cancer patients and bone pain in other...expression of osteoblastic phenotypic markers on iPS derived MSC cultured on nanotopographic biofilms . While we have not yet examined the effect

  4. SIGNALING PATHWAYS ASSOCIATED WITH VX EXPOSURE IN MESENCHYMAL STEM CELLS

    DTIC Science & Technology

    2017-09-01

    organophosphate (OP) pesticides sustain significant changes in their ability to proliferate and differentiate. In the literature, OP compounds were shown...3 2.1 Human MSC Culture .........................................................................................3...Biological Center (ECBC) BioDefense Branch team members demonstrated that bone marrow-derived human mesenchymal stem cells (MSCs) that are exposed

  5. Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain.

    PubMed

    Hawkins, Kate E; Corcelli, Michelangelo; Dowding, Kate; Ranzoni, Anna M; Vlahova, Filipa; Hau, Kwan-Leong; Hunjan, Avina; Peebles, Donald; Gressens, Pierre; Hagberg, Henrik; de Coppi, Paolo; Hristova, Mariya; Guillot, Pascale V

    2018-05-01

    Human mesenchymal stem cells (MSCs) have huge potential for regenerative medicine. In particular, the use of pluripotent stem cell-derived mesenchymal stem cells (PSC-MSCs) overcomes the hurdle of replicative senescence associated with the in vitro expansion of primary cells and has increased therapeutic benefits in comparison to the use of various adult sources of MSCs in a wide range of animal disease models. On the other hand, fetal MSCs exhibit faster growth kinetics and possess longer telomeres and a wider differentiation potential than adult MSCs. Here, for the first time, we compare the therapeutic potential of PSC-MSCs (ES-MSCs from embryonic stem cells) to fetal MSCs (AF-MSCs from the amniotic fluid), demonstrating that ES-MSCs have a superior neuroprotective potential over AF-MSCs in the mouse brain following hypoxia-ischemia. Further, we demonstrate that nuclear factor (NF)-κB-stimulated interleukin (IL)-13 production contributes to an increased in vitro anti-inflammatory potential of ES-MSC-conditioned medium (CM) over AF-MSC-CM, thus suggesting a potential mechanism for this observation. Moreover, we show that induced pluripotent stem cell-derived MSCs (iMSCs) exhibit many similarities to ES-MSCs, including enhanced NF-κB signaling and IL-13 production in comparison to AF-MSCs. Future studies should assess whether iMSCs also exhibit similar neuroprotective potential to ES-MSCs, thus presenting a potential strategy to overcome the ethical issues associated with the use of embryonic stem cells and providing a potential source of cells for autologous use against neonatal hypoxic-ischemic encephalopathy in humans. Stem Cells Translational Medicine 2018;7:439-449. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  6. Autologous Mesenchymal Stem Cell and Islet Cotransplantation: Safety and Efficacy.

    PubMed

    Wang, Hongjun; Strange, Charlie; Nietert, Paul J; Wang, Jingjing; Turnbull, Taylor L; Cloud, Colleen; Owczarski, Stefanie; Shuford, Betsy; Duke, Tara; Gilkeson, Gary; Luttrell, Louis; Hermayer, Kathie; Fernandes, Jyotika; Adams, David B; Morgan, Katherine A

    2018-01-01

    Islet engraftment after transplantation is impaired by high rates of islet/β cell death caused by cellular stressors and poor graft vascularization. We studied whether cotransplantation of ex vivo expanded autologous bone marrow-derived mesenchymal stem cells (MSCs) with islets is safe and beneficial in chronic pancreatitis patients undergoing total pancreatectomy with islet autotransplantation. MSCs were harvested from the bone marrow of three islet autotransplantation patients and expanded at our current Good Manufacturing Practices (cGMP) facility. On the day of islet transplantation, an average dose of 20.0 ± 2.6 ×10 6 MSCs was infused with islets via the portal vein. Adverse events and glycemic control at baseline, 6, and 12 months after transplantation were compared with data from 101 historical control patients. No adverse events directly related to the MSC infusions were observed. MSC patients required lower amounts of insulin during the peritransplantation period (p = .02 vs. controls) and had lower 12-month fasting blood glucose levels (p = .02 vs. controls), smaller C-peptide declines over 6 months (p = .01 vs. controls), and better quality of life compared with controls. In conclusion, our pilot study demonstrates that autologous MSC and islet cotransplantation may be a safe and potential strategy to improve islet engraftment after transplantation. (Clinicaltrials.gov registration number: NCT02384018). Stem Cells Translational Medicine 2018;7:11-19. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  7. Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy.

    PubMed

    Estrada, J C; Torres, Y; Benguría, A; Dopazo, A; Roche, E; Carrera-Quintanar, L; Pérez, R A; Enríquez, J A; Torres, R; Ramírez, J C; Samper, E; Bernad, A

    2013-06-27

    In most clinical trials, human mesenchymal stem cells (hMSCs) are expanded in vitro before implantation. The genetic stability of human stem cells is critical for their clinical use. However, the relationship between stem-cell expansion and genetic stability is poorly understood. Here, we demonstrate that within the normal expansion period, hMSC cultures show a high percentage of aneuploid cells that progressively increases until senescence. Despite this accumulation, we show that in a heterogeneous culture the senescence-prone hMSC subpopulation has a lower proliferation potential and a higher incidence of aneuploidy than the non-senescent subpopulation. We further show that senescence is linked to a novel transcriptional signature that includes a set of genes implicated in ploidy control. Overexpression of the telomerase catalytic subunit (human telomerase reverse transcriptase, hTERT) inhibited senescence, markedly reducing the levels of aneuploidy and preventing the dysregulation of ploidy-controlling genes. hMSC-replicative senescence was accompanied by an increase in oxygen consumption rate (OCR) and oxidative stress, but in long-term cultures that overexpress hTERT, these parameters were maintained at basal levels, comparable to unmodified hMSCs at initial passages. We therefore propose that hTERT contributes to genetic stability through its classical telomere maintenance function and also by reducing the levels of oxidative stress, possibly, by controlling mitochondrial physiology. Finally, we propose that aneuploidy is a relevant factor in the induction of senescence and should be assessed in hMSCs before their clinical use.

  8. Biodistribution and Immunogenicity of Allogeneic Mesenchymal Stem Cells in a Rat Model of Intraarticular Chondrocyte Xenotransplantation.

    PubMed

    Marquina, Maribel; Collado, Javier A; Pérez-Cruz, Magdiel; Fernández-Pernas, Pablo; Fafián-Labora, Juan; Blanco, Francisco J; Máñez, Rafael; Arufe, María C; Costa, Cristina

    2017-01-01

    Xenogeneic chondrocytes and allogeneic mesenchymal stem cells (MSC) are considered a potential source of cells for articular cartilage repair. We here assessed the immune response triggered by xenogeneic chondrocytes when injected intraarticularly, as well as the immunoregulatory effect of allogeneic bone marrow-derived MSC after systemic administration. To this end, a discordant xenotransplantation model was established by injecting three million porcine articular chondrocytes (PAC) into the femorotibial joint of Lewis rats and monitoring the immune response. First, the fate of MSC injected using various routes was monitored in an in vivo imaging system. The biodistribution revealed a dependency on the injection route with MSC injected intravenously (i.v.) succumbing early after 24 h and MSC injected intraperitoneally (i.p.) lasting locally for at least 5 days. Importantly, no migration of MSC to the joint was detected in rats previously injected with PAC. MSC were then administered either i.v. 1 week before PAC injection or i.p. 3 weeks after to assess their immunomodulatory function on humoral and adaptive immune parameters. Anti-PAC IgM and IgG responses were detected in all PAC-injected rats with a peak at week 2 postinjection and reactivity remaining above baseline levels by week 18. IgG2a and IgG2b were the predominant and long-lasting IgG subtypes. By contrast, no anti-MSC antibody response was detected in the cohort injected with MSC only, but infusion of MSC before PAC injection temporarily augmented the anti-PAC antibody response. Consistent with a cellular immune response to PAC in PAC-injected rats, cytokine/chemokine profiling in serum by antibody array revealed a distinct pattern relative to controls characterized by elevation of multiple markers at week 2, as well as increases in proliferation in draining lymph nodes. Notably, systemic administration of allogeneic MSC under the described conditions did not diminish the immune response. IL-2 measurements in cocultures of rat peripheral blood lymphocytes with PAC indicated that PAC injection induced some T-cell hyporesponsiveness that was not enhanced in the cohorts additionally receiving MSC. Thus, PAC injected intraarticularly in Lewis rats induced a cellular and humoral immune response that was not counteracted by the systemic administration of allogeneic MSC under the described conditions.

  9. Biodistribution and Immunogenicity of Allogeneic Mesenchymal Stem Cells in a Rat Model of Intraarticular Chondrocyte Xenotransplantation

    PubMed Central

    Marquina, Maribel; Collado, Javier A.; Pérez-Cruz, Magdiel; Fernández-Pernas, Pablo; Fafián-Labora, Juan; Blanco, Francisco J.; Máñez, Rafael; Arufe, María C.; Costa, Cristina

    2017-01-01

    Xenogeneic chondrocytes and allogeneic mesenchymal stem cells (MSC) are considered a potential source of cells for articular cartilage repair. We here assessed the immune response triggered by xenogeneic chondrocytes when injected intraarticularly, as well as the immunoregulatory effect of allogeneic bone marrow-derived MSC after systemic administration. To this end, a discordant xenotransplantation model was established by injecting three million porcine articular chondrocytes (PAC) into the femorotibial joint of Lewis rats and monitoring the immune response. First, the fate of MSC injected using various routes was monitored in an in vivo imaging system. The biodistribution revealed a dependency on the injection route with MSC injected intravenously (i.v.) succumbing early after 24 h and MSC injected intraperitoneally (i.p.) lasting locally for at least 5 days. Importantly, no migration of MSC to the joint was detected in rats previously injected with PAC. MSC were then administered either i.v. 1 week before PAC injection or i.p. 3 weeks after to assess their immunomodulatory function on humoral and adaptive immune parameters. Anti-PAC IgM and IgG responses were detected in all PAC-injected rats with a peak at week 2 postinjection and reactivity remaining above baseline levels by week 18. IgG2a and IgG2b were the predominant and long-lasting IgG subtypes. By contrast, no anti-MSC antibody response was detected in the cohort injected with MSC only, but infusion of MSC before PAC injection temporarily augmented the anti-PAC antibody response. Consistent with a cellular immune response to PAC in PAC-injected rats, cytokine/chemokine profiling in serum by antibody array revealed a distinct pattern relative to controls characterized by elevation of multiple markers at week 2, as well as increases in proliferation in draining lymph nodes. Notably, systemic administration of allogeneic MSC under the described conditions did not diminish the immune response. IL-2 measurements in cocultures of rat peripheral blood lymphocytes with PAC indicated that PAC injection induced some T-cell hyporesponsiveness that was not enhanced in the cohorts additionally receiving MSC. Thus, PAC injected intraarticularly in Lewis rats induced a cellular and humoral immune response that was not counteracted by the systemic administration of allogeneic MSC under the described conditions. PMID:29163532

  10. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome?

    PubMed

    Teixeira, Fábio G; Panchalingam, Krishna M; Anjo, Sandra Isabel; Manadas, Bruno; Pereira, Ricardo; Sousa, Nuno; Salgado, António J; Behie, Leo A

    2015-07-24

    The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications.

  11. Human Dental Pulp Stem Cells Are More Effective Than Human Bone Marrow-Derived Mesenchymal Stem Cells in Cerebral Ischemic Injury.

    PubMed

    Song, Miyeoun; Lee, Jae-Hyung; Bae, Jinhyun; Bu, Youngmin; Kim, Eun-Cheol

    2017-06-09

    We compared the therapeutic effects and mechanism of transplanted human dental pulp stem cells (hDPSCs) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in a rat stroke model and an in vitro model of ischemia. Rats were intravenously injected with hDPSCs or hBM-MSCs 24 h after middle cerebral artery occlusion (MCAo), and both groups showed improved functional recovery and reduced infarct volume versus control rats, but the hDPSC group showed greater reduction in infarct volume than the hBM-MSC group. The positive area for the endothelial cell marker was greater in the lesion boundary areas in the hDPSC group than in the hBM-MSC group. Administration of hDPSCs to rats with stroke significantly decreased reactive gliosis, as evidenced by the attenuation of MCAo-induced GFAP+/nestin+ and GFAP+/Musashi-1+ cells, compared with hBM-MSCs. In vivo findings were confirmed by in vitro data illustrating that hDPSCs showed superior neuroprotective, migratory, and in vitro angiogenic effects in oxygen-glucose deprivation (OGD)-injured human astrocytes (hAs) versus hBM-MSCs. Comprehensive comparative bioinformatics analyses from hDPSC- and hBM-MSC-treated in vitro OGD-injured hAs were examined by RNA sequencing technology. In gene ontology and KEGG pathway analyses, significant pathways in the hDPSC-treated group were the MAPK and TGF-β signaling pathways. Thus, hDPSCs may be a better cell therapy source for ischemic stroke than hBM-MSCs.

  12. Stem cells for regenerative medicine: advances in the engineering of tissues and organs

    NASA Astrophysics Data System (ADS)

    Ringe, Jochen; Kaps, Christian; Burmester, Gerd-Rüdiger; Sittinger, Michael

    2002-07-01

    The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as mesenchymal stem or mesenchymal progenitor cells (MSC). These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, MSC have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma, which suggest these cells as an attractive cell source for tissue engineering approaches. The interest in modern biological technologies such as tissue engineering has dramatically increased since it is feasible to isolate living, healthy cells from the body, expand them under cell culture conditions, combine them with biocompatible carrier materials and retransplant them into patients. Therefore, tissue engineering gives the opportunity to generate living substitutes for tissues and organs, which may overcome the drawbacks of classical tissue reconstruction: lacking quality and quantity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Due to the prerequisite for tissue engineering to ensure a sufficient number of tissue specific cells without donor site morbidity, much attention has been drawn to multipotential progenitor cells such as embryonic stem cells, periosteal cells and mesenchymal stem cells. In this report we review the state of the art in tissue engineering with mesenchymal stem and mesenchymal progenitor cells with emphasis on bone and cartilage reconstruction. Furthermore, several issues of importance, especially with regard to the clinical application of mesenchymal stem cells, are discussed.

  13. Purified umbilical cord derived mesenchymal stem cell treatment in a case of systemic lupus erythematosus.

    PubMed

    Phillips, Christopher D; Wongsaisri, Pornpatcharin; Htut, Thein; Grossman, Terry

    2017-12-01

    Systemic lupus erythematosus (SLE) is a multiple organ system autoimmune disorder for which there is no known cure. We report a case of a young adult lady with SLE and Sjogren's with diagnostic and clinical resolution following purified umbilical cord derived mesenchymal stem cell (MSC) and globulin component protein macrophage activating factor (GcMAF) therapy in a combined multidisciplinary integrative medicine protocol. Our patient had complete reversal of all clinical and laboratory markers. We recommend a prospective randomized double blind study to assess the sustained efficacy of MSC and GcMAF in the treatment of autoimmune connective tissue diseases such as systemic lupus erythematosus.

  14. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide

    PubMed Central

    2012-01-01

    Background Mesenchymal stem cells (MSCs) are increasingly used as therapeutic agents as well as research tools in regenerative medicine. Development of technologies which allow storing and banking of MSC with minimal loss of cell viability, differentiation capacity, and function is required for clinical and research applications. Cryopreservation is the most effective way to preserve cells long term, but it involves potentially cytotoxic compounds and processing steps. Here, we investigate the effect of decreasing dimethyl sulfoxide (DMSO) concentrations in cryosolution by substituting with hydroxyethyl starch (HES) of different molecular weights using different freezing rates. Post-thaw viability, phenotype and osteogenic differentiation capacity of MSCs were analysed. Results The study confirms that, for rat MSC, cryopreservation effects need to be assessed some time after, rather than immediately after thawing. MSCs cryopreserved with HES maintain their characteristic cell surface marker expression as well as the osteogenic, adipogenic and chondrogenic differentiation potential. HES alone does not provide sufficient cryoprotection for rat MSCs, but provides good cryoprotection in combination with DMSO, permitting the DMSO content to be reduced to 5%. There are indications that such a combination would seem useful not just for the clinical disadvantages of DMSO but also based on a tendency for reduced osteogenic differentiation capacity of rat MSC cryopreserved with high DMSO concentration. HES molecular weight appears to play only a minor role in its capacity to act as a cryopreservation solution for MSC. The use of a ‘straight freeze’ protocol is no less effective in maintaining post-thaw viability of MSC compared to controlled rate freezing methods. Conclusion A 5% DMSO / 5% HES solution cryopreservation solution using a ‘straight freeze’ approach can be recommended for rat MSC. PMID:22889198

  15. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model.

    PubMed

    Wang, Shuai; Li, Yi; Zhao, Jinghong; Zhang, Jingbo; Huang, Yunjian

    2013-04-01

    Mesenchymal stem cells (MSC) attenuate albuminuria and preserve normal renal histology in diabetic mice. However, the effects of MSC on glomerular podocyte injury remain uncertain. The aim of this study was to evaluate the effects of MSC on podocyte injury in streptozotocin (STZ)-induced diabetic rats. Thirty days after diabetes induction by STZ injection (65 mg/kg, intraperitoneally) in Sprague-Dawley rats, the diabetic rats received medium or 2 × 10(6) enhanced green fluorescent protein-labeled MSC via the renal artery. In vivo tracking of MSC was followed by immunofluorescence analysis. Diabetes-related physical and biochemical parameters were measured on day 60 after the MSC infusion. The expression of podocyte markers (nephrin and podocin), podocyte survival factors (VEGF and BMP-7), and the ultrastructural pathology of podocytes were also assessed. MSC were only detected in the glomeruli from the left kidney receiving MSC infusion. Compared with medium-treated diabetic rats, rats treated with MSC showed a suppressed increase in kidney weight, kidney to body weight index, creatinine clearance rate, and urinary albumin to creatinine ratio; however, the treatment had no effect on blood glucose or body weight levels. Furthermore, the MSC treatment reduced the loss of podocytes, effacement of foot processes, widening of foot processes, thickening of glomerular basal membrane (GBM), and loss of glomerular nephrin and podocin. Most important, MSC-injected kidneys expressed higher levels of BMP-7 but not of VEGF. Our results clearly demonstrated that intra-arterial administration of MSC prevented the development of albuminuria as well as any damage to or loss of podocytes, though there was no improvement in blood sugar levels. The protective effects of MSC may be mediated in part by increasing BMP-7 secretion. Copyright © 2013 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  16. Nanovector-based prolyl hydroxylase domain 2 silencing system enhances the efficiency of stem cell transplantation for infarcted myocardium repair.

    PubMed

    Zhu, Kai; Lai, Hao; Guo, Changfa; Li, Jun; Wang, Yulin; Wang, Lingyan; Wang, Chunsheng

    2014-01-01

    Mesenchymal stem cell (MSC) transplantation has attracted much attention in myocardial infarction therapy. One of the limitations is the poor survival of grafted cells in the ischemic microenvironment. Small interfering RNA-mediated prolyl hydroxylase domain protein 2 (PHD2) silencing in MSCs holds tremendous potential to enhance their survival and paracrine effect after transplantation. However, an efficient and biocompatible PHD2 silencing system for clinical application is lacking. Herein, we developed a novel PHD2 silencing system based on arginine-terminated generation 4 poly(amidoamine) (Arg-G4) nanoparticles. The system exhibited effective and biocompatible small interfering RNA delivery and PHD2 silencing in MSCs in vitro. After genetically modified MSC transplantation in myocardial infarction models, MSC survival and paracrine function of IGF-1 were enhanced significantly in vivo. As a result, we observed decreased cardiomyocyte apoptosis, scar size, and interstitial fibrosis, and increased angiogenesis in the diseased myocardium, which ultimately attenuated ventricular remodeling and improved heart function. This work demonstrated that an Arg-G4 nanovector-based PHD2 silencing system could enhance the efficiency of MSC transplantation for infarcted myocardium repair.

  17. Mesenchymal Stem Cells and the Origin of Ewing's Sarcoma

    PubMed Central

    Lin, Patrick P.; Wang, Yongxing; Lozano, Guillermina

    2011-01-01

    The origin of Ewing's sarcoma is a subject of much debate. Once thought to be derived from primitive neuroectodermal cells, many now believe it to arise from a mesenchymal stem cell (MSC). Expression of the EWS-FLI1 fusion gene in MSCs changes cell morphology to resemble Ewing's sarcoma and induces expression of neuroectodermal markers. In murine cells, transformation to sarcomas can occur. In knockdown experiments, Ewing's sarcoma cells develop characteristics of MSCs and the ability to differentiate into mesodermal lineages. However, it cannot be concluded that MSCs are the cell of origin. The concept of an MSC still needs to be rigorously defined, and there may be different subpopulations of mesenchymal pluripotential cells. Furthermore, EWS-FLI1 by itself does not transform human cells, and cooperating mutations appear to be necessary. Therefore, while it is possible that Ewing's sarcoma may originate from a primitive mesenchymal cell, the idea needs to be refined further. PMID:20953407

  18. Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment.

    PubMed

    Bartlett, R S; Guille, J T; Chen, X; Christensen, M B; Wang, S F; Thibeault, S L

    2016-10-01

    Regenerative medicine holds promise for restoring voice in patients with vocal fold scarring. As experimental treatments approach clinical translation, several considerations remain. Our objective was to evaluate efficacy and biocompatibility of four bone marrow mesenchymal stromal cell (BM-MSC) and tunable hyaluronic acid based hydrogel (HyStem-VF) treatments for vocal fold scar using clinically acceptable materials, a preclinical sample size and a dosing comparison. Vocal folds of 84 rabbits were injured and injected with four treatment variations (BM-MSC, HyStem-VF, and BM-MSC in HyStem-VF at two concentrations) 6 weeks later. Efficacy was assessed with rheometry, real-time polymerase chain reaction (RT-PCR) and histology at 2, 4 and 10 weeks following treatment. Lung, liver, kidney, spleen and vocal folds were screened for biocompatibility by a pathologist. Persistent inflammation was identified in all hydrogel-injected groups. The BM-MSC alone treatment appeared to be the most efficacious and safe, providing an early resolution of viscoelasticity, gene expression consistent with desirable extracellular matrix remodeling (less fibronectin, collagen 1α2, collagen 3, procollagen, transforming growth factor [TGF]β1, alpha smooth muscle actin, interleukin-1β, interleukin-17β and tumor necrosis factor [TNF] than injured controls) and minimal inflammation. Human beta actin expression in BM-MSC-treated vocal folds was minimal after 2 weeks, suggesting that paracrine signaling from the BM-MSCs may have facilitated tissue repair. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    PubMed Central

    Zhou, Hai-xiao; Liu, Zhi-gang; Liu, Xiao-jiao; Chen, Qian-xue

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. PMID:26981097

  20. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy.

    PubMed

    Chang, Tzu-Ching; Hsu, Min-Fen; Wu, Kenneth K

    2015-01-01

    Hyperglycemia was reported to cause bone marrow hematopoietic niche dysfunction, and high glucose (HG) in the cultured medium induces MSC senescence. The underlying mechanism is unclear. Here, we investigated the role of HG-induced autophagy in bone-marrow-derived mesenchymal stem cell (BMSC) senescence. HG (25 mM) increased expression of Beclin-1, Atg 5, 7 and 12, generation of LC3-II and autophagosome formation which was correlated with development of cell senescence. Pretreatment of HG-MSC with 3-methyladenine (3-MA) prevented senescence but increased apoptosis. N-acetylcysteine (NAC) was effective in abrogating HG-induced autophagy accompanied by prevention of senescence. Diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, blocked autophagy and senescence in a manner comparable to NAC. 3-MA, NAC and DPI inhibited HG-induced interleukin-6 production in BMSCs. These results suggest that hyperglycemia induces MSC senescence and local inflammation via a novel oxidant-mediated autophagy which contributes to bone marrow niche dysfunction and hematopoietic impairment.

  1. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering.

    PubMed

    Duarte Campos, Daniela Filipa; Blaeser, Andreas; Buellesbach, Kate; Sen, Kshama Shree; Xun, Weiwei; Tillmann, Walter; Fischer, Horst

    2016-06-01

    3D-manufactured hydrogels with precise contours and biological adhesion motifs are interesting candidates in the regenerative medicine field for the culture and differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). 3D-bioprinting is a powerful technique to approach one step closer the native organization of cells. This study investigates the effect of the incorporation of collagen type I in 3D-bioprinted polysaccharide-based hydrogels to the modulation of cell morphology, osteogenic remodeling potential, and mineralization. By combining thermo-responsive agarose hydrogels with collagen type I, the mechanical stiffness and printing contours of printed constructs can be improved compared to pure collagen hydrogels which are typically used as standard materials for MSC osteogenic differentiation. The results presented here show that MSC not only survive the 3D-bioprinting process but also maintain the mesenchymal phenotype, as proved by live/dead staining and immunocytochemistry (vimentin positive, CD34 negative). Increased solids concentrations of collagen in the hydrogel blend induce changes in cell morphology, namely, by enhancing cell spreading, that ultimately contribute to enhanced and directed MSC osteogenic differentiation. 3D-bioprinted agarose-collagen hydrogels with high-collagen ratio are therefore feasible for MSC osteogenic differentiation, contrarily to low-collagen blends, as proved by two-photon microscopy, Alizarin Red staining, and real-time polymerase chain reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of mesenchymal stem cell differentiation in vitro using classification association rule mining.

    PubMed

    Wang, Weiqi; Wang, Yanbo Justin; Bañares-Alcántara, René; Coenen, Frans; Cui, Zhanfeng

    2009-12-01

    In this paper, data mining is used to analyze the data on the differentiation of mammalian Mesenchymal Stem Cells (MSCs), aiming at discovering known and hidden rules governing MSC differentiation, following the establishment of a web-based public database containing experimental data on the MSC proliferation and differentiation. To this effect, a web-based public interactive database comprising the key parameters which influence the fate and destiny of mammalian MSCs has been constructed and analyzed using Classification Association Rule Mining (CARM) as a data-mining technique. The results show that the proposed approach is technically feasible and performs well with respect to the accuracy of (classification) prediction. Key rules mined from the constructed MSC database are consistent with experimental observations, indicating the validity of the method developed and the first step in the application of data mining to the study of MSCs.

  3. Adult multipotent stromal cell cryopreservation: Pluses and pitfalls

    PubMed Central

    Duan, Wei; Hicok, Kevin

    2017-01-01

    Abstract Study and clinical testing of adult multipotent stromal cells (MSCs) are central to progressive improvements in veterinary regenerative medicine. Inherent limitations to long‐term culture preclude use for storage. Until cell line creation from primary isolates becomes routine, MSC stasis at cryogenic temperatures is required for this purpose. Many protocols and reagents, including cryoprotectants, used for veterinary MSCs are derived from those for human and rodent cells. Dissimilarities in cryopreservation strategies play a role in variable MSC behaviors. Familiarity with contemporary cryopreservation reagents and processes is essential to an appreciation of their impact on MSC survival and post‐cryopreservation behavior. In addition to these points, this review includes a brief history and description of current veterinary stem cell regulation. PMID:29023790

  4. EFFECTS OF PLATING DENSITY AND CULTURE TIME ON BONE MARROW STROMAL CELL CHARACTERISTICS

    PubMed Central

    Neuhuber, Birgit; Swanger, Sharon A.; Howard, Linda; Mackay, Alastair; Fischer, Itzhak

    2008-01-01

    Objective Bone marrow stromal cells (MSC) are multipotent adult stem cells that have emerged as promising candidates for cell therapy in disorders including cardiac infarction, stroke and spinal cord injury. While harvesting methods used by different laboratories are relatively standard, MSC culturing protocols vary widely. This study is aimed at evaluating the effects of initial plating density and total time in culture on proliferation, cell morphology, and differentiation potential of heterogeneous MSC cultures and more homogeneous cloned subpopulations. Methods Rat MSC were plated at 20, 200 and 2000 cells/cm2 and grown to 50% confluency. The numbers of population doublings and doubling times were determined within and across multiple passages. Changes in cell morphology and differentiation potential to adipogenic, chondrogenic, and osteogenic lineages were evaluated and compared among early, intermediate and late passages, as well as between heterogeneous and cloned MSC populations. Results We found optimal cell growth at a plating density of 200 cells/cm2. Cultures derived from all plating densities developed increased proportions of flat cells over time. Assays for chondrogenesis, osteogenesis and adipogenesis showed that heterogeneous MSC plated at all densities sustained the potential for all three mesenchymal phenotypes through at least passage 5; the flat subpopulation lost adipogenic and chondrogenic potential. Conclusion Our findings suggest that the initial plating density is not critical for maintaining a well-defined, multipotent MSC population. Time in culture, however, affects cell characteristics, suggesting that cell expansion should be limited, especially until the specific characteristics of different MSC subpopulations are better understood. PMID:18495329

  5. Transportation Conditions for Prompt Use of Ex Vivo Expanded and Freshly Harvested Clinical-Grade Bone Marrow Mesenchymal Stromal/Stem Cells for Bone Regeneration

    PubMed Central

    Veronesi, Elena; Murgia, Alba; Caselli, Anna; Grisendi, Giulia; Piccinno, Maria Serena; Rasini, Valeria; Giordano, Rosaria; Montemurro, Tiziana; Bourin, Philippe; Sensebé, Luc; Rojewski, Markus T.; Schrezenmeier, Hubert; Layrolle, Pierre; Ginebra, Maria Pau; Panaitescu, Carmen Bunu; Gómez-Barrena, Enrique; Catani, Fabio; Paolucci, Paolo; Burns, Jorge S.

    2014-01-01

    Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/β-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/β-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/β-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/β-TCP 3D scaffold and subsequent in vivo bone formation. A successfully validated transportation protocol extends the applicability of fresh stem cells involving multicentric trials for regenerative medicine. PMID:23845029

  6. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models

    PubMed Central

    Shin, Jin Young; Park, Hyun Jung; Kim, Ha Na; Oh, Se Hee; Bae, Jae-Sung; Ha, Hee-Jin; Lee, Phil Hyu

    2014-01-01

    Current evidence suggests a central role for autophagy in Alzheimer disease (AD), and dysfunction in the autophagic system may lead to amyloid-β (Aβ) accumulation. Using in vitro and in vivo AD models, the present study investigated whether mesenchymal stem cells (MSCs) could enhance autophagy and thus exert a neuroprotective effect through modulation of Aβ clearance In Aβ-treated neuronal cells, MSCs increased cellular viability and enhanced LC3-II expression compared with cells treated with Aβ only. Immunofluorescence revealed that MSC coculture in Aβ-treated neuronal cells increased the number of LC3-II-positive autophagosomes that were colocalized with a lysosomal marker. Ultrastructural analysis revealed that most autophagic vacuoles (AVs) in Aβ-treated cells were not fused with lysosomes, whereas a large portion of autophagosomes were conjoined with lysosomes in MSCs cocultured with Aβ-treated neuronal cells. Furthermore, MSC coculture markedly increased Aβ immunoreactivity colocalized within lysosomes and decreased intracellular Aβ levels compared with Aβ-treated cells. In Aβ-treated animals, MSC administration significantly increased autophagosome induction, final maturation of late AVs, and fusion with lysosomes. Moreover, MSC administration significantly reduced the level of Aβ in the hippocampus, which was elevated in Aβ-treated mice, concomitant with increased survival of hippocampal neurons. Finally, MSC coculture upregulated BECN1/Beclin 1 expression in AD models. These results suggest that MSCs significantly enhance autolysosome formation and clearance of Aβ in AD models, which may lead to increased neuronal survival against Aβ toxicity. Modulation of the autophagy pathway to repair the damaged AD brain using MSCs would have a significant impact on future strategies for AD treatment. PMID:24149893

  7. Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation.

    PubMed

    Wenisch, Sabine; Trinkaus, Katja; Hild, Anne; Hose, Dirk; Heiss, Christian; Alt, Volker; Klisch, Christopher; Meissl, Hilmar; Schnettler, Reinhard

    2006-06-01

    Numerous reports have highlighted the use of mesenchymal stem cells (MSC) for tissue engineering because of the capacity of the cells to differentiate along the osteogenic, chondrogenic or adipogenic pathway. As MSC also display neuronal morphologies under appropriate culture conditions, the differentiation capacity of stem cells seems to be more complex than initially thought, but it requires careful characterization of the cells. This is especially the case because recently it has been suggested that neuronal differentiation of stem cells is only an artifact. Here, we investigate the sequence of ultrastructural changes of bone-derived stem cells during neuronal induction and compare these data with immunocytochemical and electrophysiological properties of the cells. For further comparative analyses, stem cells were incubated with non-neurologically inducing stressors. The stem cells were harvested from human osseous debris and were characterized morphologically, immunocytochemically and by using FACS. After 6 h of neuronal induction, the cells had assumed neuronal morphologies and expressed neuron-specific enolase, beta-III-tubulin, neurofilament-H and HNK-1, while only a subpopulation expressed CD15 and synaptophysin. However, electrical signaling could not be detected, neither spontaneously nor after electrical stimulation. Nevertheless, transmission electron microscopy revealed cellular features of neuritogenesis and synaptogenesis in the course of neuronal induction and suggested that the cells have features similar to those observed in immature neurons. Based upon the results, it can be concluded that neuronal induction had initiated the early steps of neuronal differentiation, while exposure of the cells to non-neurological stressors had caused necrotic alterations.

  8. A small population of resident limb bud mesenchymal cells express few MSC-associated markers, but the expression of these markers is increased immediately after cell culture.

    PubMed

    Marín-Llera, Jessica Cristina; Chimal-Monroy, Jesús

    2018-05-01

    Skeletal progenitors are derived from resident limb bud mesenchymal cells of the vertebrate embryos. However, it remains poorly understood if they represent stem cells, progenitors, or multipotent mesenchymal stromal cells (MSC). Derived-MSC of different adult tissues under in vitro experimental conditions can differentiate into the same cellular lineages that are present in the limb. Here, comparing non-cultured versus cultured mesenchymal limb bud cells, we determined the expression of MSC-associated markers, the in vitro differentiation capacity and their gene expression profile. Results showed that in freshly isolated limb bud mesenchymal cells, the proportion of cells expressing Sca1, CD44, CD105, CD90, and CD73 is very low and a low expression of lineage-specific genes was observed. However, recently seeded limb bud mesenchymal cells acquired Sca1 and CD44 markers and the expression of the key differentiation genes Runx2 and Sox9, while Scx and Pparg genes decreased. Also, their chondrogenic differentiation capacity decreased through cellular passages while the osteogenic increased. Our findings suggest that the modification of the cell adhesion process through the in vitro method changed the limb mesenchymal cell immunophenotype leading to the expression and maintenance of common MSC-associated markers. These findings could have a significant impact on MSC study and isolation strategy because they could explain common variations observed in the MSC immunophenotype in different tissues. © 2018 International Federation for Cell Biology.

  9. Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration.

    PubMed

    Han, Hao-Wei; Hsu, Shan-Hui

    2017-10-01

    Chitosan has been considered as candidate biomaterials for neural applications. The effective treatment of neurodegeneration or injury to the central nervous system (CNS) is still in lack nowadays. Adult neural stem cells (NSCs) represents a promising cell source to treat the CNS diseases but they are limited in number. Here, we developed the core-shell spheroids of NSCs (shell) and mesenchymal stem cells (MSCs, core) by co-culturing cells on the chitosan surface. The NSCs in chitosan derived co-spheroids displayed a higher survival rate than those in NSC homo-spheroids. The direct interaction of NSCs with MSCs in the co-spheroids increased the Notch activity and differentiation tendency of NSCs. Meanwhile, the differentiation potential of MSCs in chitosan derived co-spheroids was significantly enhanced toward neural lineages. Furthermore, NSC homo-spheroids and NSC/MSC co-spheroids derived on chitosan were evaluated for their in vivo efficacy by the embryonic and adult zebrafish brain injury models. The locomotion activity of zebrafish receiving chitosan derived NSC homo-spheroids or NSC/MSC co-spheroids was partially rescued in both models. Meanwhile, the higher survival rate was observed in the group of adult zebrafish implanted with chitosan derived NSC/MSC co-spheroids as compared to NSC homo-spheroids. These evidences indicate that chitosan may provide an extracellular matrix-like environment to drive the interaction and the morphological assembly between NSCs and MSCs and promote their neural differentiation capacities, which can be used for neural regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mesenchymal stem cell therapy promotes the improvement and recovery of renal function in a preclinical model

    PubMed Central

    Urt-Filho, Antônio; Oliveira, Rodrigo Juliano; Hermeto, Larissa Correa; Pesarini, João Renato; de David, Natan; Cantero, Wilson de Barros; Falcão, Gustavo; Marks, Guido; Antoniolli-Silva, Andréia Conceição Milan Brochado

    2016-01-01

    Abstract Acute renal failure (ARF) is an extremely important public health issue in need of novel therapies. The present study aimed to evaluate the capacity of mesenchymal stem cell (MSC) therapy to promote the improvement and recovery of renal function in a preclinical model. Wistar rats were used as the experimental model, and our results show that cisplatin (5mg/kg) can efficiently induce ARF, as measured by changes in biochemical (urea and creatinine) and histological parameters. MSC therapy performed 24h after the administration of chemotherapy resulted in normalized plasma urea and creatinine levels 30 and 45d after the onset of kidney disease. Furthermore, MSC therapy significantly reduced histological changes (intratubular cast formation in protein overload nephropathy and tubular hydropic degeneration) in this ARF model. Thus, considering that current therapies for ARF are merely palliative and that MSC therapy can promote the improvement and recovery of renal function in this model system, we suggest that innovative/alternative therapies involving MSCs should be considered for clinical studies in humans to treat ARF. PMID:27275667

  11. Local delivery of HMGB1 in gelatin sponge scaffolds combined with mesenchymal stem cell sheets to accelerate fracture healing.

    PubMed

    Xue, Deting; Zhang, Wei; Chen, Erman; Gao, Xiang; Liu, Ling; Ye, Chenyi; Tan, Yanbin; Pan, Zhijun; Li, Hang

    2017-06-27

    Fracture nonunion and delayed union continue to pose challenges for orthopedic surgeons. In the present study, we combined HMGB1 gelatin sponges with MSC sheets to promote bone healing after surgical treatment of rat tibial fractures. The HMGB1 gelatin sponge scaffolds supported the expansion of mesenchymal stem cells (MSCs) and promoted the osteogenic differentiation of MSCs and MSC sheets. Lentiviral vectors were then used to overexpress HMGB1 in MSCs. The results indicated that HMGB1 promotes the osteogenic differentiation of MSCs through the STAT3 pathway. Both siRNA and a STAT3 inhibitor downregulated STAT3, further confirming that HMGB1 induces the osteogenic differentiation of MSCs partly via the STAT3 signal pathway. In a rat tibial osteotomy model, we demonstrated the ability of HMGB1 gelatin sponge scaffolds to increase bone formation. The addition of MSC sheets further enhanced fracture healing. These findings support the use of HMGB1-loaded gelatin sponge scaffolds combined with MSC sheets to enhance fracture healing after surgical intervention.

  12. Local delivery of HMGB1 in gelatin sponge scaffolds combined with mesenchymal stem cell sheets to accelerate fracture healing

    PubMed Central

    Xue, Deting; Zhang, Wei; Chen, Erman; Gao, Xiang; Liu, Ling; Ye, Chenyi; Tan, Yanbin; Pan, Zhijun; Li, Hang

    2017-01-01

    Fracture nonunion and delayed union continue to pose challenges for orthopedic surgeons. In the present study, we combined HMGB1 gelatin sponges with MSC sheets to promote bone healing after surgical treatment of rat tibial fractures. The HMGB1 gelatin sponge scaffolds supported the expansion of mesenchymal stem cells (MSCs) and promoted the osteogenic differentiation of MSCs and MSC sheets. Lentiviral vectors were then used to overexpress HMGB1 in MSCs. The results indicated that HMGB1 promotes the osteogenic differentiation of MSCs through the STAT3 pathway. Both siRNA and a STAT3 inhibitor downregulated STAT3, further confirming that HMGB1 induces the osteogenic differentiation of MSCs partly via the STAT3 signal pathway. In a rat tibial osteotomy model, we demonstrated the ability of HMGB1 gelatin sponge scaffolds to increase bone formation. The addition of MSC sheets further enhanced fracture healing. These findings support the use of HMGB1-loaded gelatin sponge scaffolds combined with MSC sheets to enhance fracture healing after surgical intervention. PMID:28431400

  13. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    PubMed

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3K/AKT pathway. Altogether, these results suggest that CaSO 4 scaffolds could have potential applications for bone regeneration.

  14. Mesenchymal Stem Cell Therapy Prevents Interstitial Fibrosis and Tubular Atrophy in a Rat Kidney Allograft Model

    PubMed Central

    Herrero, Esther; Torras, Joan; Ripoll, Elia; Flaquer, Maria; Gomà, Montse; Lloberas, Nuria; Anegon, Ignacio; Cruzado, Josep M.; Grinyó, Josep M.; Herrero-Fresneda, Immaculada

    2012-01-01

    In solid organ transplantation, mesenchymal stem cell (MSC) therapy is strongly emerging among other cell therapies due to the positive results obtained in vitro and in vivo as an immunomodulatory agent and their potential regenerative role. We aimed at testing whether a single dose of MSCs, injected at 11 weeks after kidney transplantation for the prevention of chronic mechanisms, enhanced regeneration and provided protection against the inflammatory and fibrotic processes that finally lead to the characteristic features of chronic allograft nephropathy (CAN). Either bone marrow mononuclear cells (BMCs) injection or no-therapy (NT) were used as control treatments. A rat kidney transplantation model of CAN with 2.5 h of cold ischemia was used, and functional, histological, and molecular parameters were assessed at 12 and 24 weeks after transplantation. MSC and BMC cell therapy preserves renal function at 24 weeks and abrogates proteinuria, which is typical of this model (NT24w: 68.9±26.5 mg/24 h, MSC24w: 16.6±2.3 mg/24 h, BMC24w: 24.1±5.3 mg/24 h, P<0.03). Only MSC-treated animals showed a reduction in interstitial fibrosis and tubular atrophy (NT24w: 2.3±0.29, MSC24w: 0.4±0.2, P<0.03), less T cells (NT: 39.6±9.5, MSC: 8.1±0.9, P<0.03) and macrophages (NT: 20.9±4.7, MSC: 5.9±1.7, P<0.05) infiltrating the parenchyma and lowered expression of inflammatory cytokines while increasing the expression of anti-inflammatory factors. MSCs appear to serve as a protection from injury development rather than regenerate the damaged tissue, as no differences were observed in Ki67 expression, and kidney injury molecule-1, Clusterin, NGAL, and hepatocyte growth factor expression were only up-regulated in nontreated animals. Considering the results, a single delayed MSC injection is effective for the long-term protection of kidney allografts. PMID:22494435

  15. Matrix-associated implantation of predifferentiated mesenchymal stem cells versus articular chondrocytes: in vivo results of cartilage repair after 1 year.

    PubMed

    Marquass, Bastian; Schulz, Ronny; Hepp, Pierre; Zscharnack, Matthias; Aigner, Thomas; Schmidt, Stefanie; Stein, Frank; Richter, Robert; Osterhoff, Georg; Aust, Gabriele; Josten, Christoph; Bader, Augustinus

    2011-07-01

    The use of predifferentiated mesenchymal stem cells (MSC) leads to better histological results compared with undifferentiated MSC in sheep. This raises the need for a longer term follow-up study and comparison with a clinically established method. We hypothesized that chondrogenic in vitro predifferentiation of autologous MSC embedded in a collagen I hydrogel leads to better structural repair of a chronic osteochondral defect in an ovine stifle joint after 1 year. We further hypothesized that resulting histological results would be comparable with those of chondrocyte-seeded matrix-associated autologous chondrocyte transplantation (MACT). Controlled laboratory study. Predifferentiation period of ovine MSC within collagen gel in vitro was defined by assessment of several cellular and molecular biological parameters. For the animal study, 2 osteochondral lesions (7-mm diameter) were created at the medial femoral condyles of the hind legs in 9 sheep. Implantation of MSC gels was performed 6 weeks after defect creation. Thirty-six defects were divided into 4 treatment groups: (1) chondrogenically predifferentiated MSC gels (pre-MSC gels), (2) undifferentiated MSC gels (un-MSC gels), (3) MACT gels, and (4) untreated controls (UC). Histological, immunohistochemical, and radiological evaluations followed after 12 months. After 12 months in vivo, pre-MSC gels showed significantly better histological outcome compared with un-MSC gels and UC. Compared with MACT gels, the overall scores were higher for O'Driscoll and International Cartilage Repair Society (ICRS). The repair tissue of the pre-MSC group showed immunohistochemical detection of interzonal collagen type II staining. Radiological evaluation supported superior bonding of pre-MSC gels to perilesional native cartilage. Compared with previous work by our group, no degradation of the repair tissue between 6 and 12 months in vivo, particularly in pre-MSC gels, was observed. Repair of chronic osteochondral defects with collagen hydrogels composed of chondrogenically predifferentiated MSC shows no signs of degradation after 1 year in vivo. In addition, pre-MSC gels lead to partially superior histological results compared with articular chondrocytes. The results suggest an encouraging method for future treatment of focal osteochondral defects without donor site morbidity by harvesting articular chondrocytes.

  16. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes

    PubMed Central

    Nagaishi, Kanna; Mizue, Yuka; Chikenji, Takako; Otani, Miho; Nakano, Masako; Konari, Naoto; Fujimiya, Mineko

    2016-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have contributed to the improvement of diabetic nephropathy (DN); however, the actual mediator of this effect and its role has not been characterized thoroughly. We investigated the effects of MSC therapy on DN, focusing on the paracrine effect of renal trophic factors, including exosomes secreted by MSCs. MSCs and MSC-conditioned medium (MSC-CM) as renal trophic factors were administered in parallel to high-fat diet (HFD)-induced type 2 diabetic mice and streptozotocin (STZ)-induced insulin-deficient diabetic mice. Both therapies showed approximately equivalent curative effects, as each inhibited the exacerbation of albuminuria. They also suppressed the excessive infiltration of BMDCs into the kidney by regulating the expression of the adhesion molecule ICAM-1. Proinflammatory cytokine expression (e.g., TNF-α) and fibrosis in tubular interstitium were inhibited. TGF-β1 expression was down-regulated and tight junction protein expression (e.g., ZO-1) was maintained, which sequentially suppressed the epithelial-to-mesenchymal transition of tubular epithelial cells (TECs). Exosomes purified from MSC-CM exerted an anti-apoptotic effect and protected tight junction structure in TECs. The increase of glomerular mesangium substrate was inhibited in HFD-diabetic mice. MSC therapy is a promising tool to prevent DN via the paracrine effect of renal trophic factors including exosomes due to its multifactorial action. PMID:27721418

  17. Bone Marrow–Derived Mesenchymal Stem Cells Enhance Bacterial Clearance and Preserve Bioprosthetic Integrity in a Model of Mesh Infection

    PubMed Central

    Criman, Erik T.; Kurata, Wendy E.; Matsumoto, Karen W.; Aubin, Harry T.; Campbell, Carmen E.

    2016-01-01

    Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of the material used. Recently, mesenchymal stem cells (MSCs) have been shown to possess favorable immunomodulatory properties and improve tissue incorporation when seeded onto bioprosthetics. The aim of this study was to evaluate whether seeding noncrosslinked bovine pericardium (Veritas Collagen Matrix) with allogeneic bone marrow–derived MSCs improves infection resistance in vivo after inoculation with Escherichia coli (E. coli). Methods: Rat bone marrow–derived MSCs at passage 3 were seeded onto bovine pericardium and cultured for 7 days before implantation. Additional rats (n = 24) were implanted subcutaneously with MSC-seeded or unseeded mesh and inoculated with 7 × 105 colony-forming units of E. coli or saline before wound closure (group 1, unseeded mesh/saline; group 2, unseeded mesh/E. coli; group 3, MSC-seeded mesh/E. coli; 8 rats per group). Meshes were explanted at 4 weeks and underwent microbiologic and histologic analyses. Results: MSC-seeded meshes inoculated with E. coli demonstrated superior bacterial clearance and preservation of mesh integrity compared with E. coli–inoculated unseeded meshes (87.5% versus 0% clearance; p = 0.001). Complete mesh degradation concurrent with abscess formation was observed in 100% of rats in the unseeded/E. coli group, which is in contrast to 12.5% of rats in the MSC-seeded/E. coli group. Histologic evaluation determined that remodeling characteristics of E. coli–inoculated MSC-seeded meshes were similar to those of uninfected meshes 4 weeks after implantation. Conclusions: Augmenting a bioprosthetic material with stem cells seems to markedly enhance resistance to bacterial infection in vivo and preserve mesh integrity. PMID:27482490

  18. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    PubMed Central

    Jung, Younghun; Kim, Jin Koo; Shiozawa, Yusuke; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Krebsbach, Paul H.; Keller, Evan T.; Pienta, Kenneth J.; Taichman, Russell S.

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also known as CXCL12. CXCL12 expressed by cancer-associated fibroblasts then binds to CXCR4 on tumor cells and induces an epithelial to mesenchymal transition, which ultimately promotes metastasis to secondary tumor sites. Our results provide the molecular basis for MSC recruitment into tumors and how this process leads to tumor metastasis. PMID:23653207

  19. Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model.

    PubMed

    Mrugala, D; Bony, C; Neves, N; Caillot, L; Fabre, S; Moukoko, D; Jorgensen, C; Noël, D

    2008-03-01

    Multipotent mesenchymal stromal cells (MSC) are of particular interest for their potential clinical use in cartilage engineering, but a consistent model is missing in large animals. In the absence of any detailed study reporting a complete characterisation of the mesenchymal cells isolated from sheep bone marrow, we fully characterised adherent stromal cells and developed a pre-clinical model of cartilage engineering by implantation of autologous MSC in the Merinos sheep. Ovine MSC (oMSC) were isolated from bone marrow, expanded and further characterised according to the recently proposed definition of the MSC. The experimental model consists of partial-thickness lesions created in the inner part of the patellae of the posterior legs. Lesions were filled with oMSC with or without chitosan, with or without transforming growth factor (TGF)beta-3, in a fibrin clot. oMSC were shown to display the three main characteristics of MSC: adherence to plastic, phenotypic profile (positive for CD44, CD105, vimentin and negative for CD34 and CD45), and trilineage differentiation potential. We also report two other important functional characteristics of MSC: support of long-term haematopoiesis and immunosuppressive capacity. In vivo, 2 months after implantation the histological analysis revealed chondrocyte-like cells surrounded by a hyaline-like cartilaginous matrix that was integrated to the host cartilage when oMSC were combined with chitosan and TGFbeta-3. This study provides for the first time a strong characterisation of oMSC and establishes the basis for a model of cartilage engineering in a large animal.

  20. Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades.

    PubMed

    Evangelista, Afrânio Ferreira; Vannier-Santos, Marcos André; de Assis Silva, Gessica Sabrina; Silva, Daniela Nascimento; Juiz, Paulo José Lima; Nonaka, Carolina Kymie Vasques; Dos Santos, Ricardo Ribeiro; Soares, Milena Botelho Pereira; Villarreal, Cristiane Flora

    2018-06-22

    Diabetic neuropathy (DN) is a frequent and debilitating manifestation of diabetes mellitus, to which there are no effective therapeutic approaches. Mesenchymal stem/stromal cells (MSC) have a great potential for the treatment of this syndrome, possibly through regenerative actions on peripheral nerves. Here, we evaluated the therapeutic effects of MSC on spinal neuroinflammation, as well as on ultrastructural aspects of the peripheral nerve in DN-associated sensorial dysfunction. C57Bl/6 mice were treated with bone marrow-derived MSC (1 × 10 6 ), conditioned medium from MSC cultures (CM-MSC) or vehicle by endovenous route following the onset of streptozotocin (STZ)-induced diabetes. Paw mechanical and thermal nociceptive thresholds were evaluated by using von Frey filaments and Hargreaves test, respectively. Morphological and morphometric analysis of the sciatic nerve was performed by light microscopy and transmission electron microscopy. Mediators and markers of neuroinflammation in the spinal cord were measured by radioimmunoassay, real-time PCR, and immunofluorescence analyses. Diabetic mice presented behavioral signs of sensory neuropathy, mechanical allodynia, and heat hypoalgesia, which were completely reversed by a single administration of MSC or CM-MSC. The ultrastructural analysis of the sciatic nerve showed that diabetic mice exhibited morphological and morphometric alterations, considered hallmarks of DN, such as degenerative changes in axons and myelin sheath, and reduced area and density of unmyelinated fibers. In MSC-treated mice, these structural alterations were markedly less commonly observed and/or less pronounced. Moreover, MSC transplantation inhibited multiple parameters of spinal neuroinflammation found in diabetic mice, causing the reduction of activated astrocytes and microglia, oxidative stress signals, galectin-3, IL-1β, and TNF-α production. Conversely, MSC increased the levels of anti-inflammatory cytokines, IL-10, and TGF-β. The present study described the modulatory effects of MSC on spinal cord neuroinflammation in diabetic mice, suggesting new mechanisms by which MSC can improve DN.

  1. Mesenchymal Stem Cell Preparation and Transfection-free Ferumoxytol Labeling for MRI Cell Tracking.

    PubMed

    Liu, Li; Ho, Chien

    2017-11-15

    Mesenchymal stem cells (MSCs) are multipotent cells and are the most widely studied cell type for stem cell therapies. In vivo cell tracking of MSCs labeled with an FDA-approved superparamagnetic iron-oxide (SPIO) particle by magnetic resonance imaging (MRI) provides essential information, e.g., MSC engraftment, survival, and fate, thus improving cell therapy accuracy. However, current methodology for labeling MSCs with Ferumoxytol (Feraheme ® ), the only FDA-approved SPIO particle, needs transfection agents. This unit describes a new "bio-mimicry" protocol to prepare more native MSCs by using more "in vivo environment" of MSCs, so that the phagocytic activity of cultured MSCs is restored and expanded MSCs can be labeled with Ferumoxytol, without the need for transfection agents and/or electroporation. Moreover, MSCs re-size to a more native size, reducing from 32.0 to 19.5 μm. The MSCs prepared from this protocol retain more native properties and would be useful for biomedical applications and MSC-tracking studies by MRI. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  2. Bcl-xL Genetic Modification Enhanced the Therapeutic Efficacy of Mesenchymal Stem Cell Transplantation in the Treatment of Heart Infarction

    PubMed Central

    Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan

    2015-01-01

    Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction. PMID:26074971

  3. Bcl-xL Genetic Modification Enhanced the Therapeutic Efficacy of Mesenchymal Stem Cell Transplantation in the Treatment of Heart Infarction.

    PubMed

    Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan

    2015-01-01

    Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction.

  4. Mechanisms of kidney repair by human mesenchymal stromal cells after ischemia: a comprehensive view using label-free MS(E).

    PubMed

    da Costa, Milene R; Pizzatti, Luciana; Lindoso, Rafael S; Sant'Anna, Julliana Ferreira; DuRocher, Barbara; Abdelhay, Eliana; Vieyra, Adalberto

    2014-06-01

    Acute kidney injury (AKI) is one of the more frequent and lethal pathological conditions seen in intensive care units. Currently available treatments are not totally effective but stem cell-based therapies are emerging as promising alternatives, especially the use of mesenchymal stromal cells (MSC), although the signaling pathways involved in their beneficial actions are not fully understood. The objective of this study was to identify signaling networks and key proteins involved in the repair of ischemia by MSC. Using an in vitro model of AKI to investigate paracrine interactions and label-free high definition 2D-NanoESI-MS(E) , differentially expressed proteins were identified in a human renal proximal tubule cell lineage (HK-2) exposed to human MSC (hMSC) after an ischemic insult. In silico analysis showed that hMSC stimulated antiapoptotic activity, normal ROS handling, energy production, cytoskeleton organization, protein synthesis, and cell proliferation. The proteomic data were validated by parallel experiments demonstrating reduced apoptosis in HK-2 cells and recovery of intracellular ATP levels. qRT-PCR for proteins implicated in the above processes revealed that hMSC exerted their effects by stimulating translation, not transcription. Western blotting of proteins associated with ROS and energy metabolism confirmed their higher abundance in HK-2 cells exposed to hMSC. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of bone marrow mesenchymal stromal cells in aplastic anaemia.

    PubMed

    Hamzic, Edita; Whiting, Karen; Gordon Smith, Edward; Pettengell, Ruth

    2015-06-01

    In aplastic anaemia (AA), haemopoietic activity is significantly reduced and generally attributed to failure of haemopoietic stem cells (HSC) within the bone marrow (BM). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the BM microenvironment, including mesenchymal stromal cells (MSC). MSC involvement in the functional restriction of HSC in AA is largely unknown and therefore, the physical and functional properties of AA MSC were studied in vitro. MSC were characterized by their phenotype and ability to form adherent stromal layers. The functional properties of AA MSC were assessed through proliferative, clonogenic and cross-over culture assays. Results indicate that although AA MSC presented typical morphology and distinctive mesenchymal markers, stromal formation was reduced, with 50% of BM samples failing to produce adherent layers. Furthermore, their proliferative and clonogenic capacity was markedly decreased (P = 0·03 and P = 0·04 respectively) and the ability to sustain haemopoiesis was significantly reduced, as assessed by total cell proliferation (P = 0·032 and P = 0·019 at Week 5 and 6, respectively) and clonogenic potential of HSC (P = 0·02 at Week 6). It was concluded that the biological characteristics of AA MSC are different from those of control MSC and their in vitro haemopoiesis-supporting ability is significantly reduced. © 2015 John Wiley & Sons Ltd.

  6. Dental mesenchymal stem cells encapsulated in alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

    PubMed Central

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-01-01

    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (P<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  7. Validation of reference and identity-defining genes in human mesenchymal stem cells cultured under unrelated fetal bovine serum batches for basic science and clinical application.

    PubMed

    Banfi, Federica; Colombini, Alessandra; Perucca Orfei, Carlotta; Parazzi, Valentina; Ragni, Enrico

    2018-05-26

    The molecular profile of human mesenchymal stem cells (MSCs) have emerged as a key factor in defining their identity. Nevertheless, the effect of fetal bovine serum (FBS) batches or origin on MSC molecular signature has been neglected. In this frame, chemical fingerprint of FBS batches from unrelated countries showed strong correlation between chemical composition and country of origin. Thus, the aim of this study was to evaluate in stem cells isolated from bone marrow (BMMSCs) and umbilical cord-blood (CBMSCs) the effects of independently collected FBS batches on both twelve commonly used reference genes (RGs) and a selected panel of thirty-eight genes crucial for MSC definition in both research and clinical settings. Gene expression stability was estimated comparing the outcomes of two applets: geNorm and NormFinder. The bioinformatics analysis emphasized that, in a panorama of general balance, few RG candidates (YWHAZ/UBC for BMMSCs, RPLP0/EF1A for CBMSCs and EF1A/TBP for both MSCs scored together) showed superior stability. In addition, a wider study on genes involved in differentiation/proliferation/stemness processes, often used to define MSC potency, showed that these genes exhibited no major transcriptional modulation after treatment with different FBS, and allowed the identification of genes strongly discriminating between BM- and CBMSC populations. Therefore, in conclusion, FBS origin does not dramatically impact the general molecular profile of MSCs, although we could identify validated candidates able to allow more reliable comparison of data regarding MSC identity and potency and obtained by research laboratories and clinical manufacturers using different sera.

  8. Multipotent mesenchymal stromal cells: A promising strategy to manage alcoholic liver disease

    PubMed Central

    Ezquer, Fernando; Bruna, Flavia; Calligaris, Sebastián; Conget, Paulette; Ezquer, Marcelo

    2016-01-01

    Chronic alcohol consumption is a major cause of liver disease. The term alcoholic liver disease (ALD) refers to a spectrum of mild to severe disorders including steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. With limited therapeutic options, stem cell therapy offers significant potential for these patients. In this article, we review the pathophysiologic features of ALD and the therapeutic mechanisms of multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), based on their potential to differentiate into hepatocytes, their immunomodulatory properties, their potential to promote residual hepatocyte regeneration, and their capacity to inhibit hepatic stellate cells. The perfect match between ALD pathogenesis and MSC therapeutic mechanisms, together with encouraging, available preclinical data, allow us to support the notion that MSC transplantation is a promising therapeutic strategy to manage ALD onset and progression. PMID:26755858

  9. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  10. Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

    PubMed Central

    Ozeki, Nobutake; Muneta, Takeshi; Matsuta, Seiya; Koga, Hideyuki; Nakagawa, Yusuke; Mizuno, Mitsuru; Tsuji, Kunikazu; Mabuchi, Yo; Akazawa, Chihiro; Kobayashi, Eiji; Saito, Tomoyuki; Sekiya, Ichiro

    2015-01-01

    Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938 PMID:25993981

  11. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner.

    PubMed

    Drela, Katarzyna; Sarnowska, Anna; Siedlecka, Patrycja; Szablowska-Gadomska, Ilona; Wielgos, Miroslaw; Jurga, Marcin; Lukomska, Barbara; Domanska-Janik, Krystyna

    2014-07-01

    As we approach the era of mesenchymal stem cell (MSC) application in the medical clinic, the standarization of their culture conditions are of the particular importance. We re-evaluated the influences of oxygens concentration on proliferation, stemness and differentiation of human umbilical cord Wharton Jelly-derived MSCs (WJ-MSCs). Primary cultures growing in 21% oxygen were either transferred into 5% O2 or continued to grow under standard 21% oxygen conditions. Cell expansion was estimated by WST1/enzyme-linked immunosorbent assay or cell counting. After 2 or 4 weeks of culture, cell phenotypes were evaluated using microscopic, immunocytochemical, fluorescence-activated cell-sorting and molecular methods. Genes and proteins typical of mesenchymal cells, committed neural cells or more primitive stem/progenitors (Oct4A, Nanog, Rex1, Sox2) and hypoxia inducible factor (HIF)-1α-3α were evaluated. Lowering O2 concentration from 21% to the physiologically relevant 5% level substantially affected cell characteristics, with induction of stemness-related-transcription-factor and stimulation of cell proliferative capacity, with increased colony-forming unit fibroblasts (CFU-F) centers exerting OCT4A, NANOG and HIF-1α and HIF-2α immunoreactivity. Moreover, the spontaneous and time-dependent ability of WJ-MSCs to differentiate into neural lineage under 21% O2 culture was blocked in the reduced oxygen condition. Importantly, treatment with trichostatin A (TSA, a histone deacetylase inhibitor) suppressed HIF-1α and HIF-2α expression, in addition to blockading the cellular effects of reduced oxygen concentration. A physiologically relevant microenvironment of 5% O2 rejuvenates WJ-MSC culture toward less-differentiated, more primitive and faster-growing phenotypes with involvement of HIF-1α and HIF-2α-mediated and TSA-sensitive chromatin modification mechanisms. These observations add to the understanding of MSC responses to defined culture conditions, which is the most critical issue for adult stem cells translational applications. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing

    PubMed Central

    Li, Jing; Li, Yong; Yang, Chen; Lin, Hai; Duan, Hong-Gang

    2015-01-01

    This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer. PMID:25835956

  13. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration.

    PubMed

    Zhang, S; Chu, W C; Lai, R C; Lim, S K; Hui, J H P; Toh, W S

    2016-12-01

    Clinical and animal studies have demonstrated the efficacy of mesenchymal stem cell (MSC) therapies in cartilage repair. As the efficacy of many MSC-based therapies has been attributed to paracrine secretion, particularly extracellular vesicles/exosomes, we determine here if weekly intra-articular injections of human embryonic MSC-derived exosomes would repair and regenerate osteochondral defects in a rat model. In this study, osteochondral defects were created on the trochlear grooves of both distal femurs in 12 adult rats. In each animal, one defect was treated with 100 μg exosomes and the contralateral defect treated with phosphate buffered saline (PBS). Intra-articular injections of exosomes or PBS were administered after surgery and thereafter weekly for a period of 12 weeks. Three unoperated age-matched animals served as native controls. Analyses were performed by histology, immunohistochemistry, and scoring at 6 and 12 weeks after surgery. Generally, exosome-treated defects showed enhanced gross appearance and improved histological scores than the contralateral PBS-treated defects. By 12 weeks, exosome-treated defects displayed complete restoration of cartilage and subchondral bone with characteristic features including a hyaline cartilage with good surface regularity, complete bonding to adjacent cartilage, and extracellular matrix deposition that closely resemble that of age-matched unoperated control. In contrast, there were only fibrous repair tissues found in the contralateral PBS-treated defects. This study demonstrates for the first time the efficacy of human embryonic MSC exosomes in cartilage repair, and the utility of MSC exosomes as a ready-to-use and 'cell-free' therapeutic alternative to cell-based MSC therapy. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing.

    PubMed

    Li, Jing; Zheng, Chun-Quan; Li, Yong; Yang, Chen; Lin, Hai; Duan, Hong-Gang

    2015-08-01

    This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer.

  16. Mechanical Stretching Promotes Skin Tissue Regeneration via Enhancing Mesenchymal Stem Cell Homing and Transdifferentiation.

    PubMed

    Liang, Xiao; Huang, Xiaolu; Zhou, Yiwen; Jin, Rui; Li, Qingfeng

    2016-07-01

    Skin tissue expansion is a clinical procedure for skin regeneration to reconstruct cutaneous defects that can be accompanied by severe complications. The transplantation of mesenchymal stem cells (MSCs) has been proven effective in promoting skin expansion and helping to ameliorate complications; however, systematic understanding of its mechanism remains unclear. MSCs from luciferase-Tg Lewis rats were intravenously transplanted into a rat tissue expansion model to identify homing and transdifferentiation. To clarify underlying mechanisms, a systematic approach was used to identify the differentially expressed genes between mechanically stretched human MSCs and controls. The biological significance of these changes was analyzed through bioinformatic methods. We further investigated genes and pathways of interest to disclose their potential role in mechanical stretching-induced skin regeneration. Cross sections of skin samples from the expanded group showed significantly more luciferase(+) and stromal cell-derived factor 1α (SDF-1α)(+), luciferase(+)keratin 14(+), and luciferase(+)CD31(+) cells than the control group, indicating MSC transdifferentiation into epidermal basal cells and endothelial cells after SDF-1α-mediated homing. Microarray analysis suggested upregulation of genes related to hypoxia, vascularization, and cell proliferation in the stretched human MSCs. Further investigation showed that the homing of MSCs was blocked by short interfering RNA targeted against matrix metalloproteinase 2, and that mechanical stretching-induced vascular endothelial growth factor A upregulation was related to the Janus kinase/signal transducer and activator of transcription (Jak-STAT) and Wnt signaling pathways. This study determines that mechanical stretching might promote skin regeneration by upregulating MSC expression of genes related to hypoxia, vascularization, and cell proliferation; enhancing transplanted MSC homing to the expanded skin; and transdifferentiation into epidermal basal cells and endothelial cells. Skin tissue expansion is a clinical procedure for skin regeneration to cover cutaneous defects that can be accompanied by severe complications. The transplantation of mesenchymal stem cells (MSCs) has been proven effective in promoting skin expansion and ameliorating complications. This study, which sought to provide a systematic understanding of the mechanism, determined that mechanical stretching could upregulate MSC expression of genes related to hypoxia, vascularization, and cell proliferation; enhance transplanted MSC homing to the expanded skin tissue; and promote their transdifferentiation into epidermal basal cells and endothelial cells. ©AlphaMed Press.

  17. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices.

    PubMed

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø; Sikorski, Pawel; Strand, Berit L; Standal, Therese

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.

  18. Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices

    PubMed Central

    Westhrin, Marita; Xie, Minli; Olderøy, Magnus Ø.; Sikorski, Pawel

    2015-01-01

    Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering. PMID:25769043

  19. Bio-electrospraying of human mesenchymal stem cells: An alternative for tissue engineering

    PubMed Central

    Braghirolli, D. I.; Zamboni, F.; Chagastelles, P. C.; Moura, D. J.; Saffi, J.; Henriques, J. A. P.; Pilger, D. A.; Pranke, P.

    2013-01-01

    Bio-electrospraying (BES) is a technique used for the processing of cells and can be applied to tissue engineering. The association of BES with scaffold production techniques has been shown to be an interesting strategy for the production of biomaterials with cells homogeneously distributed in the entire structure. Various studies have evaluated the effects of BES on different cell types. However, until the present moment, no studies have evaluated the impact of BES time on mesenchymal stem cells (MSC). Therefore, the aim of this work was to standardise the different parameters of BES (voltage, flow rate, and distance of the needle from the collecting plate) in relation to cell viability and then to evaluate the impact of BES time in relation to viability, proliferation, DNA damage, maintenance of plasticity and the immunophenotypic profile of MSC. Using 15 kV voltage, 0.46 ml/h flow rate and 4 cm distance, it was possible to form a stable and continuous jet of BES without causing a significant reduction in cell viability. Time periods between 15 and 60 min of BES did not cause alterations of viability, proliferation, plasticity, and immunophenotypic profile of the MSC. Time periods above 30 min of BES resulted in DNA damage; however, the DNA was able to repair itself within five hours. These results indicate that bio-electrospraying is an adequate technique for processing MSC which can be safely applied to tissue engineering and regenerative medicine. PMID:24404063

  20. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: Correlation with cytokines

    PubMed Central

    Brusnahan, S.K.; McGuire, T.R.; Jackson, J.D.; Lane, J.T.; Garvin, K.L.; O’Kane, B.J.; Berger, A.M.; Tuljapurkar, S.R.; Kessinger, M.A.; Sharp, J.G.

    2010-01-01

    Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N = 100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean = 30.7, SEM = 2) decreased and IL-6 levels (mean = 4.4, SEM = 1) increased with age as did marrow fat (mean = 1.2 mm fat/g, SEM = 0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive. PMID:21035480

  1. [PRODUCT OF THE BMI1--A KEY COMPONENT OF POLYCOMB--POSITIVELY REGULATES ADIPOCYTE DIFFERENTIATION OF MOUSE MESENCHYMAL STEM CELLS].

    PubMed

    Petrov, N S; Vereschagina, N A; Sushilova, E N; Kropotov, A V; Miheeva, N F; Popov, B V

    2016-01-01

    Bmil is a key component of Polycomb (PcG), which in mammals controls the basic functions of mammalian somatic stem cells (SSC) such as self-renewal and differentiation. Bmi1 supports SSC via transcriptional suppression of genes associated with cell cycle and differentiation. The most studied target genes of Bmi1 are the genes of Ink4 locus, CdkI p16(Ink4a) and p1(Arf), suppression of which due to activating mutations of the BMI1 results in formation of cancer stem cells (CSC) and carcinomas in various tissues. In contrast, inactivation of BMI1 results in cell cycle arrest and cell senescence. Although clinical phenomena of hypo- and hyperactivation of BMI1 are well known, its targets and mechanisms of regulation of tissue specific SSC are still obscure. The goal of this study was to evaluate the regulatory role of BMI1 in adipocyte differentiation (AD) of mouse mesenchymal stem cells (MSC). Induction of AD in mouse MSC of the C3H10T1/2 cell line was associated with an increase in the expression levels of BMI1, the genes of pRb family (RB, p130) and demethylase UTX, but not methyltransferase EZH2, whose products regulate the methylation levels of H3K27. It was observed earlier that H3K27me3 may play the role of the epigenetic switch by promoting AD of human MSC via activating expression of the PPARγ2, the master gene of AD (Hemming et al., 2014). Here we show that inactivation of BMI1 using specific siRNA slows and decreases the levels of AD, but does not abolish it. This is associated with a complete inhibition of the expression of adipogenic marker genes--PPARγ2, ADIPOQ and a decrease in the expression of RB, p130, but not UTX. The results obtained give evidence that the epigenetic mechanism regulating AD differentiation in mouse and human MSC is different.

  2. Clinical efficacy and safety of mesenchymal stem cell transplantation for osteoarthritis treatment: A meta-analysis

    PubMed Central

    Li, Li; Tao, Sun; Bo, Lin; Lin, Chen

    2017-01-01

    Purpose The aim of this study was to evaluate the therapeutic efficacy and safety of mesenchymal stem cells (MSCs) for the treatment of patients with knee osteoarthritis (OA). Materials We performed a meta-analysis of relevant published clinical studies. An electronic search was conducted for randomized controlled trials (RCTs) of MSC-based therapy in knee OA. The visual analogue scale (VAS), International Knee Documentation Committee (IKDC) form, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Lequesne algofunctional indices (Lequesne), Lysholm knee scale (Lysholm), Tegner activity scale (Tegner) and adverse events (AEs) were evaluated. Results Eleven eligible trials with 582 knee OA patients were included in the present meta-analysis. We demonstrated that MSC treatment could significantly decrease VAS and increase IKDC scoresafter a 24-month follow-up compared with controls (P<0.05). MSC therapy also showed significant decreases in WOMAC and Lequesne scores after the 12-month follow-up (P<0.01). Analysis of Lysholm (24-month) and Tegner (12- and 24-month) scores also demonstrated favorable results for MSC treatment (P<0.05). Conclusion Overall, MSC transplantation treatment was shown to be safe and has great potential as an efficacious clinical therapy for patients with knee OA. PMID:28448518

  3. Culture-expanded mesenchymal stem cell sheets enhance extraction-site alveolar bone growth: An animal study.

    PubMed

    Mu, S; Tee, B C; Emam, H; Zhou, Y; Sun, Z

    2018-04-06

    Impaired bone formation of the buccal alveolar plate after tooth extraction during adolescence increases the difficulty of future implant restoration. This study was undertaken to assess the feasibility and efficacy of transplanting autogenous scaffold-free culture-expanded mesenchymal stem cell (MSC) sheets to the buccal alveolar bone surface to stimulate local bone growth. Mandibular bone marrow was aspirated from 3-month-old pigs (n = 5), from which MSCs were isolated and culture expanded. Triple-layer MSC sheets were then fabricated using temperature-responsive tissue culture plates. One month after bone marrow aspirations, the same pigs underwent bilateral extraction of mandibular primary molars, immediately followed by transplantation of 3 autogenous triple-layer MSC sheets on to the subperiosteal buccal alveolar surface of 1 randomly chosen side. The contralateral side (control) underwent the same periosteal reflection surgery without receiving MSC sheet transplantation. Six weeks later, the animals were killed and specimens from both sides were immediately harvested for radiographic and histological analysis. Buccal alveolar bone thickness, tissue mineral density (TMD), mineral apposition and bone volume fraction (BV/TV) were quantified and compared between the MSC sheet and control sides using paired t-tests. Triple-layer MSC sheets were reliably fabricated and the majority of cells remained vital before transplantation. The thickness of buccal bone tended to increase with MSC sheet transplantation (P = .18), with 4 of 5 animals showing an average of 1.82 ± 0.73 mm thicker bone on the MSC sheet side than the control side. After being normalized by the TMD of intracortical bone, the TMD of surface cortical bone was 0.5-fold higher on the MSC sheet side than the control side (P < .05). Likewise, the BV/TV measurements of the buccal surface region were also 0.4-fold higher on the MSC sheet side than the control side (P < .05) after being normalized by measurements from the intracortical region. Mineral apposition measurements were not different between the 2 sides. Mandibular marrow-derived MSCs can be fabricated into cell sheets and autogenous transplantation of MSC sheets onto the subperiosteal buccal alveolar bone surface at the tooth-extraction site may increase local bone density. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells

    PubMed Central

    Nemoto, Yasuhiro; Kanai, Takanori; Takahara, Masahiro; Oshima, Shigeru; Nakamura, Tetsuya; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Watanabe, Mamoru

    2013-01-01

    Objective Interleukin (IL)-7 is mainly produced in bone marrow (BM) that forms the niche for B cells. We previously demonstrated that BM also retains pathogenic memory CD4 T cells in murine models of inflammatory bowel disease (IBD). However, it remains unknown whether BM-derived IL-7 is sufficient for the development of IBD and which cells form the niche for colitogenic memory CD4 T cells in BM. Design To address these questions, we developed mice in which IL-7 expression was specific for BM, and identified colitis-associated IL-7-expressing mesenchymal stem cells (MSC) in the BM. Results IL-7–/–×RAG-1–/– mice injected with BM cells from IL-7+/+×RAG-1–/– mice, but not from IL-7–/–×RAG-1–/– mice, expressed IL-7 in BM, but not in their colon, and developed colitis when injected with CD4+CD45RBhigh T cells. Cultured BM MSC stably expressed a higher level of IL-7 than that of primary BM cells. IL-7-sufficient, but not IL-7-deficient, BM MSC supported upregulation of Bcl-2 in, and homeostatic proliferation of, colitogenic memory CD4 T cells in vitro. Notably, IL-7–/–×RAG-1–/– mice transplanted with IL-7-sufficient, but not IL-7-deficient, BM MSC expressed IL-7 in BM, but not in their colon, and developed colitis when transplanted with CD4+CD45RBhigh T cells. Conclusions We demonstrate for the first time that BM MSC are a major source of IL-7 and play a pathological role in IBD by forming the niche for colitogenic CD4 memory T cells in BM. PMID:23144054

  5. Immunomodulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in a Swine Hemi-Facial Allotransplantation Model

    PubMed Central

    Goto, Shigeru; Huang, Yu-Ting; Wang, Chun-Ting; Tsai, Chia-Chun; Chen, Chao-Long

    2012-01-01

    Background In this study, we investigated whether the infusion of bone marrow-derived mesenchymal stem cells (MSCs), combined with transient immunosuppressant treatment, could suppress allograft rejection and modulate T-cell regulation in a swine orthotopic hemi-facial composite tissue allotransplantation (CTA) model. Methodology/Principal Findings Outbred miniature swine underwent hemi-facial allotransplantation (day 0). Group-I (n = 5) consisted of untreated control animals. Group-II (n = 3) animals received MSCs alone (given on days −1, +1, +3, +7, +14, and +21). Group-III (n = 3) animals received CsA (days 0 to +28). Group-IV (n = 5) animals received CsA (days 0 to +28) and MSCs (days −1, +1, +3, +7, +14, and +21). The transplanted face tissue was observed daily for signs of rejection. Biopsies of donor tissues and recipient blood sample were obtained at specified predetermined times (per 2 weeks post-transplant) or at the time of clinically evident rejection. Our results indicated that the MSC-CsA group had significantly prolonged allograft survival compared to the other groups (P<0.001). Histological examination of the MSC-CsA group displayed the lowest degree of rejection in alloskin and lymphoid gland tissues. TNF-α expression in circulating blood revealed significant suppression in the MSC and MSC-CsA treatment groups, as compared to that in controls. IHC staining showed CD45 and IL-6 expression were significantly decreased in MSC-CsA treatment groups compared to controls. The number of CD4+/CD25+ regulatory T-cells and IL-10 expressions in the circulating blood significantly increased in the MSC-CsA group compared to the other groups. IHC staining of alloskin tissue biopsies revealed a significant increase in the numbers of foxp3+T-cells and TGF-β1 positive cells in the MSC-CsA group compared to the other groups. Conclusions These results demonstrate that MSCs significantly prolong hemifacial CTA survival. Our data indicate the MSCs did not only suppress inflammation and acute rejection of CTA, but also modulate T-cell regulation and related cytokines expression. PMID:22558153

  6. Long-Term Therapeutic Effects of Mesenchymal Stem Cells Compared to Dexamethasone on Recurrent Experimental Autoimmune Uveitis of Rats

    PubMed Central

    Zhang, Lingjun; Zheng, Hui; Shao, Hui; Nian, Hong; Zhang, Yan; Bai, Lingling; Su, Chang; Liu, Xun; Dong, Lijie; Li, Xiaorong; Zhang, Xiaomin

    2014-01-01

    Purpose. We tested the long-term effects of different regimens of mesenchymal stem cell (MSC) administration in a recurrent experimental autoimmune uveitis (rEAU) model in rats, and compared the efficacy of MSC to that of dexamethasone (DEX). Methods. One or two courses of MSC treatments were applied to R16-specific T cell–induced rEAU rats before or after disease onsets. The DEX injections were given for 7 or 50 days continuously after disease onsets. Clinical appearances were observed until the 50th day after transfer. On the 10th day, T cells from control and MSC groups were analyzed by flow cytometry. Supernatants from the proliferation assay and aqueous humor were collected for cytokine detection. Functions of T cells and APCs in spleens also were studied by lymphocyte proliferation assays. Results. One course of MSC therapy, administered after disease onset, led to a lasting therapeutic effect, with a decreased incidence, reduced mean clinical score, and reduced retinal impairment after 50 days of observation, while multiple courses of treatment did not improve the therapeutic benefit. Although DEX and MSCs equally reduced the severity of the first episode of rEAU, the effect of DEX was shorter lasting, and DEX therapy failed to control the disease even with long periods of treatment. The MSCs significantly decreased T helper 1 (Th1) and Th17 responses, suppressed the function of antigen-presenting cells, and upregulated T regulatory cells. Conclusions. These results suggested that MSCs might be new corticosteroid spring agents, while providing fewer side effects and longer lasting suppressive effects for recurrent uveitis. PMID:25125599

  7. Stem cell therapy in the management of shoulder rotator cuff disorders

    PubMed Central

    Mora, Maria Valencia; Ibán, Miguel A Ruiz; Heredia, Jorge Díaz; Laakso, Raul Barco; Cuéllar, Ricardo; Arranz, Mariano García

    2015-01-01

    Rotator cuff tears are frequent shoulder problems that are usually dealt with surgical repair. Despite improved surgical techniques, the tendon-to-bone healing rate is unsatisfactory due to difficulties in restoring the delicate transitional tissue between bone and tendon. It is essential to understand the molecular mechanisms that determine this failure. The study of the molecular environment during embryogenesis and during normal healing after injury is key in devising strategies to get a successful repair. Mesenchymal stem cells (MSC) can differentiate into different mesodermal tissues and have a strong paracrine, anti-inflammatory, immunoregulatory and angiogenic potential. Stem cell therapy is thus a potentially effective therapy to enhance rotator cuff healing. Promising results have been reported with the use of autologous MSC of different origins in animal studies: they have shown to have better healing properties, increasing the amount of fibrocartilage formation and improving the orientation of fibrocartilage fibers with less immunologic response and reduced lymphocyte infiltration. All these changes lead to an increase in biomechanical strength. However, animal research is still inconclusive and more experimental studies are needed before human application. Future directions include expanded stem cell therapy in combination with growth factors or different scaffolds as well as new stem cell types and gene therapy. PMID:26029341

  8. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique.

    PubMed

    Bartosh, Thomas J; Ylostalo, Joni H

    2014-02-06

    Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3-D culture without addition of exogenous chemicals or gene-transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, the reported lag time for activation in experimental models has prompted investigations on pre-activating the cells prior to their administration. In this protocol, standard 2-D culture-expanded MSCs are activated by aggregation into 3-D spheres using hanging-drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Further, we elucidate methods to prepare MSC-sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. Copyright © 2014 John Wiley & Sons, Inc.

  9. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging drop culture technique

    PubMed Central

    Bartosh, Thomas J.

    2014-01-01

    Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3D culture without addition of exogenous chemicals or gene transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, reported lag time for activation in experimental models have prompted investigations to pre-activate the cells prior to their administration. In this protocol, standard 2D culture expanded MSCs are activated by aggregation into 3D spheres using hanging drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Furthermore, we elucidate methods to prepare MSC sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. PMID:24510769

  10. Mesenchymal stem cell transplantation for the infarcted heart: a role in minimizing abnormalities in cardiac-specific energy metabolism

    PubMed Central

    Johnsen, Virginia L.; Ma, Lianli; James, Freyja D.; Young, Pampee P.; Wasserman, David H.; Rottman, Jeffrey N.; Hittel, Dustin S.; Shearer, Jane

    2012-01-01

    Intense interest has been focused on cell-based therapy for the infarcted heart given that stem cells have exhibited the ability to reduce infarct size and mitigate cardiac dysfunction. Despite this, it is unknown whether mesenchymal stem cell (MSC) therapy can prevent metabolic remodeling following a myocardial infarction (MI). This study examines the ability of MSCs to rescue the infarcted heart from perturbed substrate uptake in vivo. C57BL/6 mice underwent chronic ligation of the left anterior descending coronary artery to induce a MI. Echocardiography was performed on conscious mice at baseline as well as 7 and 23 days post-MI. Twenty-eight days following the ligation procedure, hyperinsulinemic euglycemic clamps assessed in vivo insulin sensitivity. Isotopic tracer administration evaluated whole body, peripheral tissue, and cardiac-specific glucose and fatty acid utilization. To gain insight into the mechanisms by which MSCs modulate metabolism, mitochondrial function was assessed by high-resolution respirometry using permeabilized cardiac fibers. Data show that MSC transplantation preserves insulin-stimulated fatty acid uptake in the peri-infarct region (4.25 ± 0.64 vs. 2.57 ± 0.34 vs. 3.89 ± 0.54 μmol·100 g−1·min−1, SHAM vs. MI + PBS vs. MI + MSC; P < 0.05) and prevents increases in glucose uptake in the remote left ventricle (3.11 ± 0.43 vs. 3.81 ± 0.79 vs. 6.36 ± 1.08 μmol·100 g−1·min−1, SHAM vs. MI + PBS vs. MI + MSC; P < 0.05). This was associated with an enhanced efficiency of mitochondrial oxidative phosphorylation with a respiratory control ratio of 3.36 ± 0.18 in MSC-treated cardiac fibers vs. 2.57 ± 0.14 in the infarct-only fibers (P < 0.05). In conclusion, MSC therapy exhibits the potential to rescue the heart from metabolic aberrations following a MI. Restoration of metabolic flexibility is important given the metabolic demands of the heart and the role of energetics in the progression to heart failure. PMID:21971524

  11. Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications.

    PubMed

    Burks, Scott R; Ziadloo, Ali; Kim, Saejeong J; Nguyen, Ben A; Frank, Joseph A

    2013-11-01

    Stem cells are promising therapeutics for cardiovascular diseases, and i.v. injection is the most desirable route of administration clinically. Subsequent homing of exogenous stem cells to pathological loci is frequently required for therapeutic efficacy and is mediated by chemoattractants (cell adhesion molecules, cytokines, and growth factors). Homing processes are inefficient and depend on short-lived pathological inflammation that limits the window of opportunity for cell injections. Noninvasive pulsed focused ultrasound (pFUS), which emphasizes mechanical ultrasound-tissue interactions, can be precisely targeted in the body and is a promising approach to target and maximize stem cell delivery by stimulating chemoattractant expression in pFUS-treated tissue prior to cell infusions. We demonstrate that pFUS is nondestructive to murine skeletal muscle tissue (no necrosis, hemorrhage, or muscle stem cell activation) and initiates a largely M2-type macrophage response. We also demonstrate that local upregulation of chemoattractants in pFUS-treated skeletal muscle leads to enhance homing, permeability, and retention of human mesenchymal stem cells (MSC) and human endothelial precursor cells (EPC). Furthermore, the magnitude of MSC or EPC homing was increased when pFUS treatments and cell infusions were repeated daily. This study demonstrates that pFUS defines transient "molecular zip codes" of elevated chemoattractants in targeted muscle tissue, which effectively provides spatiotemporal control and tunability of the homing process for multiple stem cell types. pFUS is a clinically translatable modality that may ultimately improve homing efficiency and flexibility of cell therapies for cardiovascular diseases. © AlphaMed Press.

  12. Next Generation Mesenchymal Stem Cell (MSC)–Based Cartilage Repair Using Scaffold-Free Tissue Engineered Constructs Generated with Synovial Mesenchymal Stem Cells

    PubMed Central

    Shimomura, Kazunori; Ando, Wataru; Moriguchi, Yu; Sugita, Norihiko; Yasui, Yukihiko; Koizumi, Kota; Fujie, Hiromichi; Hart, David A.; Yoshikawa, Hideki

    2015-01-01

    Because of its limited healing capacity, treatments for articular cartilage injuries are still challenging. Since the first report by Brittberg, autologous chondrocyte implantation has been extensively studied. Recently, as an alternative for chondrocyte-based therapy, mesenchymal stem cell–based therapy has received considerable research attention because of the relative ease in handling for tissue harvest, and subsequent cell expansion and differentiation. This review summarizes latest development of stem cell therapies in cartilage repair with special attention to scaffold-free approaches. PMID:27340513

  13. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

    PubMed

    Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk

    2014-05-01

    We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for in vitro bone engineering. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Human platelet lysate in mesenchymal stromal cell expansion according to a GMP grade protocol: a cell factory experience.

    PubMed

    Becherucci, Valentina; Piccini, Luisa; Casamassima, Serena; Bisin, Silvia; Gori, Valentina; Gentile, Francesca; Ceccantini, Riccardo; De Rienzo, Elena; Bindi, Barbara; Pavan, Paola; Cunial, Vanessa; Allegro, Elisa; Ermini, Stefano; Brugnolo, Francesca; Astori, Giuseppe; Bambi, Franco

    2018-05-02

    The use of platelet lysate (PL) for the ex-vivo expansion of mesenchymal stromal/stem cells (MSCs) was initially proposed by Doucet et al. in 2005, as an alternative to animal serum. Moreover, regulatory authorities discourage the use of fetal bovine serum (FBS) or other animal derivatives, to avoid risk of zoonoses and xenogeneic immune reactions. Even if many studies investigated PL composition, there still are some open issues related to its use in ex-vivo MSC expansion, especially according to good manufacturing practice (GMP) grade protocols. As an authorized cell factory, we report our experience using standardized PL produced by Azienda Ospedaliero Universitaria Meyer Transfusion Service for MSC expansion according to a GMP grade clinical protocol. As suggested by other authors, we performed an in-vitro test on MSCs versus MSCs cultured with FBS that still represents the best way to test PL batches. We compared 12 MSC batches cultured with DMEM 5% PL with similar batches cultured with DMEM 10% FBS, focusing on the MSC proliferation rate, MSC surface marker expression, MSC immunomodulatory and differentiation potential, and finally MSC relative telomere length. Results confirmed the literature data as PL increases cell proliferation without affecting the MSC immunophenotype, immunomodulatory potential, differentiation potential and relative telomere length. PL can be considered a safe alternative to FBS for ex-vivo expansion of MSC according to a GMP grade protocol. Our experience confirms the literature data: a large number of MSCs for clinical applications can be obtained by expansion with PL, without affecting the MSC main features. Our experience underlines the benefits of a close collaboration between the PL producers (transfusion service) and the end users (cell factory) in a synergy of skills and experiences that can lead to standardized PL production.

  15. Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors

    PubMed Central

    Bajetto, Adriana; Pattarozzi, Alessandra; Corsaro, Alessandro; Barbieri, Federica; Daga, Antonio; Bosio, Alessia; Gatti, Monica; Pisaturo, Valerio; Sirito, Rodolfo; Florio, Tullio

    2017-01-01

    Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the reciprocal tropism between CSCs and UC-MSCs grown as spheroids. In conclusion, we show that direct (cell-to-cell contact) or indirect (via the release of soluble factors) interactions between GBM CSCs and UC-MSCs in co-culture produce divergent effects on cell growth, invasion and migration, with the former mainly causing an inhibitory response and the latter a stimulatory one, involving a paracrine activation of CXCR2. PMID:29081734

  16. Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors.

    PubMed

    Bajetto, Adriana; Pattarozzi, Alessandra; Corsaro, Alessandro; Barbieri, Federica; Daga, Antonio; Bosio, Alessia; Gatti, Monica; Pisaturo, Valerio; Sirito, Rodolfo; Florio, Tullio

    2017-01-01

    Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the reciprocal tropism between CSCs and UC-MSCs grown as spheroids. In conclusion, we show that direct (cell-to-cell contact) or indirect (via the release of soluble factors) interactions between GBM CSCs and UC-MSCs in co-culture produce divergent effects on cell growth, invasion and migration, with the former mainly causing an inhibitory response and the latter a stimulatory one, involving a paracrine activation of CXCR2.

  17. Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells.

    PubMed

    Reitinger, Stephan; Wissenwasser, Jürgen; Kapferer, Werner; Heer, Rudolf; Lepperdinger, Günter

    2012-04-15

    Biosensor systems which enable impedance measurements on adherent cell layers under label-free conditions are considered powerful tools for monitoring specific biological characteristics. A radio frequency identification-based sensor platform was adopted to characterize cultivation and differentiation of human bone marrow-derived multipotent stem cells (bmMSC) over periods of up to several days and weeks. Electric cell-substrate impedance sensing was achieved through fabrication of sensitive elements onto glass substrates which comprised two comb-shaped interdigitated gold electrodes covering an area of 1.8 mm×2 mm. The sensing systems were placed into the wells of a 6-well tissue culture plate, stacked onto a reader unit and could thus be handled and operated under sterile conditions. Continuous measurements were carried out with a sinusoidal voltage of 35 mV at a frequency of 10 kHz. After seeding of human bmMSC, this sensor was able to trace significant impedance changes contingent upon cell spreading and adhesion. The re-usable system was further proven suitable for live examination of cell-substrate attachment or continuous cell monitoring up to several weeks. Induction of either osteogenic or adipogenic differentiation could be validated in bmMSC cultures within a few days, in contrast to state-of-the-art protocols, which require several weeks of cultivation time. In the context of medical cell production in a GMP-compliant process, the here presented interdigitated electric microsensor technology allows the documentation of MSC quality in a fast, efficient and reliable fashion. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Positive effects of antitumor drugs in combination with propolis on canine osteosarcoma cells (spOS-2) and mesenchymal stem cells.

    PubMed

    Bernardino, Pedro Negri; Bersano, Paulo Ricardo Oliveira; Lima Neto, João Ferreira; Sforcin, José Maurício

    2018-08-01

    The combination of lower concentrations of antitumor drugs (carboplatin - CARB, doxorubicin - DOX, and methotrexate - MET) with propolis was investigated against canine osteosarcoma (spOS-2) and mesenchymal stem cells (MSC) in vitro. The mechanism of action in the combinations was analyzed. spOS-2 cells were incubated up to 72 h with propolis (50 μg/ml) alone or in combination with CARB (10-400 μmol/l), DOX (0.5-2 μmol/l) or MET (50-200 μmol/l). Cell viability was assessed by MTT assay, apoptosis/necrosis by flow cytometry, and MSC was incubated with the optimum combination. Propolis alone exerted no cytotoxic action against spOS-2 cells, whereas CARB (400, 200 and 100 μmol/l) exhibited the highest cytotoxic effects comparing to DOX and MET. The combination of propolis with the lowest concentrations of CARB led to better results comparing to CARB alone, which was not observed using DOX and MET. Apoptosis was involved in the action of propolis + CARB in spOS-2 cells. MSC were not affected by CARB/propolis, indicating that the cytotoxic action of the combination was specific to tumor cells but not to normal ones. Propolis improved the action of CARB against spOS-2 cells using lower concentrations of this drug, without affecting MSC. These findings are relevant and indicate a possible application of propolis in OSA treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue.

    PubMed

    Golpanian, Samuel; Wolf, Ariel; Hatzistergos, Konstantinos E; Hare, Joshua M

    2016-07-01

    Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease. Copyright © 2016 the American Physiological Society.

  20. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    NASA Astrophysics Data System (ADS)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  1. Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    PubMed Central

    Wang, Congrui; Wang, Huaibin; Lu, Ming; Li, Yonghai; Feng, Huigen; Yuan, Zhiqing

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression. PMID:23956504

  2. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Machado, C B; Ventura, J M G; Lemos, A F; Ferreira, J M F; Leite, M F; Goes, A M

    2007-06-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation.

  3. Measurement of oxygen tension within mesenchymal stem cell spheroids.

    PubMed

    Murphy, Kaitlin C; Hung, Ben P; Browne-Bourne, Stephen; Zhou, Dejie; Yeung, Jessica; Genetos, Damian C; Leach, J Kent

    2017-02-01

    Spheroids formed of mesenchymal stem cells (MSCs) exhibit increased cell survival and trophic factor secretion compared with dissociated MSCs, making them therapeutically advantageous for cell therapy. Presently, there is no consensus for the mechanism of action. Many hypothesize that spheroid formation potentiates cell function by generating a hypoxic core within spheroids of sufficiently large diameters. The purpose of this study was to experimentally determine whether a hypoxic core is generated in MSC spheroids by measuring oxygen tension in aggregates of increasing diameter and correlating oxygen tension values with cell function. MSC spheroids were formed with 15 000, 30 000 or 60 000 cells per spheroid, resulting in radii of 176 ± 8 µm, 251 ± 12 µm and 353 ± 18 µm, respectively. Oxygen tension values coupled with mathematical modelling revealed a gradient that varied less than 10% from the outer diameter within the largest spheroids. Despite the modest radial variance in oxygen tension, cellular metabolism from spheroids significantly decreased as the number of cells and resultant spheroid size increased. This may be due to adaptive reductions in matrix deposition and packing density with increases in spheroid diameter, enabling spheroids to avoid the formation of a hypoxic core. Overall, these data provide evidence that the enhanced function of MSC spheroids is not oxygen mediated. © 2017 The Author(s).

  4. Infusion of Trx-1-Overexpressing hucMSC Prolongs the Survival of Acutely Irradiated NOD/SCID Mice by Decreasing Excessive Inflammatory Injury

    PubMed Central

    Wang, Jun; Tang, YongYong; Liu, Hao; Zhang, Bin; Chen, Hu

    2013-01-01

    A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC) assay, a hydrogen peroxide (H2O2) content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline) that were exposed to 4.5 Gy 60Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (Lin−CD117+: hucMSC-Trx-1 vs. hucMSC, P<0.05; hucMSC-Trx-1 vs. NS, P<0.01), promoting the formation of red blood cells and hemoglobin (hucMSC-Trx-1 vs. hucMSC or NS, P<0.05), reducing inflammation and damage in important organs (Bone marrow and lung: hucMSC-Trx-1 vs. NS, P<0.01; hucMSC-Trx-1 vs. hucMSC, P<0.05. Liver and intestine: hucMSC-Trx-1 vs. NS, P<0.05; hucMSC-Trx-1 vs. hucMSC, P<0.05), and prolonging survival (hucMSC-Trx-1 vs. hucMSC or NS, P<0.01). Therefore, hucMSC-Trx-1 combines the merits of gene and cell therapy as a multifunctional radioprotector for ARI. PMID:24223778

  5. Infusion of Trx-1-overexpressing hucMSC prolongs the survival of acutely irradiated NOD/SCID mice by decreasing excessive inflammatory injury.

    PubMed

    Hu, JiangWei; Yang, ZaiLiang; Wang, Jun; Tang, YongYong; Liu, Hao; Zhang, Bin; Chen, Hu

    2013-01-01

    A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC) assay, a hydrogen peroxide (H2O2) content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline) that were exposed to 4.5 Gy (60)Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (Lin(-)CD117(+): hucMSC-Trx-1 vs. hucMSC, P<0.05; hucMSC-Trx-1 vs. NS, P<0.01), promoting the formation of red blood cells and hemoglobin (hucMSC-Trx-1 vs. hucMSC or NS, P<0.05), reducing inflammation and damage in important organs (Bone marrow and lung: hucMSC-Trx-1 vs. NS, P<0.01; hucMSC-Trx-1 vs. hucMSC, P<0.05. Liver and intestine: hucMSC-Trx-1 vs. NS, P<0.05; hucMSC-Trx-1 vs. hucMSC, P<0.05), and prolonging survival (hucMSC-Trx-1 vs. hucMSC or NS, P<0.01). Therefore, hucMSC-Trx-1 combines the merits of gene and cell therapy as a multifunctional radioprotector for ARI.

  6. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype

    PubMed Central

    2010-01-01

    Introduction Mesenchymal stem cells (MSCs) offer promise for intervertebral disc (IVD) repair and regeneration because they are easily isolated and expanded, and can differentiate into several mesenchymal tissues. Notochordal (NC) cells contribute to IVD development, incorporate into the nucleus pulposus (NP), and stimulate mature disc cells. However, there have been no studies investigating the effects of NC cells on adult stem cell differentiation. The premise of this study is that IVD regeneration is more similar to IVD development than to IVD maintenance, and we hypothesize that soluble factors from NC cells differentiate MSCs to a phenotype characteristic of nucleus pulposus (NP) cells during development. The eventual clinical goal would be to isolate or chemically/recombinantly produce the active agent to induce the therapeutic effects, and to use it as either an injectable therapy for early intervention on disc disease, or in developing appropriately pre-differentiated MSC cells in a tissue engineered NP construct. Methods Human MSCs from bone marrow were expanded and pelleted to form high-density cultures. MSC pellets were exposed to either control medium (CM), chondrogenic medium (CM with dexamethasone and transforming growth factor, (TGF)-β3) or notochordal cell conditioned medium (NCCM). NCCM was prepared from NC cells maintained in serum free medium for four days. After seven days culture, MSC pellets were analyzed for appearance, biochemical composition (glycosaminoglycans and DNA), and gene expression profile (sox-9, collagen types-II and III, laminin-β1 and TIMP1(tissue inhibitor of metalloproteinases-1)). Results Significantly higher glycosaminoglycan accumulation was seen in NCCM treated pellets than in CM or TGFβ groups. With NCCM treatment, increased gene expression of collagen III, and a trend of increasing expression of laminin-β1 and decreased expression of sox-9 and collagen II relative to the TGFβ group was observed. Conclusions Together, results suggest NCCM stimulates mesenchymal stem cell differentiation toward a potentially NP-like phenotype with some characteristics of the developing IVD. PMID:20565707

  7. Transplantation of Mesenchymal Stem Cells Promotes an Alternative Pathway of Macrophage Activation and Functional Recovery after Spinal Cord Injury

    PubMed Central

    Uchida, Kenzo; Guerrero, Alexander Rodriguez; Watanabe, Shuji; Sugita, Daisuke; Takeura, Naoto; Yoshida, Ai; Long, Guang; Wright, Karina T.; Johnson, William E.B.; Baba, Hisatoshi

    2012-01-01

    Abstract Mesenchymal stem cells (MSC) derived from bone marrow can potentially reduce the acute inflammatory response in spinal cord injury (SCI) and thus promote functional recovery. However, the precise mechanisms through which transplanted MSC attenuate inflammation after SCI are still unclear. The present study was designed to investigate the effects of MSC transplantation with a special focus on their effect on macrophage activation after SCI. Rats were subjected to T9–T10 SCI by contusion, then treated 3 days later with transplantation of 1.0×106 PKH26-labeled MSC into the contusion epicenter. The transplanted MSC migrated within the injured spinal cord without differentiating into glial or neuronal elements. MSC transplantation was associated with marked changes in the SCI environment, with significant increases in IL-4 and IL-13 levels, and reductions in TNF-α and IL-6 levels. This was associated simultaneously with increased numbers of alternatively activated macrophages (M2 phenotype: arginase-1- or CD206-positive), and decreased numbers of classically activated macrophages (M1 phenotype: iNOS- or CD16/32-positive). These changes were associated with functional locomotion recovery in the MSC-transplanted group, which correlated with preserved axons, less scar tissue formation, and increased myelin sparing. Our results suggested that acute transplantation of MSC after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2, and that this may reduce the effects of the inhibitory scar tissue in the subacute/chronic phase after injury to provide a permissive environment for axonal extension and functional recovery. PMID:22233298

  8. Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury

    PubMed Central

    Abarbanell, Aaron M.; Wang, Yue; Herrmann, Jeremy L.; Weil, Brent R.; Poynter, Jeffrey A.; Manukyan, Mariuxi C.

    2010-01-01

    Toll-like receptor 2 (TLR2), a key component of the innate immune system, is linked to inflammation and myocardial dysfunction after ischemia-reperfusion injury (I/R). Treatment of the heart with mesenchymal stem cells (MSCs) is known to improve myocardial recovery after I/R in part by paracrine factors such as VEGF. However, it is unknown whether TLR2 activation on the MSCs affects MSC-mediated myocardial recovery and VEGF production. We hypothesized that the knockout of TLR2 on the MSCs (TLR2KO MSCs) would 1) improve MSC-mediated myocardial recovery and 2) increase myocardial and MSC VEGF release. With the isolated heart perfusion system, Sprague-Dawley rat hearts were subjected to I/R and received one of three intracoronary treatments: vehicle, male wild-type MSCs (MWT MSCs), or TL2KO MSCs. All treatments were performed immediately before ischemia, and heart function was measured continuously. Postreperfusion, heart homogenates were analyzed for myocardial VEGF production. Contrary to our hypothesis, only MWT MSC treatment significantly improved the recovery of left ventricular developed pressure and the maximal positive and negative values of the first derivative of pressure. In addition, VEGF production was greatest in hearts treated with MWT MSCs. To investigate MSC production of VEGF, MSCs were activated with TNF in vitro and the supernatants collected for ELISA. In vitro basal levels of MSC VEGF production were similar. However, with TNF activation, MWT MSCs produced significantly more VEGF, whereas activated TLR2KO MSC production of VEGF was unchanged. Finally, we observed that MWT MSCs proliferated more rapidly than TLR2KO MSCs. These data indicate that TLR2 may be essential to MSC-mediated myocardial recovery and VEGF production. PMID:20173040

  9. Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells.

    PubMed

    Chien, Karen B; Shah, Ramille N

    2012-02-01

    Soy protein modified with heat treatment and enzyme crosslinking using transglutaminase in maltodextrin was used to fabricate novel, porous three-dimensional scaffolds through lyophilization. Physical properties of scaffolds were characterized using scanning electron microscopy, mercury intrusion porosimetry, moisture content analysis and mechanical testing. Human mesenchymal stem cells (hMSC) were seeded and cultured in vitro on the scaffolds for up to 2 weeks, and changes in stem cell growth and morphology were examined. The resulting scaffolds had rough surfaces, irregular pores with size distributions between 10 and 125 μm, <5% moisture content and compressive moduli ranging between 50 and 100 Pa. Enzyme treatment significantly lowered the moisture content. Increasing amounts of applied enzyme units lowered the median pore size. Although enzyme treatment did not affect the mechanical properties of the scaffolds, it did increase the degradation time by at least 1 week. These changes in scaffold degradation altered the growth and morphology of seeded hMSC. Cell proliferation was observed in scaffolds containing 3% soy protein isolate treated with 1 U of transglutaminase. These results demonstrate that controlling scaffold degradation rates is crucial for optimizing hMSC growth on soy protein scaffolds and that soy protein scaffolds have the potential to be used in tissue engineering applications. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Hypoxia-inducible factor 1-alpha release after intracoronary versus intramyocardial stem cell therapy in myocardial infarction.

    PubMed

    Gyöngyösi, Mariann; Hemetsberger, Rayyan; Posa, Aniko; Charwat, Silvia; Pavo, Noemi; Petnehazy, Ors; Petrasi, Zsolt; Pavo, Imre J; Hemetsberger, Hani; Benedek, Imre; Benedek, Teodora; Benedek, Istvan; Kovacs, Istvan; Kaun, Christoph; Maurer, Gerald

    2010-04-01

    We have investigated the effect of stem cell delivery on the release of hypoxia-inducible factor 1 alpha (HIF-1alpha) in peripheral circulation and myocardium in experimental myocardial ischemia. Closed-chest, reperfused myocardial infarction (MI) was created in domestic pigs. Porcine mesenchymal stem cells (MSCs) were cultured and delivered (9.8 +/- 1.2 x 10(6)) either percutaneously NOGA-guided transendocardially (Group IM) or intracoronary (Group IC) 22 +/- 4 days post-MI. Pigs without MSC delivery served as sham control (Group S). Plasma HIF-1alpha was measured at baseline, immediately post- and at follow-up (FUP; 2 h or 24 h) post-MSC delivery by ELISA kit. Myocardial HIF-1alpha expression of infarcted, normal myocardium, or border zone was determined by Western blot. Plasma level of HIF-1alpha increased immediately post-MI (from 278 +/- 127 to 631 +/- 375 pg/ml, p < 0.05). Cardiac delivery of MSCs elevated the plasma levels of HIF-1alpha significantly (p < 0.05) in groups IC and IM immediately post-MSC delivery, and returned to baseline level at FUP, without difference between the groups IC and IM. The myocardial tissue HIF-1alpha expression in the infarcted area was higher in Group IM than in Group IC or S (1,963 +/- 586 vs. 1,307 +/- 392 vs. 271 +/- 110 activity per square millimeter, respectively, p < 0.05), while the border zone contained similarly lower level of HIF-1alpha, but still significantly higher as compared with Group S. Trend towards increase in myocardial expression of HIF-1alpha was measured in Group IM at 24 h, in contrast to Group IC. In conclusion, both stem cell delivery modes increase the systemic and myocardial level of HIF-1alpha. Intramyocardial delivery of MSC seems to trigger the release of angiogenic HIF-1alpha more effectively than does intracoronary delivery.

  11. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    PubMed Central

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  12. Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells.

    PubMed

    Shen, Lei; Zeng, Wen; Wu, Yang-Xiao; Hou, Chun-Li; Chen, Wen; Yang, Ming-Can; Li, Li; Zhang, Ya-Fang; Zhu, Chu-Hong

    2013-01-01

    Angiogenesis is a major obstacle for wound healing in patients with diabetic foot wounds. Mesenchymal stem cells (MSCs) have an important function in wound repair, and neurotrophin-3 (NT-3) can promote nerve regeneration and angiogenesis. We investigated the effect of NT-3 on accelerating wound healing in the diabetic foot by improving human bone marrow MSC (hMSC) activation. In vitro, NT-3 significantly promoted VEGF, NGF, and BDNF secretion in hMSCs. NT-3 improved activation of the hMSC conditioned medium, promoted human umbilical vein endothelial cell (HUVEC) proliferation and migration, and significantly improved the closure rate of HUVEC scratches. In addition, we produced nanofiber mesh biological tissue materials through the electrospinning technique using polylactic acid, mixed silk, and collagen. The hMSCs stimulated by NT-3 were implanted into the material. Compared with the control group, the NT-3-stimulated hMSCs in the biological tissue material significantly promoted angiogenesis in the feet of diabetic C57BL/6J mice and accelerated diabetic foot wound healing. These results suggest that NT-3 significantly promotes hMSC secretion of VEGF, NGF, and other vasoactive factors and that it accelerates wound healing by inducing angiogenesis through improved activation of vascular endothelial cells. The hMSCs stimulated by NT-3 can produce materials that accelerate wound healing in the diabetic foot and other ischemic ulcers.

  13. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage.

    PubMed

    Bian, Liming; Zhai, David Y; Mauck, Robert L; Burdick, Jason A

    2011-04-01

    Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair; however, it still remains a challenge to recapitulate the functional properties of native articular cartilage using only MSCs. Additionally, MSCs may exhibit a hypertrophic phenotype under chondrogenic induction, resulting in calcification after ectopic transplantation. With this in mind, the objective of this study was to assess whether the addition of chondrocytes to MSC cultures influences the properties of tissue-engineered cartilage and MSC hypertrophy when cultured in hyaluronic acid hydrogels. Mixed cell populations (human MSCs and human chondrocytes at a ratio of 4:1) were encapsulated in the hydrogels and exhibited significantly higher Young's moduli, dynamic moduli, glycosaminoglycan levels, and collagen content than did constructs seeded with only MSCs or chondrocytes. Furthermore, the deposition of collagen X, a marker of MSC hypertrophy, was significantly lower in the coculture constructs than in the constructs seeded with MSCs alone. When MSCs and chondrocytes were cultured in distinct gels, but in the same wells, there was no improvement in biomechanical and biochemical properties of the engineered tissue, implying that a close proximity is essential. This approach can be used to improve the properties and prevent calcification of engineered cartilage formed from MSC-seeded hydrogels with the addition of lower fractions of chondrocytes, leading to improved clinical outcomes.

  14. Stem Cell Therapy for Autism

    PubMed Central

    Ichim, Thomas E; Solano, Fabio; Glenn, Eduardo; Morales, Frank; Smith, Leonard; Zabrecky, George; Riordan, Neil H

    2007-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism. PMID:17597540

  15. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.

    PubMed

    Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization

    PubMed Central

    Tormin, Ariane; Li, Ou; Brune, Jan Claas; Walsh, Stuart; Schütz, Birgit; Ehinger, Mats; Ditzel, Nicholas; Kassem, Moustapha

    2011-01-01

    Nonhematopoietic bone marrow mesenchymal stem cells (BM-MSCs) are of central importance for bone marrow stroma and the hematopoietic environment. However, the exact phenotype and anatomical distribution of specified MSC populations in the marrow are unknown. We characterized the phenotype of primary human BM-MSCs and found that all assayable colony-forming units-fibroblast (CFU-Fs) were highly and exclusively enriched not only in the lin−/CD271+/CD45−/CD146+ stem-cell fraction, but also in lin−/CD271+/CD45−/CD146−/low cells. Both populations, regardless of CD146 expression, shared a similar phenotype and genotype, gave rise to typical cultured stromal cells, and formed bone and hematopoietic stroma in vivo. Interestingly, CD146 was up-regulated in normoxia and down-regulated in hypoxia. This was correlated with in situ localization differences, with CD146 coexpressing reticular cells located in perivascular regions, whereas bone-lining MSCs expressed CD271 alone. In both regions, CD34+ hematopoietic stem/progenitor cells were located in close proximity to MSCs. These novel findings show that the expression of CD146 differentiates between perivascular versus endosteal localization of non-hematopoietic BM-MSC populations, which may be useful for the study of the hematopoietic environment. PMID:21415267

  17. New factors controlling the balance between osteoblastogenesis and adipogenesis.

    PubMed

    Abdallah, Basem M; Kassem, Moustapha

    2012-02-01

    The majority of conditions associated with bone loss, including aging, are accompanied by increased marrow adiposity possibly due to shifting of the balance between osteoblast and adipocyte differentiation in bone marrow stromal (skeletal) stem cells (MSC). In order to study the relationship between osteoblastogenesis and adipogenesis in bone marrow, we have characterized cellular models of multipotent MSC as well as pre-osteoblastic and pre-adipocytic cell populations. Using these models, we identified two secreted factors in the bone marrow microenviroment: secreted frizzled-related protein 1 (sFRP-1) and delta-like1 (preadipocyte factor 1) (Dlk1/Pref-1). Both exert regulatory effects on osteoblastogenesis and adipogenesis. Our studies suggest a model for lineage fate determination of MSC that is regulated through secreted factors in the bone marrow microenvironment that mediate a cross-talk between lineage committed cell populations in addition to controlling differentiation choices of multipotent MSC. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation

    PubMed Central

    Castells, M; Milhas, D; Gandy, C; Thibault, B; Rafii, A; Delord, J-P; Couderc, B

    2013-01-01

    Epithelial ovarian carcinoma is characterized by high frequency of recurrence (70% of patients) and carboplatin resistance acquisition. Carcinoma-associated mesenchymal stem cells (CA-MSC) have been shown to induce ovarian cancer chemoresistance through trogocytosis. Here we examined CA-MSC properties to protect ovarian cancer cells from carboplatin-induced apoptosis. Apoptosis was determined by Propidium Iodide and Annexin-V-FITC labelling and poly-ADP-ribose polymerase cleavage analysis. We showed a significant increase of inhibitory concentration 50 and a 30% decrease of carboplatin-induced apoptosis in ovarian cancer cells incubated in the presence of CA-MSC-conditioned medium (CM). A molecular analysis of apoptosis signalling pathway in response to carboplatin revealed that the presence of CA-MSC CM induced a 30% decrease of effector caspases-3 and -7 activation and proteolysis activity. CA-MSC secretions promoted Akt and X-linked inhibitor of apoptosis protein (XIAP; caspase inhibitor from inhibitor of apoptosis protein (IAP) family) phosphorylation. XIAP depletion by siRNA strategy permitted to restore apoptosis in ovarian cancer cells stimulated by CA-MSC CM. The factors secreted by CA-MSC are able to confer chemoresistance to carboplatin in ovarian cancer cells through the inhibition of effector caspases activation and apoptosis blockade. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and the phosphorylation of its downstream target XIAP underlined the implication of this signalling pathway in ovarian cancer chemoresistance. This study reveals the potentialities of targeting XIAP in ovarian cancer therapy. PMID:24176845

  19. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods

    NASA Astrophysics Data System (ADS)

    Jokerst, Jesse V.; Thangaraj, Mridhula; Gambhir, Sanjiv S.

    2014-03-01

    Imaging is crucial for stem cell therapy to monitor the location(s), numbers, and state of the implanted cells. Real-time imaging in particular can ensure proper cell delivery for best engraftment. However, established imaging tools such as MRI are limited by their temporal resolution for guidance during delivery. In contrast, photoacoustic imaging is ideally suited for real time, image-guided therapy. Here, we use silica-coated gold nanorods as photoacoustic contrast agents and deploy them to image and quantitate mesenchymal stem cells during implant into the muscle tissue of live mice. Silica-coated gold nanorods (SiGNRs) were created with standard methods and loaded into mesenchymal stem cells (MSCs) without transfection agents. There was no significant (p<0.05) toxicity or changes to cell proliferation after incubating MSCs with 0.05 nM SiGNRs for 3 hours. A panel of cytokines should only minor upregulation of inflammatory markers including interleukin-6. We used electron microscopy to illustrate vacuole-bound SiGNRs inside the cells. This cell staining increased photoacoustic signal 175% relative to MSCs without contrast agent—the silica coat itself increased signal 55% relative to uncoated GNRs. Using inductively coupled plasma spectroscopy, we found that there were 100,000 SiGNRs per MSC. This value was 5-fold higher than a MSC population stained with GNRs in the absence of silica coat. After labeling, cells were washed and injected into murine muscle tissue to simulate a muscular dystrophy patient. Mice (N=5) treated with these SiGNRlabeled MSCs exhibited no adverse events and implants up to 5 mm deep were easily visualized. The in vivo detection limit was 90,000 cells in a 100 uL bolus in mouse thigh muscle. Here, the B-mode signal is useful for orienting the treatment area and visualizing the delivery catheter while the photoacoustic mode offers cell-specific content. The photoacoustic signal was validated with histology a long-term fluorescent tracking dye after MSC transplant.

  20. Fully Dedifferentiated Chondrocytes Expanded in Specific Mesenchymal Stem Cell Growth Medium with FGF2 Obtains Mesenchymal Stem Cell Phenotype In Vitro but Retains Chondrocyte Phenotype In Vivo

    PubMed Central

    Lee, Jungsun; Lee, Jin-Yeon; Chae, Byung-Chul; Jang, Jeongho

    2017-01-01

    Given recent progress in regenerative medicine, we need a means to expand chondrocytes in quantity without losing their regenerative capability. Although many reports have shown that growth factor supplementation can have beneficial effects, the use of growth factor–supplemented basal media has widespread effect on the characteristics of chondrocytes. Chondrocytes were in vitro cultured in the 2 most widely used chondrocyte growth media, conventional chondrocyte culture medium and mesenchymal stem cell (MSC) culture medium, both with and without fibroblast growth factor-2 (FGF2) supplementation. Their expansion rates, expressions of extracellular matrix–related factors, senescence, and differentiation potentials were examined in vitro and in vivo. Our results revealed that chondrocytes quickly dedifferentiated during expansion in all tested media, as assessed by the loss of type II collagen expression. The 2 basal media (chondrocyte culture medium vs. MSC culture medium) were associated with distinct differences in cell senescence. Consistent with the literature, FGF2 was associated with accelerated dedifferentiation during expansion culture and superior redifferentiation upon induction. However, chondrocytes expanded in FGF2-containing conventional chondrocyte culture medium showed MSC-like features, as indicated by their ability to direct ectopic bone formation and cartilage formation. In contrast, chondrocytes cultured in FGF2-supplemented MSC culture medium showed potent chondrogenesis and almost no bone formation. The present findings show that the chosen basal medium can exert profound effects on the characteristics and activity of in vitro–expanded chondrocytes and indicate that right growth factor/medium combination can help chondrocytes retain a high-level chondrogenic potential without undergoing hypertrophic transition. PMID:29251111

Top