Clinical trials for stem cell transplantation: when are they needed?
Van Pham, Phuc
2016-04-27
In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.
Translating stem cell research: challenges at the research frontier.
Magnus, David
2010-01-01
This paper will address the translation of basic stem cell research into clinical research. While "stem cell" trials are sometimes used to describe established practices of bone marrow transplantation or transplantation of primary cells derived from bone marrow, for the purposes of this paper, I am primarily focusing on stem cell trials which are far less established, including use of hESC derived stem cells. The central ethical challenges in stem cell clinical trials arise in frontier research, not in standard, well-established areas of research.
Fung, Moses; Yuan, Yan; Atkins, Harold; Shi, Qian; Bubela, Tania
2017-05-09
We assessed the extent to which the publication of clinical trial results of innovative cell-based interventions reflects International Society for Stem Cell Research best practice guidelines. We assessed: (1) characteristics and time to publication of completed trials; (2) quality of reported trials; and (3) results of published trials. We identified and analyzed publications from 1,052 novel stem cell clinical trials: 179 (45.4%) of 393 completed trials had published results; 48 trials were registered by known stem cell tourism clinics, none of which reported results. Completed non-industry-sponsored trials initially published more rapidly, but differences with industry-sponsored trials decreased over time. Most publications reported safety, and 67.3% (mainly early-stage trials) reported positive outcomes. A higher proportion of industry trials reported positive efficacy. Heightened patient expectations for stem cell therapies give rise to ethical obligations for the transparent conduct of clinical trials. Reporting guidelines need to be developed that are specific to early-phase clinical trials. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Application of stem cells in targeted therapy of breast cancer: a systematic review.
Madjd, Zahra; Gheytanchi, Elmira; Erfani, Elham; Asadi-Lari, Mohsen
2013-01-01
The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. A systematic literature search was performed for original articles published from January 2007 until May 2012. Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. Wnt/β-catenin signaling pathway has been also evidenced to be an attractive CSC-target. This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.
New perspectives in human stem cell therapeutic research.
Trounson, Alan
2009-06-11
Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating beta islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine) has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for advances in health.
Stem Cell Trials for Cardiovascular Medicine: Ethical Rationale
Teraa, Martin; Hesam, Husna; van Delden, Johannes J.M.; Verhaar, Marianne C.; Bredenoord, Annelien L.
2014-01-01
Stem cell-based interventions provide new treatment prospects for many disease conditions, including cardiovascular disorders. Clinical trials are necessary to collect adequate evidence on (long-term) safety and efficacy of novel interventions such as stem cells, but the design and launch of clinical trials, from first-in-human studies to larger randomized controlled trials (RCTs), is scientifically and ethically challenging. Stem cells are different from traditional pharmaceuticals, surgical procedures, and medical devices in the following ways: the novelty and complexity of stem cells, the invasiveness of the procedures, and the novel aim of regeneration. These specifics, combined with the characteristics of the study population, will have an impact on the design and ethics of RCTs. The recently closed JUVENTAS trial will serve as an example to identify the (interwoven) scientific and ethical challenges in the design and launch of stem cell RCTs. The JUVENTAS trial has investigated the efficacy of autologous bone marrow cells in end-stage vascular patients, in a double-blind sham-controlled design. We first describe the choices, considerations, and experiences of the JUVENTAS team. Subsequently, we identify the main ethical and scientific challenges and discuss what is important to consider in the design of future stem cell RCTs: assessment of risks and benefits, the choice for outcome measures, the choice for the comparator, the appropriate selection of participants, and adequate informed consent. Additionally, the stem cell field is highly in the spotlight due to the (commercial) interests and expectations. This warrants a cautious pace of translation and scrupulous set up of clinical trials, as failures could put the field in a negative light. At the same time, knowledge from clinical trials is necessary for the field to progress. We conclude that in the scientifically and ethically challenging field of stem cell RCTs, researchers and clinicians have to maneuver between the Skylla of hyper accelerated translation without rigorously conducted RCTs and the Charybdis of the missed opportunity of valuable knowledge. PMID:24164351
Adult Stem Cell Therapy for Stroke: Challenges and Progress
Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon
2016-01-01
Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032
Concise Review: Stem Cell Trials Using Companion Animal Disease Models.
Hoffman, Andrew M; Dow, Steven W
2016-07-01
Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. © 2016 AlphaMed Press.
Stem cells in clinical practice: applications and warnings.
Lodi, Daniele; Iannitti, Tommaso; Palmieri, Beniamino
2011-01-17
Stem cells are a relevant source of information about cellular differentiation, molecular processes and tissue homeostasis, but also one of the most putative biological tools to treat degenerative diseases. This review focuses on human stem cells clinical and experimental applications. Our aim is to take a correct view of the available stem cell subtypes and their rational use in the medical area, with a specific focus on their therapeutic benefits and side effects. We have reviewed the main clinical trials dividing them basing on their clinical applications, and taking into account the ethical issue associated with the stem cell therapy. We have searched Pubmed/Medline for clinical trials, involving the use of human stem cells, using the key words "stem cells" combined with the key words "transplantation", "pathology", "guidelines", "properties" and "risks". All the relevant clinical trials have been included. The results have been divided into different categories, basing on the way stem cells have been employed in different pathological conditions.
... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...
Stem cells in retinal regeneration: past, present and future.
Ramsden, Conor M; Powner, Michael B; Carr, Amanda-Jayne F; Smart, Matthew J K; da Cruz, Lyndon; Coffey, Peter J
2013-06-01
Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardt's disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.
Barker, Roger A; Carpenter, Melissa K; Forbes, Stuart; Goldman, Steven A; Jamieson, Catriona; Murry, Charles E; Takahashi, Jun; Weir, Gordon
2018-05-08
Stem cell-based clinical interventions are increasingly advancing through preclinical testing and approaching clinical trials. The complexity and diversity of these approaches, and the confusion created by unproven and untested stem cell-based "therapies," create a growing need for a more comprehensive review of these early-stage human trials to ensure they place the patients at minimal risk of adverse events but are also based on solid evidence of preclinical efficacy with a clear scientific rationale for that effect. To address this issue and supplement the independent review process, especially that of the ethics and institutional review boards who may not be experts in stem cell biology, the International Society for Stem Cell Research (ISSCR) has developed a set of practical questions to cover the major issues for which clear evidence-based answers need to be obtained before approving a stem cell-based trial. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Planchon, Sarah M; Lingas, Karen T; Reese Koç, Jane; Hooper, Brittney M; Maitra, Basabi; Fox, Robert M; Imrey, Peter B; Drake, Kylie M; Aldred, Micheala A; Lazarus, Hillard M; Cohen, Jeffrey A
2018-01-01
Multiple sclerosis is an inflammatory, neurodegenerative disease of the central nervous system for which therapeutic mesenchymal stem cell transplantation is under study. Published experience of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical trials is limited. To determine the feasibility of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical use. In a phase I trial, autologous, bone marrow-derived mesenchymal stem cells were isolated from 25 trial participants with multiple sclerosis and eight matched controls, and culture-expanded to a target single dose of 1-2 × 10 6 cells/kg. Viability, cell product identity and sterility were assessed prior to infusion. Cytogenetic stability was assessed by single nucleotide polymorphism analysis of mesenchymal stem cells from 18 multiple sclerosis patients and five controls. One patient failed screening. Mesenchymal stem cell culture expansion was successful for 24 of 25 multiple sclerosis patients and six of eight controls. The target dose was achieved in 16-62 days, requiring two to three cell passages. Growth rate and culture success did not correlate with demographic or multiple sclerosis disease characteristics. Cytogenetic studies identified changes on one chromosome of one control (4.3%) after extended time in culture. Culture expansion of mesenchymal stem cells from multiple sclerosis patients as donors is feasible. However, culture time should be minimized for cell products designated for therapeutic administration.
Stem cell transplantation for treating stroke: status, trends and development.
Huo, Wenxin; Liu, Xiaoyang; Tan, Cheng; Han, Yingying; Kang, Chunyang; Quan, Wei; Chen, Jiajun
2014-09-01
The developing approaches of thrombolytic therapy, endovascular treatment, neuroprotective therapy, and stem cell therapy have enabled breakthroughs in stroke treatment. In this study, we summarize and analyze trends and progress in stem cell transplantation for stroke treatment by retrieval of literature from Thomson Reuters Web of Science database, the NIH Clinical Trial Planning Grant Program, and Clinical Trials Registration Center in North America. In the last 10 years, there has been an increasing number of published articles on stem cell transplantation for stroke treatment. In particular, research from the USA and China has focused on stem cell transplantation. A total of 2,167 articles addressing stem cell transplantation for stroke treatment from 2004 to 2013 were retrieved from the Thomson Reuters Web of Science database. The majority of these articles were from the USA (854, 39.4%), with the journal Stroke publishing the most articles (145, 6.7%). Of the published articles, 143 were funded by the National Institutes of Health (accounting for 6.6% of total publications), and 91 by the National Natural Science Foundation of China. Between 2013 and 2014, the National Institutes of Health provided financial support ($130 million subsidy) for 329 research projects on stroke therapy using stem cell transplantation. In 2014, 215 new projects were approved, receiving grants of up to $70,440,000. Ninety clinical trials focusing on stem cell transplantation for stroke were registered in the Clinical Trial Registration Center in North America, with 40 trials registered in the USA (ranked first place). China had the maximum number of registered research or clinical trials (10 projects).
Nagpal, Anjali; Choy, Fong Chan; Howell, Stuart; Hillier, Susan; Chan, Fiona; Hamilton-Bruce, Monica A; Koblar, Simon A
2017-08-30
Stem cells have demonstrated encouraging potential as reparative therapy for patients suffering from post-stroke disability. Reperfusion interventions in the acute phase of stroke have shown significant benefit but are limited by a narrow window of opportunity in which they are beneficial. Thereafter, rehabilitation is the only intervention available. The current review summarises the current evidence for use of stem cell therapies in stroke from early-phase clinical trials. The safety and feasibility of administering different types of stem cell therapies in stroke seem to be reasonably proven. However, the effectiveness needs still to be established through bigger clinical trials with more pragmatic clinical trial designs that address the challenges raised by the heterogeneous nature of stroke per se, as well those due to unique characteristics of stem cells as therapeutic agents.
Chaddah, Maya R; Dickie, Brian G; Lyall, Drew; Marshall, Caroline J; Sykes, J Ben; Bruijn, Lucie I
2011-09-01
The International Consortium of Stem Cell Networks' (ICSCN) Workshop Towards Clinical Trials Using Stem Cells for Amyotrophic Lateral Sclerosis (ALS)/Motor Neuron Disease (MND) was held on 24-25 January 2011. Twenty scientific talks addressed aspects of cell derivation and characterization; preclinical research and phased clinical trials involving stem cells; latest developments in induced pluripotent (iPS) cell technology; industry involvement and investment. Three moderated panel discussions focused on unregulated ALS/MND treatments, and the state of the art and barriers to future progress in using stem cells for ALS/MND. This review highlights the major insights that emanated from the workshop around the lessons learned and barriers to progress for using stem cells for understanding disease mechanism, drug discovery, and as therapy for ALS/MND. The full meeting report is only available in the online version of the journal. Please find this material with the following direct link to the article: http://www.informahealthcare.com/als/doi/10.3109/17482968.2011.590992 .
Horch, Jenny D; Carr, Eloise C J; Harasym, Patricia; Burnett, Lindsay; Biernaskie, Jeff; Gabriel, Vincent
2016-12-01
Adult stem cells represent a potentially renewable and autologous source of cells to regenerate skin and improve wound healing. Firefighters are at risk of sustaining a burn and potentially benefiting from a split thickness skin graft (STSG). This mixed methods study examined firefighter willingness to participate in a future stem cell clinical trial, outcome priorities and factors associated with this decision. A sequential explanatory mixed methods design was used. The quantitative phase (online questionnaire) was followed by the qualitative phase (semi-structured interviews). A sample of 149 firefighters completed the online survey, and a purposeful sample of 15 firefighters was interviewed. A majority (74%) reported they would participate in a future stem cell clinical trial if they experienced burn benefiting from STSG. Hypothetical concerns related to receiving a STSG were pain, itch, scarring/redness and skin durability. Participants indicated willingness to undergo stem cell therapy if the risk of no improvement was 43% or less. Risk tolerance was predicted by perceived social support and having children. Interviews revealed four main themes: a desire to help others, improving clinical outcomes, trusting relationships, and a belief in scientific investigation. Many participants admitted lacking sufficient knowledge to make an informed decision regarding stem cell therapies. Firefighters indicated they were largely willing to participate in a stem cell clinical trial but also indicated a lack of knowledge upon which to make a decision. Public education of the role of stem cells in STSG will be increasingly important as clinical trials are developed. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Resolving ethical issues in stem cell clinical trials: the example of Parkinson disease.
Lo, Bernard; Parham, Lindsay
2010-01-01
Clinical trials of stem cell transplantation raise ethical issues that are intertwined with scientific and design issues, including choice of control group and intervention, background interventions, endpoints, and selection of subjects. We recommend that the review and IRB oversight of stem cell clinical trials should be strengthened. Scientific and ethics review should be integrated in order to better assess risks and potential benefits. Informed consent should be enhanced by assuring that participants comprehend key aspects of the trial. For the trial to yield generalizable knowledge, negative findings and serious adverse events must be reported.
Stem cells in bone diseases: current clinical practice.
Beyth, Shaul; Schroeder, Josh; Liebergall, Meir
2011-01-01
Bone is an obvious candidate tissue for stem cell therapy. This review provides an update of existing stem cell-based clinical treatments for bone pathologies. A systematic computerized literature search was conducted. The following databases were accessed on 10 February 2011: NIH clinical trials database, PubMed, Ovid and Cochrane Reviews. Stem cell therapy offers new options for bone conditions, both acquired and inherited. There is still no agreement on the exact definition of 'mesenchymal stem cells'. Consequently, it is difficult to appreciate the effect of culture expansion and the feasibility of allogeneic transplantation. Based on the sound foundations of pre-clinical research, stem cell-based treatments and protocols have recently emerged. Well-designed prospective clinical trials are needed in order to establish and develop stem cell therapy for bone diseases.
Stem cell therapies and regenerative medicine in China.
Huang, Sha; Fu, XiaoBing
2014-02-01
Stem cells are the core of tissue repair and regeneration, and a promising cell source for novel therapies. In recent years, research into stem cell therapies has been particularly exciting in China. The remarkable advancements in basic stem cell research and clinically effective trials have led to fresh insights into regenerative medicine, such as treatments for sweat gland injury after burns, diabetes, and liver injury. High hopes have inspired numerous experimental and clinical trials. At the same time, government investment and policy support of research continues to increase markedly. However, numerous challenges must be overcome before novel stem cell therapies can achieve meaningful clinical outcomes.
Novak, Iona; Walker, Karen; Hunt, Rod W; Wallace, Euan M; Fahey, Michael; Badawi, Nadia
2016-08-01
: Evidence for stem cells as a potential intervention for cerebral palsy is emerging. Our objective was to determine the efficacy and safety of stem cells for improving motor and cognitive function of people with cerebral palsy. Searches were conducted in October 2015 in CENTRAL, EMBASE, MEDLINE, and Cochrane Libraries. Randomized controlled trials and controlled clinical trials of stem cells for cerebral palsy were included. Two authors independently decided upon included trials, extracted data, quality, and risk of bias. The primary outcome was gross motor function. Secondary outcomes were cognitive function and adverse events (AEs). Effects were expressed as standardized mean differences (SMD) with 95% confidence intervals (CI), using a random-effects model. Five trials comprising 328 participants met inclusion criteria. Four cell types were studied: olfactory ensheathing, neural, neural progenitors, and allogeneic umbilical cord blood (UCBs). Transplantation procedures differed from central nervous system neurosurgical transplantation to intravenous/arterial infusion. Participants were followed short-term for only 6 months. Evidence of variable quality indicated a small statistically significant intervention effect from stem cells on gross motor skills (SMD 1.27; 95% CI 0.22, 2.33), with UCBs most effective. There were insufficient and heterogeneous data to compare cognitive effects. Serious AEs were rare (n = 4/135 [3%] stem cells; n = 3/139 [2%] controls). Stem cells appeared to induce short-term improvements in motor skills. Different types of stem cell interventions were compared, meaning the data were heterogeneous and are a study limitation. Further randomized controlled trials are warranted, using rigorous methodologies. Stem cells are emerging as a scientifically plausible treatment and possible cure for cerebral palsy, but are not yet proven. The lack of valid animal models has significantly hampered the scope of clinical trials. Despite the state of current treatment evidence, parents remain optimistic about the potential improvements from stem cell intervention and feel compelled to exhaust all therapeutic options, including stem cell tourism. Receiving unproven therapies from unvalidated sources is potentially dangerous. Thus it is essential that researchers and clinicians stay up to date. A systematic review and meta-analysis summarizing and aggregating current research data may provide more conclusive evidence to inform treatment decision making and help direct future research. ©AlphaMed Press.
Walker, Karen; Hunt, Rod W.; Wallace, Euan M.; Fahey, Michael; Badawi, Nadia
2016-01-01
Evidence for stem cells as a potential intervention for cerebral palsy is emerging. Our objective was to determine the efficacy and safety of stem cells for improving motor and cognitive function of people with cerebral palsy. Searches were conducted in October 2015 in CENTRAL, EMBASE, MEDLINE, and Cochrane Libraries. Randomized controlled trials and controlled clinical trials of stem cells for cerebral palsy were included. Two authors independently decided upon included trials, extracted data, quality, and risk of bias. The primary outcome was gross motor function. Secondary outcomes were cognitive function and adverse events (AEs). Effects were expressed as standardized mean differences (SMD) with 95% confidence intervals (CI), using a random-effects model. Five trials comprising 328 participants met inclusion criteria. Four cell types were studied: olfactory ensheathing, neural, neural progenitors, and allogeneic umbilical cord blood (UCBs). Transplantation procedures differed from central nervous system neurosurgical transplantation to intravenous/arterial infusion. Participants were followed short-term for only 6 months. Evidence of variable quality indicated a small statistically significant intervention effect from stem cells on gross motor skills (SMD 1.27; 95% CI 0.22, 2.33), with UCBs most effective. There were insufficient and heterogeneous data to compare cognitive effects. Serious AEs were rare (n = 4/135 [3%] stem cells; n = 3/139 [2%] controls). Stem cells appeared to induce short-term improvements in motor skills. Different types of stem cell interventions were compared, meaning the data were heterogeneous and are a study limitation. Further randomized controlled trials are warranted, using rigorous methodologies. Significance Stem cells are emerging as a scientifically plausible treatment and possible cure for cerebral palsy, but are not yet proven. The lack of valid animal models has significantly hampered the scope of clinical trials. Despite the state of current treatment evidence, parents remain optimistic about the potential improvements from stem cell intervention and feel compelled to exhaust all therapeutic options, including stem cell tourism. Receiving unproven therapies from unvalidated sources is potentially dangerous. Thus it is essential that researchers and clinicians stay up to date. A systematic review and meta-analysis summarizing and aggregating current research data may provide more conclusive evidence to inform treatment decision making and help direct future research. PMID:27245364
Ethical clinical translation of stem cell interventions for neurologic disease.
Cote, David J; Bredenoord, Annelien L; Smith, Timothy R; Ammirati, Mario; Brennum, Jannick; Mendez, Ivar; Ammar, Ahmed S; Balak, Naci; Bolles, Gene; Esene, Ignatius Ngene; Mathiesen, Tiit; Broekman, Marike L
2017-01-17
The application of stem cell transplants in clinical practice has increased in frequency in recent years. Many of the stem cell transplants in neurologic diseases, including stroke, Parkinson disease, spinal cord injury, and demyelinating diseases, are unproven-they have not been tested in prospective, controlled clinical trials and have not become accepted therapies. Stem cell transplant procedures currently being carried out have therapeutic aims, but are frequently experimental and unregulated, and could potentially put patients at risk. In some cases, patients undergoing such operations are not included in a clinical trial, and do not provide genuinely informed consent. For these reasons and others, some current stem cell interventions for neurologic diseases are ethically dubious and could jeopardize progress in the field. We provide discussion points for the evaluation of new stem cell interventions for neurologic disease, based primarily on the new Guidelines for Stem Cell Research and Clinical Translation released by the International Society for Stem Cell Research in May 2016. Important considerations in the ethical translation of stem cells to clinical practice include regulatory oversight, conflicts of interest, data sharing, the nature of investigation (e.g., within vs outside of a clinical trial), informed consent, risk-benefit ratios, the therapeutic misconception, and patient vulnerability. To help guide the translation of stem cells from the laboratory into the neurosurgical clinic in an ethically sound manner, we present an ethical discussion of these major issues at stake in the field of stem cell clinical research for neurologic disease. © 2016 American Academy of Neurology.
Bueren, Juan A; Guenechea, Guillermo; Casado, José A; Lamana, María Luisa; Segovia, José C
2003-01-01
Hematopoietic stem cells constitute a rare population of precursor cells with remarkable properties for being used as targets in gene therapy protocols. The last years have been particularly productive both in the fields of gene therapy and stem cell biology. Results from ongoing clinical trials have shown the first unquestionable clinical benefits of immunodeficient patients transplanted with genetically modified autologous stem cells. On the other hand, severe side effects in a few patients treated with gene therapy have also been reported, indicating the usefulness of further improving the vectors currently used in gene therapy clinical trials. In the field of stem cell biology, evidence showing the plastic potential of adult hematopoietic stem cells and data indicating the multipotency of adult mesenchymal precursor cells have been presented. Also, the generation of embryonic stem cells by means of nuclear transfer techniques has appeared as a new methodology with direct implications in gene therapy.
Baertsch, Marc-Andrea; Schlenzka, Jana; Mai, Elias K; Merz, Maximilian; Hillengaß, Jens; Raab, Marc S; Hose, Dirk; Wuchter, Patrick; Ho, Anthony D; Jauch, Anna; Hielscher, Thomas; Kunz, Christina; Luntz, Steffen; Klein, Stefan; Schmidt-Wolf, Ingo G H; Goerner, Martin; Schmidt-Hieber, Martin; Reimer, Peter; Graeven, Ullrich; Fenk, Roland; Salwender, Hans; Scheid, Christof; Nogai, Axel; Haenel, Mathias; Lindemann, Hans W; Martin, Hans; Noppeney, Richard; Weisel, Katja; Goldschmidt, Hartmut
2016-04-25
Despite novel therapeutic agents, most multiple myeloma (MM) patients eventually relapse. Two large phase III trials have shown significantly improved response rates (RR) of lenalidomide/dexamethasone compared with placebo/dexamethasone in relapsed MM (RMM) patients. These results have led to the approval of lenalidomide for RMM patients and lenalidomide/dexamethasone has since become a widely accepted second-line treatment. Furthermore, in RMM patients consolidation with high-dose chemotherapy plus autologous stem cell transplantation has been shown to significantly increase progression free survival (PFS) as compared to cyclophosphamide in a phase III trial. The randomized prospective ReLApsE trial is designed to evaluate PFS after lenalidomide/dexamethasone induction, high-dose chemotherapy consolidation plus autologous stem cell transplantation and lenalidomide maintenance compared with the well-established lenalidomide/dexamethasone regimen in RMM patients. ReLApsE is a randomized, open, multicenter phase III trial in a planned study population of 282 RMM patients. All patients receive three lenalidomide/dexamethasone cycles and--in absence of available stem cells from earlier harvesting--undergo peripheral blood stem cell mobilization and harvesting. Subsequently, patients in arm A continue on consecutive lenalidomide/dexamethasone cycles, patients in arm B undergo high dose chemotherapy plus autologous stem cell transplantation followed by lenalidomide maintenance until discontinuation criteria are met. Therapeutic response is evaluated after the 3(rd) (arm A + B) and the 5(th) lenalidomide/dexamethasone cycle (arm A) or 2 months after autologous stem cell transplantation (arm B) and every 3 months thereafter (arm A + B). After finishing the study treatment, patients are followed up for survival and subsequent myeloma therapies. The expected trial duration is 6.25 years from first patient in to last patient out. The primary endpoint is PFS, secondary endpoints include overall survival (OS), RR, time to best response and the influence of early versus late salvage high dose chemotherapy plus autologous stem cell transplantation on OS. This phase III trial is designed to evaluate whether high dose chemotherapy plus autologous stem cell transplantation and lenalidomide maintenance after lenalidomide/dexamethasone induction improves PFS compared with the well-established continued lenalidomide/dexamethasone regimen in RMM patients. ISRCTN16345835 (date of registration 2010-08-24).
[Basics and clinical application of human mesenchymal stromal/stem cells].
Miura, Yasuo
2015-10-01
Human mesenchymal stromal/stem cells (MSCs) show a variety of biological characteristics. The clinical trials database provided by the National Institutes of Health, USA, contains about 400 clinical trials of MSCs for a wide range of therapeutic applications internationally (http://www.clinicaltrials.gov, key words "mesenchymal stem cells", as of April, 2015). Encouraging results from these clinical trials include evidence of efficacy against graft versus host disease (GVHD) in hematopoietic stem cell transplantation. Treatment for and/or prevention of engraftment failure and insufficient hematopoietic recovery have also been explored. Herein, we will address the basic principles of MSCs and the current status of clinical studies using MSCs. Future prospects for MSC-based therapy will also be discussed.
Sanz-Ruiz, Ricardo; Casado Plasencia, Ana; Borlado, Luis R; Fernández-Santos, María Eugenia; Al-Daccak, Reem; Claus, Piet; Palacios, Itziar; Sádaba, Rafael; Charron, Dominique; Bogaert, Jan; Mulet, Miguel; Yotti, Raquel; Gilaberte, Immaculada; Bernad, Antonio; Bermejo, Javier; Janssens, Stefan; Fernández-Avilés, Franciso
2017-06-23
Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398. © 2017 American Heart Association, Inc.
Genetic Control of Wayward Pluripotent Stem Cells and Their Progeny after Transplantation
Kiuru, Maija; Boyer, Julie L.; O’Connor, Timothy P.; Crystal, Ronald G.
2011-01-01
The proliferative capacity of pluripotent stem cells and their progeny brings a unique aspect to therapeutics, in that once a transplant is initiated the therapist no longer has control of the therapy. In the context of the recent FDA approval of a human ESC trial and report of a neuronal-stem-cell-derived tumor in a human trial, strategies need to be developed to control wayward pluripotent stem cells. Here, we focus on one approach: direct genetic modification of the cells prior to transplantation with genes that can prevent the adverse events and/or eliminate the transplanted cells and their progeny. PMID:19341619
Translating Stem Cell Research to Cardiac Disease Therapies: Pitfalls and Prospects for Improvement
Rosen, Michael R.; Myerburg, Robert J.; Francis, Darrel P.; Cole, Graham D.; Marbán, Eduardo
2014-01-01
Over the past 2 decades, there have been numerous stem cell studies focused on cardiac diseases, ranging from proof-of-concept to phase 2 trials. This series of articles focuses on the legacy of these studies and the outlook for future treatment of cardiac diseases with stem cell therapies. The first section by Rosen and Myerburg is an independent review that analyzes the basic science and translational strategies supporting the rapid advance of stem cell technology to the clinic, the philosophies behind them, trial designs, and means for going forward that may impact favorably on progress. The second and third sections were collected in response to the initial section of this review. The commentary by Francis and Cole discusses the Rosen and Myerburg review and details how trial outcomes can be affected by noise, poor trial design (particularly the absence of blinding), and normal human tendencies toward optimism and denial. The final, independent article by Marbán takes a different perspective concerning the potential for positive impact of stem cell research applied to heart disease and future prospects for its clinical application. PMID:25169179
Stem Cell Therapy for Erectile Dysfunction.
Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony
2018-04-06
The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Stem cell therapy for ischemic heart diseases.
Yu, Hong; Lu, Kai; Zhu, Jinyun; Wang, Jian'an
2017-01-01
Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. Key recent published literatures and ClinicalTrials.gov. Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Malecki, Marek
2013-01-01
Clinical trials, to regenerate the human heart injured by myocardial infarction, involve the delivery of stem cells to the site of the injury. However, only a small fraction of the introduced stem cells are detected at the site of the injury, merely two weeks after this therapeutic intervention. This significantly hampers the effectiveness of the stem cell therapy. To resolve the aforementioned problem, we genetically and molecularly bioengineered heterospecific, tetravalent antibodies (htAbs), which have both exquisite specificity and high affinity towards human, pluripotent, stem cells through the htAbs’ domains binding SSEA-4, SSEA-3, TRA-1-60, and TRA-1-81, as well as towards the injured cardiac muscle through the htAbs’ domains binding human cardiac myosin, α-actinin, actin, and titin. The cardiac tissue was acquired from the patients, who were receiving heart transplants. The autologous, human, induced, pluripotent stem cells (hiPSCs) were generated from the patients’ fibroblasts by non-viral delivery and transient expression of the DNA constructs for: Oct4, Nanog, Sox2, Lin28, Klf4, c-Myc. In the trials involving the htAbs, the human, induced, pluripotent stem cells anchored to the myocardial sarcomeres with the efficiency, statistically, significantly higher, than in the trials with non-specific or without antibodies (p < 0.0003). Moreover, application of the htAbs resulted in cross-linking of the sarcomeric proteins to create the stable scaffolds for anchoring of the stem cells. Thereafter, these human, induced pluripotent stem cells differentiated into cardiomyocytes at their anchorage sites. By bioengineering of these novel heterospecific, tetravalent antibodies and using them to guide and to anchor the stem cells specifically to the stabilized sarcomeric scaffolds, we demonstrated the proof of concept in vitro for improving effectiveness of regenerative therapy of myocardial infarction and created the foundations for the trials in vivo. PMID:23956947
Anderson, John A.; Little, Dianne; Toth, Alison P.; Moorman, Claude T.; Tucker, Bradford S.; Ciccotti, Michael G.; Guilak, Farshid
2014-01-01
Background Articular cartilage damage of the knee is common, causing significant morbidity worldwide. Many adult tissues contain cells that are able to differentiate into multiple cell types, including chondrocytes. These stem cells have gained significant attention over the past decade and may become frontline management for cartilage defects in the very near future. Purpose The role of stem cells in the treatment of knee osteochondral defects was reviewed. Recent animal and clinical studies were reviewed to determine the benefits and potential outcomes of using stem cells for cartilage defects. Study Design Literature review. Methods A PubMed search was undertaken. The key phrase “stem cells and knee” was used. The search included reviews and original articles over an unlimited time period. From this search, articles outlining animal and clinical trials were selected. A search of current clinical trials in progress was performed on the clinicaltrials.gov website, and “stem cells and knee” was used as the search phrase. Results Stem cells have been used in many recent in vitro and animal studies. A number of cell-based approaches for cartilage repair have progressed from preclinical animal studies into clinical trials. Conclusion The use of stem cells for the treatment of cartilage defects is increasing in animal and clinical studies. Methods of delivery of stem cells to the knee’s cartilage vary from direct injection to implantation with scaffolds. While these approaches are highly promising, there is currently limited evidence of a direct clinical benefit, and further research is required to assess the overall outcome of stem cell therapies for knee cartilage repair. PMID:24220016
Hauskeller, Christine
2017-09-01
Harmonized regulation of research with human stem cells in Europe has shaped innovation in regenerative medicine. Findings from a Phase III academic clinical trial of an autologous cell procedure illustrate the obstacles that a multinational trial faces. A typology of the obstacles encountered, may help other teams embarking upon trials. The findings throw light on the situation of clinician-scientists in clinical innovation, as the expertise to run scientific trials is very complex. The innovation route of clinical translation takes insufficient account of the interdependencies between multiple social and cultural factors from outside the laboratory and the clinic. For ethical reasons, however, academic and business routes to stem cell treatments ought to be enabled by the regulators. Suggestions arise, how academics can prepare for trials, that academic research needs better institutional support and that new models of medical innovation may need to be developed for regenerative medicine.
A Case for Crowd Sourcing in Stem Cell Research
Mummery, Christine L.; Rabelink, Ton J.
2014-01-01
SUMMARY Thousands of patients and placebo-treated controls have been included in many clinical trials of stem cell therapy over the last decade or so, but often the study groups have been small. Their scientific value may therefore be limited and their ethical justification questionable. Would “crowd sourcing” for data sharing be a means of increasing the collective value of clinical trials? Here, we make a case for open access of all data emerging from stem cell studies (trials but also observational studies) independent of whether they are investigator-initiated or commercially driven. PMID:25232185
Stem cell clinical trials for spinal cord injury: readiness, reluctance, redefinition.
Illes, J; Reimer, J C; Kwon, B K
2011-11-01
A wealth of scientific and clinical research has focused on the use of stem cells as a potential therapy for spinal cord injury (SCI), culminating most recently in the initiation of clinical trials. However, with the urgency that scientists and clinicians have undertaken to move forward with novel therapies for this devastating injury, the perspectives of stakeholders who live with a SCI have been left behind. Translational research in this rapidly growing field therefore overlooks a critically important viewpoint. We address this concern with a qualitative study of the perspectives on experimental stem cell treatments from individuals who have actually suffered a spinal cord injury. Using focus groups and interviews, we engaged individuals with thoracic and cervical SCIs at sub-acute and chronic stages post-injury. We found four major themes that inform the progression of stem cell research to clinical trials: 'readiness', 'the here and now', 'wait and see', and 'informed hope'. Taken together, the data suggest a profound difference related to target timing of stem cell clinical trials and the perspectives about timing from those who are the end-beneficiaries of therapy. To bridge this gap, we conclude with a number of considerations for the timing disparity of trials and recommendations for improving informed consent.
Regulated and Unregulated Clinical Trials of Stem Cell Therapies for Stroke
Liska, Michael G.; Crowley, Marci G.; Borlongan, Cesar V.
2017-01-01
Several lines of laboratory investigations reporting solid safety profiles and robust efficacy readouts of stem cells in clinically relevant animal models have advanced stem cell transplantation as an experimental therapy for stroke. Unfortunately, translating laboratory findings into effective clinical trials entails rigorous regulatory examinations, which posed a major challenge in the application of stem cells to patients. As a consequence of this slow pace of clinical entry, and a media-propagated hype narrating stem cells as a “magic bullet”, a dangerous market has been created for unregulated stem cell clinics. These clinics are often guilty of misleading patients and delivering low-quality, even harmful, treatments. Additionally, these medical tourism-purported clinical procedures, which have been performed even in the US, are likely to negatively impact on the true science and clinical value of stem cells. For the full potential of stem cell therapies to be realized, these pressing public misconceptions and regulatory clinical concerns must be addressed. Here, we provide the scientific evidence supporting the safe and effective conduct of stem cells. Arguably, relying on such evidence-based science to dictate the translation of stem cells from the laboratory to the clinic should allow an objective assessment of the risks and the rewards, and the delineation of the hype from hope of this experimental stroke therapy. PMID:28127687
Stem cells in clinical trials for treatment of retinal degeneration.
Klassen, Henry
2016-01-01
After decades of basic science research involving the testing of regenerative strategies in animal models of retinal degenerative diseases, a number of clinical trials are now underway, with additional trials set to begin shortly. These efforts will evaluate the safety and preliminary efficacy of cell-based products in the eyes of patients with a number of retinal conditions, notably including age-related macular degeneration, retinitis pigmentosa and Stargardt's disease. This review considers the scientific work and early trials with fetal cells and tissues that set the stage for the current clinical investigatory work, as well the trials themselves, specifically those either now completed, underway or close to initiation. The cells of interest include retinal pigment epithelial cells derived from embryonic stem or induced pluripotent stem cells, undifferentiated neural or retinal progenitors or cells from the vascular/bone marrow compartment or umbilical cord tissue. Degenerative diseases of the retina represent a popular target for emerging cell-based therapeutics and initial data from early stage clinical trials suggest that short-term safety objectives can be met in at least some cases. The question of efficacy will require additional time and testing to be adequately resolved.
Stem cells in animal asthma models: a systematic review.
Srour, Nadim; Thébaud, Bernard
2014-12-01
Asthma control frequently falls short of the goals set in international guidelines. Treatment options for patients with poorly controlled asthma despite inhaled corticosteroids and long-acting β-agonists are limited, and new therapeutic options are needed. Stem cell therapy is promising for a variety of disorders but there has been no human clinical trial of stem cell therapy for asthma. We aimed to systematically review the literature regarding the potential benefits of stem cell therapy in animal models of asthma to determine whether a human trial is warranted. The MEDLINE and Embase databases were searched for original studies of stem cell therapy in animal asthma models. Nineteen studies were selected. They were found to be heterogeneous in their design. Mesenchymal stromal cells were used before sensitization with an allergen, before challenge with the allergen and after challenge, most frequently with ovalbumin, and mainly in BALB/c mice. Stem cell therapy resulted in a reduction of bronchoalveolar lavage fluid inflammation and eosinophilia as well as Th2 cytokines such as interleukin-4 and interleukin-5. Improvement in histopathology such as peribronchial and perivascular inflammation, epithelial thickness, goblet cell hyperplasia and smooth muscle layer thickening was universal. Several studies showed a reduction in airway hyper-responsiveness. Stem cell therapy decreases eosinophilic and Th2 inflammation and is effective in several phases of the allergic response in animal asthma models. Further study is warranted, up to human clinical trials. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Gene Editing: Regulatory and Translation to Clinic.
Ando, Dale; Meyer, Kathleen
2017-10-01
The clinical application and regulatory strategy of genome editing for ex vivo cell therapy is derived from the intersection of two fields of study: viral vector gene therapy trials; and clinical trials with ex vivo purification and engraftment of CD34 + hematopoietic stem cells, T cells, and tumor cell vaccines. This article covers the regulatory and translational preclinical activities needed for a genome editing clinical trial modifying hematopoietic stem cells and the genesis of this current strategy based on previous clinical trials using genome-edited T cells. The SB-728 zinc finger nuclease platform is discussed because this is the most clinically advanced genome editing technology. Copyright © 2017 Elsevier Inc. All rights reserved.
Xue, Ran; Meng, Qinghua; Dong, Jinling; Li, Juan; Yao, Qinwei; Zhu, Yueke; Yu, Hongwei
2018-05-10
Stem cell therapy has been applied in the treatment of acute-on-chronic liver failure (ACLF). However, its clinical efficiency is still debatable. The aim of this systematic review and meta-analysis is to evaluate the clinical efficiency of stem cell therapy in the treatment of ACLF. The Cochrane Library, OVID, EMBASE, and PUBMED were searched to December 2017. Both randomized and non-randomized studies, assessing stem cell therapy in patients with ACLF, were included. The outcome measures were total bilirubin (TBIL), alanine transaminase (ALT), international normalized ratio (INR), albumin (ALB), and the model for end-stage liver disease (MELD) score. The quality of evidence was assessed by GRADEpro. Four randomized controlled trials and six non-randomized controlled trials were included. The TBIL levels significantly decreased at 1-, 3-, 12-month after the stem cell therapy (p = 0.0008; p = 0.04; p = 0.007). The ALT levels decreased significantly compared with the control group in the short-term (p < 0.00001). There was no obvious change in the INR level compared with the control groups (p = 0.64). The ALB levels increased markedly as compared with the control groups (p < 0.0001). The significant difference can be found in MELD score between stem cell therapy and control groups (p = 0.008). Further subgroup analysis for 3-month clinical performance according to the stem cell types have also been performed. This study suggests that the clinical outcomes of stem cell therapy were satisfied in patients with ACLF in the short-term. MSCs may be better than BM-MNCs in the stem cells transplantation of ACLF. However, more attention should focus on clinical trials in large-volume centers.
Patel, Chetan D; Agarwal, Snehlata; Seth, Sandeep; Mohanty, Sujata; Aggarwal, Himesh; Gupta, Namit
2014-01-01
Bone marrow stem cells having myogenic potential are promising candidates for various cell-based therapies for myocardial disease. We present here images showing homing of technetium-99m (Tc-99m) hexamethylpropyleneamine oxime (HMPAO) labeled stem cells in the infarcted myocardium from a pilot study conducted to radio-label part of the stem cells in patients enrolled in a stem cell clinical trial for recent myocardial infarction. PMID:25400375
The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation
Kim, Eun-Jung; Kim, Nayoun; Cho, Seok-Goo
2013-01-01
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT. PMID:23306700
McLean, Alison K; Stewart, Cameron; Kerridge, Ian
2015-02-09
An increasing number of private clinics in Australia are marketing and providing autologous stem cell therapies to patients. Although advocates point to the importance of medical innovation and the primacy of patient choice, these arguments are unconvincing. First, it is a stark truth that these clinics are flourishing while the efficacy and safety of autologous stem cell therapies, outside of established indications for hematopioetic stem cell transplantation, are yet to be shown. Second, few of these therapies are offered within clinical trials. Third, patients with chronic and debilitating illnesses, who are often the ones who take up these therapies, incur significant financial burdens in the expectation of benefiting from these treatments. Finally, the provision of these stem cell therapies does not follow the established pathways for legitimate medical advancement. We argue that greater regulatory oversight and professional action are necessary to protect vulnerable patients and that at this time the provision of unproven stem cell therapies outside of clinical trials is unethical.
Gámez Escalona, José Antonio
2013-01-01
The possibility to isolate, cultivate, preserve, characterize and differentiate Human Embryonic Stem Cells (ES) discovered by James Thomson and his colleagues in 1998 was a milestone in the history of Stem Cell Research. Immediately after this discovery many speculations were made about the therapeutic possibilities of ES, motivated by ideological, political and economic aspects. The episode made clear the lack of scientific rationality and ethics when assessing realities as meaningful as those of human embryos obtained by in vitro fertilization techniques (IVF) or human eggs. Therapeutic Cloning as a promise to produce ″tailored″ Stem Cells reported by Hwang and his team in 2004, ended up being a scandal within the scientific community. The technical difficulties and ethical controversies that arose from obtaining ES were insurmountable. In 2010 only two clinical trials were reported using these cells. Those trials were abandoned in late 2011 arguing financial reasons. The discovery of Induced Pluripotent Stem Cell (iPS) in 2006 in mice and in 2007 in humans, represented the possibility of obtaining pluripotent stem cells without the need to destroy embryos. Today, the absence of clinical trials using ES, caused by financial difficulties as a result of its ineffectiveness, anticipates that the use of ES will be limited to certain experimental controls. Probably, the main contribution of Embryonic Stem Cells will be the understanding that biomedical research should follow an ethically and rationally based rigorous method that cannot be ignore.
The UK Stem Cell Bank: a UK government-funded, international resource center for stem cell research.
Stacey, Glyn; Hunt, Charles J
2006-01-01
The UK Stem Cell Bank is a UK Research Council-funded initiative that aims to provide ethically sourced and quality controlled stocks of cells for researchers and also establish seed stocks of cell lines for clinical trials. Whilst the Bank is prohibited from carrying out basic stem cell research (to avoid conflicts of interest) it is working to improve stem cell banking procedures including cryopreservation, characterization and quality control. The Bank also supports training activities and has provided the hub for the International Stem Cell Initiative, which includes 17 expert stem cell centers aiming to characterize a large number of human embryonic stem cell lines in a standardized way to improve our understanding of the characteristics of these cells.
Ramamoorthi, Murali; Bakkar, Mohammed; Jordan, Jack; Tran, Simon D.
2015-01-01
Background and Objective. Dental stem cell-based tissue engineered constructs are emerging as a promising alternative to autologous bone transfer for treating bone defects. The purpose of this review is to systematically assess the preclinical in vivo and in vitro studies which have evaluated the efficacy of dental stem cells on bone regeneration. Methods. A literature search was conducted in Ovid Medline, Embase, PubMed, and Web of Science up to October 2014. Implantation of dental stem cells in animal models for evaluating bone regeneration and/or in vitro studies demonstrating osteogenic potential of dental stem cells were included. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used to ensure the quality of the search. Modified ARRIVE (Animal research: reporting in invivo experiments) and CONSORT (Consolidated reporting of trials) were used to critically analyze the selected studies. Results. From 1914 citations, 207 full-text articles were screened and 137 studies were included in this review. Because of the heterogeneity observed in the studies selected, meta-analysis was not possible. Conclusion. Both in vivo and in vitro studies indicate the potential use of dental stem cells in bone regeneration. However well-designed randomized animal trials are needed before moving into clinical trials. PMID:26106427
PLURIPOTENT STEM CELL APPLICATIONS FOR REGENERATIVE MEDICINE
Angelos, Mathew G.; Kaufman, Dan S.
2015-01-01
Purpose of Review In this review, we summarize the current status of clinical trials using therapeutic cells produced from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). We also discuss combined cell and gene therapy via correction of defined mutations in human pluripotent stem cells and provide commentary on key obstacles facing wide-scale clinical adoption of pluripotent stem cell-based therapy. Recent Findings Initial data suggest hESC/hiPSC-derived cell products used for retinal repair and spinal cord injury are safe for human use. Early stage studies for treatment of cardiac injury and diabetes are also in progress. However, there remain key concerns regarding the safety and efficacy of these cells that need to be addressed in additional well-designed clinical trials. Advances using the CRISPR/Cas9 gene-editing system offer an improved tool for more rapid and on-target gene correction of genetic diseases. Combined gene and cell therapy using human pluripotent stem cells may provide an additional curative approach for disabling or lethal genetic and degenerative diseases where there are currently limited therapeutic opportunities. Summary Human pluripotent stem cells are emerging as a promising tool to produce cells and tissues suitable for regenerative therapy for a variety of genetic and degenerative diseases. PMID:26536430
Arshad, Zeeshaan; Halioua-Haubold, Celine-Lea; Roberts, Mackenna; Urso-Baiarda, Fulvio; Branford, Oliver A; Brindley, David A; Davies, Benjamin M; Pettitt, David
2018-02-17
Adipose tissue, which can be readily harvested via a number of liposuction techniques, offers an easily accessible and abundant source of adipose-derived stem cells (ASCs). Consequently, ASCs have become an increasingly popular reconstructive option and a novel means of aesthetic soft tissue augmentation. This paper examines recent advances in the aesthetic surgery field, extending beyond traditional review formats to incorporate a comprehensive analysis of current clinical trials, adoption status, and the commercialization pathway. Keyword searches were carried out on clinical trial databases to search for trials using ASCs for aesthetic indications. An intellectual property landscape was created using commercial software (Thomson Reuters Thomson Innovation, New York, NY). Analysis of who is claiming what in respect of ASC use in aesthetic surgery for commercial purposes was analyzed by reviewing the patent landscape in relation to these techniques. Key international regulatory guidelines were also summarized. Completed clinical trials lacked robust controls, employed small sample sizes, and lacked long-term follow-up data. Ongoing clinical trials still do not address such issues. In recent years, claims to intellectual property ownership have increased in the "aesthetic stem cell" domain, reflecting commercial interest in the area. However, significant translational barriers remain including regulatory challenges and ethical considerations. Further rigorous randomized controlled trials are required to delineate long-term clinical efficacy and safety. Providers should consider the introduction of patient reported outcome metrics to facilitate clinical adoption. Robust regulatory and ethical policies concerning stem cells and aesthetic surgery should be devised to discourage further growth of "stem cell tourism." © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com
Swan, Melanie
2011-12-01
Stem cell research and related therapies (including regenerative medicine and cellular therapies) could have a significant near-term impact on worldwide public health and aging. One reason is the industry's strong linkage between policy, science, industry, and patient advocacy, as was clear in the attendance and programming at the 7(th) annual World Stem Cell Summit held in Pasadena, California, October 3-5, 2011. A special conference session sponsored by the SENS Foundation discussed how stem cell therapies are being used to extend healthy life span. Stem cells are useful not only in cell-replacement therapies, but also in disease modeling, drug discovery, and drug toxicity screening. Stem cell therapies are currently being applied to over 50 diseases, including heart, lung, neurodegenerative, and eye disease, cancer, and human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). Dozens of companies are developing therapeutic solutions that are in different stages of clinical use and clinical trials. Some high-profile therapies include Dendreon's Provenge for prostate cancer, Geron's first-ever embryonic stem cell trials for spinal cord injury, Fibrocell's laViv cellular therapy for wrinkles, and well-established commercial skin substitutes (Organogenesis' Apligraf and Advanced BioHealing's Dermagraft). Stem cell policy issues under consideration include medical tourism, standards for large-scale stem cell manufacturing, and lingering ethical debates over the use of embryonic stem cells. Contemporary stem cell science advances include a focus on techniques for the direct reprogramming of cells from one lineage to another without returning to pluripotency as an intermediary step, improved means of generating and characterizing induced pluripotent cells, and progress in approaches to neurodegenerative disease.
Gorshein, Elan; Wei, Catherine; Ambrosy, Susan; Budney, Shanna; Vivas, Juliana; Shenkerman, Angelika; Manago, Jacqueline; McGrath, Mary Kate; Tyno, Anne; Lin, Yong; Patel, Vimal; Gharibo, Mecide; Schaar, Dale; Jenq, Robert R; Khiabanian, Hossein; Strair, Roger
2017-05-01
Graft-versus-host disease (GVHD) is a major adverse effect associated with allogeneic stem cell transplant. Previous studies in mice indicated that administration of the probiotic Lactobacillus rhamnosus GG can reduce the incidence of GVHD after hematopoietic stem cell transplant. Here we report results from the first randomized probiotic enteric regimen trial in which allogenic hematopoietic stem cell patients were supplemented with Lactobacillus rhamnosus GG. Gut microbiome analysis confirmed a previously reported gut microbiome association with GVHD. However, the clinical trial was terminated when interim analysis did not detect an appreciable probiotic-related change in the gut microbiome or incidence of GVHD. Additional studies are necessary to determine whether probiotics can alter the incidence of GVHD after allogeneic stem cell transplant. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Matthews, Kirstin R W; Iltis, Ana S
2015-11-04
In 2004, patient advocate groups were major players in helping pass and implement significant public policy and funding initiatives in stem cells and regenerative medicine. In the following years, advocates were also actively engaged in Washington DC, encouraging policy makers to broaden embryonic stem cell research funding, which was ultimately passed after President Barack Obama came into office. Many advocates did this because they were told stem cell research would lead to cures. After waiting more than 10 years, many of these same patients are now approaching clinics around the world offering experimental stem cell-based interventions instead of waiting for scientists in the US to complete clinical trials. How did the same groups who were once (and often still are) the strongest supporters of stem cell research become stem cell tourists? And how can scientists, clinicians, and regulators work to bring stem cell patients back home to the US and into the clinical trial process? In this paper, we argue that the continued marketing and use of experimental stem cell-based interventions is problematic and unsustainable. Central problems include the lack of patient protection, US liability standards, regulation of clinical sites, and clinician licensing. These interventions have insufficient evidence of safety and efficacy; patients may be wasting money and time, and they may be forgoing other opportunities for an intervention that has not been shown to be safe and effective. Current practices do not contribute to scientific progress because the data from the procedures are unsuitable for follow-up research to measure outcomes. In addition, there is no assurance for patients that they are receiving the interventions promised or of what dosage they are receiving. Furthermore, there is inconsistent or non-existent follow-up care. Public policy should be developed to correct the current situation. The current landscape of stem cell tourism should prompt a re-evaluation of current approaches to study cell-based interventions with respect to the design, initiation, and conduct of US clinical trials. Stakeholders, including scientists, clinicians, regulators and patient advocates, need to work together to find a compromise to keep patients in the US and within the clinical trial process. Using HIV/AIDS and breast cancer advocate cases as examples, we identify key priorities and goals for this policy effort.
The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.
Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D
2016-02-01
During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stem cells in reproductive medicine: ready for the patient?
Vassena, R; Eguizabal, C; Heindryckx, B; Sermon, K; Simon, C; van Pelt, A M M; Veiga, A; Zambelli, F
2015-09-01
Are there effective and clinically validated stem cell-based therapies for reproductive diseases? At the moment, clinically validated stem cell treatments for reproductive diseases and alterations are not available. Research in stem cells and regenerative medicine is growing in scope, and its translation to the clinic is heralded by the recent initiation of controlled clinical trials with pluripotent derived cells. Unfortunately, stem cell 'treatments' are currently offered to patients outside of the controlled framework of scientifically sound research and regulated clinical trials. Both physicians and patients in reproductive medicine are often unsure about stem cells therapeutic options. An international working group was assembled to review critically the available scientific literature in both the human species and animal models. This review includes work published in English until December 2014, and available through Pubmed. A few areas of research in stem cell and reproductive medicine were identified: in vitro gamete production, endometrial regeneration, erectile dysfunction amelioration, vaginal reconstruction. The stem cells studied range from pluripotent (embryonic stem cells and induced pluripotent stem cells) to monopotent stem cells, such as spermatogonial stem cells or mesenchymal stem cells. The vast majority of studies have been carried out in animal models, with data that are preliminary at best. This review was not conducted in a systematic fashion, and reports in publications not indexed in Pubmed were not analyzed. A much broader clinical knowledge will have to be acquired before translation to the clinic of stem cell therapies in reproductive medicine; patients and physicians should be wary of unfounded claims of improvement of existing medical conditions; at the moment, effective stem cell treatment for reproductive diseases and alterations is not available. None. NA. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cancer stem cells and differentiation therapy.
Jin, Xiong; Jin, Xun; Kim, Hyunggee
2017-10-01
Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."
Gouadon, Elodie; Moore-Morris, Thomas; Smit, Nicoline W; Chatenoud, Lucienne; Coronel, Ruben; Harding, Sian E; Jourdon, Philippe; Lambert, Virginie; Rucker-Martin, Catherine; Pucéat, Michel
2016-01-01
Heart failure is still a major cause of hospitalization and mortality in developed countries. Many clinical trials have tested the use of multipotent stem cells as a cardiac regenerative medicine. The benefit for the patients of this therapeutic intervention has remained limited. Herein, we review the pluripotent stem cells as a cell source for cardiac regeneration. We more specifically address the various challenges of this cell therapy approach. We question the cell delivery systems, the immune tolerance of allogenic cells, the potential proarrhythmic effects, various drug mediated interventions to facilitate cell grafting and, finally, we describe the pathological conditions that may benefit from such an innovative approach. As members of a transatlantic consortium of excellence of basic science researchers and clinicians, we propose some guidelines to be applied to cell types and modes of delivery in order to translate pluripotent stem cell cardiac derivatives into safe and effective clinical trials. © 2015 AlphaMed Press.
Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration
Becker, Silke; Jayaram, Hari; Limb, G. Astrid
2012-01-01
Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice. PMID:24710533
2011-01-01
Background No treatments are currently available that slow, stop, or reverse disease progression in established multiple sclerosis (MS). The Mesenchymal Stem Cells in Multiple Sclerosis (MSCIMS) trial tests the safety and feasibility of treatment with a candidate cell-based therapy, and will inform the wider challenge of designing early phase clinical trials to evaluate putative neuroprotective therapies in progressive MS. Illustrated by the MSCIMS trial protocol, we describe a novel methodology based on detailed assessment of the anterior visual pathway as a model of wider disease processes - the "sentinel lesion approach". Methods/design MSCIMS is a phase IIA study of autologous mesenchymal stem cells (MSCs) in secondary progressive MS. A pre-test : post-test design is used with healthy controls providing normative data for inter-session variability. Complementary eligibility criteria and outcomes are used to select participants with disease affecting the anterior visual pathway. Results Ten participants with MS and eight healthy controls were recruited between October 2008 and March 2009. Mesenchymal stem cells were successfully isolated, expanded and characterised in vitro for all participants in the treatment arm. Conclusions In addition to determining the safety and feasibility of the intervention and informing design of future studies to address efficacy, MSCIMS adopts a novel strategy for testing neuroprotective agents in MS - the sentinel lesion approach - serving as proof of principle for its future wider applicability. Trial registration ClinicalTrials.gov (NCT00395200). PMID:21366911
Dietz, Allan B; Dozois, Eric J; Fletcher, Joel G; Butler, Greg W; Radel, Darcie; Lightner, Amy L; Dave, Maneesh; Friton, Jessica; Nair, Asha; Camilleri, Emily T; Dudakovic, Amel; van Wijnen, Andre J; Faubion, William A
2017-07-01
In patients with Crohn's disease, perianal fistulas recur frequently, causing substantial morbidity. We performed a 12-patient, 6-month, phase 1 trial to determine whether autologous mesenchymal stem cells, applied in a bioabsorbable matrix, can heal the fistula. Fistula repair was not associated with any serious adverse events related to mesenchymal stem cells or plug placement. At 6 months, 10 of 12 patients (83%) had complete clinical healing and radiographic markers of response. We found placement of mesenchymal stem cell-coated matrix fistula plugs in 12 patients with chronic perianal fistulas to be safe and lead to clinical healing and radiographic response in 10 patients. ClinicalTrials.gov Identifier: NCT01915927. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil
2018-06-01
Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.
Stem cell sources for regenerative medicine.
Riazi, Ali M; Kwon, Sarah Y; Stanford, William L
2009-01-01
Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.
ClinicalTrials.gov, stem cells and 'pay-to-participate' clinical studies.
Turner, Leigh
2017-09-01
Numerous US businesses that engage in direct-to-consumer advertising of stem cell interventions that are not US FDA-approved also recruit clients by listing 'pay-to-participate' studies listed on ClinicalTrials.gov . Individuals considering enrolling in such studies and NIH officials responsible for overseeing the database need to be aware that some businesses are using the registry to promote unapproved stem cell interventions that study subjects are charged to receive. Inclusion of such studies in ClinicalTrials.gov reveals that the database needs better screening tools. In particular, screening should evaluate whether studies submitted to the registry have been reviewed and permitted to proceed by the FDA in the case of clinical studies requiring FDA clearance in addition to institutional review board approval.
Holloman, Jameson P; Ho, Calvin C; Hukki, Arushi; Huntley, Jennifer L; Gallicano, G Ian
2013-01-01
This article examines the current use and future implications of stem cell therapy in treating Multiple Sclerosis (MS). MS is the most common neurological disease in young adults, affecting approximately two million people worldwide. Currently there is no cure for MS. The standard treatment of MS involves disease-modifying drugs, which work to alleviate the symptoms of MS. However, these drugs carry adverse side effects and are ineffective in preventing disease progression in many MS patients. Hematopoietic stem cell transplantation (HSCT) was first used in 1995 to treat patients with severe rapidly progressing MS. The HSCT treatment protocol has evolved into a less intense conditioning regimen that is currently demonstrating efficacy in treating patients with variable disease severity—with best results in early-stage rapidly progressing MS patients with active CNS inflammation. Mesenchymal stem cell therapy (MSCT) is an experimental stem cell therapy currently undergoing clinical trials. Animal models and early clinical trials have shown promise that MSCT might be a low risk treatment to precipitate neuroregeneration and immunomodulation in MS patients. Specifically, neuroprogenitor and placental-derived mesenchymal stem cells offer the best hope for a practical treatment for MS. Stem cell therapy, and perhaps a combinatorial therapeutic approach, holds promise for a better treatment for MS. PMID:23862098
Stem-Cell Therapy Advances in China.
Hu, Lei; Zhao, Bin; Wang, Songlin
2018-02-01
Stem-cell therapy is a promising method for treating patients with a wide range of diseases and injuries. Increasing government funding of scientific research has promoted rapid developments in stem-cell research in China, as evidenced by the substantial increase in the number and quality of publications in the past 5 years. Multiple high-quality studies have been performed in China that concern cell reprogramming, stem-cell homeostasis, gene modifications, and immunomodulation. The number of translation studies, including basic and preclinical investigations, has also increased. Around 100 stem-cell banks have been established in China, 10 stem-cell drugs are currently in the approval process, and >400 stem cell-based clinical trials are currently registered in China. With continued state funding, advanced biotechnical support, and the development of regulatory standards for the clinical application of stem cells, further innovations are expected that will lead to a boom in stem-cell therapies. This review highlights recent achievements in stem-cell research in China and discusses future prospects.
Mesenchymal stem cells for acute lung injury: Preclinical evidence
Matthay, Michael A.; Goolaerts, Arnaud; Howard, James P.; Lee, Jae Woo
2013-01-01
Several experimental studies have suggested that mesenchymal stem cells may have value for the treatment of clinical disorders, including myocardial infarction, diabetes, acute renal failure, sepsis, and acute lung injury. In preclinical studies, mesenchymal stem cells have been effective in reducing lung injury from endotoxin, live bacteria, bleomycin, and hyperoxia. In some studies, the cultured medium from mesenchymal stem cells has been as effective as the mesenchymal stem cells themselves. Several paracrine mediators that can mediate the effect of mesenchymal stem cells have been identified, including interleukin-10, interleukin-1ra, keratinocyte growth factor, and prostaglandin E2. Further preclinical studies are needed, as is planning for clinical trials for acute lung injury. PMID:21164399
New advances in stem cell research: practical implications for regenerative medicine.
Ratajczak, Mariusz Z; Jadczyk, Tomasz; Pędziwiatr, Daniel; Wojakowski, Wojciech
2014-01-01
Regenerative medicine is searching for stem cells that can be safely and efficiently employed for regeneration of damaged solid organs (e.g., the heart, brain, or liver). Ideal for this purpose would be pluripotent stem cells, which, according to their definition, have broad potential to differentiate into all types of adult cells. For almost 20 years, there have been unsuccessful attempts to harness controversial embryonic stem cells (ESCs) isolated from embryos. Induced pluripotent stem cells (iPSCs), generated by genetic modification of adult somatic cells, are a more promising source. However, both iPSC and ESCs are associated with a risk of teratoma formation. At the same time, various types of more‑differentiated adult stem and progenitor cells derived from the bone marrow, umbilical cord blood, mobilized peripheral blood, or fat tissue are being employed in clinical trials to regenerate damaged solid organs. However, for most of these cells, there is a lack of convincing documentation for successful regeneration of the treated organs. Beneficial effects of those cells might be explained by paracrine effects of growth factors, cytokines, chemokines, bioactive lipids, and extracellular microvesicles, which are released from the cells and have trophic, antiapoptotic, and angiopoietic effects. Nevertheless, there is evidence that adult tissues harbor a promising population of very rare dormant stem cells with broad differentiation potential. In this review, we will discuss various potential sources of stem cells for regenerative medicine and the mechanisms that explain some of their beneficial effects as well as highlight the results of the first clinical trials.
Genetic and epigenetic instability of stem cells.
Rajamani, Karthyayani; Li, Yuan-Sheng; Hsieh, Dean-Kuo; Lin, Shinn-Zong; Harn, Horng-Jyh; Chiou, Tzyy-Wen
2014-01-01
Recently, research on stem cells has been receiving an increasing amount of attention, both for its advantages and disadvantages. Genetic and epigenetic instabilities among stem cells have been a recurring obstacle to progress in regenerative medicine using stem cells. Various reports have stated that these instabilities can transform stem cells when transferred in vivo and thus have the potential to develop tumors. Previous research has shown that various extrinsic and intrinsic factors can contribute to the stability of stem cells. The extrinsic factors include growth supplements, growth factors, oxygen tension, passage technique, and cryopreservation. Controlling these factors based on previous reports may assist researchers in developing strategies for the production and clinical application of "safe" stem cells. On the other hand, the intrinsic factors can be unpredictable and uncontrollable; therefore, to ensure the successful use of stem cells in regenerative medicine, it is imperative to develop and implement appropriate strategies and technique for culturing stem cells and to confirm the genetic and epigenetic safety of these stem cells before employing them in clinical trials.
Cell-based interventions for neurologic conditions: ethical challenges for early human trials.
Mathews, D J H; Sugarman, J; Bok, H; Blass, D M; Coyle, J T; Duggan, P; Finkel, J; Greely, H T; Hillis, A; Hoke, A; Johnson, R; Johnston, M; Kahn, J; Kerr, D; Kurtzberg, J; Liao, S M; McDonald, J W; McKhann, G; Nelson, K B; Rao, M; Regenberg, A; Siegel, A W; Smith, K; Solter, D; Song, H; Vescovi, A; Young, W; Gearhart, J D; Faden, R
2008-07-22
Attempts to translate basic stem cell research into treatments for neurologic diseases and injury are well under way. With a clinical trial for one such treatment approved and in progress in the United States, and additional proposals under review, we must begin to address the ethical issues raised by such early forays into human clinical trials for cell-based interventions for neurologic conditions. An interdisciplinary working group composed of experts in neuroscience, cell biology, bioethics, law, and transplantation, along with leading disease researchers, was convened twice over 2 years to identify and deliberate on the scientific and ethical issues raised by the transition from preclinical to clinical research of cell-based interventions for neurologic conditions. While the relevant ethical issues are in many respects standard challenges of human subjects research, they are heightened in complexity by the novelty of the science, the focus on the CNS, and the political climate in which the science is proceeding. Distinctive challenges confronting US scientists, administrators, institutional review boards, stem cell research oversight committees, and others who will need to make decisions about work involving stem cells and their derivatives and evaluate the ethics of early human trials include evaluating the risks, safety, and benefits of these trials, determining and evaluating cell line provenance, and determining inclusion criteria, informed consent, and the ethics of conducting early human trials in the public spotlight. Further study and deliberation by stakeholders is required to move toward professional and institutional policies and practices governing this research.
Current focus of stem cell application in retinal repair
Alonso-Alonso, María L; Srivastava, Girish K
2015-01-01
The relevance of retinal diseases, both in society’s economy and in the quality of people’s life who suffer with them, has made stem cell therapy an interesting topic for research. Embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adipose derived mesenchymal stem cells (ADMSCs) are the focus in current endeavors as a source of different retinal cells, such as photoreceptors and retinal pigment epithelial cells. The aim is to apply them for cell replacement as an option for treating retinal diseases which so far are untreatable in their advanced stage. ESCs, despite the great potential for differentiation, have the dangerous risk of teratoma formation as well as ethical issues, which must be resolved before starting a clinical trial. iPSCs, like ESCs, are able to differentiate in to several types of retinal cells. However, the process to get them for personalized cell therapy has a high cost in terms of time and money. Researchers are working to resolve this since iPSCs seem to be a realistic option for treating retinal diseases. ADMSCs have the advantage that the procedures to obtain them are easier. Despite advancements in stem cell application, there are still several challenges that need to be overcome before transferring the research results to clinical application. This paper reviews recent research achievements of the applications of these three types of stem cells as well as clinical trials currently based on them. PMID:25914770
CIRM Alpha Stem Cell Clinics: Collaboratively Addressing Regenerative Medicine Challenges.
Jamieson, Catriona H M; Millan, Maria T; Creasey, Abla A; Lomax, Geoff; Donohoe, Mary E; Walters, Mark C; Abedi, Mehrdad; Bota, Daniela A; Zaia, John A; Adams, John S
2018-06-01
The California Institute for Regenerative Medicine (CIRM) Alpha Stem Cell Clinic (ASCC) Network was launched in 2015 to address a compelling unmet medical need for rigorous, FDA-regulated, stem cell-related clinical trials for patients with challenging, incurable diseases. Here, we describe our multi-center experiences addressing current and future challenges. Copyright © 2018 Elsevier Inc. All rights reserved.
The current state of stem cell therapeutics: Canadian approaches in the international context.
Noiseux, Nicolas; Marquis-Gravel, Guillaume; Mansour, Samer; Shahzad, Uswa; Stewart, Duncan J; Yau, Terrence M
2014-11-01
After ischemic injury, the endogenous repair mechanisms of the human heart are insufficient for meaningful tissue regeneration, so muscle lost is replaced by noncontractile scar tissue. Current treatments for ischemic cardiomyopathy improve quality of life and increase life expectancy, but cannot cure the underlying disease of cardiomyocyte loss. Cellular transplantation is emerging as a valuable therapeutic approach to heal the ischemic heart. Adult bone marrow stem cells are capable of differentiation, regeneration of infarcted myocardium, and induction of myogenesis and angiogenesis, ultimately leading to improved contractility. Positive results from animal studies have prompted several clinical trials to ascertain the safety and feasibility of cell therapy. However, despite all the excitement in stem cell research resulting from initial experimental data and preliminary clinical trials, the mixed results observed have raised many unanswered questions. A major obstacle to the identification of the optimal cell therapy is that the fate of the implanted cells and the nature of their beneficial effects are ill-defined. A better understanding is fundamental for the development of new therapeutic agents, and to optimize stem cell applications. Well-designed and powered double-blinded randomized studies are clearly needed to confirm promising findings from early studies. With several ongoing randomized trials directed toward evaluation of stem cell therapies in patients with acute or chronic ischemic cardiomyopathy, the Canadian initiative represents a milestone. Copyright © 2014 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Connick, Peter; Kolappan, Madhan; Patani, Rickie; Scott, Michael A; Crawley, Charles; He, Xiao-Ling; Richardson, Karen; Barber, Kelly; Webber, Daniel J; Wheeler-Kingshott, Claudia A M; Tozer, Daniel J; Samson, Rebecca S; Thomas, David L; Du, Ming-Qing; Luan, Shi L; Michell, Andrew W; Altmann, Daniel R; Thompson, Alan J; Miller, David H; Compston, Alastair; Chandran, Siddharthan
2011-03-02
No treatments are currently available that slow, stop, or reverse disease progression in established multiple sclerosis (MS). The Mesenchymal Stem Cells in Multiple Sclerosis (MSCIMS) trial tests the safety and feasibility of treatment with a candidate cell-based therapy, and will inform the wider challenge of designing early phase clinical trials to evaluate putative neuroprotective therapies in progressive MS. Illustrated by the MSCIMS trial protocol, we describe a novel methodology based on detailed assessment of the anterior visual pathway as a model of wider disease processes--the "sentinel lesion approach". MSCIMS is a phase IIA study of autologous mesenchymal stem cells (MSCs) in secondary progressive MS. A pre-test : post-test design is used with healthy controls providing normative data for inter-session variability. Complementary eligibility criteria and outcomes are used to select participants with disease affecting the anterior visual pathway. Ten participants with MS and eight healthy controls were recruited between October 2008 and March 2009. Mesenchymal stem cells were successfully isolated, expanded and characterised in vitro for all participants in the treatment arm. In addition to determining the safety and feasibility of the intervention and informing design of future studies to address efficacy, MSCIMS adopts a novel strategy for testing neuroprotective agents in MS--the sentinel lesion approach--serving as proof of principle for its future wider applicability. ClinicalTrials.gov (NCT00395200).
Hepatic stem/progenitor cells and stem-cell transplantation for the treatment of liver disease.
Kakinuma, Sei; Nakauchi, Hiromitsu; Watanabe, Mamoru
2009-01-01
Allogeneic liver transplantation is still the only effective treatment available to patients with liver failure. However, because there is a serious shortage of liver donors, an alternative therapeutic approach is needed. Transplantation of mature hepatocytes has been evaluated in clinical trials, but the long-term efficacy remains unclear and the paucity of donor cells limits this strategy. Stem-cell transplantation is a more promising alternative approach. Several studies have provided information about the mechanism underlying the proliferation and differentiation of hepatic stem/progenitor cells. Moreover, in experimental models of liver disease, transplantation of hepatic stem/progenitor cells or hepatocyte-like cells derived from multipotent stem cells led to donor cell-mediated repopulation of the liver and improved survival rates. However, before stem-cell transplantation can be applied in the clinic to treat liver failure in humans, it will be necessary to overcome several difficulties associated with the technique.
Yoshida, Toshiyuki; Washio, Kaoru; Iwata, Takanori; Okano, Teruo; Ishikawa, Isao
2012-01-01
It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy. PMID:22315604
Eat, breathe, ROS: controlling stem cell fate through metabolism.
Kubli, Dieter A; Sussman, Mark A
2017-05-01
Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered: Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary: The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes.
Eat, breathe, ROS: controlling stem cell fate through metabolism
Kubli, Dieter A.; Sussman, Mark A.
2017-01-01
Introduction Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes. PMID:28406333
Cell-based therapeutic strategies for multiple sclerosis
Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C; Cohen, Jeffrey A; Atkins, Harold; Banwell, Brenda; Bar-Or, Amit; Bebo, Bruce; Bowen, James; Burt, Richard; Calabresi, Peter; Cohen, Jeffrey; Comi, Giancarlo; Connick, Peter; Cross, Anne; Cutter, Gary; Derfuss, Tobias; Ffrench-Constant, Charles; Freedman, Mark; Galipeau, Jacques; Goldman, Myla; Goldman, Steven; Goodman, Andrew; Green, Ari; Griffith, Linda; Hartung, Hans-Peter; Hemmer, Bernhard; Hyun, Insoo; Iacobaeus, Ellen; Inglese, Matilde; Jubelt, Burk; Karussis, Dimitrios; Küry, Patrick; Landsman, Douglas; Laule, Cornelia; Liblau, Roland; Mancardi, Giovanni; Ann Marrie, Ruth; Miller, Aaron; Miller, Robert; Miller, David; Mowry, Ellen; Muraro, Paolo; Nash, Richard; Ontaneda, Daniel; Pasquini, Marcelo; Pelletier, Daniel; Peruzzotti-Jametti, Luca; Pluchino, Stefano; Racke, Michael; Reingold, Stephen; Rice, Claire; Ringdén, Olle; Rovira, Alex; Saccardi, Riccardo; Sadiq, Saud; Sarantopoulos, Stefanie; Savitz, Sean; Scolding, Neil; Soelberg Sorensen, Per; Pia Sormani, Maria; Stuve, Olaf; Tesar, Paul; Thompson, Alan; Trojano, Maria; Uccelli, Antonio; Uitdehaag, Bernard; Utz, Ursula; Vukusic, Sandra; Waubant, Emmanuelle; Wilkins, Alastair
2017-01-01
Abstract The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials. PMID:29053779
Ouyang, Hong; Goldberg, Jeffrey L.; Chen, Shuyi; Li, Wei; Xu, Guo-Tong; Li, Wei; Zhang, Kang; Nussenblatt, Robert B.; Liu, Yizhi; Xie, Ting; Chan, Chi-Chao; Zack, Donald J.
2016-01-01
Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases. PMID:27102165
Horne, Gillian A; Copland, Mhairi
2017-05-01
Self-renewal is considered a defining property of stem cells. Self-renewal is essential in embryogenesis and normal tissue repair and homeostasis. However, in cancer, self-renewal pathways, e.g. WNT, NOTCH, Hedgehog and BMP, frequently become de-regulated in stem cells, or more mature progenitor cells acquire self-renewal properties, resulting in abnormal tissue growth and tumorigenesis. Areas covered: This review considers the conserved embryonic self-renewal pathways, including WNT, NOTCH, Hedgehog and BMP. The article describes recent advances in our understanding of these pathways in leukemia and, more specifically, leukemia stem cells (LSC), how these pathways cross-talk and interact with the LSC microenvironment, and discusses the clinical implications and potential therapeutic strategies, both in preclinical and in clinical trials for hematological malignancies. Expert opinion: The conserved embryonic self-renewal pathways are frequently de-regulated in cancer stem cells (CSC), including LSCs. There is significant cross-talk between self-renewal pathways, and their downstream targets, and the microenvironment. Effective targeting of these pathways is challenging due to cross-talk, and importantly, because these pathways are important for normal stem cells as well as CSC, adverse effects on normal tissues may mean a therapeutic window cannot be identified. Nonetheless, several agents targeting these pathways are currently in clinical trials in hematological malignancies.
Stem cells for amyotrophic lateral sclerosis modeling and therapy: myth or fact?
Coatti, G C; Beccari, M S; Olávio, T R; Mitne-Neto, M; Okamoto, O K; Zatz, M
2015-03-01
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease whose pathophysiology is poorly understood. Aiming to better understand the cause of motor neuron death, the use of experimental cell-based models increased significantly over the past years. In this scenario, much knowledge has been generated from the study of motor neurons derived from embryonic stem cells and induced pluripotent stem cells. These methods, however, have advantages and disadvantages, which must be balanced on experimental design. Preclinical studies provide valuable information, making it possible to combine diverse methods to build an expanded knowledge of ALS pathophysiology. In addition to using stem cells as experimental models for understanding disease mechanism, these cells had been quoted for therapy in ALS. Despite ethical issues involved in its use, cell therapy with neural stem cells stands out. A phase I clinical trial was recently completed and a phase II is on its way, attesting the method's safety. In another approach, mesenchymal stromal cells capable of releasing neuroregulatory and anti-inflammatory factors have also been listed as candidates for cell therapy for ALS, and have been admitted as safe in a phase I trial. Despite recent advances, application of stem cells as an actual therapy for ALS patients is still in debate. Here, we discuss how stem cells have been useful in modeling ALS and address critical topics concerning their therapeutic use, such as administration protocols, injection site, cell type to be administered, type of transplantation (autologous vs. allogeneic) among other issues with particular implications for ALS therapy. © 2015 International Society for Advancement of Cytometry.
Pluripotent Stem Cells as a Robust Source of Mesenchymal Stem Cells.
Luzzani, Carlos D; Miriuka, Santiago G
2017-02-01
Mesenchymal stem cells (MSC) have been extensively studied over the past years for the treatment of different diseases. Most of the ongoing clinical trials currently involve the use of MSC derived from adult tissues. This source may have some limitations, particularly with therapies that may require extensive and repetitive cell dosage. However, nowadays, there is a staggering growth in literature on a new source of MSC. There is now increasing evidence about the mesenchymal differentiation from pluripotent stem cell (PSC). Here, we summarize the current knowledge of pluripotent-derived mesenchymal stem cells (PD-MSC). We present a historical perspective on the subject, and then discuss some critical questions that remain unanswered.
Weiss, Jeffrey N.; Levy, Steven; Benes, Susan C.
2016-01-01
The Stem Cell Ophthalmology Treatment Study (SCOTS) is currently the largest-scale stem cell ophthalmology trial registered at ClinicalTrials.gov (identifier: NCT01920867). SCOTS utilizes autologous bone marrow-derived stem cells (BMSCs) to treat optic nerve and retinal diseases. Treatment approaches include a combination of retrobulbar, subtenon, intravitreal, intra-optic nerve, subretinal, and intravenous injection of autologous BMSCs according to the nature of the disease, the degree of visual loss, and any risk factors related to the treatments. Patients with Leber's hereditary optic neuropathy had visual acuity gains on the Early Treatment Diabetic Retinopathy Study (ETDRS) of up to 35 letters and Snellen acuity improvements from hand motion to 20/200 and from counting fingers to 20/100. Visual field improvements were noted. Macular and optic nerve head nerve fiber layer typically thickened. No serious complications were seen. The increases in visual acuity obtained in our study were encouraging and suggest that the use of autologous BMSCs as provided in SCOTS for ophthalmologic mitochondrial diseases including Leber's hereditary optic neuropathy may be a viable treatment option. PMID:27904503
Nair, Velu; Madan, Hemant; Sofat, Sunil; Ganguli, Prosenjit; Jacob, M.J.; Datta, Rajat; Bharadwaj, Prashant; Sarkar, R.S.; Pandit, A.J.; Nityanand, Soniya; Goel, Pravin K.; Garg, Naveen; Gambhir, Sanjay; George, Paul V.; Chandy, Sunil; Mathews, Vikram; George, Oomen K.; Talwar, K.K.; Bahl, Ajay; Marwah, Neelam; Bhatacharya, Anish; Bhargava, Balram; Airan, Balram; Mohanty, Sujata; Patel, Chetan D.; Sharma, Alka; Bhatnagar, Shinjini; Mondal, A.; Jose, Jacob; Srivastava, A.
2015-01-01
Background & objectives: Acute myocardial infarction (AMI) is characterized by irreparable and irreversible loss of cardiac myocytes. Despite major advances in the management of AMI, a large number of patients are left with reduced left ventricular ejection fraction (LVEF), which is a major determinant of short and long term morbidity and mortality. A review of 33 randomized control trials has shown varying improvement in left ventricular (LV) function in patients receiving stem cells compared to standard medical therapy. Most trials had small sample size and were underpowered. This phase III prospective, open labelled, randomized multicenteric trial was undertaken to evaluate the efficacy in improving the LVEF over a period of six months, after injecting a predefined dose of 5-10 × 108 autologous mononuclear cells (MNC) by intra-coronary route, in patients, one to three weeks post ST elevation AMI, in addition to the standard medical therapy. Methods: In this phase III prospective, multicentric trial 250 patients with AMI were included and randomized into stem cell therapy (SCT) and non SCT groups. All patients were followed up for six months. Patients with AMI having left ventricular ejection fraction (LVEF) of 20-50 per cent were included and were randomized to receive intracoronary stem cell infusion after successfully completing percutaneous coronary intervention (PCI). Results: On intention-to-treat analysis the infusion of MNCs had no positive impact on LVEF improvement of ≥ 5 per cent. The improvement in LVEF after six months was 5.17 ± 8.90 per cent in non SCT group and 4.82 ± 10.32 per cent in SCT group. The adverse effects were comparable in both the groups. On post hoc analysis it was noted that the cell dose had a positive impact when infused in the dose of ≥ 5 × 108(n=71). This benefit was noted upto three weeks post AMI. There were 38 trial deviates in the SCT group which was a limitation of the study. Interpretation & conclusions: Infusion of stem cells was found to have no benefit in ST elevation AMI. However, the procedure was safe. A possible benefit was seen when the predefined cell dose was administered which was noted upto three weeks post AMI, but this was not significant and needs confirmation by larger trials. PMID:26354213
Recent Progress in Stem Cell Modification for Cardiac Regeneration
Voronina, Natalia; Steinhoff, Gustav
2018-01-01
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity. PMID:29535769
Direct-to-Consumer Stem Cell Marketing and Regulatory Responses
2013-01-01
Summary There is a large, poorly regulated international market of putative stem cell products, including transplants of processed autologous stem cells from various tissues, cell processing devices, cosmetics, and nutritional supplements. Despite the absence of rigorous scientific research in the form of randomized clinical trials to support the routine use of such products, the market appears to be growing and diversifying. Very few stem cell biologics have passed regulatory scrutiny, and authorities in many countries, including the United States, have begun to step up their enforcement activities to protect patients and the integrity of health care markets. PMID:23934911
Direct-to-consumer stem cell marketing and regulatory responses.
Sipp, Douglas
2013-09-01
There is a large, poorly regulated international market of putative stem cell products, including transplants of processed autologous stem cells from various tissues, cell processing devices, cosmetics, and nutritional supplements. Despite the absence of rigorous scientific research in the form of randomized clinical trials to support the routine use of such products, the market appears to be growing and diversifying. Very few stem cell biologics have passed regulatory scrutiny, and authorities in many countries, including the United States, have begun to step up their enforcement activities to protect patients and the integrity of health care markets.
Clinical development of gene- and cell-based therapies: overview of the European landscape
de Wilde, Sofieke; Guchelaar, Henk-Jan; Zandvliet, Maarten Laurens; Meij, Pauline
2016-01-01
In the last decade, many clinical trials with gene- and cell-based therapies were performed and increasing interest in the development was established by (national) authorities, academic developers, and commercial companies. However, until now only eight products have received marketing authorization (MA) approval. In this study, a comprehensive overview of the clinical development of gene- and cell-based therapies in Europe is presented, with a strong focus on product-technical aspects. Public data regarding clinical trials with gene- and cell-based therapies, obtained from the European Union (EU) clinical trial database (EudraCT) between 2004 and 2014 were analyzed, including product-technical variables as potential determinants affecting development. 198 unique gene and cell therapy products were identified, which were studied in 278 clinical trials, mostly in phase 1/2 trials and with cell therapies as major group. Furthermore, most products were manufactured from autologous starting material mostly manufactured from stem cells. The majority of the trials were sponsored by academia, whereas phase 3 trials mostly by large companies. Academia dominated early-stage development by mainly using bone marrow derived products and stem cells. Conversely, commercial sponsors were more actively pursuing in vivo gene therapy medicinal product development, and cell therapies derived from differentiated tissue in later-stage development. PMID:27990447
Nagpal, Anjali; Kremer, Karlea L; Hamilton-Bruce, Monica A; Kaidonis, Xenia; Milton, Austin G; Levi, Christopher; Shi, Songtao; Carey, Leeanne; Hillier, Susan; Rose, Miranda; Zacest, Andrew; Takhar, Parabjit; Koblar, Simon A
2016-07-01
Stroke represents a significant global disease burden. As of 2015, there is no chemical or biological therapy proven to actively enhance neurological recovery during the chronic phase post-stroke. Globally, cell-based therapy in stroke is at the stage of clinical translation and may improve neurological function through various mechanisms such as neural replacement, neuroprotection, angiogenesis, immuno-modulation, and neuroplasticity. Preclinical evidence in a rodent model of middle cerebral artery ischemic stroke as reported in four independent studies indicates improvement in neurobehavioral function with adult human dental pulp stem cell therapy. Human adult dental pulp stem cells present an exciting potential therapeutic option for improving post-stroke disability. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans) will investigate the use of autologous stem cell therapy for stroke survivors with chronic disability, with the following objectives: (a) determine the maximum tolerable dose of autologous dental pulp stem cell therapy; (b) define that dental pulp stem cell therapy at the maximum tolerable dose is safe and feasible in chronic stroke; and (c) estimate the parameters of efficacy required to design a future Phase 2/3 clinical trial. TOOTH is a Phase 1, open-label, single-blinded clinical trial with a pragmatic design that comprises three stages: Stage 1 will involve the selection of 27 participants with middle cerebral artery ischemic stroke and the commencement of autologous dental pulp stem cell isolation, growth, and testing in sequential cohorts (n = 3). Stage 2 will involve the transplantation of dental pulp stem cell in each cohort of participants with an ascending dose and subsequent observation for a 6-month period for any dental pulp stem cell-related adverse events. Stage 3 will investigate the neurosurgical intervention of the maximum tolerable dose of autologous dental pulp stem cell followed by 9 weeks of intensive task-specific rehabilitation. Advanced magnetic resonance and positron emission tomography neuro-imaging, and clinical assessment will be employed to probe any change afforded by stem cell therapy in combination with rehabilitation. Nine participants will step-wise progress in Stage 2 to a dose of up to 10 million dental pulp stem cell, employing a cumulative 3 + 3 statistical design with low starting stem cell dose and subsequent dose escalation, assuming that an acceptable probability of dose-limiting complications is between 1 in 6 (17%) and 1 in 3 (33%) of patients. In Stage 3, another 18 participants will receive an intracranial injection with the maximum tolerable dose of dental pulp stem cell. The primary outcomes to be measured are safety and feasibility of intracranial administration of autologous human adult DPSC in patients with chronic stroke and determination of the maximum tolerable dose in human subjects. Secondary outcomes include estimation of the measures of effectiveness required to design a future Phase 2/3 clinical trial. © 2016 World Stroke Organization.
Seeing Stem Cells at Work In Vivo
Srivastava, Amit K.; Bulte, Jeff W. M.
2013-01-01
Stem cell based-therapies are novel therapeutic strategies that hold key for developing new treatments for diseases conditions with very few or no cures. Although there has been an increase in the number of clinical trials involving stem cell-based therapies in the last few years, the long-term risks and benefits of these therapies are still unknown. Detailed in vivo studies are needed to monitor the fate of transplanted cells, including their distribution, differentiation, and longevity over time. Advancements in non-invasive cellular imaging techniques to track engrafted cells in real-time present a powerful tool for determining the efficacy of stem cell-based therapies. In this review, we describe the latest approaches to stem cell labeling and tracking using different imaging modalities. PMID:23975604
Milsom, Michael D.; Lee, Andrew W.; Zheng, Yi; Cancelas, Jose A.
2009-01-01
Fanconi anemia is a severe bone marrow failure syndrome resulting from inactivating mutations of Fanconi anemia pathway genes. Gene and cell therapy trials using hematopoietic stem cells and progenitors have been hampered by poor mobilization of HSC to peripheral blood in response to G-CSF. Using a murine model of Fanconi anemia (Fanca−/− mice), we found that the Fanca deficiency was associated with a profound defect in hematopoietic stem cells and progenitors mobilization in response to G-CSF in absence of bone marrow failure, which correlates with the findings of clinical trials in Fanconi anemia patients. This mobilization defect was overcome by co-administration of the Rac inhibitor NSC23766, suggesting that Rac signaling is implicated in the retention of Fanca−/− hematopoietic stem cells and progenitors in the bone marrow. In view of these data, we propose that targeting Rac signaling may enhance G-CSF-induced HSC mobilization in Fanconi anemia. PMID:19491337
Milsom, Michael D; Lee, Andrew W; Zheng, Yi; Cancelas, Jose A
2009-07-01
Fanconi anemia is a severe bone marrow failure syndrome resulting from inactivating mutations of Fanconi anemia pathway genes. Gene and cell therapy trials using hematopoietic stem cells and progenitors have been hampered by poor mobilization of HSC to peripheral blood in response to G-CSF. Using a murine model of Fanconi anemia (Fanca(-/-) mice), we found that the Fanca deficiency was associated with a profound defect in hematopoietic stem cells and progenitors mobilization in response to G-CSF in absence of bone marrow failure, which correlates with the findings of clinical trials in Fanconi anemia patients. This mobilization defect was overcome by co-administration of the Rac inhibitor NSC23766, suggesting that Rac signaling is implicated in the retention of Fanca(-/-) hematopoietic stem cells and progenitors in the bone marrow. In view of these data, we propose that targeting Rac signaling may enhance G-CSF-induced HSC mobilization in Fanconi anemia.
Hashemian, Seyed Jafar; Kouhnavard, Marjan; Nasli-Esfahani, Ensieh
2015-01-01
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that leads to beta cell destruction and lowered insulin production. In recent years, stem cell therapies have opened up new horizons to treatment of diabetes mellitus. Among all kinds of stem cells, mesenchymal stem cells (MSCs) have been shown to be an interesting therapeutic option based on their immunomodulatory properties and differentiation potentials confirmed in various experimental and clinical trial studies. In this review, we discuss MSCs differential potentials in differentiation into insulin-producing cells (IPCs) from various sources and also have an overview on currently understood mechanisms through which MSCs exhibit their immunomodulatory effects. Other important issues that are provided in this review, due to their importance in the field of cell therapy, are genetic manipulations (as a new biotechnological method), routes of transplantation, combination of MSCs with other cell types, frequency of transplantation, and special considerations regarding diabetic patients' autologous MSCs transplantation. At the end, utilization of biomaterials either as encapsulation tools or as scaffolds to prevent immune rejection, preparation of tridimensional vascularized microenvironment, and completed or ongoing clinical trials using MSCs are discussed. Despite all unresolved concerns about clinical applications of MSCs, this group of stem cells still remains a promising therapeutic modality for treatment of diabetes. PMID:26576437
Image Guidance in Stem Cell Therapeutics: Unfolding the Blindfold.
Bukhari, Amirali B; Dutta, Shruti; De, Abhijit
2015-01-01
Stem cell therapeutics is the future of regenerative medicine in the modern world. Many studies have been instigated with the hope of translating the outcome for the treatment of several disease conditions ranging from heart and neuronal disease to malignancies as grave as cancers. Stem cell therapeutics undoubtedly holds great promise on the front of regenerative medicine, however, the correct distribution and homing of these stem cells to the host site remained blinded until the recent advances in the discipline of molecular imaging. Herein, we discuss the various imaging guidance applied for determination of the proper delivery of various types of stem cell used as therapeutics for various maladies. Additionally, we scrutinize the use of several indirect labeling mechanisms for efficient tagging of the reporter entity for image guidance. Further, the promise of improving patient healthcare has led to the initiation of several clinical trials worldwide. However, in number of the cases, the benefits arrive with a price heavy enough to pose a serious health risk, one such being formation of teratomas. Thus numerous challenges and methodological obstacles must be overcome before their eloquent clinical impact can be realized. Therefore, we also discuss several clinical trials that have taken into consideration the various imaging guided protocols to monitor correct delivery and understand the distribution of therapeutic stem cells in real time.
Fetal stem cell transplantation: Past, present, and future
Ishii, Tetsuya; Eto, Koji
2014-01-01
Since 1928, human fetal tissues and stem cells have been used worldwide to treat various conditions. Although the transplantation of the fetal midbrain substantia nigra and dopaminergic neurons in patients suffering from Parkinson’s disease is particularly noteworthy, the history of other types of grafts, such as those of the fetal liver, thymus, and pancreas, should be addressed as there are many lessons to be learnt for future stem cell transplantation. This report describes previous practices and complications that led to current clinical trials of isolated fetal stem cells and embryonic stem (ES) cells. Moreover, strategies for transplantation are considered, with a particular focus on donor cells, cell processing, and the therapeutic cell niche, in addition to ethical issues associated with fetal origin. With the advent of autologous induced pluripotent stem cells and ES cells, clinical dependence on fetal transplantation is expected to gradually decline due to lasting ethical controversies, despite landmark achievements. PMID:25258662
Kanelidis, Anthony J; Premer, Courtney; Lopez, Juan; Balkan, Wayne; Hare, Joshua M
2017-03-31
Accumulating data support a therapeutic role for mesenchymal stem cell (MSC) therapy; however, there is no consensus on the optimal route of delivery. We tested the hypothesis that the route of MSC delivery influences the reduction in infarct size and improvement in left ventricular ejection fraction (LVEF). We performed a meta-analysis investigating the effect of MSC therapy in acute myocardial infarction (AMI) and chronic ischemic cardiomyopathy preclinical studies (58 studies; n=1165 mouse, rat, swine) which revealed a reduction in infarct size and improvement of LVEF in all animal models. Route of delivery was analyzed in AMI swine studies and clinical trials (6 clinical trials; n=334 patients). In AMI swine studies, transendocardial stem cell injection reduced infarct size (n=49, 9.4% reduction; 95% confidence interval, -15.9 to -3.0), whereas direct intramyocardial injection, intravenous infusion, and intracoronary infusion indicated no improvement. Similarly, transendocardial stem cell injection improved LVEF (n=65, 9.1% increase; 95% confidence interval, 3.7 to 14.5), as did direct intramyocardial injection and intravenous infusion, whereas intracoronary infusion demonstrated no improvement. In humans, changes of LVEF paralleled these results, with transendocardial stem cell injection improving LVEF (n=46, 7.0% increase; 95% confidence interval, 2.7 to 11.3), as did intravenous infusion, but again intracoronary infusion demonstrating no improvement. MSC therapy improves cardiac function in animal models of both AMI and chronic ischemic cardiomyopathy. The route of delivery seems to play a role in modulating the efficacy of MSC therapy in AMI swine studies and clinical trials, suggesting the superiority of transendocardial stem cell injection because of its reduction in infarct size and improvement of LVEF, which has important implications for the design of future studies. © 2016 American Heart Association, Inc.
Carrion, Flavio A; Figueroa, Fernando E
2011-05-11
Mesenchymal stem cells (MSCs) are now known to display not only adult stem cell multipotency but also robust anti-inflammatory and regenerative properties. After widespread in vitro and in vivo preclinical testing in several autoimmune disease models, allogenic MSCs have been successfully applied in patients with severe treatment-refractory systemic lupus erythematosus. The impressive results of these uncontrolled phase I and II trials - mostly in patients with non-responding renal disease - point to the need to perform controlled multicentric trials. In addition, they suggest that there is much to be learned from the basic and clinical science of MSCs in order to reap the full potential of these multifaceted progenitor cells in the treatment of autoimmune diseases.
Proinflammatory Stem Cell Signaling in Cardiac Ischemia
Herrmann, Jeremy L.; Markel, Troy A.; Abarbanell, Aaron M.; Weil, Brent R.; Wang, Meijing; Wang, Yue; Tan, Jiangning
2009-01-01
Abstract Cardiovascular disease remains a leading cause of mortality in developed nations, despite continued advancement in modern therapy. Progenitor and stem cell–based therapy is a novel treatment for cardiovascular disease, and modest benefits in cardiac recovery have been achieved in small clinical trials. This therapeutic modality remains challenged by limitations of low donor-cell survival rates, transient recovery of cardiac function, and the technical difficulty of applying directed cell therapy. Understanding the signaling mechanisms involved in the stem cell response to ischemia has revealed opportunities to modify directly aspects of these pathways to improve their cardioprotective abilities. This review highlights general considerations of stem cell therapy for cardiac disease, reviews the major proinflammatory signaling pathways of mesenchymal stem cells, and reviews ex vivo modifications of stem cells based on these pathways. Antioxid. Redox Signal. 11, 1883–1896. PMID:19187005
Our Fat Future: Translating Adipose Stem Cell Therapy.
Nordberg, Rachel C; Loboa, Elizabeth G
2015-09-01
Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation. We discuss the progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational technology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research. ©AlphaMed Press.
Hematopoietic stem cell transplantation for people with ß-thalassaemia major.
Jagannath, Vanitha A; Fedorowicz, Zbys; Al Hajeri, Amani; Sharma, Akshay
2016-11-30
Thalassemia is an inherited autosomal recessive blood disorder, caused by mutations in globin genes or their regulatory regions. This results in a reduced rate of synthesis of one of the globin chains that make up haemoglobin. In ß-thalassaemia major there is an underproduction of ß-globin chains combined with excess of free α-globin chains. The excess free α-globin chains precipitate in red blood cells, leading to their destruction (haemolysis) and ineffective erythropoiesis. The conventional approach to treatment is based on the correction of haemoglobin status through regular blood transfusions and iron chelation therapy for iron overload. Although conventional treatment has the capacity to improve the quality of life of people with ß-thalassaemia major, allogeneic hematopoietic stem cell transplantation is the only currently available procedure which has the curative potential. This is an update of a previously published Cochrane Review. To evaluate the effectiveness and safety of different types of allogeneic hematopoietic stem cell transplantation, in people with severe transfusion-dependant ß-thalassaemia major, ß-thalassaemia intermedia or ß0/+- thalassaemia variants requiring chronic blood transfusion. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of the most recent search: 18 August 2016. Randomised controlled trials and quasi-randomised controlled trials comparing allogeneic hematopoietic stem cell transplantation with each other or with standard therapy (regular transfusion and chelation regimen). Two review authors independently screened studies and had planned to extract data and assess risk of bias using standard Cochrane methodologies but no studies were identified for inclusion. No relevant studies were retrieved after a comprehensive search of the literature. We were unable to identify any randomised controlled trials or quasi-randomised controlled trials on the effectiveness and safety of different types of allogeneic stem cell transplantation in people with severe transfusion-dependant ß-thalassaemia major or ß0/+- thalassaemia variants requiring chronic blood transfusion. The absence of high-level evidence for the effectiveness of these interventions emphasises the need for well-designed, adequately-powered, randomised controlled clinical trials.
Hematopoietic stem cell transplantation for people with ß-thalassaemia major.
Jagannath, Vanitha A; Fedorowicz, Zbys; Al Hajeri, Amani; Sharma, Akshay
2014-10-15
Thalassemia is an inherited blood disorder, caused by mutations in regulatory genes and transmitted as an autosomal recessive disorder, which results in a reduced rate of synthesis of one of the globin chains that make up haemoglobin. In ß-thalassaemia major there is an underproduction of ß-globin chains combined with excess of free α-globin chains. The excess free α-globin chains damage the red blood cell membranes, leading to their destruction and a phenomenon termed ineffective erythropoiesis. The conventional approach to treatment is based on the correction of haemoglobin status through regular blood transfusions and iron chelation therapy for iron overload. Although conventional treatment has the capacity to improve the quality of life of people with ß-thalassaemia major, allogeneic hematopoietic stem cell transplantation is the only currently available procedure which has the potential to definitively cure the disease. To evaluate the effectiveness and safety of different types of allogeneic hematopoietic stem cell transplantation, in people with severe transfusion-dependant ß-thalassaemia major, ß-thalassaemia intermedia or ß0/+- thalassaemia variants requiring chronic blood transfusion. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of the most recent search: 11 November 2013. Randomised controlled trials and quasi-randomised controlled trials comparing allogeneic hematopoietic stem cell transplantation with each other or with standard therapy (regular transfusion and chelation regimen). Two review authors independently screened studies and had planned to extract data and assess risk of bias using standard Cochrane Collaboration methodologies but no studies were identified for inclusion. No relevant studies were retrieved after a comprehensive search of the literature. We were unable to identify any randomised controlled trials or quasi-randomised controlled trials on the effectiveness and safety of different types of allogeneic stem cell transplantation in people with severe transfusion-dependant ß-thalassaemia major or ß0/+- thalassaemia variants requiring chronic blood transfusion. The absence of high-level evidence for the effectiveness of these interventions emphasises the need for well-designed, adequately-powered, randomised controlled clinical trials.
The Role of Stem Cells in Aesthetic Surgery: Fact or Fiction?
McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G.; Hu, Michael; Atashroo, David A.; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C.; Wan, Derrick C.; Longaker, Michael T.
2014-01-01
Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. We review the potential, as well as drawbacks, for incorporation of stem cells in cosmetic procedures. A review of FDA-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a “snapshot” analysis of websites using the search terms “stem cell therapy” or “stem cell treatment” or “stem cell facelift” was performed. Despite the protective net cast by regulatory agencies such as the FDA and professional societies such as the American Society of Plastic Surgeons, we are witnessing worrying advertisements for procedures such as stem cell facelifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that we provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies. PMID:24732654
Stem-cell-derived products: an FDA update.
Moos, Malcolm
2008-12-01
The therapeutic potential of products derived from stem cells of various types has prompted increasing research and development and public attention. Initiation of human clinical trials in the not-too-distant future is now a realistic possibility. It is, therefore, important to weigh the potential benefits against known, theoretical and totally unsuspected risks in light of current knowledge to ensure that subjects participating in these trials are afforded the most reasonable balance possible between potential risks and potential benefits. There are no apparent differences in fundamental, qualitative biological characteristics between stem-cell-derived products and other cellular therapies regulated by the United States Food and Drug Administration (FDA). Existing authorities can, therefore, be applied. Nevertheless, these products do have properties that require careful evaluation.
Therapeutic application of stem cells in gastroenterology: an up-date.
Burra, Patrizia; Bizzaro, Debora; Ciccocioppo, Rachele; Marra, Fabio; Piscaglia, Anna Chiara; Porretti, Laura; Gasbarrini, Antonio; Russo, Francesco Paolo
2011-09-14
Adult stem cells represent the self-renewing progenitors of numerous body tissues, and they are currently classified according to their origin and differentiation ability. In recent years, the research on stem cells has expanded enormously and holds therapeutic promises for many patients suffering from currently disabling diseases. This paper focuses on the possible use of stem cells in the two main clinical settings in gastroenterology, i.e., hepatic and intestinal diseases, which have a strong impact on public health worldwide. Despite encouraging results obtained in both regenerative medicine and immune-mediated conditions, further studies are needed to fully understand the biology of stem cells and carefully assess their putative oncogenic properties. Moreover, the research on stem cells arouses fervent ethical, social and political debate. The Italian Society of Gastroenterology sponsored a workshop on stem cells held in Verona during the XVI Congress of the Federation of Italian Societies of Digestive Diseases (March 6-9, 2010). Here, we report on the issues discussed, including liver and intestinal diseases that may benefit from stem cell therapy, the biology of hepatic and intestinal tissue repair, and stem cell usage in clinical trials.
2017-02-13
iss050e042164 (02/13/2017) --- NASA astronaut Peggy Whitson (right) and ESA (European Space Agency) astronaut Thomas Pesquet setup the Microgravity Science Glovebox (MSG) for the Microgravity Expanded Stem Cells (MESC) experiment. MESC cultivates human stem cells aboard the International Space Station for use in clinical trials to evaluate their use in treating disease. Results also advance future studies on how to scale up expansion of stem cells for treating stroke and other conditions.
[Bioethical challenges of stem cell tourism].
Ventura-Juncá, Patricio; Erices, Alejandro; Santos, Manuel J
2013-08-01
Stem cells have drawn extraordinary attention from scientists and the general public due to their potential to generate effective therapies for incurable diseases. At the same time, the production of embryonic stem cells involves a serious ethical issue concerning the destruction of human embryos. Although adult stem cells and induced pluripotential cells do not pose this ethical objection, there are other bioethical challenges common to all types of stem cells related particularly to the clinical use of stem cells. Their clinical use should be based on clinical trials, and in special situations, medical innovation, both of which have particular ethical dimensions. The media has raised unfounded expectations in patients and the public about the real clinical benefits of stem cells. At the same time, the number of unregulated clinics is increasing around the world, making direct offers through Internet of unproven stem cell therapies that attract desperate patients that have not found solutions in standard medicine. This is what is called stem cells tourism. This article reviews this situation, its consequences and the need for international cooperation to establish effective regulations to prevent the exploitation of patients and to endanger the prestige of legitimate stem cell research.
Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms
NASA Astrophysics Data System (ADS)
Backly, Rania M. El; Cancedda, Ranieri
The being of any individual throughout life is a dynamic process relying on the capacity to retain processes of self-renewal and differentiation, both of which are hallmarks of stem cells. Although limited in the adult human organism, regeneration and repair do take place in virtue of the presence of adult stem cells. In the bone marrow, two major populations of stem cells govern the dynamic equilibrium of both hemopoiesis and skeletal homeostasis; the hematopoietic and the mesenchymal stem cells. Recent cell based clinical trials utilizing bone marrow-derived stem cells as therapeutic agents have revealed promising results, while others have failed to display as such. It is therefore imperative to strive to understand the mechanisms by which these cells function in vivo, how their properties can be maintained ex-vivo, and to explore further their recently highlighted immunomodulatory and trophic effects.
Barazzetti, Gaia; Hurst, Samia A; Mauron, Alexandre
2016-08-01
: As research on human embryonic stem cell (hESC)-based therapies is moving from the laboratory to the clinic, there is an urgent need to assess when it can be ethically justified to make the step from preclinical studies to the first protocols involving human subjects. We examined existing regulatory frameworks stating preclinical requirements relevant to the move to first-in-human (FIH) trials and assessed how they may be applied in the context of hESC-based interventions to best protect research participants. Our findings show that some preclinical benchmarks require rethinking (i.e., identity, purity), while others need to be specified (i.e., potency, viability), owing to the distinctive dynamic heterogeneity of hESC-based products, which increases uncertainty and persistence of safety risks and allows for limited predictions of effects in vivo. Rethinking or adaptation of how to apply preclinical benchmarks in specific cases will be required repeatedly for different hESC-based products. This process would benefit from mutual learning if researchers included these components in the description of their methods in publications. To design translational research with an eye to protecting human participants in early trials, researchers and regulators need to start their efforts at the preclinical stage. Existing regulatory frameworks for preclinical research, however, are not really adapted to this in the case of stem cell translational medicine. This article reviews existing regulatory frameworks for preclinical requirements and assesses how their underlying principles may best be applied in the context of human embryonic stem cell-based interventions for the therapy of Parkinson's disease. This research will help to address the question of when it is ethically justified to start first-in-human trials in stem cell translational medicine. ©AlphaMed Press.
Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy.
do Amaral, Ronaldo J F C; Almeida, Henrique V; Kelly, Daniel J; O'Brien, Fergal J; Kearney, Cathal J
2017-01-01
The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.
Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy
Almeida, Henrique V.; Kelly, Daniel J.; O'Brien, Fergal J.; Kearney, Cathal J.
2017-01-01
The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells. PMID:29018484
Cell-based therapeutic strategies for multiple sclerosis.
Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C; Cohen, Jeffrey A
2017-11-01
The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Stem cell therapy for the systemic right ventricle.
Si, Ming-Sing; Ohye, Richard G
2017-11-01
In specific forms of congenital heart defects and pulmonary hypertension, the right ventricle (RV) is exposed to systemic levels of pressure overload. The RV is prone to failure in these patients because of its vulnerability to chronic pressure overload. As patients with a systemic RV reach adulthood, an emerging epidemic of RV failure has become evident. Medical therapies proven for LV failure are ineffective in treating RV failure. Areas covered: In this review, the pathophysiology of the failing RV under pressure overload is discussed, with specific emphasis on the pivotal roles of angiogenesis and oxidative stress. Studies investigating the ability of stem cell therapy to improve angiogenesis and mitigate oxidative stress in the setting of pressure overload are then reviewed. Finally, clinical trials utilizing stem cell therapy to prevent RV failure under pressure overload in congenital heart disease will be discussed. Expert commentary: Although considerable hurdles remain before their mainstream clinical implementation, stem cell therapy possesses revolutionary potential in the treatment of patients with failing systemic RVs who currently have very limited long-term treatment options. Rigorous clinical trials of stem cell therapy for RV failure that target well-defined mechanisms will ensure success adoption of this therapeutic strategy.
From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing.
Hotta, Akitsu; Yamanaka, Shinya
2015-01-01
The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.
Imaging: Guiding the Clinical Translation of Cardiac Stem Cell Therapy
Nguyen, Patricia K.; Lan, Feng; Wang, Yongming; Wu, Joseph C.
2011-01-01
Stem cells have been touted as the holy grail of medical therapy with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials. PMID:21960727
Ethical Issues in Stem Cell Research
Lo, Bernard; Parham, Lindsay
2009-01-01
Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson’s disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramming of somatic cells to produce induced pluripotent stem cells avoids the ethical problems specific to embryonic stem cell research. In any hSC research, however, difficult dilemmas arise regarding sensitive downstream research, consent to donate materials for hSC research, early clinical trials of hSC therapies, and oversight of hSC research. These ethical and policy issues need to be discussed along with scientific challenges to ensure that stem cell research is carried out in an ethically appropriate manner. This article provides a critical analysis of these issues and how they are addressed in current policies. PMID:19366754
The potential for stem cells in cerebral palsy--piecing together the puzzle.
Faulkner, Stuart D; Ruff, Crystal A; Fehlings, Michael G
2013-06-01
The substantial socioeconomic burden of a diagnosis of cerebral palsy, coupled with a positive anecdotal and media spin on stem cell treatments, drives many affected families to seek information and treatment outside of the current clinical and scientific realm. Preclinical studies using several types of stem and adult cells--including mesenchymal stem cells, neural precursor cells, olfactory ensheathing glia and Schwann cells--have demonstrated some regenerative and functional efficacy in neurologic paradigms. This paper describes the most common cell types investigated for transplant in vivo and summarizes the current state of early-phase clinical trials. It investigates the most relevant and promising coadministered therapies, including rehabilitation, drug targeting, magnetic stimulation, and bioengineering approaches. We highlight the need for adjunctive combinatorial strategies to successfully transfer stem cell treatments from bench to bedside. Copyright © 2013 Elsevier Inc. All rights reserved.
Advances in translational inner ear stem cell research.
Warnecke, Athanasia; Mellott, Adam J; Römer, Ariane; Lenarz, Thomas; Staecker, Hinrich
2017-09-01
Stem cell research is expanding our understanding of developmental biology as well as promising the development of new therapies for a range of different diseases. Within hearing research, the use of stem cells has focused mainly on cell replacement. Stem cells however have a broad range of other potential applications that are just beginning to be explored in the ear. Mesenchymal stem cells are an adult derived stem cell population that have been shown to produce growth factors, modulate the immune system and can differentiate into a wide variety of tissue types. Potential advantages of mesenchymal/adult stem cells are that they have no ethical constraints on their use. However, appropriate regulatory oversight seems necessary in order to protect patients from side effects. Disadvantages may be the lack of efficacy in many preclinical studies. But if proven safe and efficacious, they are easily translatable to clinical trials. The current review will focus on the potential application on mesenchymal stem cells for the treatment of inner ear disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Autologous hematopoietic stem cells for refractory Crohn's disease.
DiNicola, C A; Zand, A; Hommes, D W
2017-05-01
Autologous hematopoietic stem cells are gaining ground as an effective and safe treatment for treating severe refractory Crohn's disease (CD). Autologous hematopoietic stem cell therapy (AHSCT) induces resetting of the immune system by de novo regeneration of T-cell repertoire and repopulation of epithelial cells by bone-marrow derived cells to help patients achieve clinical and endoscopic remission. Areas covered: Herein, the authors discuss the use of AHSCT in treating patients with CD. Improvements in disease activity have been seen in patients with severe autoimmune disease and patients with severe CD who underwent AHSCT for a concomitant malignant hematological disease. Clinical and endoscopic remission has been achieved in patients treated with AHSCT for CD. The only randomized trial published to date, the ASTIC Trial, did not support further use of AHSCT to treat CD. Yet, critics of this trial have deemed AHSCT as a promising treatment for severe refractory CD. Expert opinion: Even with the promising evidence presented for HSCT for refractory CD, protocols need to be refined through the collaboration of GI and hemato-oncology professionals. The goal is to incorporate safe AHSCT and restore tolerance by delivering an effective immune 'cease fire' as a treatment option for severe refractory CD.
The role of stem cells in aesthetic surgery: fact or fiction?
McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G; Hu, Michael; Atashroo, David A; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C; Wan, Derrick C; Longaker, Michael T
2014-08-01
Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. The authors review the potential and the drawbacks of incorporation of stem cells in cosmetic procedures. A review of U.S. Food and Drug Administration-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of Web sites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed. Despite the protective net cast by regulatory agencies such as the U.S. Food and Drug Administration and professional societies such as the American Society of Plastic Surgeons, the authors are witnessing worrying advertisements for procedures such as stem cell face lifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that they provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.
Pan-Montojo, Francisco; Funk, Richard H W
2012-11-01
Parkinson's disease (PD) is a progressive neurodegenerative disorder traditionally characterized by the loss of dopaminergic neurons in the substantia nigra (SN) at the midbrain. The potential use of adult or embryonic stem cells, induced pluriputent stem (iPS) cells and endogenous neurogenesis in cell replacement strategies has lead to numerous studies and clinical trials in this direction. It is now possible to differentiate stem cells into dopaminergic neurons in vitro and clinical trials have shown an improvement in PD-related symptoms after intra-striatal embryonic transplants and acceptable cell survival rates on the mid term. However, clinical improvement is transitory and associated with a strong placebo effect. Interestingly, recent pathological studies in PD patients who received embryonic stem cells show that in PD patients, grafted neurons show PD-related pathology. In this manuscript we review the latest findings regarding PD pathophysiology and give an outlook on the implications of these findings in how cell replacement strategies for PD treatment should be tested. These include changes in the type of animal models used, the preparation/conditioning of the cells before intracerebral injection, specially regarding backbone chronic diseases in iPS cells and determining the optimal proliferation, survival, differentiation and migration capacity of the grafted cells.
Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions
Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji
2016-01-01
Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation. PMID:27966584
Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions.
Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji
2016-12-14
Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation.
Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease
Karantalis, Vasileios; Hare, Joshua M.
2015-01-01
Despite substantial clinical advances over the past 65 years, cardiovascular disease remains the leading cause of death in America. The past 15 years has witnessed major basic and translational interest in the use of stem and/or precursor cells as a therapeutic agent for chronically injured organs. Among the cell types under investigation, adult mesenchymal stem cells (MSCs) are widely studied and in early stage clinical studies show promise for repair and regeneration of cardiac tissues. The ability of MSCs to differentiate into mesoderm and non-mesoderm derived tissues, their immunomodulatory effects, their availability and their key role in maintaining and replenishing endogenous stem cell niches have rendered them one of the most heavily investigated and clinically tested type of stem cell. Accumulating data from preclinical and early phase clinical trials document their safety when delivered as either autologous or allogeneic forms in a range of cardiovascular diseases, but also importantly define parameters of clinical efficacy that justify further investigation in larger clinical trials. Here, we review the biology of MSCs, their interaction with endogenous molecular and cellular pathways, and their modulation of immune responses. Additionally, we discuss factors that enhance their proliferative and regenerative ability and factors that may hinder their effectiveness in the clinical setting. PMID:25858066
Alvarim, Larissa T; Nucci, Leopoldo P; Mamani, Javier B; Marti, Luciana C; Aguiar, Marina F; Silva, Helio R; Silva, Gisele S; Nucci-da-Silva, Mariana P; DelBel, Elaine A; Gamarra, Lionel F
2014-01-01
The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.
de Windt, Tommy S; Vonk, Lucienne A; Slaper-Cortenbach, Ineke C M; Nizak, Razmara; van Rijen, Mattie H P; Saris, Daniel B F
2017-08-01
MSCs are known as multipotent mesenchymal stem cells that have been found capable of differentiating into various lineages including cartilage. However, recent studies suggest MSCs are pericytes that stimulate tissue repair through trophic signaling. Aimed at articular cartilage repair in a one-stage cell transplantation, this study provides first clinical evidence that MSCs stimulate autologous cartilage repair in the knee without engrafting in the host tissue. A phase I (first-in-man) clinical trial studied the one-stage application of allogeneic MSCs mixed with 10% or 20% recycled defect derived autologous chondrons for the treatment of cartilage defects in 35 patients. No treatment-related serious adverse events were found and statistically significant improvement in clinical outcome shown. Magnetic resonance imaging and second-look arthroscopies showed consistent newly formed cartilage tissue. A biopsy taken from the center of the repair tissue was found to have hyaline-like features with a high concentration of proteoglycans and type II collagen. DNA short tandem repeat analysis delivered unique proof that the regenerated tissue contained patient-DNA only. These findings support the hypothesis that allogeneic MSCs stimulate a regenerative host response. This first-in-man trial supports a paradigm shift in which MSCs are applied as augmentations or "signaling cells" rather than differentiating stem cells and opens doors for other applications. Stem Cells 2017;35:1984-1993. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Mesenchymal stem cell therapy in cats: Current knowledge and future potential.
Quimby, Jessica M; Borjesson, Dori L
2018-03-01
Practical relevance: Stem cell therapy is an innovative field of scientific investigation with tremendous potential for clinical application in veterinary medicine. Based on the known desirable immunomodulatory properties of mesenchymal stem cells, this therapy holds promise for the treatment of a variety of inflammatory diseases in cats. This review details our current understanding of feline stem cell biology and proposed mechanism of action. Studies performed in feline clinical trials for diseases including gingivostomatitis, chronic enteropathy, asthma and kidney disease are summarized, with the goal of providing an overview of the current status of this treatment modality and its potential for the future.
The Current Status of Stem-Cell Therapy in Erectile Dysfunction: A Review
Reed-Maldonado, Amanda B
2016-01-01
Stem cells are undifferentiated cells that are capable of renewal and repair of tissue due to their capacity for division and differentiation. The purpose of this review is to describe recent advances in the use of stem cell (SC) therapy for male erectile dysfunction (ED). We performed a MEDLINE database search of all relevant articles regarding the use of SCs for ED. We present a concise summary of the scientific principles behind the usage of SC for ED. We discuss the different types of SCs, delivery methods, current pre-clinical literature, and published clinical trials. Four clinical trials employing SC for ED have been published. These articles are summarized in this review. All four report improvements in ED after SC therapy. SC therapy remains under investigation for the treatment of ED. It is reassuring that clinical trials thus far have reported positive effects on erectile function and few adverse events. Safety and methodical concerns about SC acquisition, preparation and delivery remain and require continued investigation prior to wide-spread application of these methods. PMID:28053944
The clinician-scientist: professional dynamics in clinical stem cell research.
Wilson-Kovacs, Dana M; Hauskeller, Christine
2012-05-01
Clinical applications of biomedical research rely on specialist knowledge provided by professionals who straddle research and therapy, and possess both medical and scientific expertise. To date, this professional group remains under-explored in sociology. Our article presents a case study of clinician-scientists working in stem cell research for heart repair in the UK and Germany who are engaged in double-blind randomised clinical trials using patients' own stem cells. The analysis draws on sociological and medical literature, interviews and ethnographic fieldwork to analyse the experiences and self-rationalisations of a small number of clinician-scientists and the ways in which these professionals portray, explain and justify their role in the wider clinical research environment. We examine our participants' views on the clinical trials they conduct, the challenges they encounter and the ways through which they negotiate a complex disciplinary terrain, and argue that the recent clinical implementation of stem cell research brings clinician-scientists to the fore and provides a renewed platform for their professional legitimisation. The article helps increase our understanding of how randomised clinical trials are involved in consolidating the individual status of actors and the collective standing of clinician-scientists as leaders of change in translational medicine. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.
Epigenetics in cancer stem cells.
Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua
2017-02-01
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Stem cell therapy: A novel & futuristic treatment modality for disaster injuries
Gurudutta, G.U.; Satija, Neeraj Kumar; Singh, Vimal Kishor; Verma, Yogesh Kumar; Gupta, Pallavi; Tripathi, R.P.
2012-01-01
Stem cell therapy hold the potential to meet the demand for transplant cells/tissues needed for treating damages resulting from both natural and man-made disasters. Pluripotency makes embryonic stem cells and induced pluripotent stem cells ideal for use, but their teratogenic character is a major hindrance. Therapeutic benefits of bone marrow transplantation are well known but characterizing the potentialities of haematopoietic and mesenchymal cells is essential. Haematopoietic stem cells (HSCs) have been used for treating both haematopoietic and non-haematopoietic disorders. Ease of isolation, in vitro expansion, and hypoimmunogenecity have brought mesenchymal stem cells (MSCs) into limelight. Though differentiation of MSCs into tissue-specific cells has been reported, differentiation-independent mechanisms seem to play a more significant role in tissue repair which need to be addressed further. The safety and feasibility of MSCs have been demonstrated in clinical trials, and their use in combination with HSC for radiation injury treatment seems to have extended benefit. Therefore, using stem cells for treatment of disaster injuries along with the conventional medical practice would likely accelerate the repair process and improve the quality of life of the victim. PMID:22382178
Fung, Ronald K F; Kerridge, Ian H
2013-02-01
The discovery of induced pluripotent stem (iPS) cells in 2006 was heralded as a major breakthrough in stem cell research. Since then, progress in iPS cell technology has paved the way towards clinical application, particularly cell replacement therapy, which has refueled debate on the ethics of stem cell research. However, much of the discourse has focused on questions of moral status and potentiality, overlooking the ethical issues which are introduced by the clinical testing of iPS cell replacement therapy. First-in-human trials, in particular, raise a number of ethical concerns including informed consent, subject recruitment and harm minimisation as well as the inherent uncertainty and risks which are involved in testing medical procedures on humans for the first time. These issues, while a feature of any human research, become more complex in the case of iPS cell therapy, given the seriousness of the potential risks, the unreliability of available animal models, the vulnerability of the target patient group, and the high stakes of such an intensely public area of science. Our paper will present a detailed case study of iPS cell replacement therapy for Parkinson's disease to highlight these broader ethical and epistemological concerns. If we accept that iPS cell technology is fraught with challenges which go far beyond merely refuting the potentiality of the stem cell line, we conclude that iPS cell research should not replace, but proceed alongside embryonic and adult somatic stem cell research to promote cross-fertilisation of knowledge and better clinical outcomes. © 2011 Blackwell Publishing Ltd.
Therapeutic application of stem cells in gastroenterology: An up-date
Burra, Patrizia; Bizzaro, Debora; Ciccocioppo, Rachele; Marra, Fabio; Piscaglia, Anna Chiara; Porretti, Laura; Gasbarrini, Antonio; Russo, Francesco Paolo
2011-01-01
Adult stem cells represent the self-renewing progenitors of numerous body tissues, and they are currently classified according to their origin and differentiation ability. In recent years, the research on stem cells has expanded enormously and holds therapeutic promises for many patients suffering from currently disabling diseases. This paper focuses on the possible use of stem cells in the two main clinical settings in gastroenterology, i.e., hepatic and intestinal diseases, which have a strong impact on public health worldwide. Despite encouraging results obtained in both regenerative medicine and immune-mediated conditions, further studies are needed to fully understand the biology of stem cells and carefully assess their putative oncogenic properties. Moreover, the research on stem cells arouses fervent ethical, social and political debate. The Italian Society of Gastroenterology sponsored a workshop on stem cells held in Verona during the XVI Congress of the Federation of Italian Societies of Digestive Diseases (March 6-9, 2010). Here, we report on the issues discussed, including liver and intestinal diseases that may benefit from stem cell therapy, the biology of hepatic and intestinal tissue repair, and stem cell usage in clinical trials. PMID:22025875
Schroeder, Mark A.; Rettig, Michael P.; Lopez, Sandra; Christ, Stephanie; Fiala, Mark; Eades, William; Mir, Fazia A.; Shao, Jin; McFarland, Kyle; Trinkaus, Kathryn; Shannon, William; Deych, Elena; Yu, Jinsheng; Vij, Ravi; Stockerl-Goldstein, Keith; Cashen, Amanda F.; Uy, Geoffrey L.; Abboud, Camille N.; Westervelt, Peter
2017-01-01
A single subcutaneous (SC) injection of plerixafor results in rapid mobilization of hematopoietic progenitors, but fails to mobilize 33% of normal allogeneic sibling donors in 1 apheresis. We hypothesized that changing the route of administration of plerixafor from SC to IV may overcome the low stem cell yields and allow collection in 1 day. A phase 1 trial followed by a phase 2 efficacy trial was conducted in allogeneic sibling donors. The optimal dose of IV plerixafor was determined to be 0.32 mg/kg. The primary outcome of reducing the failure to collect ≥2 × 106 CD34+/kg recipient weight in 1 apheresis collection to ≤10% was not reached. The failure rate was 34%. Studies evaluating the stem cell phenotype and gene expression revealed a novel plasmacytoid dendritic cell precursor preferentially mobilized by plerixafor with high interferon-α producing ability. The observed cytomegalovirus (CMV) viremia rate for patients at risk was low (15%), as were the rates of acute grade 2-4 graft-versus-host disease (GVHD) (21%). Day 100 treatment related mortality was low (3%). In conclusion, plerixafor results in rapid stem cell mobilization regardless of route of administration and resulted in novel cellular composition of the graft and favorable recipient outcomes. These trials were registered at clinicaltrials.gov as #NCT00241358 and #NCT00914849. PMID:28292947
Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials.
Glass, Jonathan D; Hertzberg, Vicki S; Boulis, Nicholas M; Riley, Jonathan; Federici, Thais; Polak, Meraida; Bordeau, Jane; Fournier, Christina; Johe, Karl; Hazel, Tom; Cudkowicz, Merit; Atassi, Nazem; Borges, Lawrence F; Rutkove, Seward B; Duell, Jayna; Patil, Parag G; Goutman, Stephen A; Feldman, Eva L
2016-07-26
To test the safety of spinal cord transplantation of human stem cells in patients with amyotrophic lateral sclerosis (ALS) with escalating doses and expansion of the trial to multiple clinical centers. This open-label trial included 15 participants at 3 academic centers divided into 5 treatment groups receiving increasing doses of stem cells by increasing numbers of cells/injection and increasing numbers of injections. All participants received bilateral injections into the cervical spinal cord (C3-C5). The final group received injections into both the lumbar (L2-L4) and cervical cord through 2 separate surgical procedures. Participants were assessed for adverse events and progression of disease, as measured by the ALS Functional Rating Scale-Revised, forced vital capacity, and quantitative measures of strength. Statistical analysis focused on the slopes of decline of these phase 2 trial participants alone or in combination with the phase 1 participants (previously reported), comparing these groups to 3 separate historical control groups. Adverse events were mostly related to transient pain associated with surgery and to side effects of immunosuppressant medications. There was one incident of acute postoperative deterioration in neurologic function and another incident of a central pain syndrome. We could not discern differences in surgical outcomes between surgeons. Comparisons of the slopes of decline with the 3 separate historical control groups showed no differences in mean rates of progression. Intraspinal transplantation of human spinal cord-derived neural stem cells can be safely accomplished at high doses, including successive lumbar and cervical procedures. The procedure can be expanded safely to multiple surgical centers. This study provides Class IV evidence that for patients with ALS, spinal cord transplantation of human stem cells can be safely accomplished and does not accelerate the progression of the disease. This study lacks the precision to exclude important benefit or safety issues. © 2016 American Academy of Neurology.
[Mesenchymal stem cell therapy, a new hope for eye disease].
Roubeix, C; Denoyer, A; Brignole-Baudouin, F; Baudouin, C
2015-10-01
Mesenchymal stem cells (MSC) are adult stem cells, first identified in skeletal tissues and then found in the entire body. MSC are able to not only differentiate into specialized cells within skeletal tissue - chondrocytes, osteocytes, adipocytes and fibroblasts - but also secrete a large range of soluble mediators defining their secretome and allowing their interaction with a number of cell protagonists. Thus, in a general sense, MSC are involved in tissue homeostasis through their secretome and are specifically responsible for cell turn-over in skeletal tissues. For a decade and a half, safety and efficiency of MSC has led to the development of many clinical trials in various fields. However, results were often disappointing, probably because of difficulties in methods and evaluation. At a time when the first clinical trials using MSC are emerging in ophthalmology, the goal of this literature review is to gather and put into perspective preclinical and clinical results in order to better predict the future of this innovative therapeutic pathway. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path?
Müller, Albrecht M.; Huppertz, Sascha; Henschler, Reinhard
2016-01-01
Hematopoietic stem cells (HSCs) are the best characterized adult stem cells and the only stem cell type in routine clinical use. The concept of stem cell transplantation laid the foundations for the development of novel cell therapies within, and even outside, the hematopoietic system. Here, we report on the history of hematopoietic cell transplantation (HCT) and of HSC isolation, we briefly summarize the capabilities of HSCs to reconstitute the entire hemato/lymphoid cell system, and we assess current indications for HCT. We aim to draw the lines between areas where HCT has been firmly established, areas where HCT can in the future be expected to be of clinical benefit using their regenerative functions, and areas where doubts persist. We further review clinical trials for diverse approaches that are based on HCT. Finally, we highlight the advent of genome editing in HSCs and critically view the use of HSCs in non-hematopoietic tissue regeneration. PMID:27721700
Monsel, Antoine; Zhu, Ying-gang; Gennai, Stephane; Hao, Qi; Liu, Jia; Lee, Jae W.
2014-01-01
Critically ill patients often suffer from multiple organ failures involving lung, kidney, liver or brain. Genomic, proteomic and metabolomic approaches highlight common injury mechanisms leading to acute organ failure. This underlines the need to focus on therapeutic strategies affecting multiple injury pathways. The use of adult stem cells such as mesenchymal stem or stromal cells (MSC) may represent a promising new therapeutic approach as increasing evidence shows that MSC can exert protective effects following injury through the release of pro-mitotic, anti-apoptotic, anti-inflammatory and immunomodulatory soluble factors. Furthermore, they can mitigate metabolomic and oxidative stress imbalance. In this work, we review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to determine their optimal clinical use. PMID:25211170
Nguyen, Patricia K; Neofytou, Evgenios; Rhee, June-Wha; Wu, Joseph C
2016-11-01
Although progress continues to be made in the field of stem cell regenerative medicine for the treatment of cardiovascular disease, significant barriers to clinical implementation still exist. To summarize the current barriers to the clinical implementation of stem cell therapy in patients with cardiovascular disease and to discuss potential strategies to overcome them. Information for this review was obtained through a search of PubMed and the Cochrane database for English-language studies published between January 1, 2000, and July 25, 2016. Ten randomized clinical trials and 8 systematic reviews were included. One of the major clinical barriers facing the routine implementation of stem cell therapy in patients with cardiovascular disease is the limited and inconsistent benefit observed thus far. Reasons for this finding are unclear but may be owing to poor cell retention and survival, as suggested by numerous preclinical studies and a small number of human studies incorporating imaging to determine cell fate. Additional studies in humans using imaging to determine cell fate are needed to understand how these factors contribute to the limited efficacy of stem cell therapy. Treatment strategies to address poor cell retention and survival are under investigation and include the following: coadministration of immunosuppressive and prosurvival agents, delivery of cardioprotective factors packaged in exosomes rather than the cells themselves, and use of tissue-engineering strategies to provide structural support for cells. If larger grafts are achieved using these strategies, it will be imperative to carefully monitor for the potential risks of tumorigenicity, immunogenicity, and arrhythmogenicity. Despite important achievements to date, stem cell therapy is not yet ready for routine clinical implementation. Significant research is still needed to address the clinical barriers outlined herein before the next wave of large clinical trials is under way.
Oxidative stress of neural, hematopoietic, and stem cells: protection by natural compounds.
Shytle, R Douglas; Ehrhart, Jared; Tan, Jun; Vila, Jennifer; Cole, Michael; Sanberg, Cyndy D; Sanberg, Paul R; Bickford, Paula C
2007-06-01
During natural aging, adult stem cells are known to have a reduced restorative capacity and are more vulnerable to oxidative stress resulting in a reduced ability of the body to heal itself. We report here that the proprietary natural product formulation, NT020, previously found to promote proliferation of human hematopoietic stem cells, reduced oxidative stress-induced apoptosis of murine neurons and microglial cells in vitro. Furthermore, when taken orally for 2 weeks, cultured bone marrow stem cells from these mice exhibited a dose-related reduction of oxidative stress-induced apoptosis. This preclinical study demonstrates that NT020 can act to promote healing via an interaction with stem cell populations and forms the basis of conducting a clinical trial to determine if NT020 exhibits similar health promoting effects in humans when used as a dietary supplement.
The novel JNK inhibitor AS602801 inhibits cancer stem cells in vitro and in vivo.
Okada, Masashi; Kuramoto, Kenta; Takeda, Hiroyuki; Watarai, Hikaru; Sakaki, Hirotsugu; Seino, Shizuka; Seino, Manabu; Suzuki, Shuhei; Kitanaka, Chifumi
2016-05-10
A phase 2 clinical trial investigating the efficacy and safety of AS602801, a newly developed JNK inhibitor, in the treatment of inflammatory endometriosis is complete. We are now examining whether AS602801 acts against human cancer cells in vitro and in vivo. In vitro, AS602801 exhibited cytotoxicity against both serum-cultured non-stem cancer cells and cancer stem cells derived from human pancreatic cancer, non-small cell lung cancer, ovarian cancer and glioblastoma at concentrations that did not decrease the viability of normal human fibroblasts. AS602801 also inhibited the self-renewal and tumor-initiating capacity of cancer stem cells surviving AS602801 treatment. Cancer stem cells in established xenograft tumors were reduced by systemic administration of AS602801 at a dose and schedule that did not adversely affect the health of the tumor-bearing mice. These findings suggest AS602801 is a promising anti-cancer stem cell agent, and further investigation of the utility of AS602801 in the treatment of cancer seems warranted.
Adipose tissue-derived stem cells in neural regenerative medicine.
Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong
2015-01-01
Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.
Chemokine and lymph node homing receptor expression on pDC vary by graft source.
Hosoba, Sakura; Harris, Wayne Ac; Lin, Kaifeng L; Waller, Edmund K
2014-11-01
A randomized clinical trial of BM vs. blood stem cell transplants from unrelated donors showed that more plasmacytoid dendritic cells (pDCs) in BM grafts was associated with better post-transplant survival. Here, we describe differences in homing-receptor expression on pDC to explain observed differences following BM vs. blood stem cell transplantation.
Use of regenerative tissue for urinary diversion.
Sopko, Nikolai A; Kates, Max; Bivalacqua, Trinity J
2015-11-01
There is a large interest in developing tissue engineered urinary diversions (TEUDs) in order to reduce the significant morbidity that results from utilization of the alimentary tract in the urinary system. Preclinical trials have been favorable but durable clinical results have not been realized. The present article will review the pertinent concepts for the clinical development of a successful TEUD. Studies continue to identify novel scaffold materials and cell populations that are combined to generate TEUDs. Scaffold composition range from synthetic material to decelluarized bladder tissue. Cell types vary from fully differentiated adult populations such as smooth muscle cells isolated from the bladder to stem cell populations including mesenchymal stem cells and induced pluripotent stem cells. Each scaffold and cell type has its advantages and disadvantages with no clear superior component having been identified. Recent clinical trials have been disappointing, supporting the need for additional investigation. Successful application of TEUDs requires a complex interplay of scaffold, cells, and host environment. Studies continue to investigate candidate scaffold materials, cell populations, and combinations thereof to determine which will best recapitulate the complex structure of the human genitourinary tract.
Mesenchymal Stem Cell Therapy for Nonhealing Cutaneous Wounds
Hanson, Summer E.; Bentz, Michael L.; Hematti, Peiman
2014-01-01
Summary Chronic wounds remain a major challenge in modern medicine and represent a significant burden, affecting not only physical and mental health, but also productivity, health care expenditure, and long-term morbidity. Even under optimal conditions, the healing process leads to fibrosis or scar. One promising solution, cell therapy, involves the transplantation of progenitor/stem cells to patients through local or systemic delivery, and offers a novel approach to many chronic diseases, including nonhealing wounds. Mesenchymal stem cells are multipotent, adult progenitor cells of great interest because of their unique immunologic properties and regenerative potential. A variety of preclinical and clinical studies have shown that mesenchymal stem cells may have a useful role in wound-healing and tissue-engineering strategies and both aesthetic and reconstructive surgery. Recent advances in stem cell immunobiology can offer insight into the multiple mechanisms through which mesenchymal stem cells could affect underlying pathophysiologic processes associated with nonhealing mesenchymal stem cells. Critical evaluation of the current literature is necessary for understanding how mesenchymal stem cells could potentially revolutionize our approach to skin and soft-tissue defects and designing clinical trials to address their role in wound repair and regeneration. PMID:20124836
Concise Review: Pluripotent Stem Cell-Based Regenerative Applications for Failing β-Cell Function
Holditch, Sara J.; Terzic, Andre
2014-01-01
Diabetes engenders the loss of pancreatic β-cell mass and/or function, resulting in insulin deficiency relative to the metabolic needs of the body. Diabetic care has traditionally relied on pharmacotherapy, exemplified by insulin replacement to target peripheral actions of the hormone. With growing understanding of the pathogenesis of diabetic disease, alternative approaches aiming at repair and restoration of failing β-cell function are increasingly considered as complements to current diabetes therapy regimens. To this end, emphasis is placed on transplantation of exogenous pancreas/islets or artificial islets, enhanced proliferation and maturation of endogenous β cells, prevention of β-cell loss, or fortified renewal of β-like-cell populations from stem cell pools and non-β-cell sources. In light of emerging clinical experiences with human embryonic stem cells and approval of the first in-human trial with induced pluripotent stem cells, in this study we highlight advances in β-cell regeneration strategies with a focus on pluripotent stem cell platforms in the context of translational applications. PMID:24646490
Lui, Pauline Po Yee
2015-06-02
The efficacy of tendon-derived stem cells (TDSCs) for the promotion of tendon and tendon-bone junction repair has been reported in animal studies. Modulation of the tendon stem cell niche in vivo has also been reported to influence tendon structure. There is a need to have specific and reliable markers that can define TDSCs in vitro and tendon stem cells in situ for several reasons: to understand the basic biology of TDSCs and their subpopulations in vitro; to understand the identity, niches and functions of tendon/progenitor stem cells in vivo; to meet the governmental regulatory requirements for quality of TDSCs when translating the exciting preclinical findings into clinical trial/practice; and to develop new treatment strategies for mobilizing endogenous stem/progenitor cells in tendon. TDSCs were reported to express the common mesenchymal stem cell (MSC) markers and some embryonic stem cell (ESC) markers, and there were attempts to use these markers to label tendon stem cells in situ. Are these stem cell markers useful for the identification of TDSCs in vitro and tracking of tendon stem cells in situ? This review aims to discuss the values of the panel of MSC, ESC and tendon-related markers for the identification of TDSCs in vitro. Important factors influencing marker expression by TDSCs are discussed. The usefulness and limitations of the panel of MSC, ESC and tendon-related markers for tracking stem cells in tendon, especially tendon stem cells, in situ are then reviewed. Future research directions are proposed.
The Potential of Stem Cells in Treatment of Traumatic Brain Injury.
Weston, Nicole M; Sun, Dong
2018-01-25
Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.
Singh, Aastha; Singh, Abhishek; Sen, Dwaipayan
2016-06-04
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Mannitol-Enhanced Delivery of Stem Cells and Their Growth Factors Across the Blood–Brain Barrier
Gonzales-Portillo, Gabriel S.; Sanberg, Paul R.; Franzblau, Max; Gonzales-Portillo, Chiara; Diamandis, Theo; Staples, Meaghan; Sanberg, Cyndy D.; Borlongan, Cesar V.
2014-01-01
Ischemic brain injury in adults and neonates is a significant clinical problem with limited therapeutic interventions. Currently, clinicians have only tPA available for stroke treatment and hypothermia for cerebral palsy. Owing to the lack of treatment options, there is a need for novel treatments such as stem cell therapy. Various stem cells including cells from embryo, fetus, perinatal, and adult tissues have proved effective in preclinical and small clinical trials. However, a limiting factor in the success of these treatments is the delivery of the cells and their by-products (neurotrophic factors) into the injured brain. We have demonstrated that mannitol, a drug with the potential to transiently open the blood–brain barrier and facilitate the entry of stem cells and trophic factors, as a solution to the delivery problem. The combination of stem cell therapy and mannitol may improve therapeutic outcomes in adult stroke and neonatal cerebral palsy. PMID:24480552
Cave, John W.; Wang, Meng; Baker, Harriet
2014-01-01
Clinical trials engrafting human fetal ventral mesencephalic tissue have demonstrated, in principle, that cell replacement therapy provides substantial long-lasting improvement of motor impairments generated by Parkinson's Disease (PD). The use of fetal tissue is not practical for widespread clinical implementation of this therapy, but stem cells are a promising alternative source for obtaining replacement cells. The ideal stem cell source has yet to be established and, in this review, we discuss the potential of neural stem cells in the adult subventricular zone (SVZ) as an autologous source of replacement cells. We identify three key challenges for further developing this potential source of replacement cells: (1) improving survival of transplanted cells, (2) suppressing glial progenitor proliferation and survival, and (3) developing methods to efficiently produce dopaminergic neurons. Subventricular neural stem cells naturally produce a dopaminergic interneuron phenotype that has an apparent lack of vulnerability to PD-mediated degeneration. We also discuss whether olfactory bulb dopaminergic neurons derived from adult SVZ neural stem cells are a suitable source for cell replacement strategies. PMID:24574954
Two-step protocol for isolation and culture of cardiospheres.
Chen, Lijuan; Pan, Yaohua; Zhang, Lan; Wang, Yingjie; Weintraub, Neal; Tang, Yaoliang
2013-01-01
Cardiac progenitor cells (CPC) are a unique pool of progenitor cells residing in the heart that play an important role in cardiac homeostasis and physiological cardiovascular cell turnover during acute myocardial infarction (MI). Transplanting CPC into the heart has shown promise in two recent clinical trials of cardiac repair (SCIPIO & CADUCEUS). CSCs were originally isolated directly from enzymatically digested hearts followed by cell sorting using stem cell markers. However, long exposure to enzymatic digestion can affect the integrity of stem cell markers on the cell surface and also compromise stem cell function. Here, we describe a two-step procedure in which a large number of intact cardiac progenitor cells can be purified from small amount of heart tissue.
The Network of Epithelial-mesenchymal transition: potential new targets for tumor resistance
Nantajit, Danupon; Lin, Dong; Li, Jian Jian
2014-01-01
Purpose In multiple cell metazoans, the ability of polarized epithelial cells to convert to motile mesenchymal cells in order to relocate to another location is governed by a unique process termed epithelial-mesenchymal transition (EMT). While being an essential process of cellular plasticity for normal tissue and organ developments, EMT is found to be involved in an array of malignant phenotypes of tumor cells including proliferation and invasion, angiogenesis, stemness of cancer cells and resistance to chemo-radiotherapy. Although EMT is being extensively studied and demonstrated to play a key role in tumor metastasis and in sustaining tumor hallmarks, there is a lack of clear picture of the overall EMT signaling network, wavering the potential clinical trials targeting EMT. Methods In this review, we highlight the potential key therapeutic targets of EMT linked with tumor aggressiveness, hypoxia, angiogenesis and cancer stem cells, emphasizing on an emerging EMT-associated NF-κB/HER2/STAT3 pathway in radioresistance of breast cancer stem cells. Results Further definition of cancer stem cell repopulation due to EMT-controlled tumor microenvironment will help to understand how tumors exploit the EMT mechanisms for their survival and expansion advantages. Conclusions The knowledge of EMT will offer more effective targets in clinical trials to treat therapy-resistant metastatic lesions. PMID:25270087
Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun
2016-06-01
Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-01-01
Background The prevalence of type 2 diabetes (T2D) is increasing worldwide and creating a significant burden on health systems, highlighting the need for the development of innovative therapeutic approaches to overcome immune dysfunction, which is likely a key factor in the development of insulin resistance in T2D. It suggests that immune modulation may be a useful tool in treating the disease. Methods In an open-label, phase 1/phase 2 study, patients (N = 36) with long-standing T2D were divided into three groups (Group A, oral medications, n = 18; Group B, oral medications + insulin injections, n = 11; Group C having impaired β-cell function with oral medications + insulin injections, n = 7). All patients received one treatment with the Stem Cell Educator therapy in which a patient’s blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, briefly co-cultures them with adherent cord blood-derived multipotent stem cells (CB-SCs), and returns the educated autologous cells to the patient’s circulation. Results Clinical findings indicate that T2D patients achieve improved metabolic control and reduced inflammation markers after receiving Stem Cell Educator therapy. Median glycated hemoglobin (HbA1C) in Group A and B was significantly reduced from 8.61% ± 1.12 at baseline to 7.25% ± 0.58 at 12 weeks (P = 2.62E-06), and 7.33% ± 1.02 at one year post-treatment (P = 0.0002). Homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) demonstrated that insulin sensitivity was improved post-treatment. Notably, the islet beta-cell function in Group C subjects was markedly recovered, as demonstrated by the restoration of C-peptide levels. Mechanistic studies revealed that Stem Cell Educator therapy reverses immune dysfunctions through immune modulation on monocytes and balancing Th1/Th2/Th3 cytokine production. Conclusions Clinical data from the current phase 1/phase 2 study demonstrate that Stem Cell Educator therapy is a safe approach that produces lasting improvement in metabolic control for individuals with moderate or severe T2D who receive a single treatment. In addition, this approach does not appear to have the safety and ethical concerns associated with conventional stem cell-based approaches. Trial registration ClinicalTrials.gov number, NCT01415726 PMID:23837842
Farin, Azadeh; Liu, Charles Y; Langmoen, Iver A; Apuzzo, Michael L J
2009-11-01
STEM CELL THERAPY has emerged as a promising novel therapeutic endeavor for traumatic brain injury, spinal cord injury, stroke, and epilepsy in experimental studies. A few preliminary clinical trials have further supported its safety and early efficacy after transplantation into humans. Although not yet clinically available for central nervous system disorders, stem cell technology is expected to evolve into one of the most powerful tools in the biological management of complex central nervous system disorders, many of which currently have limited treatment modalities. The identification of stem cells, discovery of neurogenesis, and application of stem cells to treat central nervous system disorders represent a dramatic evolution and expansion of the neurosurgeon's capabilities into the neurorestoration and neuroregeneration realms. In Part 3 of a 5-part series on stem cells, we discuss the theory, experimental evidence, and clinical data pertaining to the use of stem cells for the treatment of traumatic, vascular, and epileptic disorders.
Properties of skin stem cells and their potential clinical applications in modern dermatology.
Niezgoda, Anna; Niezgoda, Piotr; Nowowiejska, Laura; Białecka, Agnieszka; Męcińska-Jundziłł, Kaja; Adamska, Urszula; Czajkowski, Rafał
2017-06-01
Stem cells play an important role in medical science, and scientists are investing large sums in order to perform sophisticated studies designed to establish potential clinical applications of stem cells. Growing experience has enabled researchers to determine the precise nature of stem cell division. Although the properties of this particular population of cells have been known and used for some time, mainly with regards to bone marrow-derived mesenchymal stem cell transplantation, we now face a significant challenge in implementing the practical use of skin-derived precursors, making it possible to avoid the necessity for patients to undergo invasive procedures in order to obtain stem cells from bone marrow. Multiple trials have so far been performed, bringing hope for the treatment of disorders previously considered untreatable. Patients suffering from a number of dermatological diseases, including malignant melanoma, systemic lupus erythematosus, vitiligo, alopecia or junctional epidermolysis bullosa, may benefit from treatment based on stem cells. The aim of this review is to summarize available data on stem cells and their potential applications in the treatment of dermatological disorders. The work described is based on data published up to the end of September 2016.
Peripheral-blood stem cells versus bone marrow from unrelated donors.
Anasetti, Claudio; Logan, Brent R; Lee, Stephanie J; Waller, Edmund K; Weisdorf, Daniel J; Wingard, John R; Cutler, Corey S; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T; Pulsipher, Michael A; Porter, David L; Mineishi, Shin; McCarty, John M; Khan, Shakila P; Anderlini, Paolo; Bensinger, William I; Leitman, Susan F; Rowley, Scott D; Bredeson, Christopher; Carter, Shelly L; Horowitz, Mary M; Confer, Dennis L
2012-10-18
Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, -3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute-National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.).
Song, Peipei; Inagaki, Yoshinori; Sugawara, Yasuhiko; Kokudo, Norihiro
2013-06-01
A research project involving sheets of retinal pigment epithelium constructed from iPS cells derived from patients with age-related maculopathy is one step closer to being approved for clinical trials by the Japanese Government. Now is the time to make therapies using iPS cells clinically available.
Managing the potential and pitfalls during clinical translation of emerging stem cell therapies
2014-01-01
We are moving into a new era of stem cell research where many possibilities for treatment of degenerative, chronic and/or fatal diseases and injuries are becoming primed for clinical trial. These reports have led millions of people worldwide to hope that regenerative medicine is about to revolutionise biomedicine: either through transplantation of cells grown in the laboratory, or by finding ways to stimulate a patient’s intrinsic stem cells to repair diseased and damaged organs. While major contributions of stem cells to drug discovery, safety and efficacy testing, as well as modelling ‘diseases in a dish’ are also expected, it is the in vivo use of stem cells that has captured the general public’s attention. However, public misconceptions of stem cell potential and applications can leave patients vulnerable to the influences of profit driven entities selling unproven treatments without solid scientific basis or appropriate clinical testing or follow up. This review provides a brief history of stem cell clinical translation together with an overview of the properties, potential, and current clinical application of various stem cell types. In doing so it presents a clearer picture of the inherent risks and opportunities associated with stem cell research translation, and thus offers a framework to help realise invested expectations more quickly, safely and effectively. PMID:24949190
[Stem cell therapy in cardiovascular diseases].
Vértesaljai, Márton; Piróth, Zsolt; Fontos, Géza; Andréka, Gyórgy; Font, Gusztáv; Szánthó, Gergely; Réti, Marienn; Masszi, Tamás; Andréka, Peter
2005-11-20
Myocardial infarction is the leading cause of congestive heart failure in the industrialized world. Current treatments fail to address the underlying scarring and cell loss, which are the causes of ischaemic heart failure. Recent interest has focused on stem cells, which are undifferentiated and pluripotent cells that can proliferate, potentially self-renew, and differentiate into cardiomyocytes and endothelial cells. Myocardial regeneration is the most widely studied and debated example of stem cell plasticity. Early reports from animal and clinical investigations disagree on the extent of myocardial renewal in adults, but evidence indicates that cardiomyocytes were generated in what was previously considered a postmitotic organ. So far, candidates for cardiac stem cell therapy have been limited to patients with acute myocardial infarction and chronic ischaemic heart failure. Currently, bone marrow stem cells seem to be the most attractive cell type for these patients. The cells may be delivered by means of direct surgical injection, intracoronary infusion, retrograde venous infusion, and transendocardial infusion. Stem cells may directly increase cardiac contractility or passively limit infarct expansion and remodeling. Early phase I clinical studies indicate that stem cell transplantation is feasible and may have beneficial effects on ventricular remodeling after myocardial infarction. Future randomized clinical trials will establish the magnitude of benefit and the effect on mortality after stem cell therapy.
Stem cell stratagems in alternative medicine.
Sipp, Douglas
2011-05-01
Stem cell research has attracted an extraordinary amount of attention and expectation due to its potential for applications in the treatment of numerous medical conditions. These exciting clinical prospects have generated widespread support from both the public and private sectors, and numerous preclinical studies and rigorous clinical trials have already been initiated. Recent years, however, have also seen alarming growth in the number and variety of claims of clinical uses of notional 'stem cells' that have not been adequately tested for safety and/or efficacy. In this article, I will survey the contours of the stem cell industry as practiced by alternative medicine providers, and highlight points of commonality in their strategies for marketing.
Biologic agents for anterior cruciate ligament healing: A systematic review
Di Matteo, Berardo; Loibl, Markus; Andriolo, Luca; Filardo, Giuseppe; Zellner, Johannes; Koch, Matthias; Angele, Peter
2016-01-01
AIM To systematically review the currently available literature concerning the application of biologic agents such as platelet-rich plasma (PRP) and stem cells to promote anterior cruciate ligament (ACL) healing. METHODS A systematic review of the literature was performed on the use of biologic agents (i.e., PRP or stem cells) to favor ACL healing during reconstruction or repair. The following inclusion criteria for relevant articles were used: Clinical reports of any level of evidence, written in English language, on the use of PRP or stem cells during ACL reconstruction/repair. Exclusion criteria were articles written in other languages, reviews, or studies analyzing other applications of PRP/stem cells in knee surgery not related to promoting ACL healing. RESULTS The database search identified 394 records that were screened. A total of 23 studies were included in the final analysis: In one paper stem cells were applied for ACL healing, in one paper there was a concomitant application of PRP and stem cells, whereas in the remaining 21 papers PRP was used. Based on the ACL injury pattern, two papers investigated biologic agents in ACL partial tears whereas 21 papers in ACL reconstruction. Looking at the quality of the available literature, 17 out of 21 studies dealing with ACL reconstruction were randomized controlled trials. Both studies on ACL repair were case series. CONCLUSION There is a paucity of clinical trials investigating the role of stem cells in promoting ACL healing both in case of partial and complete tears. The role of PRP is still controversial and the only advantage emerging from the literature is related to a better graft maturation over time, without documenting beneficial effects in terms of clinical outcome, bone-graft integration and prevention of bony tunnel enlargement. PMID:27672573
Stem cell transplantation as rescue therapy for refractory Crohn's disease: a sytematic review.
Labidi, Asma; Serghini, Meriem; Ben Mustapha, Nadia; Fekih, Monia; Boubaker, Jalel; Filali, Azza
2014-11-01
Crohn's disease is a chronic relapsing- remitting affection. It has a strong immunologic component which represent the target of standard therapies including immunosppressants and biological therapies. However, many patients remain refracory or intolerant to these therapies. The aim of this review is to determine the effects of stem cell transplantation in patients with refractory Crohn's disease. Systematic review of observational studies, clinical trials and case reports that focused on the effectiveness and safety of stem cell transplantation in patients with refractory Crohn's disease. Hematopoietic stem cell transplantation seems to be efficient in maintaining clinical and endoscopic remission in patients with Crohn's disease refractory or intolerant to current therapies. However, it has been associated to high morbidity and mortality due to chemotherapy. Mesenchymal stem cell transplantation could induce remission in patients with fistulising refractory Crohns disease with no severe side effects. Its impact on luminal Crohns disease is still controversial. Stem cell transplantation seems to hold promising in patients with refractory Crohn's disease. However, because of the high morbidity and mortality related to chemotherapy, hematopoietic stem cell transplantation should be used as last resort to control this disease. Effectiveness of mesenchymal stem cell transplantation in luminal Crohn's disease has yet to be proven.
Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction
Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.
2016-01-01
The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628
Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition
Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.
2009-01-01
Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038
Bajestan, Mona N; Rajan, Archana; Edwards, Sean P; Aronovich, Sharon; Cevidanes, Lucia H S; Polymeri, Angeliki; Travan, Suncica; Kaigler, Darnell
2017-10-01
Stem cell therapy with bone marrow-derived mesenchymal stem cells is a promising tissue engineering strategy to promote regeneration of craniofacial bone. To determine whether cell therapy with ex vivo expanded stem cell populations would be safe and efficacious in the regeneration of large alveolar defects in patients with a history of cleft palate or craniofacial trauma. Eighteen patients (10 patients with traumatic injury and 8 patients with cleft palate) presenting with missing teeth associated with horizontal alveolar bone deficiencies were included in this randomized controlled clinical trial. Patients were randomized to receive either conventional autogenous block grafts or stem cell therapy. After a healing period of 4 months the treated sites were re-entered and the bone width re-assessed prior to implant placement. Implant stability was evaluated through torque testing of the implant upon insertion and at 6 months postloading. The mean gain in bone width was 1.5 ± 1.5 mm in the stem cell therapy group and 3.3 ± 1.4 mm in the control group. Overall, bone gain was higher in trauma patients as compared to patients with cleft palate, for both the control and the stem cell therapy groups. Most postoperative complications were wound dehiscences and incision line openings. Implants were placed successfully in 5 out of 10 patients in the stem cell therapy group and in all 8 patients in the control group. One implant from the control/cleft palate group failed before loading, while the rest of the implants were loaded successfully and remained stable at 6 months. The patients who did not receive implants were re-treated with autogenous block bone graft. The ability of stem cells to treat large alveolar defects is safe, yet, their ability to completely reconstitute large alveolar defects is limited. This approach requires further optimization to meet the outcomes seen using current methods to treat large defects, particularly those resultant of cleft palate. © 2017 Wiley Periodicals, Inc.
Myo-inositol reduces β-catenin activation in colitis
Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A
2017-01-01
AIM To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-cateninS552 as a biomarker of recurrent dysplasia. METHODS We examined the effects of dietary myo-inositol treatment on inflammation, pβ-cateninS552 and pAkt levels by histology and western blot in IL-10-/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-cateninS552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. RESULTS In mice, pβ-cateninS552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-cateninS552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. CONCLUSION Enumerating crypts with increased numbers of pβ-cateninS552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials. PMID:28811707
Myo-inositol reduces β-catenin activation in colitis.
Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A
2017-07-28
To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-catenin S552 as a biomarker of recurrent dysplasia. We examined the effects of dietary myo-inositol treatment on inflammation, pβ-catenin S552 and pAkt levels by histology and western blot in IL-10 -/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-catenin S552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. In mice, pβ-catenin S552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-catenin S552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. Enumerating crypts with increased numbers of pβ-catenin S552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials.
Prospects for pluripotent stem cell therapies: into the clinic and back to the bench.
Grabel, Laura
2012-02-01
Pluripotent stem cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, both hold great promise for the understanding and treatment of disease. They can be used for drug testing, as in vitro models for human disease progression, and for transplantation therapies. Research in this area has been influenced by the ever-changing political landscape, particularly in the United States. In this review, we discuss the prospects for clinical application using pluripotent cells, focusing on an evaluation of iPS cell potential, the continuing concern of tumor formation, and a summary of in vitro differentiation protocols and animal models used. We also describe the current clinical trials underway in the United States, as well as the ups and downs of funding for ES cell work. Copyright © 2011 Wiley Periodicals, Inc.
Medical innovation versus stem cell tourism.
Lindvall, Olle; Hyun, Insoo
2009-06-26
Stem cell tourism is criticized on grounds of consumer fraud, blatant lack of scientific justification, and patient safety. However, the issues are complex because they invoke questions concerning the limits of acceptable medical innovation and medical travel. Here we discuss these issues and articulate conditions under which "unproven" therapies may be offered to patients outside of regular clinical trials.
Martini, Irene; Di Domenico, Enea Gino; Scala, Roberta; Caruso, Francesca; Ferreri, Carla; Ubaldi, Filippo M; Lenzi, Andrea; Valensise, Herbert
2014-05-10
Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, the concentration of cells in cord blood units is limited and this may represent the main restriction to their therapeutic clinical use. The percentage of metabolically active stem cells provides a measure of the viability of cells in an UCB sample. It follows that an active cellular metabolism causes a proliferation in stem cells, offering an opportunity to increase the cellular concentration. A high cell dose is essential when transplanting cord stem cells, guaranteeing, in the receiving patient, a successful outcome.This study is designed to evaluate the impact of docosahexaenoic acid (DHA) supplementation in pregnant women, in order to increase the quantity and viability of the cells in UCB samples. The metabolic demand of DHA increases in the course of pregnancy and reaches maximum absorption during the third trimester of pregnancy. According to these observations, this trial will be divided into two different experimental groups: in the first group, participants will be enrolled from the 20th week of estimated stage of gestation, before the maximum absorption of DHA; while in the second group, enrolment will start from the 28th week of estimated stage of gestation, when the DHA request is higher. Participants in the trial will be divided and randomly assigned to the placebo group or to the experimental group. Each participant will receive a complete set of capsules of either placebo (250 mg of olive oil) or DHA (250 mg), to take one a day from the 20th or from the 28th week, up to the 40th week of estimated gestational age. Samples of venous blood will be taken from all participants before taking placebo or DHA, at the 20th or at the 28th week, and at the 37th to 38th week of pregnancy to monitor the level of DHA. Cell number and cellular viability will be evaluated by flow cytometry within 48 hours of the UCB sample collection. International Standard Randomised Controlled Trial Number Register: ISRCTN58396079. Registration date: 8 October 2013.
Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage.
Gao, Liansheng; Xu, Weilin; Li, Tao; Chen, Jingyin; Shao, Anwen; Yan, Feng; Chen, Gao
2018-01-01
Spontaneous intracerebral hemorrhage (ICH) is one type of the most devastating cerebrovascular diseases worldwide, which causes high morbidity and mortality. However, efficient treatment is still lacking. Stem cell therapy has shown good neuroprotective and neurorestorative effect in ICH and is a promising treatment. In this study, our aim was to review the therapeutic effects, strategies, related mechanisms and safety issues of various types of stem cell for ICH treatment. Numerous studies had demonstrated the therapeutic effects of diverse stem cell types in ICH. The potential mechanisms include tissue repair and replacement, neurotrophy, promotion of neurogenesis and angiogenesis, anti-apoptosis, immunoregulation and anti-inflammation and so forth. The microenvironment of the central nervous system (CNS) can also influence the effects of stem cell therapy. The detailed therapeutic strategies for ICH treatment such as cell type, the number of cells, time window, and the routes of medication delivery, varied greatly among different studies and had not been determined. Moreover, the safety issues of stem cell therapy for ICH should not be ignored. Stem cell therapy showed good therapeutic effect in ICH, making it a promising treatment. However, safety should be carefully evaluated, and more clinical trials are required before stem cell therapy can be extensively applied to clinical use.
Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art.
Malgieri, Arianna; Kantzari, Eugenia; Patrizi, Maria Patrizia; Gambardella, Stefano
2010-09-07
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in all tissues, as part of the perivascular population. As multipotent cells, MSCs can differentiate into different tissues originating from mesoderm ranging from bone and cartilage, to cardiac muscle. MSCs are an excellent candidate for cell therapy because they are easily accessible, their isolation is straightforward, they can be bio-preserved with minimal loss of potency, and they have shown no adverse reactions to allogeneic versus autologous MSCs transplants. Therefore, MSCs are being explored to regenerate damaged tissue and treat inflammation, resulting from cardiovascular disease and myo-cardial infarction (MI), brain and spinal cord injury, stroke, diabetes, cartilage and bone injury, Crohn's disease and graft versus host disease (GvHD). Most of the application and clinical trials involve MSCs from bone marrow (BMMSCs). Transplantation of MSCs from bone marrow is considered safe and has been widely tested in clinical trials of cardiovascular, neurological, and immunological disease with encouraging results. There are examples of MSCs utilization in the repair of kidney, muscle and lung. The cells were also found to promote angiogenesis, and were used in chronic skin wound treatment. Recent studies involve also mesenchymal stem cell transplant from umbilical cord (UCMSCt). One of these demonstrate that UCMSCt may improve symptoms and biochemical values in patients with severe refractory systemic lupus erythematosus (SLE), and therefore this source of MSCs need deeper studies and require more attention. However, also if there are 79 registered clinical trial sites for evaluating MSC therapy throughout the world, it is still a long way to go before using these cells as a routinely applied therapy in clinics.
A chemical approach to myocardial protection and regeneration.
Piccoli, Marco; Cirillo, Federica; Tettamanti, Guido; Anastasia, Luigi
2016-04-28
The possibility of generating induced pluripotent stem cells from mouse embryonic fibroblasts and human adult fibroblasts has introduced new perspectives for possible therapeutic strategies to repair damaged hearts. However, obtaining large numbers of adult stem cells is still an ongoing challenge, and the safety of genetic reprogramming with lenti- or retro-viruses has several drawbacks not easy to be addressed. Furthermore, the majority of adult stem cell-based clinical trials for heart regeneration have had generally poor and controversial results. Nonetheless, it is now clear that the injected cells activate the growth and differentiation of progenitor cells that are already present in the heart. This is achieved by the release of signalling factors and/or exosomes carrying them. Along this line, chemistry may play a major role in developing new strategies for activating resident stem cells to regenerate the heart. In particular, this review focuses on small molecule approaches for cell reprogramming, cell differentiation, and activation of cell protection.
Vessel-associated stem cells from skeletal muscle: From biology to future uses in cell therapy.
Sancricca, Cristina; Mirabella, Massimiliano; Gliubizzi, Carla; Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta
2010-06-26
Over the last years, the existence of different stem cells with myogenic potential has been widely investigated. Besides the classical skeletal muscle progenitors represented by satellite cells, numerous multipotent and embryologically unrelated progenitors with a potential role in muscle differentiation and repair have been identified. In order to conceive a therapeutic approach for degenerative muscle disorders, it is of primary importance to identify an ideal stem cell endowed with all the features for a possible use in vivo. Among all emerging populations, vessel-associated stem cells are a novel and promising class of multipotent progenitors of mesodermal origin and with high myogenic potential which seem to best fit all the requirements for a possible cell therapy. In vitro and in vivostudies have already tested the effectiveness and safety of vessel-associated stem cells in animal models. This leads to the concrete possibility in the future to start pilot human clinical trials, hopefully opening the way to a turning point in the treatment of genetic and acquired muscle disorders.
Zhang, Feng; Leong, Wenyan; Su, Kai; Fang, Yu; Wang, Dong-An
2013-05-01
Stromal cell-derived factor-1 (SDF-1), also known as a homing factor, is a potent chemokine that activates and directs mobilization, migration, and retention of certain cell species via systemic circulation. The responding homing cells largely consist of activated stem cells, so that, in case of tissue lesions, such SDF-1-induced cell migration may execute recruitment of endogenous stem cells to perform autoreparation and compensatory regeneration in situ. In this study, a recombinant adenoviral vector carrying SDF-1 transgene was constructed and applied to transduce a novel scaffold-free living hyaline cartilage graft (SDF-t-LhCG). As an engineered transgenic living tissue, SDF-t-LhCG is capable of continuously producing and releasing SDF-1 in vitro and in vivo. The in vitro trials were examined with ELISA, while the in vivo trials were subsequently performed via a subcutaneous implantation of SDF-t-LhCG in a nude mouse model, followed by series of biochemical and biological analyses. The results indicate that transgenic SDF-1 enhanced the presence of this chemokine in mouse's circulation system; in consequence, SDF-1-induced activation and recruitment of endogenous stem cells were also augmented in both peripheral blood and SDF-t-LhCG implant per se. These results were obtained via flow cytometry analyses on mouse blood samples and implanted SDF-t-LhCG samples, indicating an upregulation of the CXCR4(+)(SDF-1 receptor) cell population, accompanied by upregulation of the CD34(+), CD44(+), and Sca-1(+) cell populations as well as a downregulation of the CD11b(+) cell population. With the supply of SDF-1-recruited endogenous stem cells, enhanced chondrogenesis was observed in SDF-t-LhCG implants in situ.
Mazzini, Letizia; Vescovi, Angelo; Cantello, Roberto; Gelati, Maurizio; Vercelli, Alessandro
2016-01-01
Despite knowledge on the molecular basis of amyotrophic lateral sclerosis (ALS) having quickly progressed over the last few years, such discoveries have not yet translated into new therapeutics. With the advancement of stem cell technologies there is hope for stem cell therapeutics as novel treatments for ALS. We discuss in detail the therapeutic potential of different types of stem cells in preclinical and clinical works. Moreover, we address many open questions in clinical translation. SC therapy is a potentially promising new treatment for ALS and the need to better understand how to develop cell-based experimental treatments, and how to implement them in clinical trials, becomes more pressing. Mesenchymal stem cells and neural fetal stem cells have emerged as safe and potentially effective cell types, but there is a need to carry out appropriately designed experimental studies to verify their long-term safety and possibly efficacy. Moreover, the cost-benefit analysis of the results must take into account the quality of life of the patients as a major end point. It is our opinion that a multicenter international clinical program aime d at fine-tuning and coordinating transplantation procedures and protocols is mandatory.
Angelucci, Emanuele; Matthes-Martin, Susanne; Baronciani, Donatella; Bernaudin, Françoise; Bonanomi, Sonia; Cappellini, Maria Domenica; Dalle, Jean-Hugues; Di Bartolomeo, Paolo; de Heredia, Cristina Díaz; Dickerhoff, Roswitha; Giardini, Claudio; Gluckman, Eliane; Hussein, Ayad Achmed; Kamani, Naynesh; Minkov, Milen; Locatelli, Franco; Rocha, Vanderson; Sedlacek, Petr; Smiers, Frans; Thuret, Isabelle; Yaniv, Isaac; Cavazzana, Marina; Peters, Christina
2014-01-01
Thalassemia major and sickle cell disease are the two most widely disseminated hereditary hemoglobinopathies in the world. The outlook for affected individuals has improved in recent years due to advances in medical management in the prevention and treatment of complications. However, hematopoietic stem cell transplantation is still the only available curative option. The use of hematopoietic stem cell transplantation has been increasing, and outcomes today have substantially improved compared with the past three decades. Current experience world-wide is that more than 90% of patients now survive hematopoietic stem cell transplantation and disease-free survival is around 80%. However, only a few controlled trials have been reported, and decisions on patient selection for hematopoietic stem cell transplantation and transplant management remain principally dependent on data from retrospective analyses and on the clinical experience of the transplant centers. This consensus document from the European Blood and Marrow Transplantation Inborn Error Working Party and the Paediatric Diseases Working Party aims to report new data and provide consensus-based recommendations on indications for hematopoietic stem cell transplantation and transplant management. PMID:24790059
Stem cells in degenerative orthopaedic pathologies: effects of aging on therapeutic potential.
Atesok, Kivanc; Fu, Freddie H; Sekiya, Ichiro; Stolzing, Alexandra; Ochi, Mitsuo; Rodeo, Scott A
2017-02-01
The purpose of this study was to summarize the current evidence on the use of stem cells in the elderly population with degenerative orthopaedic pathologies and to highlight the pathophysiologic mechanisms behind today's therapeutic challenges in stem cell-based regeneration of destructed tissues in the elderly patients with osteoarthritis (OA), degenerative disc disease (DDD), and tendinopathies. Clinical and basic science studies that report the use of stem cells in the elderly patients with OA, DDD, and tendinopathies were identified using a PubMed search. The studies published in English have been assessed, and the best and most recent evidence was included in the current study. Evidence suggests that, although short-term results regarding the effects of stem cell therapy in degenerative orthopaedic pathologies can be promising, stem cell therapies do not appear to reverse age-related tissue degeneration. Causes of suboptimal outcomes can be attributed to the decrease in the therapeutic potential of aged stem cell populations and the regenerative capacity of these cells, which might be negatively influenced in an aged microenvironment within the degenerated tissues of elderly patients with OA, DDD, and tendinopathies. Clinical protocols guiding the use of stem cells in the elderly patient population are still under development, and high-level randomized controlled trials with long-term outcomes are lacking. Understanding the consequences of age-related changes in stem cell function and responsiveness of the in vivo microenvironment to stem cells is critical when designing cell-based therapies for elderly patients with degenerative orthopaedic pathologies.
Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy
Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos; Kioumis, Ioannis; Lampaki, Sofia; Yarmus, Lonny; Malecki, Raf; Zarogoulidis, Konstantinos; Malecki, Marek
2014-01-01
Introduction Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells’ guided gene therapy. Review of therapeutic strategies in preclinical and clinical trials Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we discuss various strategies to safeguard stem cell guided gene therapy against iatrogenic cancerogenesis. Perspectives Defining cancer biomarkers to facilitate early diagnosis, elucidating cancer genomics and proteomics with modern tools of next generation sequencing, and analyzing patients’ gene expression profiles provide essential data to elucidate molecular dynamics of cancer and to consider them for crafting pharmacogenomics-based personalized therapies. Streamlining of these data into genetic engineering of stem cells facilitates their use as the vectors delivering therapeutic genes into specific cancer cells. In this realm, stem cells guided gene therapy becomes a promising new frontier in personalized and targeted therapy of cancer. PMID:24860662
Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; de Kleijn, Dominique P V; Lim, Sai Kiang
2016-01-01
Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular between 2006 and 2012. However, defined mechanisms of action underpinning the therapeutic efficacy of MSCs are lacking, but they are increasingly attributed to MSC trophic secretion rather than their differentiation potential. A promising secreted therapeutic candidate is an extracellular vesicle (EV) known as the exosome. The use of exosomes instead of cells as a therapeutic agent provides several advantages. A critical advantage is the prospect of a conventional pharmaceutical manufacturing process that is highly scalable and amenable to the stringent manufacturing process. For example, MSCs used as producers of therapeutics, and not as therapeutics per se, could be immortalized to generate infinitely expansible clonal lines to enhance the reproducible production of therapeutic exosomes. In this chapter, we will describe the immortalization of MSCs, and the production, isolation, and characterization of exosomes from immortalized MSC.
Freitag, Julien; Bates, Dan; Boyd, Richard; Shah, Kiran; Barnard, Adele; Huguenin, Leesa; Tenen, Abi
2016-05-26
Osteoarthritis is a leading cause of pain and disability across the world. With an aging population its prevalence is likely to further increase. Current accepted medical treatment strategies are aimed at symptom control rather than disease modification. Surgical options including joint replacement are not without possible significant complications. A growing interest in the area of regenerative medicine, led by an improved understanding of the role of mesenchymal stem cells in tissue homeostasis and repair, has seen recent focused efforts to explore the potential of stem cell therapies in the active management of symptomatic osteoarthritis. Encouragingly, results of pre-clinical and clinical trials have provided initial evidence of efficacy and indicated safety in the therapeutic use of mesenchymal stem cell therapies for the treatment of knee osteoarthritis. This paper explores the pathogenesis of osteoarthritis and how mesenchymal stem cells may play a role in future management strategies of this disabling condition.
Rosemann, Achim; Bortz, Gabriela; Vasen, Federico; Sleeboom-Faulkner, Margaret
2016-10-01
In this article, we explore regulatory developments in stem cell medicine in seven jurisdictions: Japan, China, India, Argentina, Brazil, the USA and the EU. We will show that the research methods, ethical standards and approval procedures for the market use of clinical stem cell interventions are undergoing an important process of global diversification. We will discuss the implications of this process for international harmonization and the conduct of multicountry clinical research collaborations. It will become clear that the increasing heterogeneity of research standards and regulations in the stem cell field presents a significant challenge to international clinical trial partnerships, especially with countries that diverge from the regulatory models that have been developed in the USA and the EU.
To CRISPR and beyond: the evolution of genome editing in stem cells
Chen, Kuang-Yui; Knoepfler, Paul S
2016-01-01
The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR–Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field. PMID:27905217
To CRISPR and beyond: the evolution of genome editing in stem cells.
Chen, Kuang-Yui; Knoepfler, Paul S
2016-12-01
The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR-Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field.
Farajkhoda, Tahmineh
2017-02-01
Conducting research on the stem cell lines might bring some worthy good to public. Human Stem Cells (hSCs) research has provided opportunities for scientific progresses and new therapies, but some complex ethical matters should be noticed to ensure that stem cell research is carried out in an ethically appropriate manner. The aim of this review article is to discuss the importance of stem cell research, code of ethics for stem cell research in Iran and ethical recommendation. Generation of stem cells for research from human embryo or adult stem cells, saving, maintenance and using of them are the main ethical, legal and jurisprudence concerns in Iran. Concerns regarding human reproduction or human cloning, breach of human dignity, genetic manipulation and probability of tumorogenisity are observed in adult/somatic stem cells. Destruction of embryo to generate stem cell is an important matter in Iran. In this regards, obtaining stem cell from donated frozen embryos through infertility treatment that would be discarded is an acceptable solution in Iran for generation of embryo for research. Ethical, legal, and jurisprudence strategies for using adult/somatic stem cells are determination of ownership of stem cells, trade prohibition of human body, supervision on bio banks and information of Oversight Committee on Stem Cell Research. Recommendations to handle ethical issues for conducting stem cell research are well-designed studies, compliance codes of ethics in biomedical research (specifically codes of ethics on stem cell research, codes of ethics on clinical trials studies and codes of ethics on animals studies), appropriate collaboration with ethics committees and respecting of rights of participants (including both of human and animal rights) in research. In addition, there is a necessity for extending global networks of bioethics for strengthening communications within organizations at both the regional and international level, strengthening legislation systems, designing and establishing convenient collaborative educational courses at different levels.
Farajkhoda, Tahmineh
2017-01-01
Conducting research on the stem cell lines might bring some worthy good to public. Human Stem Cells (hSCs) research has provided opportunities for scientific progresses and new therapies, but some complex ethical matters should be noticed to ensure that stem cell research is carried out in an ethically appropriate manner. The aim of this review article is to discuss the importance of stem cell research, code of ethics for stem cell research in Iran and ethical recommendation. Generation of stem cells for research from human embryo or adult stem cells, saving, maintenance and using of them are the main ethical, legal and jurisprudence concerns in Iran. Concerns regarding human reproduction or human cloning, breach of human dignity, genetic manipulation and probability of tumorogenisity are observed in adult/somatic stem cells. Destruction of embryo to generate stem cell is an important matter in Iran. In this regards, obtaining stem cell from donated frozen embryos through infertility treatment that would be discarded is an acceptable solution in Iran for generation of embryo for research. Ethical, legal, and jurisprudence strategies for using adult/somatic stem cells are determination of ownership of stem cells, trade prohibition of human body, supervision on bio banks and information of Oversight Committee on Stem Cell Research. Recommendations to handle ethical issues for conducting stem cell research are well-designed studies, compliance codes of ethics in biomedical research (specifically codes of ethics on stem cell research, codes of ethics on clinical trials studies and codes of ethics on animals studies), appropriate collaboration with ethics committees and respecting of rights of participants (including both of human and animal rights) in research. In addition, there is a necessity for extending global networks of bioethics for strengthening communications within organizations at both the regional and international level, strengthening legislation systems, designing and establishing convenient collaborative educational courses at different levels. PMID:28462397
Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design.
Bartunek, Jozef; Davison, Beth; Sherman, Warren; Povsic, Thomas; Henry, Timothy D; Gersh, Bernard; Metra, Marco; Filippatos, Gerasimos; Hajjar, Roger; Behfar, Atta; Homsy, Christian; Cotter, Gad; Wijns, William; Tendera, Michal; Terzic, Andre
2016-02-01
Cardiopoiesis is a conditioning programme that aims to upgrade the cardioregenerative aptitude of patient-derived stem cells through lineage specification. Cardiopoietic stem cells tested initially for feasibility and safety exhibited signs of clinical benefit in patients with ischaemic heart failure (HF) warranting definitive evaluation. Accordingly, CHART-1 is designed as a large randomized, sham-controlled multicentre study aimed to validate cardiopoietic stem cell therapy. Patients (n = 240) with chronic HF secondary to ischaemic heart disease, reduced LVEF (<35%), and at high risk for recurrent HF-related events, despite optimal medical therapy, will be randomized 1:1 to receive 600 × 10(6) bone marrow-derived and lineage-directed autologous cardiopoietic stem cells administered via a retention-enhanced intramyocardial injection catheter or a sham procedure. The primary efficacy endpoint is a hierarchical composite of mortality, worsening HF, Minnesota Living with Heart Failure Questionnaire score, 6 min walk test, LV end-systolic volume, and LVEF at 9 months. The secondary efficacy endpoint is the time to cardiovascular death or worsening HF at 12 months. Safety endpoints include mortality, readmissions, aborted sudden deaths, and serious adverse events at 12 and 24 months. The CHART-1 clinical trial is powered to examine the therapeutic impact of lineage-directed stem cells as a strategy to achieve cardiac regeneration in HF populations. On completion, CHART-1 will offer a definitive evaluation of the efficacy and safety of cardiopoietic stem cells in the treatment of chronic ischaemic HF. NCT01768702. © 2015 The Authors European Journal of Heart Failure © 2015 European Society of Cardiology.
Development of an encapsulated stem cell-based therapy for diabetes.
Tomei, Alice Anna; Villa, Chiara; Ricordi, Camillo
2015-01-01
Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.
Sinusitis in patients undergoing allogeneic bone marrow transplantation - a review.
Drozd-Sokolowska, Joanna Ewa; Sokolowski, Jacek; Wiktor-Jedrzejczak, Wieslaw; Niemczyk, Kazimierz
Sinusitis is a common morbidity in general population, however little is known about its occurrence in severely immunocompromised patients undergoing allogeneic hematopoietic stem cell transplantation. The aim of the study was to analyze the literature concerning sinusitis in patients undergoing allogeneic bone marrow transplantation. An electronic database search was performed with the objective of identifying all original trials examining sinusitis in allogeneic hematopoietic stem cell transplant recipients. The search was limited to English-language publications. Twenty five studies, published between 1985 and 2015 were identified, none of them being a randomized clinical trial. They reported on 31-955 patients, discussing different issues i.e. value of pretransplant sinonasal evaluation and its impact on post-transplant morbidity and mortality, treatment, risk factors analysis. Results from analyzed studies yielded inconsistent results. Nevertheless, some recommendations for good practice could be made. First, it seems advisable to screen all patients undergoing allogeneic hematopoietic stem cell transplantation with Computed Tomography (CT) prior to procedure. Second, patients with symptoms of sinusitis should be treated before hematopoietic stem cell transplantation (HSCT), preferably with conservative medical approach. Third, patients who have undergone hematopoietic stem cell transplantation should be monitored closely for sinusitis, especially in the early period after transplantation. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
The Alpha Stem Cell Clinic: a model for evaluating and delivering stem cell-based therapies.
Trounson, Alan; DeWitt, Natalie D; Feigal, Ellen G
2012-01-01
Cellular therapies require the careful preparation, expansion, characterization, and delivery of cells in a clinical environment. There are major challenges associated with the delivery of cell therapies and high costs that will limit the companies available to fully evaluate their merit in clinical trials, and will handicap their application at the present financial environment. Cells will be manufactured in good manufacturing practice or near-equivalent facilities with prerequisite safety practices in place, and cell delivery systems will be specialized and require well-trained medical and nursing staff, technicians or nurses trained to handle cells once delivered, patient counselors, as well as statisticians and database managers who will oversee the monitoring of patients in relatively long-term follow-up studies. The model proposed for Alpha Stem Cell Clinics will initially use the capacities and infrastructure that exist in the most advanced tertiary medical clinics for delivery of established bone marrow stem cell therapies. As the research evolves, they will incorporate improved procedures and cell preparations. This model enables commercialization of medical devices, reagents, and other products required for cell therapies. A carefully constructed cell therapy clinical infrastructure with the requisite scientific, technical, and medical expertise and operational efficiencies will have the capabilities to address three fundamental and critical functions: 1) fostering clinical trials; 2) evaluating and establishing safe and effective therapies, and 3) developing and maintaining the delivery of therapies approved by the Food and Drug Administration, or other regulatory agencies.
Kaigler, Darnell; Avila-Ortiz, Gustavo; Travan, Suncica; Taut, Andrei D; Padial-Molina, Miguel; Rudek, Ivan; Wang, Feng; Lanis, Alejandro; Giannobile, William V
2015-07-01
Bone engineering of localized craniofacial osseous defects or deficiencies by stem cell therapy offers strong prospects to improve treatment predictability for patient care. The aim of this phase 1/2 randomized, controlled clinical trial was to evaluate reconstruction of bone deficiencies of the maxillary sinus with transplantation of autologous cells enriched with CD90+ stem cells and CD14+ monocytes. Thirty human participants requiring bone augmentation of the maxillary sinus were enrolled. Patients presenting with 50% to 80% bone deficiencies of the maxillary sinus were randomized to receive either stem cells delivered onto a β-tricalcium phosphate scaffold or scaffold alone. Four months after treatment, clinical, radiographic, and histologic analyses were performed to evaluate de novo engineered bone. At the time of alveolar bone core harvest, oral implants were installed in the engineered bone and later functionally restored with dental tooth prostheses. Radiographic analyses showed no difference in the total bone volume gained between treatment groups; however, density of the engineered bone was higher in patients receiving stem cells. Bone core biopsies showed that stem cell therapy provided the greatest benefit in the most severe deficiencies, yielding better bone quality than control patients, as evidenced by higher bone volume fraction (BVF; 0.5 versus 0.4; p = 0.04). Assessment of the relation between degree of CD90+ stem cell enrichment and BVF showed that the higher the CD90 composition of transplanted cells, the greater the BVF of regenerated bone (r = 0.56; p = 0.05). Oral implants were placed and restored with functionally loaded dental restorations in all patients and no treatment-related adverse events were reported at the 1-year follow-up. These results provide evidence that cell-based therapy using enriched CD90+ stem cell populations is safe for maxillary sinus floor reconstruction and offers potential to accelerate and enhance tissue engineered bone quality in other craniofacial bone defects and deficiencies (Clinicaltrials.gov NCT00980278). © 2015 American Society for Bone and Mineral Research.
Immunomodulatory Nature and Site Specific Affinity of Mesenchymal Stem Cells: a Hope in Cell Therapy
Lotfinegad, Parisa; Shamsasenjan, karim; Movassaghpour, Aliakbar; Majidi, Jafar; Baradaran, Behzad
2014-01-01
Immunosuppressive ability of mesenchymal stem cells (MSCs), their differentiation properties to various specialized tissue types, ease of in vitro and in vivo expansion and specific migration capacity, make them to be tested in different clinical trials for the treatment of various diseases. The immunomodulatory effects of MSCs are less identified which probably has high clinically significance. The clinical trials based on primary research will cause better understanding the ability of MSCs in immunomodulatory applications and site specific migration in the optimization of therapy. So, this review focus on MSCs functional role in modulating immune responses, their ability in homing to tumor, their potency as delivery vehicle and their medical importance. PMID:24409403
Constantinou, Varnavas C; Bouinta, Asimina; Karponi, Garyfalia; Zervou, Fani; Papayanni, Penelope-Georgia; Stamatoyannopoulos, George; Anagnostopoulos, Achilles; Yannaki, Evangelia
2017-04-01
Hematopoietic stem cell mobilization and leukapheresis in adult patients with β-thalassemia have recently been optimized in the context of clinical trials for obtaining hematopoietic stem cells for thalassemia gene therapy. In some patients, however, the yield of cluster of differentiation 34-positive (CD34+) cells was poor despite successful mobilization, and a modification of apheresis settings was mandatory for harvest rescue. Data were analyzed from 20 adult patients with β-thalassemia who were enrolled in a clinical trial of optimizing mobilization strategies for stem cell gene therapy. The aim of this post-hoc analysis was to assess how certain hematological and/or clinical parameters may correlate with low collection efficiency in the presence of adequate numbers of circulating stem cells after pharmacological mobilization and standard leukapheresis procedures. Among 19 patients who achieved optimal mobilization with Plerixafor, four who underwent splenectomy demonstrated disproportionately poor CD34+ cell harvests, as determined by their circulating CD34+ cell counts after mobilization. All four patients who underwent splenectomy presented at baseline and before first apheresis with lymphocytosis resulting in lymphocyte/neutrophil ratios well above 1 and marked reticulocytosis compared with patients who achieved optimal mobilization/CD34+ cell harvest. Such unexpected expansion of specific cell populations disrupted the normal cell layer separation and necessitated modification of the apheresis settings to rescue the harvests. By close examination of certain hematological and/or clinical parameters before leukapheresis, patients who, despite adequate mobilization, are at risk for poor CD34+ cell harvests may be identified, and harvest failure can be prevented by adjusting the apheresis settings. © 2016 AABB.
Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era
Huang, Hongyun; Chen, Lin; Sanberg, Paul
2010-01-01
Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology. PMID:21359168
2013-01-01
Background Autism is a pervasive neurodevelopmental disorder. At present there are no defined mechanisms of pathogenesis and therapy is mostly limited to behavioral interventions. Stem cell transplantation may offer a unique treatment strategy for autism due to immune and neural dysregulation observed in this disease. This non-randomized, open-label, single center phase I/II trial investigated the safety and efficacy of combined transplantation of human cord blood mononuclear cells (CBMNCs) and umbilical cord-derived mesenchymal stem cells (UCMSCs) in treating children with autism. Methods 37 subjects diagnosed with autism were enrolled into this study and divided into three groups: CBMNC group (14 subjects, received CBMNC transplantation and rehabilitation therapy), Combination group (9 subjects, received both CBMNC and UCMSC transplantation and rehabilitation therapy), and Control group (14 subjects, received only rehabilitation therapy). Transplantations included four stem cell infusions through intravenous and intrathecal injections once a week. Treatment safety was evaluated with laboratory examinations and clinical assessment of adverse effects. The Childhood Autism Rating Scale (CARS), Clinical Global Impression (CGI) scale and Aberrant Behavior Checklist (ABC) were adopted to assess the therapeutic efficacy at baseline (pre-treatment) and following treatment. Results There were no significant safety issues related to the treatment and no observed severe adverse effects. Statistically significant differences were shown on CARS, ABC scores and CGI evaluation in the two treatment groups compared to the control at 24 weeks post-treatment (p < 0.05). Conclusions Transplantation of CBMNCs demonstrated efficacy compared to the control group; however, the combination of CBMNCs and UCMSCs showed larger therapeutic effects than the CBMNC transplantation alone. There were no safety issues noted during infusion and the whole monitoring period. Trial registration ClinicalTrials.gov: NCT01343511, Title “Safety and Efficacy of Stem Cell Therapy in Patients with Autism”. PMID:23978163
Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells
Varela, Christine; Denis, Jérôme Alexandre; Polentes, Jérôme; Feyeux, Maxime; Aubert, Sophie; Champon, Benoite; Piétu, Geneviève; Peschanski, Marc; Lefort, Nathalie
2012-01-01
Human pluripotent stem cells offer a limitless source of cells for regenerative medicine. Neural derivatives of human embryonic stem cells (hESCs) are currently being used for cell therapy in 3 clinical trials. However, hESCs are prone to genomic instability, which could limit their clinical utility. Here, we report that neural differentiation of hESCs systematically produced a neural stem cell population that could be propagated for more than 50 passages without entering senescence; this was true for all 6 hESC lines tested. The apparent spontaneous loss of evolution toward normal senescence of somatic cells was associated with a jumping translocation of chromosome 1q. This chromosomal defect has previously been associated with hematologic malignancies and pediatric brain tumors with poor clinical outcome. Neural stem cells carrying the 1q defect implanted into the brains of rats failed to integrate and expand, whereas normal cells engrafted. Our results call for additional quality controls to be implemented to ensure genomic integrity not only of undifferentiated pluripotent stem cells, but also of hESC derivatives that form cell therapy end products, particularly neural lines. PMID:22269325
de Vries, E G E; Vellenga, E; Kluin-Nelemans, J C; Mulder, N H
2004-09-01
Forty years ago, van Putten described in the European Journal of Cancer (see this issue) quantitative studies on the optimal storage techniques of mouse and monkey bone marrow suspensions. Survival of the animals after irradiation following injection with stored bone marrow cell suspensions was the endpoint. He observed some species differences, but based on the data obtained considered a careful trial of the glycerol-polyvinylpyrrolide (PVP) combination for storage of marrow in man was indicated. In spite of this, dimethyl sulphoxide has become the 'standard' cryopreservant for human marrow stem cells. Over the last 40 years, there has been a tremendous increase in knowledge about haematopoietic stem cells and their use in the clinic. Haematopoietic stem cells are now known to travel between the bone marrow and peripheral blood and are the best-characterised adult stem cells. These cells are currently widely used for transplantations in the clinic and are obtained from a wide variety of sources. These include the bone marrow, peripheral blood, cord blood, autologous as well as allogeneic stem cells from related or unrelated donors. Increasingly, data has become available that adult haematopoietic stem cells can generate differentiated cells belonging to other cell types, a process called "developmental plasticity". Thus, they may contribute to non-haematopoietic tissue repair in multiple organ systems. This has created a whole new potential therapeutic armamentarium for the application of haematopoietic stem cells outside of the area of malignancies and haematopoietic disorders.
Shandley, Sabrina; Wolf, E George; Schubert-Kappan, Christine M; Baugh, Laura M; Richards, Michael F; Prye, Jennifer; Arizpe, Helen M; Kalns, John
2017-01-01
Traumatic brain injury (TBI) may cause persistent cognitive dysfunction. A pilot clinical study was performed to determine if hyperbaric oxygen (HBO₂) treatment improves cognitive performance. It was hypothesized that stem cells, mobilized by HBO₂ treatment, are recruited to repair damaged neuronal tissue. This hypothesis was tested by measuring the relative abundance of stem cells in peripheral blood and cognitive performance during this clinical trial. The subject population consisted of 28 subjects with persistent cognitive impairment caused by mild to moderate TBI suffered during military deployment to Iraq or Afghanistan. Fluorescence-activated cell sorting (FACS) analysis was performed for stem cell markers in peripheral blood and correlated with variables resulting from standard tests of cognitive performance and post-traumatic stress disorder: ImPACT, BrainCheckers and PCL-M test results. HBO₂ treatment correlated with stem cell mobilization as well as increased cognitive performance. Together these results support the hypothesis that stem cell mobilization may be required for cognitive improvement in this population. Copyright© Undersea and Hyperbaric Medical Society.
Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels
Sridharan, BanuPriya; Lin, Staphany M.; Hwu, Alexander T.; Laflin, Amy D.; Detamore, Michael S.
2015-01-01
There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance. PMID:26719986
An, Songzhu Michael; Ding, Qiang Peter; Li, Ling-song
2013-06-01
One of the most exciting fields in biomedical research over the past few years is stem cell biology, and therapeutic application of stem cells to replace the diseased or damaged tissues is also an active area in development. Although stem cell therapy has a number of technical challenges and regulatory hurdles to overcome, the use of stem cells as tools in drug discovery supported by mature technologies and established regulatory paths is expected to generate more immediate returns. In particular, the targeting of stem cell signaling pathways is opening up a new avenue for drug discovery. Aberrations in these pathways result in various diseases, including cancer, fibrosis and degenerative diseases. A number of drug targets in stem cell signaling pathways have been identified. Among them, WNT and Hedgehog are two most important signaling pathways, which are the focus of this review. A hedgehog pathway inhibitor, vismodegib (Erivedge), has recently been approved by the US FDA for the treatment of skin cancer, while several drug candidates for the WNT pathway are entering clinical trials. We have discovered that the stem cell signaling pathways respond to traditional Chinese medicines. Substances isolated from herbal medicine may act specifically on components of stem cell signaling pathways with high affinities. As many of these events can be explained through molecular interactions, these phenomena suggest that discovery of stem cell-targeting drugs from natural products may prove to be highly successful.
'Shovel-Ready' applications of stem cell advances for pediatric heart disease.
Files, Matthew D; Boucek, Robert J
2012-10-01
The past decade has seen remarkable advances in the field of stem cell biology. Many new technologies and applications are passing the translational phase and likely will soon be relevant for the clinical pediatric cardiologist. This review will focus on two advances in basic science that are now translating into clinical trials. The first advance is the recognition, characterization, and recent therapeutic application of resident cardiac progenitor cells (CPCs). Early results of adult trials and scattered case reports in pediatric patients support expanding CPC-based trials for end-stage heart failure in pediatric patients. The relative abundance of CPCs in the neonate and young child offers greater potential benefits in heart failure treatment than has been realized to date. The second advance is the technology of induced pluripotent stem cells (iPSCs), which reprograms differentiated somatic cells to an undifferentiated embryonic-like state. When iPSCs are differentiated into cardiomyocytes, they model a patient's specific disease, test pharmaceuticals, and potentially provide an autologous source for cell-based therapy. The therapeutic recruitment and/or replacement of CPCs has potential for enhancing cardiac repair and regeneration in children with heart failure. Use of iPSCs to model heart disease holds great potential to gain new insights into diagnosis, pathophysiology, and disease-specific management for genetic-based cardiovascular diseases that are prevalent in pediatric patients.
Stem cell based anti-HIV Gene therapy
Kitchen, Scott G.; Shimizu, Saki; An, Dong Sung
2011-01-01
Human stem cell-based therapeutic intervention strategies for treating HIV infection have recently undergone a renaissance as a major focus of investigation. Unlike most conventional antiviral therapies, genetically engineered hematopoietic stem cells possess the capacity for prolonged self-renewal that would continuously produce protected immune cells to fight against HIV. A successful strategy therefore has the potential to stably control and ultimately eradicate HIV from patients by a single or minimal treatment. Recent progress in the development of new technologies and clinical trials sets the stage for the current generation of gene therapy approaches to combat HIV infection. In this review, we will discuss two major approaches that are currently underway in the development of stem cell-based gene therapy to target HIV: One that focuses on the protection of cells from productive infection with HIV, and the other that focuses on targeting immune cells to directly combat HIV infection. PMID:21247612
Development of Gene Therapy for Thalassemia
Nienhuis, Arthur W.; Persons, Derek A.
2012-01-01
Retroviral vector–mediated gene transfer into hematopoietic stem cells provides a potentially curative therapy for severe β-thalassemia. Lentiviral vectors based on human immunodeficiency virus have been developed for this purpose and have been shown to be effective in curing thalassemia in mouse models. One participant in an ongoing clinical trial has achieved transfusion independence after gene transfer into bone marrow stem cells owing, in part, to a genetically modified, dominant clone. Ongoing efforts are focused on improving the efficiency of lentiviral vector–mediated gene transfer into stem cells so that the curative potential of gene transfer can be consistently achieved. PMID:23125203
Day, Roger S
2015-01-01
The cancer stem cell hypothesis is that in human solid cancers, only a small proportion of the cells, the cancer stem cells (CSCs), are self-renewing; the vast majority of the cancer cells are unable to sustain tumor growth indefinitely on their own. In recent years, discoveries have led to the concentration, if not isolation, of putative CSCs. The evidence has mounted that CSCs do exist and are important. This knowledge may promote better understanding of treatment resistance, create opportunities to test agents against CSCs, and open up promise for a fresh approach to cancer treatment. The first clinical trials of new anti-CSC agents are completed, and many others follow. Excitement is mounting that this knowledge will lead to major improvements, even breakthroughs, in treating cancer. However, exploitation of this phenomenon may be more successful if informed by insights into the population dynamics of tumor development. We revive some ideas in tumor dynamics modeling to extract some guidance in designing anti-CSC treatment regimens and the clinical trials that test them. PMID:25780337
Allogenic banking of dental pulp stem cells for innovative therapeutics.
Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J
2015-08-26
Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.
Allogenic banking of dental pulp stem cells for innovative therapeutics
Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J
2015-01-01
Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat. PMID:26328017
Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors
Anasetti, Claudio; Logan, Brent R.; Lee, Stephanie J.; Waller, Edmund K.; Weisdorf, Daniel J.; Wingard, John R.; Cutler, Corey S.; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T.; Pulsipher, Michael A.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Khan, Shakila P.; Anderlini, Paolo; Bensinger, William I.; Leitman, Susan F.; Rowley, Scott D.; Bredeson, Christopher; Carter, Shelly L.; Horowitz, Mary M.; Confer, Dennis L.
2012-01-01
BACKGROUND Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. METHODS We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). RESULTS The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P = 0.29), with an absolute difference of 5 percentage points (95% CI, −3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P = 0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P = 0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. CONCLUSIONS We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute–National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.) PMID:23075175
Ra, Jeong Chan; Jeong, Euicheol C.; Kang, Sung Keun; Lee, Seog Ju; Choi, Kyoung Ho
2017-01-01
Buerger’s disease is a rare and severe disease affecting the blood vessels of the limbs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have the potential to cure Buerger’s disease when developed as a stem cell drug. In the present study, we conducted a prospective, nonrandomized, no placebo-controlled, phase I/II clinical trial with a 2-year follow-up questionnaire survey. A total of 17 patients were intramuscularly administered autologous ADSCs at a dose of 5 million cells/kg. The incidence of adverse events (AEs), adverse drug reaction (ADR), and serious adverse events (SAEs) was monitored. No ADRs and SAEs related to stem cell treatment occurred during the 6-month follow-up. In terms of efficacy, the primary endpoint was increase in total walking distance (TWD). The secondary endpoint was improvement in rest pain, increase in pain-free walking distance (PFWD), toe–brachial pressure index (TBPI), transcutaneous oxygen pressure (TcPO2), and arterial brachial pressure index (ABPI). ADSCs demonstrated significant functional improvement results including increased TWD, PFWD, and rest pain reduction. No amputations were reported during the 6-month clinical trial period and in the follow-up questionnaire survey more than 2 years after the ADSC injection. In conclusion, intramuscular injection of ADSCs is very safe and is shown to prompt functional improvement in patients with severe Buerger’s disease at a dosage of 300 million cells per 60 kg of body weight. However, the confirmatory therapeutic efficacy and angiogenesis need further study. PMID:28713639
Nitkin, Christopher R.
2016-01-01
Abstract Mesenchymal stem cells (MSCs) represent a potentially revolutionary therapy for a wide variety of pediatric diseases, but the optimal cell‐based therapeutics for such diversity have not yet been specified. The published clinical trials for pediatric pulmonary, cardiac, orthopedic, endocrine, neurologic, and hematologic diseases provide evidence that MSCs are indeed efficacious, but the significant heterogeneity in therapeutic approaches between studies raises new questions. The purpose of this review is to stimulate new preclinical and clinical trials to investigate these factors. First, we discuss recent clinical trials for pediatric diseases studying MSCs obtained from bone marrow, umbilical cord and umbilical cord blood, placenta, amniotic fluid, and adipose tissue. We then identify factors, some unique to pediatrics, which must be examined to optimize therapeutic efficacy, including route of administration, dose, timing of administration, the role of ex vivo differentiation, cell culture techniques, donor factors, host factors, and the immunologic implications of allogeneic therapy. Finally, we discuss some of the practicalities of bringing cell‐based therapy into the clinic, including regulatory and manufacturing considerations. The aim of this review is to inform future studies seeking to maximize therapeutic efficacy for each disease and for each patient. Stem Cells Translational Medicine 2017;6:539–565 PMID:28191766
Incorporating placental tissue in cord blood banking for stem cell transplantation.
Teofili, Luciana; Silini, Antonietta R; Bianchi, Maria; Valentini, Caterina Giovanna; Parolini, Ornella
2018-06-01
Human term placenta is comprised of various tissues from which different cell populations can be obtained, including hematopoietic stem cells and mesenchymal stem/stromal cells (MSCs). Areas covered: This review will discuss the possibility to incorporate placental tissue cells in cord blood banking. It will discuss general features of human placenta, with a brief review of the immune cells at the fetal-maternal interface and the different cell populations isolated from placenta, with a particular focus on MSCs. It will address the question as to why placenta-derived MSCs should be banked with their hematopoietic counterparts. It will discuss clinical trials which are studying safety and efficacy of placenta tissue-derived MSCs in selected diseases, and preclinical studies which have proven their therapeutic properties in other diseases. It will discuss banking of umbilical cord blood and raise several issues for improvement, and the applications of cord blood cells in non-malignant disorders. Expert Commentary: Umbilical cord blood banking saves lives worldwide. The concomitant banking of non-hematopoietic cells from placenta, which could be applied therapeutically in the future, alone or in combination to their hematopoietic counterparts, could exploit current banking processes while laying the foundation for clinical trials exploring placenta-derived cell therapies in regenerative medicine.
Chen, Benjamin; Ahmed, Tauseef; Mannancheril, Anney; Gruber, Michael; Benzil, Deborah L
2004-05-15
Malignant astrocytomas are among the most resistant tumors to curative treatments. Mean survival without treatment is measured in weeks, and even with maximal surgery and radiation, the mean reported survival is < 1 year. The advent of supportive treatments and newer agents has resulted in benefits for many patients with cancer. The authors investigated the safety and effect on survival of a high-dose thiotepa and carboplatin regimen with autologous stem cell transplantation (ASCT) in patients with malignant astrocytomas who were enrolled in a prospective trial approved by an institutional review board (IRB). Twenty-one patients were enrolled in an IRB-approved, prospective trial. After baseline testing was completed, patients underwent peripheral stem cell mobilization with cyclophosphamide (4 g/m2) and etoposide (450 mg/m2) followed by granulocyte-colony-stimulating factor (10 microg/kg). Peripheral stem cells were harvested when leukocyte counts recovered. Patients received 2 cycles of thiotepa (750 mg/m2) and carboplatin (1600 mg/m2) followed by infusion of the preserved stem cells. The cycles were administered 6-10 weeks apart. Primary outcome measures were patient survival (Kaplan-Meier analysis) and treatment toxicity (using National Cancer Institute common toxicity criteria). Autologous stem cells were harvested effectively and transfused in all patients. Kaplan-Meier survival analysis demonstrated a survival time of 34.3 +/- 5.5 months (range, 9-94 months). Despite significant myelosuppression, only three patients experienced Grade 4 complications and eight experienced Grade 3 complications. High-dose chemotherapy with thiotepa and carboplatin with concomitant ASCT was used safely to treat patients with malignant astrocytomas and may provide a survival advantage. Copyright 2004 American Cancer Society.
Hiler, Daniel; Chen, Xiang; Hazen, Jennifer; Kupriyanov, Sergey; Carroll, Patrick A; Qu, Chunxu; Xu, Beisi; Johnson, Dianna; Griffiths, Lyra; Frase, Sharon; Rodriguez, Alberto R; Martin, Greg; Zhang, Jiakun; Jeon, Jongrye; Fan, Yiping; Finkelstein, David; Eisenman, Robert N; Baldwin, Kristin; Dyer, Michael A
2015-07-02
Cell-based therapies to treat retinal degeneration are now being tested in clinical trials. However, it is not known whether the source of stem cells is important for the production of differentiated cells suitable for transplantation. To test this, we generated induced pluripotent stem cells (iPSCs) from murine rod photoreceptors (r-iPSCs) and scored their ability to make retinae by using a standardized quantitative protocol called STEM-RET. We discovered that r-iPSCs more efficiently produced differentiated retinae than did embryonic stem cells (ESCs) or fibroblast-derived iPSCs (f-iPSCs). Retinae derived from f-iPSCs had fewer amacrine cells and other inner nuclear layer cells. Integrated epigenetic analysis showed that DNA methylation contributes to the defects in f-iPSC retinogenesis and that rod-specific CTCF insulator protein-binding sites may promote r-iPSC retinogenesis. Together, our data suggest that the source of stem cells is important for producing retinal neurons in three-dimensional (3D) organ cultures. Copyright © 2015 Elsevier Inc. All rights reserved.
Vessel-associated stem cells from skeletal muscle: From biology to future uses in cell therapy
Sancricca, Cristina; Mirabella, Massimiliano; Gliubizzi, Carla; Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta
2010-01-01
Over the last years, the existence of different stem cells with myogenic potential has been widely investigated. Besides the classical skeletal muscle progenitors represented by satellite cells, numerous multipotent and embryologically unrelated progenitors with a potential role in muscle differentiation and repair have been identified. In order to conceive a therapeutic approach for degenerative muscle disorders, it is of primary importance to identify an ideal stem cell endowed with all the features for a possible use in vivo. Among all emerging populations, vessel-associated stem cells are a novel and promising class of multipotent progenitors of mesodermal origin and with high myogenic potential which seem to best fit all the requirements for a possible cell therapy. In vitro and in vivo studies have already tested the effectiveness and safety of vessel-associated stem cells in animal models. This leads to the concrete possibility in the future to start pilot human clinical trials, hopefully opening the way to a turning point in the treatment of genetic and acquired muscle disorders. PMID:21607121
Sommer, Paula
2013-06-01
The human heart is the first organ to develop and its development is fairly well characterised. In theory, the heart has the capacity to regenerate, as its cardiomyocytes may be capable of cell division and the adult heart contains a cardiac stem cell niche, presumably capable of differentiating into cardiomyocytes and other cardiac-associated cell types. However, as with most other organs, these mechanisms are not activated upon serious injury. Several experimental options to induce regeneration of the damaged heart tissue are available: activate the endogenous cardiomyocytes to divide, coax the endogenous population of stem cells to divide and differentiate, or add exogenous cell-based therapy to replace the lost cardiac tissue. This review is a summary of the recent research into all these avenues, discussing the reasons for the limited successes of clinical trials using stem cells after cardiac injury and explaining new advances in basic science. It concludes with a reiteration that chances of successful regeneration would be improved by understanding and implementing the basics of heart development and stem cell biology.
Reversal of Multidrug Resistance in Breast Cancer
1994-08-23
peripherally derived stem cells (72). Antman and others showed increased numbers of CFU-GM and BFU-E in peripheral blood in the majority of patients treated...original regimen as reported by Antman (45). Peripheral stem cells are not washed before reinfusion and the osmolality of the cell suspension requires the...dosE combination alkylating agents with autologous bone marrow support. A phase I trial. J Clin Oncol 4:646-654, 1986. 63. Eder JP, Antman K, Peters W
Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M
2018-02-01
Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.
Iohara, Koichiro; Murakami, Masashi; Takeuchi, Norio; Osako, Yohei; Ito, Masataka; Ishizaka, Ryo; Utunomiya, Shinji; Nakamura, Hiroshi; Matsushita, Kenji
2013-01-01
Treatment of deep caries with pulpitis is a major challenge in dentistry. Stem cell therapy represents a potential strategy to regenerate the dentin-pulp complex, enabling conservation and restoration of teeth. The objective of this study was to assess the efficacy and safety of pulp stem cell transplantation as a prelude for the impending clinical trials. Clinical-grade pulp stem cells were isolated and expanded according to good manufacturing practice conditions. The absence of contamination, abnormalities/aberrations in karyotype, and tumor formation after transplantation in an immunodeficient mouse ensured excellent quality control. After autologous transplantation of pulp stem cells with granulocyte-colony stimulating factor (G-CSF) in a dog pulpectomized tooth, regenerated pulp tissue including vasculature and innervation completely filled in the root canal, and regenerated dentin was formed in the coronal part and prevented microleakage up to day 180. Transplantation of pulp stem cells with G-CSF yielded a significantly larger amount of regenerated dentin-pulp complex compared with transplantation of G-CSF or stem cells alone. Also noteworthy was the reduction in the number of inflammatory cells and apoptotic cells and the significant increase in neurite outgrowth compared with results without G-CSF. The transplanted stem cells expressed angiogenic/neurotrophic factors. It is significant that G-CSF together with conditioned medium of pulp stem cells stimulated cell migration and neurite outgrowth, prevented cell death, and promoted immunosuppression in vitro. Furthermore, there was no evidence of toxicity or adverse events. In conclusion, the combinatorial trophic effects of pulp stem cells and G-CSF are of immediate utility for pulp/dentin regeneration, demonstrating the prerequisites of safety and efficacy critical for clinical applications. PMID:23761108
Clinical grade adult stem cell banking
Thirumala, Sreedhar; Goebel, W Scott
2009-01-01
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678
Mactier, Catriona Elizabeth; Islam, Md Serajul
2012-01-01
Stem cell transplantation forms an integral part of the treatment for multiple myeloma. This paper reviews the current role of transplantation and the progress that has been made in order to optimize the success of this therapy. Effective induction chemotherapy is important and a combination regimen incorporating the novel agent bortezomib is now favorable. Adequate induction is a crucial adjunct to stem cell transplantation and in some cases may potentially postpone the need for transplant. Different conditioning agents prior to transplantation have been explored: high-dose melphalan is most commonly used and bortezomib is a promising additional agent. There is no well-defined superior transplantation protocol but single or tandem autologous stem cell transplantations are those most commonly used, with allogeneic transplantation only used in clinical trials. The appropriate timing of transplantation in the treatment plan is a matter of debate. Consolidation and maintenance chemotherapies, particularly thalidomide and bortezomib, aim to improve and prolong disease response to transplantation and delay recurrence. Prognostic factors for the outcome of stem cell transplant in myeloma have been highlighted. Despite good responses to chemotherapy and transplantation, the problem of disease recurrence persists. Thus, there is still much room for improvement. Treatments which harness the graft-versus-myeloma effect may offer a potential cure for this disease. Trials of novel agents are underway, including targeted therapies for specific antigens such as vaccines and monoclonal antibodies. PMID:25992212
Cure for thalassemia major – from allogeneic hematopoietic stem cell transplantation to gene therapy
Srivastava, Alok; Shaji, Ramachandran V.
2017-01-01
Allogeneic hematopoietic stem cell transplantation has been well established for several decades as gene replacement therapy for patients with thalassemia major, and now offers very high rates of cure for patients who have access to this therapy. Outcomes have improved tremendously over the last decade, even in high-risk patients. The limited data available suggests that the long-term outcome is also excellent, with a >90% survival rate, but for the best results, hematopoietic stem cell transplantation should be offered early, before any end organ damage occurs. However, access to this therapy is limited in more than half the patients by the lack of suitable donors. Inadequate hematopoietic stem cell transplantation services and the high cost of therapy are other reasons for this limited access, particularly in those parts of the world which have a high prevalence of this condition. As a result, fewer than 10% of eligible patients are actually able to avail of this therapy. Other options for curative therapies are therefore needed. Recently, gene correction of autologous hematopoietic stem cells has been successfully established using lentiviral vectors, and several clinical trials have been initiated. A gene editing approach to correct the β-globin mutation or disrupt the BCL11A gene to increase fetal hemoglobin production has also been reported, and is expected to be introduced in clinical trials soon. Curative possibilities for the major hemoglobin disorders are expanding. Providing access to these therapies around the world will remain a challenge. PMID:27909215
Khan, Shujhat; Mafi, Pouya; Mafi, Reza; Khan, Wasim
2018-01-01
Spinal surgery presents a challenge for both neurosurgery and orthopaedic surgery. Due to the heterogeneous differentiation potential of mesenchymal stem cells, there is much interest in the treatment of spine surgery. Animal and human trials focussing on the efficacy of mesenchymal stem cells in spinal cord injury, spine fusion and disc degeneration were included in this systematic review. Published articles up to January 2016 from MEDLINE, PubMed and Ovid were used by searching for specific terms. Of the 2595 articles found, 53 met the selection criteria and were included for analysis (16 on spinal cord injury, 28 on intervertebral disc repair and 9 on spinal fusion). Numerous studies reported better results when the mesenchymal stem cells were used in co-culture with other cells or used in scaffolds. Mesenchymal stem cells were also found to have an immune-modulatory role, which can improve surgical outcome. This systematic review suggests that mesenchymal stem cells can be used safely and effectively for these spinal surgery treatments. Whilst, in certain studies, mesenchymal stem cells did not necessarily show improved results from existing treatments, they provide an alternative option. This can reduce morbidity that arises from current surgical treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Stem cell research in cell transplantation: sources, geopolitical influence, and transplantation.
Eve, David J; Fillmore, Randolph W; Borlongan, Cesar V; Sanberg, Paul R
2010-01-01
If the rapidly progressing field of stem cell research reaches its full potential, successful treatments and enhanced understanding of many diseases are the likely results. However, the full potential of stem cell science will only be reached if all possible avenues can be explored and on a worldwide scale. Until 2009, the US had a highly restrictive policy on obtaining cells from human embryos and fetal tissue, a policy that pushed research toward the use of adult-derived cells. Currently, US policy is still in flux, and retrospective analysis does show the US lagging behind the rest of the world in the proportional increase in embryonic/fetal stem cell research. The majority of US studies being on either a limited number of cell lines, or on cells derived elsewhere (or funded by other sources than Federal) rather than on freshly isolated embryonic or fetal material. Neural, mesenchymal, and the mixed stem cell mononuclear fraction are the most commonly investigated types, which can generally be classified as adult-derived stem cells, although roughly half of the neural stem cells are fetal derived. Other types, such as embryonic and fat-derived stem cells, are increasing in their prominence, suggesting that new types of stem cells are still being pursued. Sixty percent of the reported stem cell studies involved transplantation, of which over three quarters were allogeneic transplants. A high proportion of the cardiovascular systems articles were on allogeneic transplants in a number of different species, including several autologous studies. A number of pharmaceutical grade stem cell products have also recently been tested and reported on. Stem cell research shows considerable promise for the treatment of a number of disorders, some of which have entered clinical trials; over the next few years it will be interesting to see how these treatments progress in the clinic.
Berry, Donald A.; Ueno, Naoto T.; Johnson, Marcella M.; Lei, Xiudong; Caputo, Jean; Smith, Dori A.; Yancey, Linda J.; Crump, Michael; Stadtmauer, Edward A.; Biron, Pierre; Crown, John P.; Schmid, Peter; Lotz, Jean-Pierre; Rosti, Giovanni; Bregni, Marco; Demirer, Taner
2011-01-01
Purpose High doses of effective chemotherapy are compelling if they can be delivered safely. Substantial interest in supporting high-dose chemotherapy with bone marrow or autologous hematopoietic stem-cell transplantation in the 1980s and 1990s led to the initiation of randomized trials to evaluate its effect in the treatment of metastatic breast cancer. Methods We identified six randomized trials in metastatic breast cancer that evaluated high doses of chemotherapy with transplant support versus a control regimen without stem-cell support. We assembled a single database containing individual patient information from these trials. The primary analysis of overall survival was a log-rank test comparing high dose versus control. We also used Cox proportional hazards regression, adjusting for known covariates. We addressed potential treatment differences within subsets of patients. Results The effect of high-dose chemotherapy on overall survival was not statistically different (median, 2.16 v 2.02 years; P = .08). A statistically significant advantage in progression-free survival (median, 0.91 v 0.69 years) did not translate into survival benefit. Subset analyses found little evidence that there are groups of patients who might benefit from high-dose chemotherapy with hematopoietic support. Conclusion Overall survival of patients with metastatic breast cancer in the six randomized trials was not significantly improved by high-dose chemotherapy; any benefit from high doses was small. No identifiable subset of patients seems to benefit from high-dose chemotherapy. PMID:21768454
Pluripotent stem cells: the last 10 years.
Kimbrel, Erin A; Lanza, Robert
2016-12-01
Pluripotent stem cells (PSCs) can differentiate into virtually any cell type in the body, making them attractive for both regenerative medicine and drug discovery. Over the past 10 years, technological advances and innovative platforms have yielded first-in-man PSC-based clinical trials and opened up new approaches for disease modeling and drug development. Induced PSCs have become the foremost alternative to embryonic stem cells and accelerated the development of disease-in-a-dish models. Over the years and with each new discovery, PSCs have proven to be extremely versatile. This review article highlights key advancements in PSC research, from 2006 to 2016, and how they will guide the direction of the field over the next decade.
Bartolucci, Jorge; Verdugo, Fernando J; González, Paz L; Larrea, Ricardo E; Abarzua, Ema; Goset, Carlos; Rojo, Pamela; Palma, Ivan; Lamich, Ruben; Pedreros, Pablo A; Valdivia, Gloria; Lopez, Valentina M; Nazzal, Carolina; Alcayaga-Miranda, Francisca; Cuenca, Jimena; Brobeck, Matthew J; Patel, Amit N; Figueroa, Fernando E; Khoury, Maroun
2017-10-27
Umbilical cord-derived mesenchymal stem cells (UC-MSC) are easily accessible and expanded in vitro, possess distinct properties, and improve myocardial remodeling and function in experimental models of cardiovascular disease. Although bone marrow-derived mesenchymal stem cells have been previously assessed for their therapeutic potential in individuals with heart failure and reduced ejection fraction, no clinical trial has evaluated intravenous infusion of UC-MSCs in these patients. Evaluate the safety and efficacy of the intravenous infusion of UC-MSC in patients with chronic stable heart failure and reduced ejection fraction. Patients with heart failure and reduced ejection fraction under optimal medical treatment were randomized to intravenous infusion of allogenic UC-MSCs (Cellistem, Cells for Cells S.A., Santiago, Chile; 1×10 6 cells/kg) or placebo (n=15 per group). UC-MSCs in vitro, compared with bone marrow-derived mesenchymal stem cells, displayed a 55-fold increase in the expression of hepatocyte growth factor, known to be involved in myogenesis, cell migration, and immunoregulation. UC-MSC-treated patients presented no adverse events related to the cell infusion, and none of the patients tested at 0, 15, and 90 days presented alloantibodies to the UC-MSCs (n=7). Only the UC-MSC-treated group exhibited significant improvements in left ventricular ejection fraction at 3, 6, and 12 months of follow-up assessed both through transthoracic echocardiography ( P =0.0167 versus baseline) and cardiac MRI ( P =0.025 versus baseline). Echocardiographic left ventricular ejection fraction change from baseline to month 12 differed significantly between groups (+7.07±6.22% versus +1.85±5.60%; P =0.028). In addition, at all follow-up time points, UC-MSC-treated patients displayed improvements of New York Heart Association functional class ( P =0.0167 versus baseline) and Minnesota Living with Heart Failure Questionnaire ( P <0.05 versus baseline). At study completion, groups did not differ in mortality, heart failure admissions, arrhythmias, or incident malignancy. Intravenous infusion of UC-MSC was safe in this group of patients with stable heart failure and reduced ejection fraction under optimal medical treatment. Improvements in left ventricular function, functional status, and quality of life were observed in patients treated with UC-MSCs. URL: https://www.clinicaltrials.gov/ct2/show/NCT01739777. Unique identifier: NCT01739777. © 2017 The Authors.
The "Growing" Reality of the Neurological Complications of Global "Stem Cell Tourism".
Julian, Katie; Yuhasz, Nick; Hollingsworth, Ethan; Imitola, Jaime
2018-04-01
"Stem cell tourism" is defined as the unethical practice of offering unproven cellular preparations to patients suffering from various medical conditions. This phenomenon is rising in the field of neurology as patients are requesting information and opportunities for treatment with stem cells for incurable conditions such as multiple sclerosis and amyotrophic lateral sclerosis, despite their clinical research and experimental designation. Here, we review the recent trends in "stem cell tourism" in both the United States and abroad, and discuss the recent reports of neurological complications from these activities. Finally, we frame critical questions for the field of neurology regarding training in the ethical, legal, and societal issues of the global "stem cell tourism," as well as suggest strategies to alleviate this problem. Although there are ongoing legitimate clinical trials with stem cells for neurological diseases, procedures offered by "stem cell clinics" cannot be defined as clinical research. They lack the experimental and state-of-the-art framework defined by peers and the FDA that focus on human research that safeguard the protection of human subjects against economical exploitation, unwanted side effects, and futility of unproven procedures. "Stem cell tourism" ultimately exploits therapeutic hope of patients and families with incurable neurological diseases and can put in danger the legitimacy of stem cell research as a whole. We posit that an improvement in education, regulation, legislation, and involvement of authorities in global health in neurology and neurosurgery is required. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Zhao, Yong; Jiang, Zhaoshun; Zhao, Tingbao; Ye, Mingliang; Hu, Chengjin; Zhou, Huimin; Yin, Zhaohui; Chen, Yana; Zhang, Ye; Wang, Shanfeng; Shen, Jie; Thaker, Hatim; Jain, Summit; Li, Yunxiang; Diao, Yalin; Chen, Yingjian; Sun, Xiaoming; Fisk, Mary Beth; Li, Heng
2013-07-09
The prevalence of type 2 diabetes (T2D) is increasing worldwide and creating a significant burden on health systems, highlighting the need for the development of innovative therapeutic approaches to overcome immune dysfunction, which is likely a key factor in the development of insulin resistance in T2D. It suggests that immune modulation may be a useful tool in treating the disease. In an open-label, phase 1/phase 2 study, patients (N=36) with long-standing T2D were divided into three groups (Group A, oral medications, n=18; Group B, oral medications+insulin injections, n=11; Group C having impaired β-cell function with oral medications+insulin injections, n=7). All patients received one treatment with the Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, briefly co-cultures them with adherent cord blood-derived multipotent stem cells (CB-SCs), and returns the educated autologous cells to the patient's circulation. Clinical findings indicate that T2D patients achieve improved metabolic control and reduced inflammation markers after receiving Stem Cell Educator therapy. Median glycated hemoglobin (HbA1C) in Group A and B was significantly reduced from 8.61%±1.12 at baseline to 7.25%±0.58 at 12 weeks (P=2.62E-06), and 7.33%±1.02 at one year post-treatment (P=0.0002). Homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) demonstrated that insulin sensitivity was improved post-treatment. Notably, the islet beta-cell function in Group C subjects was markedly recovered, as demonstrated by the restoration of C-peptide levels. Mechanistic studies revealed that Stem Cell Educator therapy reverses immune dysfunctions through immune modulation on monocytes and balancing Th1/Th2/Th3 cytokine production. Clinical data from the current phase 1/phase 2 study demonstrate that Stem Cell Educator therapy is a safe approach that produces lasting improvement in metabolic control for individuals with moderate or severe T2D who receive a single treatment. In addition, this approach does not appear to have the safety and ethical concerns associated with conventional stem cell-based approaches. ClinicalTrials.gov number, NCT01415726.
Liras, Antonio
2010-12-10
There is much to be investigated about the specific characteristics of stem cells and about the efficacy and safety of the new drugs based on this type of cells, both embryonic as adult stem cells, for several therapeutic indications (cardiovascular and ischemic diseases, diabetes, hematopoietic diseases, liver diseases). Along with recent progress in transference of nuclei from human somatic cells, as well as iPSC technology, has allowed availability of lineages of all three germ layers genetically identical to those of the donor patient, which permits safe transplantation of organ-tissue-specific adult stem cells with no immune rejection. The main objective is the need for expansion of stem cell characteristics to maximize stem cell efficacy (i.e. the proper selection of a stem cell) and the efficacy (maximum effect) and safety of stem cell derived drugs. Other considerations to take into account in cell therapy will be the suitability of infrastructure and technical staff, biomaterials, production costs, biobanks, biosecurity, and the biotechnological industry. The general objectives in the area of stem cell research in the next few years, are related to identification of therapeutic targets and potential therapeutic tests, studies of cell differentiation and physiological mechanisms, culture conditions of pluripotent stem cells and efficacy and safety tests for stem cell-based drugs or procedures to be performed in both animal and human models in the corresponding clinical trials. A regulatory framework will be required to ensure patient accessibility to products and governmental assistance for their regulation and control. Bioethical aspects will be required related to the scientific and therapeutic relevance and cost of cryopreservation over time, but specially with respect to embryos which may ultimately be used for scientific uses of research as source of embryonic stem cells, in which case the bioethical conflict may be further aggravated.
De Feo, Donatella; Merlini, Arianna; Laterza, Cecilia; Martino, Gianvito
2012-06-01
Transplantation of neural stem/precursor cells (NPCs) has been proposed as a promising therapeutic strategy in almost all neurological disorders characterized by the failure of central nervous system (CNS) endogenous repair mechanisms in restoring the tissue damage and rescuing the lost function. Nevertheless, recent evidence consistently challenges the limited view that transplantation of these cells is solely aimed at protecting the CNS from inflammatory and neurodegenerative damage through cell replacement. Recent preclinical data confirmed that transplanted NPCs may also exert a 'bystander' neuroprotective effect and identified a series of molecules - for example, immunomodulatory substances, neurotrophic growth factors, stem cell regulators as well as guidance molecules - whose in-situ secretion by NPCs is temporally and spatially orchestrated by environmental needs. A better understanding of the molecular and cellular mechanisms sustaining this 'therapeutic plasticity' is of pivotal importance for defining crucial aspects of the bench-to-beside translation of neural stem cell therapy, that is route and timing of administration as well as the best cellular source. Further insight into those latter issues is eagerly expected from the ongoing phase I/II clinical trials, while, on the other hand, new cellular sources are being developed, mainly by exploiting the new possibilities offered by cellular reprogramming. Nowadays, the research on NPC transplantation in neurological disorders is advancing on two different fronts: on one hand, recent preclinical data are uncovering the molecular basis of NPC therapeutic plasticity, offering a more solid rational framework for the design of clinical studies. On the other hand, pilot trials are highlighting the safety and feasibility issues of neural stem cell transplantation that need to be addressed before efficacy could be properly evaluated.
Stem cells have the potential to rejuvenate regenerative medicine research.
Eve, David J; Fillmore, Randolph; Borlongan, Cesar V; Sanberg, Paul R
2010-10-01
The increasing number of publications featuring the use of stem cells in regenerative processes supports the idea that they are revolutionizing regenerative medicine research. In an analysis of the articles published in the journal Cell Transplantation - The Regenerative Medicine Journal between 2008 and 2009, which reveals the topics and categories that are on the cutting edge of regenerative medicine research, stem cells are becoming increasingly relevant as the "runner-up" category to "neuroscience" related articles. The high volume of stem cell research casts a bright light on the hope for stem cells and their role in regenerative medicine as a number of reports deal with research using stem cells entering, or seeking approval for, clinical trials. The "methods and new technologies" and "tissue engineering" sections were almost equally as popular, and in part, reflect attempts to maximize the potential of stem cells and other treatments for the repair of damaged tissue. Transplantation studies were again more popular than non-transplantation, and the contribution of stem cell-related transplants was greater than other types of transplants. The non-transplantation articles were predominantly related to new methods for the preparation, isolation and manipulation of materials for transplant by specific culture media, gene therapy, medicines, dietary supplements, and co-culturing with other cells and further elucidation of disease mechanisms. A sizeable proportion of the transplantation articles reported on how previously new methods may have aided the ability of the cells or tissue to exert beneficial effects following transplantation.
Deng, Peter; Torrest, Audrey; Pollock, Kari; Dahlenburg, Heather; Annett, Geralyn; Nolta, Jan A.; Fink, Kyle D.
2016-01-01
Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells (MSC) to secrete brain-derived neurotrophic factor (BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease (HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system. PMID:27335539
Induced pluripotent stem cells as custom therapeutics for retinal repair: progress and rationale.
Wright, Lynda S; Phillips, M Joseph; Pinilla, Isabel; Hei, Derek; Gamm, David M
2014-06-01
Human pluripotent stem cells have made a remarkable impact on science, technology and medicine by providing a potentially unlimited source of human cells for basic research and clinical applications. In recent years, knowledge gained from the study of human embryonic stem cells and mammalian somatic cell reprogramming has led to the routine production of human induced pluripotent stem cells (hiPSCs) in laboratories worldwide. hiPSCs show promise for use in transplantation, high throughput drug screening, "disease-in-a-dish" modeling, disease gene discovery, and gene therapy testing. This review will focus on the first application, beginning with a discussion of methods for producing retinal lineage cells that are lost in inherited and acquired forms of retinal degenerative disease. The selection of appropriate hiPSC-derived donor cell type(s) for transplantation will be discussed, as will the caveats and prerequisite steps to formulating a clinical Good Manufacturing Practice (cGMP) product for clinical trials. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Induced pluripotent stem cells as custom therapeutics for retinal repair: Progress and rationale
Wright, Lynda S.; Phillips, M. Joseph; Pinilla, Isabel; Hei, Derek; Gamm, David M.
2014-01-01
Human pluripotent stem cells have made a remarkable impact on science, technology and medicine by providing a potentially unlimited source of human cells for basic research and clinical applications. In recent years, knowledge gained from the study of human embryonic stem cells and mammalian somatic cell reprogramming has led to the routine production of human induced pluripotent stem cells (hiPSCs) in laboratories worldwide. hiPSCs show promise for use in transplantation, high throughput drug screening, “disease-in-a-dish” modeling, disease gene discovery, and gene therapy testing. This review will focus on the first application, beginning with a discussion of methods for producing retinal lineage cells that are lost in inherited and acquired forms of retinal degenerative disease. The selection of appropriate hiPSC-derived donor cell type(s) for transplantation will be discussed, as will the caveats and prerequisite steps to formulating a clinical Good Manufacturing Practice (cGMP) product for clinical trials. PMID:24534198
Goldman, Mitchel P.
2017-01-01
Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality. PMID:28670356
Wu, Douglas C; Goldman, Mitchel P
2017-05-01
Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality.
El-Said, Mohammed Mohammed; Emile, Sameh Hany
2018-04-25
In the study by Sarveazad et al. adipose tissue-derived stem cells were injected to reinforce anal sphincter repair. The authors came to the conclusion that injection of stem cells during repair surgery for fecal incontinence may cause replacement of fibrous tissue, which may be a key point in treatment of fecal incontinence. The authors emphasized in their "Discussion" section that the ability of stem cells to differentiate into muscle fibers, replacing the fibrous tissue at the site of repair, is their main action, which may not be accurate. We think that healing of repaired anal sphincter begins with granulation tissue formation, which then matures into fibrous tissue that becomes infiltrated by muscle fibers from the approximated cut ends of the sphincter, resulting in regain of sphincter muscle continuity. This is supported by many experimental studies that have evaluated local injection of stem cells during sphincteroplasty in rats and shown that the injected stem cells do not differentiate into muscle fibers but may induce healing by a strong fibrous tissue. Further studies are needed to determine the main mechanism of action of mesenchymal stems cells in augmenting anal sphincter repair.
Quimby, J M; Dow, S W
2015-06-01
Stem cell therapy is an innovative field of scientific investigation with tremendous potential for clinical application that holds promise for the treatment of a variety of diseases in veterinary medicine. Based on the known desirable properties of mesenchymal stem cells, the therapy has potential for treatment of both acute kidney injury and chronic kidney disease in cats. This review details terminology commonly used in this field of study, sources of mesenchymal stem cells and their proposed mechanism of action particularly as it relates to renal repair. Studies performed in rodent models of chronic kidney disease and feline clinical trial results are also summarized with the aim of providing an overview of the current status of this treatment modality and its potential for the future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy
Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J.; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P.; Kirshenbaum, Lorrie; Blaxall, Burns C.; Terzic, Andre; Hall, Jennifer L.
2014-01-01
The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, pre-clinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multi-modality imaging and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context. PMID:24659088
Allogeneic Transplantation: Peripheral Blood versus Bone Marrow
Bensinger, William I.
2013-01-01
Purpose of Review Peripheral Blood Stem Cells (PBSC) have been widely adopted as a source of stem cells for allogeneic transplantation although controversy remains regarding their role compared to the use of bone marrow (BM). Recent Findings Ten year follow-up has been reported from several large randomized trials and a recently completed trial using unrelated donor stem cells have been reported. In addition, two meta-analyses have been reported from the findings of a number of randomized studies. Several studies indicate that PBSC confer survival advantages over BM with matched sibling donors for most disease categories except where the risks of disease recurrence within the first year are low, but with the extra risk of more chronic GVHD. Using PBSC from unrelated donors does not appear to be more beneficial than BM, but with early follow-up. New strategies for rapid mobilization of PBSC from normal donors using plerixafor have been reported. Early studies suggest that filgrastim stimulated BM may confer some of the advantages of PBSC without the risks of chronic GVHD. Summary PBSC are a preferred source of stem cells for many types of allogeneic transplant where matched related donors are available. Whether the same benefits accrue from unrelated donors will require further follow-up. PMID:22185938
Regulatory considerations for pluripotent stem cell therapies.
Carpenter, Melissa K
2017-01-01
The development of pluripotent stem cell (PSC) therapies is rapidly advancing, and a number of PSC-derived cell products are currently being tested in clinical trials. The biological complexity of these therapies results in specific challenges in complying with regulatory guidelines. This includes the choice of starting material, reproducible and consistent manufacturing, and preclinical safety and efficacy assessment of the PSC-derived product. This review discusses current US cell therapy regulations and strategies for compliance with these regulations when developing PSC-derived products. © 2017 Elsevier B.V. All rights reserved.
Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.
Badimon, Lina; Oñate, Blanca; Vilahur, Gemma
2015-07-01
Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages.
Kim, Hee Jung; Park, Jeong-Soo
2017-03-01
The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.
Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages
Kim, Hee Jung; Park, Jeong-Soo
2017-01-01
ABSTRACT The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed. PMID:28484739
Buchholz, David E.; Pennington, Britney O.; Croze, Roxanne H.; Hinman, Cassidy R.
2013-01-01
Controlling the differentiation of human pluripotent stem cells is the goal of many laboratories, both to study normal human development and to generate cells for transplantation. One important cell type under investigation is the retinal pigmented epithelium (RPE). Age-related macular degeneration (AMD), the leading cause of blindness in the Western world, is caused by dysfunction and death of the RPE. Currently, RPE derived from human embryonic stem cells are in clinical trials for the treatment of AMD. Although protocols to generate RPE from human pluripotent stem cells have become more efficient since the first report in 2004, they are still time-consuming and relatively inefficient. We have found that the addition of defined factors at specific times leads to conversion of approximately 80% of the cells to an RPE phenotype in only 14 days. This protocol should be useful for rapidly generating RPE for transplantation as well as for studying RPE development in vitro. PMID:23599499
Impact of autologous and allogeneic stem cell transplantation in peripheral T-cell lymphomas.
Reimer, Peter
2010-01-01
Peripheral T/NK-cell lymphomas (PTCLs) are rare malignancies characterized by poor prognosis. So far, no standard therapy has been established, due to the lack of randomised studies. High-dose therapy and autologous stem cell transplantation (HDT-autoSCT) have shown good feasibility with low toxicity in retrospective studies. In relapsing and refractory PTCL several comparison analyses suggest similar efficacy for PTCL when compared with aggressive B-cell lymphoma. In the upfront setting, prospective data show promising results with a long-lasting overall survival in a relevant subset of patients. Achieving a complete remission at transplantation seems to be the most important prognostic factor. Allogeneic stem cell transplantation (alloSCT) has been investigated only as salvage treatment. Especially when using reduced intensity conditioning regimen, eligible patients seem to benefit from this approach. To define the role for upfront stem cell transplantation a randomised trial by the German High-Grade Non-Hodgkin Lymphoma Study Group comparing HDT-autoSCT and alloSCT will be initiated this year.
Panaccione, Alexander; Chang, Michael T.; Ivanov, Sergey V.
2016-01-01
Objectives This review surveys trialed therapies and molecular defects in adenoid cystic carcinoma (ACC), with an emphasis on neural crest‐like stemness characteristics of newly discovered cancer stem cells (CSCs) and therapies that may target these CSCs. Data Sources Articles available on Pubmed or OVID MEDLINE databases and unpublished data. Review Methods Systematic review of articles pertaining to ACC and neural crest‐like stem cells. Results Adenoid cystic carcinoma of the salivary gland is a slowly growing but relentless cancer that is prone to nerve invasion and metastases. A lack of understanding of molecular etiology and absence of targetable drivers has limited therapy for patients with ACC to surgery and radiation. Currently, no curative treatments are available for patients with metastatic disease, which highlights the need for effective new therapies. Research in this area has been inhibited by the lack of validated cell lines and a paucity of clinically useful markers. The ACC research environment has recently improved, thanks to the introduction of novel tools, technologies, approaches, and models. Improved understanding of ACC suggests that neural crest‐like stemness is a major target in this rare tumor. New cell culture techniques and patient‐derived xenografts provide tools for preclinical testing. Conclusion Preclinical research has not identified effective targets in ACC, as confirmed by the large number of failed clinical trials. New molecular data suggest that drivers of neural crest‐like stemness may be required for maintenance of ACC; as such, CSCs are a target for therapy of ACC. PMID:28894804
Choi, Sung Won; Braun, Thomas; Chang, Lawrence; Ferrara, James L M; Pawarode, Attaphol; Magenau, John M; Hou, Guoqing; Beumer, Jan H; Levine, John E; Goldstein, Steve; Couriel, Daniel R; Stockerl-Goldstein, Keith; Krijanovski, Oleg I; Kitko, Carrie; Yanik, Gregory A; Lehmann, Michael H; Tawara, Isao; Sun, Yaping; Paczesny, Sophie; Mapara, Markus Y; Dinarello, Charles A; DiPersio, John F; Reddy, Pavan
2014-01-01
Acute graft-versus-host disease (GVHD) remains a barrier to more widespread application of allogeneic haemopoietic stem-cell transplantation. Vorinostat is an inhibitor of histone deacetylases and was shown to attenuate GVHD in preclinical models. We aimed to study the safety and activity of vorinostat, in combination with standard immunoprophylaxis, for prevention of GVHD in patients undergoing related-donor reduced-intensity conditioning haemopoietic stem-cell transplantation. Between March 31, 2009, and Feb 8, 2013, we did a prospective, single-arm, phase 1/2 study at two centres in the USA. We recruited adults (aged ≥18 years) with high-risk haematological malignant diseases who were candidates for reduced-intensity conditioning haemopoietic stem-cell transplantation and had an available 8/8 or 7/8 HLA-matched related donor. All patients received a conditioning regimen of fludarabine (40 mg/m(2) daily for 4 days) and busulfan (3.2 mg/kg daily for 2 days) and GVHD immunoprophylaxis of mycophenolate mofetil (1 g three times a day, days 0-28) and tacrolimus (0.03 mg/kg a day, titrated to a goal level of 8-12 ng/mL, starting day -3 until day 180). Vorinostat (either 100 mg or 200 mg, twice a day) was initiated 10 days before haemopoietic stem-cell transplantation until day 100. The primary endpoint was the cumulative incidence of grade 2-4 acute GVHD by day 100. This trial is registered with ClinicalTrials.gov, number NCT00810602. 50 patients were assessable for both toxic effects and response; eight additional patients were included in the analysis of toxic effects. All patients engrafted neutrophils and platelets at expected times after haemopoietic stem-cell transplantation. The cumulative incidence of grade 2-4 acute GVHD by day 100 was 22% (95% CI 13-36). The most common non-haematological adverse events included electrolyte disturbances (n=15), hyperglycaemia (11), infections (six), mucositis (four), and increased activity of liver enzymes (three). Non-symptomatic thrombocytopenia after engraftment was the most common haematological grade 3-4 adverse event (nine) but was transient and all cases resolved swiftly. Administration of vorinostat in combination with standard GVHD prophylaxis after related-donor reduced-intensity conditioning haemopoietic stem-cell transplantation is safe and is associated with a lower than expected incidence of severe acute GVHD. Future studies are needed to assess the effect of vorinostat for prevention of GVHD in broader settings of haemopoietic stem-cell transplantation. Merck, Leukemia and Lymphoma Society, National Institutes of Health, St Baldrick's Foundation, Michigan Institute for Clinical and Health Research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stem cell-based therapies in Parkinson's disease: future hope or current treatment option?
Loewenbrück, Kai; Storch, Alexander
2011-05-01
Parkinson's disease (PD) is one of the most frequent neurodegenerative diseases and represents a major therapeutic challenge because of the so far missing therapeutic means to influence the ongoing loss of dopaminergic innervation to the striatum. Cell replacement has raised hope to offer the first restorative treatment option. Clinical trials have provided "proof of principle" that transplantation of dopamine-producing neurons into the striatum of PD patients can achieve symptomatic relief given that the striatum is sufficiently re-innervated. Various cell sources have been tested, including fetal ventral midbrain tissue, embryonic stem cells, fetal and adult neural stem cells and, after a ground-breaking discovery, induced pluripotent stem cells. Although embryonic and induced pluripotent stem cells have emerged as the most promising candidates to overcome most of the obstacles to clinical successful cell replacement, each cell source has its unique drawbacks. This review does not only provide a comprehensive overview of the different cellular candidates, including their assets and drawbacks, but also of the various additional issues that need to be addressed in order to convert cellular replacement therapies from an experimental to a clinically relevant therapeutic alternative.
Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine
Arnhold, Stefan; Wenisch, Sabine
2015-01-01
Adipose tissue derived stem cells (ASCs) are mesenchymal stem cells which can be obtained from different adipose tissue sources within the body. It is an abundant cell pool, which is easy accessible and the cells can be obtained in large numbers, cultivated and expanded in vitro and prepared for tissue engineering approaches, especially for skeletal tissue repair. In the recent years this cell population has attracted a great amount of attention among researchers in human as well as in veterinary medicine. In the meantime ASCs have been well characterized and their use in regenerative medicine is very well established. This review focuses on the characterization of ASCs for their use for tissue engineering approaches especially in veterinary medicine and also highlights a selection of clinical trials on the basis of ASCs as the relevant cell source. PMID:25973326
Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine.
Arnhold, Stefan; Wenisch, Sabine
2015-01-01
Adipose tissue derived stem cells (ASCs) are mesenchymal stem cells which can be obtained from different adipose tissue sources within the body. It is an abundant cell pool, which is easy accessible and the cells can be obtained in large numbers, cultivated and expanded in vitro and prepared for tissue engineering approaches, especially for skeletal tissue repair. In the recent years this cell population has attracted a great amount of attention among researchers in human as well as in veterinary medicine. In the meantime ASCs have been well characterized and their use in regenerative medicine is very well established. This review focuses on the characterization of ASCs for their use for tissue engineering approaches especially in veterinary medicine and also highlights a selection of clinical trials on the basis of ASCs as the relevant cell source.
Sakiyama, Ryoichi; Blau, Brandon J; Miki, Toshio
2017-01-01
There is currently a pressing need for alternative therapies to liver transplantation. The number of patients waiting for a liver transplant is substantially higher than the number of transplantable donor livers, resulting in a long waiting time and a high waiting list mortality. An extracorporeal liver support system is one possible approach to overcome this problem. However, the ideal cell source for developing bioartificial liver (BAL) support systems has yet to be determined. Recent advancements in stem cell technology allow researchers to generate highly functional hepatocyte-like cells from human pluripotent stem cells (hPSCs). In this mini-review, we summarize previous clinical trials with different BAL systems, and discuss advantages of and potential obstacles to utilizing hPSC-derived hepatic cells in clinical-scale BAL systems. PMID:28373763
The Role of Stem Cells in the Treatment of Cerebral Palsy: a Review.
Kiasatdolatabadi, Anahita; Lotfibakhshaiesh, Nasrin; Yazdankhah, Meysam; Ebrahimi-Barough, Somayeh; Jafarabadi, Mina; Ai, Arman; Sadroddiny, Esmaeil; Ai, Jafar
2017-09-01
Cerebral palsy (CP) is a neuromuscular disease due to injury in the infant's brain. The CP disorder causes many neurologic dysfunctions in the patient. Various treatment methods have been used for the management of CP disorder. However, there has been no absolute cure for this condition. Furthermore, some of the procedures which are currently used for relief of symptoms in CP cause discomfort or side effects in the patient. Recently, stem cell therapy has attracted a huge interest as a new therapeutic method for treatment of CP. Several investigations in animal and human with CP have demonstrated positive potential of stem cell transplantation for the treatment of CP disorder. The ultimate goal of this therapeutic method is to harness the regenerative capacity of the stem cells causing a formation of new tissues to replace the damaged tissue. During the recent years, there have been many investigations on stem cell therapy. However, there are still many unclear issues regarding this method and high effort is needed to create a technology as a perfect treatment. This review will discuss the scientific background of stem cell therapy for cerebral palsy including evidences from current clinical trials.
Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J
2011-07-01
Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA.
The Potential of Human Stem Cells for the Study and Treatment of Glaucoma
Chamling, Xitiz; Sluch, Valentin M.; Zack, Donald J.
2016-01-01
Purpose Currently, the only available and approved treatments for glaucoma are various pharmacologic, laser-based, and surgical procedures that lower IOP. Although these treatments can be effective, they are not always sufficient, and they cannot restore vision that has already been lost. The goal of this review is to briefly assess current developments in the application of stem cell biology to the study and treatment of glaucoma and other forms of optic neuropathy. Methods A combined literature review and summary of the glaucoma-related discussion at the 2015 “Sight Restoration Through Stem Cell Therapy” meeting that was sponsored by the Ocular Research Symposia Foundation (ORSF). Results Ongoing advancements in basic and eye-related developmental biology have enabled researchers to direct murine and human stem cells along specific developmental paths and to differentiate them into a variety of ocular cell types of interest. The most advanced of these efforts involve the differentiation of stem cells into retinal pigment epithelial cells, work that has led to the initiation of several human trials. More related to the glaucoma field, there have been recent advances in developing protocols for differentiation of stem cells into trabecular meshwork and retinal ganglion cells. Additionally, efforts are being made to generate stem cell–derived cells that can be used to secrete neuroprotective factors. Conclusions Advancing stem cell technology provides opportunities to improve our understanding of glaucoma-related biology and develop models for drug development, and offers the possibility of cell-based therapies to restore sight to patients who have already lost vision. PMID:27116666
Zhang, Li; Wang, Wei
2012-04-05
To identify global research trends of muscle-derived stem cells (MDSCs) using a bibliometric analysis of the Web of Science, Research Portfolio Online Reporting Tools of the National Institutes of Health (NIH), and the Clinical Trials registry database (ClinicalTrials.gov). We performed a bibliometric analysis of data retrievals for MDSCs from 2002 to 2011 using the Web of Science, NIH, and ClinicalTrials.gov. (1) Web of Science: (a) peer-reviewed articles on MDSCs that were published and indexed in the Web of Science. (b) Type of articles: original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material and news items. (c) Year of publication: 2002-2011. (d) Citation databases: Science Citation Index-Expanded (SCI-E), 1899-present; Conference Proceedings Citation Index-Science (CPCI-S), 1991-present; Book Citation Index-Science (BKCI-S), 2005-present. (2) NIH: (a) Projects on MDSCs supported by the NIH. (b) Fiscal year: 1988-present. (3) ClinicalTrials.gov: All clinical trials relating to MDSCs were searched in this database. (1) Web of Science: (a) Articles that required manual searching or telephone access. (b) We excluded documents that were not published in the public domain. (c) We excluded a number of corrected papers from the total number of articles. (d) We excluded articles from the following databases: Social Sciences Citation Index (SSCI), 1898-present; Arts & Humanities Citation Index (A&HCI), 1975-present; Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH), 1991-present; Book Citation Index - Social Sciences & Humanities (BKCI-SSH), 2005-present; Current Chemical Reactions (CCR-EXPANDED), 1985-present; Index Chemicus (IC), 1993-present. (2) NIH: (a) We excluded publications related to MDSCs that were supported by the NIH. (b) We limited the keyword search to studies that included MDSCs within the title or abstract. (3) ClinicalTrials.gov: (a) We excluded clinical trials that were not in the ClinicalTrials.gov database. (b) We excluded clinical trials that dealt with stem cells other than MDSCs in the ClinicalTrials.gov database. (1) Type of literature; (2) annual publication output; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) top cited authors over the last 10 years; (7) projects financially supported by the NIH; and (8) clinical trials registered. (1) In all, 802 studies on MDSCs appeared in the Web of Science from 2002 to 2011, almost half of which derived from American authors and institutes. The number of studies on MDSCs has gradually increased over the past 10 years. Most papers on MDSCs appeared in journals with a particular focus on cell biology research, such as Experimental Cell Research, Journal of Cell Science, and PLoS One. (2) Eight MDSC research projects have received over US$6 billion in funding from the NIH. The current project led by Dr. Johnny Huard of the University of Pittsburgh-"Muscle-Based Tissue Engineering to Improve Bone Healing"-is supported by the NIH. Dr. Huard has been the most productive and top-cited author in the field of gene therapy and adult stem cell research in the Web of Science over last 10 years. (3) On ClinicalTrials.gov, "Muscle Derived Cell Therapy for Bladder Exstrophy Epispadias Induced Incontinence" Phase 1 is registered and sponsored by Johns Hopkins University and has been led by Dr. John P. Gearhart since November 2009. From our analysis of the literature and research trends, we found that MDSCs may offer further benefits in regenerative medicine.
Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.
Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe
2013-03-01
There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.
Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective
HUANG, GEORGE T.-J.; AL-HABIB, MEY; GAUTHIER, PHILIPPE
2013-01-01
There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic. PMID:23914150
Iams, Wade; Reddy, Nishitha M
2014-10-01
The non-Hodgkin lymphomas (NHLs) are a heterogeneous group of diseases with variable clinical outcomes. Autologous hematopoietic stem-cell transplantation (ASCT) as frontline, consolidative therapy has been evaluated based upon histological subtype of NHL. In this review, we summarize the major clinical trials guiding the use of frontline ASCT in NHL. With the constantly changing landscape of upfront therapy and multiple promising novel agents, the ability to conduct randomized trials to evaluate the benefit of consolidative ASCT is not only challenging but may be considered by some an inept utilization of resources. Our recommendation for consolidative ASCT is based on analyzing the current available data.
Angiogenesis in the Infarcted Myocardium
Cochain, Clement; Channon, Keith M.
2013-01-01
Abstract Significance: Proangiogenic therapy appeared a promising strategy for the treatment of patients with acute myocardial infarction (MI), as de novo formation of microvessels, has the potential to salvage ischemic myocardium at early stages after MI, and is also essential to prevent the transition to heart failure through the control of cardiomyocyte hypertrophy and contractility. Recent Advances: Exciting preclinical studies evaluating proangiogenic therapies for MI have prompted the initiation of numerous clinical trials based on protein or gene transfer delivery of growth factors and administration of stem/progenitor cells, mainly from bone marrow origin. Nonetheless, these clinical trials showed mixed results in patients with acute MI. Critical Issues: Even though methodological caveats, such as way of delivery for angiogenic growth factors (e.g., protein vs. gene transfer) and stem/progenitor cells or isolation/culture procedure for regenerative cells might partially explain the failure of such trials, it appears that delivery of a single growth factor or cell type does not support angiogenesis sufficiently to promote cardiac repair. Future Directions: Optimization of proangiogenic therapies might include stimulation of both angiogenesis and vessel maturation and/or the use of additional sources of stem/progenitor cells, such as cardiac progenitor cells. Experimental unraveling of the mechanisms of angiogenesis, vessel maturation, and endothelial cell/cardiomyocyte cross talk in the ischemic heart, analysis of emerging pathways, as well as a better understanding of how cardiovascular risk factors impact endogenous and therapeutically stimulated angiogenesis, would undoubtedly pave the way for the development of novel and hopefully efficient angiogenesis targeting therapeutics for the treatment of acute MI. Antioxid. Redox Signal. 18, 1100–1113. PMID:22870932
Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro
Massee, Michelle; Chinn, Kathryn; Lei, Jennifer; Lim, Jeremy J.; Young, Conan S.
2015-01-01
Abstract Human‐derived placental tissues have been shown in randomized clinical trials to be effective for healing chronic wounds, and have also demonstrated the ability to recruit stem cells to the wound site in vitro and in vivo. In this study, PURION® Processed dehydrated human amnion/chorion membrane allografts (dHACM, EpiFix®, MiMedx Group, Marietta, GA) were evaluated for their ability to alter stem cell activity in vitro. Human bone marrow mesenchymal stem cells (BM‐MSCs), adipose derived stem cells (ADSCs), and hematopoietic stem cells (HSCs) were treated with soluble extracts of dHACM tissue, and were evaluated for cellular proliferation, migration, and cytokine secretion. Stem cells were analyzed for cell number by DNA assay after 24 h, closure of an acellular zone using microscopy over 3 days, and soluble cytokine production in the medium of treated stem cells was analyzed after 3 days using a multiplex ELISA array. Treatment with soluble extracts of dHACM tissue stimulated BM‐MSCs, ADSCs, and HSCs to proliferate with a significant increase in cell number after 24 h. dHACM treatment accelerated closure of an acellular zone by ADSCs and BM‐MSCs after 3 days, compared to basal medium. BM‐MSCs, ADSCs, and HSCs also modulated endogenous production of a number of various soluble signals, including regulators of inflammation, mitogenesis, and wound healing. dHACM treatment promoted increased proliferation and migration of ADSCs, BM‐MSCs, and HSCs, along with modulation of secreted proteins from those cells. Therefore, dHACM may impact wound healing by amplifying host stem cell populations and modulating their responses in treated wound tissues. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1495–1503, 2016. PMID:26175122
Stem cells in pharmaceutical biotechnology.
Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef
2011-11-01
Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All together, the applications of various cell types derived from patient specific pluripotent stem cells may lead to targeted drug and cellular therapies for certain individuals.
Targeting stem cell niches and trafficking for cardiovascular therapy
Kränkel, Nicolle; Spinetti, Gaia; Amadesi, Silvia; Madeddu, Paolo
2010-01-01
Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair. PMID:20965213
Stem cell transplantation and mesenchymal cells to treat autoimmune diseases.
Tyndall, Alan; van Laar, Jacob M
2016-06-01
Since the start of the international stem cell transplantation project in 1997, over 2000 patients have received a haematopoietic stem cell transplant (HSCT), mostly autologous, as treatment for a severe autoimmune disease, the majority being multiple sclerosis (MS), systemic sclerosis (SSc) and Crohn's disease. There was an overall 85% 5-year survival and 43% progression-free survival. Around 30% of patients in all disease subgroups had a complete response, often durable despite full immune reconstitution. In many cases, e.g. systemic sclerosis, morphological improvement such as reduction of skin collagen and normalization of microvasculature was documented, beyond any predicted known effects of intense immunosuppression alone. It is hoped that the results of the three running large prospective randomized controlled trials will allow modification of the protocols to reduce the high transplant-related mortality which relates to regimen intensity, age of patient, and comorbidity. Mesenchymal stromal cells (MSC), often incorrectly called stem cells, have been the intense focus of in vitro studies and animal models of rheumatic and other diseases over more than a decade. Despite multiple plausible mechanisms of action and a plethora of positive in vivo animal studies, few randomised controlled clinical trials have demonstrated meaningful clinical benefit in any condition so far. This could be due to confusion in cell product terminology, complexity of clinical study design and execution or agreement on meaningful outcome measures. Within the rheumatic diseases, SLE and rheumatoid arthritis (RA) have received most attention. Uncontrolled multiple trial data from over 300 SLE patients have been published from one centre suggesting a positive outcome; one single centre comparative study in 172 RA was positive. In addition, small numbers of patients with Crohn's disease, multiple sclerosis, primary Sjögren's disease, polymyositis/dermatomyositis and type II diabetes mellitus have received MSC therapeutically. The possible reasons for this apparent mismatch between expectation and clinical reality will be discussed. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin
2010-02-01
The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.
Salimnia, H; Fairfax, M R; Chandrasekar, P H
2014-12-01
Cytomegalovirus (CMV) causes significant morbidity and mortality in solid organ and bone marrow transplant recipients. DNA vaccines can provide both humoral and cellular immunity without exposing immune-compromised persons to replication-competent CMV. We studied the kinetics of CMV vaccine DNA in plasma. The samples were obtained from vaccine recipients who were enrolled in a double-blinded, placebo-controlled clinical trial of an intramuscular, plasmid-based, bivalent DNA vaccine for CMV in stem cell transplant recipients. Residual specimens on patients enrolled in the vaccine trial were saved until the trial was unblinded and published. Quantitative real-time polymerase chain reaction (PCR) was used to detect and quantify CMV glycoprotein B (gB) DNA in plasma from 4 recipients of the vaccine. The melting temperature of the vaccine gB amplicon was 62.4°C, compared to 68.8°C, which is seen with the wild-type virus. Sequence analysis revealed that there were 3 mismatches between the fluorescent resonance energy transfer probe and the vaccine DNA sequence. Because preemptive treatment of CMV disease in stem cell transplant patients is based on quantitative PCR analysis of viral sequences in plasma, it is important that vaccine sequences not be confused with those in wild-type virus. Confusion could lead to treatment with toxic medications, potentially compromising the transplant. Effects of PCR target choice and amplicon detection techniques on patient management and vaccine trials are discussed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Human mesenchymal stem cells - current trends and future prospective
Ullah, Imran; Subbarao, Raghavendra Baregundi; Rho, Gyu Jin
2015-01-01
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials. PMID:25797907
Nanotechnology for mesenchymal stem cell therapies.
Corradetti, Bruna; Ferrari, Mauro
2016-10-28
Mesenchymal stem cells (MSC) display great proliferative, differentiative, chemotactic, and immune-modulatory properties required to promote tissue repair. Several clinical trials based on the use of MSC are currently underway for therapeutic purposes. The aim of this article is to examine the current trends and potential impact of nanotechnology in MSC-driven regenerative medicine. Nanoparticle-based approaches are used as powerful carrier systems for the targeted delivery of bioactive molecules to ensure MSC long-term maintenance in vitro and to enhance their regenerative potential. Nanostructured materials have been developed to recapitulate the stem cell niche within a tissue and to instruct MSC toward the creation of regeneration-permissive environment. Finally, the capability of MSC to migrate toward the site of injury/inflammation has allowed for the development of diagnostic imaging systems able to monitor transplanted stem cell bio-distribution, toxicity, and therapeutic effectiveness. Copyright © 2015 Elsevier B.V. All rights reserved.
Klein, Silvan M; Vykoukal, Jody; Li, De-Pei; Pan, Hui-Lin; Zeitler, Katharina; Alt, Eckhard; Geis, Sebastian; Felthaus, Oliver; Prantl, Lukas
2016-07-01
Conduits preseeded with either Schwann cells or stem cells differentiated into Schwann cells demonstrated promising results for the outcome of nerve regeneration in nerve defects. The concept of this trial combines nerve repair by means of a commercially available nerve guidance conduit and preseeding with autologous, undifferentiated, adipose tissue-derived stem cells. Adipose tissue-derived stem cells were harvested from rats and subsequently seeded onto a U.S. Food and Drug Administration-approved type I collagen conduit. Sciatic nerve gaps 10 mm in length were created, and nerve repair was performed by the transplantation of either conduits preseeded with autologous adipose tissue-derived stem cells or acellular (control group) conduits. After 6 months, the motor and sensory nerve conduction velocity were assessed. Nerves were removed and examined by hematoxylin and eosin, van Gieson, and immunohistochemistry (S100 protein) staining for the quality of axonal regeneration. Nerve gaps treated with adipose tissue-derived stem cells showed superior nerve regeneration, reflected by higher motor and sensory nerve conduction velocity values. The motor and sensory nerve conduction velocity were significantly greater in nerves treated with conduits preseeded with adipose tissue-derived stem cells than in nerves treated with conduits alone (p < 0.05). Increased S100 immunoreactivity was detected for the adipose tissue-derived stem cell group. In this group, axon arrangement inside the conduits was more organized. Transplantation of adipose tissue-derived stem cells significantly improves motor and sensory nerve conduction velocity in peripheral nerve gaps. Preseeded conduits showed a more organized axon arrangement inside the conduit in comparison with nerve conduits alone. The approach used here could readily be translated into a clinical therapy. Therapeutic, V.
Fields, Mark; Cai, Hui; Gong, Jie; Del Priore, Lucian
2016-12-08
The field of stem cell biology has rapidly evolved in the last few decades. In the area of regenerative medicine, clinical applications using stem cells hold the potential to be a powerful tool in the treatment of a wide variety of diseases, in particular, disorders of the eye. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are promising technologies that can potentially provide an unlimited source of cells for cell replacement therapy in the treatment of retinal degenerative disorders such as age-related macular degeneration (AMD), Stargardt disease, and other disorders. ESCs and iPSCs have been used to generate retinal pigment epithelium (RPE) cells and their functional behavior has been tested in vitro and in vivo in animal models. Additionally, iPSC-derived RPE cells provide an autologous source of cells for therapeutic use, as well as allow for novel approaches in disease modeling and drug development platforms. Clinical trials are currently testing the safety and efficacy of these cells in patients with AMD. In this review, the current status of iPSC disease modeling of AMD is discussed, as well as the challenges and potential of this technology as a viable option for cell replacement therapy in retinal degeneration.
Riester, Scott M.; Denbeigh, Janet M.; Lin, Yang; Jones, Dakota L.; de Mooij, Tristan; Lewallen, Eric A.; Nie, Hai; Paradise, Christopher R.; Radel, Darcie J.; Dudakovic, Amel; Camilleri, Emily T.; Larson, Dirk R.; Qu, Wenchun; Krych, Aaron J.; Frick, Matthew A.; Im, Hee‐Jeong; Dietz, Allan B.; Smith, Jay
2016-01-01
Abstract Adipose‐derived mesenchymal stem cells (AMSCs) offer potential as a therapeutic option for clinical applications in musculoskeletal regenerative medicine because of their immunomodulatory functions and capacity for trilineage differentiation. In preparation for a phase I clinical trial using AMSCs to treat patients with osteoarthritis, we carried out preclinical studies to assess the safety of human AMSCs within the intra‐articular joint space. Culture‐expanded human AMSCs grown in human platelet‐lysate were delivered via intra‐articular injections into normal healthy rabbit knees and knees at risk for the development of osteoarthritis after bilateral medial anterior hemimeniscectomy. Treatment outcomes and safety were evaluated by assessing the general health, function, and behavior of the animals. Joint tissues were analyzed by x‐ray, magnetic resonance imaging, and histopathology. Intra‐articular AMSC therapy was well tolerated in this study. We did not observe adverse systemic reactions, nor did we find evidence of damage to intra‐articular joint tissues. Thus, the data generated in this study show a favorable safety profile for AMSCs within the joint space in support of a phase I clinical trial evaluating the clinical utility of AMSCs to treat osteoarthritis. Stem Cells Translational Medicine 2017;6:910–922 PMID:28297568
New Advances and Challenges of Targeting Cancer Stem Cells.
Dashzeveg, Nurmaa K; Taftaf, Rokana; Ramos, Erika K; Torre-Healy, Luke; Chumakova, Anastasia; Silver, Daniel J; Alban, Tyler J; Sinyuk, Maksim; Thiagarajan, Praveena S; Jarrar, Awad M; Turaga, Soumya M; Saygin, Caner; Mulkearns-Hubert, Erin; Hitomi, Masahiro; Rich, Jeremy N; Gerson, Stanton L; Lathia, Justin D; Liu, Huiping
2017-10-01
The second International Cancer Stem Cell Conference in Cleveland, Ohio, on September 20-23, 2016, convened 330 attendees from academic, industrial, and clinical organizations. It featured a debate on the concepts and challenges of the cancer stem cells (CSC) as well as CSC-centered scientific sessions on clinical trials, genetics and epigenetics, tumor microenvironment, immune suppression, metastasis, therapeutic resistance, and emerging novel concepts. The conference hosted 35 renowned speakers, 100 posters, 20 short talks, and a preconference workshop. The reported advances of CSC research and therapies fostered new collaborations across national and international borders, and inspired the next generation's young scientists. Cancer Res; 77(19); 5222-7. ©2017 AACR . ©2017 American Association for Cancer Research.
Urbinati, Fabrizia; Wherley, Jennifer; Geiger, Sabine; Fernandez, Beatriz Campo; Kaufman, Michael L; Cooper, Aaron; Romero, Zulema; Marchioni, Filippo; Reeves, Lilith; Read, Elizabeth; Nowicki, Barbara; Grassman, Elke; Viswanathan, Shivkumar; Wang, Xiaoyan; Hollis, Roger P; Kohn, Donald B
2017-09-01
Gene therapy by autologous hematopoietic stem cell transplantation (HSCT) represents a new approach to treat sickle cell disease (SCD). Optimization of the manufacture, characterization and testing of the transduced hematopoietic stem cell final cell product (FCP), as well as an in depth in vivo toxicology study, are critical for advancing this approach to clinical trials. Data are shown to evaluate and establish the feasibility of isolating, transducing with the Lenti/β AS3 -FB vector and cryopreserving CD34 + cells from human bone marrow (BM) at clinical scale. In vitro and in vivo characterization of the FCP was performed, showing that all the release criteria were successfully met. In vivo toxicology studies were conducted to evaluate potential toxicity of the Lenti/β AS3 -FB LV in the context of a murine BM transplant. Primary and secondary transplantation did not reveal any toxicity from the lentiviral vector. Additionally, vector integration site analysis of murine and human BM cells did not show any clonal skewing caused by insertion of the Lenti/β AS3 -FB vector in cells from primary and secondary transplanted mice. We present here a complete protocol, thoroughly optimized to manufacture, characterize and establish safety of a FCP for gene therapy of SCD. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
[Embryonic stem cells. Future perspectives].
Groebner, M; David, R; Franz, W M
2006-05-01
Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.
Huang, Yi-Zhou; Xie, Hui-Qi; Silini, Antonietta; Parolini, Ornella; Zhang, Yi; Deng, Li; Huang, Yong-Can
2017-10-01
Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.
Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R
2018-04-01
Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.
Prabhu, Varun V; Lulla, Amriti R; Madhukar, Neel S; Ralff, Marie D; Zhao, Dan; Kline, Christina Leah B; Van den Heuvel, A Pieter J; Lev, Avital; Garnett, Mathew J; McDermott, Ultan; Benes, Cyril H; Batchelor, Tracy T; Chi, Andrew S; Elemento, Olivier; Allen, Joshua E; El-Deiry, Wafik S
2017-01-01
Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies.
Zhao, Dan; Kline, Christina Leah B.; Van den Heuvel, A. Pieter J.; Lev, Avital; Garnett, Mathew J.; McDermott, Ultan; Benes, Cyril H.; Batchelor, Tracy T.; Chi, Andrew S.; Elemento, Olivier; Allen, Joshua E.
2017-01-01
Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies. PMID:28767654
Guess, Adam J; Daneault, Beth; Wang, Rongzhang; Bradbury, Hillary; La Perle, Krista M D; Fitch, James; Hedrick, Sheri L; Hamelberg, Elizabeth; Astbury, Caroline; White, Peter; Overolt, Kathleen; Rangarajan, Hemalatha; Abu-Arja, Rolla; Devine, Steven M; Otsuru, Satoru; Dominici, Massimo; O'Donnell, Lynn; Horwitz, Edwin M
2017-10-01
Mesenchymal stem/stromal cells (MSCs) are widely studied by both academia and industry for a broad array of clinical indications. The collective body of data provides compelling evidence of the clinical safety of MSC therapy. However, generally accepted proof of therapeutic efficacy has not yet been reported. In an effort to generate a more effective therapeutic cell product, investigators are focused on modifying MSC processing protocols to enhance the intrinsic biologic activity. Here, we report a Good Manufacturing Practice-compliant two-step MSC manufacturing protocol to generate MSCs or interferon γ (IFNγ) primed MSCs which allows freshly expanded cells to be infused in patients on a predetermined schedule. This protocol eliminates the need to infuse cryopreserved, just thawed cells which may reduce the immune modulatory activity. Moreover, using (IFNγ) as a prototypic cytokine, we demonstrate the feasibility of priming the cells with any biologic agent. We then characterized MSCs and IFNγ primed MSCs prepared with our protocol, by karyotype, in vitro potential for malignant transformation, biodistribution, effect on engraftment of transplanted hematopoietic cells, and in vivo toxicity in immune deficient mice including a complete post-mortem examination. We found no evidence of toxicity attributable to the MSC or IFNγ primed MSCs. Our data suggest that the clinical risk of infusing MSCs or IFNγ primed MSCs produced by our two-step protocol is not greater than MSCs currently in practice. While actual proof of safety requires phase I clinical trials, our data support the use of either cell product in new clinical studies. Stem Cells Translational Medicine 2017;6:1868-1879. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Novel Stem Cell Therapies for Applications to Wound Healing and Tissue Repair.
Grada, Ayman; Falanga, Vincent
2016-10-26
The number of individuals with chronic cutaneous wounds has been increasing worldwide due to an aging population, diabetes, obesity, and cardiovascular disease. In the United States, almost seven million Americans have chronic skin ulcers. Many therapeutic approaches have been used. However, the treatment outcomes are not always ideal because of failure to achieve complete wound closure in around 60% of cases, scarring, and high rate of recurrence. Therefore, there is a need for more effective therapies. Stem cells offer promising possibilities. Pre-clinical studies have shown that bone- or adipose tissue-derived mesenchymal stem cells (MSCs) have a competitive advantage over other types of stem cells due to their better defined multipotent differentiating potential, paracrine effects, immunomodulatory properties, and safety. However, large controlled clinical trials are needed to examine the capabilities of MSCs in humans and to assess their safety profile. In this review, we highlight emerging treatments in tissue regeneration and repair and provide some perspectives on how to translate current knowledge about stem cells-both multipotent and pluripotent-into viable clinical approaches for treating patients with difficult to heal wounds.
Wang, S Keisin; Green, Linden A; Gutwein, Ashley R; Drucker, Natalie A; Motaganahalli, Raghu L; Fajardo, Andres; Babbey, Clifford M; Murphy, Michael P
2018-02-01
Abdominal aortic aneurysms (AAAs) are a major source of morbidity and mortality despite continuing advances in surgical technique and care. Although the inciting factors for AAA development continue to be elusive, accumulating evidence suggests a significant periaortic inflammatory response leading to degradation and dilation of the aortic wall. Previous human trials have demonstrated safety and efficacy of mesenchymal stem cells (MSCs) in the treatment of inflammation-related pathologies such as rheumatoid arthritis, graft versus host disease, and transplant rejection. Therefore, herein, we describe the Aortic Aneurysm Repression with Mesenchymal Stem Cells (ARREST) trial, a phase I investigation into the safety of MSC infusion for patients with small AAA and the cells' effects on modulation of AAA-related inflammation. ARREST is a phase I, single-center, double-blind, randomized controlled trial (RCT) investigating infusion both dilute and concentrated MSCs compared to placebo in 36 small AAA (35-45 mm) patients. Subjects will be followed by study personnel for 12 months to ascertain incidence of adverse events, immune cell phenotype expression, peripheral cytokine profile, and periaortic inflammation. Maximum transverse aortic diameter will be assessed regularly for 5 years by a combination of computed tomography and duplex sonography. Four patients have thus far been enrolled, randomized, and treated per protocol. We anticipate the conclusion of the treatment phase within the next 24 months with ongoing long-term follow-up. ARREST will be pivotal in assessing the safety of MSC infusion and provide preliminary data on the ability of MSCs to favorably modulate the pathogenic AAA host immune response. The data gleaned from this phase I trial will provide the groundwork for a larger, phase III RCT which may provide the first pharmaceutical intervention for AAA. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal
2007-02-28
The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.
Pennington, Britney O; Clegg, Dennis O
2016-06-01
Age-related macular degeneration (AMD) is the leading cause of blindness in the western world, which severely decreases the quality of life in the patients and places an economic burden on their families and society. The disease is caused by the dysfunction of a specialized cell layer in the back of the eye called the retinal pigmented epithelium (RPE). Pluripotent stem cells can provide an unlimited source of RPE, and laboratories around the world are investigating their potential as therapies for AMD. To ensure the precise delivery of functional RPE to the diseased site, some groups are developing a therapy composed of mature RPE monolayers on a supportive scaffold for transplantation as an alternative to injecting a single-cell suspension. This review summarizes methods of generating RPE from pluripotent stem cells, compares biodegradable and biostable materials as scaffolds, and describes the specific combination of human embryonic stem cell-derived RPE on Parylene-C membranes, which is scheduled to begin clinical trials in the United Sates in 2016. Stem cell-derived RPE monolayers on scaffolds hold great promise for the treatment of AMD and other retinal diseases.
Matigian, Nicholas; Brooke, Gary; Zaibak, Faten; Rossetti, Tony; Kollar, Katarina; Pelekanos, Rebecca; Heazlewood, Celena; Mackay-Sim, Alan; Wells, Christine A.; Atkinson, Kerry
2014-01-01
Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues. PMID:26484151
Tang, Qin; Ahn, Yong-Oon; Southern, Peter; Blazar, Bruce R.; Miller, Jeffery S.
2011-01-01
Human secondary lymphoid tissues (SLTs) contain interleukin-22 (IL-22)–producing cells with an immature NK phenotype. Given their location, these cells are difficult to study. We have generated large numbers of NK22 cells from hematopoietic stem cells. HSC-derived NK22 cells show a CD56+CD117highCD94− phenotype, consistent with stage III NK progenitors. Like freshly isolated SLT stage III cells, HSC-derived NK22 cells express NKp44, CD161, CCR6, IL1 receptor, AHR, and ROR-γτ. IL-1β and IL-23 stimulation results in significant IL-22 but not interferon-γ production. Supernatant from these cells increases CD54 expression on mesenchymal stem cells. Thus, IL-22–producing NK cells can be generated in the absence of SLT. HSC-derived NK22 cells will be valuable in understanding this rare NK subset and create the opportunity for human translational clinical trials. PMID:21310921
Tang, Qin; Ahn, Yong-Oon; Southern, Peter; Blazar, Bruce R; Miller, Jeffery S; Verneris, Michael R
2011-04-14
Human secondary lymphoid tissues (SLTs) contain interleukin-22 (IL-22)-producing cells with an immature NK phenotype. Given their location, these cells are difficult to study. We have generated large numbers of NK22 cells from hematopoietic stem cells. HSC-derived NK22 cells show a CD56(+)CD117(high)CD94(-) phenotype, consistent with stage III NK progenitors. Like freshly isolated SLT stage III cells, HSC-derived NK22 cells express NKp44, CD161, CCR6, IL1 receptor, AHR, and ROR-γτ. IL-1β and IL-23 stimulation results in significant IL-22 but not interferon-γ production. Supernatant from these cells increases CD54 expression on mesenchymal stem cells. Thus, IL-22-producing NK cells can be generated in the absence of SLT. HSC-derived NK22 cells will be valuable in understanding this rare NK subset and create the opportunity for human translational clinical trials.
Stem cell roadmap - The industrial point of view.
Elzaabi, Mazen; Thevenin, Agnès; Lirsac, Pierre-Noël
2017-01-01
CELLforCURE is a French Contract Development and Manufacturing Organization (CDMO) dedicated to industrialization and process development for routine manufacturing, GMP manufacturing for clinical and commercial batches and regulatory services and associated logistics. CELLforCURE is a subsidiary of LFB Group.Stem cells fields of application gather cell and gene therapy as well as tissue engineering. According to VisionGain survey, cell therapy medicinal products will remain predominant in the future.Clinical trials are sponsored either by universities or private companies. Most of clinical trials are performed in oncology (53%). More than 100 clinical trials are currently performed in France, involving 36 products in clinical phases II or II/III.Tomorrow's regenerative medicine will be organ reconstruction using scaffolds and bioprinting technologies. The expected applications in the near future could be skin, cornea, blood vessels, retina, urethra and trachea. There are still important issues to overcome: create the vasculature and neuron connection.Solutions are expected regarding I) fundamental biology, in particular better understanding of IPS behavior and metabolism, precursor differentiation conditions, sustainability of induced genetic changes, II) technical approaches which involves injectable preservation medium, high density cells and centrifugation system.
Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke
2015-11-01
Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.
Cooper, Joanne; Blake, Iszara; Lindsay, James O; Hawkey, Christopher J
2017-01-01
Background/Objectives Severe Crohn’s disease impacts negatively on individual quality of life, with treatment options limited once conventional therapies have been exhausted. The aim of this study was to explore factors influencing decision-making and expectations of people considering or participating in the Autologous Haematopoietic Stem Cell Treatment trial. Methods An international, cross-sectional qualitative study, involving semistructured face to face interviews across five sites (four UK and one Spain). 38 participants were interviewed (13 men, 25 women; age range 23–67 years; mean age 37 years). The mean age at diagnosis was 20 years. Interviews were audio recorded and transcribed verbatim and transcripts were analysed using a framework approach. Results Four themes emerged from the analysis: (1) ‘making your mind up’—a determination to receive stem cell treatment despite potential risks; (2) communicating and understanding risks and benefits; (3) non-participation—your choice or mine? (4) recovery and reframing of personal expectations. Conclusions Decision-making and expectations of people with severe Crohn’s disease in relation to autologous haematopoietic stem cell treatment is a complex process influenced by participants’ histories of battling with their condition, a frequent willingness to consider novel treatment options despite potential risks and, in some cases, a raised level of expectation about the benefits of trial participation. Discussions with patients who are considering novel treatments should take into account potential ‘therapeutic misestimation’, thereby enhancing shared decision-making, informed consent and the communication with those deemed non-eligible. ASTIC trial EudraCT Number 2005-003337-40: results. PMID:28893742
Emerging Applications of Stem Cell and Regenerative Medicine to Sports Injuries
Ajibade, David A.; Vance, Danica D.; Hare, Joshua M.; Kaplan, Lee D.; Lesniak, Bryson P.
2014-01-01
Background: The treatment of sports-related musculoskeletal injuries with stem cells has become more publicized because of recent reports of high-profile athletes undergoing stem cell procedures. There has been increased interest in defining the parameters of safety and efficacy and the indications for potential use of stem cells in clinical practice. Purpose: To review the role of regenerative medicine in the treatment of sports-related injuries. Study Design: Review. Method: Relevant studies were identified through a PubMed search combining the terms stem cells and cartilage, ligament, tendon, muscle, and bone from January 2000 to August 2013. Studies and works cited in these studies were also reviewed. Results: Treatment of sports-related injuries with stem cells shows potential for clinical efficacy from the data available from basic science and animal studies. Conclusion: Cell-based therapies and regenerative medicine offer safe and potentially efficacious treatment for sports-related musculoskeletal injuries. Basic science and preclinical studies that support the possibility of enhanced recovery from sports injuries using cell-based therapies are accumulating; however, more clinical evidence is necessary to define the indications and parameters for their use. Accordingly, exposing patients to cell-based therapies could confer an unacceptable risk profile with minimal or no benefit. Continued clinical testing with animal models and clinical trials is necessary to determine the relative risks and benefits as well as the indications and methodology of treatment. PMID:26535296
Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells
Wang, Yu-Chi; Chao, Tai-Kuang; Chang, Cheng-Chang; Yo, Yi-Te; Yu, Mu-Hsien; Lai, Hung-Cheng
2013-01-01
The primary cause of death from breast cancer is the progressive growth of tumors and resistance to conventional therapies. It is currently believed that recurrent cancer is repopulated according to a recently proposed cancer stem cell hypothesis. New therapeutic strategies that specifically target cancer stem-like cells may represent a new avenue of cancer therapy. We aimed to discover novel compounds that target breast cancer stem-like cells. We used a dye-exclusion method to isolate side population (SP) cancer cells and, subsequently, subjected these SP cells to a sphere formation assay to generate SP spheres (SPS) from breast cancer cell lines. Surface markers, stemness genes, and tumorigenicity were used to test stem properties. We performed a high-throughput drug screening using these SPS. The effects of candidate compounds were assessed in vitro and in vivo. We successfully generated breast cancer SPS with stem-like properties. These SPS were enriched for CD44high (2.8-fold) and CD24low (4-fold) cells. OCT4 and ABCG2 were overexpressed in SPS. Moreover, SPS grew tumors at a density of 103, whereas an equivalent number of parental cells did not initiate tumor formation. A clinically approved drug, niclosamide, was identified from the LOPAC chemical library of 1,258 compounds. Niclosamide downregulated stem pathways, inhibited the formation of spheroids, and induced apoptosis in breast cancer SPS. Animal studies also confirmed this therapeutic effect. The results of this proof-of-principle study may facilitate the development of new breast cancer therapies in the near future. The extension of niclosamide clinical trials is warranted. PMID:24058587
Cossetti, Chiara; Pluchino, Stefano
2014-01-01
Stem cell technology is a promising branch of regenerative medicine that is aimed at developing new approaches for the treatment of severely debilitating human diseases, including those affecting the central nervous system (CNS). Despite the increasing understanding of the mechanisms governing their biology, the application of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in vivo via the replacement of endogenous cells lost or damaged owing to disease has been challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the level of the neural microenvironment to promote tissue healing via combination of immune modulatory and tissue protective actions, while retaining predominantly undifferentiated features. Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are under extensive investigation with regard to their therapeutic plasticity after transplantation. The significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms behind their therapeutic impact, could soon be translated to human studies. This review aims to provide an update on the most recent evidence of therapeutically-relevant neuroimmune interactions following NPC transplants in animal models of multiple sclerosis, cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges related to the early translation of some of these exciting experimental outcomes into clinical medicines. PMID:23507035
Giusto, Elena; Donegà, Matteo; Cossetti, Chiara; Pluchino, Stefano
2014-10-01
Stem cell technology is a promising branch of regenerative medicine that is aimed at developing new approaches for the treatment of severely debilitating human diseases, including those affecting the central nervous system (CNS). Despite the increasing understanding of the mechanisms governing their biology, the application of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in vivo via the replacement of endogenous cells lost or damaged owing to disease has been challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the level of the neural microenvironment to promote tissue healing via combination of immune modulatory and tissue protective actions, while retaining predominantly undifferentiated features. Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are under extensive investigation with regard to their therapeutic plasticity after transplantation. The significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms behind their therapeutic impact, could soon be translated to human studies. This review aims to provide an update on the most recent evidence of therapeutically-relevant neuro-immune interactions following NPC transplants in animal models of multiple sclerosis, cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges related to the early translation of some of these exciting experimental outcomes into clinical medicines. Copyright © 2013 Elsevier Inc. All rights reserved.
Stem cells for cardiac repair: problems and possibilities.
Henning, Robert J
2013-11-01
Ischemic heart disease is a major cause of death throughout the world. In order to limit myocardial damage and possibly generate new myocardium, stem cells are currently being injected into patients with ischemic heart disease. Three major patient investigations, The LateTIME, the TIME and the Swiss Myocardial Infarction trials, have recently addressed the questions of whether progenitor cells from unfractionated bone marrow mononuclear cells limit myocardial damage and what the optimal time to inject these cells after acute myocardial infarctions (AMIs) is. In each of these trials, there were no significant differences between treated and control patients when bone marrow cells were administered 5-7 days or 2-3 weeks after AMIs. Nevertheless, these investigations provide important information regarding clinical trial designs. Patients with AMIs in these trials were treated with percutaneous coronary intervention within a median of 4-5 h after the onset of chest pain. Thereafter, all patients received guideline-guided optimal medical therapy. Consequently, the sizes of AMIs were significantly limited. In patients with small AMIs and near-normal left ventricular ejection fractions, progenitor cells are least effective. However, these trials do question whether autologous bone marrow mononuclear cells are the optimal cells for myocardial repair owing to low numbers of progenitor cells in bone marrow aspirates and the significant variability in potency and efficacy of these cells in patients with chronic multisystem diseases. In contrast, the SCIPIO and the CAUDUCEUS trials examined cardiac progenitor cells in patients with ischemic cardiomyopathies. These trials reported over 1-2 years that cardiac progenitor cells produced significant improvements in left ventricular contractility due to 12-24 g decreases in myocardial scars and 18-23 g increases in viable myocardial muscle. However, caution must be exercised in the interpretation of these studies due to the small numbers of highly selected patients and intra- and inter-observer variability in infarct size measurements. Anatomical and histological examinations of large numbers of patients treated with these cells are necessary to confirm significant generation of myocytes and decreases in infarct size and fibrosis.
Current status of treating neurodegenerative disease with induced pluripotent stem cells.
Pen, A E; Jensen, U B
2017-01-01
Degenerative diseases of the brain have proven challenging to treat, let alone cure. One of the treatment options is the use of stem cell therapy, which has been under investigation for several years. However, treatment with stem cells comes with a number of drawbacks, for instance the source of these cells. Currently, a number of options are tested to produce stem cells, although the main issues of quantity and ethics remain for most of them. Over recent years, the potential of induced pluripotent stem cells (iPSCs) has been widely investigated and these cells seem promising for production of numerous different tissues both in vitro and in vivo. One of the major advantages of iPSCs is that they can be made autologous and can provide a sufficient quantity of cells by culturing, making the use of other stem cell sources unnecessary. As the first descriptions of iPSC production with the transcription factors Sox2, Klf4, Oct4 and C-Myc, called the Yamanaka factors, a variety of methods has been developed to convert somatic cells from all germ layers to pluripotent stem cells. Improvement of these methods is necessary to increase the efficiency of reprogramming, the quality of pluripotency and the safety of these cells before use in human trials. This review focusses on the current accomplishments and remaining challenges in the production and use of iPSCs for treatment of neurodegenerative diseases of the brain such as Alzheimer's disease and Parkinson's disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[A European discussion about stem cells for therapeutic use].
Boer, G J
2002-06-29
Stem cells as a source material for growing cellular transplants to repair dysfunctional organs appear to be a new challenge for medical science. Though stem cells are also present in foetal and adult organs, embryonic stem cells from the pre-implantation embryo in particular have the potency to proliferate easily in vitro and the capacity to differentiate into all the body's organ-specific cells. Therefore, these are the ideal cells for developing new cell transplantation therapies for diseases such as Parkinson's disease, diabetes mellitus and heart failure. The use of spare in vitro fertilization (IVF) embryos or pre-implantation embryos specially created to harvest human embryonic stem cells is, however, controversial and an ethical problem. In a European discussion platform organised by the European Commission Research Directorate-General, the status quo of the progress was presented and subsequently commented upon and discussed in terms of medical-ethical, social, industrial and patient interests. The expectations of this new medical technology were high, but clinical trials seem only acceptable once the in vitro differentiation of stem cells can be adequately controlled and once it is known how in vitro prepared stem cells behave after implantation. The ethical justification of the use of in vitro pre-implantation embryos remains controversial. The prevailing view is that the interests of severely ill patients for whom no adequate therapy exists, surmounts the interest of protection of a human in vitro pre-implantation embryo, regardless of whether it was the result of IVF or of transplantation of a somatic cell nucleus of the patient in an enucleated donor egg cell (therapeutic cloning).
Park, Yong-Beom; Ha, Chul-Won; Lee, Choong-Hee; Yoon, Young Cheol; Park, Yong-Geun
2017-02-01
Few methods are available to regenerate articular cartilage defects in patients with osteoarthritis. We aimed to assess the safety and efficacy of articular cartilage regeneration by a novel medicinal product composed of allogeneic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). Patients with Kellgren-Lawrence grade 3 osteoarthritis and International Cartilage Repair Society (ICRS) grade 4 cartilage defects were enrolled in this clinical trial. The stem cell-based medicinal product (a composite of culture-expanded allogeneic hUCB-MSCs and hyaluronic acid hydrogel [Cartistem]) was applied to the lesion site. Safety was assessed by the World Health Organization common toxicity criteria. The primary efficacy outcome was ICRS cartilage repair assessed by arthroscopy at 12 weeks. The secondary efficacy outcome was visual analog scale (VAS) score for pain on walking. During a 7-year extended follow-up, we evaluated safety, VAS score, International Knee Documentation Committee (IKDC) subjective score, magnetic resonance imaging (MRI) findings, and histological evaluations. Seven participants were enrolled. Maturing repair tissue was observed at the 12-week arthroscopic evaluation. The VAS and IKDC scores were improved at 24 weeks. The improved clinical outcomes were stable over 7 years of follow-up. The histological findings at 1 year showed hyaline-like cartilage. MRI at 3 years showed persistence of the regenerated cartilage. Only five mild to moderate treatment-emergent adverse events were observed. There were no cases of osteogenesis or tumorigenesis over 7 years. The application of this novel stem cell-based medicinal product appears to be safe and effective for the regeneration of durable articular cartilage in osteoarthritic knees. Stem Cells Translational Medicine 2017;6:613-621. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Stem Cell Genetic Therapy for Fanconi Anemia - A New Hope.
Hanenberg, Helmut; Roellecke, Katharina; Wiek, Constanze
2017-01-01
Fanconi anemia (FA) is a rare inherited DNA disorder clinically characterized by congenital malformations, progressive bone marrow failure, and cancer susceptibility. Due to a strong survival advantage of spontaneously corrected 'normal' hematopoietic stem cells (HSCs) in a few patients, FA is considered a model disorder for genetic correction of autologous stem cells, where genetically corrected stem cells and their progeny have a strong in vivo selective advantage, ultimately leading to normal hematopoiesis. Despite these apparently ideal circumstances, three HSC gene therapy trials with gammaretroviral vectors (stage I) designed to cure the hematological manifestation of FA completely failed to provide long-term clinical benefits for patients, predominantly due to the combination of insufficient gene transfer technologies and incompletely understood FA HSC pathobiology. Currently, FA gene therapy is in stage II where, based on an improved understanding of the cellular defects in FA HSCs, consequently adapted transduction protocols are being used in two phase I/II trials for in vitro genetic correction of FANCA-deficient hematopoietic stem cells. These results are eagerly awaited. Independent from the outcome of these studies, technologies are already available that seem highly attractive for testing in FA. In stage III, this would ultimately include targeted in vivo correction of autologous HSCs by overexpression of nonintegrating lentiviral vectors with scaffold/matrix attachment region elements using specific envelopes as pseudotypes. Although currently still challenging, in a few years in vivo genome editing approaches will be readily available in stage IV, in which the delivery of the editing machinery/ complex is targeted to the autologous FA HSCs by the nonintegrating lentiviral vectors established in stage III. Even low levels of corrected stem cells will then quickly repopulate the entire hematopoiesis of the patient. We therefore are sanguine that in the future, genetic therapy can be used clinically for the correction of FA HSCs in the standard care of FA patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells.
Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank; Jork, Anette; Kassem, Moustapha; Geigle, Peter
2013-01-01
Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulation method is described for the manufacturing of homogeneous CellBeads. Viability and sustained secretion was shown for the recombinant GLP-1 and the cell endogenous bioactive factors like vascular endothelial growth factor, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor. Manufacturing and quality control is performed in compliance with good manufacturing practice and fulfils all regulatory requirements for human clinical use. GLP-1 CellBeads combine the neuro- and cardioprotective properties of both GLP-1 and mesenchymal stem cells. First promising results were obtained from preclinical studies and an ongoing safety trial in humans but further studies have to prove the overall potential of CellBead technology in cell-based regenerative medicine.
Pluripotent stem cell-derived natural killer cells for cancer therapy
Knorr, David A.; Kaufman, Dan S.
2010-01-01
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an accessible, genetically tractable and homogenous starting cell populations to efficiently study human blood cell development. These cell populations provide platforms to develop new cell-based therapies to treat both malignant and non-malignant hematological diseases. Our group has previously demonstrated the ability of hESC-derived hematopoietic precursors to produce functional natural killer (NK) cells as well as an explanation of the underlying mechanism responsible for inefficient development of T and B cells from hESCs. hESCs and iPSCs, which can be reliably engineered in vitro, provide an important new model system to study human lymphocyte development and produce enhanced cell-based therapies with potential to serve as a “universal” source of anti-tumor lymphocytes for novel clinical therapies. This review will focus on the application of hESC-derived NK cells with currently used and novel therapeutics for clinical trials, current barriers to translation, and future applications through genetic engineering approaches. PMID:20801411
Will stem cell therapies be safe and effective for treating spinal cord injuries?
Thomas, Katharine E.; Moon, Lawrence D. F.
2017-01-01
Introduction A large number of different cells including embryonic and adult stem cells have been transplanted into animal models of spinal cord injury, and in many cases these procedures have resulted in modest sensorimotor benefits. In October 2010 the world’s first clinical trial using human embryonic stem cells began, using stem cells converted into oligodendrocyte precursor cells. Sources of data In this review we examine some of the publically-available pre-clinical evidence that some of these cell types improve outcome in animal models of spinal cord injury. Much evidence is not available for public scrutiny, however, being private commercial property of various stem cell companies. Areas of agreement Transplantation of many different types of stem and progenitor cell enhances spontaneous recovery of function when transplanted acutely after spinal cord injury in animal models. Areas of disagreement The common mechanism(s) whereby the generic procedure of cellular transplantation enhances recovery of function are not well understood, although a range of possibilities are usually cited (including preservation of tissue, remyelination, axon sprouting, glial cell replacement). Only in exceptional cases has it been shown that functional recovery depends causally on the survival and differentiation of the transplanted cells. There is no agreement about the optimal cell type for transplantation: candidate stem cells have not yet been compared with each other or with other cell types (e.g., autologous Schwann cells) in a single study. Areas timely for developing research Transplantation of cells into animals with a long lifespan is important to determine whether or not tumours will eventually form. It will also be important to determine whether long-term survival of cells is required for functional recovery, and if so, how many are optimal. PMID:21586446
Curley, Gerard F; Jerkic, Mirjana; Dixon, Steve; Hogan, Grace; Masterson, Claire; O'Toole, Daniel; Devaney, James; Laffey, John G
2017-02-01
Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. Randomized animal study. University research laboratory. Male Sprague-Dawley rats. Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory cytokine concentrations, whereas increasing interleukin-10 concentrations. Umbilical cord-mesenchymal stem/stromal cell therapy decreased nicotinamide adenine dinucleotide phosphate-oxidase 2 and inducible nitric oxide synthase and enhanced lung concentrations of superoxide dismutase-2, thereby reducing lung tissue reactive oxidative species concentrations. Our results demonstrate that freshly thawed cryopreserved xeno-free human umbilical cord-mesenchymal stem/stromal cells reduce the severity of rodent E. coli-induced acute respiratory distress syndrome. Umbilical cord-mesenchymal stem/stromal cells, therefore, represent an attractive option for future clinical trials in acute respiratory distress syndrome.
High-dose chemotherapy with autologous hematopoietic stem cell support for solid tumors in adults.
Pedrazzoli, Paolo; Rosti, Giovanni; Secondino, Simona; Carminati, Ornella; Demirer, Taner
2007-10-01
Supported by experimental evidence and convincing results of early phase II studies, since the 1980s high-dose chemotherapy (HDC) with autologous hematopoietic stem cell support (AHSCT) has been uncritically adopted by many oncologists as a potentially curative option for several solid tumors. As a result, the number (and size) of randomized trials comparing this approach with conventional chemotherapy initiated (and often abandoned before completion) in this setting was limited and the benefit of a greater escalation of dose of chemotherapy with stem cell transplantation in solid tumors remains, with the possible exception of breast carcinoma (BC) and germ cell tumors (GCT), largely unsettled. In this article, we review and comment on the data from studies to date of HDC for solid tumors in adults.
Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu; Shang, Hulan, E-mail: shanghulan@gmail.com; Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com
2012-02-15
After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time,more » ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells undergo complete removal by one year.« less
The Immunogenicity and Immune Tolerance of Pluripotent Stem Cell Derivatives
Liu, Xin; Li, Wenjuan; Fu, Xuemei; Xu, Yang
2017-01-01
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all cell types in human body, and therefore hold great potential for cell therapy of currently incurable diseases including neural degenerative diseases, heart failure, and macular degeneration. This potential is further underscored by the promising safety and efficacy data from the ongoing clinical trials of hESC-based therapy of macular degeneration. However, one main challenge for the clinical application of hESC-based therapy is the allogeneic immune rejection of hESC-derived cells by the recipient. The breakthrough of the technology to generate autologous-induced pluripotent stem cells (iPSCs) by nuclear reprogramming of patient’s somatic cells raised the possibility that autologous iPSC-derived cells can be transplanted into the patients without the concern of immune rejection. However, accumulating data indicate that certain iPSC-derived cells can be immunogenic. In addition, the genomic instability associated with iPSCs raises additional safety concern to use iPSC-derived cells in human cell therapy. In this review, we will discuss the mechanism underlying the immunogenicity of the pluripotent stem cells and recent progress in developing immune tolerance strategies of human pluripotent stem cell (hPSC)-derived allografts. The successful development of safe and effective immune tolerance strategy will greatly facilitate the clinical development of hPSC-based cell therapy. PMID:28626459
Lin, Tai-Chi; Zhu, Danhong; Hinton, David R.; Clegg, Dennis O.; Humayun, Mark S.
2017-01-01
Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed. PMID:28928775
Luo, Mingyue; Chen, Youxin
2018-01-01
As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.
Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N
2014-06-15
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.
The Role of Stem Cell Therapeutics in Wound Healing: Current Understanding and Future Directions.
Sorice, Sarah; Rustad, Kristine C; Li, Alexander Y; Gurtner, Geoffrey C
2016-09-01
Chronic wounds present unique challenges for healthcare providers as they place patients at increased risk for various morbidities and mortality. Advances in wound care technology have expanded the treatment options available for wound management, but few products fully address the underlying core deficiencies responsible for the development of poorly healing wounds. In the future, addressing these derangements will undoubtedly play a key role in the treatment of these patients. Broad enthusiasm has surrounded the field of stem cell biology, which has shown great promise in repairing damaged tissues across numerous disease phenotypes. In this review, we provide a comprehensive review of the literature and evaluate the present landscape of wound therapeutics while discussing the rationales and allure behind stem cell-based products. We further propose 2 challenges that remain as new stem cell-based therapies are being developed and as this technology moves toward clinical translation. Given the relatively young age of this newer technology in wound healing, numerous challenges continue to surround its effective use including identifying the ideal population of stem cells to use and determining the optimal cell delivery method. However, significant forward progress has been made, with several clinical trials beginning to demonstrate reliable clinical benefit. The upward trajectory of stem cell technologies provides an exciting opportunity to positively impact patient outcomes through the controlled application of regenerative cell-based therapy.
Mesenchymal Stem Cells: Time to Change the Name!
Caplan, Arnold I
2017-06-01
Mesenchymal stem cells (MSCs) were officially named more than 25 years ago to represent a class of cells from human and mammalian bone marrow and periosteum that could be isolated and expanded in culture while maintaining their in vitro capacity to be induced to form a variety of mesodermal phenotypes and tissues. The in vitro capacity to form bone, cartilage, fat, etc., became an assay for identifying this class of multipotent cells and around which several companies were formed in the 1990s to medically exploit the regenerative capabilities of MSCs. Today, there are hundreds of clinics and hundreds of clinical trials using human MSCs with very few, if any, focusing on the in vitro multipotential capacities of these cells. Unfortunately, the fact that MSCs are called "stem cells" is being used to infer that patients will receive direct medical benefit, because they imagine that these cells will differentiate into regenerating tissue-producing cells. Such a stem cell treatment will presumably cure the patient of their medically relevant difficulties ranging from osteoarthritic (bone-on-bone) knees to various neurological maladies including dementia. I now urge that we change the name of MSCs to Medicinal Signaling Cells to more accurately reflect the fact that these cells home in on sites of injury or disease and secrete bioactive factors that are immunomodulatory and trophic (regenerative) meaning that these cells make therapeutic drugs in situ that are medicinal. It is, indeed, the patient's own site-specific and tissue-specific resident stem cells that construct the new tissue as stimulated by the bioactive factors secreted by the exogenously supplied MSCs. Stem Cells Translational Medicine 2017;6:1445-1451. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
In utero hematopoietic stem cell transfer: current status and future strategies.
Surbek, D V; Gratwohl, A; Holzgreve, W
1999-07-01
Successful prenatal treatment of severe immunodeficiencies by allogeneic hematopoietic stem cell transplantation in utero has been reported. Though other diseases like hemoglobinopathies or storage diseases are potentially amenable to this novel therapeutic approach, no success has yet been achieved in recipients without severe immunodeficiency. Graft rejection by the developing fetus and/or lack of selective, competitive advantage of donor versus host stem cells preventing stable engraftment seem to be the major obstacles. Several strategies to overcome these hurdles are being explored in preclinical settings, including timing and repeated dosing of stem cell administration to the fetus, ex vivo modification of the transplant, using different fetal compartments as targets for early stem cell transfer, or inducing microchimerism for postnatal transplantation from the same donor. In addition, the exact definition of the basic concept of early fetal immunologic naivete and the understanding of the molecular basics of migration and homing in fetal hematopoiesis system seem mandatory for a successful approach. Gene therapy using ex vivo transduced autologous cord blood cells or direct gene targeting in utero are other potential means to correct hematopoietic and immunologic single gene disorders in utero, though this approach is still away from the stage of clinical trials.
Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J
2011-01-01
Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837
Current Status of Stem Cells and Regenerative Medicine in Lung Biology and Diseases
Weiss, Daniel J.
2014-01-01
Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPD), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the 3rd leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and chronic obstructive pulmonary disease (COPD) with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been utilized to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy based clinical trials in lung diseases. PMID:23959715
Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.
Weiss, Daniel J
2014-01-01
Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases. © AlphaMed Press.
Stem Cells and Healing: Impact on Inflammation
Ennis, William J.; Sui, Audrey; Bartholomew, Amelia
2013-01-01
Significance The number of patients with nonhealing wounds has rapidly accelerated over the past 10 years in both the United States and worldwide. Some causative factors at the macro level include an aging population, epidemic numbers of obese and diabetic patients, and an increasing number of surgical procedures. At the micro level, chronic inflammation is a consistent finding. Recent Advances A number of treatment modalities are currently used to accelerate wound healing, including energy-based modalities, scaffoldings, the use of mechano-transduction, cytokines/growth factors, and cell-based therapies. The use of stem cell therapy has been hypothesized as a potentially useful adjunct for nonhealing wounds. Specifically, mesenchymal stem cells (MSCs) have been shown to improve wound healing in several studies. Immune modulating properties of MSCs have made them attractive treatment options. Critical Issues Current limitations of stem cell therapy include the potentially large number of cells required for an effect, complex preparation and delivery methods, and poor cell retention in targeted tissues. Comparisons of published in-vitro and clinical trials are difficult due to cell preparation techniques, passage number, and the impact of the micro-environment on cell behavior. Future Directions MSCs may be more useful if they are preactivated with inflammatory cytokines such as tumor necrosis factor alpha or interferon gamma. This article will review the current literature with regard to the use of stem cells for wound healing. In addition the anti-inflammatory effects of MSCs will be discussed along with the potential benefits of stem cell preactivation. PMID:24587974
Bar-Or, David; Thomas, Gregory W; Rael, Leonard T; Gersch, Elizabeth D; Rubinstein, Pablo; Brody, Edward
2015-08-01
Osteoarthritis (OA) is the most common chronic disease of the joint; however, the therapeutic options for severe OA are limited. The low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) has been shown to have anti-inflammatory properties that are mediated, in part, by a diketopiperazine that is present in the albumin preparation and that was demonstrated to be safe and effective in reducing pain and improving function when administered intra-articularly in a phase III clinical trial. In the present study, bone marrow-derived mesenchymal stem cells (BMMSCs) exposed to LMWF5A exhibited an elongated phenotype with diffuse intracellular F-actin, pronounced migratory leading edges, and filopodia-like projections. In addition, LMWF5A promoted chondrogenic condensation in "micromass" culture, concurrent with the upregulation of collagen 2α1 mRNA. Furthermore, the transcription of the CXCR4-CXCL12 axis was significantly regulated in a manner conducive to migration and homing. Several transcription factors involved in stem cell differentiation were also found to bind oligonucleotide response element probes following exposure to LMWF5A. Finally, a rapid increase in PRAS40 phosphorylation was observed following treatment, potentially resulting in the activation mTORC1. Proteomic analysis of synovial fluid taken from a preliminary set of patients indicated that at 12 weeks following administration of LMWF5A, a microenvironment exists in the knee conducive to stem cell infiltration, self-renewal, and differentiation, in addition to indications of remodeling with a reduction in inflammation. Taken together, these findings imply that LMWF5A treatment may prime stem cells for both mobilization and chondrogenic differentiation, potentially explaining some of the beneficial effects achieved in clinical trials. ©AlphaMed Press.
M Lee, Young; Zampieri, Bruna L; Scott-McKean, Jonah J; Johnson, Mark W; Costa, Alberto C S
2017-06-01
Down syndrome (DS) is a genetic disorder caused by trisomy 21 (T21). Over the past two decades, the use of mouse models has led to significant advances in the understanding of mechanisms underlying various phenotypic features and comorbidities secondary to T21 and even informed the design of clinical trials aimed at enhancing the cognitive abilities of persons with DS. In spite of its success, this approach has been plagued by all the typical limitations of rodent modeling of human disorders and diseases. Recently, several laboratories have succeeded in producing T21 human induced pluripotent stem cells (T21-iPSCs) from individuals with DS, which is emerging as a promising complementary tool for the study of DS. Here, we describe the method by which we generated 10 T21-iPSC lines from epithelial cells in urine samples, presumably from kidney epithelial origin, using nonintegrating episomal vectors. We also show that these iPSCs maintain chromosomal stability for well over 20 passages and are more sensitive to proteotoxic stress than euploid iPSCs. Furthermore, these iPSC lines can be differentiated into glutamatergic neurons and cardiomyocytes. By culturing urine-derived cells and maximizing the efficiency of episomal vector transfection, we have been able to generate iPSCs noninvasively and effectively from participants with DS in an ongoing clinical trial, and thus address most shortcomings of previously generated T21-iPSC lines. These techniques should extend the application of iPSCs in modeling DS and other neurodevelopmental and neurodegenerative disorders, and may lead to future human cell-based platforms for high-throughput drug screening. Stem Cells Translational Medicine 2017;6:1465-1476. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Stem cell research in Brazil: the production of a new field of science.
Zorzanelli, Rafaela Teixeira; Speroni, Angela Vasconi; Menezes, Rachel Aisengart; Leibing, Annette
2017-01-01
Based on a review of the literature published in the early twenty-first century by Brazilian researchers, the article offers an overview of stem cell research in Brazil. Three central topics were detected in these papers: (1) the funding of stem cell research in Brazil; (2) preclinical and clinical trials in Brazil; and (3) social anthropological analysis focused on ethical and legal matters. Our review identifies controversial questions in the construction of this scientific field, especially issues involving the media as a disseminator of values and of certain social representations, where new kinds of hope figure large. Within this climate of uncertainty, we find patients and their families energized by the promises of the "medicine of the future."
Jacobson, Samuel G; Matsui, Rodrigo; Sumaroka, Alexander; Cideciyan, Artur V
2016-04-01
We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy.
Isolation and culture of rabbit embryonic stem cells.
Honda, Arata
2013-01-01
Mammalian stem cells are invaluable research resources for the study of cell and embryonic development as well as practical tools for use in the production of genetically engineered animals and further therapeutics. It is important that we further our knowledge and understanding of a variety of stem cells from several different animal species before trials in humans commence. Here we describe methods for establishing rabbit embryonic stem (rES) cell lines with indefinite proliferation potential. rES cells attain maximum proliferation potential when cultured at a feeder cell density of one-sixth of that of full confluency. Higher and lower densities of feeder cells induced ES cell differentiation or division arrest. Fibroblast growth factor (FGF)2 can maintain the undifferentiated status of rES cells; however leukemia inhibitory factor (LIF) is dispensable. Under optimized conditions, rES cells could be passaged by trypsinization 50 times. This culture system enabled efficient gene transduction and clonal expansion from single cells. rES cells grew as flat monolayer cell colonies, as reported for monkey and human ES cells, and expressed pluripotency markers. Embryoid bodies and teratomas formed readily in vitro and in vivo, respectively. Characterization of ES cells from different species is important for establishing common features of pluripotency. We have demonstrated the similarity of ES cells between rabbit and humans. These cell lines could be applied directly using gene-targeting techniques, or in combination with induced pluripotent stem cells. Thus, rES cells are a suitable model for studying human transplantation therapy and disease treatments.
Tissue engineering and regenerative medicine in applied research: a year in review of 2014.
Lin, Xunxun; Huang, Jia; Shi, Yuan; Liu, Wei
2015-04-01
Tissue engineering and regenerative medicine (TERM) remains to be one of the fastest growing fields, which covers a wide scope of topics of both basic and applied biological researches. This overview article summarized the advancements in applied researches of TERM area, including stem cell-mediated tissue regeneration, material science, and TERM clinical trial. These achievements demonstrated the great potential of clinical regenerative therapy of tissue/organ disease or defect through stem cells and tissue engineering approaches.
2017-06-01
Vitamin D Deficiency; Stem Cell Transplant Complications; Pediatric Cancer; Blood Disorder; Pediatric Acute Myeloid Leukemia; Pediatric Acute Lymphoid Leukemia; Myelodysplastic Syndromes; Sickle Cell Anemia in Children; Aplastic Anemia; Thalassemia in Children
2014-01-01
Background Progressive Supranuclear Palsy (PSP) is a sporadic and progressive neurodegenerative disease which belongs to the family of tauopathies and involves both cortical and subcortical structures. No effective therapy is to date available. Methods/design Autologous bone marrow (BM) mesenchymal stem cells (MSC) from patients affected by different type of parkinsonisms have shown their ability to improve the dopaminergic function in preclinical and clinical models. It is also possible to isolate and expand MSC from the BM of PSP patients with the same proliferation rate and immuphenotypic profile as MSC from healthy donors. BM MSC can be efficiently delivered to the affected brain regions of PSP patients where they can exert their beneficial effects through different mechanisms including the secretion of neurotrophic factors. Here we propose a randomized, placebo-controlled, double-blind phase I clinical trial in patients affected by PSP with MSC delivered via intra-arterial injection. Discussion To our knowledge, this is the first clinical trial to be applied in a no-option parkinsonism that aims to test the safety and to exploit the properties of autologous mesenchymal stem cells in reducing disease progression. The study has been designed to test the safety of this “first-in-man” approach and to preliminarily explore its efficacy by excluding the placebo effect. Trial registration NCT01824121 PMID:24438512
Schulman, K A; Stadtmauer, E A; Reed, S D; Glick, H A; Goldstein, L J; Pines, J M; Jackman, J A; Suzuki, S; Styler, M J; Crilley, P A; Klumpp, T R; Mangan, K F; Glick, J H
2003-02-01
We performed an economic analysis of data from 180 women in a clinical trial of conventional-dose chemotherapy vs high-dose chemotherapy plus stem-cell transplantation for metastatic breast cancer responding to first-line chemotherapy. Data on resource use, including hospitalizations, medical procedures, medications, and diagnostic tests, were abstracted from subjects' clinical trial records. Resources were valued using the Medicare Fee Schedule for inpatient costs at one academic medical center and average wholesale prices for medications. Monthly costs were calculated and stratified by treatment group and clinical phase. Mean follow-up was 690 days in the transplantation group and 758 days in the conventional-dose chemotherapy group. Subjects in the transplantation group were hospitalized for more days (28.6 vs 17.8, P=0.0041) and incurred higher costs (US dollars 84055 vs US dollars 28169) than subjects receiving conventional-dose chemotherapy, with a mean difference of US dollars 55886 (95% CI, US dollars 47298-US dollars 63666). Sensitivity analyses resulted in cost differences between the treatment groups from US dollars 36528 to US dollars 75531. High-dose chemotherapy plus stem-cell transplantation resulted in substantial additional morbidity and costs at no improvement in survival. Neither the survival results nor the economic findings support the use of this procedure outside of the clinical trial setting.
Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro.
Massee, Michelle; Chinn, Kathryn; Lei, Jennifer; Lim, Jeremy J; Young, Conan S; Koob, Thomas J
2016-10-01
Human-derived placental tissues have been shown in randomized clinical trials to be effective for healing chronic wounds, and have also demonstrated the ability to recruit stem cells to the wound site in vitro and in vivo. In this study, PURION(®) Processed dehydrated human amnion/chorion membrane allografts (dHACM, EpiFix(®) , MiMedx Group, Marietta, GA) were evaluated for their ability to alter stem cell activity in vitro. Human bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ADSCs), and hematopoietic stem cells (HSCs) were treated with soluble extracts of dHACM tissue, and were evaluated for cellular proliferation, migration, and cytokine secretion. Stem cells were analyzed for cell number by DNA assay after 24 h, closure of an acellular zone using microscopy over 3 days, and soluble cytokine production in the medium of treated stem cells was analyzed after 3 days using a multiplex ELISA array. Treatment with soluble extracts of dHACM tissue stimulated BM-MSCs, ADSCs, and HSCs to proliferate with a significant increase in cell number after 24 h. dHACM treatment accelerated closure of an acellular zone by ADSCs and BM-MSCs after 3 days, compared to basal medium. BM-MSCs, ADSCs, and HSCs also modulated endogenous production of a number of various soluble signals, including regulators of inflammation, mitogenesis, and wound healing. dHACM treatment promoted increased proliferation and migration of ADSCs, BM-MSCs, and HSCs, along with modulation of secreted proteins from those cells. Therefore, dHACM may impact wound healing by amplifying host stem cell populations and modulating their responses in treated wound tissues. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1495-1503, 2016. © 2015 The Authors. Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.
Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee
2017-03-01
The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.
Jacobs, Sandra A; Pinxteren, Jef; Roobrouck, Valerie D; Luyckx, Ariane; van't Hof, Wouter; Deans, Robert; Verfaillie, Catherine M; Waer, Mark; Billiau, An D; Van Gool, Stefaan W
2013-01-01
Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular stem cell product.
Koch, Thomas G.; Berg, Lise C.; Betts, Dean H.
2009-01-01
This paper provides a bird’s-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine. The understanding of equine stem cell biology, biofactors, and scaffolds, and their potential therapeutic use in horses are rudimentary at present. Mesenchymal stem cell isolation has been proclaimed from several equine tissues in the past few years. Based on the criteria of the International Society for Cellular Therapy, most of these cells are more correctly referred to as multipotent mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering — cells, biological factors, and biomaterials — are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources. The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently in controlled clinical trials in equine patients to be regarded as evidence-based medicine. In the meantime, the medical mantra “do no harm” should prevail, and the application of stem cell-based therapies in the horse should be done critically and cautiously, and treatment outcomes (good and bad) should be recorded and reported. Stem cell and tissue engineering research in the horse has exciting comparative and equine specific perspectives that most likely will benefit the health of horses and humans. Controlled, well-designed studies are needed to move this new equine research field forward. PMID:19412395
Golpanian, Samuel; DiFede, Darcy L; Pujol, Marietsy V; Lowery, Maureen H; Levis-Dusseau, Silvina; Goldstein, Bradley J; Schulman, Ivonne H; Longsomboon, Bangon; Wolf, Ariel; Khan, Aisha; Heldman, Alan W; Goldschmidt-Clermont, Pascal J; Hare, Joshua M
2016-03-15
Frailty is a syndrome associated with reduced physiological reserves that increases an individual's vulnerability for developing increased morbidity and/or mortality. While most clinical trials have focused on exercise, nutrition, pharmacologic agents, or a multifactorial approach for the prevention and attenuation of frailty, none have studied the use of cell-based therapies. We hypothesize that the application of allogeneic human mesenchymal stem cells (allo-hMSCs) as a therapeutic agent for individuals with frailty is safe and efficacious. The CRATUS trial comprises an initial non-blinded phase I study, followed by a blinded, randomized phase I/II study (with an optional follow-up phase) that will address the safety and pre-specified beneficial effects in patients with the aging frailty syndrome. In the initial phase I protocol, allo-hMSCs will be administered in escalating doses via peripheral intravenous infusion (n=15) to patients allocated to three treatment groups: Group 1 (n=5, 20 million allo-hMSCs), Group 2 (n=5, 100 million allo-hMSCs), and Group 3 (n=5, 200 million allo-hMSCs). Subsequently, in the randomized phase, allo-hMSCs or matched placebo will be administered to patients (n=30) randomly allocated in a 1:1:1 ratio to one of two doses of MSCs versus placebo: Group A (n=10, 100 million allo-hMSCs), Group B (n=10, 200 million allo-hMSCs), and Group C (n=10, placebo). Primary and secondary objectives are, respectively, to demonstrate the safety and efficacy of allo-hMSCs administered in frail older individuals. This study will determine the safety of intravenous infusion of stem cells and compare phenotypic outcomes in patients with aging frailty.
Intensified chemotherapy with stem-cell rescue in germ-cell tumors.
Simonelli, M; Rosti, G; Banna, G L; Pedrazzoli, P
2012-04-01
Based on the high chemosensitivity of germ-cell tumors (GCTs), the concept of high-dose chemotherapy (HDCT) has been developed worldwide and investigated through many clinical trials. It has been carried out in different clinical settings, ranging from resistant or absolute refractory disease to chemosensitive relapse. HDCT with stem-cell support has been also explored as a part of first-line strategy for poor-prognosis patients. Our review summarized results from clinical trials evaluating the role of HDCT in patients with advanced GCTs. So far available data were obtained through a Medline search of English-language literature. Several phase II trials and retrospective series have shown a possible benefit for GCT patients with recurrent disease as well as in first-line setting. Despite these results, data derived from randomized phase III studies failed to demonstrate any survival advantage for HDCT over conventional chemotherapy. The role of HDCT in GCTs remains controversial. We need new prospective studies based on prognostic factors with multiple transplants of carboplatin and etoposide as the preferred high dose regimen. At present, based mainly on retrospective and phase II studies, HDCT may represent a therapeutic option for patients with primary refractory disease or for those with a second or further relapse.
Notch Inhibitors for Cancer Treatment
Espinoza, Ingrid; Miele, Lucio
2013-01-01
Notch signaling is an evolutionarily conserved cell signaling pathway involved in cell fate during development, stem cell renewal and differentiation in postnatal tissues. Roles for Notch in carcinogenesis, in the biology of cancer stem cells and tumor angiogenesis have been reported. These features identify Notch as a potential therapeutic target in oncology. Based on the molecular structure of Notch receptor, Notch ligands and Notch activators, a set of Notch pathway inhibitors have been developed. Most of these inhibitors had shown anti-tumor effects in preclinical studies. At the same time, the combinatorial effect of these inhibitors with current chemotherapeutical drugs still under study in different clinical trials. In this review, we describe the basics of Notch signaling and the role of Notch in normal and cancer stem cells as a logic way to develop different Notch inhibitors and their current stage of progress for cancer patient’s treatment. PMID:23458608
Winata, Patrick; Williams, Marissa; McGowan, Eileen; Nassif, Najah; van Zandwijk, Nico; Reid, Glen
2017-11-17
MicroRNAs are frequently downregulated in cancer, and restoring expression has tumour suppressive activity in tumour cells. Our recent phase I clinical trial investigated microRNA-based therapy in patients with malignant pleural mesothelioma. Treatment with TargomiRs, microRNA mimics with novel sequence packaged in EGFR antibody-targeted bacterial minicells, revealed clear signs of clinical activity. In order to detect delivery of microRNA mimics to tumour cells in future clinical trials, we tested hydrolysis probe-based assays specific for the sequence of the novel mimics in transfected mesothelioma cell lines using RT-qPCR. The custom assays efficiently and specifically amplified the consensus mimics. However, we found that these assays gave a signal when total RNA from untransfected and control mimic-transfected cells were used as templates. Further investigation revealed that the reverse transcription step using stem-loop primers appeared to introduce substantial non-specific amplification with either total RNA or synthetic RNA templates. This suggests that reverse transcription using stem-loop primers suffers from an intrinsic lack of specificity for the detection of highly similar microRNAs in the same family, especially when analysing total RNA. These results suggest that RT-qPCR is unlikely to be an effective means to detect delivery of microRNA mimic-based drugs to tumour cells in patients.
Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes
Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D.; Bullens, Dominique M.; Pinxteren, Jef; Verfaillie, Catherine M.; Van Gool, Stefaan W.
2016-01-01
MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8+ cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was—even after major histocompatibility complex class I upregulation—insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8−CD69+ T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Significance Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8+ T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy. PMID:27465071
Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes.
Plessers, Jeroen; Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D; Bullens, Dominique M; Pinxteren, Jef; Verfaillie, Catherine M; Van Gool, Stefaan W
2016-12-01
: MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8 + cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was-even after major histocompatibility complex class I upregulation-insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8 - CD69 + T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8 + T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy. ©AlphaMed Press.
Stem cell therapy for retinal diseases
Garcia, José Mauricio; Mendonça, Luisa; Brant, Rodrigo; Abud, Murilo; Regatieri, Caio; Diniz, Bruno
2015-01-01
In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions. PMID:25621115
Mikirova, Nina A; Jackson, James A; Hunninghake, Ron; Kenyon, Julian; Chan, Kyle W H; Swindlehurst, Cathy A; Minev, Boris; Patel, Amit N; Murphy, Michael P; Smith, Leonard; Ramos, Famela; Ichim, Thomas E; Riordan, Neil H
2010-04-08
The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.
Yang, Yin M.; Gupta, Shailesh K.; Kim, Kevin J.; Powers, Berit E.; Cerqueira, Antonio; Wainger, Brian J.; Ngo, Hien D.; Rosowski, Kathryn A.; Schein, Pamela A.; Ackeifi, Courtney A.; Arvanites, Anthony C.; Davidow, Lance S.; Woolf, Clifford J.; Rubin, Lee L.
2013-01-01
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease, characterized by motor neuron (MN) death, for which there are no truly effective treatments. Here, we describe a new small molecule survival screen carried out using MNs from both wildtype and mutant SOD1 mouse embryonic stem cells. Among the hits we found, kenpaullone had a particularly impressive ability to prolong the healthy survival of both types of MNs that can be attributed to its dual inhibition of GSK3 and HGK kinases. Furthermore, kenpaullone also strongly improved the survival of human MNs derived from ALS patient induced pluripotent stem cells and was more active than either of two compounds, olesoxime and dexpramipexole, that recently failed in ALS clinical trials. Our studies demonstrate the value of a stem cell approach to drug discovery and point to a new paradigm for identification and preclinical testing of future ALS therapeutics. PMID:23602540
Applications of Mesenchymal Stem Cells in Sinus Lift Augmentation as a Dental Implant Technology.
Parnia, Feridoun; Yazdani, Javad; Maleki Dizaj, Solmaz
2018-01-01
The potential application of stem cell biology in human dentistry is a new and emerging field of research. The objective of the current review was to study the efficiency of mesenchymal stem cells (MSCs) in sinus lift augmentation (SLA). A literature review was performed in PubMed Central using MeSH keywords such as sinus lift, MSCs, dental implants, and augmentation. The searches involved full-text papers written in English, published in the past 10 years (2007-2017). The review included in vitro and in vivo studies on the use of MSCs in SLA. Electronic searching provided 45 titles, and among them, 8 papers were chosen as suitable based on the inclusion requirements of this review. The reviewed studies have revealed the potential of MSCs in SLA. According to these papers, stem cell therapy combined with different biomaterials may considerably improve bone regeneration in previous steps of dental implantation and may veritably lead to efficient clinical usages in the recent future. However, the identification of an ideal source of stem cells as well as long-term studies is vital to assess the success rate of this technology. Further clinical trials are also needed to approve the potential of MSCs in SLA.
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application
About, Imad
2016-01-01
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.” PMID:27818690
A Path to Hope for Sickle Cell Disease | NIH MedlinePlus the Magazine
... Dr. Tisdale and his team, Deidra received a stem cell transplant from her sister. She is now free of sickle cell disease and free of the pain that prevented her from doing everyday activities like walking or playing with her kids. Deidra says NIH and the trial were the ...
Peripheral T-cell lymphoma: the role of hematopoietic stem cell transplantation.
Gkotzamanidou, Maria; Papadimitriou, Christos A
2014-02-01
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of non-Hodgkin lymphomas (NHLs). Whereas the incidence of the disease appears to increase during last decades and the prognosis remains dramatically poor, so far no standard treatment has been established. High-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT) has been proven effective in relapsed PTCL, while retrospective studies have shown a survival benefit as first-line treatment in some subsets of PTCL patients. However, given disease rarity, there is a paucity of randomized trials in both upfront and relapse setting. Here, we critically evaluated eligible prospective and retrospective studies that address the role of ASCT in treatment of PTCL, with respect to quality of design and performance. Additionally, the role of allogeneic transplantation has been reviewed. The comparison of ASCT with novel agents that emerge or the combination of both, are to be ascertained via prospective randomized trials in this field. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Gómez-Lechón, María José; Tolosa, Laia
2016-09-01
Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages.
Stem cell therapies in cardiovascular disease A "realistic" appraisal.
Partovian, Chohreh; Simons, Michael
2008-01-01
The possibility of reconstituting the damaged heart has introduced a new paradigm in cardiovascular biology and created the potential for a new therapeutic approach in the cardiovascular field, where there is a compelling need for innovative treatments. While the results of animal and early clinical studies are encouraging, the more direct use of cell-based therapies in patients is still long-reached. Gaps in our basic understanding of mechanisms, lack of important randomized, double blind, and controlled clinical trials, as well as technology development for cell production are among challenges to be overcome before full translation of cell based therapies in clinical arena. This review focuses on summarizing the latest knowledge in stem cell therapy for cardiovascular diseases.
Livraghi, Tito; Ceriani, R; Palmisano, A; Pedicini, V; Pich, M G; Tommasini, M A; Torzilli, G
2011-02-01
Hepatocellular carcinoma (HCC) represents the third cause of cancer-related death. Because HCC is multi-centric with time, excluding the few transplanted patients, sooner or later it becomes untreatable with loco-regional therapies and, until some years ago, it was not responsive to systemic therapies. In 2005 a randomized trial indicated the efficacy of a product containing stem cell differentiation stage factors (SCDSF) taken from zebra fish embryos during the stage in which the totipotent stem cells are differentiating into the pluripotent adult stem cells. In such a trial the patients, with "intermediate" and "advanced" HCC according to BCLC/AASLD guidelines, presented benefit in terms of performance status (PS) and objective tumoral response, with some cases (2.4%) of complete response (CR). The aim of this cohort study is to report the experience of a tertiary referral center on the evidence of cases of CR in patients with "advanced" stage HCC treated with SCDSF as supportive care. CR was regarded as sustained disappearance of the neoplastic areas or blood supply therein, accompanied by normalization of AFP levels. Out of 49 patients consecutively recruited and retrospectively evaluated, 38 had "advanced" stage and 11 "terminal" stage. In 5 patients with "advanced" stage a sustained CR was reported (13.1%). Improvement on PS was obtained in 17 patients (34.6%). No side effects occurred. SCDSF treatment confirmed its efficacy in patients with "advanced" HCC, in terms of PS and tumoral response.
Kimura, Shun-ichi; Akahoshi, Yu; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Ishihara, Yuko; Kawamura, Koji; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Terasako-Saito, Kiriko; Nakasone, Hideki; Kikuchi, Misato; Yamazaki, Rie; Kako, Shinichi; Kanda, Junya; Tanihara, Aki; Nishida, Junji; Kanda, Yoshinobu
2014-07-01
We performed a meta-analysis to evaluate the impact of systemic antibiotic prophylaxis in hematopoietic stem cell transplantation (HSCT) recipients. We collected reports from PubMed, the Cochrane Library, EMBASE, CINAHL, and Web of Science, along with references cited therein. We included prospective, randomized studies on systemic antibiotic prophylaxis in HSCT recipients. Seventeen trials with 1453 autologous and allogeneic HSCT recipients were included. Systemic antibiotic prophylaxis was compared with placebo or no prophylaxis in 10 trials and with non-absorbable antibiotics in two trials. Systemic antibiotics other than fluoroquinolones were evaluated in five of these 12 trials. Four trials evaluated the effect of the addition of antibiotics for gram-positive bacteria to fluoroquinolones. One trial compared two different systemic antibiotic regimens: fluoroquinolones versus trimethoprim-sulfamethoxazole. As a result, systemic antibiotic prophylaxis reduced the incidence of febrile episodes (OR 0.16; 95%CI 0.09-0.30), clinically or microbiologically documented infection (OR 0.38; 95%CI 0.22-0.63) and bacteremia (OR 0.31; 95%CI 0.16-0.59) without significantly affecting all-cause mortality or infection-related mortality. Systemic antibiotic prophylaxis successfully reduced the incidence of infection. However, there was no significant impact on mortality. The clinical benefits of prophylaxis with fluoroquinolones were inconclusive because of the small number of clinical trials evaluated. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
2017-06-26
Chronic Myelogenous Leukemia; Acute Myelogenous Leukemia; Acute Lymphoblastic Leukemia; Myelodysplastic Syndrome; Non-Hodgkin's Lymphoma; Hodgkin's Disease; Multiple Myeloma; Chronic Lymphocytic Leukemia
Choi, Michael Y; Widhopf, George F; Ghia, Emanuela M; Kidwell, Reilly L; Hasan, Md Kamrul; Yu, Jian; Rassenti, Laura Z; Chen, Liguang; Chen, Yun; Pittman, Emily; Pu, Minya; Messer, Karen; Prussak, Charles E; Castro, Januario E; Jamieson, Catriona; Kipps, Thomas J
2018-06-01
Cirmtuzumab is a humanized monoclonal antibody (mAb) that targets ROR1, an oncoembryonic orphan receptor for Wnt5a found on cancer stem cells (CSCs). Aberrant expression of ROR1 is seen in many malignancies and has been linked to Rho-GTPase activation and cancer stem cell self-renewal. For patients with chronic lymphocytic leukemia (CLL), self-renewing, neoplastic B cells express ROR1 in 95% of cases. High-level leukemia cell expression of ROR1 is associated with an unfavorable prognosis. We conducted a phase 1 study involving 26 patients with progressive, relapsed, or refractory CLL. Patients received four biweekly infusions, with doses ranging from 0.015 to 20 mg/kg. Cirmtuzumab had a long plasma half-life and did not have dose-limiting toxicity. Inhibition of ROR1 signaling was observed, including decreased activation of RhoA and HS1. Transcriptome analyses showed that therapy inhibited CLL stemness gene expression signatures in vivo. Cirmtuzumab is safe and effective at inhibiting tumor cell ROR1 signaling in patients with CLL. Copyright © 2018. Published by Elsevier Inc.
Update on Clinical Trials in Dry Age-related Macular Degeneration
Taskintuna, Ibrahim; Elsayed, M. E. A. Abdalla; Schatz, Patrik
2016-01-01
This review article summarizes the most recent clinical trials for dry age-related macular degeneration (AMD), the most common cause of vision loss in the elderly in developed countries. A literature search through websites https://www.pubmed.org and https://www.clinicaltrials.gov/, both accessed no later than November 04, 2015, was performed. We identified three Phase III clinical trials that were completed over the recent 5 years Age-Related Eye Disease Study 2 (AREDS2), implantable miniature telescope and tandospirone, and several other trials targeting a variety of mechanisms including, oxidative stress, complement inhibition, visual cycle inhibition, retinal and choroidal blood flow, stem cells, gene therapy, and visual rehabilitation. To date, none of the biologically oriented therapies have resulted in improved vision. Vision improvement was reported with an implantable mini telescope. Stem cells therapy holds a potential for vision improvement. The AREDS2 formulas did not add any further reduced risk of progression to advanced AMD, compared to the original AREDS formula. Several recently discovered pathogenetic mechanisms in dry AMD have enabled development of new treatment strategies, and several of these have been tested in recent clinical trials and are currently being tested in ongoing trials. The rapid development and understanding of pathogenesis holds promise for the future. PMID:26957835
Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation.
Paes, Bárbara Cristina Martins Fernandes; Moço, Pablo Diego; Pereira, Cristiano Gonçalves; Porto, Geciane Silveira; de Sousa Russo, Elisa Maria; Reis, Luiza Cunha Junqueira; Covas, Dimas Tadeu; Picanço-Castro, Virginia
2017-06-01
Ten years have passed since the first publication announcing the generation of induced pluripotent stem cells (iPSCs). Issues related to ethics, immune rejection, and cell availability seemed to be solved following this breakthrough. The development of iPSC technology allows advances in in vitro cell differentiation for cell therapy purpose and other clinical applications. This review provides a perspective on the iPSC potential for cell therapies, particularly for hematological applications. We discuss the advances in in vitro hematopoietic differentiation, the possibilities to employ iPSC in hematology studies, and their potential clinical application in hematologic diseases. The generation of red blood cells and functional T cells and the genome editing technology applied to mutation correction are also covered. We highlight some of the requirements and obstacles to be overcome before translating these cells from research to the clinic, for instance, iPSC variability, genotoxicity, the differentiation process, and engraftment. Also, we evaluate the patent landscape and compile the clinical trials in the field of pluripotent stem cells. Currently, we know much more about iPSC than in 2006, but there are still challenges that must be solved. A greater understanding of molecular mechanisms underlying the generation of hematopoietic stem cells is necessary to produce suitable and transplantable hematopoietic stem progenitor cells from iPSC.
Chen, Fa-Ming; Gao, Li-Na; Tian, Bei-Min; Zhang, Xi-Yu; Zhang, Yong-Jie; Dong, Guang-Ying; Lu, Hong; Chu, Qing; Xu, Jie; Yu, Yang; Wu, Rui-Xin; Yin, Yuan; Shi, Songtao; Jin, Yan
2016-02-19
Periodontitis, which progressively destroys tooth-supporting structures, is one of the most widespread infectious diseases and the leading cause of tooth loss in adults. Evidence from preclinical trials and small-scale pilot clinical studies indicates that stem cells derived from periodontal ligament tissues are a promising therapy for the regeneration of lost/damaged periodontal tissue. This study assessed the safety and feasibility of using autologous periodontal ligament stem cells (PDLSCs) as an adjuvant to grafting materials in guided tissue regeneration (GTR) to treat periodontal intrabony defects. Our data provide primary clinical evidence for the efficacy of cell transplantation in regenerative dentistry. We conducted a single-center, randomized trial that used autologous PDLSCs in combination with bovine-derived bone mineral materials to treat periodontal intrabony defects. Enrolled patients were randomly assigned to either the Cell group (treatment with GTR and PDLSC sheets in combination with Bio-oss(®)) or the Control group (treatment with GTR and Bio-oss(®) without stem cells). During a 12-month follow-up study, we evaluated the frequency and extent of adverse events. For the assessment of treatment efficacy, the primary outcome was based on the magnitude of alveolar bone regeneration following the surgical procedure. A total of 30 periodontitis patients aged 18 to 65 years (48 testing teeth with periodontal intrabony defects) who satisfied our inclusion and exclusion criteria were enrolled in the study and randomly assigned to the Cell group or the Control group. A total of 21 teeth were treated in the Control group and 20 teeth were treated in the Cell group. All patients received surgery and a clinical evaluation. No clinical safety problems that could be attributed to the investigational PDLSCs were identified. Each group showed a significant increase in the alveolar bone height (decrease in the bone-defect depth) over time (p < 0.001). However, no statistically significant differences were detected between the Cell group and the Control group (p > 0.05). This study demonstrates that using autologous PDLSCs to treat periodontal intrabony defects is safe and does not produce significant adverse effects. The efficacy of cell-based periodontal therapy requires further validation by multicenter, randomized controlled studies with an increased sample size. NCT01357785 Date registered: 18 May 2011.
Salem, George A; Selby, George B
2017-01-01
Inflammatory bowel disease (IBD) is a complex, relapsing and remitting, disease characterized by an exaggerated immune response in a susceptible host. The symptoms and complications of the disease can be debilitating. Advances in medical treatment in the last decade changed the course of the disease in many patients. Despite the use of novel agents for controlling disease, a proportion of patients' disease courses continue to be either refractory, or become resistant, to available therapeutic options. Stem-cell therapy, with hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs), is a promising modality of treatment for severe refractory cases, mainly Crohn's disease (CD) patients. HSCs have the ability to migrate to damaged tissue, which provides them with further properties to differentiate to epithelial or immune-modulatory cells to restore normal mucosal tissue and integrity. MSCs therapy is a promising model for patients with perianal CD due to their immunosuppressive properties, ability to migrate to areas of injury, and demonstration of colonic healing, including fistulizing tracts. The results from ongoing clinical trials will provide a valuable understanding of the future of stem-cell therapy as a treatment option in refractory cases of IBD, a disease whose pathogenesis remains unknown, and is notoriously difficult to treat.
Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update
Miele, Lucio; Harris, Pamela Jo; Jeong, Woondong; Bando, Hideaki; Kahn, Michael; Yang, Sherry X.
2015-01-01
During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents. PMID:25850553
Zheng, Dejin; Wang, Xiaofang; Xu, Ren-He
2016-09-01
With ongoing clinical trials, human embryonic stem cells (hESCs) have shown substantial potential for regenerative medicine. However, due to the mismatch of human leukocyte antigens (HLAs) between hESC-derived allografts and recipients, immunosuppressant regimens must be used to prevent immune rejection of the grafts. Considerable efforts have been devoted to overcoming this hurdle via the derivation and banking of human nuclear transfer ESCs, parthenogenetic ESCs, and induced pluripotent stem cells. However, ethical and safety concerns remain, hindering the application of these types of pluripotent cells. Other approaches have recently been explored to generate universally compatible hESCs through the silencing or deletion of HLAs or genes essential for HLA expression, including β-2-microglobulin and class-II MHC transactivator, as well as the induction of immunosuppression via the ectopic expression of non-classical HLAs (e.g., HLA-E and -G), cytotoxic T lymphocyte antigen 4 fused with immunoglobulin, and programmed death ligand-1. In this review, we introduce developments in this line of research and discuss strategies to reduce the tumorigenic concerns regarding hESCs, especially after they acquire the capability to escape immune surveillance. Stem Cells 2016;34:2269-2275. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF?
Cashen, A F; Lazarus, H M; Devine, S M
2007-05-01
Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.
The top cited articles on glioma stem cells in Web of Science.
Yi, Fuxin; Ma, Jun; Ni, Weimin; Chang, Rui; Liu, Wenda; Han, Xiubin; Pan, Dongxiao; Liu, Xingbo; Qiu, Jianwu
2013-05-25
Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treatment of glioma. To use bibliometric indexes to track study focuses on glioma stem cell, and to investigate the relationships among geographic origin, impact factors, and highly cited articles indexed in Web of Science. A list of citation classics for glioma stem cells was generated by searching the database of Web of Science-Expanded using the terms "glioma stem cell" or "glioma, stem cell" or "brain tumor stem cell". The top 63 cited research articles which were cited more than 100 times were retrieved by reading the abstract or full text if needed. Each eligible article was reviewed for basic information on subject categories, country of origin, journals, authors, and source of journals. Inclusive criteria: (1) articles in the field of glioma stem cells which was cited more than 100 times; (2) fundamental research on humans or animals, clinical trials and case reports; (3) research article; (4) year of publication: 1899-2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles needing to be manually searched or accessed only by telephone; (2) unpublished articles; and (3) reviews, conference proceedings, as well as corrected papers. Of 2 040 articles published, the 63 top-cited articles were published between 1992 and 2010. The number of citations ranged from 100 to 1 754, with a mean of 280 citations per article. These citation classics came from nineteen countries, of which 46 articles came from the United States. Duke University and University of California, San Francisco led the list of classics with seven papers each. The 63 top-cited articles were published in 28 journals, predominantly Cancer Research and Cancer Cell, followed by Cell Stem Cell and Nature. Our bibliometric analysis provides a historical perspective on the progress of glioma stem cell research. Articles originating from outstanding institutions of the United States and published in high-impact journals are most likely to be cited.
Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven
2017-12-01
Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.
Duran, Jason M.; Makarewich, Catherine A.; Sharp, Thomas E.; Starosta, Timothy; Fang, Zhu; Hoffman, Nicholas E.; Chiba, Yumi; Madesh, Muniswamy; Berretta, Remus M.; Kubo, Hajime; Houser, Steven R.
2013-01-01
Rationale Autologous bone marrow- or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is key toward improving clinical outcomes. Objective To determine the mechanism by which novel bone-derived stem cells support the injured heart. Methods and Results Cortical bone stem cells (CBSCs) and cardiac-derived stem cells (CDCs) were isolated from EGFP+ transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction (MI) with injection of CBSCs (n=67), CDCs (n=36) or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor) and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to CDC- or saline-treated MI controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle and endothelial cells could be identified in CBSC- but not in CDC-treated animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. Conclusions CBSCs improve survival, cardiac function, and attenuate remodeling through two mechanisms:1) secretion of pro-angiogenic factors that stimulate endogenous neovascularization, and 2) differentiation into functional adult myocytes and vascular cells. PMID:23801066
High-dose therapy in multiple myeloma and primary amyloidosis: an overview.
Kyle, R A
1999-02-01
Autologous stem cell transplantation is a reasonable approach for patients younger than 70 years and should be discussed with each patient before instituting alkylating agent therapy. Ideally, it should be done in a clinical trial. Although most patients relapse, it does provide a modest prolongation of survival. The major needs are an improved preparative regimen before transplantation and the removal of myeloma cells and, more importantly, their precursors from the peripheral blood. Conventional allogeneic transplantation is associated with too high a mortality rate at present and cannot be recommended. Efforts must be directed toward reducing transplant-related mortality by T-cell depletion or other means. The preparative regimen must be improved, because most patients relapse after transplantation. The use of dendritic cells and vaccines is an important area of research. The role of autologous transplantation in primary amyloidosis (AL) is indeterminate at present. Longer follow-up evaluation of patients who have undergone transplantation is needed. Patient selection is a critical aspect. Stem-cell transplantation should be performed in a clinical trial for primary AL.
A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury.
Curtis, Erik; Martin, Joel R; Gabel, Brandon; Sidhu, Nikki; Rzesiewicz, Teresa K; Mandeville, Ross; Van Gorp, Sebastiaan; Leerink, Marjolein; Tadokoro, Takahiro; Marsala, Silvia; Jamieson, Catriona; Marsala, Martin; Ciacci, Joseph D
2018-06-01
We tested the feasibility and safety of human-spinal-cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury (SCI). In this clinical trial, four subjects with T2-T12 SCI received treatment consisting of removal of spinal instrumentation, laminectomy, and durotomy, followed by six midline bilateral stereotactic injections of NSI-566 cells. All subjects tolerated the procedure well and there have been no serious adverse events to date (18-27 months post-grafting). In two subjects, one to two levels of neurological improvement were detected using ISNCSCI motor and sensory scores. Our results support the safety of NSI-566 transplantation into the SCI site and early signs of potential efficacy in three of the subjects warrant further exploration of NSI-566 cells in dose escalation studies. Despite these encouraging secondary data, we emphasize that this safety trial lacks statistical power or a control group needed to evaluate functional changes resulting from cell grafting. Copyright © 2018. Published by Elsevier Inc.
Clark, Kaitlin C; Fierro, Fernando A; Ko, Emily Mills; Walker, Naomi J; Arzi, Boaz; Tepper, Clifford G; Dahlenburg, Heather; Cicchetto, Andrew; Kol, Amir; Marsh, Lyndsey; Murphy, William J; Fazel, Nasim; Borjesson, Dori L
2017-03-20
Adipose-derived mesenchymal stem cells (ASCs) are a promising cell therapy to treat inflammatory and immune-mediated diseases. Development of appropriate pre-clinical animal models is critical to determine safety and attain early efficacy data for the most promising therapeutic candidates. Naturally occurring diseases in cats already serve as valuable models to inform human clinical trials in oncologic, cardiovascular, and genetic diseases. The objective of this study was to complete a comprehensive side-by-side comparison of human and feline ASCs, with an emphasis on their immunomodulatory capacity and transcriptome. Human and feline ASCs were evaluated for phenotype, immunomodulatory profile, and transcriptome. Additionally, transwells were used to determine the role of cell-cell contact in ASC-mediated inhibition of lymphocyte proliferation in both humans and cats. Similar to human ASCs, feline ASCs were highly proliferative at low passages and fit the minimal criteria of multipotent stem cells including a compatible surface protein phenotype, osteogenic capacity, and normal karyotype. Like ASCs from all species, feline ASCs inhibited mitogen-activated lymphocyte proliferation in vitro, with or without direct ASC-lymphocyte contact. Feline ASCs mimic human ASCs in their mediator secretion pattern, including prostaglandin E2, indoleamine 2,3 dioxygenase, transforming growth factor beta, and interleukin-6, all augmented by interferon gamma secretion by lymphocytes. The transcriptome of three unactivated feline ASC lines were highly similar. Functional analysis of the most highly expressed genes highlighted processes including: 1) the regulation of apoptosis; 2) cell adhesion; 3) response to oxidative stress; and 4) regulation of cell differentiation. Finally, feline ASCs had a similar gene expression profile to noninduced human ASCs. Findings suggest that feline ASCs modulate lymphocyte proliferation using soluble mediators that mirror the human ASC secretion pattern. Uninduced feline ASCs have similar gene expression profiles to uninduced human ASCs, as revealed by transcriptome analysis. These data will help inform clinical trials using cats with naturally occurring diseases as surrogate models for human clinical trials in the regenerative medicine arena.
Ibrutinib Effective against Graft-Versus-Host Disease
A Cancer Currents blog post on results from a small clinical trial showing that ibrutinib can effectively treat graft-versus-host-disease, a common and serious complication of allogeneic stem cell transplants.
2012-01-01
Background Hematopoietic stem cell transplantation is an intensive therapy used to improve survivorship and cure various oncologic diseases. However, this therapy is associated with high mortality rates and numerous negative side-effects. The recovery of the immune system is a special concern and plays a key role in the success of this treatment. In healthy populations it is known that exercise plays an important role in immune system regulation, but little is known about the role of exercise in the hematological and immunological recovery of children undergoing hematopoietic stem cell transplant. The primary objective of this randomized-controlled trial (RCT) is to study the effect of an exercise program (in- and outpatient) on immune cell recovery in patients undergoing an autologous stem cell transplantation. The secondary objective is to determine if an exercise intervention diminishes the usual deterioration in quality of life, physical fitness, and the acquisition of a sedentary lifestyle. Methods This RCT has received approval from The Conjoint Health Research Ethics Board (CHREB) of the University of Calgary (Ethics ID # E-24476). Twenty-four participants treated for a malignancy with autologous stem cell transplant (5 to 18 years) in the Alberta Children’s Hospital will be randomly assigned to an exercise or control group. The exercise group will participate in a two-phase exercise intervention (in- and outpatient) from hospitalization until 10 weeks after discharge. The exercise program includes strength, flexibility and aerobic exercise. During the inpatient phase this program will be performed 5 times/week and will be supervised. The outpatient phase will combine a supervised session with two home-based exercise sessions with the use of the Wii device. The control group will follow the standard protocol without any specific exercise program. A range of outcomes, including quantitative and functional recovery of immune system, cytokine levels in serum, natural killer (NK) cells and their subset recovery and function, and gene expression of activating and inhibitory NK cell receptors, body composition, nutrition, quality of life, fatigue, health-related fitness assessment and physical activity levels will be examined, providing the most comprehensive assessment to date. Discussion We expect to find improvements in immunological recovery and quality of life, and decreased acquisition of sedentary behavior and fitness deconditioning. The comprehensive outcomes generated in this RCT will provide preliminary data to conduct a multisite study that will generate stronger outcomes. Trial registration Gov identification # NCT01666015 PMID:22963378
Mesenchymal Stem Cells: Time to Change the Name!
2017-01-01
Summary Mesenchymal stem cells (MSCs) were officially named more than 25 years ago to represent a class of cells from human and mammalian bone marrow and periosteum that could be isolated and expanded in culture while maintaining their in vitro capacity to be induced to form a variety of mesodermal phenotypes and tissues. The in vitro capacity to form bone, cartilage, fat, etc., became an assay for identifying this class of multipotent cells and around which several companies were formed in the 1990s to medically exploit the regenerative capabilities of MSCs. Today, there are hundreds of clinics and hundreds of clinical trials using human MSCs with very few, if any, focusing on the in vitro multipotential capacities of these cells. Unfortunately, the fact that MSCs are called “stem cells” is being used to infer that patients will receive direct medical benefit, because they imagine that these cells will differentiate into regenerating tissue‐producing cells. Such a stem cell treatment will presumably cure the patient of their medically relevant difficulties ranging from osteoarthritic (bone‐on‐bone) knees to various neurological maladies including dementia. I now urge that we change the name of MSCs to Medicinal Signaling Cells to more accurately reflect the fact that these cells home in on sites of injury or disease and secrete bioactive factors that are immunomodulatory and trophic (regenerative) meaning that these cells make therapeutic drugs in situ that are medicinal. It is, indeed, the patient's own site‐specific and tissue‐specific resident stem cells that construct the new tissue as stimulated by the bioactive factors secreted by the exogenously supplied MSCs. Stem Cells Translational Medicine 2017;6:1445–1451 PMID:28452204
Induced pluripotent stem cell technology: a decade of progress.
Shi, Yanhong; Inoue, Haruhisa; Wu, Joseph C; Yamanaka, Shinya
2017-02-01
Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. Novel pathological mechanisms have been elucidated, new drugs originating from iPSC screens are in the pipeline and the first clinical trial using human iPSC-derived products has been initiated. In particular, the combination of human iPSC technology with recent developments in gene editing and 3D organoids makes iPSC-based platforms even more powerful in each area of their application, including precision medicine. In this Review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field.
STEM CELL IMAGING: FROM BENCH TO BEDSIDE
Nguyen, Patricia K.; Riegler, Johannes; Wu, Joseph C.
2014-01-01
Although cellular therapies hold great promise for the treatment of human disease, results from several initial clinical trials have not shown a level of efficacy required for their use as a first line therapy. Here we discuss how in vivo molecular imaging has helped identify barriers to clinical translation and potential strategies that may contribute to successful transplantation and improved outcomes, with a focus on cardiovascular and neurological diseases. We conclude with a perspective on the future role of molecular imaging in defining safety and efficacy for stem cell clinical implementation. PMID:24702995
Abrahamsson, Sofia V.; Angelini, Daniela F.; Dubinsky, Amy N.; Morel, Esther; Oh, Unsong; Jones, Joanne L.; Carassiti, Daniele; Reynolds, Richard; Salvetti, Marco; Calabresi, Peter A.; Coles, Alasdair J.; Battistini, Luca; Martin, Roland; Burt, Richard K.
2013-01-01
Autologous haematopoietic stem cell transplantation has been tried as one experimental strategy for the treatment of patients with aggressive multiple sclerosis refractory to other immunotherapies. The procedure is aimed at ablating and repopulating the immune repertoire by sequentially mobilizing and harvesting haematopoietic stem cells, administering an immunosuppressive conditioning regimen, and re-infusing the autologous haematopoietic cell product. ‘Non-myeloablative’ conditioning regimens to achieve lymphocytic ablation without marrow suppression have been proposed to improve safety and tolerability. One trial with non-myeloablative autologous haematopoietic stem cell transplantation reported clinical improvement and inflammatory stabilization in treated patients with highly active multiple sclerosis. The aim of the present study was to understand the changes in the reconstituted immune repertoire bearing potential relevance to its mode of action. Peripheral blood was obtained from 12 patients with multiple sclerosis participating in the aforementioned trial and longitudinally followed for 2 years. We examined the phenotype and function of peripheral blood lymphocytes by cell surface or intracellular staining and multi-colour fluorescence activated cell sorting alone or in combination with proliferation assays. During immune reconstitution post-transplantation we observed significant though transient increases in the proportion of CD4+FoxP3+ T cells and CD56high natural killer cell subsets, which are cell subsets associated with immunoregulatory function. CD8+CD57+ cytotoxic T cells were persistently increased after therapy and were able to suppress CD4+ T cell proliferation with variable potency. In contrast, a CD161high proinflammatory CD8+ T cell subset was depleted at all time-points post-transplantation. Phenotypic characterization revealed that the CD161highCD8+ T cells were mucosal-associated invariant T cells, a novel cell population originating in the gut mucosa but expressing the central nervous system-homing receptor CCR6. Detection of mucosal-associated invariant T cells in post-mortem multiple sclerosis brain white matter active lesions confirmed their involvement in the disease pathology. Intracellular cytokine staining demonstrated interferon γ and interleukin 17 production and lack of interleukin 10 production, a pro-inflammatory profile. Mucosal-associated invariant T cell frequency did not change in patients treated with interferon β; and was more depleted after autologous haematopoietic stem cell transplantation than in patients who had received high-dose cyclophosphamide (n = 7) or alemtuzumab (n = 21) treatment alone, suggesting an additive or synergistic effect of the conditioning regime components. We propose that a favourably modified balance of regulatory and pro-inflammatory lymphocytes underlies the suppression of central nervous system inflammation in patients with multiple sclerosis following non-myeloablative autologous haematopoietic stem cell transplantation with a conditioning regimen consisting of cyclophosphamide and alemtuzumab. PMID:23864273
de Girolamo, Laura; Lucarelli, Enrico; Alessandri, Giulio; Avanzini, Maria Antonietta; Bernardo, Maria Ester; Biagi, Ettore; Brini, Anna Teresa; D’Amico, Giovanna; Fagioli, Franca; Ferrero, Ivana; Locatelli, Franco; Maccario, Rita; Marazzi, Mario; Parolini, Ornella; Pessina, Augusto; Torre, Maria Luisa
2013-01-01
Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects. PMID:23278600
Tienari, Pentti; Kiviharju, Anna; Valori, Miko; Lindholm, Dan; Laaksovirta, Hannu
2016-01-01
The mechanisms of neurodegenerative diseases have begun to become unraveled, thanks to the progress in stem cell research. The repeat expansion in the C90RF72 gene was identified in 2011 as the most common genetic cause of both ALS and frontal lobe dementia. Only over a couple of years the disease mechanisms of this mutation have been revealed and treatment trials have already been conducted in nerve cell cultures differentiated from patients' stem cells. We discuss the role of the repeat expansion in the C90RF72 gene in the epidemiology of the diseases and the resulting disturbances in nerve cell function.
Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Zhenhua; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing; Department of Anatomy, Anhui Medical University, Hefei, 230032
2011-12-10
Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristicsmore » of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.« less
Stem Cell Therapy to Improve Burn Wound Healing
2017-03-01
Aim(s) • Perform Phase 1 Trial of Allogeneic MSCs in Burns • Perform Phase 2 Trial of Allogeneic MSCs in Burns • Collect Tissue Repository for...for safety/dose studies CY15 Goal – Continue Phase 1 and, Start Tissue Repository Continue donors recruitment, screening and Bone Marrow Aspiration...1 Trial and Collect Tissue Repository Continue donors recruitment, screening and Bone Marrow Aspiration as needed. Continue patients screening
Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis.
Lyon, Alexander R; Harding, Sian E; Peters, Nicholas S
2008-09-01
Cardiac cell therapy is an expanding scientific field which is yielding new insights into the pathogenesis of cardiac disease and offers new therapeutic strategies. Inherent to both these areas of research are the electrical properties of individual cells, the electrical interplay between cardiomyocytes, and their roles in arrhythmogenesis. This review discusses the potential mechanisms by which various candidate cells for cardiac therapy may modulate the ventricular arrhythmic substrate and highlights the data and lessons learnt from the clinical cardiac cell therapy trials published to date. Pro- and antiarrhythmic mechanistic factors are discussed, and the importance of their consideration in the design of any future clinical cell therapy trials.
Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M.G.; Mazzanti, Michele; Florio, Tullio
2014-01-01
Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment. PMID:25361004
Gritti, Marta; Würth, Roberto; Angelini, Marina; Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M G; Mazzanti, Michele; Florio, Tullio
2014-11-30
Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min Hwan; School of Life Sciences and Biotechnology, Korea University, Seoul; Woo, Sang-Keun
Highlights: • We developed a safe, simple and appropriate stem cell labeling method with {sup 124}I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with {sup 124}I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via themore » hexadecyl-4-{sup 124}I-iodobenzoate ({sup 124}I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with {sup 124}I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of {sup 124}I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. In vivo tracking of the {sup 124}I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, {sup 124}I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials.« less
Kekre, Natasha; Antin, Joseph H
2014-07-17
Most patients who require allogeneic stem cell transplantation do not have a matched sibling donor, and many patients do not have a matched unrelated donor. In an effort to increase the applicability of transplantation, alternative donors such as mismatched adult unrelated donors, haploidentical related donors, and umbilical cord blood stem cell products are frequently used when a well matched donor is unavailable. We do not yet have the benefit of randomized trials comparing alternative donor stem cell sources to inform the choice of donor; however, the existing data allow some inferences to be made on the basis of existing observational and phase 2 studies. All 3 alternative donor sources can provide effective lymphohematopoietic reconstitution, but time to engraftment, graft failure rate, graft-versus-host disease, transplant-related mortality, and relapse risk vary by donor source. These factors all contribute to survival outcomes and an understanding of them should help guide clinicians when choosing among alternative donor sources when a matched related or matched unrelated donor is not available. © 2014 by The American Society of Hematology.
Ng, Mitchell; Song, Simon; Piuzzi, Nicolas S; Ng, Kenneth; Gwam, Chukwuweike; Mont, Michael A; Muschler, George F
2017-10-01
Treatments based on stem cells have long been heralded for their potential to drive the future of regenerative medicine and have inspired increasing medical and business interest. The stem cell therapy market has been expanding since 2012, but earnings and profitability still lag the broader health care sector (compounded annual growth rate in annual financing of 31.5% versus 13.4%, respectively). On the basis of historical financial data, approximately $23 billion has been invested in stem cell companies since 1994, with more than 80% of this raised from 2011 through 2016. This reflects a marked acceleration in capital investment, as companies began late-stage clinical trials, initiate partnerships or are acquired by large pharmaceutical companies. All of these data reflect a field that is emerging from infancy, which will demand more time and capital to mature. This update is relevant to researchers, clinicians and investors who wish to quantify the potential in this field. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence
2016-01-01
Mesenchymal stem cells form a population of self-renewing, multipotent cells that can be isolated from several tissues. Multiple preclinical studies have demonstrated that the administration of exogenous MSC could prevent renal injury and could promote renal recovery through a series of complex mechanisms, in particular via immunomodulation of the immune system and release of paracrine factors and microvesicles. Due to their therapeutic potentials, MSC are being evaluated as a possible player in treatment of human kidney disease, and an increasing number of clinical trials to assess the safety, feasibility, and efficacy of MSC-based therapy in various kidney diseases have been proposed. In the present review, we will summarize the current knowledge on MSC infusion to treat acute kidney injury, chronic kidney disease, diabetic nephropathy, focal segmental glomerulosclerosis, systemic lupus erythematosus, and kidney transplantation. The data obtained from these clinical trials will provide further insight into safety, feasibility, and efficacy of MSC-based therapy in renal pathologies and allow the design of consensus protocol for clinical purpose. PMID:27721835
Stem Cells as a Tool to Improve Outcomes of Islet Transplantation
Sims, Emily; Evans-Molina, Carmella
2012-01-01
The publication of the promising results of the Edmonton protocol in 2000 generated optimism for islet transplantation as a potential cure for Type 1 Diabetes Mellitus. Unfortunately, follow-up data revealed that less than 10% of patients achieved long-term insulin independence. More recent data from other large trials like the Collaborative Islet Transplant Registry show incremental improvement with 44% of islet transplant recipients maintaining insulin independence at three years of follow-up. Multiple underlying issues have been identified that contribute to islet graft failure, and newer research has attempted to address these problems. Stem cells have been utilized not only as a functional replacement for β cells, but also as companion or supportive cells to address a variety of different obstacles that prevent ideal graft viability and function. In this paper, we outline the manners in which stem cells have been applied to address barriers to the achievement of long-term insulin independence following islet transplantation. PMID:22970344
Gene therapy for sickle cell disease: An update.
Demirci, Selami; Uchida, Naoya; Tisdale, John F
2018-05-30
Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice. Published by Elsevier Inc.
Mesenchymal Stem Cells in Cardiology
White, Ian A.; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M.
2017-01-01
Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of pre-clinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666
Molecular biology of breast cancer stem cells: potential clinical applications.
Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent
2010-10-01
Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.
Park, Susanna S
2016-04-01
Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.
Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong
2016-01-01
In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1+ pancreatic progenitors, much less is known about the transition toward Ngn3+ pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments. PMID:26834702
Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong
2015-01-01
In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.
Gary, Regina; Aigner, Michael; Moi, Stephanie; Schaffer, Stefanie; Gottmann, Anja; Maas, Stefanie; Zimmermann, Robert; Zingsem, Jürgen; Strobel, Julian; Mackensen, Andreas; Mautner, Josef; Moosmann, Andreas; Gerbitz, Armin
2018-05-09
A major complication after allogeneic hematopoietic stem cell transplantation (aSCT) is the reactivation of herpesviruses such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Both viruses cause significant mortality and compromise quality of life after aSCT. Preventive transfer of virus-specific T cells can suppress reactivation by re-establishing functional antiviral immune responses in immunocompromised hosts. We have developed a good manufacturing practice protocol to generate CMV/EBV-peptide-stimulated T cells from leukapheresis products of G-CSF mobilized and non-mobilized donors. Our procedure selectively expands virus-specific CD8+ und CD4+ T cells over 9 days using a generic pool of 34 CMV and EBV peptides that represent well-defined dominant T-cell epitopes with various HLA restrictions. For HLA class I, this set of peptides covers at least 80% of the European population. CMV/EBV-specific T cells were successfully expanded from leukapheresis material of both G-CSF mobilized and non-mobilized donors. The protocol allows administration shortly after stem cell transplantation (d30+), storage over liquid nitrogen for iterated applications, and protection of the stem cell donor by avoiding a second leukapheresis. Our protocol allows for rapid and cost-efficient production of T cells for early transfusion after aSCT as a preventive approach. It is currently evaluated in a phase I/IIa clinical trial.
A Novel Class of Human Cardiac Stem Cells
Moccetti, Tiziano; Leri, Annarosa; Goichberg, Polina; Rota, Marcello; Anversa, Piero
2015-01-01
Following the recognition that hematopoietic stem cells improve the outcome of myocardial infarction in animal models, bone marrow mononuclear cells, CD34-positive cells and mesenchymal stromal cells have been introduced clinically. The intracoronary or intramyocardial injection of these cell classes has been shown to be safe and to produce a modest but significant enhancement in systolic function. However, the identification of resident cardiac stem cells in the human heart (hCSCs) has created great expectation concerning the potential implementation of this category of autologous cells for the management of the human disease. Although phase 1 clinical trials have been conducted with encouraging results, the search for the most powerful hCSC for myocardial regeneration is in its infancy. This manuscript discusses the efforts performed in our laboratory to characterize the critical biological variables that define the growth reserve of hCSCs. Based on the theory of the immortal DNA template, we propose that stem cells retaining the old DNA represent one of the most powerful cells for myocardial regeneration. Similarly, the expression of insulin-like growth factor-1 receptors in hCSCs recognizes a cell phenotype with superior replicating reserve. However, the impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the “mother” DNA underscores the clinical relevance of this hCSC class for the treatment of human heart failure. PMID:25807105
Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells.
Peng, Shao-Yu; Chou, Chien-Wen; Kuo, Yu-Hsuan; Shen, Perng-Chih; Shaw, S W Steven
2017-06-01
Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations. Copyright © 2017. Published by Elsevier B.V.
Immunomodulatory Effects of Adipose-Derived Stem Cells: Fact or Fiction?
Leto Barone, Angelo A.; Khalifian, Saami; Lee, W. P. Andrew; Brandacher, Gerald
2013-01-01
Adipose-derived stromal cells (ASCs) are often referred to as adipose-derived stem cells due to their potential to undergo multilineage differentiation. Their promising role in tissue engineering and ability to modulate the immune system are the focus of extensive research. A number of clinical trials using ASCs are currently underway to better understand the role of such cell niche in enhancing or suppressing the immune response. If governable, such immunoregulatory role would find application in several conditions in which an immune response is present (i.e., autoimmune conditions) or feared (i.e., solid organ or reconstructive transplantation). Although allogeneic ASCs have been shown to prevent acute GvHD in both preclinical and clinical studies, their potential warrants further investigation. Well-designed and standardized clinical trials are necessary to prove the role of ASCs in the treatment of immune disorders or prevention of tissue rejection. In this paper we analyze the current literature on the role of ASCs in immunomodulation in vitro and in vivo and discuss their potential in regulating the immune system in the context of transplantation. PMID:24106704
Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology
Gómez-Barrena, Enrique; Rosset, Philippe; Müller, Ingo; Giordano, Rosaria; Bunu, Carmen; Layrolle, Pierre; Konttinen, Yrjö T; Luyten, Frank P
2011-01-01
Abstract Regenerative medicine seeks to repair or replace damaged tissues or organs, with the goal to fully restore structure and function without the formation of scar tissue. Cell based therapies are promising new therapeutic approaches in regenerative medicine. By using mesenchymal stem cells, good results have been reported for bone engineering in a number of clinical studies, most of them investigator initiated trials with limited scope with respect to controls and outcome. With the implementation of a new regulatory framework for advanced therapeutic medicinal products, the stage is set to improve both the characterization of the cells and combination products, and pave the way for improved controlled and well-designed clinical trials. The incorporation of more personalized medicine approaches, including the use of biomarkers to identify the proper patients and the responders to treatment, will be contributing to progress in the field. Both translational and clinical research will move the boundaries in the field of regenerative medicine, and a coordinated effort will provide the clinical breakthroughs, particularly in the many applications of bone engineering. PMID:21251219
Panch, Sandhya R; Szymanski, James; Savani, Bipin N; Stroncek, David F
2017-08-01
Bone marrow (BM) aspirates, mobilized peripheral blood, and umbilical cord blood (UCB) have developed as graft sources for hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation and other cellular therapeutics. Individualized techniques are necessary to enhance graft HSPC yields and cell quality from each graft source. BM aspirates yield adequate CD34 + cells but can result in relative delays in engraftment. Granulocyte colony-stimulating factor (G-CSF)-primed BM HSPCs may facilitate faster engraftment while minimizing graft-versus-host disease in certain patient subsets. The levels of circulating HSPCs are enhanced using mobilizing agents, such as G-CSF and/or plerixafor, which act via the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 axis. Alternate niche pathway mediators, including very late antigen-4/vascular cell adhesion molecule-1, heparan sulfate proteoglycans, parathyroid hormone, and coagulation cascade intermediates, may offer promising alternatives for graft enhancement. UCB grafts have been expanded ex vivo with cytokines, notch-ligand, or mesenchymal stromal cells, and most studies demonstrated greater quantities of CD34 + cells ex vivo and improved short-term engraftment. No significant changes were observed in long-term repopulating potential or in patient survival. Early phase clinical trials using nicotinamide and StemReginin1 may offer improved short- and long-term repopulating ability. Breakthroughs in genome editing and stem cell reprogramming technologies may hasten the generation of pooled, third-party HSPC grafts. This review elucidates past, present, and potential future approaches to HSPC graft optimization. Published by Elsevier Inc.
The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype.
Balaji, Swathi; Keswani, Sundeep G; Crombleholme, Timothy M
2012-08-01
Mesenchymal stem cells (MSCs) are key to regenerative wound healing. MSCs have spatial memory and respond to local environment. MSCs orchestrate wound repair by: (1) structural repair via cellular differentiation; (2) immune-modulation; (3) secretion of growth factors that drive neovascularization and re-epithelialization; and (4) mobilization of resident stem cells. Autologous bone-marrow-derived cells and MSCs demonstrate improved healing and tissue-integrity in animal models and clinical trials. However, the effects are variable and the mechanisms of MSC-mediated wound healing are not fully understood. The mammalian MSC niche and signaling sequences and factors affecting their homing, differentiation, viability, and safety need to be characterized to get full benefits of MSC cellular therapy. MSCs can be isolated from bone-marrow, and less-invasive tissues such as adipose, gingiva, muscle, and umbilical cord, with similar functional effects. However, isolation, culture conditions, and markers used to identify and trace the lineage of these MSCs have not been standardized, which is crucial to determine the extent to which MSCs act as multipotent stem cells or sources of secreted factors in wounds. In chronic nonhealing wounds, where efficacy of conventional therapies is unsatisfactory, autotransplantation of MSCs could accelerate wound healing, promote regeneration and restoration of tissue integrity, and reduce recurrence of wounds at characteristically predisposed sites. Regenerative medicine and novel wound therapies using autologous stem cells holds great promise for clinical management of difficult wounds. The ideal candidate stem cells can be used to repopulate the wound bed to mediate appropriate epidermal and dermal regeneration and promote efficient wound repair, while modulating the immune system to prevent infection.
Yin and Yang of mesenchymal stem cells and aplastic anemia
Broglie, Larisa; Margolis, David; Medin, Jeffrey A
2017-01-01
Acquired aplastic anemia (AA) is a bone marrow failure syndrome characterized by peripheral cytopenias and bone marrow hypoplasia. It is ultimately fatal without treatment, most commonly from infection or hemorrhage. Current treatments focus on suppressing immune-mediated destruction of bone marrow stem cells or replacing hematopoietic stem cells (HSCs) by transplantation. Our incomplete understanding of the pathogenesis of AA has limited development of targeted treatment options. Mesenchymal stem cells (MSCs) play a vital role in HSC proliferation; they also modulate immune responses and maintain an environment supportive of hematopoiesis. Some of the observed clinical manifestations of AA can be explained by mesenchymal dysfunction. MSC infusions have been shown to be safe and may offer new approaches for the treatment of this disorder. Indeed, infusions of MSCs may help suppress auto-reactive, T-cell mediated HSC destruction and help restore an environment that supports hematopoiesis. Small pilot studies using MSCs as monotherapy or as adjuncts to HSC transplantation have been attempted as treatments for AA. Here we review the current understanding of the pathogenesis of AA and the function of MSCs, and suggest that MSCs should be a target for further research and clinical trials in this disorder. PMID:29321823
New strategies for improving stem cell therapy in ischemic heart disease.
Huang, Peisen; Tian, Xiaqiu; Li, Qing; Yang, Yuejin
2016-11-01
Stem cell therapy is a promising approach to the treatment of ischemic heart disease via replenishing cell loss after myocardial infarction. Both preclinical studies and clinical trials have indicated that cardiac function improved consistently, but very modestly after cell-based therapy. This mainly attributed to low cell survival rate, engraftment and functional integration, which became the major challenges to regenerative medicine. In recent years, several new cell types have been developed to regenerate cardiomyocytes and novel delivery approaches helped to increase local cell retention. New strategies, such as cell pretreatment, gene-based therapy, tissue engineering, extracellular vesicles application and immunologic regulation, have surged and brought about improved cell survival and functional integration leading to better therapeutic effects after cell transplantation. In this review, we summarize these new strategies targeting at challenges of cardiac regenerative medicine and discuss recent evidences that may hint their effectiveness in the future clinical settings.
Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures
Carra, Elisa; Barbieri, Federica; Marubbi, Daniela; Pattarozzi, Alessandra; Favoni, Roberto E.; Florio, Tullio; Daga, Antonio
2013-01-01
Glioblastomas are grade IV brain tumors characterized by high aggressiveness and invasiveness, giving patients a poor prognosis. We investigated the effects of the multi-kinase inhibitor sorafenib on six cultures isolated from human glioblastomas and maintained in tumor initiating cells-enriching conditions. These cell subpopulations are thought to be responsible for tumor recurrence and radio- and chemo-resistance, representing the perfect target for glioblastoma therapy. Sorafenib reduces proliferation of glioblastoma cultures, and this effect depends, at least in part, on the inhibition of PI3K/Akt and MAPK pathways, both involved in gliomagenesis. Sorafenib significantly induces apoptosis/cell death via downregulation of the survival factor Mcl-1. We provide evidence that sorafenib has a selective action on glioblastoma stem cells, causing enrichment of cultures in differentiated cells, downregulation of the expression of stemness markers required to maintain malignancy (nestin, Olig2 and Sox2) and reducing cell clonogenic ability in vitro and tumorigenic potential in vivo. The selectivity of sorafenib effects on glioblastoma stem cells is confirmed by the lower sensitivity of glioblastoma cultures after differentiation as compared with the undifferentiated counterpart. Since current GBM therapy enriches the tumor in cancer stem cells, the evidence of a selective action of sorafenib on these cells is therapeutically relevant, even if, so far, results from first phase II clinical trials did not demonstrate its efficacy. PMID:23324350
Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures.
Carra, Elisa; Barbieri, Federica; Marubbi, Daniela; Pattarozzi, Alessandra; Favoni, Roberto E; Florio, Tullio; Daga, Antonio
2013-02-01
Glioblastomas are grade IV brain tumors characterized by high aggressiveness and invasiveness, giving patients a poor prognosis. We investigated the effects of the multi-kinase inhibitor sorafenib on six cultures isolated from human glioblastomas and maintained in tumor initiating cells-enriching conditions. These cell subpopulations are thought to be responsible for tumor recurrence and radio- and chemo-resistance, representing the perfect target for glioblastoma therapy. Sorafenib reduces proliferation of glioblastoma cultures, and this effect depends, at least in part, on the inhibition of PI3K/Akt and MAPK pathways, both involved in gliomagenesis. Sorafenib significantly induces apoptosis/cell death via downregulation of the survival factor Mcl-1. We provide evidence that sorafenib has a selective action on glioblastoma stem cells, causing enrichment of cultures in differentiated cells, downregulation of the expression of stemness markers required to maintain malignancy (nestin, Olig2 and Sox2) and reducing cell clonogenic ability in vitro and tumorigenic potential in vivo. The selectivity of sorafenib effects on glioblastoma stem cells is confirmed by the lower sensitivity of glioblastoma cultures after differentiation as compared with the undifferentiated counterpart. Since current GBM therapy enriches the tumor in cancer stem cells, the evidence of a selective action of sorafenib on these cells is therapeutically relevant, even if, so far, results from first phase II clinical trials did not demonstrate its efficacy.
Stem cell therapies for age-related macular degeneration: the past, present, and future.
Dang, Yalong; Zhang, Chun; Zhu, Yu
2015-01-01
In the developed world, age-related macular degeneration (AMD) is one of the major causes of irreversible blindness in the elderly. Although management of neovascular AMD (wet AMD) has dramatically progressed, there is still no effective treatment for nonneovascular AMD (dry AMD), which is characterized by retinal pigment epithelial (RPE) cell death (or dysfunction) and microenvironmental disruption in the retina. Therefore, RPE replacement and microenvironmental regulation represent viable treatments for dry AMD. Recent advances in cell biology have demonstrated that RPE cells can be easily generated from several cell types (pluripotent stem cells, multipotent stem cells, or even somatic cells) by spontaneous differentiation, coculturing, defined factors or cell reprogramming, respectively. Additionally, in vivo studies also showed that the restoration of visual function could be obtained by transplanting functional RPE cells into the subretinal space of recipient. More importantly, clinical trials approved by the US government have shown promising prospects in RPE transplantation. However, key issues such as implantation techniques, immune rejection, and xeno-free techniques are still needed to be further investigated. This review will summarize recent advances in cell transplantation for dry AMD. The obstacles and prospects in this field will also be discussed.
Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications.
Chang, Chia-Yu; Ting, Hsiao-Chien; Su, Hong-Lin; Jeng, Jing-Ren
2018-01-01
In this review, we introduce current developments in induced pluripotent stem cells (iPSCs), site-specific nuclease (SSN)-mediated genome editing tools, and the combined application of these two novel technologies in biomedical research and therapeutic trials. The sustainable pluripotent property of iPSCs in vitro not only provides unlimited cell sources for basic research but also benefits precision medicines for human diseases. In addition, rapidly evolving SSN tools efficiently tailor genetic manipulations for exploring gene functions and can be utilized to correct genetic defects of congenital diseases in the near future. Combining iPSC and SSN technologies will create new reliable human disease models with isogenic backgrounds in vitro and provide new solutions for cell replacement and precise therapies.
Dignan, F; Gujral, D; Ethell, M; Evans, S; Treleaven, J; Morgan, G; Potter, M
2007-07-01
Veno-occlusive disease (VOD) is a common and high-risk complication of allogeneic stem cell transplantation (SCT). Defibrotide has recently been used successfully to treat the disorder. We report on 58 patients who received defibrotide prophylaxis without concurrent heparin. No patients fulfilled the Baltimore criteria for VOD or died of the condition within 100 days of SCT. None of this group developed haemorrhagic complications secondary to defibrotide. These observations suggest that prophylaxis with defibrotide alone may reduce the incidence of VOD post-SCT although a randomised controlled trial is warranted to further evaluate its role.
Interferon in chronic myeloid leukaemia: past and future.
Guilhot, François; Roy, Lydia; Saulnier, Pierre-Jean; Guilhot, Joëlle
2009-09-01
Imatinib has revolutionized the therapy of chronic myeloid leukaemia. However the complete eradication of leukaemic stem cells is still a matter of discussion. Interferon (IFN) has been used in the past with success. However the proportion of patients who achieved sustained complete cytogenetic response was small. Recently, in addition to its direct antineoplastic effect and immunomodulatory activity, IFN has been shown to stimulate the quiescent leukaemic stem cells. Thus there is now a rational for combining Imatinib and IFN. Large prospective phase III trials are in good progress to demonstrate in humans the usefullness of a combination therapy using Imatinib and IFN.
Voswinkel, Jan; Francois, Sabine; Gorin, Norbert-Claude; Chapel, Alain
2013-07-01
Mesenchymal stromal cells (MSC) are multipotent adult stem cells with the potential to regenerate tissue damage and inhibit inflammation and fibrosis in parallel. As they are non-immunogenic, MSC can be safely auto- and allotransplanted and consequently represent a therapeutic option for refractory connective tissue diseases and fistulizing colitis like Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, 22 are on autoimmune diseases and 27 are actually recruiting bowel disease' patients. More than 1,500 patients with bowel diseases like Crohn's disease were treated in clinical trials by local as well as systemic MSC therapy. Phase I and II trials on fistula documented the feasibility and safety of MSC therapy, and a significant superiority compared to fibrin glue in fistulizing bowel diseases was demonstrated. Autologous as well as allogeneic use of Bone marrow as well as of adipose tissue-derived MSC are feasible. In refractory Graft versus host disease, especially in refractory gut Graft versus host diseases, encouraging results were reported using MSC. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets toward an increase in T regulatory cells and a decrease in activated effector T cells. Mesenchymal stem cells represent a safe therapy for patients with refractory inflammatory bowel diseases.
Bentley, R. Timothy; Mund, Julie A.; Pollok, Karen E.; Childress, Michael O.; Case, Jamie
2012-01-01
A subset of peripheral blood hematopoietic stem and progenitor cells of bone marrow origin is elevated in humans with solid cancers before treatment and declines with therapy. This biomarker of angiogenesis is not specific to tumor type and has great potential in the objective assessment of treatment response in clinical trials. This pilot study was designed to develop a biomarker of neoangiogenesis in dogs for the diagnosis of cancer, the measurement of treatment response, and the provision of objective data in clinical trials. Polychromatic flow cytometry was used to quantify two subsets of circulating hematopoietic stem and progenitor cells in dogs with spontaneous solid tumors before (n = 8) and after (n = 3) treatment, and normal controls (n = 6). Pro-angiogenic peripheral blood cells of bone marrow origin were detected in all eight cases and the six normal controls; however, there was no statistically significant difference between the two groups. Interestingly, an apparent decline in pro-angiogenic cells was observed after treatment. Bone marrow derived hematopoietic cells appear to contribute to tumor angiogenesis in dogs, as has been previously reported in humans. While the methodology for pro-angiogenic cell quantification in a small number of dogs in the current study did not result in a significant difference from normal controls, an optimized canine polychromatic flow cytometry protocol holds great promise in the development of a canine cancer model and for the objective measurements of treatment response in clinical trials. PMID:23063489
Therapeutic angiogenesis: angiogenic growth factors for ischemic heart disease.
Henning, Robert J
2016-09-01
Stem cells encode vascular endothelial growth factors (VEGFs), fibroblastic growth factors (FGFs), stem cell factor, stromal cell-derived factor, platelet growth factor and angiopoietin that can contribute to myocardial vascularization. VEGFs and FGFs are the most investigated growth factors. VEGFs regulate angiogenesis and vasculogenesis. FGFs stimulate vessel cell proliferation and differentiation and are regulators of endothelial cell migration, proliferation and survival. Clinical trials of VEGF or FGF for myocardial angiogenesis have produced disparate results. The efficacy of therapeutic angiogenesis can be improved by: (1) identifying the most optimal patients; (2) increased knowledge of angiogenic factor pharmacokinetics and proper dose; (3) prolonging contact of angiogenic factors with the myocardium; (4) increasing the efficiency of VEGF or FGF gene transduction; and (5) utilizing PET or MRI to measure myocardial perfusion and perfusion reserve.
Desborough, Michael; Estcourt, Lise J; Doree, Carolyn; Trivella, Marialena; Hopewell, Sally; Stanworth, Simon J; Murphy, Michael F
2016-01-01
Background Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in people with thrombocytopenia. Although considerable advances have been made in platelet transfusion therapy since the mid-1970s, some areas continue to provoke debate especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding. Objectives To determine whether agents that can be used as alternatives, or adjuncts, to platelet transfusions for people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation are safe and effective at preventing bleeding. Search methods We searched 11 bibliographic databases and four ongoing trials databases including the Cochrane Central Register of Controlled Trials (CENTRAL, 2016, Issue 4), MEDLINE (OvidSP, 1946 to 19 May 2016), Embase (OvidSP, 1974 to 19 May 2016), PubMed (e-publications only: searched 19 May 2016), ClinicalTrials.gov, World Health Organization (WHO) ICTRP and the ISRCTN Register (searched 19 May 2016). Selection criteria We included randomised controlled trials in people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation who were allocated to either an alternative to platelet transfusion (artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, recombinant activated factor VII, desmopressin (DDAVP), or thrombopoietin (TPO) mimetics) or a comparator (placebo, standard care or platelet transfusion). We excluded studies of antifibrinolytic drugs, as they were the focus of another review. Data collection and analysis Two review authors screened all electronically derived citations and abstracts of papers identified by the review search strategy. Two review authors assessed risk of bias in the included studies and extracted data independently. Main results We identified 16 eligible trials. Four trials are ongoing and two have been completed but the results have not yet been published (trial completion dates: April 2012 to February 2017). Therefore, the review included 10 trials in eight references with 554 participants. Six trials (336 participants) only included participants with acute myeloid leukaemia undergoing intensive chemotherapy, two trials (38 participants) included participants with lymphoma undergoing intensive chemotherapy and two trials (180 participants) reported participants undergoing allogeneic stem cell transplantation. Men and women were equally well represented in the trials. The age range of participants included in the trials was from 16 years to 81 years. All trials took place in high-income countries. The manufacturers of the agent sponsored eight trials that were under investigation, and two trials did not report their source of funding. No trials assessed artificial platelet substitutes, fibrinogen concentrate, recombinant activated factor VII or desmopressin. Nine trials compared a TPO mimetic to placebo or standard care; seven of these used pegylated recombinant human megakaryocyte growth and differentiation factor (PEG-rHuMGDF) and two used recombinant human thrombopoietin (rhTPO). One trial compared platelet-poor plasma to platelet transfusion. We considered that all the trials included in this review were at high risk of bias and meta-analysis was not possible in seven trials due to problems with the way data were reported. We are very uncertain whether TPO mimetics reduce the number of participants with any bleeding episode (odds ratio (OR) 0.40, 95% confidence interval (CI) 0.10 to 1.62, one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce the risk of a life-threatening bleed after 30 days (OR 1.46, 95% CI 0.06 to 33.14, three trials, 209 participants, very low quality evidence); or after 90 days (OR 1.00, 95% CI 0.06 to 16.37, one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce platelet transfusion requirements after 30 days (mean difference -3.00 units, 95% CI -5.39 to -0.61, one trial, 120 participants, very low quality evidence). No deaths occurred in either group after 30 days (one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce all-cause mortality at 90 days (OR 1.00, 95% CI 0.24 to 4.20, one trial, 120 participants, very low quality evidence). No thromboembolic events occurred for participants treated with TPO mimetics or control at 30 days (two trials, 209 participants, very low quality evidence). We found no trials that looked at: number of days on which bleeding occurred, time from randomisation to first bleed or quality of life. One trial with 18 participants compared platelet-poor plasma transfusion with platelet transfusion. We are very uncertain whether platelet-poor plasma reduces the number of participants with any bleeding episode (OR 16.00, 95% CI 1.32 to 194.62, one trial, 18 participants, very low quality evidence). We are very uncertain whether platelet-poor plasma reduces the number of participants with severe or life-threatening bleeding (OR 4.00, 95% CI 0.56 to 28.40, one trial, 18 participants, very low quality evidence). We found no trials that looked at: number of days on which bleeding occurred, time from randomisation to first bleed, number of platelet transfusions, all-cause mortality, thromboembolic events or quality of life. Authors’ conclusions There is insufficient evidence to determine if platelet-poor plasma or TPO mimetics reduce bleeding for participants with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation. To detect a decrease in the proportion of participants with clinically significant bleeding from 12 in 100 to 6 in 100 would require a trial containing at least 708 participants (80% power, 5% significance). The six ongoing trials will provide additional information about the TPO mimetic comparison (424 participants) but this will still be underpowered to demonstrate this level of reduction in bleeding. None of the included or ongoing trials include children. There are no completed or ongoing trials assessing artificial platelet substitutes, fibrinogen concentrate, recombinant activated factor VII or desmopressin in people undergoing intensive chemotherapy or stem cell transplantation for haematological malignancies. PMID:27548292
NK cell-based immunotherapy for malignant diseases
Cheng, Min; Chen, Yongyan; Xiao, Weihua; Sun, Rui; Tian, Zhigang
2013-01-01
Natural killer (NK) cells play critical roles in host immunity against cancer. In response, cancers develop mechanisms to escape NK cell attack or induce defective NK cells. Current NK cell-based cancer immunotherapy aims to overcome NK cell paralysis using several approaches. One approach uses expanded allogeneic NK cells, which are not inhibited by self histocompatibility antigens like autologous NK cells, for adoptive cellular immunotherapy. Another adoptive transfer approach uses stable allogeneic NK cell lines, which is more practical for quality control and large-scale production. A third approach is genetic modification of fresh NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from various sources, including peripheral or cord blood cells, stem cells or even induced pluripotent stem cells (iPSCs), and a variety of stimulators can be used for large-scale production in laboratories or good manufacturing practice (GMP) facilities, including soluble growth factors, immobilized molecules or antibodies, and other cellular activators. A list of NK cell therapies to treat several types of cancer in clinical trials is reviewed here. Several different approaches to NK-based immunotherapy, such as tissue-specific NK cells, killer receptor-oriented NK cells and chemically treated NK cells, are discussed. A few new techniques or strategies to monitor NK cell therapy by non-invasive imaging, predetermine the efficiency of NK cell therapy by in vivo experiments and evaluate NK cell therapy approaches in clinical trials are also introduced. PMID:23604045
Governing stem cell therapy in India: regulatory vacuum or jurisdictional ambiguity?
Tiwari, Shashank S.; Raman, Sujatha
2014-01-01
Stem cell treatments are being offered in Indian clinics although preclinical evidence of their efficacy and safety is lacking. This is attributed to a governance vacuum created by the lack of legally binding research guidelines. By contrast, this paper highlights jurisdictional ambiguities arising from trying to regulate stem cell therapy under the auspices of research guidelines when treatments are offered in a private market disconnected from clinical trials. While statutory laws have been strengthened in 2014, prospects for their implementation remain weak, given embedded challenges of putting healthcare laws and professional codes into practice. Finally, attending to the capacities of consumer law and civil society activism to remedy the problem of unregulated treatments, the paper finds that the very definition of a governance vacuum needs to be reframed to clarify whose rights to health care are threatened by the proliferation of commercial treatments and individualized negligence-based remedies for grievances. PMID:25431534
Barquinero, J
1998-07-01
This conference, which was organized by George Stamatoyanno-poulos (University of Washington, Seattle, WA, USA), comprised 44 oral and 55 poster presentations. It started immediately after the First Annual Meeting of the American Society of Gene Therapy in Seattle, and took place at the Rosario Resort, located in the beautiful and quiet Orcas Island, in the Pacific Northwest. Several issues including stem cell biology, viral vectors, gene transfer into hematopoietic stem cells (HSCs) and a variety of clinical trials were covered. There were about 150 attendees including students, postdoctoral fellows and prominent experts in different aspects of the field. Most of these were from academia including research institutes, universities and hospitals, with a very small proportion from industry. Some of the information had already been presented a few days before at the Seattle meeting.
Stem cell research and therapy in the Islamic republic of Iran: pioneering in the Islamic world.
Miremadi, Tahereh; Salekdeh, Ghasem Hosseini; Aghdami, Nasser; Gharanfoli, Mohsen; Vasei, Mohammad; Kouhkan, Azam; Baharvand, Hossein
2013-01-01
In the early 2000s, the Iranian stem cell research and technology had a relatively strong start that benefited from religious blessings, political and public support, as well as scientific endeavors on the part of non-governmental and public research organizations and universities. Later on, it developed a dynamic niche market of public, private start-up, and spin-off companies and organizations that pioneered in the Islamic world in terms of ISI papers, clinical trials, and cell therapy. However, at present, it faces new challenges stemming from the insufficient finance and a comprehensive law and regulation structure to keep its momentum. To remedy this situation, the scientific community and other stakeholders need to have a series of shared long-time goals and try to build consensus on how to achieve them through nationally approved policy documents.
Oberoi, Sapna; Robinson, Paula D; Cataudella, Danielle; Culos-Reed, S Nicole; Davis, Hailey; Duong, Nathan; Gibson, Faith; Götte, Miriam; Hinds, Pamela; Nijhof, Sanne L; Tomlinson, Deborah; van der Torre, Patrick; Cabral, Sandra; Dupuis, L Lee; Sung, Lillian
2018-02-01
Objective was to determine whether physical activity reduces the severity of fatigue in patients with cancer or hematopoietic stem cell transplant (HSCT) recipients. We conducted a meta-analysis of randomized trials comparing physical activity with control interventions for the management of fatigue in patients with cancer or HSCT recipients. There were 170 trials included. Physical activity reduced the severity of fatigue when compared to all control groups (standardized mean difference -0.49, 95% confidence interval -0.60 to -0.37; P < 0.00001). Aerobic, neuromotor, resistance and combination exercises were all effective in reducing fatigue although smaller effects were observed with resistance exercises (P interaction = 0.01). Other intervention and patient characteristics did not influence the effect of physical activity on the severity of fatigue. Physical activity was effective at reducing fatigue in patients with cancer and HSCT recipients across patient sub-groups. Determining the best approaches for safe implementation should be a priority. Copyright © 2017 Elsevier B.V. All rights reserved.
Cell therapy in joint disorders.
Counsel, Peter D; Bates, Daniel; Boyd, Richard; Connell, David A
2015-01-01
Articular cartilage possesses poor natural healing mechanisms, and a variety of non-cell-based and cell-based treatments aim to promote regeneration of hyaline cartilage. A review of the literature to December 2013 using PubMed with search criteria including the keywords stem cell, cell therapy, cell transplantation, cartilage, chondral, and chondrogenic. Forty-five articles were identified that employed local mesenchymal stem cell (MSC) therapy for joint disorders in humans. Nine comparative studies were identified, consisting of 3 randomized trials, 5 cohort studies, and 1 case-control study. Clinical review. Level 4. Studies were assessed for stem cell source, method of implantation, comparison groups, and concurrent surgical techniques. Two studies comparing MSC treatment to autologous chondrocyte implantation found similar efficacy. Three studies reported clinical benefits with intra-articular MSC injection over non-MSC controls for cases undergoing debridement with or without marrow stimulation, although a randomized study found no significant clinical difference at 2-year follow-up but reported better 18-month magnetic resonance imaging and histologic scores in the MSC group. No human studies have compared intra-articular MSC therapy to non-MSC techniques for osteoarthritis in the absence of surgery. Mesenchymal stem cell-based therapies appear safe and effective for joint disorders in large animal preclinical models. Evidence for use in humans, particularly, comparison with more established treatments such as autologous chondrocyte implantation and microfracture, is limited.
Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.
2016-01-01
Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052
Gonzalez, Rodolfo; Garitaonandia, Ibon; Poustovoitov, Maxim; Abramihina, Tatiana; McEntire, Caleb; Culp, Ben; Attwood, Jordan; Noskov, Alexander; Christiansen-Weber, Trudy; Khater, Marwa; Mora-Castilla, Sergio; To, Cuong; Crain, Andrew; Sherman, Glenn; Semechkin, Andrey; Laurent, Louise C; Elsworth, John D; Sladek, John; Snyder, Evan Y; Redmond, D Eugene; Kern, Russell A
2016-11-01
Cell therapy has attracted considerable interest as a promising therapeutic alternative for patients with Parkinson's disease (PD). Clinical studies have shown that grafted fetal neural tissue can achieve considerable biochemical and clinical improvements in PD. However, the source of fetal tissue grafts is limited and ethically controversial. Human parthenogenetic stem cells offer a good alternative because they are derived from unfertilized oocytes without destroying potentially viable human embryos and can be used to generate an unlimited supply of neural cells for transplantation. We have previously reported that human parthenogenetic stem cell-derived neural stem cells (hpNSCs) successfully engraft, survive long term, and increase brain dopamine (DA) levels in rodent and nonhuman primate models of PD. Here we report the results of a 12-month transplantation study of hpNSCs in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned African green monkeys with moderate to severe clinical parkinsonian symptoms. The hpNSCs manufactured under current good manufacturing practice (cGMP) conditions were injected bilaterally into the striatum and substantia nigra of immunosuppressed monkeys. Transplantation of hpNSCs was safe and well tolerated by the animals with no dyskinesia, tumors, ectopic tissue formation, or other test article-related serious adverse events. We observed that hpNSCs promoted behavioral recovery; increased striatal DA concentration, fiber innervation, and number of dopaminergic neurons; and induced the expression of genes and pathways downregulated in PD compared to vehicle control animals. These results provide further evidence for the clinical translation of hpNSCs and support the approval of the world's first pluripotent stem cell-based phase I/IIa study for the treatment of PD (Clinical Trial Identifier NCT02452723).
Aoki, Tomohiro; Suzuki, Ritsuro; Kuwatsuka, Yachiyo; Kako, Shinichi; Fujimoto, Katsuya; Taguchi, Jun; Kondo, Tadakazu; Ohata, Kinya; Ito, Toshiro; Kamoda, Yoshimasa; Fukuda, Takahiro; Ichinohe, Tatsuo; Takeuchi, Kengo; Izutsu, Koji; Suzumiya, Junji
2015-06-04
We sought to clarify the role of high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (auto-HSCT) and allogeneic hematopoietic stem cell transplantation (allo-HSCT) to treat blastic plasmacytoid dendritic cell neoplasm (BPDCN). We retrospectively identified 25 BPDCN patients (allo-HSCT, n = 14; auto-HSCT, n = 11) from registry data of the Japan Society for Hematopoietic Cell Transplantation and analyzed clinicopathologic data and clinical outcomes after transplantation. The median age at HSCT was 58 years (range, 17-67 years). All 11 patients who underwent auto-HSCT were in the first complete remission (CR1). With a median follow-up of 53.5 months, the overall survival rates at 4 years for patients who underwent auto-HSCT and allo-HSCT were 82% and 53% (P = .11), respectively, and progression-free survival rates were 73% and 48% (P = .14), respectively. Auto-HSCT for BPDCN in CR1 appears to provide promising results and deserves further evaluation in the setting of prospective trials. © 2015 by The American Society of Hematology.
GMP-conformant on-site manufacturing of a CD133+ stem cell product for cardiovascular regeneration.
Skorska, Anna; Müller, Paula; Gaebel, Ralf; Große, Jana; Lemcke, Heiko; Lux, Cornelia A; Bastian, Manuela; Hausburg, Frauke; Zarniko, Nicole; Bubritzki, Sandra; Ruch, Ulrike; Tiedemann, Gudrun; David, Robert; Steinhoff, Gustav
2017-02-10
CD133 + stem cells represent a promising subpopulation for innovative cell-based therapies in cardiovascular regeneration. Several clinical trials have shown remarkable beneficial effects following their intramyocardial transplantation. Yet, the purification of CD133 + stem cells is typically performed in centralized clean room facilities using semi-automatic manufacturing processes based on magnetic cell sorting (MACS®). However, this requires time-consuming and cost-intensive logistics. CD133 + stem cells were purified from patient-derived sternal bone marrow using the recently developed automatic CliniMACS Prodigy® BM-133 System (Prodigy). The entire manufacturing process, as well as the subsequent quality control of the final cell product (CP), were realized on-site and in compliance with EU guidelines for Good Manufacturing Practice. The biological activity of automatically isolated CD133 + cells was evaluated and compared to manually isolated CD133 + cells via functional assays as well as immunofluorescence microscopy. In addition, the regenerative potential of purified stem cells was assessed 3 weeks after transplantation in immunodeficient mice which had been subjected to experimental myocardial infarction. We established for the first time an on-site manufacturing procedure for stem CPs intended for the treatment of ischemic heart diseases using an automatized system. On average, 0.88 × 10 6 viable CD133 + cells with a mean log 10 depletion of 3.23 ± 0.19 of non-target cells were isolated. Furthermore, we demonstrated that these automatically isolated cells bear proliferation and differentiation capacities comparable to manually isolated cells in vitro. Moreover, the automatically generated CP shows equal cardiac regeneration potential in vivo. Our results indicate that the Prodigy is a powerful system for automatic manufacturing of a CD133 + CP within few hours. Compared to conventional manufacturing processes, future clinical application of this system offers multiple benefits including stable CP quality and on-site purification under reduced clean room requirements. This will allow saving of time, reduced logistics and diminished costs.
The what, when and how of CAR T cell therapy for ALL.
Frey, Noelle
2017-09-01
Chimeric Antigen Receptor (CAR) T cells that have been engineered to target CD19 have shown great promise in patients with relapsed and refractory B cell acute lymphocytic leukemia with remission rates of 70-90%. Some remissions have successfully bridged patients to a curable allogeneic stem cell transplant, some responses have been durable without further treatment, and some patients have achieved durable remissions for relapsed ALL after allogeneic stem cell transplant. Cytokine release syndrome, correlating with the in vivo activation and expansion of T cells, and neurologic toxicity are the most significant side effects and approaches to better understand and manage these events are the subject of ongoing clinical trials. The decision to intervene with CARTs requires an individualized approach taking into consideration patient, disease and therapy related factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ganguly, Ranjit; Hong, Christopher; Smith, Luke; Kornblum, Harley I; Nakano, Ichiro
2014-01-01
Maternal embryonic leucine zipper kinase (MELK) is a member of the snf1/AMPK family of protein Serine/Threonine kinases that has recently gained significant attention in the stem cell and cancer biology field. Recent studies suggest that activation of this kinase is tightly associated with extended survival and accelerated proliferation of cancer stem cells (CSCs) in various organs. Overexpression of MELK has been noted in various cancers, including colon, breast, ovaries, pancreas, prostate, and brain, making the inhibition of MELK an attractive therapeutic strategy for a variety of cancers. In the experimental cancer models, depletion of MELK by RNA interference or small molecule inhibitors induces apoptotic cell death of cancer stem cells derived from glioblastoma and breast cancer, both in vitro and in vivo. Mechanism of action of MELK includes, yet may not be restricted to, direct binding and activation of the oncogenic transcription factors c-JUN and FOXM1 in cancer cells but not in the normal counterparts. Following these pre-clinical studies, the Phase I clinical trial for advanced cancers with OTS167 started in 2013, as the first-in-class MELK inhibitor. This review summarizes the current molecular understanding of MELK and the recent pre-clinical studies about MELK as a cancer therapeutic target. PMID:24795222
Boesch, Maximilian; Spizzo, Gilbert; Seeber, Andreas
2018-06-01
Colorectal cancer (CRC) is one of the most common malignancies worldwide. In spite of various attempts to ameliorate outcome by escalating treatment, significant improvement is lacking particularly in the adjuvant setting. It has been proposed that cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) are at least partially responsible for therapy resistance in CRC. The epithelial cell adhesion molecule (EpCAM) was one of the first CSC antigens to be described. Furthermore, an EpCAM-specific antibody (edrecolomab) has the merit of having launched the era of monoclonal antibody treatment in oncology in the 1990s. However, despite great initial enthusiasm, monoclonal antibody treatment has not proven successful in the adjuvant treatment of CRC patients. In the meantime, new insights into the function of EpCAM in CRC have emerged and new drugs targeting various epitopes have been developed. In this review article, we provide an update on the role of EpCAM in CSCs and EMT, and emphasize the potential predictive selection criteria for novel treatment strategies and refined clinical trial design. Stem Cells Translational Medicine 2018;7:495-501. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Bone Marrow Transplantation for Peripheral T-Cell Non-Hodgkins' Lymphoma in First Remission.
Sharma, Manish; Pro, Barbara
2015-07-01
Opinion statement: Peripheral T-cell lymphomas (PTCLs) are rare and heterogeneous diseases that carry, with the exception of anaplastic lymphoma kinase-positive (ALK+) anaplastic large cell lymphoma, a poor prognosis when treated with conventional chemotherapy. Historically, PTCL was treated like aggressive B-cell lymphomas, and to date cyclophosphamide, prednisone, vincristine, and doxorubicin (CHOP) remains the most commonly used regimen, despite disappointing results. Given the poor outcomes of PTCL patients, a number of studies have investigated the role of high-dose chemotherapy and autologous stem cell transplantation (HDT/ASCT) in the upfront setting, with different results. However, there are no prospective randomized trials, and the clinical benefit appears to be restricted to patients who achieve an objective response after induction chemotherapy. Nevertheless, with the exception of low-risk ALK+ anaplastic large cell lymphoma, in light of the available data, HDT/ASCT for consolidation should be recommended for patients deemed eligible. The results of phase II trials showed that allogeneic stem cell transplantation can cure some relapsed/refractory patients, and few studies have evaluated this strategy in the frontline setting. With the availability of recently approved new drugs as well as new targeted agents under investigation, a number of ongoing studies are testing novel combinations aiming to improve rate and durability of responses to induction chemotherapy.
Kalff, Anna; Kennedy, Nola; Smiley, Angela; Prince, H Miles; Roberts, Andrew W; Bradstock, Kenneth; De Abreu Lourenço, Richard; Frampton, Chris; Spencer, Andrew
2014-12-01
We previously showed that consolidation therapy with thalidomide and prednisolone improved progression-free and overall survival in patients with multiple myeloma who had undergone autologous stem-cell transplantation. We aimed to assess whether these survival advantages were durable at 5 years. The ALLG MM6 trial was a multicentre, open-label, randomised phase 3 trial done between Jan 13, 2002, and March 15, 2005, at 29 sites in Australia and New Zealand. Patients with newly diagnosed multiple myeloma were randomly assigned (1:1), via computer-generated randomisation charts, to receive indefinite prednisolone maintenance alone (control group) or in combination with 12 months of thalidomide consolidation (thalidomide group) after autologous stem-cell transplantation. Randomisation was stratified by treating centre and pre-transplantation concentrations of β2 microglobulin. Patients and treating physicians were not masked to treatment allocation. Primary endpoints were progression-free survival and overall survival. Analysis was by intention to treat. Secondary endpoints were overall response to salvage therapy, incidence of second primary malignancy incidence, and cost-effectiveness. This trial is registered with the Australian and New Zealand Clinical Trials Registry, number ACTRN12607000382471. We randomly assigned 269 patients to the thalidomide (n=114) or control group (n=129). After a median follow-up of 5·4 years (IQR 3·1-7·2), estimated 5-year progression-free survival was 27% (95% CI 23-32) in the thalidomide group and 15% (11-18) in the control group (hazard ratio [HR] 0·16, 95% CI 0·044-0·58; p=0·0054) and 5-year overall survival was 66% (95% CI 61-70) and 47% (42-51), respectively (HR 0·12, 95% CI 0·028-0·56; p=0·0072). There was no difference in overall response to salvage therapy, survival post-progression, or incidence of secondary malignancies between the two groups. Incremental cost-effectiveness ratio was AUS$26 996 per mean life-year gained. Consolidation therapy with thalidomide and prednisolone after autologous stem-cell transplantaion is an acceptable therapeutic approach when alternative drugs are not available. Pharmion Corporation, Novartis Pharmaceuticals, Amgen Australia, The Merrin Foundation, and Alfred Health. Copyright © 2014 Elsevier Ltd. All rights reserved.
Björkstrand, Bo; Klausen, Tobias W.; Remes, Kari; Gruber, Astrid; Knudsen, Lene M.; Bergmann, Olav J.; Lenhoff, Stig; Johnsen, Hans E.
2009-01-01
Autologous stem cell transplantation is still considered the standard of care in young patients with multiple myeloma (MM). This disease is the most common indication for high-dose therapy (HDT) supported by hematopoietic stem cell transplantation and much data support the benefit of this procedure. Results of randomized studies are in favor of tandem autologous transplantation although the effect on overall survival is unclear. Based on sequential registration trials in the Nordic area, we aimed to evaluate the outcome of conventional single or double HDT. During 1994–2000 we registered a total of 484 previously untreated patients under the age of 60 years at diagnosis who on a regional basis initially were treated with single [Trial NMSG #5/94 and #7/98 (N=383)] or double [Trial Huddinge Karolinska Turku Herlev (N=101)] high-dose melphalan (200 mg/m2) therapy supported by autologous stem cell transplantation. A complete or very good partial response was achieved by 40% of patients in the single transplant group and 60% of patients in the double transplant group (p=0.0006). The probability of surviving progression free for five years after the diagnosis was 25% (95% CL 18–32%) in the singletransplant group and 46% (95% CL 33–55%) in the double transplant group (p=0.0014). The estimated overall five-year survival rate was 60% in the single transplant group and 64% in the doubletransplant (p=0.9). In a multivariate analysis of variables, including single versus double transplantation, β2 microglobulin level, age, sex and disease stage, only β2 microglobulin level was predictive for overall survival (p>0.0001) and progression free survival (p=0.001). In accordance with these results, a 1:1 case-control matched comparison between double and single transplantation did not identify significant differences in overall and progression free survival. In this retrospective analysis up front double transplantation with melphalan (200 mg/m2) as compared to single transplantation did not seem to improve the final outcome among patients in the Nordic area. These data are in accordance with recent publications from the Bologna 96 trial indicating that a second transplant should not be recommended up front as standard care.
Emmert, Maximilian Y; Wolint, Petra; Jakab, Andras; Sheehy, Sean P; Pasqualini, Francesco S; Nguyen, Thi Dan Linh; Hilbe, Monika; Seifert, Burkhardt; Weber, Benedikt; Brokopp, Chad E; Macejovska, Dominika; Caliskan, Etem; von Eckardstein, Arnold; Schwartlander, Ruth; Vogel, Viola; Falk, Volkmar; Parker, Kevin Kit; Gyöngyösi, Mariann; Hoerstrup, Simon P
2017-04-01
To date, clinical success of cardiac cell-therapies remains limited. To enhance the cardioreparative properties of stem cells, the concept of lineage-specification through cardiopoietic-guidance has been recently suggested. However, so far, only results from murine studies and from a clinical pilot-trial in chronic heart-failure (CHF) are available, while systematic evidence of its therapeutic-efficacy is still lacking. Importantly, also no data from large animals or for other indications are available. Therefore, we here investigate the therapeutic-efficacy of human cardiopoietic stem cells in the treatment of post-infarction LV-dysfunction using a translational pig-model. Using growth-factor priming, lineage-specification of human bone-marrow derived MSCs was achieved to generate cardiopoietic stem cells according to GMP-compliant protocols. Thereafter, pigs with post-infarction LV-dysfunction (sub-acute phase;1-month) were randomized to either receive transcatheter NOGA 3D electromechanical-mapping guided intramyocardial transplantation of cardiopoietic cells or saline (control). After 30days, cardiac MRI (cMRI) was performed for functional evaluation and in-vivo cell-tracking. This approach was coupled with a comprehensive post-mortem cell-fate and mode-of-repair analysis. Cardiopoietic cell therapy was safe and ejection-fraction was significantly higher when compared to controls (p = 0.012). It further prevented maladaptive LV-remodeling and revealed a significantly lower relative and total infarct-size (p = 0.043 and p = 0.012). As in-vivo tracking and post-mortem analysis displayed only limited intramyocardial cardiopoietic cell-integration, the significant induction of neo-angiogenesis (∼40% higher; p = 0.003) and recruitment of endogenous progenitors (∼2.5x higher; p = 0.008) to the infarct border-zone appeared to be the major modes-of-repair. This is the first report using a pre-clinical large animal-model to demonstrate the safety and efficacy of cardiopoietic stem cells for the treatment of post-infarction LV-dysfunction to prevent negative LV-remodeling and subsequent CHF. It further provides insight into post-delivery cardiopoietic cell-fate and suggests the mechanisms of cardiopoietic cell-induced cardiac-repair. The adoption of GMP-/GLP-compliant methodologies may accelerate the translation into a phase-I clinical-trial in patients with post-ischemic LV-dysfunction broadening the current indication of this interesting cell-type. Copyright © 2016. Published by Elsevier Ltd.
Pluripotent stem cells for cardiac regeneration: Overview of recent advances & emerging trends
Pawani, Harsha; Bhartiya, Deepa
2013-01-01
Cell based regenerative therapy has emerged as one of the most promising options of treatment for patients suffering from heart failure. Various adult stem cells types have undergone extensive clinical trials with limited success which is believed to be more of a cytokine effect rather than cell therapy. Pluripotent human embryonic stem cells (hESCs) have emerged as an attractive candidate stem cell source for obtaining cardiomyocytes (CMs) because of their tremendous capacity for expansion and unquestioned potential to differentiate into CMs. Studies carried out in animal models indicate that ES-derived CMs can partially remuscularize infarcted hearts and improve contractile function; however, the effect was not sustained over long follow up periods due to their limited capacity of cell division in vivo. Thus, the concept of transplanting multipotent cardiovascular progenitors derived from ES cells has emerged since the progenitors retain robust proliferative ability and multipotent nature enabling repopulation of other myocardial elements also in addition to CMs. Transplantation of CMs (progenitors) seeded in biodegradable scaffold and gel based engineered constructs has met with modest success due to issues like cell penetration, nutrient and oxygen availability and inflammation triggered during scaffold degradation inversely affecting the seeded cells. Recently cell sheet based tissue engineering involving culturing cells on ‘intelligent’ polymers has been evolved. Generation of a 3-D pulsatile myocardial tissue has been achieved. However, these advances have to be looked at with cautious optimism as many challenges need to be overcome before using these in clinical practice. PMID:23563370
Ndao, Deborah H; Ladas, Elena J; Cheng, Bin; Sands, Stephen A; Snyder, Kathryn T; Garvin, James H; Kelly, Kara M
2012-03-01
Though often lifesaving, stem cell transplantation (SCT) is a period of great distress for both child and parent. We conducted a double-blind, placebo-controlled randomized study evaluating the effect of the respiratory administration of bergamot essential oil on the anxiety, nausea, and pain of 37 pediatric patients with malignant and non-malignant disorders undergoing stem cell infusion and their parents. Patients were assessed at the time of recruitment, prior to infusion, upon infusion completion, and one hour post-infusion using the Spielberger State-Trait Anxiety Inventory (STAI) for parents and the STAIC, Children's Behavioral Style Scale (CBSS), visual analogue scale (VAS) for pain and nausea, and the Emotionality Activity Sociability and Impulsivity instrument (EASI) for children. Children and adolescents in the treatment group experienced greater anxiety (p = 0.05) and nausea (p = 0.03) one hour post-infusion. Reported pain in both groups was no longer significant one hour post-infusion. Parental anxiety declined in both groups but did not reach statistical significance. Child's monitoring coping style was significantly predictive of transitory anxiety post-infusion (p = 0.01). Although this trial did not report a benefit of inhalation aromatherapy for reducing anxiety, nausea, or pain when added to standard supportive care, it provides the first experimental rather than descriptive report on testing a single therapeutic essential oil among children and adolescents undergoing stem cell infusion. Future research may consider exploring the cutaneous application of essential oil through massage or other psychoeducational counseling interventions among parents with elevated anxiety and patients with greater information seeking coping styles during SCT. Copyright © 2010 John Wiley & Sons, Ltd.
Cooper, Joanne; Blake, Iszara; Lindsay, James O; Hawkey, Christopher J
2017-09-11
Severe Crohn's disease impacts negatively on individual quality of life, with treatment options limited once conventional therapies have been exhausted. The aim of this study was to explore factors influencing decision-making and expectations of people considering or participating in the Autologous Haematopoietic Stem Cell Treatment trial. An international, cross-sectional qualitative study, involving semistructured face to face interviews across five sites (four UK and one Spain). 38 participants were interviewed (13 men, 25 women; age range 23-67 years; mean age 37 years). The mean age at diagnosis was 20 years. Interviews were audio recorded and transcribed verbatim and transcripts were analysed using a framework approach. Four themes emerged from the analysis: (1) 'making your mind up'-a determination to receive stem cell treatment despite potential risks; (2) communicating and understanding risks and benefits; (3) non-participation-your choice or mine? (4) recovery and reframing of personal expectations. Decision-making and expectations of people with severe Crohn's disease in relation to autologous haematopoietic stem cell treatment is a complex process influenced by participants' histories of battling with their condition, a frequent willingness to consider novel treatment options despite potential risks and, in some cases, a raised level of expectation about the benefits of trial participation. Discussions with patients who are considering novel treatments should take into account potential 'therapeutic misestimation', thereby enhancing shared decision-making, informed consent and the communication with those deemed non-eligible. 2005-003337-40: results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Cohen, Jeffrey A; Imrey, Peter B; Planchon, Sarah M; Bermel, Robert A; Fisher, Elizabeth; Fox, Robert J; Bar-Or, Amit; Sharp, Susan L; Skaramagas, Thomai T; Jagodnik, Patricia; Karafa, Matt; Morrison, Shannon; Reese Koc, Jane; Gerson, Stanton L; Lazarus, Hillard M
2018-04-01
Mesenchymal stem cells (MSCs) exhibit immunomodulatory, tissue-protective, and repair-promoting properties in vitro and in animals. Clinical trials in several human conditions support the safety and efficacy of MSC transplantation. Published experience in multiple sclerosis (MS) is modest. To assess feasibility, safety, and tolerability and explore efficacy of autologous MSC transplantation in MS. Participants with relapsing-remitting multiple sclerosis (RRMS) or secondary progressive multiple sclerosis (SPMS), Expanded Disability Status Scale score 3.0-6.5, disease activity or progression in the prior 2 years, and optic nerve involvement were enrolled. Bone-marrow-derived MSCs were culture-expanded and then cryopreserved. After confirming fulfillment of release criteria, 1-2 × 10 6 MSCs/kg were thawed and administered IV. In all, 24 of 26 screened patients were infused: 16 women and 8 men, 10 RRMS and 14 SPMS, mean age 46.5, mean Expanded Disability Status Scale score 5.2, 25% with gadolinium-enhancing magnetic resonance imaging (MRI) lesions. Mean cell dosage (requiring 1-3 passages) was 1.9 × 10 6 MSCs/kg (range, 1.5-2.0) with post-thaw viability uniformly ⩾95%. Cell infusion was tolerated well without treatment-related severe or serious adverse events, or evidence of disease activation. Autologous MSC transplantation in MS appears feasible, safe, and well tolerated. Future trials to assess efficacy more definitively are warranted.
Hurton, Lenka V; Singh, Harjeet; Najjar, Amer M; Switzer, Kirsten C; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N
2016-11-29
Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T SCM ) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR + T cells with preserved T SCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19 + leukemia. Long-lived T cells were CD45RO neg CCR7 + CD95 + , phenotypically most similar to T SCM , and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR + T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.
Hurton, Lenka V.; Singh, Harjeet; Najjar, Amer M.; Switzer, Kirsten C.; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.
2016-01-01
Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials. PMID:27849617
Neuenhahn, M; Albrecht, J; Odendahl, M; Schlott, F; Dössinger, G; Schiemann, M; Lakshmipathi, S; Martin, K; Bunjes, D; Harsdorf, S; Weissinger, E M; Menzel, H; Verbeek, M; Uharek, L; Kröger, N; Wagner, E; Kobbe, G; Schroeder, T; Schmitt, M; Held, G; Herr, W; Germeroth, L; Bonig, H; Tonn, T; Einsele, H; Busch, D H; Grigoleit, G U
2017-10-01
Cytomegalovirus (CMV) infection is a common, potentially life-threatening complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). We assessed prospectively the safety and efficacy of stem cell-donor- or third-party-donor-derived CMV-specific T cells for the treatment of persistent CMV infections after allo-HSCT in a phase I/IIa trial. Allo-HSCT patients with drug-refractory CMV infection and lacking virus-specific T cells were treated with a single dose of ex vivo major histocompatibility complex-Streptamer-isolated CMV epitope-specific donor T cells. Forty-four allo-HSCT patients receiving a T-cell-replete (D + repl; n=28) or T-cell-depleted (D + depl; n=16) graft from a CMV-seropositive donor were screened for CMV-specific T-cell immunity. Eight D + depl recipients received adoptive T-cell therapy from their stem cell donor. CMV epitope-specific T cells were well supported and became detectable in all treated patients. Complete and partial virological response rates were 62.5% and 25%, respectively. Owing to longsome third-party donor (TPD) identification, only 8 of the 57 CMV patients transplanted from CMV-seronegative donors (D - ) received antigen-specific T cells from partially human leukocyte antigen (HLA)-matched TPDs. In all but one, TPD-derived CMV-specific T cells remained undetectable. In summary, adoptive transfer correlated with functional virus-specific T-cell reconstitution in D + depl patients. Suboptimal HLA match may counteract expansion of TPD-derived virus-specific T cells in D - patients.
Tang, Bor Luen
2017-10-26
Recent clinical trials of mesenchymal stem cells (MSCs) transplantation have demonstrated procedural safety and clinical proof of principle with a modest indication of benefit in patients with amyotrophic lateral sclerosis (ALS). While replacement therapy remained unrealistic, the clinical efficacy of this therapeutic option could be potentially enhanced if we could better decipher the mechanisms underlying some of the beneficial effects of transplanted cells, and work toward augmenting or combining these in a strategic manner. Novel ways whereby MSCs could act in modifying disease progression should also be explored. In this review, I discuss the known, emerging and postulated mechanisms of action underlying effects that transplanted MSCs may exert to promote motor neuron survival and/or to encourage regeneration in ALS. I shall also speculate on how transplanted cells may alter the diseased environment so as to minimize non-neuron cell autonomous damages by immune cells and astrocytes.
Rigotti, Gino; Charles-de-Sá, Luiz; Gontijo-de-Amorim, Natale Ferreira; Takiya, Christina Maeda; Amable, Paola Romina; Borojevic, Radovan; Benati, Donatella; Bernardi, Paolo; Sbarbati, Andrea
2016-01-01
Background In a previous study, the authors demonstrated that treatment with expanded adipose-derived stem cells or stromal vascular fraction (SVF)-enriched fat modify the pattern of the dermis in human beings, representing a skin rejuvenation effect. Considering that expanded stem cells require a cell factor, the authors wanted to assess similar results by replacing them with platelet-rich plasma (PRP), which is easier to obtain and for which an empirical regenerative effect has been already described. Objectives To determine if PRP injection could replace the cutaneous regenerative effect of adipose-derived stem cells. Methods This study was performed in 13 patients who were candidates for facelift. The patients underwent sampling of fat by liposuction from the abdomen and submitted to one of three protocols: injection of SVF-enriched fat or expanded adipose-derived stem cells or fat plus PRP in the preauricular areas. Fragments of skin were removed before and 3 months after treatment and analyzed by optical and electron microscopy. Results The use of fat plus PRP led to the presence of more pronounced inflammatory infiltrates and a greater vascular reactivity, increasing in vascular permeability and a certain reactivity of the nervous component. The addition of PRP did not improve the regenerative effect. Conclusion The use of PRP did not have significant advantages in skin rejuvenation over the use of expanded adipose-derived stem cells or SVF-enriched fat. The effect of increased vascular reactivity may be useful in pathological situations in which an intense angiogenesis is desirable, such as tissular ischemia. Level of Evidence: 4 Therapeutic PMID:26879294
Fan, Dazhi; Wu, Shuzhen; Ye, Shaoxin; Wang, Wen; Guo, Xiaoling; Liu, Zhengping
2017-11-01
Uterine niche is defined as a triangular anechoic structure at the site of the scar or a gap in the myometrium at the site of a previous caesarean section. The main clinical manifestations are postmenstrual spotting and intrauterine infection, which may seriously affect the daily life of nonpregnant women. Trials have shown an excellent safety and efficacy for the potential of mesenchymal stem cells (MSCs) as a therapeutic option for scar reconstruction. Therefore, this study is designed to investigate the safety and efficacy of using MSCs in the treatment for the uterine niche. This phase II clinical trial is a single-center, prospective, randomized, double-blind, placebo-controlled with 2 arms. One hundred twenty primiparous participants will be randomly (1:1 ratio) assigned to receive direct intramuscular injection of MSCs (a dose of 1*10 cells in 1 mL of 0.9% saline) (MSCs group) or an identical-appearing 1 mL of 0.9% saline (placebo-controlled group) near the uterine incision. The primary outcome of this trial is to evaluate the proportion of participants at 6 months who is found uterine niche in the uterus by transvaginal utrasonography. Adverse events will be documented in a case report form. The study will be conducted at the Department of Obstetric of Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan. This trial is the first investigation of the potential for therapeutic use of MSCs for the management of uterine niche after cesarean delivery. This protocol will help to determine the efficacy and safety of MSCs treatment in uterine niche and bridge the gap with regards to the current preclinical and clinical evidence. NCT02968459 (Clinical Trials.gov: http://clinicaltrials.gov/).
Umbilical cord mesenchyme stem cell local intramuscular injection for treatment of uterine niche
Fan, Dazhi; Wu, Shuzhen; Ye, Shaoxin; Wang, Wen; Guo, Xiaoling; Liu, Zhengping
2017-01-01
Abstract Background: Uterine niche is defined as a triangular anechoic structure at the site of the scar or a gap in the myometrium at the site of a previous caesarean section. The main clinical manifestations are postmenstrual spotting and intrauterine infection, which may seriously affect the daily life of nonpregnant women. Trials have shown an excellent safety and efficacy for the potential of mesenchymal stem cells (MSCs) as a therapeutic option for scar reconstruction. Therefore, this study is designed to investigate the safety and efficacy of using MSCs in the treatment for the uterine niche. Methods/design: This phase II clinical trial is a single-center, prospective, randomized, double-blind, placebo-controlled with 2 arms. One hundred twenty primiparous participants will be randomly (1:1 ratio) assigned to receive direct intramuscular injection of MSCs (a dose of 1∗107 cells in 1 mL of 0.9% saline) (MSCs group) or an identical-appearing 1 mL of 0.9% saline (placebo-controlled group) near the uterine incision. The primary outcome of this trial is to evaluate the proportion of participants at 6 months who is found uterine niche in the uterus by transvaginal utrasonography. Adverse events will be documented in a case report form. The study will be conducted at the Department of Obstetric of Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan. Discussion: This trial is the first investigation of the potential for therapeutic use of MSCs for the management of uterine niche after cesarean delivery. Conclusion: This protocol will help to determine the efficacy and safety of MSCs treatment in uterine niche and bridge the gap with regards to the current preclinical and clinical evidence. Trial registration number: NCT02968459 (Clinical Trials.gov: http://clinicaltrials.gov/). PMID:29095305
Tompkins, Bryon A; DiFede, Darcy L; Khan, Aisha; Landin, Ana Marie; Schulman, Ivonne Hernandez; Pujol, Marietsy V; Heldman, Alan W; Miki, Roberto; Goldschmidt-Clermont, Pascal J; Goldstein, Bradley J; Mushtaq, Muzammil; Levis-Dusseau, Silvina; Byrnes, John J; Lowery, Maureen; Natsumeda, Makoto; Delgado, Cindy; Saltzman, Russell; Vidro-Casiano, Mayra; Da Fonseca, Moisaniel; Golpanian, Samuel; Premer, Courtney; Medina, Audrey; Valasaki, Krystalenia; Florea, Victoria; Anderson, Erica; El-Khorazaty, Jill; Mendizabal, Adam; Green, Geoff; Oliva, Anthony A; Hare, Joshua M
2017-01-01
Abstract Background Aging frailty, characterized by decreased physical and immunological functioning, is associated with stem cell depletion. Human allogeneic mesenchymal stem cells (allo-hMSCs) exert immunomodulatory effects and promote tissue repair. Methods This is a randomized, double-blinded, dose-finding study of intravenous allo-hMSCs (100 or 200-million [M]) vs placebo delivered to patients (n = 30, mean age 75.5 ± 7.3) with frailty. The primary endpoint was incidence of treatment-emergent serious adverse events (TE-SAEs) at 1-month postinfusion. Secondary endpoints included physical performance, patient-reported outcomes, and immune markers of frailty measured at 6 months postinfusion. Results No therapy-related TE-SAEs occurred at 1 month. Physical performance improved preferentially in the 100M-group; immunologic improvement occurred in both the 100M- and 200M-groups. The 6-minute walk test, short physical performance exam, and forced expiratory volume in 1 second improved in the 100M-group (p = .01), not in the 200M- or placebo groups. The female sexual quality of life questionnaire improved in the 100M-group (p = .03). Serum TNF-α levels decreased in the 100M-group (p = .03). B cell intracellular TNF-α improved in both the 100M- (p < .0001) and 200M-groups (p = .002) as well as between groups compared to placebo (p = .003 and p = .039, respectively). Early and late activated T-cells were also reduced by MSC therapy. Conclusion Intravenous allo-hMSCs were safe in individuals with aging frailty. Treated groups had remarkable improvements in physical performance measures and inflammatory biomarkers, both of which characterize the frailty syndrome. Given the excellent safety and efficacy profiles demonstrated in this study, larger clinical trials are warranted to establish the efficacy of hMSCs in this multisystem disorder. Clinical Trial Registration www.clinicaltrials.gov: CRATUS (#NCT02065245). PMID:28977399
Protecting retinal ganglion cells.
Khatib, T Z; Martin, K R
2017-02-01
Retinal ganglion cell degeneration underlies several conditions which give rise to significant visual compromise, including glaucoma, hereditary optic neuropathies, ischaemic optic neuropathies, and demyelinating disease. In this review, we discuss the emerging strategies for neuroprotection specifically in the context of glaucoma, including pharmacological neuroprotection, mesenchymal stem cells, and gene therapy approaches. We highlight potential pitfalls that need to be considered when developing these strategies and outline future directions, including the prospects for clinical trials.
Dudley, Mark E.; Carpenter, Robert O.; Kassim, Sadik H.; Rose, Jeremy J.; Telford, William G.; Hakim, Frances T.; Halverson, David C.; Fowler, Daniel H.; Hardy, Nancy M.; Mato, Anthony R.; Hickstein, Dennis D.; Gea-Banacloche, Juan C.; Pavletic, Steven Z.; Sportes, Claude; Maric, Irina; Feldman, Steven A.; Hansen, Brenna G.; Wilder, Jennifer S.; Blacklock-Schuver, Bazetta; Jena, Bipulendu; Bishop, Michael R.; Gress, Ronald E.; Rosenberg, Steven A.
2013-01-01
New treatments are needed for B-cell malignancies persisting after allogeneic hematopoietic stem cell transplantation (alloHSCT). We conducted a clinical trial of allogeneic T cells genetically modified to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. T cells for genetic modification were obtained from each patient’s alloHSCT donor. All patients had malignancy that persisted after alloHSCT and standard donor lymphocyte infusions (DLIs). Patients did not receive chemotherapy prior to the CAR T-cell infusions and were not lymphocyte depleted at the time of the infusions. The 10 treated patients received a single infusion of allogeneic anti-CD19-CAR T cells. Three patients had regressions of their malignancies. One patient with chronic lymphocytic leukemia (CLL) obtained an ongoing complete remission after treatment with allogeneic anti-CD19-CAR T cells, another CLL patient had tumor lysis syndrome as his leukemia dramatically regressed, and a patient with mantle cell lymphoma obtained an ongoing partial remission. None of the 10 patients developed graft-versus-host disease (GVHD). Toxicities included transient hypotension and fever. We detected cells containing the anti-CD19-CAR gene in the blood of 8 of 10 patients. These results show for the first time that donor-derived allogeneic anti-CD19-CAR T cells can cause regression of B-cell malignancies resistant to standard DLIs without causing GVHD. This trial was registered at www.clinicaltrials.gov as #NCT01087294. PMID:24055823
Characterization of axon formation in the embryonic stem cell-derived motoneuron.
Pan, Hung-Chuan; Wu, Ya-Ting; Shen, Shih-Cheng; Wang, Chi-Chung; Tsai, Ming-Shiun; Cheng, Fu-Chou; Lin, Shinn-Zong; Chen, Ching-Wen; Liu, Ching-San; Su, Hong-Lin
2011-01-01
The developing neural cell must form a highly organized architecture to properly receive and transmit nerve signals. Neural formation from embryonic stem (ES) cells provides a novel system for studying axonogenesis, which are orchestrated by polarity-regulating molecules. Here the ES-derived motoneurons, identified by HB9 promoter-driven green fluorescent protein (GFP) expression, showed characteristics of motoneuron-specific gene expression. In the majority of motoneurons, one of the bilateral neurites developed into an axon that featured with axonal markers, including Tau1, vesicle acetylcholine transporter, and synaptophysin. Interestingly, one third of the motoneurons developed bi-axonal processes but no multiple axonal GFP cell was found. The neuronal polarity-regulating proteins, including the phosphorylated AKT and ERK, were compartmentalized into both of the bilateral axonal tips. Importantly, this aberrant axon morphology was still present after the engraftment of GFP(+) neurons into the spinal cord, suggesting that even a mature neural environment fails to provide a proper niche to guide normal axon formation. These findings underscore the necessity for evaluating the morphogenesis and functionality of neurons before the clinical trials using ES or somatic stem cells.
Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis
Yang, Y.; Lin, S.; Wang, B.; Gu, W.
2017-01-01
Objectives Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results. Methods We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO. Results Studies differed in animal type (mice, rabbit, dog, sheep), bone type (femur, tibia, skull), DO protocols and cell transplantation methods. Conclusion The majority of studies reported that the transplantation of MSCs enhanced bone consolidation or formation in DO. Many questions relating to animal model, DO protocol and cell transplantation regime remain to be further investigated. Clinical trials are needed to test and confirm these findings from animal studies. Cite this article: Y. Yang, S. Lin, B. Wang, W. Gu, G. Li. Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis: A contemporary review of experimental studies. Bone Joint Res 2017;6:385–390. DOI: 10.1302/2046-3758.66.BJR-2017-0023. PMID:28634158
Intraspinal Stem Cell Transplantation for Amyotrophic Lateral Sclerosis
Chen, Kevin S.; Sakowski, Stacey A.; Feldman, Eva L.
2015-01-01
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder in which the loss of upper and lower motor neurons produces progressive weakness and eventually death. In the decades since the approval of riluzole, the only FDA approved medication to moderately slow progression of ALS, no new therapeutics have arisen to alter the course of the disease. This is partly due to our incomplete understanding of the complex pathogenesis of motor neuron degeneration. Stem cells have emerged as an attractive option in treating ALS since they come armed with equally complex cellular machinery and may modulate the local microenvironment in many ways to rescue diseased motor neurons. While various stem cell types are being evaluated in preclinical and early clinical applications, here we review the preclinical strategies and advances supporting the recent clinical translation of neural progenitor cell therapy for ALS. Specifically, we focus on the use of spinal cord neural progenitor cells and the pipeline starting from preclinical studies to the designs of the Phase I and IIa clinical trials involving direct intraspinal transplantation in humans. PMID:26696091
RBPJ maintains brain tumor–initiating cells through CDK9-mediated transcriptional elongation
Xie, Qi; Wu, Qiulian; Kim, Leo; Miller, Tyler E.; Liau, Brian B.; Mack, Stephen C.; Yang, Kailin; Factor, Daniel C.; Fang, Xiaoguang; Huang, Zhi; Zhou, Wenchao; Alazem, Kareem; Wang, Xiuxing; Bernstein, Bradley E.; Bao, Shideng; Rich, Jeremy N.
2016-01-01
Glioblastomas co-opt stem cell regulatory pathways to maintain brain tumor–initiating cells (BTICs), also known as cancer stem cells. NOTCH signaling has been a molecular target in BTICs, but NOTCH antagonists have demonstrated limited efficacy in clinical trials. Recombining binding protein suppressor of hairless (RBPJ) is considered a central transcriptional mediator of NOTCH activity. Here, we report that pharmacologic NOTCH inhibitors were less effective than targeting RBPJ in suppressing tumor growth. While NOTCH inhibitors decreased canonical NOTCH gene expression, RBPJ regulated a distinct profile of genes critical to BTIC stemness and cell cycle progression. RBPJ was preferentially expressed by BTICs and required for BTIC self-renewal and tumor growth. MYC, a key BTIC regulator, bound the RBPJ promoter and treatment with a bromodomain and extraterminal domain (BET) family bromodomain inhibitor decreased MYC and RBPJ expression. Proteomic studies demonstrated that RBPJ binds CDK9, a component of positive transcription elongation factor b (P-TEFb), to target gene promoters, enhancing transcriptional elongation. Collectively, RBPJ links MYC and transcriptional control through CDK9, providing potential nodes of fragility for therapeutic intervention, potentially distinct from NOTCH. PMID:27322055
Zhang, Jian; Lv, Samei; Liu, Xiaojing; Song, Bin; Shi, Liping
2018-01-01
Background/Aims Stem cell therapy has been applied to treat a variety of autoimmune diseases, including Crohn’s disease (CD), but few studies have examined the use of umbilical cord mesenchymal stem cells (UC-MSCs). This trial sought to investigate the efficacy and safety of UC-MSCs for the treatment of CD. Methods Eighty-two patients who had been diagnosed with CD and had received steroid maintenance therapy for more than 6 months were included in this study. Forty-one patients were randomly selected to receive a total of four peripheral intravenous infusions of 1×106 UC-MSCs/kg, with one infusion per week. Patients were followed up for 12 months. The Crohn’s disease activity index (CDAI), Harvey-Bradshaw index (HBI), and corticosteroid dosage were assessed. Results Twelve months after treatment, the CDAI, HBI, and corticosteroid dosage had decreased by 62.5±23.2, 3.4±1.2, and 4.2±0.84 mg/day, respectively, in the UC-MSC group and by 23.6±12.4, 1.2±0.58, and 1.2±0.35 mg/day, respectively, in the control group (p<0.01, p<0.05, and p<0.05 for UC-MSC vs control, respectively). Four patients developed a fever after cell infusion. No serious adverse events were observed. Conclusions UC-MSCs were effective in the treatment of CD and produced mild side effects. PMID:28873511
Ataei, Sara; Hadjibabaie, Molouk; Moslehi, Amirhossein; Taghizadeh-Ghehi, Maryam; Ashouri, Asieh; Amini, Elham; Gholami, Kheirollah; Hayatshahi, Alireza; Vaezi, Mohammad; Ghavamzadeh, Ardeshir
2015-06-01
Acute kidney injury (AKI) is one of the complications of hematopoietic stem cell transplantation and is associated with increased mortality. N-acetylcysteine (NAC) is a thiol compound with antioxidant and vasodilatory properties that has been investigated for the prevention of AKI in several clinical settings. In the present study, we evaluated the effects of intravenous NAC on the prevention of AKI in allogeneic hematopoietic stem cell transplantation patients. A double-blind randomized placebo-controlled trial was conducted, and 80 patients were recruited to receive 100 mg/kg/day NAC or placebo as intermittent intravenous infusion from day -6 to day +15. AKI was determined on the basis of the Risk-Injury-Failure-Loss-End-stage renal disease and AKI Network criteria as the primary outcome. We assessed urine neutrophil gelatinase-associated lipocalin (uNGAL) on days -6, -3, +3, +9 and +15 as the secondary outcome. Moreover, transplant-related outcomes and NAC adverse reactions were evaluated during the study period. Statistical analysis was performed using appropriate parametric and non-parametric methods including Kaplan-Meier for AKI and generalized estimating equation for uNGAL. At the end of the trial, data from 72 patients were analysed (NAC: 33 patients and placebo: 39 patients). Participants of each group were not different considering baseline characteristics. AKI was observed in 18% of NAC recipients and 15% of placebo group patients, and the occurrence pattern was not significantly different (p = 0.73). Moreover, no significant difference was observed between groups for uNGAL measures (p = 0.10). Transplant-related outcomes were similar for both groups, and all patients had successful engraftment. Three patients did not tolerate NAC because of abdominal pain, shortness of breath and rash with pruritus and were dropped from the intervention group before transplantation. However, the frequency of adverse reactions was not significantly different between groups. In conclusion, our findings could not show any clinical benefits from high-dose NAC particularly for AKI prevention in allogeneic hematopoietic stem cell transplantation patients. Copyright © 2014 John Wiley & Sons, Ltd.
Progress of mesenchymal stem cell therapy for neural and retinal diseases
Ng, Tsz Kin; Fortino, Veronica R; Pelaez, Daniel; Cheung, Herman S
2014-01-01
Complex circuitry and limited regenerative power make central nervous system (CNS) disorders the most challenging and difficult for functional repair. With elusive disease mechanisms, traditional surgical and medical interventions merely slow down the progression of the neurodegenerative diseases. However, the number of neurons still diminishes in many patients. Recently, stem cell therapy has been proposed as a viable option. Mesenchymal stem cells (MSCs), a widely-studied human adult stem cell population, have been discovered for more than 20 years. MSCs have been found all over the body and can be conveniently obtained from different accessible tissues: bone marrow, blood, and adipose and dental tissue. MSCs have high proliferative and differentiation abilities, providing an inexhaustible source of neurons and glia for cell replacement therapy. Moreover, MSCs also show neuroprotective effects without any genetic modification or reprogramming. In addition, the extraordinary immunomodulatory properties of MSCs enable autologous and heterologous transplantation. These qualities heighten the clinical applicability of MSCs when dealing with the pathologies of CNS disorders. Here, we summarize the latest progress of MSC experimental research as well as human clinical trials for neural and retinal diseases. This review article will focus on multiple sclerosis, spinal cord injury, autism, glaucoma, retinitis pigmentosa and age-related macular degeneration. PMID:24772238
Progress of mesenchymal stem cell therapy for neural and retinal diseases.
Ng, Tsz Kin; Fortino, Veronica R; Pelaez, Daniel; Cheung, Herman S
2014-04-26
Complex circuitry and limited regenerative power make central nervous system (CNS) disorders the most challenging and difficult for functional repair. With elusive disease mechanisms, traditional surgical and medical interventions merely slow down the progression of the neurodegenerative diseases. However, the number of neurons still diminishes in many patients. Recently, stem cell therapy has been proposed as a viable option. Mesenchymal stem cells (MSCs), a widely-studied human adult stem cell population, have been discovered for more than 20 years. MSCs have been found all over the body and can be conveniently obtained from different accessible tissues: bone marrow, blood, and adipose and dental tissue. MSCs have high proliferative and differentiation abilities, providing an inexhaustible source of neurons and glia for cell replacement therapy. Moreover, MSCs also show neuroprotective effects without any genetic modification or reprogramming. In addition, the extraordinary immunomodulatory properties of MSCs enable autologous and heterologous transplantation. These qualities heighten the clinical applicability of MSCs when dealing with the pathologies of CNS disorders. Here, we summarize the latest progress of MSC experimental research as well as human clinical trials for neural and retinal diseases. This review article will focus on multiple sclerosis, spinal cord injury, autism, glaucoma, retinitis pigmentosa and age-related macular degeneration.
Feasibility of Induced Pluripotent Stem Cell Therapies for Treatment of Type 1 Diabetes.
Duffy, Caden; Prugue, Cesar; Glew, Rachel; Smith, Taryn; Howell, Calvin; Choi, Gina; Cook, Alonzo David
2018-06-27
Despite their potential for treating type 1 diabetes (T1D), induced pluripotent stem cells (iPSCs) have not yet been used successfully in the clinic. In this paper, advances in iPSC therapies are reviewed and compared to current methods of treating T1D. Encapsulation of iPSCs is being pursued to address such safety concerns as the possibility of immune rejection or teratoma formation, and provide for retrievability. Issues of material selection, cell differentiation, size of islet aggregates, sites of implantation, animal models, and vascularization are also being addressed. Clinical trials are being conducted to test a variety of new devices with the hope of providing additional therapies for T1D.
Rekittke, Nadine E.; Ang, Meidjie; Rawat, Divya; Khatri, Rahul
2016-01-01
Type 1 diabetes is an autoimmune disease resulting in the permanent destruction of pancreatic islets. Islet transplantation to portal vein provides an approach to compensate for loss of insulin producing cells. Clinical trials demonstrated that even partial islet graft function reduces severe hypoglycemic events in patients. However, therapeutic impact is restrained due to shortage of pancreas organ donors and instant inflammation occurring in the hepatic environment of the graft. We summarize on what is known about regenerative therapy in type 1 diabetes focusing on pancreatic islet transplantation and new avenues of cell substitution. Metabolic pathways and energy production of transplanted cells are required to be balanced and protection from inflammation in their intravascular bed is desired. Mesenchymal stem cells (MSCs) have anti-inflammatory features, and so they are interesting as a therapy for type 1 diabetes. Recently, they were reported to reduce hyperglycemia in diabetic rodents, and they were even discussed as being turned into endodermal or pancreatic progenitor cells. MSCs are recognized to meet the demand of an individual therapy not raising the concerns of embryonic or induced pluripotent stem cells for therapy. PMID:27047547
[Adipose-derived stromal cells (ASC) - basics and therapeutic approaches in otorhinolaryngology].
Frölich, K; Hagen, R; Kleinsasser, N
2014-06-01
Adipose-derived Stromal Cells (ASC) - Basics and Therapeutic Approaches in Otorhinolaryngology Mesenchymal stem cells from adipose tissue can be easily harvested with less discomfort, low donor-site morbidity and high amount compared to bone marrow-derived stem cells. Due to their multilineage differentiation potential in various cell types, immunmodulatory properties and their capability to enhance wound healing, ASC are a promising cell source for tissue engineering approaches and regenerative medicine. They are characterized by the expression of specific surface marker proteins and their differentiation potential into the mesenchymal lineages. Whereas only preclinical studies are published for otorhinolaryngology-related therapeutic options using ASC, various diseases, for instance graft-versus-host disease, have already been treated with ASC in single cases or clinical trials. Safety and genomic stability of ASC as well as the risk of spontaneous malignant transformation are still disputed. This review summarizes the current literature on characterization and anatomic localization of ASC. In addition, beside the presentation of preclinical studies concerning therapeutic approaches in otorhinolaryngology as well as of current clinical applications, the issue of safety of ASC in human stem cell therapy is discussed. © Georg Thieme Verlag KG Stuttgart · New York.
[Proangiogenic cell-based therapy for treatment of ischemic diseases].
Silvestre, Jean-Sébastien
2009-11-01
The application of endothelial progenitor cells (EPC) cell-based therapy for regenerative medicine constitutes a promising therapeutic avenue for the treatment of cardiovascular diseases. Based on experimental studies demonstrating that bone marrow-, blood- or tissue-derived stem/progenitor cells improve the functional recovery after ischemia, clinical trials were initiated to address this new therapeutic concept. Although autolougous cell therapy was shown to improve perfusion and function of ischemic tissues, a number of issues remain to be adressed. The nature of the mobilizing, migratory and homing signals, and the mechanisms of action need to be identified and further defined. In addition, strategies to enhance homing, survival and therapeutic potential of EPC need to be developped to improve therapeutic effect and counteract EPC dysfunction in aged patients with cardiovascular risk factors. The present review article will discuss the mechanisms of action of different types of adult stem cells and several approaches to improve their therapeutic efficiency.
Induced pluripotent stem cells for the treatment of stroke: the potential and the pitfalls.
Yu, Fenggang; Li, Yingying; Morshead, Cindi M
2013-09-01
The extraordinary discovery of induced pluripotent stem cells (iPSCs) has led to the very real possibility that patient-specific cell therapy can be realized. The potential to develop cell replacement therapies outside the ethical and legal limitations, has initiated a new era of hope for regenerative strategies to treat human neurological disease including stroke. In this article, we will review and compare the current approaches to derive iPSCs from different somatic cells, and the induction into neuronal phenotypes, considering the advantages and disadvantages to the methodologies of derivation. We will highlight the work relating to the use of iPSC-based therapies in models of stroke and their potential use in clinical trials. Finally, we will consider future directions and areas of exploration which may promote the realization of iPSC-based cell replacement strategies for the treatment of stroke.
Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology.
Gómez-Barrena, Enrique; Rosset, Philippe; Müller, Ingo; Giordano, Rosaria; Bunu, Carmen; Layrolle, Pierre; Konttinen, Yrjö T; Luyten, Frank P
2011-06-01
Regenerative medicine seeks to repair or replace damaged tissues or organs, with the goal to fully restore structure and function without the formation of scar tissue. Cell based therapies are promising new therapeutic approaches in regenerative medicine. By using mesenchymal stem cells, good results have been reported for bone engineering in a number of clinical studies, most of them investigator initiated trials with limited scope with respect to controls and outcome. With the implementation of a new regulatory framework for advanced therapeutic medicinal products, the stage is set to improve both the characterization of the cells and combination products, and pave the way for improved controlled and well-designed clinical trials. The incorporation of more personalized medicine approaches, including the use of biomarkers to identify the proper patients and the responders to treatment, will be contributing to progress in the field. Both translational and clinical research will move the boundaries in the field of regenerative medicine, and a coordinated effort will provide the clinical breakthroughs, particularly in the many applications of bone engineering. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Meliga, Emanuele; Strem, Brian M; Duckers, H J; Serruys, Patrick W
2007-01-01
Heart failure is by far the most common cause of hospitalization in Western countries, with onerous economic consequences. Cell therapy holds great promise for use in tissue regeneration and is increasingly used in an effort to improve outcomes in cardiac disease. Recently it has been shown that adipose tissue, in addition to committed adipogenic, endothelial progenitor cells and pluripotent vascular progenitor cells, also contains multipotent cell types (adipose-derived stem cells, ADSCs) that, in cell culture conditions, have shown to have an impressive developmental plasticity including the ability to undergo multilineage differentiation and self-renewal. ADSCs express multiple CD marker antigens similar to those observed on MSCs and are also capable of secreting a large number of angiogenesis-related cytokines, including vascular endothelial growth factor, granulocyte/macrophage colony stimulating factor, stromal-derived factor-1alpha, and hepatocyte growth factor. Adipose tissue can be harvested in large quantities with minimal morbidity in several regions of the body and, on average, 100 ml of human adipose tissue yields about 1 x 10(6) stem cells. Studies conducted in porcine AMI models have shown a significant LV functional improvement, with no report of any potentially fatal arrhythmias. The APOLLO trial, a prospective, double blind, randomized, placebo-controlled trial currently in the recruiting phase, is a "first-in-man" study that explores the safety and feasibility of ADSC transplantation in patients with acute MI.
Prakoeswa, C R S; Natallya, F R; Harnindya, D; Thohiroh, A; Oktaviyanti, R N; Pratiwi, K D; Rubianti, M A; Yogatri, B; Primasari, P I; Herwanto, N; Alinda, M D; Kusumaputra, B H; Astari, L; Listiawan, M Y; Agusni, I; Rantam, F A
2018-05-10
Healing of chronic plantar ulcers in leprosy (CPUL) typically takes a long time due to impaired neurological function, thereby reducing the levels of growth factors and cytokines. Cytokines can be found in metabolite products from amniotic membrane stem cells. Chronic ulcers are frequently characterized by high levels of reactive oxygen species. Vitamin E (α-tocopherol) is widely used in skin lesions, owing to its antioxidant and anti-inflammatory properties. Vitamin C also has antioxidant, anti-inflammatory, and collagen synthesis properties which are useful in wound healing. Herein, we compared the effects of topical human amniotic membrane-mesenchymal stem cell-conditioned medium (hAMMSC-CM) alone and with vitamins C and E on healing of CPUL. In this randomized controlled trial, topical agents were applied every 3 days for up to 8 weeks. Ulcer size, side-effects, and possible complications were monitored weekly. Healing percentage increased each week in all groups. Mean difference in ulcer size was highest in the hAMMSC-CM + vitamin E group, implying better progress of wound healing. There were no side-effects or complications. hAMMSC-CM + vitamin E is best for healing of CPUL.
Bakhtiary, Mehrdad; Marzban, Mohsen; Mehdizadeh, Mehdi; Joghataei, Mohammad Taghi; Khoei, Samideh; Pirhajati Mahabadi, Vahid; Laribi, Bahareh; Tondar, Mahdi; Moshkforoush, Arash
2010-10-01
Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Forty adult male Wistar rats were injured with controlled cortical impact device and divided randomly into four groups. The treatment groups were injected with 2 × 106 intravenous bone marrow stromal stem cell (n = 10) and also with subcutaneous G-CSF (n = 10) and sham-operation group (n = 10) received PBS and "bromodeoxyuridine (Brdu)" alone, i.p. All injections were performed 1 day after injury into the tail veins of rats. All cells were labeled with Brdu before injection into the tail veins of rats. Functional neurological evaluation of animals was performed before and after injury using modified neurological severity scores (mNSS). Animals were sacrificed 42 days after TBI and brain sections were stained by Brdu immunohistochemistry. Statistically, significant improvement in functional outcome was observed in treatment groups compared with control group (P<0.01). mNSS showed no significant difference between the BMSC and G-CSF-treated groups during the study period (end of the trial). Histological analyses showed that Brdu-labeled (MSC) were present in the lesion boundary zone at 42nd day in all injected animals. In our study, we found that administration of a bone marrow-stimulating factor (G-CSF) and BMSC in a TBI model provides functional benefits.
Grønhøj, Christian; Jensen, David H; Glovinski, Peter V; Jensen, Siri Beier; Bardow, Allan; Oliveri, Roberto S; Specht, Lena; Thomsen, Carsten; Darkner, Sune; Kiss, Katalin; Fischer-Nielsen, Anne; von Buchwald, Christian
2017-03-07
Salivary gland hypofunction and xerostomia are major complications following radiotherapy for head and neck cancer and may lead to debilitating oral disorders and impaired quality of life. Currently, only symptomatic treatment is available. However, mesenchymal stem cell (MSC) therapy has shown promising results in preclinical studies. Objectives are to assess safety and efficacy in a first-in-man trial on adipose-derived MSC therapy (ASC) for radiation-induced xerostomia. This is a single-center, phase I/II, randomized, placebo-controlled, double-blinded clinical trial. A total of 30 patients are randomized in a 1:1 ratio to receive ultrasound-guided, administered ASC or placebo to the submandibular glands. The primary outcome is change in unstimulated whole salivary flow rate. The secondary outcomes are safety, efficacy, change in quality of life, qualitative and quantitative measurements of saliva, as well as submandibular gland size, vascularization, fibrosis, and secretory tissue evaluation based on contrast-induced magnetic resonance imaging (MRI) and core-needle samples. The assessments are performed at baseline (1 month prior to treatment) and 1 and 4 months following investigational intervention. The trial is the first attempt to evaluate the safety and efficacy of adipose-derived MSCs (ASCs) in patients with radiation-induced xerostomia. The results may provide evidence for the effectiveness of ASC in patients with salivary gland hypofunction and xerostomia and deliver valuable information for the design of subsequent trials. EudraCT, Identifier: 2014-004349-29. Registered on 1 April 2015. ClinicalTrials.gov, Identifier: NCT02513238 . First received on 2 July 2015. The trial is prospectively registered.
Verma, Raj Kumar; Yu, Wei; Singh, Surya Pratap; Shankar, Sharmila; Srivastava, Rakesh K
2015-11-01
Anthothecol, a limonoid isolated from plant Khaya anthotheca (Meliaceae), is an antimalarial compound. The objectives of this study were to examine the molecular mechanisms by which anthothecol-encapsulated PLGA-nanoparticles (Antho-NPs) regulate the behavior of pancreatic cancer stem cells (CSCs). Antho-NPs inhibited cell proliferation and colony formation, and induced apoptosis in pancreatic CSCs and cancer cell lines, but had no effects on human normal pancreatic ductal epithelial cells. Antho-NPs inhibited self-renewal capacity of pancreatic CSCs isolated from human and Kras(G12D) mice. Furthermore, antho-NPs suppressed cell motility, migration and invasion by up-regulating E-cadherin and inhibiting N-cadherin and Zeb1. In addition, Antho-NPs inhibited pluripotency maintaining factors and stem cell markers, suggesting their inhibitory role on CSC population. Anthothecol disrupted binding of Gli to DNA, and inhibited Gli transcription and Gli target genes. Our studies establish preclinical significance of Antho-NPs for the treatment and/or prevention of pancreatic cancer. Despite medical advances, the prognosis of pancreatic cancer remains poor. The search for an effective treatment has been under intensive research for some time. In this article, the authors investigated the efficacy and mechanism of anthothecol (an antimalarial compound), encapsulated by PLGA nanoparticles (Antho-NPs), against pancreatic cancer cell lines. It was found that Antho-NPs acted via the Sonic hedgehog signaling pathway and inhibited cancer stem cell growth. These results have provided important basis for further clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.
Is belief larger than fact: expectations, optimism and reality for translational stem cell research.
Bubela, Tania; Li, Matthew D; Hafez, Mohamed; Bieber, Mark; Atkins, Harold
2012-11-06
Stem cell (SC) therapies hold remarkable promise for many diseases, but there is a significant gulf between public expectations and the reality of progress toward clinical application. Public expectations are fueled by stakeholder arguments for research and public funding, coupled with intense media coverage in an ethically charged arena. We examine media representations in light of the expanding global landscape of SC clinical trials, asking what patients may realistically expect by way of timelines for the therapeutic and curative potential of regenerative medicine? We built 2 international datasets: (1) 3,404 clinical trials (CT) containing 'stem cell*' from ClinicalTrials.gov and the World Health Organization's International Clinical Trials Registry Search Portal; and (2) 13,249 newspaper articles on SC therapies using Factiva.com. We compared word frequencies between the CT descriptions and full-text newspaper articles for the number containing terms for SC type and diseases/conditions. We also developed inclusion and exclusion criteria to identify novel SC CTs, mainly regenerative medicine applications. Newspaper articles focused on human embryonic SCs and neurological conditions with significant coverage as well of cardiovascular disease and diabetes. In contrast, CTs used primarily hematopoietic SCs, with an increase in CTs using mesenchymal SCs since 2007. The latter dominated our novel classification for CTs, most of which are in phases I and II. From the perspective of the public, expecting therapies for neurological conditions, there is limited activity in what may be considered novel applications of SC therapies. Given the research, regulatory, and commercialization hurdles to the clinical translation of SC research, it seems likely that patients and political supporters will become disappointed and disillusioned. In this environment, proponents need to make a concerted effort to temper claims. Even though the field is highly promising, it lacks significant private investment and is largely reliant on public support, requiring a more honest acknowledgement of the expected therapeutic benefits and the timelines to achieving them.
Is belief larger than fact: expectations, optimism and reality for translational stem cell research
2012-01-01
Background Stem cell (SC) therapies hold remarkable promise for many diseases, but there is a significant gulf between public expectations and the reality of progress toward clinical application. Public expectations are fueled by stakeholder arguments for research and public funding, coupled with intense media coverage in an ethically charged arena. We examine media representations in light of the expanding global landscape of SC clinical trials, asking what patients may realistically expect by way of timelines for the therapeutic and curative potential of regenerative medicine? Methods We built 2 international datasets: (1) 3,404 clinical trials (CT) containing 'stem cell*' from ClinicalTrials.gov and the World Health Organization's International Clinical Trials Registry Search Portal; and (2) 13,249 newspaper articles on SC therapies using Factiva.com. We compared word frequencies between the CT descriptions and full-text newspaper articles for the number containing terms for SC type and diseases/conditions. We also developed inclusion and exclusion criteria to identify novel SC CTs, mainly regenerative medicine applications. Results Newspaper articles focused on human embryonic SCs and neurological conditions with significant coverage as well of cardiovascular disease and diabetes. In contrast, CTs used primarily hematopoietic SCs, with an increase in CTs using mesenchymal SCs since 2007. The latter dominated our novel classification for CTs, most of which are in phases I and II. From the perspective of the public, expecting therapies for neurological conditions, there is limited activity in what may be considered novel applications of SC therapies. Conclusions Given the research, regulatory, and commercialization hurdles to the clinical translation of SC research, it seems likely that patients and political supporters will become disappointed and disillusioned. In this environment, proponents need to make a concerted effort to temper claims. Even though the field is highly promising, it lacks significant private investment and is largely reliant on public support, requiring a more honest acknowledgement of the expected therapeutic benefits and the timelines to achieving them. PMID:23131007
Hair regrowth in alopecia areata patients following Stem Cell Educator therapy.
Li, Yanjia; Yan, Baoyong; Wang, Hepeng; Li, Heng; Li, Quanhai; Zhao, Dong; Chen, Yana; Zhang, Ye; Li, Wenxia; Zhang, Jun; Wang, Shanfeng; Shen, Jie; Li, Yunxiang; Guindi, Edward; Zhao, Yong
2015-04-20
Alopecia areata (AA) is one of the most common autoimmune diseases and targets the hair follicles, with high impact on the quality of life and self-esteem of patients due to hair loss. Clinical management and outcomes are challenged by current limited immunosuppressive and immunomodulating regimens. We have developed a Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, allows the cells to briefly interact with adherent human cord blood-derived multipotent stem cells (CB-SC), and returns the "educated" autologous cells to the patient's circulation. In an open-label, phase 1/phase 2 study, patients (N = 9) with severe AA received one treatment with the Stem Cell Educator therapy. The median age was 20 years (median alopecic duration, 5 years). Clinical data demonstrated that patients with severe AA achieved improved hair regrowth and quality of life after receiving Stem Cell Educator therapy. Flow cytometry revealed the up-regulation of Th2 cytokines and restoration of balancing Th1/Th2/Th3 cytokine production in the peripheral blood of AA subjects. Immunohistochemistry indicated the formation of a "ring of transforming growth factor beta 1 (TGF-β1)" around the hair follicles, leading to the restoration of immune privilege of hair follicles and the protection of newly generated hair follicles against autoimmune destruction. Mechanistic studies revealed that co-culture with CB-SC may up-regulate the expression of coinhibitory molecules B and T lymphocyte attenuator (BTLA) and programmed death-1 receptor (PD-1) on CD8β(+)NKG2D(+) effector T cells and suppress their proliferation via herpesvirus entry mediator (HVEM) ligands and programmed death-1 ligand (PD-L1) on CB-SCs. Current clinical data demonstrated the safety and efficacy of the Stem Cell Educator therapy for the treatment of AA. This innovative approach produced lasting improvement in hair regrowth in subjects with moderate or severe AA. ClinicalTrials.gov, NCT01673789, 21 August 2012.
Yang, Yuanyuan; Zhang, Xiaobai; Yi, Li; Hou, Zhenzhen; Chen, Jiayu; Kou, Xiaochen; Zhao, Yanhong; Wang, Hong; Sun, Xiao-Fang; Jiang, Cizhong; Wang, Yixuan; Gao, Shaorong
2016-01-01
Conventional primed human embryonic stem cells and induced pluripotent stem cells (iPSCs) exhibit molecular and biological characteristics distinct from pluripotent stem cells in the naïve state. Although naïve pluripotent stem cells show much higher levels of self-renewal ability and multidifferentiation capacity, it is unknown whether naïve iPSCs can be generated directly from patient somatic cells and will be superior to primed iPSCs. In the present study, we used an established 5i/L/FA system to directly reprogram fibroblasts of a patient with β-thalassemia into transgene-free naïve iPSCs with molecular signatures of ground-state pluripotency. Furthermore, these naïve iPSCs can efficiently produce cross-species chimeras. Importantly, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease genome editing system, these naïve iPSCs exhibit significantly improved gene-correction efficiencies compared with the corresponding primed iPSCs. Furthermore, human naïve iPSCs could be directly generated from noninvasively collected urinary cells, which are easily acquired and thus represent an excellent cell resource for further clinical trials. Therefore, our findings demonstrate the feasibility and superiority of using patient-specific iPSCs in the naïve state for disease modeling, gene editing, and future clinical therapy. In the present study, transgene-free naïve induced pluripotent stem cells (iPSCs) directly converted from the fibroblasts of a patient with β-thalassemia in a defined culture system were generated. These naïve iPSCs, which show ground-state pluripotency, exhibited significantly improved single-cell cloning ability, recovery capacity, and gene-targeting efficiency compared with conventional primed iPSCs. These results provide an improved strategy for personalized treatment of genetic diseases such as β-thalassemia. ©AlphaMed Press.
Yang, Yuanyuan; Zhang, Xiaobai; Yi, Li; Hou, Zhenzhen; Chen, Jiayu; Kou, Xiaochen; Zhao, Yanhong; Wang, Hong; Sun, Xiao-Fang; Jiang, Cizhong
2016-01-01
Conventional primed human embryonic stem cells and induced pluripotent stem cells (iPSCs) exhibit molecular and biological characteristics distinct from pluripotent stem cells in the naïve state. Although naïve pluripotent stem cells show much higher levels of self-renewal ability and multidifferentiation capacity, it is unknown whether naïve iPSCs can be generated directly from patient somatic cells and will be superior to primed iPSCs. In the present study, we used an established 5i/L/FA system to directly reprogram fibroblasts of a patient with β-thalassemia into transgene-free naïve iPSCs with molecular signatures of ground-state pluripotency. Furthermore, these naïve iPSCs can efficiently produce cross-species chimeras. Importantly, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease genome editing system, these naïve iPSCs exhibit significantly improved gene-correction efficiencies compared with the corresponding primed iPSCs. Furthermore, human naïve iPSCs could be directly generated from noninvasively collected urinary cells, which are easily acquired and thus represent an excellent cell resource for further clinical trials. Therefore, our findings demonstrate the feasibility and superiority of using patient-specific iPSCs in the naïve state for disease modeling, gene editing, and future clinical therapy. Significance In the present study, transgene-free naïve induced pluripotent stem cells (iPSCs) directly converted from the fibroblasts of a patient with β-thalassemia in a defined culture system were generated. These naïve iPSCs, which show ground-state pluripotency, exhibited significantly improved single-cell cloning ability, recovery capacity, and gene-targeting efficiency compared with conventional primed iPSCs. These results provide an improved strategy for personalized treatment of genetic diseases such as β-thalassemia. PMID:26676643
Bartunek, Jozef; Terzic, Andre; Davison, Beth A; Filippatos, Gerasimos S; Radovanovic, Slavica; Beleslin, Branko; Merkely, Bela; Musialek, Piotr; Wojakowski, Wojciech; Andreka, Peter; Horvath, Ivan G; Katz, Amos; Dolatabadi, Dariouch; El Nakadi, Badih; Arandjelovic, Aleksandra; Edes, Istvan; Seferovic, Petar M; Obradovic, Slobodan; Vanderheyden, Marc; Jagic, Nikola; Petrov, Ivo; Atar, Shaul; Halabi, Majdi; Gelev, Valeri L; Shochat, Michael K; Kasprzak, Jaroslaw D; Sanz-Ruiz, Ricardo; Heyndrickx, Guy R; Nyolczas, Noémi; Legrand, Victor; Guédès, Antoine; Heyse, Alex; Moccetti, Tiziano; Fernandez-Aviles, Francisco; Jimenez-Quevedo, Pilar; Bayes-Genis, Antoni; Hernandez-Garcia, Jose Maria; Ribichini, Flavio; Gruchala, Marcin; Waldman, Scott A; Teerlink, John R; Gersh, Bernard J; Povsic, Thomas J; Henry, Timothy D; Metra, Marco; Hajjar, Roger J; Tendera, Michal; Behfar, Atta; Alexandre, Bertrand; Seron, Aymeric; Stough, Wendy Gattis; Sherman, Warren; Cotter, Gad; Wijns, William
2017-03-01
Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort. This multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischaemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein-Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann-Whitney estimator 0.54, 95% confidence interval [CI] 0.47-0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200-370 mL (60% of patients) (Mann-Whitney estimator 0.61, 95% CI 0.52-0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death. The primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Bartunek, Jozef; Terzic, Andre; Davison, Beth A.; Filippatos, Gerasimos S.; Radovanovic, Slavica; Beleslin, Branko; Merkely, Bela; Musialek, Piotr; Wojakowski, Wojciech; Andreka, Peter; Horvath, Ivan G.; Katz, Amos; Dolatabadi, Dariouch; El Nakadi, Badih; Arandjelovic, Aleksandra; Edes, Istvan; Seferovic, Petar M.; Obradovic, Slobodan; Vanderheyden, Marc; Jagic, Nikola; Petrov, Ivo; Atar, Shaul; Halabi, Majdi; Gelev, Valeri L.; Shochat, Michael K.; Kasprzak, Jaroslaw D.; Sanz-Ruiz, Ricardo; Heyndrickx, Guy R.; Nyolczas, Noémi; Legrand, Victor; Guédès, Antoine; Heyse, Alex; Moccetti, Tiziano; Fernandez-Aviles, Francisco; Jimenez-Quevedo, Pilar; Bayes-Genis, Antoni; Hernandez-Garcia, Jose Maria; Ribichini, Flavio; Gruchala, Marcin; Waldman, Scott A.; Teerlink, John R.; Gersh, Bernard J.; Povsic, Thomas J.; Henry, Timothy D.; Metra, Marco; Hajjar, Roger J.; Tendera, Michal; Behfar, Atta; Alexandre, Bertrand; Seron, Aymeric; Stough, Wendy Gattis; Sherman, Warren; Cotter, Gad; Wijns, William
2017-01-01
Aims Cardiopoietic cells, produced through cardiogenic conditioning of patients’ mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort. Methods and results This multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischaemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein–Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann–Whitney estimator 0.54, 95% confidence interval [CI] 0.47–0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200–370 mL (60% of patients) (Mann–Whitney estimator 0.61, 95% CI 0.52–0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death. Conclusion The primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted. PMID:28025189
Scruggs, Brittni A.; Semon, Julie A.; Zhang, Xiujuan; Zhang, Shijia; Bowles, Annie C.; Pandey, Amitabh C.; Imhof, Kathleen M.P.; Kalueff, Allan V.; Gimble, Jeffrey M.
2013-01-01
There is a significant clinical need for effective therapies for primary progressive multiple sclerosis, which presents later in life (i.e., older than 50 years) and has symptoms that increase in severity without remission. With autologous mesenchymal stem cell therapy now in the early phases of clinical trials for all forms of multiple sclerosis (MS), it is necessary to determine whether autologous stem cells from older donors have therapeutic effectiveness. In this study, the therapeutic efficacy of human adipose-derived mesenchymal stem cells (ASCs) from older donors was directly compared with that of cells from younger donors for disease prevention. Mice were induced with chronic experimental autoimmune encephalomyelitis (EAE) using the myelin oligodendrocyte glycoprotein35–55 peptide and treated before disease onset with ASCs derived from younger (<35 years) or older (>60 years) donors. ASCs from older donors failed to ameliorate the neurodegeneration associated with EAE, and mice treated with older donor cells had increased central nervous system inflammation, demyelination, and splenocyte proliferation in vitro compared with the mice receiving cells from younger donors. Therefore, the results of this study demonstrated that donor age significantly affects the ability of human ASCs to provide neuroprotection, immunomodulation, and/or remyelination in EAE mice. The age-related therapeutic differences corroborate recent findings that biologic aging occurs in stem cells, and the differences are supported by evidence in this study that older ASCs, compared with younger donor cells, secrete less hepatocyte growth factor and other bioactive molecules when stimulated in vitro. These results highlight the need for evaluation of autologous ASCs derived from older patients when used as therapy for MS. PMID:24018793
High-performance imaging of stem cells using single-photon emissions
NASA Astrophysics Data System (ADS)
Wagenaar, Douglas J.; Moats, Rex A.; Hartsough, Neal E.; Meier, Dirk; Hugg, James W.; Yang, Tang; Gazit, Dan; Pelled, Gadi; Patt, Bradley E.
2011-10-01
Radiolabeled cells have been imaged for decades in the field of autoradiography. Recent advances in detector and microelectronics technologies have enabled the new field of "digital autoradiography" which remains limited to ex vivo specimens of thin tissue slices. The 3D field-of-view (FOV) of single cell imaging can be extended to millimeters if the low energy (10-30 keV) photon emissions of radionuclides are used for single-photon nuclear imaging. This new microscope uses a coded aperture foil made of highly attenuating elements such as gold or platinum to form the image as a kind of "lens". The detectors used for single-photon emission microscopy are typically silicon detectors with a pixel pitch less than 60 μm. The goal of this work is to image radiolabeled mesenchymal stem cells in vivo in an animal model of tendon repair processes. Single-photon nuclear imaging is an attractive modality for translational medicine since the labeled cells can be imaged simultaneously with the reparative processes by using the dual-isotope imaging technique. The details our microscope's two-layer gold aperture and the operation of the energy-dispersive, pixellated silicon detector are presented along with the first demonstration of energy discrimination with a 57Co source. Cell labeling techniques have been augmented by genetic engineering with the sodium-iodide symporter, a type of reporter gene imaging method that enables in vivo uptake of free 99mTc or an iodine isotope at a time point days or weeks after the insertion of the genetically modified stem cells into the animal model. This microscopy work in animal research may expand to the imaging of reporter-enabled stem cells simultaneously with the expected biological repair process in human clinical trials of stem cell therapies.
Nagai, Hirokazu; Fukano, Reiji; Sekimizu, Masahiro; Kada, Akiko; M Saito, Akiko; Asada, Ryuta; Mori, Tetsuya
2017-08-01
Currently, a standard therapy has not been established for recurrent or refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. While there are many treatment options, such as hematopoietic stem cell transplantation, patients with resistant disease to conventional chemotherapies have particularly poor prognosis. There is urgent need to develop new drugs because of the lack of a standard therapy and poor prognoses. This phase II trial is designed for evaluating the efficacy and safety of alectinib hydrochloride for patients with recurrent or refractory anaplastic lymphoma kinase -positive anaplastic large cell lymphoma. The primary endpoint is the response rate according to the Revised Response Criteria for Malignant Lymphoma. The secondary endpoints are pharmacokinetics, safety in children, complete response rate, response duration, progression-free survival, event-free survival, overall survival, and adverse events. The results of this trial will be the pivotal data for the drug approval of alectinib hydrochloride for recurrent or refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma.
Arrhythmia in Stem Cell Transplantation
Almeida, Shone O.; Skelton, Rhys J.; Adigopula, Sasikanth; Ardehali, Reza
2015-01-01
Synopsis Stem cell regenerative therapies hold promise for treating diseases across the spectrum of medicine. Recent clinical trials have confirmed the safety of stem cell delivery to the heart with promising but variable results. While significant progress has been made in the preclinical stages, the clinical application of cardiac cell therapy is limited by technical challenges, including inability to isolate a pure population of cardiac-specific progenitors capable of robust engraftment and regeneration, lack of appropriate pre-clinical animal models, uncertainty about the best mode of delivery, paucity of adequate imaging modalities, and lack of knowledge about the fate of transplanted cells. The inability of transplanted cells to structurally and functionally integrate into the host myocardium may pose arrhythmogenic risk to patients. This is in part dependent on the type of cell transplanted, where the expression of gap junctions such as connexin-43 is essential not only for electromechanical integration, but has also been found to be protective against electrical instability post-transplant. Additionally, certain methods of cell delivery, such as intramyocardial injection, carry a higher rate of arrhythmias. Other potential contributors to the arrhythmogenicity of cell transplantation include re-entrant pathways due to heterogeneity in conduction velocities between graft and host as well as graft automaticity. In this paper, we discuss the arrhythmogenic potential of cell delivery to the heart. PMID:26002399
What is the role of biosimilar G-CSF agents in hematopoietic stem cell mobilization at present?
Korkmaz, Serdal; Altuntas, Fevzi
2017-12-01
Mobilization of hematopoietic stem cells, which has largely replaced bone marrow harvesting as a source of hematopoietic stem cells, using recombinant agents such as filgrastim or lenograstim has become a standard procedure in both patients and healthy donors prior to peripheral blood stem cell collection for autologous and allogeneic stem cell transplantation. Published literature data suggest that mobilization with recombinant granulocyte-colony stimulating factor (G-CSF) is safe and mobilization outcomes are satisfactory. In recent years, besides G-CSF originators, biosimilar G-CSF agents have been approved by the regulatory agencies for the same indications. Current data showed that by using the biosimilar G-CSF, similar results regarding safety and efficacy of hematopoietic stem cell mobilization may be achieved compared to the originator G-CSF. Although the issues such as the similarity to a licenced biological medicine, differences in manufacturing processes, the potential to cause immunogenicity, extrapolation and interchangeability of these biosimilar products are still being discussed by the scientific area, however, more experience with these agents now exists in approved endications and there seems to be no reason to expect significant differences between biosimilar G-CSF and originator G-CSF regarding their efficacy and safety in both patients and healthy donors. Also, the significant cost savings of biosimilars in real life setting may enhance the use of these agents in the future. Nonetheless, the collection of long-term follow-up data is mandatory for both patients and healthy donors, and multicentre randomized clinical trials that directly compare biosimilar G-CSF with the originator G-CSF are needed in order to allow the transplant community to make informed decisions regarding the choice of G-CSF. Copyright © 2017 Elsevier Ltd. All rights reserved.
From bench to FDA to bedside: US regulatory trends for new stem cell therapies.
Knoepfler, Paul S
2015-03-01
The phrase "bench-to-bedside" is commonly used to describe the translation of basic discoveries such as those on stem cells to the clinic for therapeutic use in human patients. However, there is a key intermediate step in between the bench and the bedside involving governmental regulatory oversight such as by the Food and Drug Administration (FDA) in the United States (US). Thus, it might be more accurate in most cases to describe the stem cell biological drug development process in this way: from bench to FDA to bedside. The intermediate development and regulatory stage for stem cell-based biological drugs is a multifactorial, continually evolving part of the process of developing a biological drug such as a stem cell-based regenerative medicine product. In some situations, stem cell-related products may not be classified as biological drugs in which case the FDA plays a relatively minor role. However, this middle stage is generally a major element of the process and is often colloquially referred to in an ominous way as "The Valley of Death". This moniker seems appropriate because it is at this point, and in particular in the work that ensues after Phase 1, clinical trials that most drug product development is terminated, often due to lack of funding, diseases being refractory to treatment, or regulatory issues. Not surprisingly, workarounds to deal with or entirely avoid this difficult stage of the process are evolving both inside and outside the domains of official regulatory authorities. In some cases these efforts involve the FDA invoking new mechanisms of accelerating the bench to beside process, but in other cases these new pathways bypass the FDA in part or entirely. Together these rapidly changing stem cell product development and regulatory pathways raise many scientific, ethical, and medical questions. These emerging trends and their potential consequences are reviewed here. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Xiaofang; Lazorchak, Adam S; Song, Li; Li, Enqin; Zhang, Zhenwu; Jiang, Bin; Xu, Ren-He
2016-02-01
Mesenchymal stem/stromal cells (MSCs) have great clinical potential in modulating inflammation and promoting tissue repair. Human embryonic stem cells (hESCs) have recently emerged as a potentially superior cell source for MSCs. However, the generation methods reported so far vary greatly in quality and efficiency. Here, we describe a novel method to rapidly and efficiently produce MSCs from hESCs via a trophoblast-like intermediate stage in approximately 11-16 days. We term these cells "T-MSCs" and show that T-MSCs express a phenotype and differentiation potential minimally required to define MSCs. T-MSCs exhibit potent immunomodulatory activity in vitro as they can remarkably inhibit proliferation of cocultured T and B lymphocytes. Unlike bone marrow MSCs, T-MSCs do not have increased expression of inflammatory mediators in response to IFNγ. Moreover, T-MSCs constitutively express a high level of the immune inhibitory ligand PD-L1 and elicit strong and durable efficacy in two distinct animal models of autoimmune disease, dextran sulfate sodium induced colitis, and experimental autoimmune encephalomyelitis, at doses near those approved for clinical trials. Together, we present a simple and fast derivation method to generate MSCs from hESCs, which possess potent immunomodulatory properties in vitro and in vivo and may serve as a novel and ideal candidate for MSC-based therapies. © 2015 AlphaMed Press.
Protecting retinal ganglion cells
Khatib, T Z; Martin, K R
2017-01-01
Retinal ganglion cell degeneration underlies several conditions which give rise to significant visual compromise, including glaucoma, hereditary optic neuropathies, ischaemic optic neuropathies, and demyelinating disease. In this review, we discuss the emerging strategies for neuroprotection specifically in the context of glaucoma, including pharmacological neuroprotection, mesenchymal stem cells, and gene therapy approaches. We highlight potential pitfalls that need to be considered when developing these strategies and outline future directions, including the prospects for clinical trials. PMID:28085136
Treatment of CMV infection after allogeneic hematopoietic stem cell transplantation.
Maffini, Enrico; Giaccone, Luisa; Festuccia, Moreno; Brunello, Lucia; Busca, Alessandro; Bruno, Benedetto
2016-06-01
Despite a remarkable reduction in the past decades, cytomegalovirus (CMV) disease in allogeneic hematopoietic stem cell transplant (HSCT) recipients remains a feared complication, still associated with significant morbidity and mortality. Today, first line treatment of CMV infection/reactivation is still based on dated antiviral compounds Ganciclovir (GCV), Foscarnet (FOS) and Cidofovir (CDF) with their burdensome weight of side effects. Maribavir (MBV), Letermovir (LMV) and Brincidofovir (BDF) are three new promising anti-CMV drugs without myelosuppressive properties or renal toxic effects that are under investigation in randomized phase II and III trials. Adoptive T-cell therapy (ATCT) in CMV infection possesses a strong rationale, demonstrated by several proof of concept studies; its feasibility is currently under investigation by clinical trials. ATCT from third-party and naïve donors could meet the needs of HSCT recipients of seronegative donors and cord blood grafts. In selected patients such as recipients of T-cell depleted grafts, ATCT, based on CMV-specific host T-cells reconstitution kinetics, would be of value in the prophylactic and/or preemptive CMV treatment. Vaccine-immunotherapy has the difficult task to reduce the incidence of CMV reactivation/infection in highly immunocompromised HSCT patients. Newer notions on CMV biology may represent the base to flush out the Troll of transplantation.
Debeb, Bisrat G; Lacerda, Lara; Xu, Wei; Larson, Richard; Solley, Travis; Atkinson, Rachel; Sulman, Erik P.; Ueno, Naoto T; Krishnamurthy, Savitri; Reuben, James M; Buchholz, Thomas A; Woodward, Wendy A
2015-01-01
Recent studies have shown that differentiated cancer cells can de-differentiate into cancer stem cells (CSCs) although to date no studies have reported whether this transition is influenced by systemic anti-cancer agents. Valproic acid (VA) is a histone deacetylase (HDAC) inhibitor that promotes self renewal and expansion of hematopietic stem cells and facilitates the generation of induced pluripotent stem cells from somatic cells and is currently being investigated in breast cancer clinical trials. We hypothesized that HDAC inhibitors reprogram differentiated cancer cells towards the more resistant stem cell-like state. Two highly aggressive breast cancer cell lines, SUM159 and MDA-231, were FACS-sorted based on ALDH activity and subsequently ALDH-negative and ALDH-positive cells were treated with one of two known HDAC inhibitors, VA or SAHA (suberoylanilide hydroxamic acid). In addition, primary tumor cells from patients with metastatic breast cancer were evaluated for ALDH activity following treatment with HDAC inhibitors. We demonstrate that single cell sorted ALDH- negative cells spontaneously generated ALDH-positive cells in vitro. Treatment of ALDH-negative cells with HDAC inhibitors promoted the expansion of ALDH-positive cells and increased mammosphere forming efficiency. Most importantly, it significantly increased the tumor-initiating capacity of ALDH- negative cells in limiting dilution outgrowth assays. Moreover, while HDAC inhibitors upregulated β-catenin expression and significantly increased WNT reporter activity, a TCF4 dominant negative construct abolished HDAC-inhibitor induced expansion of CSCs. These results demonstrate that HDAC inhibitors promote the expansion of breast CSCs through dedifferentiation and have important clinical implications for the use of HDAC inhibitors in the treatment of cancer. PMID:22961641
Battiwalla, Minoo
2014-01-01
Allogeneic hematopoietic stem cell transplantation (HSCT) is a technologically complicated procedure that represents the only cure for many hematologic malignancies. However, HSCT is often complicated by life-threatening toxicities related to the chemo-radiation conditioning regimen, poor engraftment of donor HSCs, the hyperinflammatory syndrome of graft-versus-host disease (GVHD), infection risks from immunosuppression, and end-organ damage. Bone marrow stromal cells (MSCs), also known as “mesenchymal stromal cells,” not only play a nurturing role in the hematopoietic microenvironment but also can differentiate into other cell types of mesenchymal origin. MSCs are poorly immunogenic, and they can modulate immunological responses through interactions with a wide range of innate and adaptive immune cells to reduce inflammation. They are easily expanded ex vivo and after infusion, home to sites of injury and inflammation to promote tissue repair. Despite promising early trial results in HSCT with significant responses that have translated into survival benefits, there have been significant barriers to successful commercialization as an off-the-shelf therapy. Current efforts with MSCs in the HSCT setting are geared toward determining the factors determining potency, understanding the precise mechanisms of action in human HSCT, knowing their kinetics and fate, optimizing dose and schedule, incorporating biomarkers as response surrogates, addressing concerns about safety, optimizing clinical trial design, and negotiating the uncharted regulatory landscape for licensable cellular therapy. PMID:24410434
Ho, V T; Revta, C; Richardson, P G
2008-02-01
Hepatic veno-occlusive disease (VOD), also known as sinusoidal obstruction syndrome (SOS), remains one of the most serious and common complications after myeloablative hematopoietic stem cell transplantation (HSCT). Clinical diagnosis of hepatic VOD is based on the clinical triad of (1) painful hepatomegaly, (2) hyperbilirubinemia and (3) unexplained fluid retention. While milder cases usually resolve spontaneously, severe VOD is associated with a grim prognosis. Defibrotide (DF), a polydisperse mixture of single-stranded oligonucleotide with antithrombotic and fibrinolytic effects on microvascular endothelium, has emerged as an effective and safe therapy for patients with severe VOD. Multiple studies, including a recent large international multicenter phase II clinical trial, have demonstrated 30-60% complete remission rates with DF, even among patients with severe VOD and multiorgan failure. This article will review our current understanding of hepatic VOD, and update the clinical trial experience with DF and other potential therapies for this feared transplant complication.
Hoggatt, Jonathan; Mohammad, Khalid S; Singh, Pratibha; Pelus, Louis M
2013-10-24
Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for malignant and nonmalignant hematologic diseases and metabolic disorders. Although successful, hematopoietic transplantation can be hindered by inadequate stem cell number or poor engrafting efficiency. To overcome these deficits, we and others have previously reported the HSC-enhancing ability of a short-term exposure of prostaglandin E2 (PGE2); this strategy has now progressed to phase 1 clinical trials in double cord blood transplantation. To further analyze the short- and long-term effects of HSC exposure to PGE2, we followed the repopulation kinetics of PGE2-treated hematopoietic grafts through 5 serial transplantations and compared inherent long-term competitiveness in a HSC head-to-head secondary transplantation model. Treatment with PGE2 did not result in a long-term increase in HSC competitiveness, lineage bias, or enhanced proliferative potential, demonstrating that pulse exposure to PGE2 results in transient increases in HSC homing and engraftment potential.
Adult mesenchymal stem cells and women's health.
Caplan, Arnold I
2015-02-01
Adult mesenchymal stem cells (MSCs) were previously described as multipotent cells that could differentiate into bone, cartilage, muscle, and other mesenchymal tissues. New information suggests that MSCs can be found in every tissue of the body because they function as perivascular cells--pericytes--found outside all blood vessels. When these vessels break or are inflamed, pericytes are detached and form MSCs, which are activated by their local microenvironment of injury. Such MSCs function to secrete powerful immune-modulatory and regenerative agents; more than 450 clinical trials are now ongoing, covering a huge spectrum of clinical conditions. How such activated MSCs affect menstrual cycle, menopause, or osteotrophic cancers has only recently been studied. This article outlines these issues and challenges the scientific and medical community to use this newfound knowledge to uncover new clinical logics and medial solutions for women.
GFORCE-PD still going strong in 2016
Parmar, Malin; Takahashi, Jun; Studer, Lorenz; Barker, Roger A
2017-01-01
In 2014, a new initiative was undertaken by groups working on plans for the transplantation of stem-cell-based derived dopaminergic neurons for treating Parkinson’s disease patients. This GForce-PD group held its annual meeting on 18–19 April 2016 in Chicago at Rush University to discuss their progress and the challenges that the translation of this experimental therapy still faces. Over 2 days, the key issues were discussed around the cell lines that will be used, the differentiation protocols, preclinical testing, GMP-adaptation, and cell manufacturing to allow first in human clinical trials, which are anticipated to start in 2017–2018. GForce-PD members also discussed how they can improve outreach and be of better service to the Parkinson's disease (PD) community and help them to make the best possible decisions when pursuing stem cell treatments.
Fierabracci, Alessandra; Del Fattore, Andrea; Muraca, Marta; Delfino, Domenico Vittorio; Muraca, Maurizio
2016-01-01
Mesenchymal stem cells are multipotent progenitors able to differentiate into osteoblasts, chondrocytes and adipocytes. These cells also exhibit remarkable immune regulatory properties, which stimulated both in vitro and in vivo experimental studies to unravel the underlying mechanisms as well as extensive clinical applications. Here, we describe the effects of MSCs on immune cells and their application in animal models as well as in clinical trials of autoimmune diseases. It should be pointed out that, while the number of clinical applications is increasing steadily, results should be interpreted with caution, in order to avoid rising false expectations. Major issues conditioning clinical application are the heterogeneity of MSCs and their unpredictable behavior following therapeutic administration. However, increasing knowledge on the interaction between exogenous cell and host tissue, as well as some encouraging clinical observations suggest that the therapeutic applications of MSCs will be further expanded on firmer grounds in the near future.
Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering.
Yanamandala, Mounica; Zhu, Wuqiang; Garry, Daniel J; Kamp, Timothy J; Hare, Joshua M; Jun, Ho-Wook; Yoon, Young-Sup; Bursac, Nenad; Prabhu, Sumanth D; Dorn, Gerald W; Bolli, Roberto; Kitsis, Richard N; Zhang, Jianyi
2017-08-08
Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury; however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart's contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Skelton, Rhys J P; Khoja, Suhail; Almeida, Shone; Rapacchi, Stanislas; Han, Fei; Engel, James; Zhao, Peng; Hu, Peng; Stanley, Edouard G; Elefanty, Andrew G; Kwon, Murray; Elliott, David A; Ardehali, Reza
2016-01-01
Given the limited regenerative capacity of the heart, cellular therapy with stem cell-derived cardiac cells could be a potential treatment for patients with heart disease. However, reliable imaging techniques to longitudinally assess engraftment of the transplanted cells are scant. To address this issue, we used ferumoxytol as a labeling agent of human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) to facilitate tracking by magnetic resonance imaging (MRI) in a large animal model. Differentiating hESCs were exposed to ferumoxytol at different time points and varying concentrations. We determined that treatment with ferumoxytol at 300 μg/ml on day 0 of cardiac differentiation offered adequate cell viability and signal intensity for MRI detection without compromising further differentiation into definitive cardiac lineages. Labeled hESC-CPCs were transplanted by open surgical methods into the left ventricular free wall of uninjured pig hearts and imaged both ex vivo and in vivo. Comprehensive T2*-weighted images were obtained immediately after transplantation and 40 days later before termination. The localization and dispersion of labeled cells could be effectively imaged and tracked at days 0 and 40 by MRI. Thus, under the described conditions, ferumoxytol can be used as a long-term, differentiation-neutral cell-labeling agent to track transplanted hESC-CPCs in vivo using MRI. The development of a safe and reproducible in vivo imaging technique to track the fate of transplanted human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) is a necessary step to clinical translation. An iron oxide nanoparticle (ferumoxytol)-based approach was used for cell labeling and subsequent in vivo magnetic resonance imaging monitoring of hESC-CPCs transplanted into uninjured pig hearts. The present results demonstrate the use of ferumoxytol labeling and imaging techniques in tracking the location and dispersion of cell grafts, highlighting its utility in future cardiac stem cell therapy trials. ©AlphaMed Press.
Stem cell treatment for chronic lung diseases.
Tzouvelekis, Argyris; Ntolios, Paschalis; Bouros, Demosthenes
2013-01-01
Chronic lung diseases such as idiopathic pulmonary fibrosis and cystic fibrosis or chronic obstructive pulmonary disease and asthma are leading causes of morbidity and mortality worldwide with a considerable human, societal and financial burden. In view of the current disappointing status of available pharmaceutical agents, there is an urgent need for alternative more effective therapeutic approaches that will not only help to relieve patient symptoms but will also affect the natural course of the respective disease. Regenerative medicine represents a promising option with several fruitful therapeutic applications in patients suffering from chronic lung diseases. Nevertheless, despite relative enthusiasm arising from experimental data, application of stem cell therapy in the clinical setting has been severely hampered by several safety concerns arising from the major lack of knowledge on the fate of exogenously administered stem cells within chronically injured lung as well as the mechanisms regulating the activation of resident progenitor cells. On the other hand, salient data arising from few 'brave' pilot investigations of the safety of stem cell treatment in chronic lung diseases seem promising. The main scope of this review article is to summarize the current state of knowledge regarding the application status of stem cell treatment in chronic lung diseases, address important safety and efficacy issues and present future challenges and perspectives. In this review, we argue in favor of large multicenter clinical trials setting realistic goals to assess treatment efficacy. We propose the use of biomarkers that reflect clinically inconspicuous alterations of the disease molecular phenotype before rigid conclusions can be safely drawn. Copyright © 2013 S. Karger AG, Basel.
Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet.
Strand, Berit L; Coron, Abba E; Skjak-Braek, Gudmund
2017-04-01
Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy. Host reactions toward the biomaterials used in the capsules may be one parameter limiting the long-term function of the graft in humans. The present article briefly discusses important capsule properties such as stability, permeability and biocompatibility, as well as possible strategies to overcome current challenges. Also, recent progress in capsule development as well as the production of insulin-producing cells from human stem cells that gives promising perspectives for the transplantation of encapsulated insulin-producing tissue is briefly discussed. Stem Cells Translational Medicine 2017;6:1053-1058. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
[Related issues in clinical translational application of adipose-derived stem cells].
Liu, Hongwei; Cheng, Biao; Fu, Xiaobing
2012-10-01
To introduce the related issues in the clinical translational application of adipose-derived stem cells (ASCs). The latest papers were extensively reviewed, concerning the issues of ASCs production, management, transportation, use, and safety during clinical application. ASCs, as a new member of adult stem cells family, bring to wide application prospect in the field of regenerative medicine. Over 40 clinical trials using ASCs conducted in 15 countries have been registered on the website (http://www.clinicaltrials.gov) of the National Institutes of Health (NIH), suggesting that ASCs represents a promising approach to future cell-based therapies. In the clinical translational application, the related issues included the quality control standard that management and production should follow, the prevention measures of pathogenic microorganism pollution, the requirements of enzymes and related reagent in separation process, possible effect of donor site, age, and sex in sampling, low temperature storage, product transportation, and safety. ASCs have the advantage of clinical translational application, much attention should be paid to these issues in clinical application to accelerate the clinical translation process.
Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions.
Wang, Juan; Hao, Jie; Bai, Donghui; Gu, Qi; Han, Weifang; Wang, Lei; Tan, Yuanqing; Li, Xia; Xue, Ke; Han, Pencheng; Liu, Zhengxin; Jia, Yundan; Wu, Jun; Liu, Lei; Wang, Liu; Li, Wei; Liu, Zhonghua; Zhou, Qi
2015-11-12
Human induced pluripotent stem cells (hiPSCs) are considered as one of the most promising seed cell sources in regenerative medicine. Now hiPSC-based clinical trials are underway. To ensure clinical safety, cells used in clinical trials or therapies should be generated under GMP conditions, and with Xeno-free culture media to avoid possible side effects like immune rejection that induced by the Xeno reagents. However, up to now there are no reports for hiPSC lines developed completely under GMP conditions using Xeno-free reagents. Clinical-grade human foreskin fibroblast (HFF) cells used as feeder cells and parental cells of the clinical-grade hiPSCs were isolated from human foreskin tissues and cultured in Xeno-free media. Clinical-grade hiPSCs were derived by integration-free Sendai virus-based reprogramming kit in Xeno-free pluriton™ reprogramming medium or X medium. Neural cells and cardiomyocytes differentiation were conducted following a series of spatial and temporal specific signals induction according to the corresponding lineage development signals. Biological safety evaluation of the clinical-grade HFF cells and hiPSCs were conducted following the guidance of the "Pharmacopoeia of the People's Republic of China, Edition 2010, Volume III". We have successfully derived several integration-free clinical-grade hiPSC lines under GMP-controlled conditions and with Xeno-free reagents culture media in line with the current guidance of international and national evaluation criteria. As for the source of hiPSCs and feeder cells, biological safety evaluation of the HFF cells have been strictly reviewed by the National Institutes for Food and Drug Control (NIFDC). The hiPSC lines are pluripotent and have passed the safety evaluation. Moreover, one of the randomly selected hiPSC lines was capable of differentiating into functional neural cells and cardiomyocytes in Xeno-free culture media. The clinical-grade hiPSC lines therefore could be valuable sources for future hiPSC-based clinical trials or therapies and for drug screening.
Cancer stem cell as therapeutic target for melanoma treatment.
Alamodi, Abdulhadi A; Eshaq, Abdulaziz M; Hassan, Sofie-Yasmin; Al Hmada, Youssef; El Jamal, Siraj M; Fothan, Ahmed M; Arain, Omair M; Hassan, Sarah-Lilly; Haikel, Youssef; Megahed, Mosaad; Hassan, Mohamed
2016-12-01
Human malignant melanoma is a highly aggressive skin tumor that is characterized by its extraordinary heterogeneity, propensity for dissemination to distant organs and resistance to cytotoxic agents. Although chemo- and immune-based therapies have been evaluated in clinical trials, most of these therapeutics do not show significant benefit for patients with advanced disease. Treatment failure in melanoma patients is attributed mainly to the development of tumor heterogeneity resulting from the formation of genetically divergent subpopulations. These subpopulations are composed of cancer stem-like cells (CSCs) as a small fraction and non-cancer stem cells that form the majority of the tumor mass. In recent years, CSCs gained more attention and suggested as valuable experimental model system for tumor study. In melanoma, intratumoral heterogeneity, progression and drug resistance result from the unique characteristics of melanoma stem cells (MSCs). These MSCs are characterized by their distinct protein signature and tumor growth-driving pathways, whose activation is mediated by driver mutation-dependent signal. The molecular features of MSCs are either in a causal or consequential relationship to melanoma progression, drug resistance and relapse. Here, we review the current scientific evidence that supports CSC hypothesis and the validity of MSCs-dependent pathways and their key molecules as potential therapeutic target for melanoma treatment.
Stoll, Elizabeth A
2014-01-01
Over recent years, there has been a great deal of interest in the prospects of stem cell-based therapies for the treatment of nervous system disorders. The eagerness of scientists, clinicians, and spin-out companies to develop new therapies led to premature clinical trials in human patients, and now the initial excitement has largely turned to skepticism. Rather than embracing a defeatist attitude or pressing blindly ahead, I argue it is time to evaluate the challenges encountered by regenerative medicine in the central nervous system and the progress that is being made to solve these problems. In the twenty years since the adult brain was discovered to have an endogenous regenerative capacity, much basic research has been done to elucidate mechanisms controlling proliferation and cellular identity; how stem cells may be directed into neuronal lineages; genetic, pharmacological, and behavioral interventions that modulate neurogenic activity; and the exact nature of limitations to regeneration in the adult, aged, diseased and injured CNS. These findings should prove valuable in designing realistic clinical strategies to improve the prospects of stem cell-based therapies. In this review, I discuss how basic research continues to play a critical role in identifying both barriers and potential routes to regenerative therapy in the CNS.
Mini-Review: Limbal Stem Cells Deficiency in Companion Animals: Time to Give Something Back?
Sanchez, Rick F; Daniels, Julie T
2016-04-01
Experimental animals have been used extensively in the goal of developing sight-saving therapies for humans. One example is the development of transplantation of cultured limbal epithelial stem cells (LESC) to restore vision following ocular surface injury or disease. With clinical trials of cultured LESC therapy underway in humans and a potential companion animal population suffering from similar diseases, it is perhaps time to give something back. Comparatively to humans, what is known about the healthy limbus and corneal surface physiology of companion animals is still very little. Blinding corneal diseases in animals such as symblepharon in cats with Feline Herpes Virus-1 infections require a basic understanding of the functional companion animal limbus and corneal stem cells. Our understanding of many other vision threatening conditions such as scarring of the cornea post-inflammation with lymphocytic-plasmacytic infiltrate in dogs (aka chronic superficial keratitis) or pigment proliferation with Pigmentary Keratitis of Pugs would benefit from a better understanding of the animal cornea in health and disease. This is also vital when new therapeutic approaches are considered. This review will explore the current challenges and future research directions that will be required to increase our understanding of corneal diseases in animals and consider the potential development and delivery of cultured stem cell therapy to veterinary ocular surface patients.
Campregher, Paulo Vidal; de Mattos, Vinicius Renan Pinto; Salvino, Marco Aurélio; Santos, Fabio Pires de Souza; Hamerschlak, Nelson
2017-01-01
ABSTRACT Acute myeloid leukemia is a hematopoietic stem cell neoplastic disease associated with high morbidity and mortality. The presence of FLT3 internal tandem duplication mutations leads to high rates of relapse and decreased overall survival. Patients with FLT3 internal tandem duplication are normally treated with hematopoietic stem cell transplantation in first complete remission. Nevertheless, the incidence of post-transplant relapse is considerable in this group of patients, and the management of this clinical condition is challenging. The report describes the outcomes of patients with FLT3 internal tandem duplication positive acute myeloid leukemia who relapsed after allogeneic hematopoietic stem cell transplantation and were treated with the combination of re-induction chemotherapy, donor lymphocyte infusion, sorafenib and azacitidine. Three cases are described and all patients achieved prolonged complete remission with the combined therapy. The combination of induction chemotherapy followed by donor lymphocyte infusion, and the maintenance with azacitidine and sorafenib can be effective approaches in the treatment of post-hematopoietic stem cell transplant and relapsed FLT3 internal tandem duplication positive acute myeloid leukemia patients. This strategy should be further explored in the context of clinical trials. PMID:28746590
Historical Perspective on the Current Renaissance for Hematopoietic Stem Cell Gene Therapy.
Kohn, Donald B
2017-10-01
Gene therapy using hematopoietic stem cells (HSC) has developed over the past 3 decades, with progressive improvements in the efficacy and safety. Autologous transplantation of HSC modified with murine gammaretroviral vectors first showed clinical benefits for patients with several primary immune deficiencies, but some of these patients suffered complications from vector-related genotoxicity. Lentiviral vectors have been used recently for gene addition to HSC and have yielded clinical benefits for primary immune deficiencies, metabolic diseases, and hemoglobinopathies, without vector-related complications. Gene editing using site-specific endonucleases is emerging as a promising technology for gene therapy and is moving into clinical trials. Copyright © 2017 Elsevier Inc. All rights reserved.
Dreger, Peter; Döhner, Hartmut; McClanahan, Fabienne; Busch, Raymonde; Ritgen, Matthias; Greinix, Hildegard; Fink, Anna-Maria; Knauf, Wolfgang; Stadler, Michael; Pfreundschuh, Michael; Dührsen, Ulrich; Brittinger, Günter; Hensel, Manfred; Schetelig, Johannes; Winkler, Dirk; Bühler, Andreas; Kneba, Michael; Schmitz, Norbert; Hallek, Michael; Stilgenbauer, Stephan
2012-05-24
The CLL3 trial was designed to study intensive treatment including autologous stem cell transplantation (autoSCT) as part of first-line therapy in patients with chronic lymphocytic leukemia (CLL). Here, we present the long-term outcome of the trial with particular focus on the impact of genomic risk factors, and we provide a retrospective comparison with patients from the fludarabine-cyclophosphamide-rituximab (FCR) arm of the German CLL Study Group (GCLLSG) CLL8 trial. After a median observation time of 8.7 years (0.3-12.3 years), median progression-free survival (PFS), time to retreatment, and overall survival (OS) of 169 evaluable patients, including 38 patients who did not proceed to autoSCT, was 5.7, 7.3, and 11.3 years, respectively. PFS and OS were significantly reduced in the presence of 17p- and of an unfavorable immunoglobulin heavy variable chain mutational status, but not of 11q-. Five-year nonrelapse mortality was 6.5%. When 110 CLL3 patients were compared with 126 matched patients from the FCR arm of the CLL8 trial, 4-year time to retreatment (75% vs 77%) and OS (86% vs 90%) was similar despite a significant benefit for autoSCT in terms of PFS. In summary, early treatment intensification including autoSCT can provide very effective disease control in poor-risk CLL, although its clinical benefit in the FCR era remains uncertain. The trial has been registered with www.clinicaltrials.gov as NCT00275015.
[Clinical Tests Testing New Therapies for Stargardt Disease].
Kousal, B; Ďuďáková, Ľ; Hlavatá, L; Lišková, P
2016-02-01
To provide information on currently ongoing clinical trials for Stargardt disease. We have searched the clinical trial register (www.clinicaltrials.gov) for the keyword "Stargardt" and list active ongoing studies. There are currently eight registered clinical trials enrolling patients with Stargardt disease; all in phase I or II aiming at four mechanisms of action: inhibition of the production of vitamin A toxic dimers, gene therapy restoring wild type transcription of the ABCA4 gene, neuroprotection preventing retinal cells from oxidative damage, and replacement of the damaged retinal pigment epithelium using stem cell therapy. The basic prerequisite for enrolment in the vast majority of clinical trials is confirmation of the clinical diagnosis by mutational analysis. The wide variety of therapies that are registered as clinical trials for Stargardt disease significantly raises the possibility that effective treatments will be available in the near future for this currently incurable condition and that molecular genetic testing should be increasingly considered. Stargardt disease, clinical trial, ABCA4, mutation.
Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial.
Delgado, Elias; Perez-Basterrechea, Marcos; Suarez-Alvarez, Beatriz; Zhou, Huimin; Revuelta, Eva Martinez; Garcia-Gala, Jose Maria; Perez, Silvia; Alvarez-Viejo, Maria; Menendez, Edelmiro; Lopez-Larrea, Carlos; Tang, Ruifeng; Zhu, Zhenlong; Hu, Wei; Moss, Thomas; Guindi, Edward; Otero, Jesus; Zhao, Yong
2015-12-01
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes a deficit of pancreatic islet β cells. The complexities of overcoming autoimmunity in T1D have contributed to the challenges the research community faces when devising successful treatments with conventional immune therapies. Overcoming autoimmune T cell memory represents one of the key hurdles. In this open-label, phase 1/phase 2 study, Caucasian T1D patients (N = 15) received two treatments with the Stem Cell Educator (SCE) therapy, an approach that uses human multipotent cord blood-derived multipotent stem cells (CB-SCs). SCE therapy involves a closed-loop system that briefly treats the patient's lymphocytes with CB-SCs in vitro and returns the "educated" lymphocytes (but not the CB-SCs) into the patient's blood circulation. This study is registered with ClinicalTrials.gov, NCT01350219. Clinical data demonstrated that SCE therapy was well tolerated in all subjects. The percentage of naïve CD4(+) T cells was significantly increased at 26 weeks and maintained through the final follow-up at 56 weeks. The percentage of CD4(+) central memory T cells (TCM) was markedly and constantly increased at 18 weeks. Both CD4(+) effector memory T cells (TEM) and CD8(+) TEM cells were considerably decreased at 18 weeks and 26 weeks respectively. Additional clinical data demonstrated the modulation of C-C chemokine receptor 7 (CCR7) expressions on naïve T, TCM, and TEM cells. Following two treatments with SCE therapy, islet β-cell function was improved and maintained in individuals with residual β-cell function, but not in those without residual β-cell function. Current clinical data demonstrated the safety and efficacy of SCE therapy in immune modulation. SCE therapy provides lasting reversal of autoimmune memory that could improve islet β-cell function in Caucasian subjects. Obra Social "La Caixa", Instituto de Salud Carlos III, Red de Investigación Renal, European Union FEDER Funds, Principado de Asturias, FICYT, and Hackensack University Medical Center Foundation.
Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial
Delgado, Elias; Perez-Basterrechea, Marcos; Suarez-Alvarez, Beatriz; Zhou, Huimin; Revuelta, Eva Martinez; Garcia-Gala, Jose Maria; Perez, Silvia; Alvarez-Viejo, Maria; Menendez, Edelmiro; Lopez-Larrea, Carlos; Tang, Ruifeng; Zhu, Zhenlong; Hu, Wei; Moss, Thomas; Guindi, Edward; Otero, Jesus; Zhao, Yong
2015-01-01
Background Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes a deficit of pancreatic islet β cells. The complexities of overcoming autoimmunity in T1D have contributed to the challenges the research community faces when devising successful treatments with conventional immune therapies. Overcoming autoimmune T cell memory represents one of the key hurdles. Methods In this open-label, phase 1/phase 2 study, Caucasian T1D patients (N = 15) received two treatments with the Stem Cell Educator (SCE) therapy, an approach that uses human multipotent cord blood-derived multipotent stem cells (CB-SCs). SCE therapy involves a closed-loop system that briefly treats the patient's lymphocytes with CB-SCs in vitro and returns the “educated” lymphocytes (but not the CB-SCs) into the patient's blood circulation. This study is registered with ClinicalTrials.gov, NCT01350219. Findings Clinical data demonstrated that SCE therapy was well tolerated in all subjects. The percentage of naïve CD4+ T cells was significantly increased at 26 weeks and maintained through the final follow-up at 56 weeks. The percentage of CD4+ central memory T cells (TCM) was markedly and constantly increased at 18 weeks. Both CD4+ effector memory T cells (TEM) and CD8+ TEM cells were considerably decreased at 18 weeks and 26 weeks respectively. Additional clinical data demonstrated the modulation of C–C chemokine receptor 7 (CCR7) expressions on naïve T, TCM, and TEM cells. Following two treatments with SCE therapy, islet β-cell function was improved and maintained in individuals with residual β-cell function, but not in those without residual β-cell function. Interpretation Current clinical data demonstrated the safety and efficacy of SCE therapy in immune modulation. SCE therapy provides lasting reversal of autoimmune memory that could improve islet β-cell function in Caucasian subjects. Funding Obra Social “La Caixa”, Instituto de Salud Carlos III, Red de Investigación Renal, European Union FEDER Funds, Principado de Asturias, FICYT, and Hackensack University Medical Center Foundation. PMID:26844283
de Melo-Martín, Inmaculada; Hellmers, Natalie; Henchcliffe, Claire
2015-08-01
First-in-human clinical trials of innovative medical procedures, such as cell transplantation for Parkinson's disease, present a variety of ethical challenges. In an era of rapidly developing stem cell technologies likely to be translated into clinical trials over the next few years, it is critical that ethical concerns be fully considered. One important undertaking is ensuring that research participants give free and truly informed consent. This will necessitate adequate disclosure of risks and benefits at a time when these are incompletely defined; ensuring understanding of a complex research protocol when there is significant possibility of therapeutic misconception; and careful determination of capacity for informed consent in patients with a neurodegenerative disorder that is known to affect cognition. Here we call attention to the ethical issues that researchers conducting these types of trials will face when trying to obtain a genuinely informed consent, and we suggest possible solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stroke and the Cell Therapy Saga: Towards a Safe, Swift and Efficient Utilization of cells.
Kubis, Nathalie
2017-01-01
The first clinical trials of cell therapy in stroke were first published in the 2000s and consisted of neural stems cells transplanted via the intracerebral pathway. Since mesenchymal stem cells showed similar capacities to differentiate into neural cells and allowed autologous cell transplantation, they were then preferentially studied, including diabetes and hypertension. More recently, bone marrow derived mononuclear cells were successfully transplanted in stroke with no need of culture processing, and simple collection by density gradient centrifugation rendering them immediately ready for use. They improve post-stroke neurological deficit in rodents and clinical trials have shown the feasibility of intra-arterial or intravenous administration. The underlying mechanisms are not yet understood. We investigated the therapeutic potential of peripheral blood derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+). We showed that intravenously injected PB-MNC+ after cerebral ischemia reduced infarct volume at day 3, increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglial cell density, and upregulated TGF-β expression. At D14, microvessel density was increased and functional recovery enhanced, whereas plasma levels of BDNF were increased in treated mice. Ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation and angiogenesis, as confirmed by adhesion and Matrigel assays. PB-MNC+ transplantation in stroke is a promising approach and should be investigated for the development of rapid, non-invasive bedside cell therapy strategies in stroke.(Presented at the 1944th Meeting, July 19, 2017).
Kim, Eunhye; Hwang, Seon-Ung; Yoo, Hyunju; Yoon, Junchul David; Jeon, Yubyeol; Kim, Hyunggee; Jeung, Eui-Bae; Lee, Chang-Kyu; Hyun, Sang-Hwan
2016-03-01
The establishment of porcine embryonic stem cells (ESCs) would have great impact in biomedical studies and preclinical trials through their use in genetic engineering. However, authentic porcine ESCs have not been established until now. In this study, a total of seven putative ESC lines were derived from porcine embryos of various origins, including in vitro fertilization, parthenogenetic activation, and, in particular, induced pluripotent stem (iPS) nuclear transfer (NT) from a donor cell with induced pluripotent stem cells (iPSCs). To characterize these cell lines, several assays including an assessment of intensive alkaline phosphatase activity, karyotyping, embryoid body formation, expression analysis of the pluripotency-associated markers, and the three germ layerassociated markers were performed. Based on quantitative polymerase chain reaction, the expression levels of REX1 and FGFR2 in iPS-NT lines were higher than those of cells of other origins. Additionally, only iPS-NT lines showed multiple aberrant patterns of nuclear foci elucidated by immunofluorescence staining of H3K27me3 as a marker of the state of X chromosome inactivation and a less mature form of mitochondria like naive ESCs, by transmission electron microscopy. Together, these data suggested that established putative porcine ESC lines generally exhibited a primed pluripotent state, like human ESCs. However, iPS-NT lines have especially unique characteristics distinct from other origins because they have more epigenetic instability and naive-like mitochondrial morphology than other putative ESC lines. This is the first study to establish and characterize the iPSC-derived putative ESC lines and compare them with other lines derived from different origins in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.
Towards Standardized Stem Cell Therapy in Type 2 Diabetes Mellitus: A Systematic Review.
Pawitan, Jeanne Adiwinata; Yang, Zheng; Wu, Ying Nan; Leed, Eng Hin
2018-05-02
To compile and analyze the published studies on cell therapy for type 2 diabetes mellitus (T2DM) to obtain a better insight into management of T2DM that involved stem cell therapy. We searched all published studies in Pubmed/Medline, and Cochrane library, using keywords: 'stem cell' AND 'therapy' AND 'diabetes type 2'. original articles on the use of stem cells in humans with T2DM. articles in the non-English literature, studies on T2DM complications that did not assess both adverse events and any of the common diabetes study outcomes. type of study, number of cases, and all data that were related to outcome and adverse events. Data were analyzed descriptively to conclude the possible cause of adverse reactions, and which protocols gave a satisfactory outcome. We collected 26 original articles, out of which 17 studies did not have controls and were classified as case reports, while there were 8 studies that were controlled clinical trials. Most studies used autologous bone marrow mononuclear cells (BM-MNCs) or autologous or allogeneic mesenchymal stem cells (MSCs) from various sources. Adverse events were mild and mostly intervention related. Efficacy of autologous BM-MNCs that were given via interventional route was comparable to Wharton jelly or umbilical cord MSCs that were given via intravenous (IV), Intra muscular (IM), or subcutaneous (SC) route. Further controlled studies that compare BM-MNCs to BM-MSCs or WJ-MSCs or UCSCs are recommended to prove their comparable efficacy. In addition, studies that compare various routes of administration (IV, IM or SC) versus the more invasive interventional routes are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Preclinical studies for induced pluripotent stem cell-based therapeutics.
Harding, John; Mirochnitchenko, Oleg
2014-02-21
Induced pluripotent stem cells (iPSCs) and their differentiated derivatives can potentially be applied to cell-based therapy for human diseases. The properties of iPSCs are being studied intensively both to understand the basic biology of pluripotency and cellular differentiation and to solve problems associated with therapeutic applications. Examples of specific preclinical applications summarized briefly in this minireview include the use of iPSCs to treat diseases of the liver, nervous system, eye, and heart and metabolic conditions such as diabetes. Early stage studies illustrate the potential of iPSC-derived cells and have identified several challenges that must be addressed before moving to clinical trials. These include rigorous quality control and efficient production of required cell populations, improvement of cell survival and engraftment, and development of technologies to monitor transplanted cell behavior for extended periods of time. Problems related to immune rejection, genetic instability, and tumorigenicity must be solved. Testing the efficacy of iPSC-based therapies requires further improvement of animal models precisely recapitulating human disease conditions.
Detante, O; Jaillard, A; Moisan, A; Barbieux, M; Favre, I M; Garambois, K; Hommel, M; Remy, C
2014-12-01
Stroke is the second leading cause of death worldwide and the most common cause of severe disability. Neuroprotection and repair mechanisms supporting endogenous brain plasticity are often insufficient to allow complete recovery. While numerous neuroprotective drugs trials have failed to demonstrate benefits for patients, they have provided interesting translational research lessons related to neurorestorative therapy mechanisms in stroke. Stroke damage is not limited to neurons but involve all brain cell type including the extracellular matrix in a "glio-neurovascular niche". Targeting a range of host brain cells, biotherapies such as growth factors and therapeutic cells, currently hold great promise as a regenerative medical strategy for stroke. These techniques can promote both neuroprotection and delayed neural repair through neuro-synaptogenesis, angiogenesis, oligodendrogliogenesis, axonal sprouting and immunomodulatory effects. Their complex mechanisms of action are interdependent and vary according to the particular growth factor or grafted cell type. For example, while "peripheral" stem or stromal cells can provide paracrine trophic support, neural stem/progenitor cells (NSC) or mature neurons can act as more direct neural replacements. With a wide therapeutic time window after stroke, biotherapies could be used to treat many patients. However, guidelines for selecting the optimal time window, and the best delivery routes and doses are still debated and the answers may depend on the chosen product and its expected mechanism including early neuroprotection, delayed neural repair, trophic systemic transient effects or graft survival and integration. Currently, the great variety of growth factors, cell sources and cell therapy products form a therapeutic arsenal that is available for stroke treatment. Their effective clinical use will require prior careful considerations regarding safety (e.g. tumorgenicity, immunogenicity), potential efficacy, cell characterization, delivery route and in vivo biodistribution. Bone marrow-derived cell populations such as mesenchymal stromal/stem cells (MSC) or mononuclear cells (MNC), umbilical cord stem cells and NSC are most investigated notably in clinical trials. Finally, we discuss perspectives concerning potential novel biotherapies such as combinatorial approaches (growth factor combined with cell therapy, in vitro optimization of cell products, or co-transplantation) and the development of biomaterials, which could be used as injectable hydrogel scaffold matrices that could protect a cell graft or selectively deliver drugs and growth factors into the post-stroke cavity at chronic stages. Considering the remaining questions about the best procedure and the safety cautions, we can hope that future translational research about biotherapies will bring more efficient treatments that will decrease post-stroke disability for many patients. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Old and new challenges in Parkinson's disease therapeutics.
Pires, Ana O; Teixeira, F G; Mendes-Pinheiro, B; Serra, Sofia C; Sousa, Nuno; Salgado, António J
2017-09-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and/or loss od neuronal projections, in several dopaminergic networks. Current treatments for idiopathic PD rely mainly on the use of pharmacologic agents to improve motor symptomatology of PD patients. Nevertheless, so far PD remains an incurable disease. Therefore, it is of utmost importance to establish new therapeutic strategies for PD treatment. Over the last 20 years, several molecular, gene and cell/stem-cell therapeutic approaches have been developed with the aim of counteracting or retarding PD progression. The scope of this review is to provide an overview of PD related therapies and major breakthroughs achieved within this field. In order to do so, this review will start by focusing on PD characterization and current treatment options covering thereafter molecular, gene and cell/stem cell-based therapies that are currently being studied in animal models of PD or have recently been tested in clinical trials. Among stem cell-based therapies, those using MSCs as possible disease modifying agents for PD therapy and, specifically, the MSCs secretome contribution to meet the clinical challenge of counteracting or retarding PD progression, will be more deeply explored. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monsel, Antoine; Zhu, Ying-gang; Gudapati, Varun; Lim, Hyungsun; Lee, Jae W.
2017-01-01
Introduction Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. Areas covered The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. Expert opinion While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification. PMID:27011289
Kleitman, Naomi; Rao, Mahendra S; Owens, David F
2013-07-01
Recently, the U.S. Food and Drug Administration (FDA), the U.S. National Institutes of Health, and the stem cell research community have collaborated on a series of workshops that address moving pluripotent stem cell therapies into the clinic. The first two workshops in the series focused on preclinical science, and a third, future workshop will focus on clinical trials. This summary addresses major points from both of the recent preclinically focused meetings. When entering into a therapeutics developmental program based on pluripotent cells, investigators must make decisions at the very early stages that will have major ramifications during later phases of development. Presentations and discussions from both invited participants and FDA staff described the need to characterize and document the quality, variability, and suitability of the cells and commercial reagents used at every translational stage. This requires consideration of future regulatory requirements, ranging from donor eligibility of the original source material to the late-stage manufacturing protocols. Federal, industrial, and academic participants agreed that planning backward is the best way to anticipate what evidence will be needed to justify human testing of novel therapeutics and to eliminate wasted efforts.
Li, Yang; Cang, Ming; Lee, Andrew Stephen; Zhang, Kehua; Liu, Dongjun
2011-01-01
Animal embryonic stem cells (ESCs) provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs), have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB) and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR) with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes. PMID:21253598