Sample records for stem cell viability

  1. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (SOT)

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...

  2. Comparative evaluation of the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin scaffold.

    PubMed

    Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer

    2017-01-01

    The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. A total of 15 systemically healthy individuals between the age group of 15-25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7 th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7 th day. The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant ( P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant ( P > 0.05) when compared to the cells cultured with culture media. The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells.

  3. Long term cryopreservation in 5% DMSO maintains unchanged CD34(+) cells viability and allows satisfactory hematological engraftment after peripheral blood stem cell transplantation.

    PubMed

    Abbruzzese, L; Agostini, F; Durante, C; Toffola, R T; Rupolo, M; Rossi, F M; Lleshi, A; Zanolin, S; Michieli, M; Mazzucato, M

    2013-07-01

    Peripheral blood stem cell cryopreservation is associated with cell damage and decreased viability. We evaluated the impact of up to 10 years of cryopreservation (5% DMSO) on viability of CD34(+) cells utilizing graft samples of consecutive patients (2002-2012) with different malignancies who underwent stem cell collection and transplantation. Viability of CD34(+) cells from oncohaematological patients measured after 5 weeks (97·2 ± 0·6%) or after 9-10 years of cryopreservation (95·9 ± 0·5%) was unaffected. Haemoglobin, granulocyte and platelet recovery after transplantation of long-term cryopreserved grafts occurred within 8-13 days. CD34(+) stem cells can be safely stored up to 9-10 years, without affecting cell viability and clinical effectiveness. © 2013 International Society of Blood Transfusion.

  4. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  5. Comparative evaluation of the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin scaffold

    PubMed Central

    Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer

    2017-01-01

    Background: The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. Materials and Methods: A total of 15 systemically healthy individuals between the age group of 15–25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7th day. Results: The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant (P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant (P > 0.05) when compared to the cells cultured with culture media. Conclusion: The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells. PMID:29386795

  6. Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age.

    PubMed

    Devitt, Sean M; Carter, Cynthia M; Dierov, Raia; Weiss, Scott; Gersch, Robert P; Percec, Ivona

    2015-01-01

    We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2-1159 days) from patients of varying ages (26-62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.

  7. Evaluation of the maintenance of stemness, viability, and differentiation potential of gingiva-derived stem-cell spheroids.

    PubMed

    Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2017-05-01

    Gingiva-derived stem cells have been applied for tissue-engineering purposes and may be considered a favorable source of mesenchymal stem cells as harvesting stem cells from the mandible or maxilla may be performed with ease under local anesthesia. The present study was performed to fabricate stem-cell spheroids using concave microwells and to evaluate the maintenance of stemness, viability, and differentiation potential. Gingiva-derived stem cells were isolated, and the stem cells of 4×10 5 (group A) or 8×10 5 (group B) cells were seeded into polydimethylsiloxane-based, concave micromolds with 600 µm diameters. The morphology of the microspheres and the change of the diameters of the spheroids were evaluated. The viability of spheroids was qualitatively analyzed via Live/Dead kit assay. A cell viability analysis was performed on days 1, 3, 6, and 12 with Cell Counting Kit-8. The maintenance of stemness was evaluated with immunocytochemical staining using SSEA-4, TRA-1-60(R) (positive markers), and SSEA-1 (negative marker). Osteogenic, adipogenic, and chondrogenic differentiation potential was evaluated by incubating spheroids in osteogenic, adipogenic and chondrogenic induction medium, respectively. The gingiva-derived stem cells formed spheroids in the concave microwells. The diameters of the spheroids were larger in group A than in group B. The majority of cells in the spheroids emitted green fluorescence, indicating the presence of live cells at day 6. At day 12, the majority of cells in the spheroids emitted green fluorescence, and a small portion of red fluorescence was also noted, which indicated the presence of dead cells. The spheroids were positive for the stem-cell markers SSEA-4 and TRA-1-60(R) and were negative for SSEA-1, suggesting that these spheroids primarily contained undifferentiated human stem cells. Osteogenic, adipogenic, and chondrogenic differentiation was more evident with an increase of incubation time: Mineralized extracellular deposits were observed following Alizarin Red S staining at days 14 and 21; oil globules were increased at day 18 when compared with day 6; and Alcian blue staining was more evident at day 18 when compared with day 6. Within the limits of this study, stem-cell spheroids from gingival cells maintained the stemness, viability, and differentiation potential during the experimental periods. This method may be applied for a promising strategy for stem-cell therapy.

  8. Manganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia-Reperfusion Model.

    PubMed

    Dash, Rajesh; Kim, Paul J; Matsuura, Yuka; Ikeno, Fumiaki; Metzler, Scott; Huang, Ngan F; Lyons, Jennifer K; Nguyen, Patricia K; Ge, Xiaohu; Foo, Cheryl Wong Po; McConnell, Michael V; Wu, Joseph C; Yeung, Alan C; Harnish, Phillip; Yang, Phillip C

    2015-07-27

    The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging [MEMRI]), myocardial scar (delayed gadolinium enhancement MRI), and transplanted stem cell engraftment (positron emission tomography reporter gene) in the injured porcine hearts. Twelve adult swine underwent ischemia-reperfusion injury. Digital subtraction of MEMRI-negative myocardium (intrainfarct region) from delayed gadolinium enhancement MRI-positive myocardium (PIR and intrainfarct region) clearly delineated the PIR in which the MEMRI-positive signal reflected PIR viability. Human amniotic mesenchymal stem cells (hAMSCs) represent a unique population of immunomodulatory mesodermal stem cells that restored the murine PIR. Immediately following hAMSC delivery, MEMRI demonstrated an increased PIR viability signal compared with control. Direct PIR viability remained higher in hAMSC-treated hearts for >6 weeks. Increased PIR viability correlated with improved regional contractility, left ventricular ejection fraction, infarct size, and hAMSC engraftment, as confirmed by immunocytochemistry. Increased MEMRI and positron emission tomography reporter gene signal in the intrainfarct region and the PIR correlated with sustained functional augmentation (global and regional) within the hAMSC group (mean change, left ventricular ejection fraction: hAMSC 85±60%, control 8±10%; P<0.05) and reduced chamber dilatation (left ventricular end-diastole volume increase: hAMSC 24±8%, control 110±30%; P<0.05). The positron emission tomography reporter gene signal of hAMSC engraftment correlates with the improved MEMRI signal in the PIR. The increased MEMRI signal represents PIR viability and the restorative potential of the injured heart. This in vivo multimodality imaging platform represents a novel, real-time method of tracking PIR viability and stem cell engraftment while providing a mechanistic explanation of the therapeutic efficacy of cardiovascular stem cells. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B

    PubMed Central

    Shen, Wei-Bin; Plachez, Celine; Chan, Amanda; Yarnell, Deborah; Puche, Adam C; Fishman, Paul S; Yarowsky, Paul

    2013-01-01

    Ultrasmall superparamagnetic iron-oxide particles (USPIOs) loaded into stem cells have been suggested as a way to track stem cell transplantation with magnetic resonance imaging, but the labeling, and post-labeling proliferation, viability, differentiation, and retention of USPIOs within the stem cells have yet to be determined for each type of stem cell and for each type of USPIO. Molday ION Rhodamine B™ (BioPAL, Worcester, MA, USA) (MIRB) has been shown to be a USPIO labeling agent for mesenchymal stem cells, glial progenitor cells, and stem cell lines. In this study, we have evaluated MIRB labeling in human neuroprogenitor cells and found that human neuroprogenitor cells are effectively labeled with MIRB without use of transfection reagents. Viability, proliferation, and differentiation properties are unchanged between MIRB-labeled neuroprogenitors cells and unlabeled cells. Moreover, MIRB-labeled human neuroprogenitor cells can be frozen, thawed, and replated without loss of MIRB or even without loss of their intrinsic biology. Overall, those results show that MIRB has advantageous properties that can be used for cell-based therapy. PMID:24348036

  10. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    NASA Astrophysics Data System (ADS)

    de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.

    2015-04-01

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.

  11. Evaluation of Melatonin Effect on Human Breast Cancer Stem Cells Using a Threedimensional Growth Method of Mammospheres.

    PubMed

    Lopes, Juliana Ramos; da Silva Kavagutti, Mayume; de Medeiros, Felipe Arthur Faustino; de Campos Zuccari, Debora Aparecida Pires

    2017-01-01

    The high rates of women&#039;s death from breast cancer occur due to acquired resistance by patients to certain treatments, enabling the recurrence and/or tumor growth, invasion and metastasis. It has been demonstrated that the presence of cancer stem cells in human tumors, as responsible for recurrence and resistance to therapy. Studies have identified OCT4 as responsible for self-renewal and maintenance of pluripotency of stem cells. Thus, it is interesting to study potential drugs that target this specific population in breast cancer. Melatonin, appears to have oncostatic effects on cancer cells, however, little is known about its therapeutic effect on cancer stem cells. Evaluate the viability and the expression of OCT4 in breast cancer stem cells, MCF-7 and MDA-MB- 231, after melatonin treatment. The cells were grown in a 3-dimensional model of mammospheres, representing the breast cancer stem cell population and treated or not with melatonin. The cell viability of mammospheres were evaluated by MTT assay and the OCT4 expression, a cancer stem cells marker, was verified by immunocitochemistry. Our results demonstrated that the melatonin treatment decreased the cell viability of MCF-7 and MDAMB- 231 mammospheres. Furthermore, it was observed that in both cell lines, the expression of OCT4 was decreased in melatonin-treated cells compared to the control group. This fact suggests that melatonin is effective against breast cancer stem cells inhibiting the cell viability via OCT 4. Based on that, we believe that melatonin has a high potential to be used as an alternative treatment for breast cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Comparisons of human amniotic mesenchymal stem cell viability in FDA-approved collagen-based scaffolds: Implications for engineered diaphragmatic replacement.

    PubMed

    Shieh, Hester F; Graham, Christopher D; Brazzo, Joseph A; Zurakowski, David; Fauza, Dario O

    2017-06-01

    We sought to examine amniotic fluid mesenchymal stem cell (afMSC) viability within two FDA-approved collagen-based scaffolds, as a prerequisite to clinical translation of afMSC-based engineered diaphragmatic repair. Human afMSCs were seeded in a human-derived collagen hydrogel and in a bovine-derived collagen sheet at 3 matching densities. Cell viability was analyzed at 1, 3, and 5days using an ATP-based 3D bioluminescence assay. Statistical comparisons were by ANOVA (P<0.05). There was a highly significant 3-way interaction between scaffold type, seeding density, and time in 3D culture as determinants of cell viability, clearly favoring the human hydrogel (P<0.001). In both scaffolds, cell viability was highest at the highest seeding density of 150,000 cells/mL. Time in 3D culture impacted cell viability at the optimal seeding density in the human hydrogel, with the highest levels on days 1 (P<0.001) and 5 (P=0.05) with no significant effect in the bovine sheet (P=0.39-0.96). Among clinically-approved cell delivery vehicles, mesenchymal stem cell viability is significantly enhanced in a collagen hydrogel when compared with a collagen sheet. Cell viability can be further optimized by seeding density and time in 3D culture. These data further support the regulatory viability of clinical trials of engineered diaphragmatic repair. N/A (animal and laboratory study). Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  14. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide.

    PubMed

    Sun, Wei; Incitti, Tania; Migliaresi, Claudio; Quattrone, Alessandro; Casarosa, Simona; Motta, Antonella

    2017-05-01

    Three-dimensional (3D) porous scaffolds combined with therapeutic stem cells play vital roles in tissue engineering. The adult brain has very limited regeneration ability after injuries such as trauma and stroke. In this study, injectable 3D silk fibroin-based hydrogel scaffolds with encapsulated neural stem cells were developed, aiming at supporting brain regeneration. To improve the function of the hydrogel towards neural stem cells, silk fibroin was modified by an IKVAV peptide through covalent binding. Both unmodified and modified silk fibroin hydrogels were obtained, through sonication, with mechanical stiffness comparable to that of brain tissue. Human neural stem cells were encapsulated in both hydrogels and the effects of IKVAV peptide conjugation on cell viability and neural differentiation were assessed. The silk fibroin hydrogel modified by IKVAV peptide showed increased cell viability and an enhanced neuronal differentiation capability, which contributed to understanding the effects of IKVAV peptide on the behaviour of neural stem cells. For these reasons, IKVAV-modified silk fibroin is a promising material for brain tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  16. Effect of berberine on the viability of adipose tissue-derived mesenchymal stem cells in nutrients deficient condition.

    PubMed

    Ghorbani, Ahmad; Baradaran Rahimi, Vafa; Sadeghnia, Hamid Reza; Hosseini, Azar

    2018-03-01

    This study was designed to examine whether berberine protects rat adipose tissue-derived stem cells (ASCs) against glucose and serum deprivation (GSD)-induced cell death. ASCs were cultured for 24 h in GSD condition in the presence of berberine and then cell viability, apoptosis and generation of reactive oxygen species (ROS) were evaluated. The GSD condition significantly decreased ASCs viability and increased ROS generation and apoptosis. Incubation with 0.75-3 μM berberine partially increased cell viability and decreased ROS generation and apoptosis in GSD condition. In conclusion, berberine partially protects ASCs in nutrients deficient condition and may help ASCs to preserve their survival during cell therapy of ischemia.

  17. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells.

    PubMed

    Bhuptani, Ronak S; Patravale, Vandana B

    2016-12-30

    The collective power of stem cells due to their evident advantages is incessantly investigated in regenerative medicine to be the next generation exceptional remedy for tissue regeneration and treatment of diseases. Stem cells are highly sensitive and a 3D culture environment is a requisite for its successful transplantation and integration with tissues. Porous microscaffolds can create a 3D microenvironment for growing stems cells, controlling their fate both in vitro and in vivo. In the present study, interconnected porous PLGA microscaffolds were fabricated, characterized and employed to propagate human dental pulp mesenchymal stem cells (DPMSCs) in vitro. The porous topography was investigated by scanning electron microscopy and the pore size was controlled by fabrication conditions such as the concentration of porogen. DPMSCs were cultured on microscaffolds and were evaluated for their morphology, attachment, proliferation, cell viability via MTT and molecular expression (RT-PCR). DPMSCs were adequately proliferated and adhered over the microscaffolds forming a 3D cell-microscaffold construct. The average number of DPMSCs grown on PLGA microscaffolds was significantly higher than monolayer 2D culture during 5th and 7th day. Moreover, cell viability and gene expression results together corroborated that microscaffolds maintained the viability, stemness and plasticity of the cultured dental pulp mesenchymal stem cells. The novel porous microscaffold developed acts as promising scaffold for 3D culture and survival and transplantation of stem cells for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.

    PubMed

    Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M

    2017-06-01

    This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.

  19. Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions

    PubMed Central

    Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji

    2016-01-01

    Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation. PMID:27966584

  20. Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions.

    PubMed

    Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji

    2016-12-14

    Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation.

  1. [Impact of cryopreservation duration of 605 units umbilical cord blood on quality of hematopoietic stem cell and outcome of clinical transplantation].

    PubMed

    Zhang, Yi; Zhu, Hua; Jin, Huanying; Wang, Yinting; Shao, Xiayan; Kong, Jingsi; Huang, Wenhao; Hong, Yan; Li, Chunli; Gao, Feng; Chen, Liang; Wang, Feng; Lu, Yao

    2015-01-01

    To investigate the impact of cryopreservation duration of umbilical cord blood (UCB) on quality of hematopoietic stem cell and outcome of clinical transplantation. 605 units of UCB which had been used in clinical transplantation were previously cryopreserved for 820 (88-2651) days in average. UCB was detected for total nucleated cell count, CD34+ cells count, cell recovery rate, cell viability and CFU-GM after thawing. No statistical correlation was found between cryopreservation duration and cell recovery rate, cell viability. CFU-GM decreased along with the extension of cryopreservation duration (P=0.011), ranging between 109.6 and 105.7/1 × 10⁵. There was no significant difference on hematopoietic reconstitution time, graft failure, acute GVHD and overall survival among groups with different cryopreservation duration. Cryopreservation duration has no significant effect on cell recovery rate, cell viability and clinical transplantation outcome. Extension of cryopreservation duration may reduce CFU-GM of stem cells with fluctaion still in normal range. UCB could maintain cell viability and function to achieve satisfactory clinical transplantation outcome even when thawed after 3 to 7 years' cryopreservation.

  2. Shock Wave-Stimulated Periosteum for Cartilage Repair

    DTIC Science & Technology

    2013-12-01

    were added to the Gtn-HPA prior to the gelation 6 process, at a cell density of 1×105 cells/ml. In the control groups, cells received no treatment...Mesenchymal Stem Cell Viability Viability test was performed 24 hours post- gelation using the Live/Dead assay. Viability/cytotoxicity kit was used (Molecular

  3. Influence of Mesenchymal Stem Cells Conditioned Media on Proliferation of Urinary Tract Cancer Cell Lines and Their Sensitivity to Ciprofloxacin.

    PubMed

    Maj, Malgorzata; Bajek, Anna; Nalejska, Ewelina; Porowinska, Dorota; Kloskowski, Tomasz; Gackowska, Lidia; Drewa, Tomasz

    2017-06-01

    Mesenchymal stem cells (MSCs) are known to interact with cancer cells through direct cell-to-cell contact and secretion of paracrine factors, although their exact influence on tumor progression in vivo remains unclear. To better understand how fetal and adult stem cells affect tumors, we analyzed viability of human renal (786-0) and bladder (T24) carcinoma cell lines cultured in conditioned media harvested from amniotic fluid-derived stem cells (AFSCs) and adipose-derived stem cells (ASCs). Both media reduced metabolic activity of 786-0 cells, however, decreased viability of T24 cells was noted only after incubation with conditioned medium from ASCs. To test the hypothesis that MSCs-secreted factors might be involved in chemoresistance acquisition, we further analyzed influence of mesenchymal stem cell conditioned media (MSC-CM) on cancer cells sensitivity to ciprofloxacin, that is considered as potential candidate agent for urinary tract cancers treatment. Significantly increased resistance to tested drug indicates that MSCs may protect cancer cells from chemotherapy. J. Cell. Biochem. 118: 1361-1368, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  5. Are newborn rat-derived neural stem cells more sensitive to lead neurotoxicity?★

    PubMed Central

    Chan, Yan Ho; Gao, Mingyong; Wu, Wutian

    2013-01-01

    Lead ion (Pb2+) has been proven to be a neurotoxin due to its neurotoxicity on mammalian nervous system, especially for the developing brains of juveniles. However, many reported studies involved the negative effects of Pb2+ on adult neural cells of humans or other mammals, only few of which have examined the effects of Pb2+ on neural stem cells. The purpose of this study was to reveal the biological effects of Pb2+ from lead acetate [Pb (CH3COO)2] on viability, proliferation and differentiation of neural stem cells derived from the hippocampus of newborn rats aged 7 days and adult rats aged 90 days, respectively. This study was carried out in three parts. In the first part, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT viability assay) was used to detect the effects of Pb2+ on the cell viability of passage 2 hippocampal neural stem cells after 48-hour exposure to 0–200 μM Pb2+. In the second part, 10 μM bromodeoxyuridine was added into the culture medium of passage 2 hippocampal neural stem cells after 48-hour exposure to 0–200 μM Pb2+, followed by immunocytochemical staining with anti-bromodeoxyuridine to demonstrate the effects of Pb2+ on cell proliferation. In the last part, passage 2 hippocampal neural stem cells were allowed to grow in the differentiation medium with 0–200 μM Pb2+. Immunocytochemical staining with anti-microtubule-associated protein 2 (a neuron marker), anti-glial fibrillary acidic protein (an astrocyte marker), and anti-RIP (an oligodendrocyte marker) was performed to detect the differentiation commitment of affected neural stem cells after 6 days. The data showed that Pb2+ inhibited not only the viability and proliferation of rat hippocampal neural stem cells, but also their neuronal and oligodendrocyte differentiation in vitro. Moreover, increased activity of astrocyte differentiation of hippocampal neural stem cells from both newborn and adult rats was observed after exposure to high concentration of lead ion in vitro. These findings suggest that hippocampal neural stem cells of newborn rats were more sensitive than those from adult rats to Pb2+ cytotoxicity. PMID:25206702

  6. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells.

    PubMed

    Zaccara, Ivana Maria; Ginani, Fernanda; Mota-Filho, Haroldo Gurgel; Henriques, Águida Cristina Gomes; Barboza, Carlos Augusto Galvão

    2015-12-01

    A positive effect of low-level laser irradiation (LLLI) on the proliferation of some cell types has been observed, but little is known about its effect on dental pulp stem cells (DPSCs). The aim of this study was to identify the lowest energy density able to promote the proliferation of DPSCs and to maintain cell viability. Human DPSCs were isolated from two healthy third molars. In the third passage, the cells were irradiated or not (control) with an InGaAlP diode laser at 0 and 48 h using two different energy densities (0.5 and 1.0 J/cm²). Cell proliferation and viability and mitochondrial activity were evaluated at intervals of 24, 48, 72, and 96 h after the first laser application. Apoptosis- and cell cycle-related events were analyzed by flow cytometry. The group irradiated with an energy density of 1.0 J/cm² exhibited an increase of cell proliferation, with a statistically significant difference (p < 0.05) compared to the control group at 72 and 96 h. No significant changes in cell viability were observed throughout the experiment. The distribution of cells in the cell cycle phases was consistent with proliferating cells in all three groups. We concluded that LLLI, particularly a dose of 1.0 J/cm², contributed to the growth of DPSCs and maintenance of its viability. This fact indicates this therapy to be an important future tool for tissue engineering and regenerative medicine involving stem cells.

  7. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2009-09-01

    Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and fluences on ADSC viability and proliferation. This paper reviews the development of MSCs as potential therapeutic interventions such as autologous grafts as well as the contribution of low intensity laser irradiation on the maintenance of these cells.

  8. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression.

    PubMed

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  9. Effects of Non-Collagenous Proteins, TGF-β1, and PDGF-BB on Viability and Proliferation of Dental Pulp Stem Cells

    PubMed Central

    Tabatabaei, Fahimeh Sadat

    2016-01-01

    ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698

  10. Two-dimensional and three-dimensional viability measurements of adult stem cells with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, Pierre O.; Holmes, Christina; Drummond, Nicola; Daoud, Jamal; Tabrizian, Maryam

    2011-08-01

    Cell viability assays are essential tools for cell biology. They assess healthy cells in a sample and enable the quantification of cellular responses to reagents of interest. Noninvasive and label-free assays are desirable in two-dimensional (2D) and three-dimensional (3D) cell culture to facilitate time-course viability studies. Cellular micromotion, emanating from cell to substrate distance variations, has been demonstrated as a marker of cell viability with electric cell-substrate impedance sensing (ECIS). In this study we investigated if optical coherence phase microscopy (OCPM) was able to report phase fluctuations of adult stem cells in 2D and 3D that could be associated with cellular micromotion. An OCPM has been developed around a Thorlabs engine (λo = 930 nm) and integrated in an inverted microscope with a custom scanning head. Human adipose derived stem cells (ADSCs, Invitrogen) were cultured in Mesenpro RS medium and seeded either on ECIS arrays, 2D cell culture dishes, or in 3D highly porous microplotted polymeric scaffolds. ADSC micromotion was confirmed by ECIS analysis. Live and fixed ADSCs were then investigated in 2D and 3D with OCPM. Significant differences were found in phase fluctuations between the different conditions. This study indicated that OCPM could potentially assess cell vitality in 2D and in 3D microstructures.

  11. Contributions of Bioactive Molecules in Stem Cell-Based Periodontal Regeneration

    PubMed Central

    Liu, An-Qi; Hu, Cheng-Hu; Jin, Fang; Zhang, Li-Shu; Xuan, Kun

    2018-01-01

    Periodontal disease is a widespread disease, which without proper treatment, may lead to tooth loss in adults. Because stem cells from the inflammatory microenvironment created by periodontal disease exhibit impaired regeneration potential even under favorable conditions, it is difficult to obtain satisfactory therapeutic outcomes using traditional treatments, which only focus on the control of inflammation. Therefore, a new stem cell-based therapy known as cell aggregates/cell sheets technology has emerged. This approach provides sufficient numbers of stem cells with high viability for treating the defective site and offers new hope in the field of periodontal regeneration. However, it is not sufficient for regenerating periodontal tissues by delivering cell aggregates/cell sheets to the impaired microenvironment in order to suppress the function of resident cells. In the present review, we summarize some promising bioactive molecules that act as cellular signals, which recreate a favorable microenvironment for tissue regeneration, recruit endogenous cells into the defective site and enhance the viability of exogenous cells. PMID:29597317

  12. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media.

    PubMed

    Le Pape, Fiona; Cosnuau-Kemmat, Lucie; Richard, Gaëlle; Dubrana, Frédéric; Férec, Claude; Zal, Franck; Leize, Elisabeth; Delépine, Pascal

    2017-04-01

    Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three-dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)-supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%-increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two-fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and "stemness." These features will be further tested within three-dimensional scaffolds. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements.

    PubMed

    Widbiller, M; Lindner, S R; Buchalla, W; Eidt, A; Hiller, K-A; Schmalz, G; Galler, K M

    2016-03-01

    Calcium silicate cements are biocompatible dental materials applicable in contact with vital tissue. The novel tricalcium silicate cement Biodentine™ offers properties superior to commonly used mineral trioxide aggregate (MTA). Objective of this study was to evaluate its cytocompatibility and ability to induce differentiation and mineralization in three-dimensional cultures of dental pulp stem cells after direct contact with the material. Test materials included a new tricalcium silicate (Biodentine™, Septodont, Saint-Maur-des-Fossés, France), MTA (ProRoot® MTA, DENSPLY Tulsa Dental Specialities, Johnson City, TN, USA), glass ionomer (Ketac™ Molar Aplicap™, 3M ESPE, Seefeld, Germany), human dentin disks and polystyrene. Magnetic activated cell sorting for to the surface antigen STRO-1 was performed to gain a fraction enriched with mesenchymal stem cells. Samples were allowed to set and dental pulp stem cells in collagen carriers were placed on top. Scanning electron microscopy of tricalcium silicate cement surfaces with and without cells was conducted. Cell viability was measured for 14 days by MTT assay. Alkaline phosphatase activity was evaluated (days 3, 7, and 14) and expression of mineralization-associated genes (COL1A1, ALP, DSPP, and RUNX2) was quantified by real-time quantitative PCR. Nonparametric statistical analysis for cell viability and alkaline phosphatase data was performed to compare different materials as well as time points (Mann-Whitney U test, α = 0.05). Cell viability was highest on tricalcium silicate cement, followed by MTA. Viability on glass ionomer cement and dentin disks was significantly lower. Alkaline phosphatase activity was lower in cells on new tricalcium silicate cement compared to MTA, whereas expression patterns of marker genes were alike. Increased cell viability and similar levels of mineralization-associated gene expression in three-dimensional cell cultures on the novel tricalcium silicate cement and mineral trioxide aggregate indicate that the material is cytocompatible and bioactive. The tested new tricalcium silicate cement confirms its suitability as an alternative to MTA in vital pulp therapy.

  14. The effect of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow‑derived mesenchymal stem cells.

    PubMed

    Javanmard, F; Azadbakht, M; Pourmoradi, M

    2016-01-01

    In this study, the role of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow mesenchymal stem cells were investigated. The cells were cultured in treatment medium containing 100 nM of staurosporine for 4 hours; then the cells were affected by hydrostatic pressure (0, 25,50, 100 mmHg). The percentage of cell viability by trypan blue staining and the percentage of cell death by Hoechst/PI differential staining were assessed. We obtained the total neurite length. Expression of β-tubulin III and GFAP (Glial fibrillary acidic protein) proteins were also analyzed by immunocytochemistry. The percentage of cell viability in treatments decreased relative to the increase in hydrostatic pressure and time (p Keywords: bone marrow mesenchymal stem cell, hydrostatic pressure, immunocytochemistry, neural differentiation, neurite length, cell differentiation.

  15. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma.

    PubMed

    Petrachi, Tiziana; Romagnani, Alessandra; Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-24

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma.

  16. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma

    PubMed Central

    Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-01

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292

  17. Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold.

    PubMed

    Niknejad, Hassan; Deihim, Tina; Peirovi, Habibollah; Abolghasemi, Hassan

    2013-08-01

    Amniotic epithelial cells are a promising source for stem cell-based therapy through their potential capacity to differentiate into the cell lineages of all three germ layers. Long-term preservation is necessary to have a ready-to-use source of stem cells, when required. Reduced differentiation capability, decrease of viability and use of fetal bovine serum (FBS) are three drawbacks of clinical application of cryopreserved stem cells. In this study, we used human amniotic fluid instead of animal serum, and evaluated viability and multipotency of amniotic epithelial cells after cryopreservation in suspension and compared with those cryopreserved on their natural scaffold (in situ cryopreservation). There was no significant difference in viability of the cells cryopreserved in amniotic fluid and FBS. Also, the same results were achieved for expression of pluripotency marker OCT-4 when FBS was replaced by amniotic fluid in the samples with the same cryoprotectant. The cells cryopreserved in presence of scaffold had a higher level of viability compared to the cells cryopreserved in suspension. Although, the number of the cells expressed OCT-4 significantly decreased within cryopreservation in suspension, no decrease in expression of OCT-4 was observed when the cells cryopreserved with their natural scaffold. Upon culturing of post-thawed cells in specific lineage differentiating mediums, the markers of neuronal, hepatic, cardiomyocytic and pancreatic were found in differentiated cells. These results show that replacement of FBS by amniotic fluid and in situ cryopreservation of amniotic epithelial cells is an effective approach to overcome limitations related to long-term preservation including differentiation during cryopreservation and decrease of viability. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Human Adipose-Derived Stem Cells Labeled with Plasmonic Gold Nanostars for Cellular Tracking and Photothermal Cancer Cell Ablation.

    PubMed

    Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T

    2017-04-01

    Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.

  19. Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine.

    PubMed

    Germain, Loïc; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Jacobs, Damien; Vandermeulen, Gaëlle; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne

    2015-01-01

    Evaluation of survival, proliferation and neurodifferentiation of dental stem cells from the apical papilla (SCAP) in fibrin hydrogels. We hypothesized that fibrin composition will influence cell behavior. Modulus, pore and fiber size were measured. SCAP in vitro viability, proliferation and neural differentiation, as well as in vivo proliferation and angiogenesis were studied. Hydrogel moduli were influenced by fibrin formulation but not hydrogel morphology, SCAP in vitro viability and proliferation. In total 60% of SCAP expressed PanNeurofilament in vitro without induction in Fibrinogen50-Thrombin10. SCAP proliferated when implanted in vivo and stimulated host endothelial cell infiltration. Fibrinogen30-Thrombin10 or Thrombin50 would be more favorable to in vitro SCAP viability and in vivo proliferation, while Fibrinogen 50-Thrombin50 would be more adapted to neurodifferentiation.

  20. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  1. Cytoprotection: Immune and Matrix Modulation of Tissue Repair

    DTIC Science & Technology

    2011-04-14

    the damaged external urethral sphincter and significantly improved VLPP. Poster #BS39 THE EFFECT OF DONOR AGE ON INDUCED PLURIPOTENT STEM CELLS FROM...is an extracellular matrix hydrogel that contains cross-linked HMW-HA, which has been used to advantage in the growth of other stem cell types, but...that, after treatment with regenerating or reconstituted cells or stem cells , the viability of those therapeutic cells is often threatened by the

  2. Role of geometrical cues in bone marrow-derived mesenchymal stem cell survival, growth and osteogenic differentiation.

    PubMed

    Gupta, Dhanak; Grant, David M; Zakir Hossain, Kazi M; Ahmed, Ifty; Sottile, Virginie

    2018-02-01

    Mesenchymal stem cells play a vital role in bone formation process by differentiating into osteoblasts, in a tissue that offers not a flat but a discontinuous three-dimensional (3D) topography in vivo. In order to understand how geometry may be affecting mesenchymal stem cells, this study explored the influence of 3D geometry on mesenchymal stem cell-fate by comparing cell growth, viability and osteogenic potential using monolayer (two-dimensional, 2D) with microsphere (3D) culture systems normalised to surface area. The results suggested lower cell viability and reduced cell growth in 3D. Alkaline phosphatase activity was higher in 3D; however, both collagen and mineral deposition appeared significantly lower in 3D, even after osteogenic supplementation. Also, there were signs of patchy mineralisation in 3D with or without osteogenic supplementation as early as day 7. These results suggest that the convex surfaces on microspheres and inter-particulate porosity may have led to variable cell morphology and fate within the 3D culture. This study provides deeper insights into geometrical regulation of mesenchymal stem cell responses applicable for bone tissue engineering.

  3. Noncontact microsurgery and delivery of substances into stem cells by means of femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Il'ina, I V; Ovchinnikov, A V; Sitnikov, D S

    We have studied the efficiency of microsurgery of a cell membrane in mesenchymal stem cells and the posterior cell viability under the localised short-time action of femtosecond IR laser pulses aimed at noncontact delivery of specified substances into the cells. (extreme light fields and their applications)

  4. Relationship between ketamine-induced developmental neurotoxicity and NMDA receptor-mediated calcium influx in neural stem cell-derived neurons.

    PubMed

    Wang, Cheng; Liu, Fang; Patterson, Tucker A; Paule, Merle G; Slikker, William

    2017-05-01

    Ketamine, a noncompetitive NMDA receptor antagonist, is used as a general anesthetic and recent data suggest that general anesthetics can cause neuronal damage when exposure occurs during early brain development. To elucidate the underlying mechanisms associated with ketamine-induced neurotoxicity, stem cell-derived models, such as rodent neural stem cells harvested from rat fetuses and/or neural stem cells derived from human induced pluripotent stem cells (iPSC) can be utilized. Prolonged exposure of rodent neural stem cells to clinically-relevant concentrations of ketamine resulted in elevated NMDA receptor levels as indicated by NR1subunit over-expression in neurons. This was associated with enhanced damage in neurons. In contrast, the viability and proliferation rate of undifferentiated neural stem cells were not significantly affected after ketamine exposure. Calcium imaging data indicated that 50μM NMDA did not cause a significant influx of calcium in typical undifferentiated neural stem cells; however, it did produce an immediate elevation of intracellular free Ca 2+ [Ca 2+ ] i in differentiated neurons derived from the same neural stem cells. This paper reviews the literature on this subject and previous findings suggest that prolonged exposure of developing neurons to ketamine produces an increase in NMDA receptor expression (compensatory up-regulation) which allows for a higher/toxic influx of calcium into neurons once ketamine is removed from the system, leading to neuronal cell death likely due to elevated reactive oxygen species generation. The absence of functional NMDA receptors in cultured neural stem cells likely explains why clinically-relevant concentrations of ketamine did not affect undifferentiated neural stem cell viability. Published by Elsevier B.V.

  5. Synthetic vs natural scaffolds for human limbal stem cells

    PubMed Central

    Tominac Trcin, Mirna; Dekaris, Iva; Mijović, Budimir; Bujić, Marina; Zdraveva, Emilija; Dolenec, Tamara; Pauk-Gulić, Maja; Primorac, Dragan; Crnjac, Josip; Špoljarić, Branimira; Mršić, Gordan; Kuna, Krunoslav; Špoljarić, Daniel; Popović, Maja

    2015-01-01

    Aim To investigate the impact of synthetic electrospun polyurethane (PU) and polycaprolactone (PCL) nanoscaffolds, before and after hydrolytic surface modification, on viability and differentiation of cultured human eye epithelial cells, in comparison with natural scaffolds: fibrin and human amniotic membrane. Methods Human placenta was taken at elective cesarean delivery. Fibrin scaffolds were prepared from commercial fibrin glue kits. Nanoscaffolds were fabricated by electrospinning. Limbal cells were isolated from surpluses of human cadaveric cornea and seeded on feeder 3T3 cells. The scaffolds used for viability testing and immunofluorescence analysis were amniotic membrane, fibrin, PU, and PCL nanoscaffolds, with or without prior NaOH treatment. Results Scanning electron microscope photographs of all tested scaffolds showed good colony spreading of seeded limbal cells. There was a significant difference in viability performance between cells with highest viability cultured on tissue culture plastic and cells cultured on all other scaffolds. On the other hand, electrospun PU, PCL, and electrospun PCL treated with NaOH had more than 80% of limbal cells positive for stem cell marker p63 compared to only 27%of p63 positive cells on fibrin. Conclusion Natural scaffolds, fibrin and amniotic membrane, showed better cell viability than electrospun scaffolds. On the contrary, high percentages of p63 positive cells obtained on these scaffolds still makes them good candidates for efficient delivery systems for therapeutic purposes. PMID:26088849

  6. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells

    PubMed Central

    2014-01-01

    Introduction The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment. Methods The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced. Results The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival. Conclusions The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need. PMID:24916098

  7. Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel.

    PubMed

    Wright, Bernice; Cave, Richard A; Cook, Joseph P; Khutoryanskiy, Vitaliy V; Mi, Shengli; Chen, Bo; Leyland, Martin; Connon, Che J

    2012-05-01

    Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.

  8. Bioactive gel-glasses with distinctly different compositions: Bioactivity, viability of stem cells and antibiofilm effect against Streptococcus mutans.

    PubMed

    Siqueira, Renato L; Maurmann, Natasha; Burguêz, Daniela; Pereira, Daniela P; Rastelli, Alessandra N S; Peitl, Oscar; Pranke, Patricia; Zanotto, Edgar D

    2017-07-01

    In this study, an evaluation was performed to determine the in vitro bioactivity, viability of stem cells, and antibiofilm effect against Streptococcus mutans of two bioactive gel-glass 60SiO 2 -36CaO-4P 2 O 5 (BG-A) and 80SiO 2 -15CaO-5P 2 O 5 (BG-B) compositions. Both materials were bioactive and undergo the formation of hydroxycarbonate apatite (HCA) on their surfaces when immersed in simulated body fluid (SBF) after 12h, but the BG-A composition showed a more significant formation rate. The pH variation of the samples during the test in SBF indicated that an abrupt change had occurred for the BG-A composition within the first few hours, and the pH was subsequently maintained over time, supporting its stronger antibacterial effects against S. mutans. For the in vitro viability test using mesenchymal stem cells (MSCs), the BG-B showed significantly higher cell viability compared to the BG-A composition at concentrations of 0.125, 1.25 and 12.50mg/mL for 2days. These results indicated that the higher solubility of the BG-A glass favors bioactivity and antibacterial effects. However, as a result of rapid degradation, the increase in the concentration of ions in the cell culture medium was not favorable for cell proliferation. Thus, by varying the composition of glasses, and consequently their dissolution rate, it is possible to favor bioactivity, antimicrobial activity or stem cell proliferation for a particular application of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Isolation of hair follicle bulge stem cells from YFP-expressing reporter mice.

    PubMed

    Nakrieko, Kerry-Ann; Irvine, Timothy S; Dagnino, Lina

    2013-01-01

    In this article we provide a method to isolate hair follicle stem cells that have undergone targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26-yellow fluorescent protein (YFP) reporter background, which results in YFP expression in the targeted stem cell population. These cells are isolated and purified by fluorescence-activated cell sorting, using epidermal stem cell-specific markers in conjunction with YFP fluorescence. The purified cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as viability and capacity for directional migration.

  10. Hyaluronic Acid-Serum Hydrogels Rapidly Restore Metabolism of Encapsulated Stem Cells and Promote Engraftment

    PubMed Central

    Chan, Angel T.; Karakas, Mehmet F.; Vakrou, Styliani; Afzal, Junaid; Rittenbach, Andrew; Lin, Xiaoping; Wahl, Richard L.; Pomper, Martin G.; Steenbergen, Charles J.; Tsui, Benjamin M.W.; Elisseeff, Jennifer H.; Abraham, M. Roselle

    2015-01-01

    Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of 18FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels +/− CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (~6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels serve as ‘synthetic stem cell niches’ that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types. PMID:26378976

  11. Viability and proliferation potential of adipose-derived stem cells following labeling with a positron-emitting radiotracer.

    PubMed

    Elhami, Esmat; Goertzen, Andrew L; Xiang, Bo; Deng, Jixian; Stillwell, Chris; Mzengeza, Shadreck; Arora, Rakesh C; Freed, Darren; Tian, Ganghong

    2011-07-01

    Adipose-derived stem cells (ASCs) have promising potential in regenerative medicine and cell therapy. Our objective is to examine the biological function of the labeled stem cells following labeling with a readily available positron emission tomography (PET) tracer, (18)F-fluoro-2-deoxy-D: -glucose (FDG). In this work we characterize labeling efficiency through assessment of FDG uptake and retention by the ASCs and the effect of FDG on cell viability, proliferation, transdifferentiation, and cell function in vitro using rat ASCs. Samples of 10(5) ASCs (from visceral fat tissue) were labeled with concentrations of FDG (1-55 Bq/cell) in 0.75 ml culture medium. Label uptake and retention, as a function of labeling time, FDG concentration, and efflux period were measured to determine optimum cell labeling conditions. Cell viability, proliferation, DNA structure damage, cell differentiation, and other cell functions were examined. Non-labeled ASC samples were used as a control for all experimental groups. Labeled ASCs were injected via tail vein in several healthy rats and initial cell biodistribution was assessed. Our results showed that FDG uptake and retention by the stem cells did not depend on FDG concentration but on labeling and efflux periods and glucose content of the labeling and efflux media. Cell viability, transdifferentiation, and cell function were not greatly affected. DNA damage due to FDG radioactivity was acute, but reversible; cells managed to repair the damage and continue with cell cycles. Over all, FDG (up to 25 Bq/cell) did not impose severe cytotoxicity in rat ASCs. Initial biodistribution of the FDG-labeled ASCs was 80% + retention in the lungs. In the delayed whole-body images (2-3 h postinjection) there was some activity distribution resembling typical FDG uptake patterns. For in vivo cell tracking studies with PET tracers, the parameter of interest is the amount of radiotracer that is present in the cells being labeled and consequent biological effects. From our study we developed a labeling protocol for labeling ASCs with a readily available PET tracer, FDG. Our results indicate that ASCs can be safely labeled with FDG concentration up to 25 Bq/cell, without compromising their biological function. A labeling period of 90 min in glucose-free medium and efflux of 60 min in complete media resulted in optimum label retention, i.e., 60% + by the stem cells. The initial biodistribution of the implanted FDG-labeled stem cells can be monitored using microPET imaging.

  12. Comparative effects of chlorhexidine and essential oils containing mouth rinse on stem cells cultured on a titanium surface.

    PubMed

    Park, Jun-Beom; Lee, Gil; Yun, Byeong Gon; Kim, Chang-Hyen; Ko, Youngkyung

    2014-04-01

    Chlorhexidine (CHX) and Listerine (LIS), an essential oil compound, are the two commonly used adjunctive agents for mechanical debridement, for reducing the bacterial load in the treatment of peri-implant inflammation. However, antimicrobial agents have been reported to be cytotoxic to the alveolar bone cells and gingival epithelial cells. The present study was performed to examine the effects of antiseptics CHX and LIS, on the morphology and proliferation of stem cells. Stem cells derived from the buccal fat pad were grown on machined titanium discs. Each disc was immersed in CHX or LIS for 30 sec, 1.5 min or 4.5 min. Cell morphology was evaluated with a confocal laser microscope and the viability of the cells was quantitatively analyzed with the cell counting kit-8 (CCK-8). The untreated cells attached to the titanium discs demonstrated well-organized actin cytoskeletons. No marked alterations in the cytoskeletal organization were observed in any of the treated groups. The treatment with CHX and LIS of the titanium discs decreased the viability of the cells grown on the treated discs (P<0.05). The stem cells derived from the buccal fat pad were sensitive to CHX and LIS, and a reduction in cellular viability was observed when these agents were applied to the discs for 30 sec. Further studies are required to determine the optimal application time and concentration of this antimicrobial agent for maximizing the reduction of the bacterial load and minimizing the cytotoxicity to the surrounding cells.

  13. Long-term drug modification to the surface of mesenchymal stem cells by the avidin-biotin complex method.

    PubMed

    Takayama, Yukiya; Kusamori, Kosuke; Hayashi, Mika; Tanabe, Noriko; Matsuura, Satoru; Tsujimura, Mari; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2017-12-05

    Mesenchymal stem cells (MSCs) have various functions, making a significant contribution to tissue repair. On the other hand, the viability and function of MSCs are not lasting after an in vivo transplant, and the therapeutic effects of MSCs are limited. Although various chemical modification methods have been applied to MSCs to improve their viability and function, most of conventional drug modification methods are short-term and unstable and cause cytotoxicity. In this study, we developed a method for long-term drug modification to C3H10T1/2 cells, murine mesenchymal stem cells, without any damage, using the avidin-biotin complex method (ABC method). The modification of NanoLuc luciferase (Nluc), a reporter protein, to C3H10T1/2 cells by the ABC method lasted for at least 14 days in vitro without major effects on the cellular characteristics (cell viability, cell proliferation, migration ability, and differentiation ability). Moreover, in vivo, the surface Nluc modification to C3H10T1/2 cells by the ABC method lasted for at least 7 days. Therefore, these results indicate that the ABC method may be useful for long-term surface modification of drugs and for effective MSC-based therapy.

  14. [Effect of cadmium chloride on immigration of mouse neural stem cell].

    PubMed

    Zhang, Yuyuan; Wang, Qunan; Chai, Xiaoyu; Shen, Zhongzhou; Gao, Liuwei

    2015-01-01

    To investigate the effects of cadmium chloride on cytoactive and immigration of mouse neural stem cell (mNSC). MTT assay was used to detect cytoactive at 24 hours. The immigration of mNSC was determined by immunofluorescence staining. Compared with control, CdCl2 treatment at 10.0 μmol/L for 24 h resulted in a decrease in cellular viability (70.08 ± 6.21)% (P < 0.05). Compared with control, Aa/Ab and Dm/Db display decreasing tendency in a dose-dependent manner (r(s Aa/Ab) = - 0.90, γ(s Dm/Db) = - 0.90, P < 0.05) after CdCl2 treatment at 0.1 - 10.0 μmol/L for 24 h. Cadmium chloride treatment inhibits immigration of mNSC, and shows negative effect on cell viability. Meanwhile, the effect of cadmium chloride on immigration is more obvious than cell viability at the same concentration for same treatment time.

  15. Effects of the pulsed electromagnetic field PST® on human tendon stem cells: a controlled laboratory study.

    PubMed

    Randelli, Pietro; Menon, Alessandra; Ragone, Vincenza; Creo, Pasquale; Alfieri Montrasio, Umberto; Perucca Orfei, Carlotta; Banfi, Giuseppe; Cabitza, Paolo; Tettamanti, Guido; Anastasia, Luigi

    2016-08-18

    Current clinical procedures for rotator cuff tears need to be improved, as a high rate of failure is still observed. Therefore, new approaches have been attempted to stimulate self-regeneration, including biophysical stimulation modalities, such as low-frequency pulsed electromagnetic fields, which are alternative and non-invasive methods that seem to produce satisfying therapeutic effects. While little is known about their mechanism of action, it has been speculated that they may act on resident stem cells. Thus, the purpose of this study was to evaluate the effects of a pulsed electromagnetic field (PST®) on human tendon stem cells (hTSCs) in order to elucidate the possible mechanism of the observed therapeutic effects. hTSCs from the rotator cuff were isolated from tendon biopsies and cultured in vitro. Then, cells were exposed to a 1-h PST® treatment and compared to control untreated cells in terms of cell morphology, proliferation, viability, migration, and stem cell marker expression. Exposure of hTSCs to PST® did not cause any significant changes in proliferation, viability, migration, and morphology. Instead, while stem cell marker expression significantly decreased in control cells during cell culturing, PST®-treated cells did not have a significant reduction of the same markers. While PST® did not have significant effects on hTSCs proliferation, the treatment had beneficial effects on stem cell marker expression, as treated cells maintained a higher expression of these markers during culturing. These results support the notion that PST® treatment may increase the patient stem cell regenerative potential.

  16. Generation of enhanced definitive endoderm from human embryonic stem cells under an albumin/insulin-free and chemically defined condition.

    PubMed

    Qu, Su; Yan, Liang; Fang, Bo; Ye, Shoudong; Li, Ping; Ge, Shengyang; Wu, Jian; Qu, Di; Song, Houyan

    2017-04-15

    To enhance survival and generation of definitive endoderm cells from human embryonic stem cells in a simple and reproducible system. Definitive endoderm (DE) differentiation from human embryonic stem cells (hESCs) was induced under a chemical-defined condition withdrawn insulin supplement and serum albumin. We dissected influence of "alternative growth factors", WNT3A, BMP4 and bFGF in activin A-driven differentiation by detection of DE-associated genes expression and cell viability. Expression of DE-associated SOX17 and FOXA2 genes was analyzed by real time reverse transcription polymerase chain reaction (RT-PCR) and Western blot assays. Quantitative evaluation of DE efficiency was performed by flow cytometry analysis of CXCR4-expressed cell population. Cell viability during DE differentiation was analyzed by an Annexin V/PI double staining test. Supplementation with WNT3A, BMP4 or bFGF promoted DE generation in a dose- and time-dependent manner. Cell apoptosis elicited by activin A was significantly ameliorated by a cocktail with WNT3A, BMP4 and bFGF. This allowed for sustained cell viability without insulin-containing supplements, thereby indirectly improving the efficiency of DE generation. Therefore, the cocktail containing is optimal for efficient DE generation in the presence of activin A and an insulin/albumin-free condition. This optimal condition facilitates the balance between the productivity and the viability maintenance, and could be valuable for mass production of DE with minimal variation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field.

    PubMed

    Nishiyama, Yuichiro; Iwanami, Akio; Kohyama, Jun; Itakura, Go; Kawabata, Soya; Sugai, Keiko; Nishimura, Soraya; Kashiwagi, Rei; Yasutake, Kaori; Isoda, Miho; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2016-06-01

    Stem cells represent a potential cellular resource in the development of regenerative medicine approaches to the treatment of pathologies in which specific cells are degenerated or damaged by genetic abnormality, disease, or injury. Securing sufficient supplies of cells suited to the demands of cell transplantation, however, remains challenging, and the establishment of safe and efficient cell banking procedures is an important goal. Cryopreservation allows the storage of stem cells for prolonged time periods while maintaining them in adequate condition for use in clinical settings. Conventional cryopreservation systems include slow-freezing and vitrification both have advantages and disadvantages in terms of cell viability and/or scalability. In the present study, we developed an advanced slow-freezing technique using a programmed freezer with a magnetic field called Cells Alive System (CAS) and examined its effectiveness on human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). This system significantly increased cell viability after thawing and had less impact on cellular proliferation and differentiation. We further found that frozen-thawed hiPSC-NS/PCs were comparable with non-frozen ones at the transcriptome level. Given these findings, we suggest that the CAS is useful for hiPSC-NS/PCs banking for clinical uses involving neural disorders and may open new avenues for future regenerative medicine. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy.

    PubMed

    Aggerholm-Pedersen, Ninna; Demuth, Christina; Safwat, Akmal; Meldgaard, Peter; Kassem, Moustapha; Sandahl Sorensen, Boe

    2016-01-01

    Background. One of the major challenges affecting sarcoma treatment outcome, particularly that of metastatic disease, is resistance to chemotherapy. Cancer-initiating cells are considered a major contributor to this resistance. Methods. An immortalised nontransformed human stromal (mesenchymal) stem cell line hMSC-TERT4 and a transformed cell line hMSC-TERT20-CE8, known to form sarcoma-like tumours when implanted in immune-deficient mice, were used as models. Receptor tyrosine kinase (RTK) activation was analysed by RTK arrays and cellular viability after tyrosine kinases inhibitor (TKI) treatment with or without doxorubicin was assessed by MTS assay. Results. Initial results showed that the hMSC-TERT4 was more doxorubicin-sensitive while hMSC-TERT20-CE8 was less doxorubicin-sensitive evidenced by monitoring cell viability in the presence of doxorubicin at different doses. The epidermal growth factor receptor (EGFR) was activated in both cell lines. However hMSC-TERT20-CE8 exhibited significantly higher expression of the EGFR ligands. EGFR inhibitors such as erlotinib and afatinib alone or in combination with doxorubicin failed to further decrease cell viability of hMSC-TERT20-CE8. However, inhibition with the TKI dasatinib in combination with doxorubicin decreased cell viability of the hMSC-TERT20-CE8 cell line. Conclusion. Our results demonstrate that dasatinib, but not EGFR-directed treatment, can decrease cell viability of stromal cancer stem cells less sensitive to doxorubicin.

  19. mTOR plays critical roles in pancreatic cancer stem cells through specific and stemness-related functions

    NASA Astrophysics Data System (ADS)

    Matsubara, Shyuichiro; Ding, Qiang; Miyazaki, Yumi; Kuwahata, Taisaku; Tsukasa, Koichiro; Takao, Sonshin

    2013-11-01

    Pancreatic cancer is characterized by near-universal mutations in KRAS. The mammalian target of rapamycin (mTOR), which functions downstream of RAS, has divergent effects on stem cells. In the present study, we investigated the significance of the mTOR pathway in maintaining the properties of pancreatic cancer stem cells. The mTOR inhibitor, rapamycin, reduced the viability of CD133+ pancreatic cancer cells and sphere formation which is an index of self-renewal of stem-like cells, indicating that the mTOR pathway functions to maintain cancer stem-like cells. Further, rapamycin had different effects on CD133+ cells compared to cyclopamine which is an inhibitor of the Hedgehog pathway. Thus, the mTOR pathway has a distinct role although both pathways maintain pancreatic cancer stem cells. Therefore, mTOR might be a promising target to eliminate pancreatic cancer stem cells.

  20. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluatedmore » an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.« less

  1. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells.

    PubMed

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    NASA Astrophysics Data System (ADS)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  3. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells.

    PubMed

    Baskan, Oznur; Mese, Gulistan; Ozcivici, Engin

    2017-02-01

    Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.

  4. Antimicrobial properties and dental pulp stem cell cytotoxicity using carboxymethyl cellulose-silver nanoparticles deposited on titanium plates

    PubMed Central

    Laredo-Naranjo, Martha Alicia; Carrillo-Gonzalez, Roberto; De La Garza-Ramos, Myriam Angelica; Garza-Navarro, Marco Antonio; Torre-Martinez, Hilda H. H.; Del Angel-Mosqueda, Casiano; Mercado-Hernandez, Roberto; Carrillo-Fuentevilla, Roberto

    2016-01-01

    Abstract Objective: To evaluate the antimicrobial properties and dental pulp stem cells (DPSCs) cytotoxicity of synthesized carboxymethyl cellulose-silver nanoparticles impregnated on titanium plates. Material and methods: The antibacterial effect of silver nanoparticles in a carboxymethyl cellulose matrix impregnated on titanium plates (Ti-AgNPs) in three concentrations: 16%, 50% and 100% was determined by adding these to bacterial cultures of Streptococcus mutans and Porphyromonas gingivalis. The Ti-AgNPs cytotoxicity on DPSCs was determined using a fluorimetric cytotoxicity assay with 0.12% chlorhexidine as a positive control. Results: Silver nanoparticles in all concentrations were antimicrobial, with concentrations of 50% and 100% being more cytotoxic with 4% cell viability. Silver nanoparticles 16% had a cell viability of 95%, being less cytotoxic than 0.12% chlorhexidine. Conclusions: Silver nanoparticles are a promising structure because of their antimicrobial properties. These have high cell viability at a concentration of 16%, and are less toxic than chlorhexidine. PMID:28642914

  5. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Li, E-mail: lin.796@osu.edu; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030; Fuchs, James

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existencemore » of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem-like cells and inhibition of STAT3 in cancer stem-like cells may offer a potential treatment for colorectal cancer.« less

  6. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.

    PubMed

    Ouyang, Liliang; Yao, Rui; Zhao, Yu; Sun, Wei

    2016-09-16

    3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality. However, the influences of printing parameters on the shape fidelity of 3D constructs as well as on cell viability after the cell printing process have been poorly characterized. Furthermore, parameter optimization based on a specific cell type might not be suitable for other types of cells, especially cells with high sensibility. In this study, we systematically studied the influence of bioink properties and printing parameters on bioink printability and embryonic stem cell (ESC) viability in the process of extrusion-based cell printing, also known as bioplotting. A novel method was established to determine suitable conditions for bioplotting ESCs to achieve both good printability and high cell viability. The rheological properties of gelatin/alginate bioinks were evaluated to determine the gelation properties under different bioink compositions, printing temperatures and holding times. The bioink printability was characterized by a newly developed semi-quantitative method. The results demonstrated that bioinks with longer gelation times would result in poorer printability. The live/dead assay showed that ESC viability increased with higher printing temperatures and lower gelatin concentrations. Furthermore, an exponential relationship was obtained between ESC viability and induced shear stress. By defining the proper printability and acceptable viability ranges, a combined parameters region was obtained. This study provides guidance for parameter optimization and the fine-tuning of 3D cell printing processes regarding both bioink printability and cell viability after bioplotting, especially for easily damaged cells, like ESCs.

  7. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    PubMed Central

    Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo

    2016-01-01

    Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777

  8. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia.

    PubMed

    Gálvez-Martín, Patricia; Hmadcha, Abdelkrim; Soria, Bernat; Calpena-Campmany, Ana C; Clares-Naveros, Beatriz

    2014-04-01

    Critical limb ischemia (CLI) is associated with significant morbidity and mortality. In this study, we developed and characterized an intra-arterial cell suspension containing human mesenchymal stem cells (hMSCs) for the treatment of CLI. Equally, the stability of cells was studied in order to evaluate the optimal conditions of storage that guarantee the viability from cell processing to the administration phase. Effects of various factors, including excipients, storage temperature and time were evaluated to analyze the survival of hMSCs in the finished medicinal product. The viability of hMSCs in different packaging media was studied for 60 h at 4 °C. The best medium to maintain hMSCs viability was then selected to test storage conditions (4, 8, 25 and 37 °C; 60 h). The results showed that at 4 °C the viability was maintained above 80% for 48 h, at 8 °C decreased slightly, whereas at room temperature and 37 °C decreased drastically. Its biocompatibility was assessed by cell morphology and cell viability assays. During stability study, the stored cells did not show any change in their phenotypic or genotypic characteristics and physicochemical properties remained constant, the ability to differentiate into adipocytes and osteocytes and sterility requirements were also unaltered. Finally, our paper proposes a packing media composed of albumin 20%, glucose 5% and Ringer's lactate at a concentration of 1×10(6) cells/mL, which must be stored at 4 °C as the most suitable to maintain cell viability (>80%) and without altering their characteristics for more than 48 h. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.

    PubMed

    Faulkner-Jones, Alan; Fyfe, Catherine; Cornelissen, Dirk-Jan; Gardner, John; King, Jason; Courtney, Aidan; Shu, Wenmiao

    2015-10-21

    We report the first investigation into the bioprinting of human induced pluripotent stem cells (hiPSCs), their response to a valve-based printing process as well as their post-printing differentiation into hepatocyte-like cells (HLCs). HLCs differentiated from both hiPSCs and human embryonic stem cells (hESCs) sources were bioprinted and examined for the presence of hepatic markers to further validate the compatibility of the valve-based bioprinting process with fragile cell transfer. Examined cells were positive for nuclear factor 4 alpha and were demonstrated to secrete albumin and have morphology that was also found to be similar to that of hepatocytes. Both hESC and hiPSC lines were tested for post-printing viability and pluripotency and were found to have negligible difference in terms of viability and pluripotency between the printed and non-printed cells. hESC-derived HLCs were 3D printed using alginate hydrogel matrix and tested for viability and albumin secretion during the remaining differentiation and were found to be hepatic in nature. 3D printed with 40-layer of HLC-containing alginate structures reached peak albumin secretion at day 21 of the differentiation protocol. This work demonstrates that the valve-based printing process is gentle enough to print human pluripotent stem cells (hPSCs) (both hESCs and hiPSCs) while either maintaining their pluripotency or directing their differentiation into specific lineages. The ability to bioprint hPSCs will pave the way for producing organs or tissues on demand from patient specific cells which could be used for animal-free drug development and personalized medicine.

  10. Histone Deacetylase Inhibitors Enhance Cytotoxicity Towards Breast Tumors While Preserving the Wound-Healing Function of Adipose-Derived Stem Cells.

    PubMed

    Koko, Kiavash R; Chang, Shaohua; Hagaman, Ashleigh L; Fromer, Marc W; Nolan, Ryan S; Gaughan, John P; Zhang, Ping; Carpenter, Jeffrey P; Brown, Spencer A; Matthews, Martha; Bird, Dorothy

    2017-06-01

    Paclitaxel improves the oncologic response of breast cancer resections; however, it may negatively affect the wound-healing potential of human adipose-derived stem cells (hASCs) for fat grafting and reconstructive surgery. Histone deacetylase inhibitors (HDACis) modify the epigenetic regulation of gene expression and stabilize microtubules similarly to paclitaxel, thus, creating a synergistic mechanism of cell cycle arrest. We aim to combine these drugs to enhance cytotoxicity towards breast cancer cells, while preserving the wound-healing function of hASCs for downstream reconstructive applications. Triple negative breast cancer cells (MBA-MB-231) and hASCs (institutional review board-approved clinical isolates) were treated with a standard therapeutic dose of paclitaxel (1.0 μM) or with low-dose paclitaxel (0.1 μM) combined with the HDACi suberoylanilide hydroxamic acid or trichostatin A. Cell viability, gene expression, apoptosis, and wound-healing/migration were measured via methylthiazol tetrazolium assay, quantitative real-time polymerase chain reaction, annexin V assay, and fibroblast scratch assay, respectively. Combined HDACi and low-dose paclitaxel therapy maintained cytotoxicity towards breast cancer cells and preserved adipose-derived stem cell viability. Histone deacetylase inhibitor demonstrated selective anti-inflammatory effects on adipose-derived stem cell gene expression and decreased expression of the proapoptotic gene FAS. Furthermore, HDACi therapy did not increase relative apoptosis within hASCs. A scratch assay demonstrated enhanced wound healing among injured fibroblasts indirectly co-cultured with HDACi-treated hASCs. Combining HDACi with low-dose paclitaxel improved cytotoxicity towards breast cancer cells and preserved hASC viability. Furthermore, enhanced wound healing was observed by improved migration in a fibroblast scratch assay. These results suggest that the addition of HDACi to taxane chemotherapy regimens may improve oncologic results and wound-healing outcomes after reconstructive surgery.

  11. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

    PubMed

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.

  12. Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells.

    PubMed

    Mvula, B; Moore, T J; Abrahamse, H

    2010-01-01

    The study investigated the effects of low-level laser radiation and epidermal growth factor (EGF) on adult adipose-derived stem cells (ADSCs) isolated from human adipose tissue. Isolated cells were cultured to semi-confluence, and the monolayers of ADSCs were exposed to low-level laser at 5 J/cm(2) using 636 nm diode laser. Cell viability and proliferation were monitored using adenosine triphosphate (ATP) luminescence and optical density at 0 h, 24 h and 48 h after irradiation. Application of low-level laser irradiation at 5 J/cm(2) on human ADSCs cultured with EGF increased the viability and proliferation of these cells. The results indicate that low-level laser irradiation in combination with EGF enhances the proliferation and maintenance of ADSCs in vitro.

  13. Pericardial application as a new route for implanting stem-cell cardiospheres to treat myocardial infarction.

    PubMed

    Zhang, Jianhua; Wu, Zheng; Fan, Zepei; Qin, Zixi; Wang, Yingwei; Chen, Jiayuan; Wu, Maoxiong; Chen, Yangxin; Wu, Changhao; Wang, Jingfeng

    2018-06-01

    Cardiospheres (CSps) are a promising new form of cardiac stem cells with advantage over other stem cells for myocardial regeneration, but direct implantation of CSps by conventional routes has been limited due to potential embolism. We have implanted CSps into the pericardial cavity and systematically demonstrated its efficacy regarding myocardial infarction. Stem cell potency and cell viability can be optimized in vitro prior to implantation by pre-conditioning CSps with pericardial fluid and hydrogel packing. Transplantation of optimized CSps into the pericardial cavity improved cardiac function and alleviated myocardial fibrosis, increased myocardial cell survival and promoted angiogenesis. Mechanistically, CSps are able to directly differentiate into cardiomyocytes in vivo and promote regeneration of myocardial cells and blood vessels through a paracrine effect with released growth factors as potential paracrine mediators. These findings establish a new strategy for therapeutic myocardial regeneration to treat myocardial infarction. Cardiospheres (CSps) are a new form of cardiac stem cells with an advantage over other stem cells for myocardial regeneration. However, direct implantation of CSps by conventional routes to treat myocardial infarction has been limited due to potential embolism. We have implanted CSps into the pericardial cavity and systematically assessed its efficacy on myocardial infarction. Preconditioning with pericardial fluid enhanced the activity of CSps and matrix hydrogel prolonged their viability. This shows that pretransplant optimization of stem cell potency and maintenance of cell viability can be achieved with CSps. Transplantation of optimized CSps into the pericardial cavity improved cardiac function and alleviated myocardial fibrosis in the non-infarcted area, and increased myocardial cell survival and promoted angiogenesis in the infarcted area. Mechanistically, CSps were able to directly differentiate into cardiomyocytes in vivo and promoted regeneration of myocardial cells and blood vessels in the infarcted area through a paracrine effect with released growth factors in pericardial cavity serving as possible paracrine mediators. This is the first demonstration of direct pericardial administration of pre-optimized CSps, and its effectiveness on myocardial infarction by functional and morphological outcomes with distinct mechanisms. These findings establish a new strategy for therapeutic myocardial regeneration to treat myocardial infarction. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  14. Serum replacement with a growth factor-free synthetic substance in culture medium contributes to effective establishment of mouse embryonic stem cells of various origins.

    PubMed

    Lee, Seung Tae; Oh, Se Woong; Kim, Dae Yong; Han, Jae Yong; Moon, Shin Yong; Lim, Jeong Mook

    2006-10-01

    To evaluate whether serum replacement with growth factor-free synthetic substances contributed to the effective establishment of embryonic stem (ES) cells. Randomized, prospective model study. Gamete and stem cell biotechnology laboratory at Seoul National University in Korea. F1 (C57BL6 x DBA2) mice. Blastocysts of different origins were cultured in serum-replaced media. Embryonic stem cell establishment. Eight batches of ES cells were established from colony-forming inner cell mass cells after the replacement of fetal bovine serum (FBS) with synthetic knockout serum replacement (KSR) in mkDMEM. The established cells were positive for ES cell markers and formed both embryoid bodies in vitro and teratomas in vivo, but the established cell batches and control (transformed) ES cells responded differently to the culture media. Higher levels of cell viability were detected after the replacement with the 75:25 FBS-KSR mixture than with any other mixtures, and a gradual decrease in viability was detected as the KSR volume ratio was increased. The 75:25 FBS-KSR mixture-containing medium supported ES cell establishment of outbred ICR, F1, and F2 of C57BL6/DBA2; F1 parthenogenetic and ES cell-complemented tetraploid blastocysts; and single ES-cell cultures. A serum-replaced medium could be used for effective ES-cell establishment of various origins.

  15. Optimization of the viability of stem cells derived from umbilical cord blood after maternal supplementation with DHA during the second or third trimester of pregnancy: study protocol for a randomized controlled trial.

    PubMed

    Martini, Irene; Di Domenico, Enea Gino; Scala, Roberta; Caruso, Francesca; Ferreri, Carla; Ubaldi, Filippo M; Lenzi, Andrea; Valensise, Herbert

    2014-05-10

    Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, the concentration of cells in cord blood units is limited and this may represent the main restriction to their therapeutic clinical use. The percentage of metabolically active stem cells provides a measure of the viability of cells in an UCB sample. It follows that an active cellular metabolism causes a proliferation in stem cells, offering an opportunity to increase the cellular concentration. A high cell dose is essential when transplanting cord stem cells, guaranteeing, in the receiving patient, a successful outcome.This study is designed to evaluate the impact of docosahexaenoic acid (DHA) supplementation in pregnant women, in order to increase the quantity and viability of the cells in UCB samples. The metabolic demand of DHA increases in the course of pregnancy and reaches maximum absorption during the third trimester of pregnancy. According to these observations, this trial will be divided into two different experimental groups: in the first group, participants will be enrolled from the 20th week of estimated stage of gestation, before the maximum absorption of DHA; while in the second group, enrolment will start from the 28th week of estimated stage of gestation, when the DHA request is higher. Participants in the trial will be divided and randomly assigned to the placebo group or to the experimental group. Each participant will receive a complete set of capsules of either placebo (250 mg of olive oil) or DHA (250 mg), to take one a day from the 20th or from the 28th week, up to the 40th week of estimated gestational age. Samples of venous blood will be taken from all participants before taking placebo or DHA, at the 20th or at the 28th week, and at the 37th to 38th week of pregnancy to monitor the level of DHA. Cell number and cellular viability will be evaluated by flow cytometry within 48 hours of the UCB sample collection. International Standard Randomised Controlled Trial Number Register: ISRCTN58396079. Registration date: 8 October 2013.

  16. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability.

    PubMed

    Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi

    2017-02-15

    We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Promotion of stem cell proliferation by vegetable peptone.

    PubMed

    Lee, J; Lee, J; Hwang, H; Jung, E; Huh, S; Hyun, J; Park, D

    2009-10-01

    Technical limitations and evolution of therapeutic applications for cell culture-derived products have accelerated elimination of animal-derived constituents from such products to minimize inadvertent introduction of microbial contaminants, such as fungi, bacteria or viruses. The study described here was conducted to investigate the proliferative effect of vegetable peptone on adult stem cells in the absence of serum, and its possible mechanisms of action. Cell viability and proliferation were determined using the MTT assay and Click-iT EdU flow cytometry, respectively. In addition, changes in expression of cytokine genes were analysed using MILLIPLEX human cytokine enzyme-linked immunosorbent assay kit. Viability of cord blood-derived mesenchymal stem cells (CB-MSC) and adipose tissue-derived stem cells (ADSC) increased significantly when treated with the peptone. In addition, median value of the group treated with peptone shifted to the right when compared to the untreated control group. Furthermore, quantitative analysis of the cytokines revealed that production of vascular endothelial growth factor (VEGF), transforming growth factor-beta1 (TGF-beta1), and interleukin-6 (IL-6) increased significantly in response to treatment with our vegetable peptone in both CB-MSCs and ADSCs. Our findings revealed that the vegetable peptone promotes proliferation of CB-MSCs and ADSCs. In addition, results of this study suggest that induction of stem cell proliferation by vegetable peptone is likely to be related to its induction of VEGF, TGF-beta1, and IL-6 expression.

  18. 3D Printed Structures Filled with Carbon Fibers and Functionalized with Mesenchymal Stem Cell Conditioned Media as In Vitro Cell Niches for Promoting Chondrogenesis.

    PubMed

    García-Ruíz, Josefa Predestinación; Díaz Lantada, Andrés

    2017-12-24

    In this study, we present a novel approach towards the straightforward, rapid, and low-cost development of biomimetic composite scaffolds for tissue engineering strategies. The system is based on the additive manufacture of a computer-designed lattice structure or framework, into which carbon fibers are subsequently knitted or incorporated. The 3D-printed lattice structure acts as support and the knitted carbon fibers perform as driving elements for promoting cell colonization of the three-dimensional construct. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is also used for improving the scaffold's response and promoting cell adhesion, proliferation, and viability. Cell culture results-in which scaffolds become buried in collagen type II-provide relevant information regarding the viability of the composite scaffolds used and the prospective applications of the proposed approach. In fact, the advanced composite scaffold developed, together with the conditioned medium functionalization, constitutes a biomimetic stem cell niche with clear potential, not just for tendon and ligament repair, but also for cartilage and endochondral bone formation and regeneration strategies.

  19. Comparison of Cellular Alterations in Fat Cells Harvested With Laser-Assisted Liposuction and Suction-Assisted Liposuction.

    PubMed

    Yildiz, Kemalettin; Taşli, Pakize Neslihan; Şahin, Fikrettin; Güneren, Ethem

    2016-05-01

    The aim of the present study was to evaluate the viability and proliferative capacity of adipose-derived stem cells obtained by laser-assisted liposuction (LAL). Fat tissue was obtained from 7 male patients treated surgically for gynecomastia. On one side, harvesting was made before LAL, while it was implemented after LAL on the contralateral side. Viability, cell surface antigens, pluripotency, and apoptosis were assessed and compared in these samples. Cells harvested before and after LAL did not exhibit any significant difference in terms of surface cell markers. Number of viable stem cells was lower initially after exposure to laser, while this difference was reversed at the end of 72 hours. Genetic indicators of cellular differentiation were similar in both groups. Apoptosis indicators were increased remarkably after laser exposure in the first 24 hours, but this increase was absent 72 hours after LAL procedure. The authors' results have promising clinical relevance since mesenchymal stem cells harvested during LAL have maintained appropriate cellular features to be used for autologous fat transfer and fat grafting.

  20. Stromal cell-derived factor 1 protects human periodontal ligament stem cells against hydrogen peroxide-induced apoptosis.

    PubMed

    Feng, Yimiao; Fu, Xiaohui; Lou, Xintian; Fu, Baiping

    2017-10-01

    Periodontal ligament stem cells (PDLSCs) are considered a promising cell source for dental tissue regeneration. Stromal cell-derived factor 1 [SDF‑1, also known as chemokine (C‑X‑C motif) ligand 12] is regarded as a critical cytokine involved in stem/progenitor cell chemotaxis and homing during tissue regeneration. The present study described a previously unsuspected role for SDF‑1 in the protection of PDLSCs against oxidative stress‑induced apoptosis. In the present study, apoptosis was induced by exposure of PDLSCs to various concentrations of H2O2 for 12 h, following which cell viability was assessed, and cleaved caspase‑3 and ‑9 expression levels were evaluated. To investigate the potential mechanism underlying this protection, the protein expression levels of total and phosphorylated extracellular signal‑regulated kinase (ERK), a key protein of the mitogen‑activated protein kinase (MAPK) signaling pathway, were examined. The results of the present study revealed that SDF‑1 pretreatment increased cell viability following H2O2 administration, and downregulated protein expression levels of activated caspase‑3 and ‑9. Furthermore, treatment with SDF‑1 increased the phosphorylation of ERK. The protective effect of SDF‑1 was partially inhibited by treatment with PD98059, a MAPK/ERK inhibitor, which decreased cell viability. The results of the present study suggested that SDF‑1 treatment is a potential strategy to improve the survival of PDLSCs, which may be beneficial for dental tissue regeneration.

  1. Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth.

    PubMed

    Araújo, Leandro Borges; Cosme-Silva, Leopoldo; Fernandes, Ana Paula; Oliveira, Thais Marchini de; Cavalcanti, Bruno das Neves; Gomes Filho, João Eduardo; Sakai, Vivien Thiemy

    2018-02-01

    The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. SHED were cultured for 1 - 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population.

  2. In vitro toxicity assay of cisplatin on mouse acute lymphoblastic leukaemia and spermatogonial stem cells.

    PubMed

    Shabani, R; Ashtari, K; Behnam, B; Izadyar, F; Asgari, H; Asghari Jafarabadi, M; Ashjari, M; Asadi, E; Koruji, M

    2016-06-01

    Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture. © 2015 Blackwell Verlag GmbH.

  3. Breaking the rules? X-ray examination of hematopoietic stem cell grafts at international airports.

    PubMed

    Petzer, Andreas L; Speth, Hans-Georg; Hoflehner, Elisabeth; Clausen, Johannes; Nachbaur, David; Gastl, Günther; Gunsilius, Eberhard

    2002-06-15

    Hematopoietic stem cell grafts from unrelated donors are commonly transported by aircraft. They must not be subjected to x-rays during security checks, which may cause inconvenient discussions between the courier and the airport security staff. We exposed hematopoietic stem cells from mobilized peripheral blood to a widely used x-ray hand-luggage control system. Cell viability as well as growth in vitro of mature progenitor cells (colony-forming cells), primitive progenitor cells (long-term culture-initiating cells), and lymphocytes were not altered even after 10 passages through the hand-luggage control system. Thus, repeated exposure to the low radiation dose of hand-luggage control systems (1.5 +/- 0.6 microSv per exposure) seems to be harmless for hematopoietic stem cells, which should simplify the international transport of stem cell grafts.

  4. A quality-by-design approach to risk reduction and optimization for human embryonic stem cell cryopreservation processes.

    PubMed

    Mitchell, Peter D; Ratcliffe, Elizabeth; Hourd, Paul; Williams, David J; Thomas, Robert J

    2014-12-01

    It is well documented that cryopreservation and resuscitation of human embryonic stem cells (hESCs) is complex and ill-defined, and often suffers poor cell recovery and increased levels of undesirable cell differentiation. In this study we have applied Quality-by-Design (QbD) concepts to the critical processes of slow-freeze cryopreservation and resuscitation of hESC colony cultures. Optimized subprocesses were linked together to deliver a controlled complete process. We have demonstrated a rapid, high-throughput, and stable system for measurement of cell adherence and viability as robust markers of in-process and postrecovery cell state. We observed that measurement of adherence and viability of adhered cells at 1 h postseeding was predictive of cell proliferative ability up to 96 h in this system. Application of factorial design defined the operating spaces for cryopreservation and resuscitation, critically linking the performance of these two processes. Optimization of both processes resulted in enhanced reattachment and post-thaw viability, resulting in substantially greater recovery of cryopreserved, pluripotent cell colonies. This study demonstrates the importance of QbD concepts and tools for rapid, robust, and low-risk process design that can inform manufacturing controls and logistics.

  5. Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model.

    PubMed

    Steves, Alyse N; Turry, Adam; Gill, Brittany; Clarkson-Townsend, Danielle; Bradner, Joshua M; Bachli, Ian; Caudle, W Michael; Miller, Gary W; Chan, Anthony W S; Easley, Charles A

    2018-06-18

    Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis in vitro under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease in vitro germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids in vitro under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes. CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell.

  6. Advanced three-dimensional culture of equine intestinal epithelial stem cells.

    PubMed

    Stewart, A Stieler; Freund, J M; Gonzalez, L M

    2018-03-01

    Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease (colic). © 2017 EVJ Ltd.

  7. Sub-physiological oxygen levels optimal for growth and survival of human atrial cardiac stem cells.

    PubMed

    RajendranNair, Deepthi Sreerengam; Karunakaran, Jayakumar; Nair, Renuka R

    2017-08-01

    Cardiac stem cells reside in niches where the oxygen levels are close to 3%. For cytotherapy, cells are conventionally expanded in ambient oxygen (21% O 2 ) which represents hyperoxia compared to the oxygen tension of niches. Cardiosphere-derived cells (CDCs) are then transplanted to host tissue with lower-O 2 levels. The high-O 2 gradient can reduce the efficacy of cultured cells. Based on the assumption that minimizing injury due to O 2 gradients will enhance the yield of functionally efficient cells, CDCs were cultured in 3% O 2 and compared with cells maintained in ambient O 2 . CDCs were isolated from human right atrial explants and expanded in parallel in 21 and 3% oxygen and compared with regard to survival, proliferation, and retention of stemness. Increased cell viability even in the tenth passage and enhanced cardiosphere formation was observed in cells expanded in 3% O 2 . The cell yield from seven passages was fourfold higher for cells cultured in 3% O 2 . Preservation of stemness in hypoxic environment was evident from the proportion of c-kit-positive cells and reduced myogenic differentiation. Hypoxia promoted angiogenesis and reduced the tendency to differentiate to noncardiac lineages (adipocytes and osteocytes). Mimicking the microenvironment at transplantation, when shifted to 5% O 2 , viability and proliferation rate were significantly higher for CDCs expanded in 3% O 2 . Expansion of CDCs, from atria in sub-physiological oxygen, helps in obtaining a higher yield of healthy cells with better preservation of stem cell characteristics. The cells so cultured are expected to improve engraftment and facilitate myocardial regeneration.

  8. Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy.

    PubMed

    Chan, C W; Hussain, I; Waugh, D G; Lawrence, J; Man, H C

    2014-09-01

    The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by hemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Expansion and Differentiation of Germline-Derived Pluripotent Stem Cells on Biomaterials

    PubMed Central

    Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R.; Zenke, Martin; Neuss, Sabine

    2013-01-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer® LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level. PMID:23234562

  10. Comparison of Preterm and Term Wharton's Jelly-Derived Mesenchymal Stem Cell Properties in Different Oxygen Tensions.

    PubMed

    Balgi-Agarwal, Saloni; Winter, Caitlyn; Corral, Alexis; Mustafa, Shamimunisa B; Hornsby, Peter; Moreira, Alvaro

    2018-06-27

    Mesenchymal stem cells (MSCs) have shown promise as therapeutic agents in treating morbidities associated with premature birth. MSCs derived from the human umbilical cord are easy to isolate and have low immunogenicity and a robust ability to secrete paracrine factors. To date, there are no studies evaluating preterm versus term umbilical cord tissue-derived MSCs. Therefore, our aim was twofold: (1) to compare stem cell properties in preterm versus term MSCs and (2) to examine the impact of oxygen tension on stem cell behavior. Umbilical cord tissue was obtained from 5 preterm and 5 term neonates. The cells were isolated and characterized as MSCs in accordance with the International Society for Cellular Therapy. We exposed MSCs to different oxygen tensions to examine the impact of environmental factors on cell performance. We studied the following stem cell properties: (i) motility, (ii) proliferation, (iii) senescence, (iv) cell viability, (v) colony-forming unit efficiency, and (vi) inflammatory cytokine expression. Under normoxia (21% O2), cells from preterm and term infants had similar properties. Under hypoxic conditions (1% O2), term MSCs had better cell proliferation; however, cells exposed to hyperoxia (90% O2) had the slowest motility and lowest cell viability (p < 0.05). There was no difference in the expression of senescence or cytokine expression between the groups. The term cells demonstrated more colony-forming efficiency than the preterm cells. In sum, our preliminary findings suggest that MSCs derived from term and preterm umbilical cords have similar characteristics, offering the potential of future autologous/allogeneic MSC transplants in neonates. © 2018 S. Karger AG, Basel.

  11. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials.

    PubMed

    Hoss, Mareike; Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R; Zenke, Martin; Neuss, Sabine

    2013-05-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.

  12. In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants

    PubMed Central

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  13. Data on the potential impact of food supplements on the growth of mouse embryonic stem cells.

    PubMed

    Correia, Marcelo; Sousa, Maria I; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Ramalho-Santos, João

    2016-06-01

    The use of new compounds as dietary supplements is increasing, but little is known in terms of possible consequences of their use. Pluripotent stem cells are a promising research tool for citotoxicological research for evaluation of proliferation, cell death, pluripotency and differentiation. Using the mouse embryonic stem cell (mESC) model, we present data on three different compounds that have been proposed as new potential supplements for co-adjuvant disease treatments: kaempferol, berberine and Tauroursodeoxycholic acid (TUDCA). Cell number and viability were monitored following treatment with increased concentrations of each drug in pluripotent culture conditions.

  14. Effects of long-term cryopreservation on peripheral blood progenitor cells.

    PubMed

    Vosganian, Gregory S; Waalen, Jill; Kim, Kevin; Jhatakia, Sejal; Schram, Ethan; Lee, Tracey; Riddell, Dan; Mason, James R

    2012-11-01

    The long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA). We randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture. An age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity. Cryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34(+) cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers.

  15. Tri-ortho-cresyl phosphate induces autophagy of rat spermatogonial stem cells.

    PubMed

    Liu, Meng-Ling; Wang, Jing-Lei; Wei, Jie; Xu, Lin-Lin; Yu, Mei; Liu, Xiao-Mei; Ruan, Wen-Li; Chen, Jia-Xiang

    2015-02-01

    Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners, and flame retardants in industry and reported to have a deleterious effect on the male reproductive system in animals besides delayed neurotoxicity. Our preliminary results found that TOCP could disrupt the seminiferous epithelium in the testis and inhibit spermatogenesis, but the precise mechanism is yet to be elucidated. This study shows that TOCP inhibited viability of rat spermatogonial stem cells in a dose-dependent manner. TOCP could not lead to cell cycle arrest in the cells; the mRNA levels of p21, p27, p53, and cyclin D1 in the cells were also not affected by TOCP. Meanwhile, TOCP did not induce apoptosis of rat spermatogonial stem cells. After treatment with TOCP, however, both LC3-II and the ratio of LC3-II/LC3-I were markedly increased; autophagy proteins ATG5 and beclin 1 were also increased after treatment with TOCP, indicating that TOCP could induce autophagy in the cells. Ultrastructural observation under the transmission electron microscopy indicated that autophagic vesicles in the cytoplasm containing extensively degraded organelles such as mitochondria and endoplasmic reticulum increased significantly after the cells were treated with TOCP. In summary, we have shown that TOCP can inhibit viability of rat spermatogonial stem cells and induce autophagy of the cells, without affecting cell cycle and apoptosis. © 2015 Society for Reproduction and Fertility.

  16. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs ormore » VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.« less

  17. In Vivo Long-Term Tracking of Neural Stem Cells Transplanted into an Acute Ischemic Stroke model with Reporter Gene-Based Bimodal MR and Optical Imaging.

    PubMed

    Zhang, Fang; Duan, Xiaohui; Lu, Liejing; Zhang, Xiang; Chen, Meiwei; Mao, Jiaji; Cao, Minghui; Shen, Jun

    2017-10-01

    Transplantation of neural stem cells (NSCs) is emerging as a new therapeutic approach for stroke. Real-time imaging of transplanted NSCs is essential for successful cell delivery, safety monitoring, tracking cell fate and function, and understanding the interactions of transplanted cells with the host environment. Magnetic resonance imaging (MRI) of magnetic nanoparticle-labeled cells has been the most widely used means to track stem cells in vivo. Nevertheless, it does not allow for the reliable discrimination between live and dead cells. Reporter gene-based MRI was considered as an alternative strategy to overcome this shortcoming. In this work, a class of lentiviral vector-encoding ferritin heavy chain (FTH) and enhanced green fluorescent protein (EGFP) was constructed to deliver reporter genes into NSCs. After these transgenic NSCs were transplanted into the contralateral hemisphere of rats with acute ischemic stroke, MRI and fluorescence imaging (FLI) were performed in vivo for tracking the fate of transplanted cells over a long period of 6 wk. The results demonstrated that the FTH and EGFP can be effectively and safely delivered to NSCs via the designed lentiviral vector. The distribution and migration of grafted stem cells could be monitored by bimodal MRI and FLI. FTH can be used as a robust MRI reporter for reliable reporting of the short-term viability of cell grafts, whereas its capacity for tracking the long-term viability of stem cells remains dependent on several confounding factors such as cell death and the concomitant reactive inflammation.

  18. Effect of photobiomodulation on viability and proliferation of stem cells from exfoliated deciduous teeth under different nutritional conditions

    NASA Astrophysics Data System (ADS)

    Morato de Souza, Letícia; Guilherme Roque Rinco, Ugo; Aparecida Tavares Aguiar, Daniela; Aparecido de Almeida Junior, Luciano; Cosme-Silva, Leopoldo; Marchini Oliveira, Thais; Teixeira Marques, Nádia Carolina; Thiemy Sakai, Vivien

    2018-02-01

    This study aimed to evaluate the effect of different doses of low-level laser irradiation on the viability and proliferation of stem cells from exfoliated deciduous teeth (SHED) cultured under nutritional deficit (cellular stress) or regular nutritional conditions. SHED underwent irradiation by a red laser between 1.2 and 6.2 J cm-2. Prior to the irradiation, all groups received culture medium (MEMα, Eagle’s minimum essential medium alpha modification) supplemented with 1% of fetal bovine serum (FBS) for 1 h. After the irradiation, cells received MEMα supplemented with 10% of FBS (regular nutrition) or 1% of FBS (nutritional deficit). Cell viability and proliferation were respectively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays 6 and 24 h after irradiation (P  <  0.05). At 24 h, SHED under nutritional deficit showed lower viability and proliferation after 1.2 J cm-2 irradiation. All of the irradiated groups revealed significantly higher viability and proliferation in SHED maintained under nutritional deficit than in regular nutritional conditions, except in the 3.7 and 6.2 J cm-2 groups by MTT assay. In the crystal violet assay, SHED irradiated with 1.2 J cm-2 showed no difference between the different nutritional conditions. Decrease of FBS concentration in the culture medium seems to enhance the sensitivity of SHED to the effects of photobiomodulation therapy. Nutritional stress conditions improved cell viability and proliferation of SHED after laser irradiation, except for 1.2 J cm-2.

  19. In vitro bioactivity of Bioroot™ RCS, via A4 mouse pulpal stem cells.

    PubMed

    Dimitrova-Nakov, Sasha; Uzunoglu, Emel; Ardila-Osorio, Hector; Baudry, Anne; Richard, Gilles; Kellermann, Odile; Goldberg, Michel

    2015-11-01

    To evaluate the biocompatibility and osteoinductive properties of Bioroot™ RCS (BR, Septodont, France) compared to Kerr's Pulp Canal Sealer™ (PCS, Kerr, Italy) using the mouse pulp-derived stem cell line A4, which have an osteo/odontogenic potential in vitro and contribute to efficient bone repair in vivo. A4 cells were cultured at the stem cell stage in the presence of solid disks of BR or PCS, whereas untreated A4 cells were used as control. After 3, 7, 10 days of direct contact with the sealers, cell viability was quantified using Trypan Blue exclusion assay. Immunolabelings were performed to assess the expression of odontoblast markers i.e. type 1 collagen, DMP1 or BSP. Finally, sealer-treated cells were induced toward osteo/odontogenic differentiation to assess the impact of the sealers on mineralization by Von Kossa staining. Statistical significance was evaluated by one-way analysis of variance and t-test (p<0.05). BR did not alter the viability and morphology of A4 pulpal cells compared to control group (p>0.05); however, living cell percentage of PCS was significantly lower compared to control and BR groups (p<0.05). BR preserved the intrinsic ability of A4 cells to express type 1 collagen, DMP1 or BSP at the stem cell stage. It did not alter the integrity of collagen fibers surrounding the cells and promoted overexpression of BSP and DMP1 at the cell surface. In contrast to PCS, BR did not compromise the mineralization potential of pulpal A4 stem cells. Bioroot™ RCS was not as cytotoxic as PCS. It did not recruit the pulpal stem cells toward differentiation but preserve their osteo-odontogenic intrinsic properties. Bioroot™ RCS might provide more suitable environment to induce stem cells for hard tissue deposition. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Dimethyloxalylglycine may be enhance the capacity of neural-like cells in treatment of Alzheimer disease.

    PubMed

    Ghasemi Moravej, Fahimeh; Vahabian, Mehrangiz; Soleimani Asl, Sara

    2016-06-01

    Although using differentiated stem cells is the best proposed option for the treatment of Alzheimer disease (AD), an efficient differentiation and cell therapy require enhanced cell survival and homing and decreased apoptosis. It seems that hypoxia preconditioning via Dimethyloxalylglycine (DMOG) may increase the capacity of MSC to induce neural like stem cells (NSCs). Furthermore, it can likely improve the viability of NSCs when transplanted into the brain of AD rats. © 2016 International Federation for Cell Biology.

  1. Physiologically Low Oxygen Enhances Biomolecule Production and Stemness of Mesenchymal Stem Cell Spheroids

    PubMed Central

    Shearier, Emily; Xing, Qi; Qian, Zichen

    2016-01-01

    Multicellular human mesenchymal stem cell (hMSC) spheroids have been demonstrated to be valuable in a variety of applications, including cartilage regeneration, wound healing, and neoangiogenesis. Physiological relevant low oxygen culture can significantly improve in vitro hMSC expansion by preventing cell differentiation. We hypothesize that hypoxia-cultured hMSC spheroids can better maintain the regenerative properties of hMSCs. In this study, hMSC spheroids were fabricated using hanging drop method and cultured under 2% O2 and 20% O2 for up to 96 h. Spheroid diameter and viability were examined, as well as extracellular matrix (ECM) components and growth factor levels between the two oxygen tensions at different time points. Stemness was measured among the spheroid culture conditions and compared to two-dimensional cell cultures. Spheroid viability and structural integrity were studied using different needle gauges to ensure no damage would occur when implemented in vivo. Spheroid attachment and integration within a tissue substitute were also demonstrated. The results showed that a three-dimensional hMSC spheroid cultured at low oxygen conditions can enhance the production of ECM proteins and growth factors, while maintaining the spheroids' stemness and ability to be injected, attached, and potentially be integrated within a tissue. PMID:26830500

  2. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  3. Viability and neural differentiation of mesenchymal stem cells derived from the umbilical cord following perinatal asphyxia.

    PubMed

    Aly, H; Mohsen, L; Badrawi, N; Gabr, H; Ali, Z; Akmal, D

    2012-09-01

    Hypoxia-ischemia is the leading cause of neurological handicaps in newborns worldwide. Mesenchymal stem cells (MSCs) collected from fresh cord blood of asphyxiated newborns have the potential to regenerate damaged neural tissues. The aim of this study was to examine the capacity for MSCs to differentiate into neural tissue that could subsequently be used for autologous transplantation. We collected cord blood samples from full-term newborns with perinatal hypoxemia (n=27), healthy newborns (n=14) and non-hypoxic premature neonates (n=14). Mononuclear cells were separated, counted, and then analyzed by flow cytometry to assess various stem cell populations. MSCs were isolated by plastic adherence and characterized by morphology. Cells underwent immunophenotyping and trilineage differentiation potential. They were then cultured in conditions favoring neural differentiation. Neural lineage commitment was detected using immunohistochemical staining for glial fibrillary acidic protein, tubulin III and oligodendrocyte marker O4 antibodies. Mononuclear cell count and viability did not differ among the three groups of infants. Neural differentiation was best demonstrated in the cells derived from hypoxia-ischemia term neonates, of which 69% had complete and 31% had partial neural differentiation. Cells derived from preterm neonates had the least amount of neural differentiation, whereas partial differentiation was observed in only 12%. These findings support the potential utilization of umbilical cord stem cells as a source for autologous transplant in asphyxiated neonates.

  4. Effects of Different Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial Mesenchymal Stem Cells.

    PubMed

    Tsuji, Kunikazu; Ojima, Miyoko; Otabe, Koji; Horie, Masafumi; Koga, Hideyuki; Sekiya, Ichiro; Muneta, Takeshi

    2017-06-09

    Flow cytometric analysis of cell surface antigens is a powerful tool for the isolation and characterization of stem cells residing in adult tissues. In contrast to the collection of hematopoietic stem cells, the process of enzymatic digestion is usually necessary to prepare mesenchymal stem cells (MSCs) suspensions, which can influence the expression of cell surface markers. In this study, we examined the effects of various cell-detaching reagents and digestion times on the expression of stem cell-related surface antigens and MSC functions. Human MSCs were detached from dishes using four different reagents: trypsin, TrypLE, collagenase, and a nonenzymatic cell dissociation reagent (C5789; Sigma-Aldrich). Following dissociation reagent incubations ranging from 5 to 120 min, cell surface markers were analyzed by flow cytometry. Trypsin and TrypLE quickly dissociated the cells within 5 min, while collagenase and C5789 required 60 min to obtain maximum cell yields. C5789 significantly decreased cell viability at 120 min. Trypsin treatment significantly reduced CD44+, CD55+, CD73+, CD105+, CD140a+, CD140b+, and CD201+ cell numbers within 30 min. Collagenase treatment reduced CD140a expression by 30 min. In contrast, TrypLE treatment did not affect the expression of any cell surface antigens tested by 30 min. Despite the significant loss of surface antigen expression after 60 min of treatment with trypsin, adverse effects of enzymatic digestion on multipotency of MSCs were limited. Overall, our data indicated that TrypLE is advantageous over other cell dissociation reagents tested for the rapid preparation of viable MSC suspensions.

  5. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-{sup 124}I-iodobenzoate in rat myocardial infarction model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min Hwan; School of Life Sciences and Biotechnology, Korea University, Seoul; Woo, Sang-Keun

    Highlights: • We developed a safe, simple and appropriate stem cell labeling method with {sup 124}I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with {sup 124}I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via themore » hexadecyl-4-{sup 124}I-iodobenzoate ({sup 124}I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with {sup 124}I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of {sup 124}I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. In vivo tracking of the {sup 124}I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, {sup 124}I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials.« less

  6. In Vivo Imaging and Monitoring of Transplanted Stem Cells: Clinical Applications

    PubMed Central

    Rodriguez-Porcel, Martin

    2010-01-01

    Regenerative medicine using stem cells has appeared as a potential therapeutic alternative for coronary artery disease, and stem cell clinical studies are currently on their way. However, initial results of these studies have provided mixed information, in part because of the inability to correlate organ functional information with the presence/absence of transplanted stem cells. Recent advances in molecular biology and imaging have allowed the successful noninvasive monitoring of transplanted stem cells in the living subject. In this article, different imaging strategies (direct labeling, indirect labeling with reporter genes) to study the viability and biology of stem cells are discussed. In addition, the limitations of each approach and imaging modality (eg, single photon emission computed tomography, positron emission tomography, and MRI) and their requirements for clinical use are addressed. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use. PMID:20425184

  7. Inhibitory effects of mouse bone marrow mesenchymal stem cell soup on staurospurine-induced cell death in MCF-7 and AGS.

    PubMed

    Zhaleh, M; Azadbakht, M; Bidmeshki Pour, A

    2017-01-01

    Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1μM Staurospurine (Treatment 1) and 0.0 μM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. Our results showed that BM soup administration for 48 hours protectsed against 1μM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).

  8. Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth

    PubMed Central

    Araújo, Leandro Borges; Cosme-Silva, Leopoldo; Fernandes, Ana Paula; de Oliveira, Thais Marchini; Cavalcanti, Bruno das Neves; Gomes, João Eduardo; Sakai, Vivien Thiemy

    2018-01-01

    Abstract Objective The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. Material and Methods SHED were cultured for 1 – 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. Results MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Conclusion Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population. PMID:29412365

  9. The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties.

    PubMed

    Abdyazdani, Nima; Nourazarian, Alireza; Nozad Charoudeh, Hojjatollah; Kazemi, Masoumeh; Feizy, Navid; Akbarzade, Maryam; Mehdizadeh, Amir; Rezaie, Jafar; Rahbarghazi, Reza

    2017-01-01

    A lack of comprehensive data exists on the effect of morphine on neural stem cell neuro-steroidogenesis and neuro-angiogenesis properties. We, herein, investigated the effects of morphine (100μM), naloxone (100μM) and their combination on rat neural stem cells viability, clonogenicity and Ki-67 expression over a period of 72h. Any alterations in the total fatty acids profile under treatment protocols were elucidated by direct transesterification method. We also monitored the expression of p53, aromatase and 5-alpha reductase by real-time PCR assay. To examine angiogenic capacity, in vitro tubulogenesis and the level of VE-cadherin transcript were investigated during neural to endothelial differentiation under the experimental procedure. Cells supplemented with morphine displayed reduced survival (p<0.01) and clonogenicity (p<0.001). Flow cytometric analysis showed a decrease in Ki-67 during 72h. Naloxone potentially blunted morphine-induced all effects. The normal levels of fatty acids, including saturated and unsaturated were altered by naloxone and morphine supplements. Following 48h, the up-regulation of p53, aromatase and 5-alpha reductase genes occurred in morphine-primed cells. Using three-dimensional culture models of angiogenesis and real time PCR assay, we showed morphine impaired the tubulogenesis properties of neural stem cells (p<0.001) by the inhibition of trans-differentiation into vascular cells and led to decrease of in VE-cadherin expression. Collectively, morphine strongly impaired the healthy status of neural stem cells by inducing p53 and concurrent elevation of aromatase and 5-alpha reductase activities especially during early 48h. Also, neural stem cells-being exposed to morphine lost their potency to elicit angiogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast.

    PubMed

    Barrow, Michael; Taylor, Arthur; García Carrión, Jaime; Mandal, Pranab; Park, B Kevin; Poptani, Harish; Murray, Patricia; Rosseinsky, Matthew J; Adams, Dave J

    2016-09-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as contrast agents for stem cell tracking using magnetic resonance imaging (MRI). The total mass of iron oxide that can be internalised into cells without altering their viability or phenotype is an important criterion for the generation of contrast, with SPIONs designed for efficient labelling of stem cells allowing for an increased sensitivity of detection. Although changes in the ratio of polymer and iron salts in co-precipitation reactions are known to affect the physicochemical properties of SPIONs, particularly core size, the effects of these synthesis conditions on stem cell labelling and magnetic resonance (MR) contrast have not been established. Here, we synthesised a series of cationic SPIONs with very similar hydrodynamic diameters and surface charges, but different polymer content. We have investigated how the amount of polymer in the co-precipitation reaction affects core size and modulates not only the magnetic properties of the SPIONs but also their uptake into stem cells. SPIONs with the largest core size and lowest polymer content presented the highest magnetisation and relaxivity. These particles also had the greatest uptake efficiency without any deleterious effect on either the viability or function of the stem cells. However, for all particles internalised in cells, the T 2 and T 2 * relaxivity was independent of the SPION's core size. Our results indicate that the relative mass of iron taken up by cells is the major determinant of MR contrast generation and suggest that the extent of SPION uptake can be regulated by the amount of polymer used in co-precipitation reactions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Protein-engineered block-copolymers as stem cell delivery vehicles

    NASA Astrophysics Data System (ADS)

    Heilshorn, Sarah

    2015-03-01

    Stem cell transplantation is a promising therapy for a myriad of debilitating diseases and injuries; however, current delivery protocols are inadequate. Transplantation by direct injection, which is clinically preferred for its minimal invasiveness, commonly results in less than 5% cell viability, greatly inhibiting clinical outcomes. We demonstrate that mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we show that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. Building on these fundamental studies, we have designed a reproducible, bio-resorbable, customizable hydrogel using protein-engineering technology. In our Mixing-Induced Two-Component Hydrogel (MITCH), network assembly is driven by specific and stoichiometric peptide-peptide binding interactions. By integrating protein science methodologies with simple polymer physics models, we manipulate the polypeptide chain interactions and demonstrate the direct ability to tune the network crosslinking density, sol-gel phase behavior, and gel mechanics. This is in contrast to many other physical hydrogels, where predictable tuning of bulk mechanics from the molecular level remains elusive due to the reliance on non-specific and non-stoichiometric chain interactions for network formation. Furthermore, the hydrogel network can be easily modified to deliver a variety of bioactive payloads including growth factors, peptide drugs, and hydroxyapatite nanoparticles. Through a series of in vitro and in vivo studies, we demonstrate that these materials may significantly improve transplanted stem cell retention and function.

  12. Isolation and purification of rabbit mesenchymal stem cells using an optimized protocol.

    PubMed

    Lin, Chunbo; Shen, Maorong; Chen, Weiping; Li, Xiaofeng; Luo, Daoming; Cai, Jinhong; Yang, Yuan

    2015-11-01

    Mesenchymal stem cells were first isolated and grown in vitro by Friedenstein over 40 yr ago; however, their isolation remains challenging as they lack unique markers for identification and are present in very small quantities in mesenchymal tissues and bone marrow. Using whole marrow samples, common methods for mesenchymal stem cell isolation are the adhesion method and density gradient fractionation. The whole marrow sample adhesion method still results in the nonspecific isolation of mononuclear cells, and activation and/or potential loss of target cells. Density gradient fractionation methods are complicated, and may result in contamination with toxic substances that affect cell viability. In the present study, we developed an optimized protocol for the isolation and purification of mesenchymal stem cells based on the principles of hypotonic lysis and natural sedimentation.

  13. Alginate microencapsulation technology for the percutaneous delivery of adipose-derived stem cells.

    PubMed

    Moyer, Hunter R; Kinney, Ramsey C; Singh, Kimberly A; Williams, Joseph K; Schwartz, Zvi; Boyan, Barbara D

    2010-11-01

    Autologous fat is the ideal soft-tissue filler; however, its widespread application is limited because of variable clinical results and poor survival. Engineered fillers have the potential to maximize survival. Alginate is a hydrogel copolymer that can be engineered into spheres of <200 μm, thus facilitating mass transfer, allowing for subcutaneous injection, and protecting cells from shearing forces. Alginate powder was dissolved in saline, and adipose-derived stem cells (ADSCs) were encapsulated (1 million cells/mL) in alginate using an electrostatic bead generator. To assess effects of injection on cell viability, microspheres containing ADSCs were separated into 2 groups: the control group was decanted into culture wells and the injection group was mixed with basal media and injected through a 21-gauge needle into culture wells. Microbeads were cultured for 3 weeks, and cell number and viability were measured weekly using electron and confocal microscopy. To assess effects of percutaneous injection in vivo, twenty-four male nude mice were randomly separated into 2 groups and injected with either empty microcapsules or ADSC-laden microcapsules. Mice were harvested at 1 and 3 months, and the implants were examined microscopically to assess bead and cell viability. A flow rate of 5 mL/h and an electrostatic potential of 7 kV produced viable ADSC-laden microbeads of <200 μm. There were no differences in bead morphology and ADSC viability between microcapsules placed versus injected into tissue culture plates for up to 3 weeks. Microspheres implanted in a nude mouse model show durability up to 3 months with a host response around each individual sphere. ADSCs remained viable and showed signs of mitosis. ADSCs can be readily cultured, encapsulated, and injected in alginate microspheres. Stem cells suspended in alginate microspheres survive in vivo and are seen to replicate in vitro.

  14. The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation

    PubMed Central

    Nikolaev, N. I.; Liu, Y.; Hussein, H.; Williams, D. J.

    2012-01-01

    In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2–8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s−2 and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s−2, peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s−2, peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage. PMID:22628214

  15. The novel JNK inhibitor AS602801 inhibits cancer stem cells in vitro and in vivo.

    PubMed

    Okada, Masashi; Kuramoto, Kenta; Takeda, Hiroyuki; Watarai, Hikaru; Sakaki, Hirotsugu; Seino, Shizuka; Seino, Manabu; Suzuki, Shuhei; Kitanaka, Chifumi

    2016-05-10

    A phase 2 clinical trial investigating the efficacy and safety of AS602801, a newly developed JNK inhibitor, in the treatment of inflammatory endometriosis is complete. We are now examining whether AS602801 acts against human cancer cells in vitro and in vivo. In vitro, AS602801 exhibited cytotoxicity against both serum-cultured non-stem cancer cells and cancer stem cells derived from human pancreatic cancer, non-small cell lung cancer, ovarian cancer and glioblastoma at concentrations that did not decrease the viability of normal human fibroblasts. AS602801 also inhibited the self-renewal and tumor-initiating capacity of cancer stem cells surviving AS602801 treatment. Cancer stem cells in established xenograft tumors were reduced by systemic administration of AS602801 at a dose and schedule that did not adversely affect the health of the tumor-bearing mice. These findings suggest AS602801 is a promising anti-cancer stem cell agent, and further investigation of the utility of AS602801 in the treatment of cancer seems warranted.

  16. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks.

    PubMed

    Salinas, Chelsea N; Cole, Brook B; Kasko, Andrea M; Anseth, Kristi S

    2007-05-01

    Chondrogenesis of human mesenchymal stem cells (hMSCs) encapsulated in poly(ethylene glycol) (PEG)-based hydrogels was studied in the presence and absence of 5 ng/mL transforming growth factor beta and chondrogenic medium to better understand the role of the gel environment on this process. The lack of any cell-polymer interactions led to decreasing cell viability, as measured using adenosine triphosphate, over a 14-day period. The extent of chondrogenic differentiation was evaluated by immunostaining, and although viability dramatically decreased, cells cultured in chondrogenic differentiation medium expressed higher levels of collagen type II. Cells cultured in hMSC control medium remained undifferentiated and continued to express CD105, a MSC marker. To increase cell survival, arginine-glycine-aspartic acid-serine (RGDS) was incorporated into gels using a novel mixed-mode thiol-ene reaction by synthesizing a cysteine-cysteine-arginine-glycine-aspartic acid-serine-cysteine-cysteine-glycine, N-terminus to C-terminus peptide sequence with pendant cysteine residues. A concentration of 5 mM RGDS incorporated into the network maintained 75% viability in control cultures. Further studies demonstrated that 5-mM RGDS chondrogenic cultures had greater gene expression for aggrecan and collagen II in conjunction with producing twice as much glycosaminoglycan as 0-mM chondrogenic cultures and 7 times that of control cultures. Incorporation of this peptide sequence not only allows for sustained viability, but also contributes to initiating chondrogenesis.

  17. Bio-electrospraying of human mesenchymal stem cells: An alternative for tissue engineering

    PubMed Central

    Braghirolli, D. I.; Zamboni, F.; Chagastelles, P. C.; Moura, D. J.; Saffi, J.; Henriques, J. A. P.; Pilger, D. A.; Pranke, P.

    2013-01-01

    Bio-electrospraying (BES) is a technique used for the processing of cells and can be applied to tissue engineering. The association of BES with scaffold production techniques has been shown to be an interesting strategy for the production of biomaterials with cells homogeneously distributed in the entire structure. Various studies have evaluated the effects of BES on different cell types. However, until the present moment, no studies have evaluated the impact of BES time on mesenchymal stem cells (MSC). Therefore, the aim of this work was to standardise the different parameters of BES (voltage, flow rate, and distance of the needle from the collecting plate) in relation to cell viability and then to evaluate the impact of BES time in relation to viability, proliferation, DNA damage, maintenance of plasticity and the immunophenotypic profile of MSC. Using 15 kV voltage, 0.46 ml/h flow rate and 4 cm distance, it was possible to form a stable and continuous jet of BES without causing a significant reduction in cell viability. Time periods between 15 and 60 min of BES did not cause alterations of viability, proliferation, plasticity, and immunophenotypic profile of the MSC. Time periods above 30 min of BES resulted in DNA damage; however, the DNA was able to repair itself within five hours. These results indicate that bio-electrospraying is an adequate technique for processing MSC which can be safely applied to tissue engineering and regenerative medicine. PMID:24404063

  18. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    PubMed Central

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.

    2017-01-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810

  19. Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFκB pathway

    PubMed Central

    Alvero, Ayesha B; Visintin, Irene

    2011-01-01

    Recurrent ovarian cancer is resistant to conventional chemotherapy. A sub-population of ovarian cancer cells, the epithelial ovarian cancer stem cells (EOC stem cells) have stemness properties, constitutive NFκB activity, and represent the chemoresistant population. Currently, there is no effective treatment that targets these cells. Aurora-A kinase (Aurora-A) is associated with tumor initiation and progression and is overexpressed in numerous malignancies. The aim of this study is to determine the effect of Aurora-A inhibition in EOC stem cells. EOC stem cells were treated with the Aurora-A inhibitor, MK-5108. Cell growth was monitored by Incucyte real-time imaging system, cell viability was measured using the Celltiter 96 assay and cytokine levels were quantified using xMAP technology. The intracellular changes associated with MK-5108 treatment are: (1) polyploidy and cell cycle arrest; (2) inhibition of NFκB activity; (3) decreased cytokine production; and (4) nuclear accumulation of IκBα. Thus, inhibition of Aurora-A decreases cell proliferation in the EOC stem cells by inducing cell cycle arrest and affecting the NFκB pathway. As EOC stem cells represent a source of recurrence and chemoresistance, these results suggest that Aurora-A inhibition may effectively target the cancer stem cell population in ovarian cancer. PMID:21623171

  20. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    PubMed Central

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  1. An in vitro evaluation of the cytotoxicity of varying concentrations of sodium hypochlorite on human mesenchymal stem cells.

    PubMed

    Alkahtani, Ahmed; Alkahtany, Sarah M; Anil, Sukumaran

    2014-07-01

    To evaluate and compare the cytotoxicity of various concentrations of sodium hypochlorite on immortalized human bone marrow mesenchymal stem cells (MSCs). The 5.25 percent sodium hypochlo-rite (NaOCl) at concentrations of 0.5, 0.1, 0.025, 0.0125, and 0.005 mg/ml were used to assess the cytotoxic effect on MSCs. Immortalized human bone marrow mesenchymal stem cells (hTERT-MSCs) were exposed to NaOCl at 5 different concentrations. Cell viability was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alamarBlue assays. The cell morphology changes were assessed with scanning electron microscopy (SEM) after exposure to 2, 4, and 24 hour incubation. The ethidium bromide/acridine orange (EB/ AO) fuorescent stain was applied to the cells in the 8-chamber slides after they were incubated with the testing agents for 2 and 4 hours to detect live and dead cells. The observations were quantitatively and qualitatively analyzed. The cell viability study using MTT assay and AB assay showed significant reduction with varying concentration at 2 and 4 hours incubation period. The cell viability decreased with the higher percentage of NaOCl. The exposure time also revealed an inverse relation to the cell viability. The SEM analysis showed reduction in the number of cells and morphological alterations with 0.5 mg/ml at 2 and 4 hours compared to 0.025 mg/ml NaOCl. Destruction of the cells with structural alterations and lysis was evident under fuorescence microscope when the cells were exposed to 0.5 mg/ml NaOCl. Within the limitations of this in vitro study it can be concluded that NaOCl is toxic to the human bone marrow MSCs. The cell lysis was evident with higher concentration of sodium hypochlorite. From the observations, it can be concluded that a lower concentration of NaOCl may be used as endodontic irrigant due to its cytotoxic properties. Further studies are mandatory to evolve a consensus on the optimal concentration of sodium hypochlorite to be used as endodontic irrigant.

  2. A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells

    PubMed Central

    2011-01-01

    Background The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed. Methods Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34+ in a flow cytometer. Results Our results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a p value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM) was also significantly higher than that after slow-cooling (33.25 μM), with a p value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a p value = 0.138. However, CD34+ enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl) than in the one that underwent rapid-cooling (2.47 cell/μl), with a p value = 0.001. Conclusions Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34+ cells after rapid-cooling is critically needed. PMID:21943045

  3. Effects of RF-EMF Exposure from GSM Mobile Phones on Proliferation Rate of Human Adipose-derived Stem Cells: An In-vitro Study

    PubMed Central

    Shahbazi-Gahrouei, D.; Hashemi-Beni, B.; Ahmadi, Z.

    2016-01-01

    Background: As the use of mobile phones is increasing, public concern about the harmful effects of radiation emitted by these devices is also growing. In addition, protection questions and biological effects are among growing concerns which have remained largely unanswered. Stem cells are useful models to assess the effects of radiofrequency electromagnetic fields (RF-EMF) on other cell lines. Stem cells are undifferentiated biological cells that can differentiate into specialized cells. Adipose tissue represents an abundant and accessible source of adult stem cells. The aim of this study is to investigate the effects of GSM 900 MHz on growth and proliferation of mesenchymal stem cells derived from adipose tissue within the specific distance and intensity. Materials and Methods: ADSCs were exposed to GSM mobile phones 900 MHz with intensity of 354.6 µW/cm2 square waves (217 Hz pulse frequency, 50% duty cycle), during different exposure times ranging from 6 to 21 min/day for 5 days at 20 cm distance from the antenna. MTT assay was used to determine the growth and metabolism of cells and trypan blue test was also done for cell viability. Statistical analyses were carried out using analysis of one way ANOVA. P<0.05 was considered to be statistically significant. Results: The proliferation rates of human ADSCs in all exposure groups were significantly lower than control groups (P<0.05) except in the group of 6 minutes/day which did not show any significant difference with control groups. Conclusion: The results show that 900 MHz RF signal radiation from antenna can reduce cell viability and proliferation rates of human ADSCs regarding the duration of exposure. PMID:28144594

  4. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells.

    PubMed

    Ikeda, Kazuhiro; Nagata, Shogo; Okitsu, Teru; Takeuchi, Shoji

    2017-06-06

    Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.

  5. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells.

    PubMed

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha

    2012-06-22

    Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-β in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-α, G-CSF, and TGF-β. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel.

    PubMed

    Chen, Yantian; Zhang, Fengli; Fu, Qiang; Liu, Yong; Wang, Zejian; Qi, Nianmin

    2016-09-01

    Injectable thermo-sensitive hydrogels have a potential application in bone tissue engineering for their sensitivities and minimal invasive properties. Human dental pulp stem cells have been considered a promising tool for tissue reconstruction. The objective of this study was to investigate the proliferation and osteogenic differentiation of dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel in vitro. The chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were prepared using the sol-gel method. The injectability of chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel was measured using a commercial disposable syringe. Scanning electron microscopy was used to observe the inner structure of hydrogels. Then dental pulp stem cells were seeded in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel, respectively. The growth of dental pulp stem cells was periodically observed under an inverted microscope. The proliferation of dental pulp stem cells was detected by using an Alamar Blue kit, while cell apoptosis was determined by using a Live/Dead Viability/Cytotoxicity kit. The osteogenic differentiations of dental pulp stem cells in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were evaluated by alkaline phosphatase activity assay and mRNA expression of osteogenesis gene for 21 days in osteogenic medium. The results indicated that there was no significant difference between chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel in injectability. Cells within the chitosan/β-glycerophosphate/hydroxyapatite hydrogel displayed a typical adherent cell morphology and rapid proliferation with high cellular viability after 14 days of culture. Dental pulp stem cells seeded in chitosan/β-glycerophosphate/hydroxyapatite hydrogels had a higher alkaline phosphatase activity and better up-regulation of gene expression levels of Runx-2, Collagen I, alkaline phosphatase and osteocalcin than in chitosan /β-glycerophosphate hydrogels after osteogenic differentiation. These results demonstrated that the chitosan/β-glycerophosphate/hydroxyapatite hydrogel had excellent cellular compatibility and the superiority in promoting dental pulp stem cells osteogenic differentiation in vitro, showing that the combination of dental pulp stem cells and chitosan/β-glycerophosphate/hydroxyapatite hydrogel has the potential to be used for bone tissue engineering. © The Author(s) 2016.

  7. Chapter 17 Sterile Plate-Based Vitrification of Adherent Human Pluripotent Stem Cells and Their Derivatives Using the TWIST Method.

    PubMed

    Neubauer, Julia C; Stracke, Frank; Zimmermann, Heiko

    2017-01-01

    Due to their high biological complexity, e.g., their close cell-to-cell contacts, cryopreservation of human pluripotent stem cells with standard slow-rate protocols often is inefficient and can hardly be standardized. Vitrification that means ultrafast freezing already showed very good viability and recovery rates for this sensitive cell system, but is only applicable for low cell numbers, bears a high risk of contamination, and can hardly be implemented under GxP regulations. In this chapter, a sterile plate-based vitrification method for adherent pluripotent stem cells and their derivatives is presented based on a procedure and device for human embryonic stem cells developed by Beier et al. (Cryobiology 66:8-16, 2013). This protocol overcomes the limitations of conventional vitrification procedures resulting in the highly efficient preservation of ready-to-use adherent pluripotent stem cells with the possibility of vitrifying cells in multi-well formats for direct application in high-throughput screenings.

  8. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong

    2016-03-01

    Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy.Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00785f

  9. The effects of biodegradable poly(lactic-co-glycolic acid)-based microspheres loaded with quercetin on stemness, viability and osteogenic differentiation potential of stem cell spheroids.

    PubMed

    Lee, H; Nguyen, T T; Kim, M; Jeong, J-H; Park, J-B

    2018-05-31

    Quercetin has been reported to exert many beneficial effects on the protection against various diseases, such as diabetes, cancer, and inflammation. The aim of this study is to evaluate the potential osteogenic differentiation ability of mesenchymal stem cells in the presence of quercetin. Quercetin-loaded poly(lactic-co-glycolic acid) microspheres were prepared using an electrospraying technique. Characterization of the microspheres was evaluated with a scanning electron microscope and release profile. Three-dimensional cell spheroids were fabricated using silicon elastomer-based concave microwells. Qualitative results of cellular viability were seen under a confocal microscope, and quantitative cellular viability was evaluated using the Cell Counting Kit-8 assay. The alkaline phosphatase activity and Alizarin Red S staining were performed. A quantitative real-time polymerase chain reaction and a western blot analysis were performed. Spheroids were well formed irrespective of quercetin concentration. Most of the cells in spheroids emitted green fluorescence, and the morphology was round without significant changes. The application of quercetin-loaded microspheres produced a significant increase in the alkaline phosphatase activity. The real-time polymerase chain reaction results showed a significant increase in Runx2, and western blot results showed higher expression of Runx2 protein expression. Biodegradable microspheres loaded with quercetin produced prolonged release profiles with increased mineralization. Microspheres loaded with quercetin can be used for the enhancement of osteoblastic differentiation in cell therapy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effect of Environmental Chemical Exposures on Adult Human Cardiac Progenitor Cell Viability and Differentiation

    EPA Science Inventory

    Cell biology has revealed that the adult heart is not a terminally differentiated organ but is capable of generating new cardiomyocytes (CMs) from cardiac stem cells (CSC) and/or progenitor cells (CPC) throughout life. The impact that environmental chemical exposures have on adul...

  11. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells.

    PubMed

    Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G

    2016-06-01

    To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and osteogenesis in rabbit femoral head osteonecrosis.

    PubMed

    Fan, Lihong; Zhang, Chen; Yu, Zefeng; Shi, Zhibin; Dang, Xiaoqian; Wang, Kunzheng

    2015-12-01

    Osteonecrosis of the femoral head may be a disease resulting from abnormal proliferation or differentiation of mesenchymal stem cells. The present investigation explored the novel strategy of hypoxia-preconditioned BMMSCs to reverse the impairment of osteonecrosis BMMSCs and enhance the therapeutic potential of hypoxia-treated BMMSC transplantation. BMMSCs from the anterior superior iliac spine region of osteonecrosis rabbit were cultured under 20% O2 or 2% O2 conditions. Normal BMMSCs were cultured under 20% O2 condition as control. Growth factors secreted were examined by enzyme-linked immunosorbent assay. 20% O2 or 2% O2 BMMSCs were injected into the femoral head of rabbits after core decompression. Cell viability and apoptosis were assessed in vitro, and TUNEL staining of the femoral head was analyzed after transplantation. Angiogenesis (capillary-like structure formation, CD31 immunohistochemical staining and ink infusion angiography) and osteogenesis (Alizarin red-S staining, micro-CT scanning and OCN immunohistochemical staining) tests were conducted as well. 2% O2 exposure up-regulated growth factor secretion in BMMSCs. Apoptosis in 2% O2 group was lower when compared with that in 20% O2 osteonecrosis group. Cell viability in 2% O2 was significantly higher when compared with that in 20% O2 osteonecrosis group. Growth factor secretion, cell viability, apoptosis, capillary-like structure formation, Alizarin red-S staining, and ALP staining showed no difference between the 2% O2 BMMSC and normal BMMSC groups. Transplantation of 2% O2 versus 20% O2 mesenchymal stem cells after core decompression resulted in an increase in angiogenesis function and a decrease in local tissue apoptosis. Our study also found that osteogenesis function was improved after hypoxic stem cell transplantation. Hypoxic preconditioning of BMMSCs is an effective means of reversing the impairment of osteonecrosis BMMSCs, promoting their regenerative capability and therapeutic potential for the treatment of osteonecrosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Lijuan; Thayer, Patrick; Fan, Huimin

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increasedmore » expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.« less

  14. Adhesion modification of neural stem cells induced by nanoscale ripple patterns

    NASA Astrophysics Data System (ADS)

    Pedraz, P.; Casado, S.; Rodriguez, V.; Giordano, M. C.; Buatier de Mongeot, F.; Ayuso-Sacido, A.; Gnecco, E.

    2016-03-01

    We have studied the influence of anisotropic nanopatterns (ripples) on the adhesion and morphology of mouse neural stem cells (C17.2) on glass substrates using cell viability assay, optical microscopy and atomic force microscopy. The ripples were produced by defocused ion beam sputtering with inert Ar ions, which physically remove atoms from the surface at the energy of 800 eV. The ripple periodicity (∼200 nm) is comparable to the thickness of the cytoplasmatic microspikes (filopodia) which link the stem cells to the substrate. All methods show that the cell adhesion is significantly lowered compared to the same type of cells on flat glass surfaces. Furthermore, the AFM analysis reveals that the filopodia tend to be trapped parallel or perpendicular to the ripples, which limits the spreading of the stem cell on the rippled substrate. This opens the perspective of controlling the micro-adhesion of stem cells and the orientation of their filopodia by tuning the anisotropic substrate morphology without chemical reactions occurring at the surface.

  15. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    PubMed Central

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  16. Imaging transplanted stem cells in real time using an MRI dual-contrast method.

    PubMed

    Ngen, Ethel J; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-09-02

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.

  17. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.

    PubMed

    Chuenjitkuntaworn, Boontharika; Osathanon, Thanaphum; Nowwarote, Nunthawan; Supaphol, Pitt; Pavasant, Prasit

    2016-01-01

    Major drawbacks of using an autograft are the possibilities of insufficient bony source and patient's morbidity after operation. Bone tissue engineering technology, therefore, has been applied for repairing bony defects. Previous study showed that a novel fabricated 3D-Polycaprolactone/Hydroxyapatite (PCL/HAp) scaffold possessed a good biocompatibility for bone cells. This study aimed to determine the ability of PCL/HAp for supporting cell growth, gene expression, and osteogenic differentiation in three types of mesenchymal stem cells, including bone marrow-derived mesenchymal stem cells (BMSCs), dental pulp stem cells (DPSCs), and adiposed-derived mesenchymal stem cells (ADSCs). These were assessed by cell viability assay (MTT), reverse-transcription polymerase chain reaction (RT-PCR) analysis, alkaline phosphatase activity, and osteogenic differentiation by alizarin red-S staining. The results showed that PCL/HAp scaffold could support growth of all three types of mesenchymal stem cells. In addition, DPSCs with PCL/HAp showed the highest level of calcium deposition compared to other groups. In conclusion, DPSCs exhibited a better compatibility with these scaffolds compared to BMSCs and ADSCs. However, the PCL/HAp could be a good candidate scaffold for all tested mesenchymal stem cells in bone tissue engineering. © 2015 Wiley Periodicals, Inc.

  18. Anticancer effects of the engineered stem cells transduced with therapeutic genes via a selective tumor tropism caused by vascular endothelial growth factor toward HeLa cervical cancer cells.

    PubMed

    Kim, Hye-Sun; Yi, Bo-Rim; Hwang, Kyung-A; Kim, Seung U; Choi, Kyung-Chul

    2013-10-01

    The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.

  19. Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells.

    PubMed

    Angeletti, Francesca; Fossati, Gianluca; Pattarozzi, Alessandra; Würth, Roberto; Solari, Agnese; Daga, Antonio; Masiello, Irene; Barbieri, Federica; Florio, Tullio; Comincini, Sergio

    2016-01-01

    Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS), a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells. Analyzing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene ATG7 , increased the cell death rate induced by GVS. Altogether these findings suggest that autophagy represents a pro-survival mechanism activated by GBM CSCs to counteract the efficacy of the anti-proliferative activity of GVS. In conclusion, we demonstrate that GVS is a novel pharmacological tool able to target GBM CSC viability and its efficacy can be enhanced by autophagy inhibitory strategies.

  20. Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells

    PubMed Central

    Angeletti, Francesca; Fossati, Gianluca; Pattarozzi, Alessandra; Würth, Roberto; Solari, Agnese; Daga, Antonio; Masiello, Irene; Barbieri, Federica; Florio, Tullio; Comincini, Sergio

    2016-01-01

    Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS), a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells. Analyzing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene ATG7, increased the cell death rate induced by GVS. Altogether these findings suggest that autophagy represents a pro-survival mechanism activated by GBM CSCs to counteract the efficacy of the anti-proliferative activity of GVS. In conclusion, we demonstrate that GVS is a novel pharmacological tool able to target GBM CSC viability and its efficacy can be enhanced by autophagy inhibitory strategies. PMID:27833530

  1. 3D Cell Printed Tissue Analogues: A New Platform for Theranostics

    PubMed Central

    Choi, Yeong-Jin; Yi, Hee-Gyeong; Kim, Seok-Won; Cho, Dong-Woo

    2017-01-01

    Stem cell theranostics has received much attention for noninvasively monitoring and tracing transplanted therapeutic stem cells through imaging agents and imaging modalities. Despite the excellent regenerative capability of stem cells, their efficacy has been limited due to low cellular retention, low survival rate, and low engraftment after implantation. Three-dimensional (3D) cell printing provides stem cells with the similar architecture and microenvironment of the native tissue and facilitates the generation of a 3D tissue-like construct that exhibits remarkable regenerative capacity and functionality as well as enhanced cell viability. Thus, 3D cell printing can overcome the current concerns of stem cell therapy by delivering the 3D construct to the damaged site. Despite the advantages of 3D cell printing, the in vivo and in vitro tracking and monitoring of the performance of 3D cell printed tissue in a noninvasive and real-time manner have not been thoroughly studied. In this review, we explore the recent progress in 3D cell technology and its applications. Finally, we investigate their potential limitations and suggest future perspectives on 3D cell printing and stem cell theranostics. PMID:28839468

  2. The effect of Aloe vera gel on viability of dental pulp stem cells.

    PubMed

    Sholehvar, Fatemeh; Mehrabani, Davood; Yaghmaei, Parichehr; Vahdati, Akbar

    2016-10-01

    Dental pulp stem cells (DPSCs) can play a prominent role in tissue regeneration. Aloe vera L. (Liliaceae) contains the polysaccharide of acemannan that was shown to be a trigger factor for cell proliferation, differentiation, mineralization, and dentin formation. This study sought to determine the viability of DPSCs in Aloe vera in comparison with Hank's balanced salt solution (HBSS). Twelve rabbits underwent anesthesia, and their incisor teeth were extracted; the pulp tissue was removed, chopped, treated with collagenase and plated in culture flasks. DPSCs from passage 3 were cultured in 24-well plates, and after 3 days, the culture media changed to 10, 25, 50, and 100% concentrations of Aloe vera at intervals of 45 and 90 min and 3 and 6 h. Distilled water was used as negative and HBSS as positive control for comparison. The cell morphology, viability, population doubling time (PDT), and growth kinetics were evaluated. RT-PCR was carried out for characterization and karyotyping for chromosomal stability. Aloe vera showed a significant higher viability than HBSS (74.74%). The 50% Aloe vera showed higher viability (97.73%) than other concentrations. PDT in 50% concentration was 35.1 h and for HBSS was 49.5 h. DPSCs were spindle shaped and were positive for CD73 and negative for CD34 and CD45. Karyotyping was normal. Aloe vera as an inexpensive and available herb can improve survival of avulsed or broken teeth in emergency cases as a transfer media. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Projection Stereolithographic Fabrication of Human Adipose Stem Cell-Incorporated Biodegradable Scaffolds for Cartilage Tissue Engineering.

    PubMed

    Sun, Aaron X; Lin, Hang; Beck, Angela M; Kilroy, Evan J; Tuan, Rocky S

    2015-01-01

    The poor self-healing ability of cartilage necessitates the development of methods for cartilage regeneration. Scaffold construction with live stem cell incorporation and subsequent differentiation presents a promising route. Projection stereolithography (PSL) offers high resolution and processing speed as well as the ability to fabricate scaffolds that precisely fit the anatomy of cartilage defects using medical imaging as the design template. We report here the use of a visible-light-based PSL (VL-PSL) system to encapsulate human adipose-derived stem cells (hASCs) into a biodegradable polymer [poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid (PDLLA-PEG)]/hyaluronic acid (HA) matrix to produce live cell constructs with customized architectures. After fabrication, hASCs showed high viability (84%) and were uniformly distributed throughout the constructs, which possessed high mechanical properties with a compressive modulus of 780 kPa. The hASC-seeded constructs were then cultured in control or TGF-β3-containing chondrogenic medium for up to 28 days. In chondrogenic medium-treated group (TGF-β3 group), hASCs maintained 77% viability and expressed chondrogenic genes Sox9, collagen type II, and aggrecan at 11, 232, and 2.29 × 10(5) fold increases, respectively compared to levels at day 0 in non-chondrogenic medium. The TGF-β3 group also produced a collagen type II and glycosaminoglycan-rich extracellular matrix, detected by immunohistochemistry, Alcian blue staining, and Safranin O staining suggesting robust chondrogenesis within the scaffold. Without chondroinductive addition (Control group), cell viability decreased with time (65% at 28 days) and showed poor cartilage matrix deposition. After 28 days, mechanical strength of the TGF-β3 group remained high at 240 kPa. Thus, the PSL and PDLLA-PEG/HA-based fabrication method using adult stem cells is a promising approach in producing mechanically competent engineered cartilage for joint cartilage resurfacing.

  4. Engineering spheroids potentiating cell-cell and cell-ECM interactions by self-assembly of stem cell microlayer.

    PubMed

    Lee, Yu Bin; Kim, Eun Mi; Byun, Hayeon; Chang, Hyung-Kwan; Jeong, Kwanghee; Aman, Zachary M; Choi, Yu Suk; Park, Jungyul; Shin, Heungsoo

    2018-05-01

    Numerous methods have been reported for the fabrication of 3D multi-cellular spheroids and their use in stem cell culture. Current methods typically relying on the self-assembly of trypsinized, suspended stem cells, however, show limitations with respect to cell viability, throughput, and accurate recapitulation of the natural microenvironment. In this study, we developed a new system for engineering cell spheroids by self-assembly of micro-scale monolayer of stem cells. We prepared synthetic hydrogels with the surface of chemically formed micropatterns (squares/circles with width/diameter of 200 μm) on which mesenchymal stem cells isolated from human nasal turbinate tissue (hTMSCs) were selectively attached and formed a monolayer. The hydrogel is capable of thermally controlled expansion. As the temperature was decreased from 37 to 4 °C, the cell layer detached rapidly (<10 min) and assembled to form spheroids with consistent size (∼100 μm) and high viability (>90%). Spheroidization was significantly delayed and occurred with reduced efficiency on circle patterns compared to square patterns. Multi-physics mapping supported that delamination of the micro-scale monolayer may be affected by stress concentrated at the corners of the square pattern. In contrast, stress was distributed symmetrically along the boundary of the circle pattern. In addition, treatment of the micro-scale monolayer with a ROCK inhibitor significantly retarded spheroidization, highlighting the importance of contraction mediated by actin stress fibers for the stable generation of spheroidal stem cell structures. Spheroids prepared from the assembly of monolayers showed higher expression, both on the mRNA and protein levels, of ECM proteins (fibronectin and laminin) and stemness markers (Oct4, Sox2, and Nanog) compared to spheroids prepared from low-attachment plates, in which trypsinized single cells are assembled. The hTMSC spheroids also presented enhanced expression levels of markers related to tri-lineage (osteogenic, chondrogenic and adipogenic) differentiation. The changes in microcellular environments and functionalities were double-confirmed by using adipose derived mesenchymal stem cells (ADSCs). This spheroid engineering technique may have versatile applications in regenerative medicine for functionally improved 3D culture and therapeutic cell delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix.

    PubMed

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng

    2015-12-22

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.

  6. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    PubMed

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1 overexpression in Nurr1/GPX-1-ES cells increases the viability of differentiated CNS stem-like cells. The result of this study may have impact on future stem cell therapy of PD. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Regeneration of the oesophageal muscle layer from oesophagus acellular matrix scaffold using adipose-derived stem cells.

    PubMed

    Wang, Fang; Maeda, Yasuko; Zachar, Vladimir; Ansari, Tahera; Emmersen, Jeppe

    2018-06-14

    This study explored the feasibility of constructing a tissue engineered muscle layer in the oesophagus using oesophageal acellular matrix (OAM) scaffolds and human aortic smooth muscle cells (hASMCs) or human adipose-derived stem cells (hASCs). The second objective was to investigate the effect of hypoxic preconditioning of seeding cells on cell viability and migration depth. Our results demonstrated that hASMCs and hASCs could attach and adhere to the decellularized OAM scaffold and survive and proliferate for at least 7 days depending on the growth conditions. This indicates adipose-derived stem cells (ASCs) have the potential to substitute for smooth muscle cells (SMCs) in the construction of tissue engineered oesophageal muscle layers. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Stem cell bioprinting for applications in regenerative medicine.

    PubMed

    Tricomi, Brad J; Dias, Andrew D; Corr, David T

    2016-11-01

    Many regenerative medicine applications seek to harness the biologic power of stem cells in architecturally complex scaffolds or microenvironments. Traditional tissue engineering methods cannot create such intricate structures, nor can they precisely control cellular position or spatial distribution. These limitations have spurred advances in the field of bioprinting, aimed to satisfy these structural and compositional demands. Bioprinting can be defined as the programmed deposition of cells or other biologics, often with accompanying biomaterials. In this concise review, we focus on recent advances in stem cell bioprinting, including performance, utility, and applications in regenerative medicine. More specifically, this review explores the capability of bioprinting to direct stem cell fate, engineer tissue(s), and create functional vascular networks. Furthermore, the unique challenges and concerns related to bioprinting living stem cells, such as viability and maintaining multi- or pluripotency, are discussed. The regenerative capacity of stem cells, when combined with the structural/compositional control afforded by bioprinting, provides a unique and powerful tool to address the complex demands of tissue engineering and regenerative medicine applications. © 2016 New York Academy of Sciences.

  9. Peptide Nanofibers Preconditioned with Stem Cell Secretome Are Renoprotective

    PubMed Central

    Wang, Yin; Bakota, Erica; Chang, Benny H.J.; Entman, Mark; Hartgerink, Jeffrey D.

    2011-01-01

    Stem cells may contribute to renal recovery following acute kidney injury, and this may occur through their secretion of cytokines, chemokines, and growth factors. Here, we developed an acellular, nanofiber-based preparation of self-assembled peptides to deliver the secretome of embryonic stem cells (ESCs). Using an integrated in vitro and in vivo approach, we found that nanofibers preconditioned with ESCs could reverse cell hyperpermeability and apoptosis in vitro and protect against lipopolysaccharide-induced acute kidney injury in vivo. The renoprotective effect of preconditioned nanofibers associated with an attenuation of Rho kinase activation. We also observed that the combined presence of follistatin, adiponectin, and secretory leukoprotease during preconditioning was essential to the renoprotective properties of the nanofibers. In summary, we developed a designer-peptide nanofiber that can serve as a delivery platform for the beneficial effects of stem cells without the problems of teratoma formation or limited cell engraftment and viability. PMID:21415151

  10. Effect of a cryopreservation protocol on the proliferation of stem cells from human exfoliated deciduous teeth.

    PubMed

    Ginani, Fernanda; Soares, Diego Moura; Rabêlo, Luciana Maria; Rocha, Hugo Alexandre Oliveira; de Souza, Lélia Batista; Barboza, Carlos Augusto Galvão

    2016-11-01

    The aim of the present study was to evaluate the influence of a cryopreservation protocol on the proliferation and viability of stem cells from human exfoliated deciduous teeth (SHEDs). Cells from the pulp of three deciduous teeth were isolated and characterized to confirm their stem cell nature. In second passage, part of the cells were submitted to normal conditions of cell culture (Control group), while part of the cells were maintained in 10% DMSO diluted in foetal bovine serum and submitted to the following cryopreservation protocol: 2 h at 4 °C, 18 h at -20 °C and then at -80 °C for two intervals (30 days - Cryopreservation I; and 180 days Cryopreservation II). Cell proliferation and cell cycle were evaluated at intervals of 24, 48 and 72 h after plating, and apoptosis-related events were analyzed at 72 h. All groups exhibited an increase in the number of cells, and no significant differences between the cryopreserved and control groups were observed (p > .05). The distribution of cells in the cell cycle phases was consistent with cell proliferation, and the percentage of viable cells was higher than 99% in all groups, indicating that cell viability was not affected by the cryopreservation protocol throughout the experiment. The proposed cryopreservation protocol is adequate for the storage of SHED, permitting their use in future experimental studies.

  11. [Effect of different cryopreservation time on quality of umbilical cord blood cells].

    PubMed

    Huang, Lu; Song, Gui-Qi; Wu, Yun; Wang, Jian

    2013-02-01

    This study was aimed to explore the effect of different cryopreservation time on recovery rate of cord blood stem cells, and analyze the influence of cord blood cells after thawing on the engraftment speed of cord blood cells in patients. 20 cord blood units were stored at -196°C for 1 - 10 years. The cell viability, content of total nucleated cell (TNC), CD34(+) cells and the colony forming units of granulocyte/macrophage (CFU-GM) were assessed after thawing, the impact of cell recovery on engraftment speed in patients was analyzed. The results showed that as compared with data provided by Umbilical Cord Blood Bark, the different cryopreservation time had no effect on yield of cord blood stem cells after thawing. The cell viability was (92.75 ± 2.55)% after thawing, the yields of TNC, CD34(+) cells and CFU-GM were 89.9%, 84.8% and 84.3%, compared with that of pre-freezing, their differences were statistically significant (P = 0.000), however, loss of cells had no effect on the time of neutrophils and platelets engraftment. The TNC and CD34(+)cell count after thawing correlated closely with that of pre-freezing (r = 0.954 and r = 0.931, P = 0.000), but CFU-GM content poorly correlated with that (r = 0.285, P = 0.223). It is concluded that cryopreservation and thawing process can damage the cord blood stem cells, leading to cell loss, but not affect transplant results.

  12. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    PubMed

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  13. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.

    PubMed

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-12-01

    Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. Copyright © 2013 Acta Materialia Inc. All rights reserved.

  14. ITO/gold nanoparticle/RGD peptide composites to enhance electrochemical signals and proliferation of human neural stem cells.

    PubMed

    Kim, Tae-Hyung; El-Said, Waleed Ahmed; An, Jeung Hee; Choi, Jeong-Woo

    2013-04-01

    A cell chip composed of ITO, gold nanoparticles (GNP) and RGD-MAP-C peptide composites was fabricated to enhance the electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The structural characteristics of the fabricated surfaces were confirmed by both scanning electron microscopy and surface-enhanced Raman spectroscopy. HB1.F3 cells were allowed to attach to various composites electrodes in the cell chip and the material-dependent effects on electrochemical signals and cell proliferation were analyzed. The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to be the best material in regards to enhancing the voltammetric signals of HB1.F3 cells when exposed to cyclic voltammetry, as well as for increasing cell proliferation. Differential pulse voltammetry was performed to evaluate the adverse effects of doxorubicin on HB1.F3 cells. In these experiments, negative correlations between cell viability and chemical concentrations were obseved, which were more sensitive than MTT viability assay especially at low concentrations (<0.1 μg/mL). In this basic science study, a cell chip composed of ITO, gold nanoparticles and RGD-MAP-C peptide composites was fabricated to enhance electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to best enhance the voltammetric signals of the studied cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Effect of Antibiotics against Mycoplasma sp. on Human Embryonic Stem Cells Undifferentiated Status, Pluripotency, Cell Viability and Growth

    PubMed Central

    Romorini, Leonardo; Riva, Diego Ariel; Blüguermann, Carolina; Videla Richardson, Guillermo Agustin; Scassa, Maria Elida; Sevlever, Gustavo Emilio; Miriuka, Santiago Gabriel

    2013-01-01

    Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of PlasmocinTM and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days PlasmocinTM 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with PlasmocinTM 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that PlasmocinTM and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal. PMID:23936178

  16. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro.

    PubMed

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-08-06

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma.

  17. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells

    NASA Astrophysics Data System (ADS)

    Shang, Weihu; Zhang, Xiaoyan; Zhang, Mo; Fan, Zetan; Sun, Ying; Han, Mei; Fan, Louzhen

    2014-05-01

    Cellular imaging after transplantation may provide important information to determine the efficacy of stem cell therapy. We have reported that graphene quantum dots (GQDs) are a type of robust biological labeling agent for stem cells that demonstrate little cytotoxicity. In this study, we examined the interactions of GQDs on human neural stem cells (hNSCs) with the aim to investigate the uptake and biocompatibility of GQDs. We examined the mechanism of GQD uptake by hNSCs and investigated the effects of GQDs on the proliferation, metabolic activity, and differentiation potential of hNSCs. This information is critical to assess the suitability of GQDs for stem cell tracking. Our results indicated that GQDs were taken up into hNSCs in a concentration- and time-dependent manner via the endocytosis mechanism. Furthermore, no significant change was found in the viability, proliferation, metabolic activity, and differentiation potential of hNSCs after treatment with GQDs. Thus, these data open a promising avenue for labeling stem cells with GQDs and also offer a potential opportunity to develop GQDs for biomedical applications.

  18. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line.

    PubMed

    Ketkaew, Yuwaporn; Osathanon, Thanaphum; Pavasant, Prasit; Sooampon, Sireerat

    2017-02-01

    Cancer stem cells contribute to tumor recurrence, and a hypoxic environment is critical for maintaining cancer stem cells. Apigenin is a natural product with anticancer activity. However, the effect of apigenin on cancer stem cells remains unclear. Our aim was to investigate the effect of apigenin on cancer stem cell marker expression in head and neck squamous cell carcinoma cells under hypoxia. We used three head and neck squamous cell carcinoma cell lines; HN-8, HN-30, and HSC-3. The mRNA expression of cancer stem cell markers was determined by semiquantitative RT-PCR and Real-time PCR. The cytotoxic effect of apigenin was determined by MTT colorimetric assay. Flow cytometry was used to reveal the number of cells expressing cancer stem cell surface markers. HN-30 cells, a cancer cell line from the pharynx, showed the greatest response to hypoxia by increasing their expression of CD44, CD105, NANOG, OCT-4, REX-1, and VEGF. Apigenin significantly decreased HN-30 cell viability in dose- and time-dependent manners. In addition, 40μM apigenin significantly down-regulated the mRNA expression of CD44, NANOG, and CD105. Consistent with these results, the hypoxia-induced increase in CD44 + cells, CD105 + cells, and STRO-1 + cells was significantly abolished by apigenin. Apigenin suppresses cancer stem cell marker expression and the number of cells expressing cell surface markers under hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation.

    PubMed

    Ballios, Brian G; Cooke, Michael J; Donaldson, Laura; Coles, Brenda L K; Morshead, Cindi M; van der Kooy, Derek; Shoichet, Molly S

    2015-06-09

    The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC) and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC)-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs). The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Growth and differentiation of embryonic stem cells that lack an intact c-fos gene.

    PubMed Central

    Field, S J; Johnson, R S; Mortensen, R M; Papaioannou, V E; Spiegelman, B M; Greenberg, M E

    1992-01-01

    The c-fos protooncogene encodes a transcription factor that is thought to play a critical role in proliferation and differentiation as well as in the physiological response of mature cells to their environment. To test directly the role of c-fos in growth and differentiation, we generated mouse embryonic stem cell lines in which both copies of the c-fos gene were specifically disrupted by homologous recombination. Remarkably, the disruption of both copies of c-fos in these cells has no detectable effect on embryonic stem cell viability, growth rate, or differentiation potential. Embryonic stem cells lacking c-fos can differentiate into a wide range of cell types in tissue culture and also in chimeric mice. We conclude that despite a large body of literature suggesting an important role for c-fos in cell growth and differentiation, in at least some cell types this gene is not essential for these processes. Images PMID:1329091

  1. Functional screening assays with neurons generated from pluripotent stem cell-derived neural stem cells.

    PubMed

    Efthymiou, Anastasia; Shaltouki, Atossa; Steiner, Joseph P; Jha, Balendu; Heman-Ackah, Sabrina M; Swistowski, Andrzej; Zeng, Xianmin; Rao, Mahendra S; Malik, Nasir

    2014-01-01

    Rapid and effective drug discovery for neurodegenerative disease is currently impeded by an inability to source primary neural cells for high-throughput and phenotypic screens. This limitation can be addressed through the use of pluripotent stem cells (PSCs), which can be derived from patient-specific samples and differentiated to neural cells for use in identifying novel compounds for the treatment of neurodegenerative diseases. We have developed an efficient protocol to culture pure populations of neurons, as confirmed by gene expression analysis, in the 96-well format necessary for screens. These differentiated neurons were subjected to viability assays to illustrate their potential in future high-throughput screens. We have also shown that organelles such as nuclei and mitochondria could be live-labeled and visualized through fluorescence, suggesting that we should be able to monitor subcellular phenotypic changes. Neurons derived from a green fluorescent protein-expressing reporter line of PSCs were live-imaged to assess markers of neuronal maturation such as neurite length and co-cultured with astrocytes to demonstrate further maturation. These studies confirm that PSC-derived neurons can be used effectively in viability and functional assays and pave the way for high-throughput screens on neurons derived from patients with neurodegenerative disorders.

  2. Breast milk-derived exosomes promote intestinal epithelial cell growth.

    PubMed

    Hock, Alison; Miyake, Hiromu; Li, Bo; Lee, Carol; Ermini, Leonardo; Koike, Yuhki; Chen, Yong; Määttänen, Pekka; Zani, Augusto; Pierro, Agostino

    2017-05-01

    Breast milk administration prevents necrotizing enterocolitis (NEC). However, the mechanism remains unclear. Exosomes are cell-derived vesicles highly present in human milk and regulate intercellular signaling, inflammation, and immune response. We hypothesized that milk-derived exosomes beneficially affect intestinal epithelial cells. Rat milk was collected, and exosomes were isolated using ExoQuick reagent and visualized by Nanoparticle Tracking Analysis. Protein was extracted from encapsulating exosomes, and concentration was measured. 2×10 4 intestinal epithelial cells (IEC-18) were treated for five hours with 0.5-μg/μl exosomes, an equal volume of exosome-free milk, or control solution (PBS). IEC-18 viability was measured using a colorimetric assay (MTT), and gene expression was analyzed by qRT-PCR. Data were compared using one-way ANOVA with Bonferroni post-test. Rat milk was collected, and exosome isolation was confirmed. Compared to control, treatment with exosomes significantly increased IEC viability, proliferation, and stem cell activity (all p<0.05). However, administration of exosome-free milk had less significant effects. Rat milk-derived exosomes promote IEC viability, enhance proliferation, and stimulate intestinal stem cell activity. These findings provide insight into the mechanism of action of breast milk in the intestines. Exosome administration is a promising prevention method for infants at risk of developing NEC when breastfeeding is not tolerated. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging.

    PubMed

    Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong

    2016-09-15

    Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields.

    PubMed

    Hanna, Hanna; Andre, Franck M; Mir, Lluis M

    2017-04-20

    Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the endoplasmic reticulum. These oscillations regulate many basic functions in the cell such as proliferation and differentiation. Therefore, the possibility to mimic or regulate these oscillations might be useful to regulate mesenchymal stem cells biological functions. One or several electric pulses of 100 μs were used to induce Ca 2+ spikes caused by the penetration of Ca 2+ from the extracellular medium, through the transiently electropermeabilized plasma membrane, in human adipose mesenchymal stem cells from several donors. Attached cells were preloaded with Fluo-4 AM and exposed to the electric pulse(s) under the fluorescence microscope. Viability was also checked. According to the pulse(s) electric field amplitude, it is possible to generate a supplementary calcium spike with properties close to those of calcium spontaneous oscillations, or, on the contrary, to inhibit the spontaneous calcium oscillations for a very long time compared to the pulse duration. Through that inhibition of the oscillations, Ca 2+ oscillations of desired amplitude and frequency could then be imposed on the cells using subsequent electric pulses. None of the pulses used here, even those with the highest amplitude, caused a loss of cell viability. An easy way to control Ca 2+ oscillations in mesenchymal stem cells, through their cancellation or the addition of supplementary Ca 2+ spikes, is reported here. Indeed, the direct link between the microsecond electric pulse(s) delivery and the occurrence/cancellation of cytosolic Ca 2+ spikes allowed us to mimic and regulate the Ca 2+ oscillations in these cells. Since microsecond electric pulse delivery constitutes a simple technology available in many laboratories, this new tool might be useful to further investigate the role of Ca 2+ in human mesenchymal stem cells biological processes such as proliferation and differentiation.

  5. In situ electrochemical detection of embryonic stem cell differentiation.

    PubMed

    Yea, Cheol-Heon; An, Jeung Hee; Kim, Jungho; Choi, Jeong-Woo

    2013-06-20

    Stem cell sensors have emerged as a promising technique to electrochemically monitor the functional status and viability of stem cells. However, efficient electrochemical analysis techniques are required for the development of effective electrochemical stem cell sensors. In the current study, we report a newly developed electrochemical cyclic voltammetry (CV) system to determine the status of mouse embryonic stem (ES) cells. 1-Naphthly phosphate (1-NP), which was dephosphorylated by alkaline phosphatase into a 1-naphthol on an undifferentiated mouse ES cell, was used as a substrate to electrochemically monitor the differentiation status of mouse ES cells. The peak current in the cyclic voltammetry of 1-NP increased linearly with the concentration of pure 1-NP (R(2)=0.9623). On the other hand, the peak current in the electrochemical responses of 1-NP decreased as the number of undifferentiated ES cells increased. The increased dephosphorylation of 1-NP to 1-naphthol made a decreased electrochemical signal. Non-toxicity of 1-NP was confirmed. In conclusion, the proposed electrochemical analysis system can be applied to an electrical stem cell chip for diagnosis, drug detection and on-site monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Feasibility of mesenchymal stem cell culture expansion for a phase I clinical trial in multiple sclerosis.

    PubMed

    Planchon, Sarah M; Lingas, Karen T; Reese Koç, Jane; Hooper, Brittney M; Maitra, Basabi; Fox, Robert M; Imrey, Peter B; Drake, Kylie M; Aldred, Micheala A; Lazarus, Hillard M; Cohen, Jeffrey A

    2018-01-01

    Multiple sclerosis is an inflammatory, neurodegenerative disease of the central nervous system for which therapeutic mesenchymal stem cell transplantation is under study. Published experience of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical trials is limited. To determine the feasibility of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical use. In a phase I trial, autologous, bone marrow-derived mesenchymal stem cells were isolated from 25 trial participants with multiple sclerosis and eight matched controls, and culture-expanded to a target single dose of 1-2 × 10 6 cells/kg. Viability, cell product identity and sterility were assessed prior to infusion. Cytogenetic stability was assessed by single nucleotide polymorphism analysis of mesenchymal stem cells from 18 multiple sclerosis patients and five controls. One patient failed screening. Mesenchymal stem cell culture expansion was successful for 24 of 25 multiple sclerosis patients and six of eight controls. The target dose was achieved in 16-62 days, requiring two to three cell passages. Growth rate and culture success did not correlate with demographic or multiple sclerosis disease characteristics. Cytogenetic studies identified changes on one chromosome of one control (4.3%) after extended time in culture. Culture expansion of mesenchymal stem cells from multiple sclerosis patients as donors is feasible. However, culture time should be minimized for cell products designated for therapeutic administration.

  7. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cellsmore » by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.« less

  8. Concise Review: Microfluidic Technology Platforms: Poised to Accelerate Development and Translation of Stem Cell-Derived Therapies

    PubMed Central

    Titmarsh, Drew M.; Chen, Huaying; Glass, Nick R.; Cooper-White, Justin J.

    2014-01-01

    Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction. PMID:24311699

  9. Alginate Microcapsules Incorporating Hyaluronic Acid Recreate Closer in Vivo Environment for Mesenchymal Stem Cells.

    PubMed

    Cañibano-Hernández, Alberto; Saenz Del Burgo, Laura; Espona-Noguera, Albert; Orive, Gorka; Hernández, Rosa M; Ciriza, Jesús; Pedraz, Jose Luis

    2017-07-03

    The potential clinical application of alginate cell microencapsulation has advanced enormously during the past decade. However, the 3D environment created by alginate beads does not mimic the natural extracellular matrix surrounding cells in vivo, responsible of cell survival and functionality. As one of the most frequent macromolecules present in the extracellular matrix is hyaluronic acid, we have formed hybrid beads with alginate and hyaluronic acid recreating a closer in vivo cell environment. Our results show that 1% alginate-0.25% hyaluronic acid microcapsules retain 1.5% alginate physicochemical properties. Moreover, mesenchymal stem cells encapsulated in these hybrid beads show enhanced viability therapeutic protein release and mesenchymal stem cells' potential to differentiate into chondrogenic lineage. Although future studies with additional proteins need to be done in order to approach even more the extracellular matrix features, we have shown that hyaluronic acid protects alginate encapsulated mesenchymal stem cells by providing a niche-like environment and remaining them competent as a sustainable drug delivery system.

  10. NF-κB Decoy Oligodeoxynucleotide Enhanced Osteogenesis in Mesenchymal Stem Cells Exposed to Polyethylene Particle

    PubMed Central

    Lin, Tzu-Hua; Sato, Taishi; Barcay, Katherine R.; Waters, Heather; Loi, Florence; Zhang, Ruth; Pajarinen, Jukka; Egashira, Kensuke; Yao, Zhenyu

    2015-01-01

    Excessive generation of wear particles after total joint replacement may lead to local inflammation and periprosthetic osteolysis. Modulation of the key transcription factor NF-κB in immune cells could potentially mitigate the osteolytic process. We previously showed that local delivery of ultrahigh-molecular-weight polyethylene (UHMWPE) particles recruited osteoprogenitor cells and reduced osteolysis. However, the biological effects of modulating the NF-κB signaling pathway on osteoprogenitor/mesenchymal stem cells (MSCs) remain unclear. Here we showed that decoy oligodeoxynucleotide (ODN) increased cell viability when primary murine MSCs were exposed to UHMWPE particles, but had no effects on cellular apoptosis. Decoy ODN increased transforming growth factor-beta 1 (TGF-β1) and osteoprotegerin (OPG) in MSCs exposed to UHMWPE particles. Mechanistic studies showed that decoy ODN upregulated OPG expression through a TGF-β1-dependent pathway. By measuring the alkaline phosphatase activity, osteocalcin levels, Runx2 and osteopontin expression, and performing a bone mineralization assay, we found that decoy ODN increased MSC osteogenic ability when the cells were exposed to UHMWPE particles. Furthermore, the cellular response to decoy ODN and UHMWPE particles with regard to cell phenotype, cell viability, and osteogenic ability was confirmed using primary human MSCs. Our results suggest that modulation of wear particle-induced inflammation by NF-κB decoy ODN had no adverse effects on MSCs and may potentially further mitigate periprosthetic osteolysis by protecting MSC viability and osteogenic ability. PMID:25518013

  11. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    NASA Astrophysics Data System (ADS)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications. Electronic supplementary information (ESI) available: Supporting methods and data about CD spectral analysis of SAPeptide solutions (Fig. S1), neural differentiation of murine and human NSCs (Fig. S2) on SAPeptide scaffolds, and their statistical analysis (Table S1). See DOI: 10.1039/c2nr30220a

  12. Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an in-vitro study.

    PubMed

    Tielens, S; Declercq, H; Gorski, T; Lippens, E; Schacht, E; Cornelissen, M

    2007-03-01

    Mouse embryonic stem cells were cultured on commercially available biodegradable macroporous microcarriers. A culture period of 1-2 weeks was needed to colonize the microcarriers. Embryonic stem cells retained their pluripotency for up to 14 days when cultured in medium supplemented with leukemia inhibitory factor. Replacing this medium by differentiation medium for 2 weeks initiated osteogenic differentiation. Encapsulation of the cell-loaded microcarriers in photopolymerizable polymers (methacrylate-endcapped poly-D,L-lactide-co-caprolactone), triacetin/hydroxyethylmethacrylate (HEMA) as solvent and with/without gelatin as porogen, resulted in a homogeneous distribution of the microcarriers in the polymer. As observed by transmission electron microscopy, viability of the cells was optimal when gelatin was omitted and when using triacetin instead of HEMA.

  13. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau.

    PubMed

    Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M; Stein, Jenna; Dransfield, Daniel T; Zarrella, Bianca; Growdon, Whitfield B; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R

    2018-05-01

    Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn + cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo , depleting STn + tumor cells. In summary, STn + cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn + CSC and STn + non-CSC populations.

  14. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.

    PubMed

    Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil

    2018-06-01

    Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.

  15. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective

    PubMed Central

    Sonnaert, Maarten; Luyten, Frank P.; Papantoniou, Ioannis

    2015-01-01

    The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion. PMID:26313143

  16. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective.

    PubMed

    Sonnaert, Maarten; Luyten, Frank P; Schrooten, Jan; Papantoniou, Ioannis

    2015-01-01

    The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion.

  17. Hydrolytically Degradable Poly(Ethylene Glycol) Hydrogel Scaffolds as a Cell Delivery Vehicle: Characterization of PC12 Cell Response

    PubMed Central

    Zustiak, Silviya P.; Pubill, Stephanie; Ribeiro, Andreia; Leach, Jennie B.

    2013-01-01

    The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically-degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. PMID:24474590

  18. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas.

    PubMed

    May, Randal; Sureban, Sripathi M; Lightfoot, Stan A; Hoskins, Aimee B; Brackett, Daniel J; Postier, Russell G; Ramanujam, Rama; Rao, Chinthalapally V; Wyche, James H; Anant, Shrikant; Houchen, Courtney W

    2010-08-01

    Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer.

  19. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas

    PubMed Central

    May, Randal; Sureban, Sripathi M.; Lightfoot, Stan A.; Hoskins, Aimee B.; Brackett, Daniel J.; Postier, Russell G.; Ramanujam, Rama; Rao, Chinthalapally V.; Wyche, James H.; Anant, Shrikant

    2010-01-01

    Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer. PMID:20522640

  20. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030

    PubMed Central

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-01-01

    Background: Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Methods: Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH+/CD133+). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Results: Our results observed that ALDH+/CD133+ colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Conclusion: Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer. PMID:21694723

  1. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030.

    PubMed

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-07-12

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH(+)/CD133(+)). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Our results observed that ALDH(+)/CD133(+) colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer.

  2. Microfluidic-Based Generation of Size-Controlled, Biofunctionalized Synthetic Polymer Microgels for Cell Encapsulation

    PubMed Central

    Headen, Devon M.; Aubry, Guillaume; Lu, Hang

    2014-01-01

    Cell and islet microencapsulation in synthetic hydrogels provide an immunoprotective and cell-supportive microenvironment. A microfluidic strategy for the genaration of biofunctionalized, synthetic microgel particles with precise control over particle size and molecular permeability for cell and protein delivery is presented. These engineered capsules support high cell viability and function of encapsulated human stem cells and islets. PMID:24615922

  3. Successful vitrification of human amnion-derived mesenchymal stem cells.

    PubMed

    Moon, Jeong Hee; Lee, Jung Ryeol; Jee, Byung Chul; Suh, Chang Suk; Kim, Seok Hyun; Lim, Hyun Jung; Kim, Hae Kwon

    2008-08-01

    A cryopreservation protocol for human amnion-derived mesenchymal stem cells (HAMs) is required because these cells cannot survive for long periods in culture. The aim of this study was to determine whether vitrification is a useful freezing method for storage of HAMs. HAMs were cryopreserved using vitrification method. The morphology and viability of thawed HAMs was evaluated by Trypan Blue staining. The expression of several embryonic stem cell (ESC) markers was evaluated using flow cytometry, RT-PCR and immunocytochemistry. Von Kossa, Oil Red O and Alcian Blue staining were used to asses the differentiation potential of thawed HAMs. The post-thawing viability of HAMs was 84.3 +/- 3.2% (Mean +/- SD, n = 10). The thawed HAMs showed morphological characteristics indistinguishable from the non-vitrified fresh HAMs. The expression of surface antigens (strong positive for CD44, CD49d, CD59, CD90, CD105 and HLA-ABC; weak positive for HLA-G; negative for CD31, CD34, CD45, CD106, CD117 and HLA-DR) and the expression of ESC markers [CK18, fibroblast growth factor-5, GATA-4, neural cell adhesion molecule, Nestin, Oct-4, stem cell factor, HLA-ABC, Vimentin, bone morphogenetic protein (BMP) 4, hepatocyte nuclear factor 4 alpha (HNF-4 alpha), Pax-6, alpha-fetoprotein, Brachyury, BMP-2, TRA-1-60, stage-specific embryonic antigen (SSEA-3, SSEA-4)] were maintained in the vitrified-thawed HAMs. The thawed HAMs retained ability to differentiate into osteoblasts, adipocytes and chondrocytes under appropriate culture conditions. Our results suggest that vitrification is a reliable and effective method for cryopreservation of HAMs.

  4. Hyaluronic acid effect on adipose-derived stem cells. Biological in vitro evaluation.

    PubMed

    Moreno, A; Martínez, A; Olmedillas, S; Bello, S; de Miguel, F

    2015-01-01

    To evaluate the in vitro effects of hyaluronic acid (HA) on adipose-derived stem cells (ASC) in order to consider the possibility of their combined used in the treatment of knee arthrosis. The ASC cells were grown both in the presence and absence of AH, and several studies were carried out: proliferation (WST8) and cell viability studies (Alamar Blue® and Trypan Blue), possible chondrogenic differentiation (collagen type 2 expression) by RT-PCR, AH receptor expression (CD44) by flow cytometry and RT-QPCR, and expression of inflammatory and anti-inflammatory factors (IL-6, TGFß, IL-10) by RT-QPCR. The number of ASC significantly increased after 7 days with HA (158±39%, p <0.05). Additionally, the cell viability of the ASC treated with HA after 1, 3, 5 and 7 days was similar to that of the control cells, being considered non-toxic. There were no changes observed in the expression of CD44 and chondrogenic differentiation. TGFß expression was not modified after AH treatment, but there was a 4-fold decrease in IL-6 expression and IL-10 expression increased up to 2-fold compared to control cells. Hyaluronic acid favours ASC proliferation without causing cellular toxicity, and inducing an anti-inflammatory profile in these cells. Hyaluronic acid appears to be a suitable vehicle for the intra-articular administration of mesenchymal stem cells. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  5. Dynamic and social behaviors of human pluripotent stem cells.

    PubMed

    Phadnis, Smruti M; Loewke, Nathan O; Dimov, Ivan K; Pai, Sunil; Amwake, Christine E; Solgaard, Olav; Baer, Thomas M; Chen, Bertha; Reijo Pera, Renee A

    2015-09-18

    Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types, thus providing a platform for basic and clinical applications. However, pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here, we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival, self-renewal, and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored.

  6. Dynamic and social behaviors of human pluripotent stem cells

    PubMed Central

    Phadnis, Smruti M.; Loewke, Nathan O.; Dimov, Ivan K.; Pai, Sunil; Amwake, Christine E.; Solgaard, Olav; Baer, Thomas M.; Chen, Bertha; Pera, Renee A. Reijo

    2015-01-01

    Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types, thus providing a platform for basic and clinical applications. However, pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here, we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival, self-renewal, and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored. PMID:26381699

  7. Dexamethasone and azathioprine promote cytoskeletal changes and affect mesenchymal stem cell migratory behavior.

    PubMed

    Schneider, Natália; Gonçalves, Fabiany da Costa; Pinto, Fernanda Otesbelgue; Lopez, Patrícia Luciana da Costa; Araújo, Anelise Bergmann; Pfaffenseller, Bianca; Passos, Eduardo Pandolfi; Cirne-Lima, Elizabeth Obino; Meurer, Luíse; Lamers, Marcelo Lazzaron; Paz, Ana Helena

    2015-01-01

    Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy.

  8. Low-level laser therapy with helium-neon laser improved viability of osteoporotic bone marrow-derived mesenchymal stem cells from ovariectomy-induced osteoporotic rats

    NASA Astrophysics Data System (ADS)

    Fallahnezhad, Somaye; Piryaei, Abbas; Tabeie, Faraj; Nazarian, Hamid; Darbandi, Hasan; Amini, Abdoldllah; Mostafavinia, Ataroalsadat; Ghorishi, Seyed Kamran; Jalalifirouzkouhi, Ali; Bayat, Mohammad

    2016-09-01

    The purpose of this study was to evaluate the influences of helium-neon (He-Ne) and infrared (IR) lasers on the viability and proliferation rate of healthy and ovariectomy-induced osteoporotic (OVX) bone marrow mesenchymal stem cells (BMMSCs) in vitro. MSCs harvested from the BM of healthy and OVX rats were culture expanded. He-Ne and IR lasers were applied three times at energy densities of 0.6, 1.2, and 2.4 J/cm2 for BMMSCs. BMMSCs viability and proliferation rate were evaluated by MTT assay on days 2, 4, 6, 14, and 21. The results showed that healthy BMMSCs responded optimally to 0.6 J/cm2 using an IR laser after three times of laser radiation. Moreover, it was found that OVX-BMMSCs responded optimally to 0.6 J/cm2 with He-Ne laser and one-time laser radiation. It is concluded that the low-level laser therapy (LLLT) effect depends on the physiological state of the BMMSCs, type of the laser, wavelength, and number of laser sessions. The biostimulation efficiency of LLLT also depends on the delivered energy density. LLLT can enhance the viability and proliferation rate of healthy and especially osteoporotic autologous BMMSCs, which could be very useful in regenerative medicine.

  9. Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging

    PubMed Central

    Calzi, Sergio Li; Kent, David L.; Chang, Kyung-Hee; Padgett, Kyle R.; Afzal, Aqeela; Chandra, Saurav B.; Caballero, Sergio; English, Denis; Garlington, Wendy; Hiscott, Paul S.; Sheridan, Carl M.; Grant, Maria B.; Forder, John R.

    2013-01-01

    Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation. Endothelial progenitor cells (EPC) were labeled with monocrystalline iron oxide nanoparticles (MIONs) which neither adversely altered their viability nor their ability to migrate in vitro and allowed successful detection of limited numbers of these cells in muscle. MION-labeled stem cells were also injected into the vitreous cavity of mice undergoing the model of choroidal neovascularization, laser rupture of Bruch’s membrane. Migration of the MION-labeled cells from the injection site towards the laser burns was visualized by MRI. In conclusion, MION labeling of EPC provides a non-invasive means to define the location of small numbers of these cells. Localization of these cells following injection is critical to their optimization for therapy. PMID:19345699

  10. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  11. Effect of dynamic three-dimensional culture on osteogenic potential of human periodontal ligament-derived mesenchymal stem cells entrapped in alginate microbeads.

    PubMed

    Vecchiatini, R; Penolazzi, L; Lambertini, E; Angelozzi, M; Morganti, C; Mazzitelli, S; Trombelli, L; Nastruzzi, C; Piva, R

    2015-08-01

    Bioreactors are devices that efficiently create an environment that enables cell cultures to grow in a three-dimensional (3D) context mimicking in vivo conditions. In this study, we investigate the effect of dynamic fluid flow on the osteogenic potential of human mesenchymal stem cells obtained from periodontal ligament and entrapped in alginate microbeads. After proper immunophenotyping, cells were encapsulated in barium alginate, cultured in 3D static or 3D dynamic conditions represented by a bioreactor system. Calcein-AM/propidium iodide staining was used to assess cellular viability. Quantitative real-time polymerase chain reaction was used to analyze the expression of osteogenic markers (Runx2 and COL1). Alizarin Red S staining and the Fourier transform infrared spectroscopy were used to assess mineral matrix deposition. Optimal encapsulation procedure, in terms of polymer pumping rate, distance from droplet generator to the gelling bath and atomizing airflow was assessed. Cell viability was not affected by encapsulation in alginate microbeads. Bioreactor cell exposure was effective in anticipating osteogenic differentiation and improving mineral matrix deposition. For the first time human mesenchymal stem cells obtained from periodontal ligaments encapsulated in alginate microbeads were cultured in a bioreactor system. This combination could represent a promising strategy to create a cell-based smart system with enhanced osteogenic potential useful for many different dental applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Is cell viability always directly related to corrosion resistance of stainless steels?

    PubMed

    Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds.

    PubMed

    Fonseca-García, Abril; Mota-Morales, Josué D; Quintero-Ortega, Iraís A; García-Carvajal, Zaira Y; Martínez-López, V; Ruvalcaba, Erika; Landa-Solís, Carlos; Solis, Lilia; Ibarra, Clemente; Gutiérrez, María C; Terrones, Mauricio; Sanchez, Isaac C; del Monte, Francisco; Velasquillo, María C; Luna-Bárcenas, G

    2014-10-01

    This work describes the preparation and characterization of biomimetic chitosan/multiwall carbon nanotubes/nano-hydroxyapatite (CTS/MWCNT/nHAp) scaffolds and their viability for bone tissue engineering applications. The cryogenic process ice segregation-induced self-assembly (ISISA) was used to fabricate 3D biomimetic CTS scaffolds. Proper combination of cryogenics, freeze-drying, nature and molecular ratio of solutes give rise to 3D porous interconnected scaffolds with clusters of nHAp distributed along the scaffold surface. The effect of doping in CNT (e.g. with oxygen and nitrogen atoms) on cell viability was tested. Under the same processing conditions, pore size was in the range of 20-150 μm and irrespective on the type of CNT. Studies on cell viability with scaffolds were carried out using human cells from periosteum biopsy. Prior to cell seeding, the immunophenotype of mesenchymal periosteum or periosteum-derived stem cells (MSCs-PCs) was characterized by flow cytometric analysis using fluorescence-activated and characteristic cell surface markers for MSCs-PCs. The characterized MSCs-PCs maintained their periosteal potential in cell cultures until the 2nd passage from primary cell culture. Thus, the biomimetic CTS/MWCNT/nHAp scaffolds demonstrated good biocompatibility and cell viability in all cases such that it can be considered as promising biomaterials for bone tissue engineering. © 2013 Wiley Periodicals, Inc.

  14. Clinical grade adult stem cell banking

    PubMed Central

    Thirumala, Sreedhar; Goebel, W Scott

    2009-01-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678

  15. Dental mesenchymal stem cells encapsulated in alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

    PubMed Central

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-01-01

    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (P<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  16. Assessment of sulforaphane-induced protective mechanisms against cadmium toxicity in human mesenchymal stem cells.

    PubMed

    Alkharashi, Nouf Abdulkareem Omer; Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A

    2018-04-01

    Cd is a hazardous substance and carcinogen that is present in the environment; it is known to cause toxic effects in living organisms. Sulforaphane is a naturally available phytochemical with antioxidant, anti-inflammatory, and anticarcinogenic properties. However, the effects of sulforaphane on Cd toxicity in human mesenchymal stem cells (hMSCs) are unknown. In the present study, we investigated the molecular mechanisms of the effects of sulforaphane on Cd toxicity in hMSCs by using MTT assays, acridine orange/ethidium bromide staining, Hoechst staining, LysoRed staining, assessment of mitochondrial membrane potential, and gene expression analysis. Cd decreased hMSC viability in a dose-dependent manner with an IC 50 value of 56.5 μM. However, sulforaphane did not induce any significant reduction in cell viability. Nuclear morphological analysis revealed that Cd induced necrotic cell death. Additionally, Cd caused mitochondrial membrane potential loss in hMSCs. The treatment of Cd-exposed cells with sulforaphane (Cd-sulforaphane co-treatment) resulted in a significant recovery of the cell viability and nuclear morphological changes compared with that of cells treated with Cd only. The gene expression pattern of cells co-treated with Cd-sulforaphane was markedly different from that of Cd-treated cells, owing to the reduction in Cd toxicity. Our results clearly indicated that sulforaphane reduced Cd-induced toxic effects in hMSCs. Overall, the results of our study suggested that sulforaphane-rich vegetables and fruits can help to improve human health through amelioration of the molecular effects of Cd poisoning.

  17. Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers.

    PubMed

    Bagher, Zohreh; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Mirzadeh, Hamid; Solouk, Atefeh; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi

    2016-05-01

    Cell transplantation strategies have provided potential therapeutic approaches for treatment of neurodegenerative diseases. Mesenchymal stem cells from Wharton's jelly (WJMSCs) are abundant and available adult stem cells with low immunological incompatibility, which could be considered for cell replacement therapy in the future. However, MSC transplantation without any induction or support material causes poor control of cell viability and differentiation. In this study, we investigated the effect of the nanoscaffolds on WJMSCs differentiation into motor neuronal lineages in the presence of retinoic acid (RA) and sonic hedgehog (Shh). Surface properties of scaffolds have been shown to significantly influence cell behaviors such as adhesion, proliferation, and differentiation. Therefore, polycaprolactone (PCL) nanofibers were constructed via electrospinning, surface modified by plasma treatment, and grafted by collagen. Characterization of the scaffolds by means of ATR-FTIR, contact angel, and Bradford proved grafting of the collagen on the surface of the scaffolds. WJMSCs were seeded on nanofibrous and tissue culture plate (TCP) and viability of WJMSCs were measured by MTT assay and then induced to differentiate into motor neuron-like cells for 15 days. Differentiated cells were evaluated morphologically, and real-time PCR and immunocytochemistry methods were done to evaluate expression of motor neuron-like cell markers in mRNA and protein levels. Our results showed that obtained cells could express motor neuron biomarkers at both RNA and protein levels, but the survival and differentiation of WJMSCs into motor neuron-like cells on the PCL/collagen scaffold were higher than cultured cells in the TCP and PCL groups. Taken together, WJMSCs are an attractive stem cell source for inducing into motor neurons in vitro especially when grown on nanostructural scaffolds and PCL/collagen scaffolds can provide a suitable, three-dimensional situation for neuronal survival and differentiation that suggest their potential application towards nerve regeneration.

  18. In vitro biocompatibility of the surface ion modified NiTi alloy

    NASA Astrophysics Data System (ADS)

    Gudimova, Ekaterina Yu.; Meisner, Ludmila L.; Lotkov, Aleksander I.; Matveeva, Vera A.; Meisner, Stanislav N.; Matveev, Andrey L.; Shabalina, Olga I.

    2016-11-01

    This paper presents the results of the chemical, topographic and structural properties of the NiTi alloy surface and their changes after surface treatments by ion implantation techniques with use of ions Ta+ and Si+. The influence of physicochemical properties of the surface ion modified NiTi alloy was studied on in vitro cultured mesenchymal stem cells of the rats' bone marrow. It is shown that the ion surface modification improves histocompatibility of the NiTi alloy and leads to increase of proliferative activity of mesenchymal stem cells on its surface. It was experimentally found that a major contribution to viability improvement mesenchymal stem cells of rat marrow has the chemical composition and the microstructure of the surface area.

  19. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    PubMed

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using xenobiotic-free systems is becoming widely accepted both in Turkey and worldwide.

  20. Adipose derived mesenchymal stem cells partially rescue mitomycin C treated ARPE19 cells from death in co-culture condition.

    PubMed

    Singh, Amar K; Srivastava, Girish K; García-Gutiérrez, María T; Pastor, J Carlos

    2013-12-01

    Age-related macular degeneration is a retinal disease with important damage at the RPE layer. This layer is considered a target for therapeutical approaches. Stem cell transplantation is a promising option for retinal diseases. Adipose derived mesenchymal stem cells secret growth factors which might play a significant role in RPE maintenance. This study aimed to evaluate human AD-MSCs ability to rescue mitomycin C treated dying ARPE19 cells in co-culture condition. ARPE19 cells were treated with MMC (50 μg/ml, 100 μg/ml and 200 μg/ml) for 2 hours to induce cell death. These treated cells were co-cultured with hAD-MSCs in indirect co-culture system for 3 days and 3 weeks. Then the viability, growth and proliferation of these ARPE19 cells were evaluated by a cell viability/cytotoxicity assay kit and Alamar Blue (AB) assay. Untreated ARPE19 cells and human skin fibroblasts (HSF) were used as controls. MMC blocked ARPE19 cell proliferation significantly in 3 days and cells were almost completely dead after 3 weeks. Cell toxicity of MMC increased significantly with concentration. When these cells were co-cultured with hAD-MSCs, a significant growth difference was observed in treated cells compared to untreated cells. hAD-MSCs rescue capacity was also significantly higher than HSF for treated ARPE19 cells. This study showed that hAD-MSCs rescued MMC treated ARPE19 cells from death. It probably occurred due to undefined growth factors secreted by hAD-MSCs in the medium, shared by treated ARPE19 cells in co-culture conditions. This study supports further evaluation of the effect of hAD-MSCs subretinal transplantation over the RPE degeneration process in AMD patients.

  1. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells.

    PubMed

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H; Sareen, Dhruv; Arumugaswami, Vaithilingaraja; Svendsen, Clive N

    2015-09-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. ©AlphaMed Press.

  2. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    PubMed

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. The analysis of viability for mammalian cells treated at different temperatures and its application in cell shipment.

    PubMed

    Wang, Juan; Wei, Yun; Zhao, Shasha; Zhou, Ying; He, Wei; Zhang, Yang; Deng, Wensheng

    2017-01-01

    Mammalian cells are very important experimental materials and widely used in biological and medical research fields. It is often required that mammalian cells are transported from one laboratory to another to meet with various researches. Conventional methods for cell shipment are laborious and costive despite of maintaining high viability. In this study we aimed to develop a simple and low-cost method for cell shipment by investigating the viabilities of different cell lines treated at different temperatures. We show that the viability of mammalian cells incubated at 1°C or 5°C significantly reduced when compared with that at 16°C or 22°C. Colony formation assays revealed that preservation of mammalian cells at 1°C or 5°C led to a poorer recovery than that at 16°C or 22°C. The data from proliferation and apoptotic assays confirmed that M2 cells could continue to proliferate at 16°C or 22°C, but massive death was caused by apoptosis at 1°C or 5°C. The morphology of mammalian cells treated under hypothermia showed little difference from that of the untreated cells. Quantitative RT-PCR and alkaline phosphatase staining confirmed that hypothermic treatment did not change the identity of mouse embryonic stem cells. A case study showed that mammalian cells directly suspended in culture medium were able to be shipped for long distance and maintained a high level of viability and recovery. Our findings not only broaden the understanding to the effect of hypothermia on the viability of mammalian cells, but also provide an alternative approach for cell shipment.

  4. Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death.

    PubMed

    Nones, Janaína; Nones, Jader; Riella, Humberto Gracher; Poli, Anicleto; Trentin, Andrea Gonçalves; Kuhnen, Nivaldo Cabral

    2015-10-01

    Bentonites are clays that highly adsorb aflatoxin B1 (AFB1) and, therefore, protect human and animal cells from damage. We have recently demonstrated that bentonite protects the neural crest (NC) stem cells from the toxicity of AFB1. Its protective effects are due to the physico-chemical properties and chemical composition altered by heat treatment. The aim of this study is to prepare and characterize the natural and thermal treatments (125 to 1000 °C) of bentonite from Criciúma, Santa Catarina, Brazil and to investigate their effects in the AFB1 adsorption and in NC cell viability after challenging with AFB1. The displacement of water and mineralogical phases transformations were observed after the thermal treatments. Kaolinite disappeared at 500 °C and muscovite and montmorillonite at 1000 °C. Slight changes in morphology, chemical composition, and density of bentonite were observed. The adsorptive capacity of the bentonite particles progressively reduced with the increase in temperature. The observed alterations in the structure of bentonite suggest that the heat treatments influence its interlayer distance and also its adsorptive capacity. Therefore, bentonite, even after the thermal treatment (125 to 1000 °C), is able to increase the viability of NC stem cells previously treated with AFB1. Our results demonstrate the effectiveness of bentonite in preventing the toxic effects of AFB1. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Toxicological characterization of ZnO nanoparticles in malignant and non-malignant cells.

    PubMed

    Moratin, Helena; Scherzad, Agmal; Gehrke, Thomas; Ickrath, Pascal; Radeloff, Katrin; Kleinsasser, Norbert; Hackenberg, Stephan

    2018-04-01

    The increasing usage of zinc oxide nanoparticles (ZnO-NPs) in industrial applications as well as in consumer products raises concern regarding their potential adverse effects to a greater extend. Numerous studies have demonstrated toxic properties of NPs, however there is still a lack of knowledge concerning the underlying mechanisms. This study was designed to systematically investigate cytotoxicity, apoptosis, cell cycle alterations, and genotoxicity induced by ZnO-NP. Moreover, it was an aim of the investigations to specify the diverse effects of nanoparticle exposure in malignant in comparison with non-malignant cells. Therefore, human head and neck squamous cell carcinoma-derived FaDu cells were incubated with 4-20 µg/ml of ZnO-NPs for 1-48 hr and tested for cell viability, cell cycle alterations, apoptosis and caspase-3 gene expression as a sensitive marker of molecular apoptotic processes with regard to time- and dose-dependent effects. Human mesenchymal bone marrow stem cells were used as non-malignant representatives to examine oxidative stress-related genotoxicity. Results showed a significant reduction in cell viability as well as dose- and time-dependent increase of apoptotic cells following nanoparticle treatment. Likewise, caspase-3 gene expression enhanced already before first apoptotic cells were detectable. It could be observed that doses that were cytotoxic in tumor cells did not reduce viability in stem cells. However, the same concentrations already induced significant DNA damage. The findings of the study suggest to keep a more critical eye on the use of nanoparticles as anti-cancer agents. Yet, additional in vivo studies are needed to assess safety concerns for consumers and patients. Environ. Mol. Mutagen. 59:247-259, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.

    PubMed

    Shah, Sandeep N; Gelderman, Monique P; Lewis, Emily M A; Farrel, John; Wood, Francine; Strader, Michael Brad; Alayash, Abdu I; Vostal, Jaroslav G

    2016-01-01

    Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.

  7. Femtosecond laser pulses for chemical-free embryonic and mesenchymal stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; Dholakia, Kishan; Gunn-Moore, Frank

    2011-10-01

    Owing to their self renewal and pluripotency properties, stem cells can efficiently advance current therapies in tissue regeneration and/or engineering. Under appropriate culture conditions in vitro, pluripotent stem cells can be primed to differentiate into any cell type some examples including neural, cardiac and blood cells. However, there still remains a pressing necessity to answer the biological questions concerning how stem cell renewal and how differentiation programs are operated and regulated at the genetic level. In stem cell research, an urgent requirement on experimental procedures allowing non-invasive, marker-free observation of growth, proliferation and stability of living stem cells under physiological conditions exists. Femtosecond (fs) laser pulses have been reported to non-invasively deliver exogenous materials, including foreign genetic species into both multipotent and pluripotent stem cells successfully. Through this multi-photon facilitated technique, directly administering fs laser pulses onto the cell plasma membrane induces transient submicrometer holes, thereby promoting cytosolic uptake of the surrounding extracellular matter. To display a chemical-free cell transfection procedure that utilises micro-litre scale volumes of reagents, we report for the first time on 70 % transfection efficiency in ES-E14TG2a cells using the enhanced green fluorescing protein (EGFP) DNA plasmid. We also show how varying the average power output during optical transfection influences cell viability, proliferation and cytotoxicity in embryonic stem cells. The impact of utilizing objective lenses of different numerical aperture (NA) on the optical transfection efficiency in ES-E14TG2a cells is presented. Finally, we report on embryonic and mesenchymal stem cell differentiation. The produced specialized cell types could thereafter be characterized and used for cell based therapies.

  8. Cryopreservation of umbilical cord blood-derived mesenchymal stem cells without dimethyl sulfoxide.

    PubMed

    Wang, Hai-Yan; Lun, Zhao-Rong; Lu, Shu-Shen

    2011-01-01

    Cryopreservation of umbilical cord blood-derived mesenchymal stem cells (UCB-derived MSCs) is crucial step for its clinical applications in cell transplantation therapy. In the cryopreservation of MSCs, dimethyl sulfoxide has been widely used as a cryoprotectant (CPA). However, it has been proved that DMSO has toxic side effects to human body. In this study, DMSO-free CPA solutions which contained ethylene glycol (EG), 1, 2-propylene glycol (PG) and sucrose as basic CPAs, supplemented with polyvinyl alcohol (PVA) as an additive, were developed for the cryopreservation of UCB-derived MSCs. The cryopreservation of UCB-derived MSCs was achieved by vitrification via plunging into liquid nitrogen and by programmed freezing via an optical-DSC system respectively. The viability of thawed UCB-derived MSCs was tested by trypan blue exclusion assay. Results showed that the viability of thawed UCB-derived MSCs was enhanced from 71.2% to 95.4% in the presence of PVA for vitrification, but only < 10% to 45% of viability was found for programmed freezing. These results indicate that PVA exerts a beneficial effect on the cryopreservation of UCB-derived MSCs and suggest the vitrification in combination with the dimethyl sulfoxide free CPA solutions supplemented with PVA would be an efficient protocol for the cryopreservation of UCB-derived MSCs.

  9. Nutrient supplemented serum-free medium increases cardiomyogenesis efficiency of human pluripotent stem cells.

    PubMed

    Ting, Sherwin; Lecina, Marti; Chan, Yau-Chi; Tse, Hung Fat; Reuveny, Shaul; Oh, Steve Kw

    2013-07-26

    To development of an improved p38 MAPK inhibitor-based serum-free medium for embryoid body cardiomyocyte differentiation of human pluripotent stem cells. Human embryonic stem cells (hESC) differentiated to cardiomyocytes (CM) using a p38 MAPK inhibitor (SB203580) based serum-free medium (SB media). Nutrient supplements known to increase cell viability were added to SB medium. The ability of these supplements to improve cardiomyogenesis was evaluated by measurements of cell viability, total cell count, and the expression of cardiac markers via flow cytometry. An improved medium containing Soy hydrolysate (HySoy) and bovine serum albumin (BSA) (SupSB media) was developed and tested on 2 additional cell lines (H1 and Siu-hiPSC). Characterization of the cardiomyocytes was done by immunohistochemistry, electrophysiology and quantitative real-time reverse transcription-polymerase chain reaction. hESC cell line, HES-3, differentiating in SB medium for 16 d resulted in a cardiomyocyte yield of 0.07 ± 0.03 CM/hESC. A new medium (SupSB media) was developed with the addition of HySoy and BSA to SB medium. This medium resulted in 2.6 fold increase in cardiomyocyte yield (0.21 ± 0.08 CM/hESC). The robustness of SupSB medium was further demonstrated using two additional pluripotent cell lines (H1, hESC and Siu1, hiPSC), showing a 15 and 9 fold increase in cardiomyocyte yield respectively. The age (passage number) of the pluripotent cells did not affect the cardiomyocyte yields. Embryoid body (EB) cardiomyocytes formed in SupSB medium expressed canonical cardiac markers (sarcomeric α-actinin, myosin heavy chain and troponin-T) and demonstrated all three major phenotypes: nodal-, atrial- and ventricular-like. Electrophysiological characteristics (maximum diastolic potentials and action potential durations) of cardiomyocytes derived from SB and SupSB media were similar. The nutrient supplementation (HySoy and BSA) leads to increase in cell viability, cell yield and cardiac marker expression during cardiomyocyte differentiation, translating to an overall increase in cardiomyocyte yield.

  10. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau

    PubMed Central

    Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A.; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M.; Stein, Jenna; Dransfield, Daniel T.; Zarrella, Bianca; Growdon, Whitfield B.; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R.

    2018-01-01

    Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo, depleting STn+ tumor cells. In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations. PMID:29796189

  11. Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Yazdankhah, Meysam; Ai, Jafar; Khakbiz, Mehrdad; Faghihi, Faezeh; Tajerian, Roksana; Bayat, Neda

    2017-05-01

    Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.

  12. The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells.

    PubMed

    Wajid, Nadia; Naseem, Rashida; Anwar, Sanam Saiqa; Awan, Sana Javaid; Ali, Muhammad; Javed, Sara; Ali, Fatima

    2015-09-01

    Stomal cells derived from Wharton's jelly of human umbilical cord (WJMSCs) are considered as the potential therapeutic agents for regeneration and are getting famous for stem cell banking. Our study aims to evaluate the effects of gestational diabetes on proliferation capacity and viability of WJMSCs. Mesenchymal stromal cells were isolated from Wharton's jelly of human umbilical cords from normal and gestational diabetic (DWJMSCs) mothers. Growth patterns of both types of cells were analyzed through MTT assay and population doubling time. Cell survival, cell death and glucose utilization were estimated through trypan blue exclusion assay, LDH assay and glucose detection assay respectively. Angiogenic ability was evaluated by immunocytochemistry and ELISA for VEGF A. Anti-cancerous potential was analyzed on HeLa cells. DWJMSCs exhibited low proliferative rate, increased population doubling time, reduced cell viability and increased cell death. Interestingly, DWJMSCs were found to have a reduced glucose utilization and anti-cancerous ability while enhanced angiogenic ability. Gestational diabetes induces adverse effects on growth, angiogenic and anti-cancerous potential of WJMSCs.

  13. Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells.

    PubMed

    Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank; Jork, Anette; Kassem, Moustapha; Geigle, Peter

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulation method is described for the manufacturing of homogeneous CellBeads. Viability and sustained secretion was shown for the recombinant GLP-1 and the cell endogenous bioactive factors like vascular endothelial growth factor, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor. Manufacturing and quality control is performed in compliance with good manufacturing practice and fulfils all regulatory requirements for human clinical use. GLP-1 CellBeads combine the neuro- and cardioprotective properties of both GLP-1 and mesenchymal stem cells. First promising results were obtained from preclinical studies and an ongoing safety trial in humans but further studies have to prove the overall potential of CellBead technology in cell-based regenerative medicine.

  14. Dexmedetomidine Protects Neural Stem Cells from Ketamine-Induced Injury.

    PubMed

    Lu, Pan; Lei, Shan; Li, Weisong; Lu, Yang; Zheng, Juan; Wang, Ning; Xia, Yongjun; Lu, Haixia; Chen, Xinlin; Liu, Yong; Zhang, Peng-Bo

    2018-06-19

    Ketamine inhibits the proliferation of neural stem cells (NSCs) and disturbs normal neurogenesis. Dexmedetomidine provides neuroprotection against volatile anesthetic-induced neuroapoptosis and cognitive impairment in the developing brain. Whether it may protect NSCs from ketamine-induced injury remains unknown. In this study, we investigated the protective effects of dexmedetomidine on ketamine-exposed NSCs and explored the mechanisms potentially involved. Primary NSC cultures were characterized using immunofluorescence. Cell viability was determined using a Cell Counting Kit 8 assay. Proliferation and apoptosis were assessed with BrdU incorporation and TUNEL assays, respectively. Protein levels of cleaved caspase-3, phosphorylated protein kinase B (p-Akt), and glycogen synthase kinase-3β (p-GSK-3β) were quantified using western blotting. Ket-amine significantly decreased NSC viability and proliferation and increased their apoptosis. Dexmedetomidine increased NSC proliferation and decreased their apoptosis in a dose-dependent manner. Furthermore, dexmedetomidine pretreatment notably augmented the viability and proliferation of ketamine-exposed NSCs and reduced their apoptosis. Moreover, dexmedetomidine lessened caspase-3 activation and increased p-Akt and p-GSK-3β levels in NSCs exposed to ketamine. The protective effects of dexmedetomidine on ketamine-exposed NSCs could be partly reversed by the PI3K inhibitor LY294002. Collectively, these findings indicate that dexmedetomidine may protect NSCs from ketamine-induced injury via the PI3K/Akt/GSK-3β signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. A paper-based scaffold for enhanced osteogenic differentiation of equine adipose-derived stem cells.

    PubMed

    Petersen, Gayle F; Hilbert, Bryan J; Trope, Gareth D; Kalle, Wouter H J; Strappe, Padraig M

    2015-11-01

    We investigated the applicability of single layer paper-based scaffolds for the three-dimensional (3D) growth and osteogenic differentiation of equine adipose-derived stem cells (EADSC), with comparison against conventional two-dimensional (2D) culture on polystyrene tissue culture vessels. Viable culture of EADSC was achieved using paper-based scaffolds, with EADSC grown and differentiated in 3D culture retaining high cell viability (>94 %), similarly to EADSC in 2D culture. Osteogenic differentiation of EADSC was significantly enhanced in 3D culture, with Alizarin Red S staining and quantification demonstrating increased mineralisation (p < 0.0001), and an associated increase in expression of the osteogenic-specific markers alkaline phosphatase (p < 0.0001), osteopontin (p < 0.0001), and runx2 (p < 0.01). Furthermore, scanning electron microscopy revealed a spherical morphology of EADSC in 3D culture, compared to a flat morphology of EADSC in 2D culture. Single layer paper-based scaffolds provide an enhanced environment for the in vitro 3D growth and osteogenic differentiation of EADSC, with high cell viability, and a spherical morphology.

  16. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds.

    PubMed

    Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S

    2009-01-01

    Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.

  17. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation.

    PubMed

    Mehdikhani-Nahrkhalaji, M; Fathi, M H; Mortazavi, V; Mousavi, S B; Hashemi-Beni, B; Razavi, S M

    2012-02-01

    This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.

  18. Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels.

    PubMed

    Yao, Li; Flynn, Nikol

    2018-06-01

    Advances in the development of biomaterials and stem cell therapy provide a promising approach to regenerating degenerated discs. The normal nucleus pulposus (NP) cells exhibit similar phenotype to chondrocytes. Because dental pulp stem cells (DPSCs) can be differentiated into chondrogenic cells, the DPSCs and DPSCs-derived chondrogenic cells encapsulated in type I and type II collagen hydrogels can potentially be transplanted into degenerated NP to repair damaged tissue. The motility of transplanted cells is critical because the cells need to migrate away from the hydrogels containing the cells of high density and disperse through the NP tissue after implantation. The purpose of this study was to determine the motility of DPSC and DPSC-derived chondrogenic cells in type I and type II collagen hydrogels. The time lapse imaging that recorded cell migration was analyzed to quantify the cell migration velocity and distance. The cell viability of DPSCs in native or poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG)-crosslinked type I and type II collagen hydrogels was determined using LIVE/DEAD cell viability assay and AlamarBlue assay. DPSCs were differentiated into chondrogenic cells. The migration of DPSCs and DPSC-derived chondrogenic cells in these hydrogels was recorded using a time lapse imaging system. This study was funded by the Regional Institute on Aging and Wichita Medical Research and Education Foundation, and the authors declare no competing interest. DPSCs showed high cell viability in non-crosslinked and crosslinked collagen hydrogels. DPSCs migrated in collagen hydrogels, and the cell migration speed was not significantly different in either type I collagen or type II collagen hydrogels. The migration speed of DPSC-derived chondrogenic cells was higher in type I collagen hydrogel than in type II collagen hydrogel. Crosslinking of type I collagen with 4S-StarPEG significantly reduced the cell migration speed of DPSC-derived chondrogenic cells. After implantation of collagen hydrogels encapsulating DPSCs or DPSC-derived chondrogenic cells, the cells can potentially migrate from the hydrogels and migrate into the NP tissue. This study also explored the differential cell motility of DPSCs and DPSC-derived chondrogenic cells in these collagen hydrogels. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Monosodium urate monohydrate crystals inhibit osteoblast viability and function: implications for development of bone erosion in gout.

    PubMed

    Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Watson, Maureen; Gamble, Greg D; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola

    2011-09-01

    Bone erosion is a common manifestation of chronic tophaceous gout. To investigate the effects of monosodium urate monohydrate (MSU) crystals on osteoblast viability and function. The MTT assay and flow cytometry were used to assess osteoblast cell viability in the MC3T3-E1 and ST2 osteoblast-like cell lines, and primary rat and primary human osteoblasts cultured with MSU crystals. Quantitative real-time PCR and von Kossa stained mineralised bone formation assays were used to assess the effects of MSU crystals on osteoblast differentiation using MC3T3-E1 cells. The numbers of osteoblasts and bone lining cells were quantified in bone samples from patients with gout. MSU crystals rapidly reduced viability in all cell types in a dose-dependent manner. The inhibitory effect on cell viability was independent of crystal phagocytosis and was not influenced by differing crystal length or addition of serum. Long-term culture of MC3T3-E1 cells with MSU crystals showed a reduction in mineralisation and decreased mRNA expression of genes related to osteoblast differentiation such as Runx2, Sp7 (osterix), Ibsp (bone sialoprotein), and Bglap (osteocalcin). Fewer osteoblast and lining cells were present on bone directly adjacent to gouty tophus than bone unaffected by tophus in patients with gout. MSU crystals have profound inhibitory effects on osteoblast viability and differentiation. These data suggest that bone erosion in gout occurs at the tophus-bone interface through alteration of physiological bone turnover, with both excessive osteoclast formation, and reduced osteoblast differentiation from mesenchymal stem cells.

  20. PACAP Protects Adult Neural Stem Cells from the Neurotoxic Effect of Ketamine Associated with Decreased Apoptosis, ER Stress and mTOR Pathway Activation

    PubMed Central

    Mansouri, Shiva; Agartz, Ingrid; Ögren, Sven-Ove; Patrone, Cesare; Lundberg, Mathias

    2017-01-01

    Ketamine administration is a well-established approach to mimic experimentally some aspects of schizophrenia. Adult neurogenesis dysregulation is associated with psychiatric disorders, including schizophrenia. The potential role of neurogenesis in the ketamine-induced phenotype is largely unknown. Recent results from human genetic studies have shown the pituitary adenylate cyclase-activating polypeptide (PACAP) gene is a risk factor for schizophrenia. Its potential role on the regulation of neurogenesis in experimental model of schizophrenia remains to be investigated. We aimed to determine whether ketamine affects the viability of adult neural stem cells (NSC). We also investigated whether the detrimental effect mediated by ketamine could be counteracted by PACAP. NSCs were isolated from the subventricular zone of the mouse and exposed to ketamine with/without PACAP. After 24 hours, cell viability, potential involvement of apoptosis, endoplasmic reticulum (ER) stress, mTOR and AMPA pathway activation were assessed by quantitative RT-PCR and Western blot analysis. We show that ketamine impairs NSC viability in correlation with increased apoptosis, ER stress and mTOR activation. The results also suggest that the effect of ketamine occurs via AMPA receptor activation. Finally, we show that PACAP counteracted the decreased NSC viability induced by ketamine via the specific activation of the PAC-1 receptor subtype. Our study shows that the NSC viability may be negatively affected by ketamine with putative importance for the development of a schizophrenia phenotype in the ketamine induced animal model of schizophrenia. The neuroprotective effect via PAC-1 activation suggests a potentially novel pharmacological target for the treatment of schizophrenia, via neurogenesis normalization. PMID:28125634

  1. Effect of cryopreservation on proliferation and differentiation of periodontal ligament stem cell sheets.

    PubMed

    Li, Mengying; Feng, Cheng; Gu, Xiuge; He, Qin; Wei, Fulan

    2017-04-17

    Cryopreservation has been extensively applied to the long-term storage of a diverse range of biological materials. However, no comprehensive study is currently available on the cryopreservation of periodontal ligament stem cell (PDLSC) sheets which have been suggested as excellent transplant materials for periodontal tissue regeneration. The aim of this study is to investigate the effect of cryopreservation on the structural integrity and functional viability of PDLSC sheets. PDLSC sheets prepared from extracted human molars were divided into two groups: the cryopreservation group (cPDLSC sheets) and the freshly prepared control group (fPDLSC sheets). The cPDLSC sheets were cryopreserved in a solution consisting of 90% fetal bovine serum and 10% dimethyl sulfoxide for 3 months. Cell viability and cell proliferation rates of PDLSCs in both groups were evaluated by cell viability assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. The multilineage differentiation potentials of the cells were assessed by von Kossa staining and Oil Red O staining. The chromosomal stability was examined by karyotype analysis. Moreover, the cell sheets in each group were transplanted subcutaneously into the dorsal site of nude mice, after which Sirius Red staining was performed to analyze the efficiency of tissue regeneration. The PDLSCs derived from both groups of cell sheets showed no significant difference in their viability, proliferative capacities, and multilineage differentiation potentials, as well as chromosomal stability. Furthermore, transplantation experiments based on a mouse model demonstrated that the cPDLSC sheets were equally effective in generating viable osteoid tissues in vivo as their freshly prepared counterparts. In both cases, the regenerated tissues showed similar network patterns of bone-like matrix. Our results offer convincing evidence that cryopreservation does not alter the biological properties of PDLSC sheets and could enhance their clinical utility in tissue regeneration.

  2. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaFmore » induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.« less

  3. Generation of murine induced pluripotent stem cells by using high-density distributed electrodes network.

    PubMed

    Lu, Ming-Yu; Li, Zhihong; Hwang, Shiaw-Min; Linju Yen, B; Lee, Gwo-Bin

    2015-09-01

    This study reports a robust method of gene transfection in a murine primary cell model by using a high-density electrodes network (HDEN). By demonstrating high cell viability after gene transfection and successful expression of transgenes including fluorescent proteins, the HDEN device shows great promise as a solution in which reprogramming efficiency using non-viral induction for generation of murine induced pluripotent stem cells (iPSCs) is optimized. High and steady transgene expression levels in host cells of iPSCs can be demonstrated using this method. Moreover, the HDEN device achieved successful gene transfection with a low voltage of less than 180 V while requiring relatively low cell numbers (less than 1.5 × 10(4) cells). The results are comparable to current conventional methods, demonstrating a reasonable fluorescent-plasmid transfection rate (42.4% in single transfection and 24.5% in triple transfection) and high cell viability of over 95%. The gene expression levels of each iPSC factor was measured to be over 10-fold higher than that reported in previous studies using a single mouse embryonic fibroblast cell. Our results demonstrate that the generation of iPSCs using HDEN transfection of plasmid DNA may be a feasible and safe alternative to using viral transfection methods in the near future.

  4. The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells

    PubMed Central

    Tirkkonen, Laura; Halonen, Heidi; Hyttinen, Jari; Kuokkanen, Hannu; Sievänen, Harri; Koivisto, Anna-Maija; Mannerström, Bettina; Sándor, George K. B.; Suuronen, Riitta; Miettinen, Susanna; Haimi, Suvi

    2011-01-01

    Mechanical stimulation is an essential factor affecting the metabolism of bone cells and their precursors. We hypothesized that vibration loading would stimulate differentiation of human adipose stem cells (hASCs) towards bone-forming cells and simultaneously inhibit differentiation towards fat tissue. We developed a vibration-loading device that produces 3g peak acceleration at frequencies of 50 and 100 Hz to cells cultured on well plates. hASCs were cultured using either basal medium (BM), osteogenic medium (OM) or adipogenic medium (AM), and subjected to vibration loading for 3 h d–1 for 1, 7 and 14 day. Osteogenesis, i.e. differentiation of hASCs towards bone-forming cells, was analysed using markers such as alkaline phosphatase (ALP) activity, collagen production and mineralization. Both 50 and 100 Hz vibration frequencies induced significantly increased ALP activity and collagen production of hASCs compared with the static control at 14 day in OM. A similar trend was detected for mineralization, but the increase was not statistically significant. Furthermore, vibration loading inhibited adipocyte differentiation of hASCs. Vibration did not affect cell number or viability. These findings suggest that osteogenic culture conditions amplify the stimulatory effect of vibration loading on differentiation of hASCs towards bone-forming cells. PMID:21613288

  5. The Effects of Cyclic Hydrostatic Pressure on Chondrogenesis and Viability of Human Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells in Three-Dimensional Agarose Constructs

    PubMed Central

    Puetzer, Jennifer; Williams, John; Gillies, Allison; Bernacki, Susan

    2013-01-01

    This study investigates the effects of cyclic hydrostatic pressure (CHP) on chondrogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3-D) agarose constructs maintained in a complete growth medium without soluble chondrogenic inducing factors. hASCs were seeded in 2% agarose hydrogels and exposed to 7.5 MPa CHP for 4 h per day at a frequency of 1 Hz for up to 21 days. On days 0, 7, 14, and 21, the expression levels of collagen II, Sox9, aggrecan, and cartilage oligomeric matrix protein (COMP) were examined by real-time reverse transcriptase–polymerase chain reaction analysis. Gene expression analysis found collagen II mRNA expression in only the CHP-loaded construct at day 14 and at no other time during the study. CHP-loaded hASCs exhibited upregulated mRNA expression of Sox9, aggrecan, and COMP at day 7 relative to unloaded controls, suggesting that CHP initiated chondrogenic differentiation of hASCs in a manner similar to human bone marrow-derived mesenchymal stem cells (hMSC). By day 14, however, loaded hASC constructs exhibited significantly lower mRNA expression of the chondrogenic markers than unloaded controls. Additionally, by day 21, the samples exhibited little measurable mRNA expression at all, suggesting a decreased viability. Histological analysis validated the lack of mRNA expression at day 21 for both the loaded and unloaded control samples with a visible decrease in the cell number and change in morphology. A comparative study with hASCs and hMSCs further examined long-term cell viability in 3-D agarose constructs of both cell types. Decreased cell metabolic activity was observed throughout the 21-day experimental period in both the CHP-loaded and control constructs of both hMSCs and hASCs, suggesting a decrease in cell metabolic activity, alluding to a decrease in cell viability. This suggests that a 2% agarose hydrogel may not optimally support hASC or hMSC viability in a complete growth medium in the absence of soluble chondrogenic inducing factors over long culture durations. This is the first study to examine the ability of mechanical stimuli alone, in the absence of chondrogenic factors transforming growth factor beta (TGF-β)3, TGF-β1 and/or bone morphogenetic protein 6 (BMP6) to induce hASC chondrogenic differentiation. The findings of this study suggest that CHP initiates hASC chondrogenic differentiation, even in the absence of soluble chondrogenic inductive factors, confirming the importance of considering both mechanical stimuli and appropriate 3-D culture for cartilage tissue engineering using hASCs. PMID:22871265

  6. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  7. Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking

    PubMed Central

    Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.

    2013-01-01

    Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825

  8. Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors.

    PubMed

    Karandish, Fataneh; Froberg, James; Borowicz, Pawel; Wilkinson, John C; Choi, Yongki; Mallik, Sanku

    2018-03-01

    Often cancer relapses after an initial response to chemotherapy because of the tumor's heterogeneity and the presence of progenitor stem cells, which can renew. To overcome drug resistance, metastasis, and relapse in cancer, a promising approach is the inhibition of cancer stemness. In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG 1900 -S-S-PLA 6000 and the N 3 -PEG 1900 -PLA 6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N 3 -PEG 1900 -PLA 6000 polymer via a Cu 2+ catalyzed "Click" reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG 1900 -S-S-PLA 6000 , 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue-Derived Stem Cells.

    PubMed

    Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram

    2017-04-15

    Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.

  10. Anti-Fas conjugated hyaluronic acid microsphere gels for neural stem cell delivery.

    PubMed

    Shendi, Dalia; Albrecht, Dirk R; Jain, Anjana

    2017-02-01

    Central nervous system (CNS) injuries and diseases result in neuronal damage and loss of function. Transplantation of neural stem cells (NSCs) has been shown to improve locomotor function after transplantation. However, due to the immune and inflammatory response at the injury site, the survival rate of the engrafted cells is low. Engrafted cell viability has been shown to increase when transplanted within a hydrogel. Hyaluronic acid (HA) hydrogels have natural anti-inflammatory properties and the backbone can be modified to introduce bioactive agents, such as anti-Fas, which we have previously shown to promote NSC survival while suppressing immune cell activity in bulk hydrogels in vitro. Although bulk HA hydrogels have shown to promote stem cell survival, microsphere gels for NSC encapsulation and delivery may have additional advantages. In this study, a flow-focusing microfluidic device was used to fabricate either vinyl sulfone-modified HA (VS-HA) or anti-Fas-conjugated HA (anti-Fas HA) microsphere gels encapsulated with NSCs. The majority of encapsulated NSCs remained viable for at least 24 h in the VS-HA and anti-Fas HA microsphere gels. Moreover, T-cells cultured in suspension with the anti-Fas HA microsphere gels had reduced viability after contact with the microsphere gels compared to the media control and soluble anti-Fas conditions. This approach can be adapted to encapsulate various cell types for therapeutic strategies in other physiological systems in order to increase survival by reducing the immune response. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 608-618, 2017. © 2016 Wiley Periodicals, Inc.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelovani, Juri G.

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits.more » Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to stem cell imaging is proposed to circumvent the major limitation of in vitro radiolabeling – the eventual radiolabel decay. Stable transduction of stem cells in vitro would allow for the selection of high quality stem cells with optimal functional parameters of the transduced reporter systems. The use of a long-lived radioisotope 124I to label a highly specific reporter gene probe will allow for ex vivo labeling of stem cells and their imaging immediately after injection and during the following next week. The use of short-lived radioisotopes (i.e., 18F) to label highly specific reporter gene probes will allow repetitive PET imaging for the assessment of to stem cell migration, targeting, differentiation, and long-term viability of stem cell-derived tissues. Qualifications of the research team and resources. An established research team of experts in various disciplines has been assembled at MD Anderson Cancer Center (MDACC) over the past two years including the PI, senior co-investigators and collaborators. The participants of this team are recognized internationally to be among the leaders in their corresponding fields of research and clinical medicine. The resources at MDACC are exceptionally well developed and have been recently reinforced by the installation of a microPET and microSPECT/CT cameras, and a 7T MRI system for high resolution animal imaging; and by integrating a synthetic chemistry core for the development and production of precursors for radiolabeling.« less

  12. Effects of Aminoglycoside Antibiotics on Human Embryonic Stem Cell Viability during Differentiation In Vitro

    PubMed Central

    Varghese, Divya S.; Parween, Shama; Ardah, Mustafa T.; Emerald, Bright Starling

    2017-01-01

    Human embryonic stem cells (hESCs) are being used extensively in array of studies to understand different mechanisms such as early human embryogenesis, drug toxicity testing, disease modeling, and cell replacement therapy. The protocols for the directed differentiation of hESCs towards specific cell types often require long-term cell cultures. To avoid bacterial contamination, these protocols include addition of antibiotics such as pen-strep and gentamicin. Although aminoglycosides, streptomycin, and gentamicin have been shown to cause cytotoxicity in various animal models, the effect of these antibiotics on hESCs is not clear. In this study, we found that antibiotics, pen-strep, and gentamicin did not affect hESC cell viability or expression of pluripotency markers. However, during directed differentiation towards neural and hepatic fate, significant cell death was noted through the activation of caspase cascade. Also, the expression of neural progenitor markers Pax6, Emx2, Otx2, and Pou3f2 was significantly reduced suggesting that gentamicin may adversely affect early embryonic neurogenesis whereas no effect was seen on the expression of endoderm or hepatic markers during differentiation. Our results suggest that the use of antibiotics in cell culture media for the maintenance and differentiation of hESCs needs thorough investigation before use to avoid erroneous results. PMID:29147115

  13. Impact of Platelet-Rich Plasma on Viability and Proliferation in Wound Healing Processes after External Radiation

    PubMed Central

    Reinders, Yvonne; Felthaus, Oliver; Brockhoff, Gero; Pohl, Fabian; Prantl, Lukas; Haubner, Frank

    2017-01-01

    Platelet-rich plasma is a current subject of studies on chronic wound healing therapy due to possible pro-angiogenic effects. Microvascular compromise represents the major component in radiogenic wound healing complications. The effects of platelet-rich plasma on irradiated cells of the cutaneous wound healing process are poorly understood so far. In this study, the interaction of endothelial cells and adipose-derived stem cells in conjunction with treatment with platelet-rich plasma is investigated in the context of radiation effects. Therefore, the expression of surface-marker CD90 and CD31 was determined. Moreover, cell proliferation and viability after external radiation was analyzed with and without treatment by platelet-rich plasma. PMID:28829358

  14. Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells.

    PubMed

    Dias, Isabelle; Salviano, Ísis; Mencalha, André; de Carvalho, Simone Nunes; Thole, Alessandra Alves; Carvalho, Laís; Cortez, Erika; Stumbo, Ana Carolina

    2018-04-17

    Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.

  15. Taurine Protected Against the Impairments of Neural Stem Cell Differentiated Neurons Induced by Oxygen-Glucose Deprivation.

    PubMed

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Liu, Sining; Ji, Cheng

    2015-11-01

    Cell transplantation of neural stem cells (NSCs) is a promising approach for neurological recovery both structurally and functionally. However, one big obstacle is to promote differentiation of NSCs into neurons and the followed maturation. In the present study, we aimed to investigate the protective effect of taurine on the differentiation of NSCs and subsequent maturation of their neuronal lineage, when exposed to oxygen-glucose deprivation (OGD). The results suggested that taurine (5-20 mM) promoted the viability and proliferation of NSCs, and it protected against 8 h of OGD induced impairments. Furthermore, 20 mM taurine promoted NSCs to differentiate into neurons after 7 days of culture, and it also protected against the suppressive impairments of 8 h of OGD. Consistently, taurine (20 mM) promoted the neurite sprouting and outgrowth of the NSC differentiated neurons after 14 days of differentiation, which were significantly inhibited by OGD (8 h). At D21, the mushroom spines and spine density were promoted or restored by 20 mM taurine. Taken together, the enhanced viability and proliferation of NSCs, more differentiated neurons and the promoted maturation of neurons by 20 mM taurine support its therapeutic application during stem cell therapy to enhance neurological recovery. Moreover, it protected against the impairments induced by OGD, which may highlight its role for a more direct therapeutic application especially in an ischemic stroke environment.

  16. ToxCast Profiling in a Human Stem Cell Assay for ...

    EPA Pesticide Factsheets

    Standard practice for assessing disruptions in embryogenesis involves testing pregnant animals of two species, typically rats and rabbits, exposed during major organogenesis and evaluated just prior to term. Under this design the major manifestations of developmental toxicity are observed as one or more apical endpoints including intrauterine death, fetal growth retardation, structural malformations and variations. Alternative approaches to traditional developmental toxicity testing have been proposed in the form of in vitro data (e.g., embryonic stem cells, zebrafish embryos, HTS assays) and in silico models (e.g., computational toxicology). To increase the diversity of assays used to assess developmental toxicity in EPA’s ToxCast program, we tested the chemicals in Stemina’s metabolomics-based platform that utilizes the commecrially available H9 human embryonic stem cell line. The devTOXqP dataset for ToxCast of high-quality based on replicate samples and model performance (82% balanced accuracy, 0.71 sensitivity and 1.00 specificity). To date, 136 ToxCast chemicals (12.8% of 1065 tested) were positive in this platform; 48 triggered the biomarker signal without any change in hESC viability and 88 triggered activity concurrent with effects on cell viability. Work is in progress to complete the STM dataset entry into the TCPL, compare data with results from zFish and mESC platforms, profile bioactivity (ToxCastDB), endpoints (ToxRefDB), chemotypes (DSSTox)

  17. Arthroscopic Harvest of Adipose-Derived Mesenchymal Stem Cells From the Infrapatellar Fat Pad.

    PubMed

    Dragoo, Jason L; Chang, Wenteh

    2017-11-01

    The successful isolation of adipose-derived mesenchymal stem cells (ADSCs) from the arthroscopically harvested infrapatellar fat pad (IFP) would provide orthopaedic surgeons with an autologous solution for regenerative procedures. To demonstrate the quantity and viability of the mesenchymal stem cell population arthroscopically harvested from the IFP as well as the surrounding synovium. Descriptive laboratory study. The posterior border of the IFP, including the surrounding synovial tissue, was harvested arthroscopically from patients undergoing anterior cruciate ligament reconstruction. Tissue was then collected in an AquaVage adipose canister, followed by fat fractionization using syringe emulsification and concentration with an AdiPrep device. In the laboratory, the layers of tissue were separated and then digested with 0.3% type I collagenase. The pelleted stromal vascular fraction (SVF) cells were then immediately analyzed for viability, mesenchymal cell surface markers by fluorescence-activated cell sorting, and clonogenic capacity. After culture expansion, the metabolic activity of the ADSCs was assessed by an AlamarBlue assay, and the multilineage differentiation capability was tested. The transition of surface antigens from the SVF toward expanded ADSCs at passage 2 was further evaluated. SVF cells were successfully harvested with a mean yield of 4.86 ± 2.64 × 10 5 cells/g of tissue and a mean viability of 69.03% ± 10.75%, with ages ranging from 17 to 52 years (mean, 35.14 ± 13.70 years; n = 7). The cultured ADSCs composed a mean 5.85% ± 5.89% of SVF cells with a mean yield of 0.33 ± 0.42 × 10 5 cells/g of tissue. The nonhematopoietic cells (CD45 - ) displayed the following surface antigens as a percentage of the viable population: CD44 + (52.21% ± 4.50%), CD73 + CD90 + CD105 + (19.20% ± 17.04%), and CD44 + CD73 + CD90 + CD105 + (15.32% ± 15.23%). There was also a significant increase in the expression of ADSC markers CD73 (96.97% ± 1.72%; P < .01), CD10 (84.47% ± 15.46%; P < .05), and CD166 (11.63% ± 7.84%; P < .005) starting at passage 2 compared with freshly harvested SVF cells. The clonogenic efficiency of SVF cells was determined at a mean 3.21% ± 1.52% for layer 1 and 1.51% ± 0.55% for layer 2. Differentiation into cartilage, fat, and bone tissue was demonstrated by tissue-specific staining and quantitative polymerase chain reaction. SVF cells from the IFP and adjacent synovial tissue were successfully harvested using an arthroscopic technique and produced ADSCs with surface markers that meet criteria for defined mesenchymal stem cells. An autologous source of stem cells can now be harvested using a simple arthroscopic technique that will allow orthopaedic surgeons easier access to progenitor cells for regenerative procedures.

  18. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla.

    PubMed

    Lambricht, Laure; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Goldansaz, Hadi; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne

    2014-12-01

    The goal of the present work was to evaluate in vitro and in vivo the influence of various types and compositions of natural hydrogels on the viability and metabolic activity of SCAPs. Two alginate, three hyaluronic-based (Corgel™) hydrogel formulations and Matrigel were characterized for their mechanical, surface and microstructure properties using rheology, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. A characterized SCAP cell line (RP89 cells) was encapsulated in the different experimental hydrogel formulations. Cells were cultured in vitro, or implanted in cyclosporine treated mice. In vitro cell viability was evaluated using a Live/Dead assay and in vitro cellular metabolic activity was evaluated with a MTS assay. In vivo cell apoptosis was evaluated by a TUNEL test and RP89 cells were identified by human mitochondria immunostaining. Hydrogel composition influenced their mechanical and surface properties, and their microstructure. In vitro cell viability was above 80% after 2 days but decreased significantly after 7 days (60-40%). Viability at day 7 was the highest in Matrigel (70%) and then in Corgel 1.5 (60%). Metabolic activity increased over time in all the hydrogels, excepted in alginate SLM. SCAPs survived after 1 week in vivo with low apoptosis (<1%). The highest number of RP89 cells was found in Corgel 5.5 (140cells/mm(2)). Collectively, these data demonstrate that SCAP viability was directly modulated by hydrogel composition and suggest that a commercially available hyaluronic acid-based formulation might be a suitable delivery vehicle for SCAP-based dental pulp regeneration strategies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Squaramide-Based Supramolecular Materials for Three-Dimensional Cell Culture of Human Induced Pluripotent Stem Cells and Their Derivatives

    PubMed Central

    2018-01-01

    Synthetic hydrogel materials can recapitulate the natural cell microenvironment; however, it is equally necessary that the gels maintain cell viability and phenotype while permitting reisolation without stress, especially for use in the stem cell field. Here, we describe a family of synthetically accessible, squaramide-based tripodal supramolecular monomers consisting of a flexible tris(2-aminoethyl)amine (TREN) core that self-assemble into supramolecular polymers and eventually into self-recovering hydrogels. Spectroscopic measurements revealed that monomer aggregation is mainly driven by a combination of hydrogen bonding and hydrophobicity. The self-recovering hydrogels were used to encapsulate NIH 3T3 fibroblasts as well as human-induced pluripotent stem cells (hiPSCs) and their derivatives in 3D. The materials reported here proved cytocompatible for these cell types with maintenance of hiPSCs in their undifferentiated state essential for their subsequent expansion or differentiation into a given cell type and potential for facile release by dilution due to their supramolecular nature. PMID:29528623

  20. Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis

    PubMed Central

    Liu, Jianfeng; Zhu, Ping; Song, Peng; Xiong, Weiping; Chen, Haixu; Peng, Wenhui; Wang, Shuxia; Li, Shan; Fu, Zhiqing; Wang, Yutang; Wang, Haibin

    2015-01-01

    The poor survival rate of transplanted stem cells in ischemic myocardium has limited their therapeutic efficacy. Curcumin has potent antioxidant property. This study investigates whether prior curcumin treatment protects stem cells from oxidative stress injury and improves myocardial recovery following cells transplantation. Autologous Sprague-Dawley rat adipose derived mesenchymal stem cells (ADSCs) were pretreated with or without curcumin. The hydrogen peroxide/serum deprivation (H2O2/SD) medium was used to mimic the ischemic condition in vitro. Cytoprotective effects of curcumin on ADSCs were evaluated. Curcumin pretreatment significantly increased cell viability and VEGF secretion, and decreased cell injury and apoptosis via regulation of PTEN/Akt/p53 and HO-1 signal proteins expression. The therapeutic potential of ADSCs implantation was investigated in myocardial ischemia-reperfusion injury (IRI) model. Transplantation of curcumin pretreated ADSCs not only resulted in better heart function, higher cells retention, and smaller infarct size, but also decreased myocardial apoptosis, promoted neovascularization, and increased VEGF level in ischemic myocardium. Together, priming of ADSCs with curcumin improved tolerance to oxidative stress injury and resulted in enhancement of their therapeutic potential of ADSCs for myocardial repair. Curcumin pretreatment is a promising adjuvant strategy for stem cells transplantation in myocardial restoration. PMID:26074974

  1. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    PubMed

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  2. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth

    PubMed Central

    Hamerlik, Petra; Lathia, Justin D.; Rasmussen, Rikke; Wu, Qiulian; Bartkova, Jirina; Lee, MyungHee; Moudry, Pavel; Bartek, Jiri; Fischer, Walter; Lukas, Jiri

    2012-01-01

    Although vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) is traditionally regarded as an endothelial cell protein, evidence suggests that VEGFRs may be expressed by cancer cells. Glioblastoma multiforme (GBM) is a lethal cancer characterized by florid vascularization and aberrantly elevated VEGF. Antiangiogenic therapy with the humanized VEGF antibody bevacizumab reduces GBM tumor growth; however, the clinical benefits are transient and invariably followed by tumor recurrence. In this study, we show that VEGFR2 is preferentially expressed on the cell surface of the CD133+ human glioma stem-like cells (GSCs), whose viability, self-renewal, and tumorigenicity rely, at least in part, on signaling through the VEGF-VEGFR2–Neuropilin-1 (NRP1) axis. We find that the limited impact of bevacizumab-mediated VEGF blockage may reflect ongoing autocrine signaling through VEGF–VEGFR2–NRP1, which is associated with VEGFR2–NRP1 recycling and a pool of active VEGFR2 within a cytosolic compartment of a subset of human GBM cells. Whereas bevacizumab failed to inhibit prosurvival effects of VEGFR2-mediated signaling, GSC viability under unperturbed or radiation-evoked stress conditions was attenuated by direct inhibition of VEGFR2 tyrosine kinase activity and/or shRNA-mediated knockdown of VEGFR2 or NRP1. We propose that direct inhibition of VEGFR2 kinase may block the highly dynamic VEGF–VEGFR2–NRP1 pathway and inspire a GBM treatment strategy to complement the currently prevalent ligand neutralization approach. PMID:22393126

  3. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.

    PubMed

    Sorkio, Anni; Koch, Lothar; Koivusalo, Laura; Deiwick, Andrea; Miettinen, Susanna; Chichkov, Boris; Skottman, Heli

    2018-07-01

    There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted stromal structures attached to the host tissue with signs of hASCs migration from the printed structure. This is the first study to demonstrate the feasibility of 3D LaBP for corneal applications using human stem cells and successful fabrication of layered 3D bioprinted tissues mimicking the structure of the native corneal tissue. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    PubMed

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  5. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells.

    PubMed

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-12-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH-) and CD44-negative/CD24-negative (CD44-/CD24-) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer.

  6. Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer

    PubMed Central

    Feng, Y; Zhu, M; Dangelmajer, S; Lee, Y M; Wijesekera, O; Castellanos, C X; Denduluri, A; Chaichana, K L; Li, Q; Zhang, H; Levchenko, A; Guerrero-Cazares, H; Quiñones-Hinojosa, A

    2014-01-01

    Adult human adipose-derived mesenchymal stem cells (hAMSCs) are multipotent cells, which are abundant, easily collected, and bypass the ethical concerns that plague embryonic stem cells. Their utility and accessibility have led to the rapid development of clinical investigations to explore their autologous and allogeneic cellular-based regenerative potential, tissue preservation capabilities, anti-inflammatory properties, and anticancer properties, among others. hAMSCs are typically cultured under ambient conditions with 21% oxygen. However, physiologically, hAMSCs exist in an environment of much lower oxygen tension. Furthermore, hAMSCs cultured in standard conditions have shown limited proliferative and migratory capabilities, as well as limited viability. This study investigated the effects hypoxic culture conditions have on primary intraoperatively derived hAMSCs. hAMSCs cultured under hypoxia (hAMSCs-H) remained multipotent, capable of differentiation into osteogenic, chondrogenic, and adipogenic lineages. In addition, hAMSCs-H grew faster and exhibited less cell death. Furthermore, hAMSCs-H had greater motility than normoxia-cultured hAMSCs and exhibited greater homing ability to glioblastoma (GBM) derived from brain tumor-initiating cells from our patients in vitro and in vivo. Importantly, hAMSCs-H did not transform into tumor-associated fibroblasts in vitro and were not tumorigenic in vivo. Rather, hAMSCs-H promoted the differentiation of brain cancer cells in vitro and in vivo. These findings suggest an alternative culturing technique that can enhance the function of hAMSCs, which may be necessary for their use in the treatment of various pathologies including stroke, myocardial infarction, amyotrophic lateral sclerosis, and GBM. PMID:25501828

  7. An in vitro investigation to assess procedure parameters for injecting therapeutic hydrogels into the myocardium.

    PubMed

    Curley, Clive J; Dolan, Eimear B; Cavanagh, Brenton; O'Sullivan, Janice; Duffy, Garry P; Murphy, Bruce P

    2017-11-01

    Localized delivery of stem cells is potentially a promising therapeutic strategy for regenerating damaged myocardium. Many studies focus on limiting the biologic component of cell loss, but few address the contribution of mechanical factors. This study investigates optimal parameters for retaining the largest volume of cell loaded hydrogels post intramyocardial injection, without compromising cell viability. In vitro, hydrogel was injected into porcine hearts using various needle designs. Hydrogel retention and distribution pattern was then determined. The two most promising needles were then investigated to understand the effect of needle geometry on stem cell viability. The needle to best impact cell viability was then used to investigate the effect of differing hydrogels on retention and distribution. Three-dimensional experimental modeling revealed needles with smaller diameter's to have greater poloxamer 407 hydrogel retention. No difference in retention existed among various needle designs of similar gauge, despite differences in bolus geometries. When hMSC's, embedded in fibrin hydrogel, were injected through helical and 26G bevel needles no difference in the percent of live cells was seen at 48 h. However, the helical group had almost half the metabolic activity of the 26G bevel group at both time points, and had a significant decline in the percent of live cells from 24 to 48 h. Varying gel type resulted in significantly more alginate being retained in the tissue in comparison to fibrin or poloxamer hydrogels. In conclusion, mechanical properties of injected hydrogels, and the diameter of the needle used, highly influences the volume of hydrogel retained. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2618-2629, 2017. © 2016 Wiley Periodicals, Inc.

  8. Canine adipose-derived stromal cell viability following exposure to synovial fluid from osteoarthritic joints.

    PubMed

    Kiefer, Kristina M; O'Brien, Timothy D; Pluhar, Elizabeth G; Conzemius, Michael

    2015-01-01

    Stem cell therapy used in clinical application of osteoarthritis in veterinary medicine typically involves intra-articular injection of the cells, however the effect of an osteoarthritic environment on the fate of the cells has not been investigated. Assess the viability of adipose derived stromal cells following exposure to osteoarthritic joint fluid. Adipose derived stromal cells (ASCs) were derived from falciform adipose tissue of five adult dogs, and osteoarthritic synovial fluid (SF) was obtained from ten patients undergoing surgical intervention on orthopedic diseases with secondary osteoarthritis. Normal synovial fluid was obtained from seven adult dogs from an unrelated study. ASCs were exposed to the following treatment conditions: culture medium, normal SF, osteoarthritic SF, or serial dilutions of 1:1 to 1:10 of osteoarthritic SF with media. Cells were then harvested and assessed for viability using trypan blue dye exclusion. There was no significant difference in the viability of cells in culture medium or normal SF. Significant differences were found between cells exposed to any concentration of osteoarthritic SF and normal SF and between cells exposed to undiluted osteoarthritic SF and all serial dilutions. Subsequent dilutions reduced cytotoxicity. Osteoarthritic synovial fluid in this ex vivo experiment is cytotoxic to ASCs, when compared with normal synovial fluid. Current practice of direct injection of ASCs into osteoarthritic joints should be re-evaluated to determine if alternative means of administration may be more effective.

  9. Methoxyphenyl chalcone sensitizes aggressive epithelial cancer to cisplatin through apoptosis induction and cancer stem cell eradication.

    PubMed

    Su, Yu-Kai; Huang, Wen-Chien; Lee, Wei-Hwa; Bamodu, Oluwaseun Adebayo; Zucha, Muhammad Ary; Astuti, Indwiani; Suwito, Heri; Yeh, Chi-Tai; Lin, Chien-Min

    2017-05-01

    Current standard chemotherapy for late stage ovarian cancer is found unsuccessful due to relapse after completing the regimens. After completing platinum-based chemotherapy, 70% of patients develop relapse and resistance. Recent evidence proves ovarian cancer stem cells as the source of resistance. Therefore, treatment strategy to target both cancer stem cells and normal stem cells is essential. In this study, we developed a novel chalcone derivative as novel drug candidate for ovarian cancer treatment. We found that methoxyphenyl chalcone was effective to eliminate ovarian cancer cells when given either as monotherapy or in combination with cisplatin. We found that cell viability of ovarian cancer cells was decreased through apoptosis induction. Dephosphorylation of Bcl2-associated agonist of cell death protein was increased after methoxyphenyl chalcone treatment that led to activation of caspases. Interestingly, this drug also worked as a G2/M checkpoint modulator with alternative ways of DNA damage signal-evoking potential that might work to increase response after cisplatin treatment. In addition, methoxyphenyl chalcone was able to suppress autophagic flux and stemness regulator in ovarian spheroids that decreased their survival. Therefore, combination of methoxyphenyl chalcone and cisplatin showed synergistic effects. Taken together, we believe that our novel compound is a promising novel therapeutic agent for effective clinical treatment of ovarian cancer.

  10. Enhanced Differentiation of Human Preosteoblasts on Electrospun Blend Fiber Mats of Polydioxanone and Anionic Sulfated Polysaccharides

    PubMed Central

    2017-01-01

    The viability and differentiation of SaOS-2 preosteoblasts on fiber mats of blends comprising of the biodegradable poly(ester-ether) polydioxanone (PDX) and the sulfate-containing anionic polysaccharides kappa-carrageenan (KCG) and fucoidan (FUC) were investigated for a range of different blend compositions. The detailed analysis of the blend nanofiber properties revealed a different degree of miscibility of PDX and the polysaccharide leading to a different enrichment at the surface of the blend nanofibers, which were observed to be stable in phosphate buffer solution (PBS) for up to 5 weeks. The fibrous mats of PDX/FUC led to the highest osteogenic differentiation with very good cell viability. The electrospun blend fibers also supported human-induced pluripotent stem (iPS) cells and iPS cell-derived embryoid bodies with high cell viability, which underlines the potential of these novel blend fiber systems for optimized performance in bone tissue engineering applications. PMID:29285521

  11. Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells.

    PubMed

    Peak, Taylor C; Praharaj, Prakash P; Panigrahi, Gati K; Doyle, Michael; Su, Yixin; Schlaepfer, Isabel R; Singh, Ravi; Vander Griend, Donald J; Alickson, Julie; Hemal, Ashok; Atala, Anthony; Deep, Gagan

    2018-05-23

    The current paradigm in the development of new cancer therapies is the ability to target tumor cells while avoiding harm to noncancerous cells. Furthermore, there is a need to develop novel therapeutic options against drug-resistant cancer cells. Herein, we characterized the placental-derived stem cell (PLSC) exosomes (PLSC Exo ) and evaluated their anti-cancer efficacy in prostate cancer (PCa) cell lines. Nanoparticle tracking analyses revealed the size distribution (average size 131.4 ± 0.9 nm) and concentration of exosomes (5.23 × 10 10 ±1.99 × 10 9 per ml) secreted by PLSC. PLSC Exo treatment strongly inhibited the viability of enzalutamide-sensitive and -resistant PCa cell lines (C4-2B, CWR-R1, and LNCaP cells). Interestingly, PLSC Exo treatment had no effect on the viability of a non-neoplastic human prostate cell line (PREC-1). Mass spectrometry (MS) analyses showed that PLSC Exo are loaded with 241 proteins and mainly with saturated fatty acids. Further, Ingenuity Pathway Analysis analyses of proteins loaded in PLSC Exo suggested the role of retinoic acid receptor/liver x receptor pathways in their biological effects. Together, these results suggest the novel selective anti-cancer effects of PLSC Exo against aggressive PCa cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Impaired redox environment modulates cardiogenic and ion-channel gene expression in cardiac-resident and non-resident mesenchymal stem cells.

    PubMed

    Subramani, Baskar; Subbannagounder, Sellamuthu; Ramanathanpullai, Chithra; Palanivel, Sekar; Ramasamy, Rajesh

    2017-03-01

    Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H 2 O 2 ) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H 2 O 2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H 2 O 2 . The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( I KDR , I KCa , I to and I Na.TTX ) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H 2 O 2 . Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H 2 O 2 . Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.

  13. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  14. Uncovering the Role of BMP Signaling in Melanocyte Development and Melanoma Tumorigenesis

    DTIC Science & Technology

    2015-06-01

    Cell Cycle, one lecture (0.5hr), one discussion group (2hr) 2011, 2015 Stem Cell and Regenerative Biology. Co-coordinator, two lectures and 2011-2012...of GDF6 levels has profound effects on cell viability and tumorigenic potential. Task 2: Use established screening procedures in zebrafish to...Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School Albert Sherman Center, AS6.1041

  15. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  16. Self-Renewal and Differentiation Capacity of Urine-Derived Stem Cells after Urine Preservation for 24 Hours

    PubMed Central

    Shi, Yingai; Bharadwaj, Shantaram; Leng, Xiaoyan; Zhou, Xiaobo; Liu, Hong; Atala, Anthony; Zhang, Yuanyuan

    2013-01-01

    Despite successful approaches to preserve organs, tissues, and isolated cells, the maintenance of stem cell viability and function in body fluids during storage for cell distribution and transportation remains unexplored. The aim of this study was to characterize urine-derived stem cells (USCs) after optimal preservation of urine specimens for up to 24 hours. A total of 415 urine specimens were collected from 12 healthy men (age range 20–54 years old). About 6×104 cells shed off from the urinary tract system in 24 hours. At least 100 USC clones were obtained from the stored urine specimens after 24 hours and maintained similar biological features to fresh USCs. The stored USCs had a “rice grain” shape in primary culture, and expressed mesenchymal stem cell surface markers, high telomerase activity, and normal karyotypes. Importantly, the preserved cells retained bipotent differentiation capacity. Differentiated USCs expressed myogenic specific proteins and contractile function when exposed to myogenic differentiation medium, and they expressed urothelial cell-specific markers and barrier function when exposed to urothelial differentiation medium. These data demonstrated that up to 75% of fresh USCs can be safely persevered in urine for 24 hours and that these cells stored in urine retain their original stem cell properties, indicating that preserved USCs could be available for potential use in cell-based therapy or clinical diagnosis. PMID:23349776

  17. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells.

    PubMed

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M; Bergeron, Brian E; Jiao, Kai; Bortoluzzi, Eduardo A; Cutler, Christopher W; Chen, Ji-hua; Pashley, David H; Tay, Franklin R

    2015-11-30

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide-eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components.

  18. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells

    PubMed Central

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M.; Bergeron, Brian E.; Jiao, Kai; Bortoluzzi, Eduardo A.; Cutler, Christopher W.; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.

    2015-01-01

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide–eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components. PMID:26617338

  19. Ultrasound Irradiation Combined with Hepatocyte Growth Factor Accelerate the Hepatic Differentiation of Human Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Li, Fan; Liu, Yang; Cai, Yingyu; Li, Xin; Bai, Min; Sun, Ting; Du, Lianfang

    2018-05-01

    This study investigated the impact of ultrasound (US) irradiation on the hepatic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) induced by hepatocyte growth factor (HGF) and the possible mechanisms. We treated hBMSCs, using HGF with and without US irradiation. Cell viability and stem cell surface markers were analyzed. Hepatocyte-like cell markers and functional markers including α-fetoprotein (αFP/AFP), cytokeratin 18 (CK18), albumin (ALB) and glycogen content were analyzed at the time point of day 1, 3 and 5 after treatment. The involvement of Wnt/β-catenin signaling pathway was evaluated as well. The results showed that the US treatment at 1.0 W/cm 2 or 1.5 W/cm 2 for 30 s or 60 s conditions yielded favorable cell viability and engendered stem cell differentiation. At day 5, the expressions of AFP, CK18, ALB and the glycogen content were significantly elevated in the US-treated group at both messenger ribonucleic acid and protein levels (all p <0.05), in comparison with HGF and control groups. Among all the US treated groups, the expression levels of specific hepatic markers in the (1.5 W/cm 2 for 60 s) group were the highest. Furthermore, Wnt1, β-Catenin, c-Myc and Cyclin D1 were significantly increased after US irradiation (all p <0.05), and the enhancements of c-Myc and Cyclin D1 could be obviously impaired by the inhibitor ICG-001 (p <0.05, p <0.05), in accordance with decreased ALB and CK18 expression and glycogen content (all p <0.05). In conclusion, US irradiation was able to promote the hBMSCs' differentiation mediated by HGF in vitro safely, easily and controllably. The activation of Wnt/β-catenin signaling pathway was involved in this process. US irradiation could serve as a potentially beneficial tool for the research and application of stem cell differentiation. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  20. Comparison of impact of two decontamination solutions on the viability of the cells in human amnion.

    PubMed

    Smeringaiova, Ingrida; Trosan, Peter; Mrstinova, Miluse Berka; Matecha, Jan; Burkert, Jan; Bednar, Jan; Jirsova, Katerina

    2017-09-01

    Human amniotic membrane (HAM) is used as an allograft in regenerative medicine or as a source of pluripotent cells for stem cell research. Various decontamination protocols and solutions are used to sterilize HAM before its application, but little is known about the toxicity of disinfectants on HAM cells. In this study, we tested two decontamination solutions, commercial (BASE·128) and laboratory decontamination solution (LDS), with an analogous content of antimycotic/antibiotics for their cytotoxic effect on HAM epithelial (EC) and mesenchymal stromal cells (MSC). HAM was processed in a standard way, placed on nitrocellulose scaffold, and decontaminated, following three protocols: (1) 6 h, 37 °C; (2) 24 h, room temperature; (3) 24 h, 4 °C. The viability of EC was assessed via trypan blue staining. The apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). The mean % (±SD) of dead EC (%DEC) from six fresh placentas was 12.9 ± 18.1. Decontamination increased %DEC compared to culture medium. Decontamination with BASE·128 for 6 h, 37 °C led to the highest EC viability (81.7%). Treatment with LDS at 24 h, 4 °C resulted in the lowest EC viability (55.9%) in the set. MSC were more affected by apoptosis than EC. Although the BASE·128 expresses lower toxicity compared to LDS, we present LDS as an alternative decontamination solution with a satisfactory preservation of cell viability. The basic formula of LDS will be optimised by enrichment with nutrient components, such as glucose or vitamins, to improve cell viability.

  1. Effect of extracorporeal shock wave on proliferation and differentiation of equine adipose tissue-derived mesenchymal stem cells in vitro

    PubMed Central

    Raabe, O; Shell, K; Goessl, A; Crispens, C; Delhasse, Y; Eva, A; Scheiner-Bobis, G; Wenisch, S; Arnhold, S

    2013-01-01

    Mesenchymal stem cells are regarded as common cellular precursors of the musculoskeletal tissue and are responsible for tissue regeneration in the course of musculoskeletal disorders. In equine veterinary medicine extracorporeal shock wave therapy (ESWT) is used to optimize healing processes of bone, tendon and cartilage. Nevertheless, little is known about the effects of the shock waves on cells and tissues. Thus, the aim of this study was to investigate the influence of focused ESWT on the viability, proliferation, and differentiation capacity of adipose tissue-derived mesenchymal stem cells (ASCs) and to explore its effects on gap junctional communication and the activation of signalling cascades associated with cell proliferation and differentiation. ASCs were treated with different pulses of focused ESWT. Treated cells showed increased proliferation and expression of Cx43, as detected by means of qRT-PCR, histological staining, immunocytochemistry and western blot. At the same time, cells responded to ESWT by significant activation (phosphorylation) of Erk1/2, detected in western blots. No significant effects on the differentiation potential of the ASCs were evident. Taken together, the present results show significant effects of shock waves on stem cells in vitro. PMID:23671817

  2. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    PubMed

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  3. Synthesis and characterization of nanostructured CaSiO3 biomaterial

    NASA Astrophysics Data System (ADS)

    Jagadale, Pramod N.; Kulal, Shivaji R.; Joshi, Meghanath G.; Jagtap, Pramod P.; Khetre, Sanjay M.; Bamane, Sambhaji R.

    2013-04-01

    Here we report a successful preparation of nanostructured calcium silicate by wet chemical approach. The synthesized sample was characterized by various physico-chemical methods. Thermal stability was investigated using thermo-gravimetric and differential thermal analysis (TG-DTA). Structural characterization of the sample was carried out by the X-ray diffraction technique (XRD) which confirmed its single phase hexagonal structure. Transmission electron microscopy (TEM) was used to study the nanostructure of the ceramics while homogeneous grain distribution was revealed by scanning electron microscopy studies (SEM). The elemental analysis data obtained from energy dispersive X-ray spectroscopy (EDAX) were in close agreement with the starting composition used for the synthesis. Superhydrophilic nature of CaSiO3 was investigated at room temperature by sessile drop technique. Effect of porous nanosized CaSiO3 on early adhesion and proliferation of human bone marrow mesenchymal stem cells (BMMSCs) and cord blood mesenchymal stem (CBMSCs) cells was measured in vitro. MTT cytotoxicity test and cell adhesion test showed that the material had good biocompatibility and promoted cell viability and cell proliferation. It has been stated that the cell viability and proliferation are significantly affected by time and concentration of CaSiO3. These findings indicate that the CaSiO3 ceramics has good biocompatibility and that it is promising as a biomaterial.

  4. Efficient long-term cryopreservation of pluripotent stem cells at −80 °C

    PubMed Central

    Yuan, Ye; Yang, Ying; Tian, Yuchen; Park, Jinkyu; Dai, Aihua; Roberts, R. Michael; Liu, Yang; Han, Xu

    2016-01-01

    Current long term cryopreservation of cell stocks routinely requires the use of liquid nitrogen (LN2), because commonly used cryopreservation media containing cell membrane permeating cryoprotectants are thermally unstable when frozen at higher storage temperatures, e.g. −80 °C. This instability leads to ice recrystallization, causing progressive loss of cell viability over time under the storage conditions provided by most laboratory deep freezers. The dependency on LN2 for cell storage significantly increases operational expense and raises issues related to impaired working efficiency and safety. Here we demonstrate that addition of Ficoll 70 to cryoprotectant solutions significantly improves system thermal stability at the working temperature (~−80 °C) of laboratory deep freezers. Moreover, a medium comprised of Ficoll 70 and dimethyl sulfoxide (DMSO) in presence or absence of fetal bovine serum (FBS) can provide reliable cryopreservation of various kinds of human and porcine pluripotent stem cells at −80 °C for periods that extend up to at least one year, with the post-thaw viability, plating efficiency, and full retention of pluripotent phenotype comparable to that achieved with LN2 storage. These results illustrate the practicability of a promising long-term cryopreservation method that completely eliminates the need for LN2. PMID:27694817

  5. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium.

    PubMed

    Huang, Jing; Zhang, Zhiping; Guo, Jian; Ni, Aiguo; Deb, Arjun; Zhang, Lunan; Mirotsou, Maria; Pratt, Richard E; Dzau, Victor J

    2010-06-11

    Although mesenchymal stem cell (MSC) transplantation has been shown to promote cardiac repair in acute myocardial injury in vivo, its overall restorative capacity appears to be restricted mainly because of poor cell viability and low engraftment in the ischemic myocardium. Specific chemokines are upregulated in the infarcted myocardium. However the expression levels of the corresponding chemokine receptors (eg, CCR1, CXCR2) in MSCs are very low. We hypothesized that this discordance may account for the poor MSC engraftment and survival. To determine whether overexpression of CCR1 or CXCR2 chemokine receptors in MSCs augments their cell survival, migration and engraftment after injection in the infarcted myocardium. Overexpression of CCR1, but not CXCR2, dramatically increased chemokine-induced murine MSC migration and protected MSC from apoptosis in vitro. Moreover, when MSCs were injected intramyocardially one hour after coronary artery ligation, CCR1-MSCs accumulated in the infarcted myocardium at significantly higher levels than control-MSCs or CXCR2-MSCs 3 days postmyocardial infarction (MI). CCR1-MSC-injected hearts exhibited a significant reduction in infarct size, reduced cardiomyocytes apoptosis and increased capillary density in injured myocardium 3 days after MI. Furthermore, intramyocardial injection of CCR1-MSCs prevented cardiac remodeling and restored cardiac function 4 weeks after MI. Our results demonstrate the in vitro and in vivo salutary effects of genetic modification of stem cells. Specifically, overexpression of chemokine receptor enhances the migration, survival and engraftment of MSCs, and may provide a new therapeutic strategy for the injured myocardium.

  6. Culture in embryonic kidney serum and xeno-free media as renal cell carcinoma and renal cell carcinoma cancer stem cells research model.

    PubMed

    Krawczyk, Krzysztof M; Matak, Damian; Szymanski, Lukasz; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M

    2018-04-01

    The use of fetal bovine serum hinders obtaining reproducible experimental results and should also be removed in hormone and growth factor studies. In particular hormones found in FBS act globally on cancer cell physiology and influence transcriptome and metabolome. The aim of our study was to develop a renal carcinoma serum free culture model optimized for (embryonal) renal cells in order to select the best study model for downstream auto-, para- or endocrine research. Secondary aim was to verify renal carcinoma stem cell culture for this application. In the study, we have cultured renal cell carcinoma primary tumour cell line (786-0) as well as human kidney cancer stem cells in standard 2D monolayer cultures in Roswell Park Memorial Institute Medium or Dulbecco's Modified Eagle's Medium and Complete Human Kidney Cancer Stem Cell Medium, respectively. Serum-free, animal-component free Human Embryonic Kidney 293 media were tested. Our results revealed that xeno-free embryonal renal cells optimized culture media provide a useful tool in RCC cancer biology research and at the same time enable effective growth of RCC. We propose bio-mimic RCC cell culture model with specific serum-free and xeno-free medium that promote RCC cell viability.

  7. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    PubMed

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications. © 2013 Wiley Periodicals, Inc.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Xiaozhong; Hong, Sung Woo; Moreira, Estefania G.

    Gonocytes exist in the neonatal testis and represent a transient population of male germ-line stem cells. It has been shown that stem cell self-renewal and progeny production is probably controlled by the neighboring differentiated cells and extracellular matrix (ECM) in vivo known as niches. Recently, we developed an in vitro three-dimensional (3D) Sertoli cell/gonocyte co-culture (SGC) model with ECM overlay, which creates an in vivo-like niche and supports germ-line stem cell functioning within a 3D environment. In this study, we applied morphological and cytotoxicity evaluations, as well as microarray-based gene expression to examine the effects of different phthalate esters (PE)more » on this model. Known in vivo male developmentally toxic PEs (DTPE) and developmentally non-toxic PEs (DNTPE) were evaluated. We observed that DTPE induced significantly greater dose-dependent morphological changes, a decrease in cell viability and an increase in cytotoxicity compared to those treated with DNTPE. Moreover, the gene expression was more greatly altered by DTPE than by DNTPE and non-supervised cluster analysis allowed the discrimination of DTPE from the DNTPE. Our systems-based GO-Quant analysis showed significant alterations in the gene pathways involved in cell cycle, phosphate transport and apoptosis regulation with DTPE but not with DNTPE treatment. Disruptions of steroidogenesis related-gene expression such as Star, Cyp19a1, Hsd17b8, and Nr4a3 were observed in the DTPE group, but not in the DNTPE group. In summary, our observation on cell viability, cytotoxicity, and microarray-based gene expression analysis induced by PEs demonstrate that our in vitro 3D-SGC system mimicked in vivo responses for PEs and suggests that the 3D-SGC system might be useful in identifying developmental reproductive toxicants.« less

  9. CTRP9 ameliorates cellular senescence via PGC‑1α/AMPK signaling in mesenchymal stem cells.

    PubMed

    Li, Qun; Zhu, Zhangzhang; Wang, Chengde; Cai, Lin; Lu, Jianglong; Wang, Yongchun; Xu, Jiadong; Su, Zhipeng; Zheng, Weiming; Chen, Xianbin

    2018-08-01

    Stroke is the second most common cause of death worldwide, and thus, it imposes great financial burdens on both individuals and society. Mesenchymal stem cell (MSC) therapy is a promising approach for ischemic brain injury. However, MSC treatment potential is progressively reduced with age, limiting their therapeutic efficacy for brain repair post‑stroke. C1q and tumor necrosis factor‑related protein 9 (CTRP9) is a novel cytoprotective cytokine with antioxidant effects, which is highly expressed in brain tissue. The present study tested the hypothesis that CTRP9 might act as an antisenescence factor to promote the rejuvenation of aged MSCs. MSCs were isolated from the bone marrow of young (8‑weeks‑old) and aged (18‑months‑old) male C57BL/6 mice. Cell proliferation was measured by Cell Counting Kit‑8 assay and cell viability was determined by MTT assay. Gene expression levels of interleukin (IL)‑6 and IL‑10 were evaluated with reverse transcription‑quantitative polymerase chain reaction, and secretion of vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor, and insulin‑like growth factor were measured by ELISA. The expression levels of proteins in the peroxisome proliferator‑activated receptor γcoactivator (PGC)‑1α/AMP‑activated protein kinase (AMPK) signaling pathway were investigated with western blotting. Oxidative stress was evaluated by detecting mitochondrial membrane potential, reactive oxygen species, superoxide dismutase activity and malondialdehyde. MSCs isolated from aged mice exhibited reduced proliferation and viability, and impaired immunoregulatory and paracrine abilities, compared with MSCs from younger mice. CTRP9 had a significant antisenescence effect in aged MSCs by activating PGC‑1α/AMPK signaling and decreasing the oxidative response. Silencing either PGC‑1α or AMPK abolished the above effects of CTRP9. These results suggest that CTRP9 may have a critical role in cellular senescence by facilitating stem cell rejuvenation, and may therefore have the potential to enhance the efficacy of stem cell therapy.

  10. Nuclear Orphan Receptor TLX Induces Oct-3/4 for the Survival and Maintenance of Adult Hippocampal Progenitors upon Hypoxia*

    PubMed Central

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-01-01

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia. PMID:21135096

  11. Nuclear orphan receptor TLX induces Oct-3/4 for the survival and maintenance of adult hippocampal progenitors upon hypoxia.

    PubMed

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-03-18

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia.

  12. Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell arrays.

    PubMed

    Cordey, Myriam; Limacher, Monika; Kobel, Stefan; Taylor, Verdon; Lutolf, Matthias P

    2008-10-01

    The neurosphere assay is the standard retrospective assay to test the self-renewal capability and multipotency of neural stem cells (NSCs) in vitro. However, it has recently become clear that not all neurospheres are derived from a NSC and that on conventional cell culture substrates, neurosphere motility may cause frequent neurosphere "merging" [Nat Methods 2006;3:801-806; Stem Cells 2007;25:871-874]. Combining biomimetic hydrogel matrix technology with microengineering, we developed a microwell array platform on which NSC fate and neurosphere formation can be unequivocally attributed to a single founding cell. Using time-lapse microscopy and retrospective immunostaining, the fate of several hundred single NSCs was quantified. Compared with conventional neurosphere culture methods on plastic dishes, we detected a more than 100% increase in single NSC viability on soft hydrogels. Effective confinement of single proliferating cells to microwells led to neurosphere formation of vastly different sizes, a high percentage of which showed stem cell phenotypes after one week in culture. The reliability and increased throughput of this platform should help to better elucidate the function of sphere-forming stem/progenitor cells independent of their proliferation dynamics. Disclosure of potential conflicts of interest is found at the end of this article.

  13. Tissues from equine cadaver ligaments up to 72 hours of post-mortem: a promising reservoir of stem cells.

    PubMed

    Shikh Alsook, Mohamad Khir; Gabriel, Annick; Piret, Joëlle; Waroux, Olivier; Tonus, Céline; Connan, Delphine; Baise, Etienne; Antoine, Nadine

    2015-12-18

    Mesenchymal stem cells (MSCs) harvested from cadaveric tissues represent a promising approach for regenerative medicine. To date, no study has investigated whether viable MSCs could survive in cadaveric tissues from tendon or ligament up to 72 hours of post-mortem. The purpose of the present work was to find out if viable MSCs could survive in cadaveric tissues from adult equine ligaments up to 72 hours of post-mortem, and to assess their ability (i) to remain in an undifferentiated state and (ii) to divide and proliferate in the absence of any specific stimulus. MSCs were isolated from equine cadaver (EC) suspensory ligaments within 48-72 hours of post-mortem. They were evaluated for viability, proliferation, capacity for tri-lineage differentiation, expression of cell surface markers (CD90, CD105, CD73, CD45), pluripotent transcription factor (OCT-4), stage-specific embryonic antigen-1 (SSEA-1), neuron-specific class III beta-tubulin (TUJ-1), and glial fibrillary acidic protein (GFAP). As well, they were characterized by transmission electron microscope (TEM). EC-MSCs were successfully isolated and maintained for 20 passages with high cell viability and proliferation. Phase contrast microscopy revealed that cells with fibroblast-like appearance were predominant in the culture. Differentiation assays proved that EC-MSCs are able to differentiate towards mesodermal lineages (osteogenic, adipogenic, chondrogenic). Flow cytometry analysis demonstrated that EC-MSCs expressed CD90, CD105, and CD73, while being negative for the leukocyte common antigen CD45. Immunofluorescence analysis showed a high percentage of positive cells for OCT-4 and SSEA-1. Surprisingly, in absence of any stimuli, some adherent cells closely resembling neuronal and glial morphology were also observed. Interestingly, our results revealed that approximately 15 % of the cell populations were TUJ-1 positive, whereas GFAP expression was detected in only a few cells. Furthermore, TEM analysis confirmed the stemness of EC-MSCs and identified some cells with a typical neuronal morphology. Our findings raise the prospect that the tissues harvested from equine ligaments up to 72 hours of post-mortem represent an available reservoir of specific stem cells. EC-MSCs could be a promising alternative source for tissue engineering and stem cell therapy in equine medicine.

  14. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

    PubMed

    Díez, José M; Bauman, Ewa; Gajardo, Rodrigo; Jorquera, Juan I

    2015-03-13

    Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.

  15. Multiparametric evaluation of the cytoprotective effect of the Mangifera indica L. stem bark extract and mangiferin in HepG2 cells.

    PubMed

    Tolosa, Laia; Rodeiro, Idania; Donato, M Teresa; Herrera, José A; Delgado, René; Castell, José V; Gómez-Lechón, M José

    2013-07-01

    Mango (Mangifera indica L.) stem bark extract (MSBE) is a natural product with biological properties and mangiferin is the major component. This paper reported the evaluation of the protective effects of MSBE and mangiferin against the toxicity induced in HepG2 cells by tert-butyl hydroperoxide or amiodarone. Nuclear morphology, cell viability, intracellular calcium concentration and reactive oxygen species (ROS) production were measured by using a high-content screening multiparametric assay. MSBE and mangiferin produced no toxicity below 500 mg/ml doses. A marked recovery in cell viability, which was reduced by the toxicants, was observed in cells pre-exposed to MSBE or mangiferin at 5-100 mg/ml doses. We also explored the possible interaction of both products over P-glycoprotein (P-gp). MSBE and mangiferin above 100 mg/ml inhibited the activity of P-gp in HepG2 cells. MSBE and mangiferin showed cytoprotective effects of against oxidative damage and mitochondrial toxicity induced by xenobiotics to human hepatic cells but it seemed that other constituents of the extract could contribute to MSBE protective properties. In addition, the drug efflux should be taken into account because of the inhibition of the P-gp function observed in those cells exposed to both natural products. © 2013 Royal Pharmaceutical Society.

  16. Slow Cooling Cryopreservation Optimized to Human Pluripotent Stem Cells.

    PubMed

    Miyazaki, Takamichi; Suemori, Hirofumi

    2016-01-01

    Human pluripotent stem cells (hPSCs) have the potential for unlimited expansion and differentiation into cells that form all three germ layers. Cryopreservation is one of the key processes for successful applications of hPSCs, because it allows semi-permanent preservation of cells and their easy transportation. Most animal cell lines, including mouse embryonic stem cells, are standardly cryopreserved by slow cooling; however, hPSCs have been difficult to preserve and their cell viability has been extremely low whenever cryopreservation has been attempted.Here, we investigate the reasons for failure of slow cooling in hPSC cryopreservation. Cryopreservation involves a series of steps and is not a straightforward process. Cells may die due to various reasons during cryopreservation. Indeed, hPSCs preserved by traditional methods often suffer necrosis during the freeze-thawing stages, and the colony state of hPSCs prior to cryopreservation is a major factor contributing to cell death.It has now become possible to cryopreserve hPSCs using conventional cryopreservation methods without any specific equipment. This review summarizes the advances in this area and discusses the optimization of slow cooling cryopreservation for hPSC storage.

  17. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  18. Magnetic Resonance Imaging of Ferumoxytol-Labeled Human Mesenchymal Stem Cells in the Mouse Brain.

    PubMed

    Lee, Na Kyung; Kim, Hyeong Seop; Yoo, Dongkyeom; Hwang, Jung Won; Choi, Soo Jin; Oh, Wonil; Chang, Jong Wook; Na, Duk L

    2017-02-01

    The success of stem cell therapy is highly dependent on accurate delivery of stem cells to the target site of interest. Possible ways to track the distribution of MSCs in vivo include the use of reporter genes or nanoparticles. The U.S. Food and Drug Administration (FDA) has approved ferumoxytol (Feraheme® [USA], Rienso® [UK]) as a treatment for iron deficiency anemia. Ferumoxytol is an ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) that has recently been used to track the fate of transplanted cells using magnetic resonance imaging (MRI). The major objectives of this study were to demonstrate the feasibility of labeling hUCB-MSCs with ferumoxytol and to observe, through MRI, the engraftment of ferumoxytol-labeled human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) delivered via stereotactic injection into the hippocampi of a transgenic mouse model of familial Alzheimer's disease (5XFAD). Ferumoxytol had no toxic effects on the viability or stemness of hUCB-MSCs when assessed in vitro. Through MRI, hypointense signals were discernible at the site where ferumoxytol-labeled human MSCs were injected. Iron-positive areas were also observed in the engrafted hippocampi. The results from this study support the use of nanoparticle labeling to monitor transplanted MSCs in real time as a follow-up for AD stem cell therapy in the clinical field.

  19. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy.

    PubMed

    Guadix, Juan A; Zugaza, José L; Gálvez-Martín, Patricia

    2017-05-10

    Recent advances in the field of cell therapy and regenerative medicine describe mesenchymal stem cells (MSCs) as potential biological products due to their ability to self-renew and differentiate. MSCs are multipotent adult cells with immunomodulatory and regenerative properties, and, given their therapeutic potential, they are being widely studied in order to evaluate their viability, safety and efficacy. In this review, we describe the main characteristics and cellular sources of MSCs, in addition to providing an overview of their properties and current clinical applications, as well offering updated information on the regulatory aspects that define them as somatic cell therapy products. Cell therapy based on MSCs is offered nowadays as a pharmacological alternative, although there are still challenges to be addressed in this regard. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  20. Stem Cells as a Tool to Improve Outcomes of Islet Transplantation

    PubMed Central

    Sims, Emily; Evans-Molina, Carmella

    2012-01-01

    The publication of the promising results of the Edmonton protocol in 2000 generated optimism for islet transplantation as a potential cure for Type 1 Diabetes Mellitus. Unfortunately, follow-up data revealed that less than 10% of patients achieved long-term insulin independence. More recent data from other large trials like the Collaborative Islet Transplant Registry show incremental improvement with 44% of islet transplant recipients maintaining insulin independence at three years of follow-up. Multiple underlying issues have been identified that contribute to islet graft failure, and newer research has attempted to address these problems. Stem cells have been utilized not only as a functional replacement for β cells, but also as companion or supportive cells to address a variety of different obstacles that prevent ideal graft viability and function. In this paper, we outline the manners in which stem cells have been applied to address barriers to the achievement of long-term insulin independence following islet transplantation. PMID:22970344

  1. Labeling Human Mesenchymal Stem Cells with Gold Nanocages for in vitro and in vivo Tracking by Two-Photon Microscopy and Photoacoustic Microscopy

    PubMed Central

    Zhang, Yu Shrike; Wang, Yu; Wang, Lidai; Wang, Yucai; Cai, Xin; Zhang, Chi; Wang, Lihong V.; Xia, Younan

    2013-01-01

    Stem cell tracking is a highly important subject. Current techniques based on nanoparticle-labeling, such as magnetic resonance imaging, fluorescence microscopy, and micro-computed tomography, are plagued by limitations including relatively low sensitivity or penetration depth, involvement of ionizing irradiation, and potential cytotoxicity of the nanoparticles. Here we introduce a new class of contrast agents based on gold nanocages (AuNCs) with hollow interiors and porous walls to label human mesenchymal stem cells (hMSCs) for both in vitro and in vivo tracking using two-photon microscopy and photoacoustic microscopy. As demonstrated by the viability assay, the AuNCs showed negligible cytotoxicity under a reasonable dose, and did not alter the differentiation potential of the hMSCs into desired lineages. We were able to image the cells labeled with AuNCs in vitro for at least 28 days in culture, as well as to track the cells that homed to the tumor region in nude mice in vivo. PMID:23946820

  2. Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response

    NASA Astrophysics Data System (ADS)

    Waugh, D. G.; Lawrence, J.; Shukla, P.; Chan, C.; Hussain, I.; Man, H. C.; Smith, G. C.

    2015-07-01

    Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work.

  3. Nutrition and lifestyle in healthy aging: the telomerase challenge.

    PubMed

    Boccardi, Virginia; Paolisso, Giuseppe; Mecocci, Patrizia

    2016-01-01

    Nutrition and lifestyle, known to modulate aging process and age-related diseases, might also affect telomerase activity. Short and dysfunctional telomeres rather than average telomere length are associated with longevity in animal models, and their rescue by telomerase maybe sufficient to restore cell and organismal viability. Improving telomerase activation in stem cells and potentially in other cells by diet and lifestyle interventions may represent an intriguing way to promote health-span in humans.

  4. Impact of mesenchymal stem cells' secretome on glioblastoma pathophysiology.

    PubMed

    Vieira de Castro, Joana; Gomes, Eduardo D; Granja, Sara; Anjo, Sandra I; Baltazar, Fátima; Manadas, Bruno; Salgado, António J; Costa, Bruno M

    2017-10-02

    Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton's jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM.

  5. Mesenchymal stem cells cultured on magnetic nanowire substrates

    NASA Astrophysics Data System (ADS)

    Perez, Jose E.; Ravasi, Timothy; Kosel, Jürgen

    2017-02-01

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing hMSCs differentiation.

  6. Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells

    PubMed Central

    Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing

    2016-01-01

    ABSTRACT Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375

  7. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt.

    PubMed

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirano; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.

  8. In vitro chronotropic effects of Erythrina senegalensis DC (Fabaceae) aqueous extract on mouse heart slice and pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Nembo, Erastus Nembu; Atsamo, Albert Donatien; Nguelefack, Télesphore Benoît; Kamanyi, Albert; Hescheler, Jürgen; Nguemo, Filomain

    2015-05-13

    Erythrina senegalensis DC (Fabaceae) bark is commonly used in sub-Saharan traditional medicine for the treatment of many diseases including gastrointestinal disorders and cardiovascular diseases. In this study, we investigated the effect of the aqueous extract of the stem bark of Erythrina senegalensis on the contractile properties of mouse ventricular slices and human induced pluripotent stem (hiPS) cell-derived cardiomyocytes. We also investigated the cytotoxic effect of the extract on mouse embryonic stem (ES) cells differentiating into cardiomyocytes (CMs). We used well-established electrophysiological technologies to assess the effect of Erythrina senegalensis aqueous extract (ESAE) on the beating activity of mouse ventricular slices, mouse ES and hiPS cell-derived CMs. To study the cytotoxic effect of our extract, differentiating mouse ES cells were exposed to different concentrations of ESAE. EB morphology was assessed by microscopy at different stages of differentiation whereas cell viability was measured by flow cytometry, fluorometry and immunocytochemistry. The electrical activity of CMs and heart slices were respectively captured by the patch clamp technique and microelectrode array (MEA) method following ESAE acute exposure. Our findings revealed that ESAE exhibits a biphasic chronotropic activity on mouse ventricular slices with an initial low dose (0.001 and 0.01 µg/mL) decrease in beating activity followed by a corresponding significant increase in chronotropic activity at higher doses above 10 µg/mL. The muscarinic receptor blocker, atropine abolished the negative chronotropic activity of ESAE, while propranolol successfully blocked its positive chronotropic activity. ESAE showed a significant dose-dependent positive chronotropic activity on hiPS cell-derived CMs. Also, though not significantly, ESAE decreased cell viability and increased total caspase-3/7 activity of mouse ES cells in a concentration-dependent manner. Erythrina senegalensis aqueous extract exhibits a biphasic chronotropic effect on mouse heart and a positive chronotropic activity on hiPS cell-derived CMs, suggesting a possible mechanism through muscarinic and β-adrenergic receptor pathways. Also, ESAE is not cytotoxic on mouse ES cells at concentrations up to 100 µg/mL. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Importance of the stem cell microenvironment for ophthalmological cell-based therapy

    PubMed Central

    Wan, Peng-Xia; Wang, Bo-Wen; Wang, Zhi-Chong

    2015-01-01

    Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue in vitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although iPS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore how to reconstruct the stem cell microenvironment and strengthen its combination with the transplanted cells are key steps to successful cell therapy. In this review, we will describe the interactions of the stem cell microenvironment with the stem cells, discuss the importance of the stem cell microenvironment for cell-based therapy in ocular diseases, and introduce the progress of stem cell-based therapy for ocular diseases. PMID:25815128

  10. Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth.

    PubMed

    Ginani, Fernanda; Soares, Diego Moura; de Oliveira Rocha, Hugo Alexandre; de Souza, Lélia Batista; Barboza, Carlos Augusto Galvão

    2018-01-01

    The aim of this study was to evaluate the effect of low-level laser irradiation (LLLI) on the proliferation and viability of stem cells from human exfoliated deciduous teeth (SHED). Cells were irradiated or not (control) with an InGaAlP laser diode (660 nm, 30 mW, continuous action mode) using two different energy densities (0.5 J/cm 2 -16 s; 1.0 J/cm 2 -33 s). Irradiation was performed at 0 and 48 h, with the laser probe fixed at a distance of 0.5 cm from the cells. Cell proliferation was analyzed at 0, 24, 48, and 72 h by the Trypan blue exclusion method and MTT assay. Cell cycle and Ki67 expression were analyzed by flow cytometry. Apoptosis-related events were evaluated by expression of annexin V/PI and nuclear morphological changes by staining with DAPI. Differences between groups at each time were analyzed by the Kruskal-Wallis and Mann-Whitney tests, adopting a level of significance of 5% (p < 0.05). The results showed that an energy density of 1.0 J/cm 2 promoted an increase in cell proliferation at 48 and 72 h compared to the control and 0.5 J/cm 2 groups. Cell cycle analysis revealed a predominance of cells in the S and G2/M phases in the irradiated groups. This finding was confirmed by the increased expression of Ki67. Low positive staining for annexin V and PI was observed in all groups, and no nuclear changes were detected, indicating that cell viability was not affected by the energy densities tested. It can be concluded that the LLLI parameters used (660 nm, 30 mW, 1.0 J/cm 2 ) promote the proliferation of SHEDs and the maintenance of cell viability.

  11. Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor.

    PubMed

    Egger, Dominik; Schwedhelm, Ivo; Hansmann, Jan; Kasper, Cornelia

    2017-05-23

    Extensive expansion of mesenchymal stem cells (MSCs) for cell-based therapies remains challenging since long-term cultivation and excessive passaging in two-dimensional conditions result in a loss of essential stem cell properties. Indeed, low survival rate of cells, alteration of surface marker profiles, and reduced differentiation capacity are observed after in vitro expansion and reduce therapeutic success in clinical studies. Remarkably, cultivation of MSCs in three-dimensional aggregates preserve stem cell properties. Hence, the large scale formation and cultivation of MSC aggregates is highly desirable. Besides other effects, MSCs cultivated under hypoxic conditions are known to display increased proliferation and genetic stability. Therefore, in this study we demonstrate cultivation of adipose derived human MSC aggregates in a stirred tank reactor under hypoxic conditions. Although aggregates were exposed to comparatively high average shear stress of 0.2 Pa as estimated by computational fluid dynamics, MSCs displayed a viability of 78-86% and maintained their surface marker profile and differentiation potential after cultivation. We postulate that cultivation of 3D MSC aggregates in stirred tank reactors is valuable for large-scale production of MSCs or their secreted compounds after further optimization of cultivation parameters.

  12. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells.

    PubMed

    Kiziltay, Aysel; Marcos-Fernandez, Angel; San Roman, Julio; Sousa, Rui A; Reis, Rui L; Hasirci, Vasif; Hasirci, Nesrin

    2015-08-01

    The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300 °C. In vitro tests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.

    PubMed

    Kumbhar, Sneha G; Pawar, S H

    2016-01-01

    Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.

  14. Tributyltin induces mitochondrial fission through Mfn1 degradation in human induced pluripotent stem cells.

    PubMed

    Yamada, Shigeru; Asanagi, Miki; Hirata, Naoya; Itagaki, Hiroshi; Sekino, Yuko; Kanda, Yasunari

    2016-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT is also known to cause various forms of cytotoxicity, including neurotoxicity and immunotoxicity. However, TBT toxicity has not been identified in normal stem cells. In the present study, we examined the effects of TBT on cell growth in human induced pluripotent stem cells (iPSCs). We found that exposure to nanomolar concentrations of TBT decreased intracellular ATP levels and inhibited cell viability in iPSCs. Because TBT suppressed energy production, which is a critical function of the mitochondria, we further assessed the effects of TBT on mitochondrial dynamics. Staining with MitoTracker revealed that nanomolar concentrations of TBT induced mitochondrial fragmentation. TBT also reduced the expression of mitochondrial fusion protein mitofusin 1 (Mfn1), and this effect was abolished by knockdown of the E3 ubiquitin ligase membrane-associated RING-CH 5 (MARCH5), suggesting that nanomolar concentrations of TBT could induce mitochondrial dysfunction via MARCH5-mediated Mfn1 degradation in iPSCs. Thus, mitochondrial function in normal stem cells could be used to assess cytotoxicity associated with metal exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.

    PubMed

    Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S

    2013-03-01

    Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.

  16. Deterministic Encapsulation of Human Cardiac Stem Cells in Variable Composition Nanoporous Gel Cocoons To Enhance Therapeutic Repair of Injured Myocardium.

    PubMed

    Kanda, Pushpinder; Alarcon, Emilio I; Yeuchyk, Tanya; Parent, Sandrine; de Kemp, Robert A; Variola, Fabio; Courtman, David; Stewart, Duncan J; Davis, Darryl R

    2018-04-20

    Although cocooning explant-derived cardiac stem cells (EDCs) in protective nanoporous gels (NPGs) prior to intramyocardial injection boosts long-term cell retention, the number of EDCs that finally engraft is trivial and unlikely to account for salutary effects on myocardial function and scar size. As such, we investigated the effect of varying the NPG content within capsules to alter the physical properties of cocoons without influencing cocoon dimensions. Increasing NPG concentration enhanced cell migration and viability while improving cell-mediated repair of injured myocardium. Given that the latter occurred with NPG content having no detectable effect on the long-term engraftment of transplanted cells, we found that changing the physical properties of cocoons prompted explant-derived cardiac stem cells to produce greater amounts of cytokines, nanovesicles, and microRNAs that boosted the generation of new blood vessels and new cardiomyocytes. Thus, by altering the physical properties of cocoons by varying NPG content, the paracrine signature of encapsulated cells can be enhanced to promote greater endogenous repair of injured myocardium.

  17. Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting.

    PubMed

    Wei Zhu; Harris, Brent T; Zhang, Lijie Grace

    2016-08-01

    Nervous system is extremely complex which leads to rare regrowth of nerves once injury or disease occurs. Advanced 3D bioprinting strategy, which could simultaneously deposit biocompatible materials, cells and supporting components in a layer-by-layer manner, may be a promising solution to address neural damages. Here we presented a printable nano-bioink composed of gelatin methacrylamide (GelMA), neural stem cells, and bioactive graphene nanoplatelets to target nerve tissue regeneration in the assist of stereolithography based 3D bioprinting technique. We found the resultant GelMA hydrogel has a higher compressive modulus with an increase of GelMA concentration. The porous GelMA hydrogel can provide a biocompatible microenvironment for the survival and growth of neural stem cells. The cells encapsulated in the hydrogel presented good cell viability at the low GelMA concentration. Printed neural construct exhibited well-defined architecture and homogenous cell distribution. In addition, neural stem cells showed neuron differentiation and neurites elongation within the printed construct after two weeks of culture. These findings indicate the 3D bioprinted neural construct has great potential for neural tissue regeneration.

  18. Behaviour of adipose-derived canine mesenchymal stem cells after superparamagnetic iron oxide nanoparticles labelling for magnetic resonance imaging.

    PubMed

    Kolecka, Malgorzata Anna; Arnhold, Stefan; Schmidt, Martin; Reich, Christine; Kramer, Martin; Failing, Klaus; von Pückler, Kerstin

    2017-02-24

    Therapy with mesenchymal stem cells (MSCs) has been reported to provide beneficial effects in the treatment of neurological and orthopaedic disorders in dogs. The exact mechanism of action is poorly understood. Magnetic resonance imaging (MRI) gives the opportunity to observe MSCs after clinical administration. To visualise MSCs with the help of MRI, labelling with an MRI contrast agent is necessary. However, it must be clarified whether there is any negative influence on cell function and viability after labelling prior to clinical administration. For the purpose of the study, seven samples with canine adipose-derived stem cells were incubated with superparamagnetic iron oxide nanoparticles (SPIO: 319.2 μg/mL Fe) for 24 h. The internalisation of the iron particles occurred via endocytosis. SPIO particles were localized as free clusters in the cytoplasm or within lysosomes depending on the time of investigation. The efficiency of the labelling was investigated using Prussian blue staining and MACS assay. After 3 weeks the percentage of SPIO labelled canine stem cells decreased. Phalloidin staining showed no negative effect on the cytoskeleton. Labelled cells underwent osteogenic and adipogenic differentiation. Chondrogenic differentiation occurred to a lesser extent compared with a control sample. MTT-Test and wound healing assay showed no influence of labelling on the proliferation. The duration of SPIO labelling was assessed using a 1 Tesla clinical MRI scanner and T2 weighted turbo spin echo and T2 weighted gradient echo MRI sequences 1, 2 and 3 weeks after labelling. The hypointensity caused by SPIO lasted for 3 weeks in both sequences. An Endorem labelling concentration of 319.2 μg/mL Fe (448 μg/mL SPIO) had no adverse effects on the viability of canine ASCs. Therefore, this contrast agent could be used as a model for iron oxide labelling agents. However, the tracking ability in vivo has to be evaluated in further studies.

  19. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells

    PubMed Central

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N.; Luan, Anna; Brett, Elizabeth A.; Barrera, Janos; Khong, Sacha M.; Zielins, Elizabeth R.; Whittam, Alexander J.; Hu, Michael S.; Walmsley, Graham G.; Pollhammer, Michael S.; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther; Huemer, Georg M.; Wan, Derrick C.; Longaker, Michael T.

    2016-01-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31−/CD45−), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy. PMID:26702129

  20. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    PubMed

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy. ©AlphaMed Press.

  1. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer.

    PubMed

    Zhang, Le; Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-04-18

    Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.

  2. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer

    PubMed Central

    Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-01-01

    ABSTRACT Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic. PMID:27753527

  3. Plasma clots gelled by different amounts of calcium for stem cell delivery.

    PubMed

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2013-01-01

    Freshly prepared autologous plasma clots may serve as a carrier matrix for expanded multipotent mesenchymal stromal cells (MSCs) or bone marrow cells. By varying the calcium concentration, plasma clots with different properties can be produced. The purpose of this in vitro study was to determine the optimal calcium concentrations for the clotting process, intra-clot cell viability, and clot lysis. Different plasma clots were prepared by adding an equal volume of RPMI1640 (with or without MSCs) to citrate plasma (either containing platelets or platelet-free). Clotting was initiated by the addition of CaCl(2) (10 g/100 ml H(2)O, 10 % solution). The final concentration of CaCl(2) ranged from 1 to 10 % by volume of plasma. Viability and distribution of the MSCs were analysed by calcein-AM/propidium iodide staining. MSC-embedded plasma clots were dissolved with trypsin (0.25 %), and recovered cells were further incubated for 1 week under cell culture conditions. The viability of MSCs embedded in clots formed by the addition of 1-8 % by volume CaCl2 was not affected by incubation of up to 1 week. In contrast, clots produced by higher volumes of CaCl(2) solutions (9-10 % by volume of plasma) showed decreased numbers of viable cells. Intra-clot cell proliferation was highest in clots produced by addition of 5 % CaCl(2) by plasma volume. Osteocalcin release was not influenced in platelet-free plasma but decreased in platelet-containing plasma. Morphological analysis of stained recovered MSCs revealed that lysis of the plasma clot did not affect cell morphology or subsequent spontaneous proliferation. Clot formation and clot stability can be controlled by changing the concentration of CaCl(2) added to plasma. The addition of 5 % CaCl(2) produced a plasma clot with optimal results for stem cell delivery.

  4. Transportation Conditions for Prompt Use of Ex Vivo Expanded and Freshly Harvested Clinical-Grade Bone Marrow Mesenchymal Stromal/Stem Cells for Bone Regeneration

    PubMed Central

    Veronesi, Elena; Murgia, Alba; Caselli, Anna; Grisendi, Giulia; Piccinno, Maria Serena; Rasini, Valeria; Giordano, Rosaria; Montemurro, Tiziana; Bourin, Philippe; Sensebé, Luc; Rojewski, Markus T.; Schrezenmeier, Hubert; Layrolle, Pierre; Ginebra, Maria Pau; Panaitescu, Carmen Bunu; Gómez-Barrena, Enrique; Catani, Fabio; Paolucci, Paolo; Burns, Jorge S.

    2014-01-01

    Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/β-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/β-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/β-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/β-TCP 3D scaffold and subsequent in vivo bone formation. A successfully validated transportation protocol extends the applicability of fresh stem cells involving multicentric trials for regenerative medicine. PMID:23845029

  5. The high-mobility-group box protein SSRP1/T160 is essential for cell viability in day 3.5 mouse embryos.

    PubMed

    Cao, Shang; Bendall, Heather; Hicks, Geoffrey G; Nashabi, Abudi; Sakano, Hitoshi; Shinkai, Yoichi; Gariglio, Marisa; Oltz, Eugene M; Ruley, H Earl

    2003-08-01

    The high-mobility-group (HMG) SSRP1 protein is a member of a conserved chromatin-remodeling complex (FACT/DUF/CP) implicated in DNA replication, basal and regulated transcription, and DNA repair. To assist in the functional analysis of SSRP1, the Ssrp1 gene was targeted in murine embryonic stem cells, and the mutation was introduced into the germ line. Embryos homozygous for the targeted allele die soon after implantation, and preimplantation blastocysts are defective for cell outgrowth and/or survival in vitro. The Ssrp1 mutation was also crossed into a p53 null background without affecting growth and/or survival defects caused by loss of Ssrp1 function. Thus, Ssrp1 appears to encode nonredundant and p53-independent functions that are essential for cell viability.

  6. Intercellular cytosolic transfer correlates with mesenchymal stromal cell rescue of umbilical cord blood cell viability during ex vivo expansion

    PubMed Central

    Chu, Pat P. Y.; Bari, Sudipto; Fan, Xiubo; Gay, Florence P. H.; Ang, Justina M. L.; Chiu, Gigi N. C.; Lim, Sai K.; Hwang, William Y. K.

    2012-01-01

    Background aims. Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. Methods. In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). Results. Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P<0.01). This was associated with significant enhancement of mitochondrial membrane potential (P<0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P< 0.0001). Conclusions. Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture. PMID:22775077

  7. Femtosecond laser assisted photo-transfection and differentiation of mouse embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Thobakgale, Lebogang; Manoto, Sello; Ombinda Lemboumba, Satuurnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2018-02-01

    In tissue engineering research, stem cells have been used as starting material in the synthesis of mammalian cells for the treatment of various cell based diseases. This is done by manipulating the DNA content of the cells to induce a specific effect such as increased proliferation or developing a new cell type through the process of differentiation. Such controlled gene expression of stem cells is achieved by the method of transfection, where exogenous plasmid deoxyribonucleic acid (pDNA) is inserted into a stem cell using chemical, viral or physical methods. In this research, we used femtosecond (fs) laser pulses from a home-build microscope system to perforate the cellular membrane and allow entry of selected pDNA to alter the behaviour of mouse embryonic stem cells (mESCs). In one set of experiments, we induce fluorescence on mESCs using green fluorescence protein plasmid (pGFP) while in other tests; differentiation of mESCs into endoderm cells is performed using Sox-17 plasmid DNA (pSox-17). Primitive endoderm formation was thereafter confirmed using polymerase chain reactions (PCR) and the Sox-17 primer. Cell viability studies using adenosine triphosphate were also conducted. From the data, it was concluded that the photo-transfection method is biocompatible since it was able to induce fluorescence in mESCs. Secondly, it was confirmed that Sox-17 was photo-transfected successfully using 6 μW laser power, 128 fs pulses and 1kHz pulse repetition rate.

  8. Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non-Small Cell Lung Cancer.

    PubMed

    Bora-Singhal, Namrata; Perumal, Deepak; Nguyen, Jonathan; Chellappan, Srikumar

    2015-07-01

    Non-small cell lung cancer (NSCLC) patients have very low survival rates because the current therapeutic strategies are not fully effective. Although EGFR tyrosine kinase inhibitors are effective for NSCLC patients harboring EGFR mutations, patients invariably develop resistance to these agents. Alterations in multiple signaling cascades have been associated with the development of resistance to EGFR inhibitors. Sonic Hedgehog and associated Gli transcription factors play a major role in embryonic development and have recently been found to be reactivated in NSCLC, and elevated Gli1 levels correlate with poor prognosis. The Hedgehog pathway has been implicated in the functions of cancer stem cells, although the underlying molecular mechanisms are not clear. In this context, we demonstrate that Gli1 is a strong regulator of embryonic stem cell transcription factor Sox2. Depletion of Gli1 or inhibition of the Hedgehog signaling significantly abrogated the self-renewal of stem-like side-population cells from NSCLCs as well as vascular mimicry of such cells. Gli1 was found to transcriptionally regulate Sox2 through its promoter region, and Gli1 could be detected on the Sox2 promoter. Inhibition of Hedgehog signaling appeared to work cooperatively with EGFR inhibitors in markedly reducing the viability of NSCLC cells as well as the self-renewal of stem-like cells. Thus, our study demonstrates a cooperative functioning of the EGFR signaling and Hedgehog pathways in governing the stem-like functions of NSCLC cancer stem cells and presents a novel therapeutic strategy to combat NSCLC harboring EGFR mutations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase.

    PubMed

    Pandey, Puspa R; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Liu, Wen; Kobayashi, Aya; Xing, Fei; Fukuda, Koji; Hirota, Shigeru; Sugai, Tamotsu; Wakabayashi, Go; Koeda, Keisuke; Kashiwaba, Masahiro; Suzuki, Kazuyuki; Chiba, Toshimi; Endo, Masaki; Fujioka, Tomoaki; Tanji, Susumu; Mo, Yin-Yuan; Cao, Deliang; Wilber, Andrew C; Watabe, Kounosuke

    2011-11-01

    Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24(-)/CD44(+)/ESA(+)) that were isolated from both ER+ and ER- breast cancer cell lines was examined. The authors found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, the results of this study indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol.

  10. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase

    PubMed Central

    Pandey, Puspa R.; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K.; Liu, Wen; Kobayashi, Aya; Xing, Fei; Fukuda, Koji; Hirota, Shigeru; Sugai, Tamotsu; Wakabayashi, Go; Koeda, Keisuke; Kashiwaba, Masahiro; Suzuki, Kazuyuki; Chiba, Toshimi; Endo, Masaki; Fujioka, Tomoaki; Tanji, Susumu; Mo, Yin-Yuan; Cao, Deliang; Wilber, Andrew C.; Watabe, Kounosuke

    2012-01-01

    Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, we examined the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24−/CD44+/ESA+) that were isolated from both ER+ and ER− breast cancer cell lines. We found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, our results indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol. PMID:21188630

  11. Uniform Embryoid Body Production and Enhanced Mesendoderm Differentiation with Murine Embryonic Stem Cells in a Rotary Suspension Bioreactor.

    PubMed

    Lei, Xiaohua; Deng, Zhili; Duan, Enkui

    2016-01-01

    Embryonic stem cells (ESCs) are capable of differentiating into almost all cell types in vitro and hold great promise for drug screening, developmental studies and have a huge potential in many therapeutic areas. ESCs can aggregate to form embryoid body (EB) in static suspension culture by spontaneous differentiation, which resembles an intact embryo; while static suspension culture cannot prevent agglomeration of cells and offers little control over the size and shape of EBs, it results in aggregation of EBs into large, irregular masses, which prejudice the efficiency of differentiation of cells. Recently, bioreactor-based platforms have been shown to not only offer a beneficial effect on increasing diffusion of nutrients and oxygen which promotes cell viability and proliferation but also display local biomechanical properties (e.g., low fluid shear stresses and hydrodynamic force) in tissue development and organogenesis. This chapter describes a protocol for using a rotary suspension bioreactor to produce embryoid bodies and process the differentiation of mouse embryonic stem cells (mESCs), and to assess the efficiency of EB differentiation in the bioreactor by real-time PCR and immunostaining.

  12. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds

    PubMed Central

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-01-01

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells. PMID:24830447

  13. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds.

    PubMed

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-05-16

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  14. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current

    PubMed Central

    Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M.G.; Mazzanti, Michele; Florio, Tullio

    2014-01-01

    Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment. PMID:25361004

  15. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current.

    PubMed

    Gritti, Marta; Würth, Roberto; Angelini, Marina; Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M G; Mazzanti, Michele; Florio, Tullio

    2014-11-30

    Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment.

  16. Compressed Collagen Enhances Stem Cell Therapy for Corneal Scarring

    PubMed Central

    Shojaati, Golnar; Khandaker, Irona; Sylakowski, Kyle; Funderburgh, Martha L.; Du, Yiqin

    2018-01-01

    Abstract Stem cells from human corneal stroma (CSSC) suppress corneal stromal scarring in a mouse wound‐healing model and promote regeneration of native transparent tissue (PMID:25504883). This study investigated efficacy of compressed collagen gel (CCG) as a vehicle to deliver CSSC for corneal therapy. CSSC isolated from limbal stroma of human donor corneas were embedded in soluble rat‐tendon collagen, gelled at 37°C, and partially dehydrated to a thickness of 100 µm by passive absorption. The CCG disks were dimensionally stable, easy to handle, and could be adhered securely to de‐epithelialized mouse cornea with fibrin‐based adhesive. CSSC in CCG maintained >80% viability for >1 week in culture media and could be cryopreserved in 20% fetal bovine serum‐10%DMSO in liquid nitrogen. CCG containing as few as 500 CSSC effectively prevented visible scarring and suppressed expression of fibrotic Col3a1 mRNA. CSSC in CCG were more effective at blocking scarring on a per‐cell basis than CSSC delivered directly in a fibrin gel as previously described. Collagen‐embedded cells retained the ability to suppress corneal scarring after conventional cryopreservation. This study demonstrates use of a common biomaterial that can facilitate storage and handling of stem cells in a manner that may provide off‐the‐shelf delivery of stem cells as a therapy for corneal scarring. stem cells translational medicine 2018;7:487–494 PMID:29654654

  17. Oxygen Delivery from Hyperbarically Loaded Microtanks Extends Cell Viability in Anoxic Environments

    PubMed Central

    Cook, Colin A.; Hahn, Kathryn C.; Morrissette-McAlmon, Justin B.F.; Grayson, Warren L.

    2016-01-01

    Oxygen diffusion limitations within nascent tissue engineered (TE) grafts lead to the development of hypoxic regions, cell death, and graft failure. Previous efforts have been made to deliver oxygen within TE scaffolds, including peroxide-doping, perfluorocarbons, and hyperbaric oxygen therapy, to mitigate these effects and help maintain post transplantation cell viability, but these have suffered from significant drawbacks. Here we present a novel approach utilizing polymeric hollow-core microspheres that can be hyperbarically loaded with oxygen and subsequently provide prolonged oxygen delivery. These oxygen carriers are termed, microtanks. With an interest in orthopedic applications, we combined microtanks within polycaprolactone to form solid phase constructs with oxygen delivery capabilities. The mathematical laws governing oxygen delivery from microtank-loaded constructs are developed along with empirical validation. Constructs achieved periods of oxygen delivery out to 6 days, which was shown to prolong the survival of human adipose derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) as well as to enhance their cellular morphology under anoxic conditions. The results of this study suggest the microtank approach may be a feasible means of maintaining cell viability in TE scaffolds during the critical period of vascularization in vivo. PMID:25818444

  18. Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing

    PubMed Central

    Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A.; Alves, Paula M.

    2016-01-01

    To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. Significance The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. PMID:27025693

  19. Effective Hypothermic Storage of Human Pluripotent Stem Cell-Derived Cardiomyocytes Compatible With Global Distribution of Cells for Clinical Applications and Toxicology Testing.

    PubMed

    Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A; Serra, Margarida; Alves, Paula M

    2016-05-01

    To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. ©AlphaMed Press.

  20. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models

    PubMed Central

    Piao, Yuji; Park, Soon Young; Henry, Verlene; Smith, Bryan D.; Tiao, Ningyi; Flynn, Daniel L.

    2016-01-01

    Background Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. Methods We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. Results In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. Conclusions Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma. PMID:26965451

  1. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less

  2. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynertson, Kurt A.; Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065; Charlson, Mary E.

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extractsmore » for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells.« less

  3. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    PubMed Central

    Reynertson, Kurt A.; Charlson, Mary E.; Gudas, Lorraine J.

    2010-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly-cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from twelve species of ethnomedically utilized plants, we found fractions from three species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. PMID:20955699

  4. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide

    PubMed Central

    2012-01-01

    Background Mesenchymal stem cells (MSCs) are increasingly used as therapeutic agents as well as research tools in regenerative medicine. Development of technologies which allow storing and banking of MSC with minimal loss of cell viability, differentiation capacity, and function is required for clinical and research applications. Cryopreservation is the most effective way to preserve cells long term, but it involves potentially cytotoxic compounds and processing steps. Here, we investigate the effect of decreasing dimethyl sulfoxide (DMSO) concentrations in cryosolution by substituting with hydroxyethyl starch (HES) of different molecular weights using different freezing rates. Post-thaw viability, phenotype and osteogenic differentiation capacity of MSCs were analysed. Results The study confirms that, for rat MSC, cryopreservation effects need to be assessed some time after, rather than immediately after thawing. MSCs cryopreserved with HES maintain their characteristic cell surface marker expression as well as the osteogenic, adipogenic and chondrogenic differentiation potential. HES alone does not provide sufficient cryoprotection for rat MSCs, but provides good cryoprotection in combination with DMSO, permitting the DMSO content to be reduced to 5%. There are indications that such a combination would seem useful not just for the clinical disadvantages of DMSO but also based on a tendency for reduced osteogenic differentiation capacity of rat MSC cryopreserved with high DMSO concentration. HES molecular weight appears to play only a minor role in its capacity to act as a cryopreservation solution for MSC. The use of a ‘straight freeze’ protocol is no less effective in maintaining post-thaw viability of MSC compared to controlled rate freezing methods. Conclusion A 5% DMSO / 5% HES solution cryopreservation solution using a ‘straight freeze’ approach can be recommended for rat MSC. PMID:22889198

  5. Neural Differentiation of Mesenchymal Stem Cells on Scaffolds for Nerve Tissue Engineering Applications.

    PubMed

    Quintiliano, Kerlin; Crestani, Thayane; Silveira, Davi; Helfer, Virginia Etges; Rosa, Annelise; Balbueno, Eduardo; Steffens, Daniela; Jotz, Geraldo Pereira; Pilger, Diogo André; Pranke, Patricia

    2016-11-01

    Scaffolds produced by electrospinning act as supports for cell proliferation and differentiation, improved through the release of neurotrophic factors. The objective of this study was to develop aligned and random nanofiber scaffolds with and without nerve growth factor to evaluate the potential of mesenchymal stem cells (MSCs) for neural differentiation. Nanofiber morphology, diameter, degradability, cell morphology, adhesion, proliferation, viability, cytotoxicity, and neural differentiation were performed to characterize the scaffolds. The expression for nestin, β-III tubulin, and neuron-specific enolase was also evaluated. The scaffolds demonstrated a satisfactory environment for MSC growth, being nontoxic. The MSCs cultivated on the scaffolds were able to adhere and proliferate. The evaluation of neural differentiation indicated that in all groups of scaffolds the MSCs were able to upregulate neural gene expression.

  6. Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy.

    PubMed

    Kennedy, Eamonn; Nelson, Edward M; Tanaka, Tetsuya; Damiano, John; Timp, Gregory

    2016-02-23

    It is now possible to visualize at nanometer resolution the infection of a living biological cell with virus without compromising cell viability using scanning transmission electron microscopy (STEM). To provide contrast while preserving viability, Escherichia coli and P1 bacteriophages were first positively stained with a very low concentration of uranyl acetate in minimal phosphate medium and then imaged with low-dose STEM in a microfluidic liquid flow cell. Under these conditions, it was established that the median lethal dose of electrons required to kill half the tested population was LD50 = 30 e(-)/nm(2), which coincides with the disruption of a wet biological membrane, according to prior reports. Consistent with the lateral resolution and high-contrast signal-to-noise ratio (SNR) inferred from Monte Carlo simulations, images of the E. coli membrane, flagella, and the bacteriophages were acquired with 5 nm resolution, but the cumulative dose exceeded LD50. On the other hand, with a cumulative dose below LD50 (and lower SNR), it was still possible to visualize the infection of E. coli by P1, showing the insertion of viral DNA within 3 s, with 5 nm resolution.

  7. In vitro toxicity of kava alkaloid, pipermethystine, in HepG2 cells compared to kavalactones.

    PubMed

    Nerurkar, Pratibha V; Dragull, Klaus; Tang, Chung-Shih

    2004-05-01

    Kava herbal supplements have been recently associated with acute hepatotoxicity, leading to the ban of kava products in approximately a dozen countries around the world. It is suspected that some alkaloids from aerial kava may have contributed to the problem. Traditionally, Pacific Islanders use primarily the underground parts of the shrub to prepare the kava beverage. However, some kava herbal supplements may contain ingredients from aerial stem peelings. The aim of this study was to test the in vitro effects of a major kava alkaloid, pipermethystine (PM), found mostly in leaves and stem peelings, and kavalactones such as 7,8-dihydromethysticin (DHM) and desmethoxyyangonin (DMY), which are abundant in the roots. Exposure of human hepatoma cells, HepG2, to 100 microM PM caused 90% loss in cell viability within 24 h, while 50 microM caused 65% cell death. Similar concentrations of kavalactones did not affect cell viability for up to 8 days of treatment. Mechanistic studies indicate that, in contrast to kavalactones, PM significantly decreased cellular ATP levels, mitochondrial membrane potential, and induced apoptosis as measured by the release of caspase-3 after 24 h of treatment. These observations suggest that PM, rather than kavalactones, is capable of causing cell death, probably in part by disrupting mitochondrial function. Thus, PM may contribute to rare but severe hepatotoxic reactions to kava.

  8. Engineering toxin-resistant therapeutic stem cells to treat brain tumors

    PubMed Central

    Stuckey, Daniel W.; Hingtgen, Shawn D.; Karakas, Nihal; Rich, Benjamin E.; Shah, Khalid

    2014-01-01

    Pseudomonas exotoxin (PE) potently blocks protein synthesis by catalyzing the inactivation of elongation factor-2 (EF-2), and PE-cytotoxins have been used as anti-tumor agents. However, their effective clinical translation in solid tumors has been confounded by off-target delivery, systemic toxicity and short chemotherapeutic half-life. To overcome these limitations we have created toxin-resistant stem cells by modifying endogenous EF-2, and engineered them to secrete PE-cytotoxins targeting IL13Rα2 and EGFR expressed by many glioblastomas (GBM). Molecular analysis correlated efficacy of PE-targeted cytotoxins with levels of cognate receptor expression, and optical imaging was applied to simultaneously track the kinetics of protein synthesis inhibition and GBM cell viability in vivo. Stem cell-based delivery of IL13-PE in a clinically-relevant GBM resection model led to increased long-term survival of mice compared to IL13-PE protein infusion. Moreover, multiple patient-derived GBM lines responded to treatment, underscoring its clinical relevance. In sum, integrating stem cell-based engineering, multimodal imaging and delivery of PE-cytotoxins in a clinically-relevant GBM model represents a novel strategy and a potential advancement in GBM therapy. PMID:25346520

  9. Clinical methods of cryopreservation for donor lymphocyte infusions vary in their ability to preserve functional T-cell subpopulations.

    PubMed

    Worsham, D Nicole; Reems, Jo-Anna; Szczepiorkowski, Zbigniew M; McKenna, David H; Leemhuis, Thomas; Mathew, Aby J; Cancelas, Jose A

    2017-06-01

    Cryopreserved donor lymphocyte infusion (DLI) products are manufactured and administered to treat relapse after allogeneic hematopoietic stem cell transplantation. Reported clinical responses to DLIs vary broadly, even within the same group of patients. While there is an implicit recognition of the fact that different manufacturing protocols may have specific effects on different cell types, cryopreservation protocols are frequently derived from our experience in the cryopreservation of stem cell products and do not account for the heterogeneous functional nature of DLI T-cell populations. Here, we report the results of a prospective, multicenter trial on the effect of four different cryopreservation solutions that were used to freeze DLIs compared to control DLIs that were refrigerated overnight. Cryopreserved postthawed and refrigerated specimens were analyzed side by side for their T-cell subpopulation content and viability, as well as T-cell proliferation, cytokine secretion, and cytotoxic activities. This study indicates that "homemade" 10% dimethyl sulfoxide (DMSO) results in reduced viability of different CD4+ T-cell populations, including T-helper, T-cytotoxic, and T-regulatory populations, and a decrease in their proliferative and cytotoxic response to immunologically relevant stimuli, while the use of solutions containing 5% DMSO with intracellular-like cryoprotectant stabilizers maintains T-cell function at levels similar to refrigerated control samples. This study has important implications in determining the best cryoprotectant solution for specific clinical applications in allogeneic immunotherapy. © 2017 AABB.

  10. In vitro assessment of nanosilver-functionalized PMMA bone cement on primary human mesenchymal stem cells and osteoblasts.

    PubMed

    Pauksch, Linda; Hartmann, Sonja; Szalay, Gabor; Alt, Volker; Lips, Katrin S

    2014-01-01

    Peri-prosthetic infections caused by multidrug resistant bacteria have become a serious problem in surgery and orthopedics. The aim is to introduce biomaterials that avoid implant-related infections caused by multiresistant bacteria. The efficacy of silver nanoparticles (AgNP) against a broad spectrum of bacteria and against multiresistant pathogens has been repeatedly described. In the present study polymethylmethacrylate (PMMA) bone cement functionalized with AgNP and/or gentamicin were tested regarding their biocompatibility with bone forming cells. Therefore, influences on viability, cell number and differentiation of primary human mesenchymal stem cells (MSCs) and MSCs cultured in osteogenic differentiation media (MSC-OM) caused by the implant materials were studied. Furthermore, the growth behavior and the morphology of the cells on the testing material were observed. Finally, we examined the induction of cell stress, regarding antioxidative defense and endoplasmatic reticulum stress. We demonstrated similar cytocompatibility of PMMA loaded with AgNP compared to plain PMMA or PMMA loaded with gentamicin. There was no decrease in cell number, viability and osteogenic differentiation and no induction of cell stress for all three PMMA variants after 21 days. Addition of gentamicin to AgNP-loaded PMMA led to a slight decrease in osteogenic differentiation. Also an increase in cell stress was detectable for PMMA loaded with gentamicin and AgNP. In conclusion, supplementation of PMMA bone cement with gentamicin, AgNP, and both results in bone implants with an antibacterial potency and suitable cytocompatibility in MSCs and MSC-OM.

  11. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    PubMed

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa + /BrdU + coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247. © 2016 AlphaMed Press.

  12. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    PubMed

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-03

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Knockdown of OY-TES-1 by RNAi causes cell cycle arrest and migration decrease in bone marrow-derived mesenchymal stem cells.

    PubMed

    Cen, Yan-Hui; Guo, Wen-Wen; Luo, Bin; Lin, Yong-Da; Zhang, Qing-Mei; Zhou, Su-Fang; Luo, Guo-Rong; Xiao, Shao-Wen; Xie, Xiao-Xun

    2012-10-01

    OY-TES-1 is a member of the CTA (cancer-testis antigen) group expressed in a variety of cancer and restrictedly expressed in adult normal tissues, except for testis. To determine whether MSCs (mesenchymal stem cells) express OY-TES-1 and its possible roles on MSCs, OY-TES-1 expression in MSCs isolated from human bone marrow was tested with RT (reverse transcription)-PCR, immunocytochemistry and Western blot. Using RNAi (RNA interference) technology, OY-TES-1 expression was knocked down followed by analysing cell viability, cell cycle, apoptosis and migration ability. MSCs expressed OY-TES-1 at both mRNA and protein levels. The down-regulation of OY-TES-1 expression in these MSCs caused cell growth inhibition, cell cycle arrest, apoptosis induction and migration ability attenuation. Through these primary results it was suggested that OY-TES-1 may influence the biological behaviour of MSCs.

  14. Preservation media, durations and cell concentrations of short-term storage affect key features of human adipose-derived mesenchymal stem cells for therapeutic application.

    PubMed

    Zhang, Fengli; Ren, Huaijuan; Shao, Xiaohu; Zhuang, Chao; Chen, Yantian; Qi, Nianmin

    2017-01-01

    Adipose-derived mesenchymal stem cells (ADSCs) have shown great potential in the treatment of various diseases. However, the optimum short-term storage condition of ADSCs in 2∼8 °C is rarely reported. This study aimed at optimizing a short-term storage condition to ensure the viability and function of ADSCs before transplantation. Preservation media and durations of storage were evaluated by cell viability, apoptosis, adhesion ability and colony-forming unit (CFU) capacity of ADSCs. The abilities of cell proliferation and differentiation were used to optimize cell concentrations. Optimized preservation condition was evaluated by cell surface markers, cell cycle and immunosuppressive capacity. A total of 5% human serum albumin in multiple electrolytes (ME + HSA) was the optimized medium with high cell viability, low cluster rate, good adhesion ability and high CFU capacity of ADSCs. Duration of storage should be limited to 24 h to ensure the quality of ADSCs before transplantation. A concentration of 5 × 10 6 cells/ml was the most suitable cell concentration with low late stage apoptosis, rapid proliferation and good osteogenic and adipogenic differentiation ability. This selected condition did not change surface markers, cell cycle, indoleamine 2, 3-dioxygenase 1 (IDO1) gene expression and kynurenine (Kyn) concentration significantly. In this study, ME + HSA was found to be the best medium, most likely due to the supplement of HSA which could protect cells, the physiological pH (7.4) of ME and sodium gluconate ingredient in ME which could provide energy for cells. Duration should be limited to 24 h because of reduced nutrient supply and increased waste and lactic acid accumulation during prolonged storage. To keep cell proliferation and limit lactic acid accumulation, the proper cell concentration is 5× 10 6 cells/ml. Surface markers, cell cycle and immunosuppressive capacity did not change significantly after storage using the optimized condition, which confirmed our results that this optimized short-term storage condition of MSCs has a great potential for the application of cell therapy.

  15. Growth differentiation factor‑5 induces tenomodulin expression via phosphorylation of p38 and promotes viability of murine mesenchymal stem cells from compact bone.

    PubMed

    Qu, Yanlong; Zhou, Li; Lv, Bing; Wang, Chunlei; Li, Pengwei

    2018-03-01

    Growth differentiation factor (GDF)‑5 serves a role in tissue development and tenomodulin serves an important role in the development of tendons. The effects of GDF‑5 on mesenchymal stem cells (MSCs), particularly with regards to tendon bioengineering, are poorly understood. The present study aimed to investigate the effects of GDF‑5 on cell viability and tenomodulin expression in MSCs from murine compact bone. MSCs were isolated from murine compact bones and confirmed by flow cytometric analysis. In addition, the adipogenic, osteoblastic and chondrocyte differentiation capabilities of the MSCs were determined. MSCs were treated with GDF‑5 and the effects of GDF‑5 on MSC viability were determined. The mRNA and protein expression levels of tenomodulin were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. MSCs from murine compact bone were successfully isolated. GDF‑5 had optimal effects on cell viability at 100 ng/ml (+36.9% of control group without GDF‑5 treatment, P<0.01) and its effects peaked after 6 days of treatment (+56.6% of control group, P<0.001). Compared with the control group, treatment with 100 ng/ml GDF‑5 for 4 days enhanced the mRNA expression levels of tenomodulin (3.56±0.94 vs. 1.02±0.25; P<0.05). In addition, p38 was activated by GDF‑5, as determined by enhanced expression levels of phosphorylated p38 (p‑p38). The GDF‑5‑induced protein expression levels of p‑p38 and tenomodulin were markedly inhibited following treatment with SB203580, an inhibitor of p38 mitogen‑activated protein kinase. These results suggested that GDF‑5 treatment may increase tenomodulin protein expression via phosphorylation of p38 in MSCs from murine compact bone. These findings may aid the future development of tendon bioengineering.

  16. The toxic effect of gallic acid on biochemical factors, viability and proliferation of rat bone marrow mesenchymal stem cells was compensated by boric acid.

    PubMed

    Abnosi, Mohammad Hussein; Yari, Somayeh

    2018-07-01

    Gallic acid (GA) and boron are found in many plants. Our previous studies showed 6 ng/ml boric acid (BA) had positive effect on biochemistry of rat bone marrow mesenchymal stem cells (MSCs) and their osteogenic differentiation. Therefore, we investigate the effect of different doses of GA alone and in the presence of BA on MSCs. the viability of MSCs was assayed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue at 12, 24 and 36 h in presence of different concentration of GA. Then 30 and 120 μM of GA as well as 6 ng/ml of BA in 36 h were selected for further study. The proliferation, Morphology, sodium and potassium level, concentration of calcium, activity of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) as well as malondialdehyde (MDA) concentration, total antioxidant capacity (FRAP) and activity of superoxide dismutase (SOD) and catalase (CAT) were estimated. Results showed GA alone reduced viability, proliferation, nuclear diameter and cytoplasm area. In addition, GA showed anaerobic metabolic shift but no change in MDA and scavenging enzymes. Both concentration of GA caused elevation of FRAP, whereas only at 120 μM increased the sodium-potassium and reduced calcium. The co-treatment of GA and BA improves the viability, proliferation and morphology of the cells. In addition, co-treatment compensated the metabolic shift caused by GA and could balance the potassium level and FRAP as it was raised by GA. Although GA content of tea is harmful to the cells but simultaneous consumption of fruits and vegetables as a rich source of boron might compensate the damaging effect of GA. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Nanothin Coculture Membranes with Tunable Pore Architecture and Thermoresponsive Functionality for Transfer-Printable Stem Cell-Derived Cardiac Sheets.

    PubMed

    Ryu, Seungmi; Yoo, Jin; Jang, Yeongseon; Han, Jin; Yu, Seung Jung; Park, Jooyeon; Jung, Seon Yeop; Ahn, Kyung Hyun; Im, Sung Gap; Char, Kookheon; Kim, Byung-Soo

    2015-10-27

    Coculturing stem cells with the desired cell type is an effective method to promote the differentiation of stem cells. The features of the membrane used for coculturing are crucial to achieving the best outcome. Not only should the membrane act as a physical barrier that prevents the mixing of the cocultured cell populations, but it should also allow effective interactions between the cells. Unfortunately, conventional membranes used for coculture do not sufficiently meet these requirements. In addition, cell harvesting using proteolytic enzymes following coculture impairs cell viability and the extracellular matrix (ECM) produced by the cultured cells. To overcome these limitations, we developed nanothin and highly porous (NTHP) membranes, which are ∼20-fold thinner and ∼25-fold more porous than the conventional coculture membranes. The tunable pore size of NTHP membranes at the nanoscale level was found crucial for the formation of direct gap junctions-mediated contacts between the cocultured cells. Differentiation of the cocultured stem cells was dramatically enhanced with the pore size-customized NTHP membrane system compared to conventional coculture methods. This was likely due to effective physical contacts between the cocultured cells and the fast diffusion of bioactive molecules across the membrane. Also, the thermoresponsive functionality of the NTHP membranes enabled the efficient generation of homogeneous, ECM-preserved, highly viable, and transfer-printable sheets of cardiomyogenically differentiated cells. The coculture platform developed in this study would be effective for producing various types of therapeutic multilayered cell sheets that can be differentiated from stem cells.

  18. Enhancement of Bone-Marrow-Derived Mesenchymal Stem Cell Angiogenic Capacity by NPWT for a Combinatorial Therapy to Promote Wound Healing with Large Defect

    PubMed Central

    Ma, Zhanjun

    2017-01-01

    Poor viability of engrafted bone marrow mesenchymal stem cells (BMSCs) often hinders their application for wound healing, and the strategy of how to take full advantage of their angiogenic capacity within wounds still remains unclear. Negative pressure wound therapy (NPWT) has been demonstrated to be effective for enhancing wound healing, especially for the promotion of angiogenesis within wounds. Here we utilized combinatory strategy using the transplantation of BMSCs and NPWT to investigate whether this combinatory therapy could accelerate angiogenesis in wounds. In vitro, after 9-day culture, BMSCs proliferation significantly increased in NPWT group. Furthermore, NPWT induced their differentiation into the angiogenic related cells, which are indispensable for wound angiogenesis. In vivo, rat full-thickness cutaneous wounds treated with BMSCs combined with NPWT exhibited better viability of the cells and enhanced angiogenesis and maturation of functional blood vessels than did local BMSC injection or NPWT alone. Expression of angiogenesis markers (NG2, VEGF, CD31, and α-SMA) was upregulated in wounds treated with combined BMSCs with NPWT. Our data suggest that NPWT may act as an inductive role to enhance BMSCs angiogenic capacity and this combinatorial therapy may serve as a simple but efficient clinical solution for complex wounds with large defects. PMID:28243602

  19. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    PubMed

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  20. Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes.

    PubMed

    Mahmoudi, Morteza; Tachibana, Atsushi; Goldstone, Andrew B; Woo, Y Joseph; Chakraborty, Papia; Lee, Kayla R; Foote, Chandler S; Piecewicz, Stephanie; Barrozo, Joyce C; Wakeel, Abdul; Rice, Bradley W; Bell Iii, Caleb B; Yang, Phillip C

    2016-06-06

    Therapeutic delivery of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) represents a novel clinical approach to regenerate the injured myocardium. However, methods for robust and accurate in vivo monitoring of the iCMs are still lacking. Although superparamagnetic iron oxide nanoparticles (SPIOs) are recognized as a promising tool for in vivo tracking of stem cells using magnetic resonance imaging (MRI), their signal persists in the heart even weeks after the disappearance of the injected cells. This limitation highlights the inability of SPIOs to distinguish stem cell viability. In order to overcome this shortcoming, we demonstrate the use of a living contrast agent, magneto-endosymbionts (MEs) derived from magnetotactic bacteria for the labeling of iCMs. The ME-labeled iCMs were injected into the infarcted area of murine heart and probed by MRI and bioluminescence imaging (BLI). Our findings demonstrate that the MEs are robust and effective biological contrast agents to track iCMs in an in vivo murine model. We show that the MEs clear within one week of cell death whereas the SPIOs remain over 2 weeks after cell death. These findings will accelerate the clinical translation of in vivo MRI monitoring of transplanted stem cell at high spatial resolution and sensitivity.

  1. A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke

    PubMed Central

    Aswendt, Markus; Adamczak, Joanna; Tennstaedt, Annette

    2014-01-01

    Transplanted stem cells can induce and enhance functional recovery in experimental stroke. Invasive analysis has been extensively used to provide detailed cellular and molecular characterization of the stroke pathology and engrafted stem cells. But post mortem analysis is not appropriate to reveal the time scale of the dynamic interplay between the cell graft, the ischemic lesion and the endogenous repair mechanisms. This review describes non-invasive imaging techniques which have been developed to provide complementary in vivo information. Recent advances were made in analyzing simultaneously different aspects of the cell graft (e.g., number of cells, viability state, and cell fate), the ischemic lesion (e.g., blood–brain-barrier consistency, hypoxic, and necrotic areas) and the neuronal and vascular network. We focus on optical methods, which permit simple animal preparation, repetitive experimental conditions, relatively medium-cost instrumentation and are performed under mild anesthesia, thus nearly under physiological conditions. A selection of recent examples of optical intrinsic imaging, fluorescence imaging and bioluminescence imaging to characterize the stroke pathology and engrafted stem cells are discussed. Special attention is paid to novel optimal reporter genes/probes for genetic labeling and tracking of stem cells and appropriate transgenic animal models. Requirements, advantages and limitations of these imaging platforms are critically discussed and placed into the context of other non-invasive techniques, e.g., magnetic resonance imaging and positron emission tomography, which can be joined with optical imaging in multimodal approaches. PMID:25177269

  2. MiR-146b-5p overexpression attenuates stemness and radioresistance of glioma stem cells by targeting HuR/lincRNA-p21/β-catenin pathway

    PubMed Central

    Yang, Wei; Yu, Hongquan; Shen, Yueming; Liu, Yingying; Yang, Zhanshan; Sun, Ting

    2016-01-01

    A stem-like subpopulation existed in GBM cells, called glioma stem cells (GSCs), might contribute to cancer invasion, angiogenesis, immune evasion, and therapeutic resistance, providing a rationale to eliminate GSCs population and their supporting niche for successful GBM treatment. LincRNA-p21, a novel regulator of cell proliferation, apoptosis and DNA damage response, is found to be downregulated in several types of tumor. However, little is known about the role of lincRNA-p21 in stemness and radioresistance of GSCs and its regulating mechanisms. In this study, we found that lincRNA-p21 negatively regulated the expression and activity of β-catenin in GSCs. Downregulation of lincRNA-p21 in GSCs was resulted from upregulation of Hu antigen R (HuR) expression caused by miR-146b-5p downregulation. MiR-146b-5p overexpression increased apoptosis and radiosensitivity, decreased cell viability, neurosphere formation capacity and stem cell marker expression, and induced differentiation in GSCs. Moreover, knock-down lincRNA-p21 or HuR and β-catenin overexpression could rescue the phenotypic changes resulted from miR-146b-5p overexpression in GSCs. These findings suggest that targeting the miR-146b-5p/HuR/lincRNA-p21/β-catenin signaling pathway may be valuable therapeutic strategies against glioma. PMID:27166258

  3. Comparison of Human Denuded Amniotic Membrane and Porcine Small Intestine Submucosa as Scaffolds for Limbal Mesenchymal Stem Cells.

    PubMed

    Sous Naasani, Liliana I; Rodrigues, Cristiano; Azevedo, Jéssica Gonçalves; Damo Souza, Aline F; Buchner, Silvio; Wink, Márcia R

    2018-04-29

    Blinding corneal scarring is usually treated with allogeneic graft tissue. Nevertheless, the global shortage of donors leaves millions of patients in need of therapy. Traditional tissue engineering strategies involves the combination of cells, growth factors, and scaffolds that can supply cellular biological components allowing to restore the tissue function. The mesenchymal stem cells found in the limbal stroma (L-MSCs) have a self-renewal potential for multilineage differentiation. Thus, in this work we compared the potential of human amniotic membrane (hAM) and porcine small intestine submucosa (SIS) as scaffolds for L-MSCs, aiming at potential applications in corneal regeneration. For that, L-MSCs were seeded on hAM and SIS and we analyzed their viability, actin cytoskeleton, nuclei morphology, cell density, adhesion and surface markers. Our results showed that cells adhered and integrated into both membranes with a high cell density, an important characteristic for cell therapy. However, due to its transparency, the hAM allowed a better observation of L-MSCs. In addition, the analysis of surface markers expression on L-MSCs after two weeks showed a slight increase in the percentages of negative markers for MSCs grown on SIS membrane. Thus, considering a long-term culture, the hAM was considered better in maintaining the MSCs phenotype. Regarding the function as scaffolds, SIS was as efficient as the amniotic membrane, considering that these two types of biological matrices maintained the cell viability, actin cytoskeleton, nuclei morphology and mesenchymal phenotype, without causing cell death. Therefore, our data in vitro provides evidence for future pre-clinical studies were these membranes can be used as a support to transport mesenchymal stem cells to the injured area, creating a kind of temporary curative, allowing the release of bioactive molecules, such as cytokines and growth factors and then promoting the tissue regeneration, both in human and veterinary medicine.

  4. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    PubMed Central

    2011-01-01

    Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and protamine may be applicable to patients, since both ferumoxides and protamine are approved for human use. PMID:21542946

  5. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    PubMed

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  6. The influence of femtosecond laser pulse wavelength on embryonic stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience

    2012-10-01

    Stem cells are rich in proteins, carbohydrates, deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and various other cellular components which are responsible for a diversity of functions. Mostly the building blocks of these intracellular entities play an active role in absorbing ultra-violet (UV) and visible light sources. Light-matter interactions in biomaterials are a complex situation and subsequent damage may not always amount only from wavelength dependent effects but may also be driven by a wealth of other optical parameters which may lead to a variety photochemical reactions. Previously, literature has reported efficient photo-transfection and differentiation of pluripotent stem cells via near infrared (NIR) femtosecond (fs) laser pulses with minimum compromise to their viability. Therefore, in this study the influence of using different fs laser wavelengths on optical stem cell transfection and differentiation is investigated. A potassium titanyl phosphate (KTP) crystal was employed in frequency doubling a 1064 nm fs laser beam. The newly generated 532 nm fs pulsed beam was then utilized for the first time in transient photo-transfection of ES-E14TG2a mouse embryonic stem (mES) cells. Compared to using 1064 nm fs pulses which non-invasively introduce plasmid DNA and other macromolecules into mES cells, our results showed a significant decline in the photo-transfection efficiency following transfecting with a pulsed fs visible green beam.

  7. Graphene induces spontaneous cardiac differentiation in embryoid bodies

    NASA Astrophysics Data System (ADS)

    Ahadian, Samad; Zhou, Yuanshu; Yamada, Shukuyo; Estili, Mehdi; Liang, Xiaobin; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu

    2016-03-01

    Graphene was embedded into the structure of mouse embryoid bodies (EBs) using the hanging drop technique. The inclusion of 0.2 mg per mL graphene in the EBs did not affect the viability of the stem cells. However, the graphene decreased the stem cell proliferation, probably by accelerating cell differentiation. The graphene also enhanced the mechanical properties and electrical conductivity of the EBs. Interestingly, the cardiac differentiation of the EB-graphene was significantly greater than that of the EBs at day 5 of culture, as confirmed by high-throughput gene analysis. Electrical stimulation (voltage, 4 V; frequency, 1 Hz; and duration, 10 ms for 2 continuous days) further enhanced the cardiac differentiation of the EBs, as demonstrated by analyses of the cardiac protein and gene expression and the beating activity of the EBs. Taken together, the results demonstrated that graphene played a major role in directing the cardiac differentiation of EBs, which has potential cell therapy and tissue regeneration applications.Graphene was embedded into the structure of mouse embryoid bodies (EBs) using the hanging drop technique. The inclusion of 0.2 mg per mL graphene in the EBs did not affect the viability of the stem cells. However, the graphene decreased the stem cell proliferation, probably by accelerating cell differentiation. The graphene also enhanced the mechanical properties and electrical conductivity of the EBs. Interestingly, the cardiac differentiation of the EB-graphene was significantly greater than that of the EBs at day 5 of culture, as confirmed by high-throughput gene analysis. Electrical stimulation (voltage, 4 V; frequency, 1 Hz; and duration, 10 ms for 2 continuous days) further enhanced the cardiac differentiation of the EBs, as demonstrated by analyses of the cardiac protein and gene expression and the beating activity of the EBs. Taken together, the results demonstrated that graphene played a major role in directing the cardiac differentiation of EBs, which has potential cell therapy and tissue regeneration applications. Electronic supplementary information (ESI) available: Fig. S1-S3, Tables S1-S4, and Movies S1-S4. See DOI: 10.1039/c5nr07059g

  8. CD133 antisense suppresses cancer cell growth and increases sensitivity to cisplatin in vitro.

    PubMed

    Blancas-Mosqueda, Marisol; Zapata-Benavides, Pablo; Zamora-Ávila, Diana; Saavedra-Alonso, Santiago; Manilla-Muñoz, Edgar; Franco-Molina, Moisés; DE LA Peña, Carmen Mondragón; Rodríguez-Padilla, Cristina

    2012-11-01

    The increased incidence of cancer in recent years is associated with a high rate of mortality. Numerous types of cancer have a low percentage of CD133(+) cells, which have similar features to stem cells. The CD133 molecule is involved in apoptosis and cell proliferation. The aim of this study was to determine the biological effect of CD133 suppression and its role in the chemosensitization of cancer cell lines. RT-PCR and immunocytochemical analyses indicated that CD133 was expressed in the cancer cell lines B16F10, MCF7 and INER51. Downregulation of CD133 by transfection with an antisense sequence (As-CD133) resulted in a decrease in cancer cell viability of up to 52, 47 and 22% in B16F10, MCF-7 and INER51 cancer cell lines, respectively. This decreased viability appeared to be due to the induction of apoptosis. In addition, treatment with As-CD133 in combination with cisplatin had a synergic effect in all of the cancer cell lines analyzed, and in particular, significantly decreased the viability of B16F10 cancer cells compared with each treatment separately (3.1% viability for the combined treatment compared with 48% for 0.4 μg As-CD133 and 25% for 5 ng/μl cisplatin; P<0.05). The results indicate that the downregulation of CD133 by antisense is a potential therapeutic target for cancer and has a synergistic effect when administered with minimal doses of the chemotherapeutic drug cisplatin, suggesting that this combination strategy may be applied in cancer treatment.

  9. A novel perfused rotary bioreactor for cardiomyogenesis of embryonic stem cells.

    PubMed

    Teo, Ailing; Mantalaris, Athanasios; Song, Kedong; Lim, Mayasari

    2014-05-01

    Developments in bioprocessing technology play an important role for overcoming challenges in cardiac tissue engineering. To this end, our laboratory has developed a novel rotary perfused bioreactor for supporting three-dimensional cardiac tissue engineering. The dynamic culture environments provided by our novel perfused rotary bioreactor and/or the high-aspect rotating vessel produced constructs with higher viability and significantly higher cell numbers (up to 4 × 10(5) cells/bead) than static tissue culture flasks. Furthermore, cells in the perfused rotary bioreactor showed earlier gene expressions of cardiac troponin-T, α- and β-myosin heavy chains with higher percentages of cardiac troponin-I-positive cells and better uniformity of sacromeric α-actinin expression. A dynamic and perfused environment, as provided by this bioreactor, provides a superior culture performance in cardiac differentiation for embryonic stem cells particularly for larger 3D constructs.

  10. Resveratrol protects mouse embryonic stem cells from ionizing radiation by accelerating recovery from DNA strand breakage.

    PubMed

    Denissova, Natalia G; Nasello, Cara M; Yeung, Percy L; Tischfield, Jay A; Brenneman, Mark A

    2012-01-01

    Resveratrol has elicited many provocative anticancer effects in laboratory animals and cultured cells, including reduced levels of oxidative DNA damage, inhibition of tumor initiation and progression and induction of apoptosis in tumor cells. Use of resveratrol as a cancer-preventive agent in humans will require that its anticancer effects not be accompanied by damage to normal tissue stem or progenitor cells. In mouse embryonic stem cells (mESC) or early mouse embryos exposed to ethanol, resveratrol has been shown to suppress apoptosis and promote survival. However, in cells exposed to genotoxic stress, survival may come at the expense of genome stability. To learn whether resveratrol can protect stem cells from DNA damage and to study its effects on genomic integrity, we exposed mESC pretreated with resveratrol to ionizing radiation (IR). Forty-eight hours pretreatment with a comparatively low concentration of resveratrol (10 μM) improved survival of mESC >2-fold after exposure to 5 Gy of X-rays. Cells pretreated with resveratrol sustained the same levels of reactive oxygen species and DNA strand breakage after IR as mock-treated controls, but repaired DNA damage more rapidly and resumed cell division sooner. Frequencies of IR-induced mutation at a chromosomal reporter locus were not increased in cells pretreated with resveratrol as compared with controls, indicating that resveratrol can improve viability in mESC after DNA damage without compromising genomic integrity.

  11. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. © The Author(s) 2016.

  12. Novel paths towards neural cellular products for neurological disorders.

    PubMed

    Daadi, Marcel M

    2011-11-01

    The prospect of using neural cells derived from stem cells or from reprogrammed adult somatic cells provides a unique opportunity in cell therapy and drug discovery for developing novel strategies for brain repair. Cell-based therapeutic approaches for treating CNS afflictions caused by disease or injury aim to promote structural repair of the injured or diseased neural tissue, an outcome currently not achieved by drug therapy. Preclinical research in animal models of various diseases or injuries report that grafts of neural cells enhance endogenous repair, provide neurotrophic support to neurons undergoing degeneration and replace lost neural cells. In recent years, the sources of neural cells for treating neurological disorders have been rapidly expanding and in addition to offering therapeutic potential, neural cell products hold promise for disease modeling and drug discovery use. Specific neural cell types have been derived from adult or fetal brain, from human embryonic stem cells, from induced pluripotent stem cells and directly transdifferentiated from adult somatic cells, such as skin cells. It is yet to be determined if the latter approach will evolve into a paradigm shift in the fields of stem cell research and regenerative medicine. These multiple sources of neural cells cover a wide spectrum of safety that needs to be balanced with efficacy to determine the viability of the cellular product. In this article, we will review novel sources of neural cells and discuss current obstacles to developing them into viable cellular products for treating neurological disorders.

  13. 5-Azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cells into cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Cheng, Jin; Ding, Qian; Wang, Jia; Deng, Lin; Yang, Lu; Tao, Lei; Lei, Haihong; Lu, Shaoping

    2016-01-01

    Heart disease is one of the deadliest diseases causing mortality due to the limited regenerative capability of highly differentiated cardiomyocytes. Stem cell-based therapy in tissue engineering is one of the most exciting and rapidly growing areas and raises promising prospects for cardiac repair. In this study, we have synthesized FITC-mesoporous silica nanoparticles (FMSNs) based on a sol-gel method (known as Stöber's method) as a drug delivery platform to transport 5-azacytidine in P19 embryonic carcinoma stem cells. The surfactant CTAB is utilized as a liquid crystal template to self-aggregate into micelles, resulting in the synthesis of MSNs. Based on the cell viability assay, treatment with FMSNs + 5-azacytidine resulted in much more significant inhibition of the proliferation than 5-azacytidine alone. To study the mechanism, we have tested the differentiation genes and cardiac marker genes in P19 cells and found that these genes have been up-regulated in P19 embryonic carcinoma stem cells treated with FMSNs + 5-azacytidine + poly(allylamine hydrochloride) (PAH), with the changes of histone modifications on the regulatory region. In conclusion, with FMSNs as drug delivery platforms, 5-azacytidine can be more efficiently delivered into stem cells and can be used to monitor and track the transfection process in situ to clarify their effects on stem cell functions and the differentiation process, which can serve as a promising tool in tissue engineering and other biomedical fields.

  14. Cytotoxic Effects of Nonionic Iodinated Contrast Agent on Human Adipose-derived Mesenchymal Stem Cells.

    PubMed

    Wu, Tao; Nie, Hai; Dietz, Allan B; Salek, David R; Smith, Jay; van Wijnen, Andre J; Qu, Wenchun

    2018-05-31

    Transplantation of mesenchymal stem cells (MSCs) is a promising therapy for degenerative spine conditions. However, cell therapy for painful spine degeneration presently requires use of contrast agents during fluoroscopy-guided injections and the effects of these agents on MSCs represents a gap in knowledge. To investigate the biological effects of contrast media that are co-injected with MSCs. Prospective observational study. Academic medical center. Patient-derived clinical-grade culture expanded MSCs. Iohexol(Omnipaque300) was reduced to 12.5%, 25%, 50% and 100% of the stock solution and incubated with MSCs for 30 minutes, 4 hours and 48 hours. We also used complete media and 12.5%, 25%, 50%, 100% of phosphate buffered saline (PBS) as control group. We examined cytotoxicity of Iohexol at different concentrations and exposure duration, as well as the potential for recovery over time. Cell counts, mitochondrial activity, and quantitative real time reverse-transcriptase polymerase chain reaction (qRT-PCR) of related genes were analyzed immediately after exposure (day 0) and after two days of exposure (day 2). Human MSCs exhibit a time- and concentration-dependent cytotoxic response to iodinated CM. A brief 30min exposure did not affect MSCs function and viability. However, extended treatment with iohexol for 4 hours at 50% or higher concentration had a significant impact on both viability and gene expression in MSCs. CM (Omnipaque300) is cytotoxic to MSCs in a time-and concentration-dependent manner. Hence, the concentration of CM that accompanies MSC injections should be carefully considered during mesenchymal stem cell therapy for disc degenerative diseases. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Sodium caseinate induces increased survival in leukaemic mouse J774 model.

    PubMed

    Córdova-Galaviz, Yolanda; Ledesma-Martínez, Edgar; Aguíñiga-Sánchez, Itzen; Soldevila-Melgarejo, Gloria; Soto-Cruz, Isabel; Weiss-Steider, Benny; Santiago-Osorio, Edelmiro

    2014-01-01

    Acute myeloid leukaemia is a neoplastic disease of haematopoietic stem cells. Although there have been recent advances regarding its treatment, mortality remains high. Consequently, therapeutic alternatives continue to be explored. In the present report, we present evidence that sodium caseinate (CasNa), a salt of the principal protein in milk, may possess important anti-leukaemic properties. J774 leukaemia macrophage-like cells were cultured with CasNa and proliferation, viability and differentiation were evaluated. These cells were also inoculated into BALB/c mice as a model of leukemia. We demonstrated that CasNa inhibits the in vitro proliferation and reduces viability of J774 cells, and leads to increased survival in vivo in a leukaemic mouse model. These data indicate that CasNa may be useful in leukaemia therapy. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells

    NASA Astrophysics Data System (ADS)

    Marędziak, Monika; Śmieszek, Agnieszka; Tomaszewski, Krzysztof A.; Lewandowski, Daniel; Marycz, Krzysztof

    2016-01-01

    The aim of this work was to investigate the effects of static magnetic field (SMF) on the osteogenic properties of human adipose derived mesenchymal stem cells (hASCs). In this study in seven days viability assay we examined the impact of SMF on cells proliferation rate, population doubling time, and ability to form single-cell derived colonies. We have also examined cells' morphology, ultrastructure and osteogenic properties on the protein as well as mRNA level. We established a complex approach, which enabled us to obtain information about SMF and hASCs potential in the context of differentiation into osteogenic and adipogenic lineages. We demonstrated that SMF enhances both viability and osteogenic properties of hASCs through higher proliferation factor and shorter population doubling time. We have also observed asymmetrically positioned nuclei and organelles after SMF exposition. With regards to osteogenic properties we observed increased levels of osteogenic markers i.e. osteopontin, osteocalcin and increased ability to form osteonodules with positive reaction to Alizarin Red dye. We have also shown that SMF besides enhancing osteogenic properties of hASCs, simultaneously decreases their ability to differentiate into adipogenic lineage. Our results clearly show a direct influence of SMF on the osteogenic potential of hASCs. These results provide key insights into the role of SMF on their cellular fate and properties.

  17. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Li; Mao, Rurong; Shen, Ke

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led tomore » the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.« less

  18. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    PubMed Central

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-01-01

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria. PMID:25358460

  19. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE PAGES

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; ...

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  20. Acute Ischemia Induced by High-Density Culture Increases Cytokine Expression and Diminishes the Function and Viability of Highly Purified Human Islets of Langerhans.

    PubMed

    Smith, Kate E; Kelly, Amy C; Min, Catherine G; Weber, Craig S; McCarthy, Fiona M; Steyn, Leah V; Badarinarayana, Vasudeo; Stanton, J Brett; Kitzmann, Jennifer P; Strop, Peter; Gruessner, Angelika C; Lynch, Ronald M; Limesand, Sean W; Papas, Klearchos K

    2017-11-01

    Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived β cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high β cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention. Human islets were exposed in a pairwise model simulating high-density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing was conducted to assess transcriptome-wide changes in gene expression. Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (P < 0.01). Insulin secretion was also diminished, with ischemic β cells losing their insulin secretory response to stimulatory glucose levels (P < 0.01). RNA sequencing revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism. In order for cell-based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to β cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and β cell function and leads to increased inflammatory signaling.

  1. Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles

    PubMed Central

    Bible, Ellen; Qutachi, Omar; Chau, David Y.S.; Alexander, Morgan R.; Shakesheff, Kevin M.; Modo, Michel

    2012-01-01

    Replacing the tissue lost after a stroke potentially provides a new neural substrate to promote recovery. However, significant neurobiological and biotechnological challenges need to be overcome to make this possibility into a reality. Human neural stem cells (hNSCs) can differentiate into mature brain cells, but require a structural support that retains them within the cavity and affords the formation of a de novo tissue. Nevertheless, in our previous work, even after a week, this primitive tissue is void of a vasculature that could sustain its long-term viability. Therefore, tissue engineering strategies are required to develop a vasculature. Vascular endothelial growth factor (VEGF) is known to promote the proliferation and migration of endothelial cells during angio- and arteriogenesis. VEGF by itself here did not affect viability or differentiation of hNSCs, whereas growing cells on poly(D,L-lactic acid-co-glycolic acid) (PLGA) microparticles, with or without VEGF, doubled astrocytic and neuronal differentiation. Secretion of a burst and a sustained delivery of VEGF from the microparticles in vivo attracted endothelial cells from the host into this primate tissue and in parts established a neovasculature, whereas in other parts endothelial cells were merely interspersed with hNSCs. There was also evidence of a hypervascularization indicating that further work will be required to establish an adequate level of vascularization. It is therefore possible to develop a putative neovasculature within de novo tissue that is forming inside a tissue cavity caused by a stroke. PMID:22818980

  2. Adipose-derived stem cells cultivated on electrospun l-lactide/glycolide copolymer fleece and gelatin hydrogels under flow conditions - aiming physiological reality in hypodermis tissue engineering.

    PubMed

    Gugerell, Alfred; Neumann, Anne; Kober, Johanna; Tammaro, Loredana; Hoch, Eva; Schnabelrauch, Matthias; Kamolz, Lars; Kasper, Cornelia; Keck, Maike

    2015-02-01

    Generation of adipose tissue for burn patients that suffer from an irreversible loss of the hypodermis is still one of the most complex challenges in tissue engineering. Electrospun materials with their micro- and nanostructures are already well established for their use as extracellular matrix substitutes. Gelatin is widely used in tissue engineering to gain thickness and volume. Under conventional static cultivation methods the supply of nutrients and transport of toxic metabolites is controlled by diffusion and therefore highly dependent on size and porosity of the biomaterial. A widely used method in order to overcome these limitations is the medium perfusion of 3D biomaterial-cell-constructs. In this study we combined perfusion bioreactor cultivation techniques with electrospun poly(l-lactide-co-glycolide) (P(LLG)) and gelatin hydrogels together with adipose-derived stem cells (ASCs) for a new approach in soft tissue engineering. ASCs were seeded on P(LLG) scaffolds and in gelatin hydrogels and cultivated for 24 hours under static conditions. Thereafter, biomaterials were cultivated under static conditions or in a bioreactor system for three, nine or twelve days with a medium flow of 0.3ml/min. Viability, morphology and differentiation of cells was monitored. ASCs seeded on P(LLG) scaffolds had a physiological morphology and good viability and were able to migrate from one electrospun scaffold to another under flow conditions but not migrate through the mesh. Differentiated ASCs showed lipid droplet formations after 21 days. Cells in hydrogels were viable but showed rounded morphology. Under flow conditions, morphology of cells was more diffuse. ASCs could be cultivated on P(LLG) scaffolds and in gelatin hydrogels under flow conditions and showed good cell viability as well as the potential to differentiate. These results should be a next step to a physiological three-dimensional construct for soft tissue engineering and regeneration. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  3. Laser-assisted nanoceramics reinforced polymer scaffolds for tissue engineering: additional heating and stem cells behavior

    NASA Astrophysics Data System (ADS)

    Shishkovsky, Igor; Scherbakov, Vladimir; Volchkov, Vladislav; Volova, Larisa

    2018-02-01

    The conditions of selective laser melting (SLM) of tissue engineering scaffolds affect cell response and must be engineered to support cell adhesion, proliferation, and differentiation. In the present study, the influence of additional heating during SLM process on stem cell viability near biopolymer matrix reinforced by nanoceramics additives was carried out. We used the biocompatible and bioresorbable polymers (polyetheretherketone /PEEK/ and polycaprolactone /PCL/) as a matrix and nano-oxide ceramics - TiO2, Al2O3, ZrO2, FexOy and/or hydroxyapatite as a basis of the additives. The rate of pure PEEK and PCL bio-resorption and in mixtures with nano oxides on the matrix was studied by the method of mass loss on bacteria of hydroxylase and enzyme complex. The stem cellular morphology, proliferative MMSC activity, and adhesion of the 2D and 3D nanocomposite matrices were the subjects of comparison. Medical potential of the SLS/M-fabricated nano-oxide ceramics after additional heating as the basis for tissue engineering scaffolds and cell targeting systems were discussed.

  4. The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype.

    PubMed

    Balaji, Swathi; Keswani, Sundeep G; Crombleholme, Timothy M

    2012-08-01

    Mesenchymal stem cells (MSCs) are key to regenerative wound healing. MSCs have spatial memory and respond to local environment. MSCs orchestrate wound repair by: (1) structural repair via cellular differentiation; (2) immune-modulation; (3) secretion of growth factors that drive neovascularization and re-epithelialization; and (4) mobilization of resident stem cells. Autologous bone-marrow-derived cells and MSCs demonstrate improved healing and tissue-integrity in animal models and clinical trials. However, the effects are variable and the mechanisms of MSC-mediated wound healing are not fully understood. The mammalian MSC niche and signaling sequences and factors affecting their homing, differentiation, viability, and safety need to be characterized to get full benefits of MSC cellular therapy. MSCs can be isolated from bone-marrow, and less-invasive tissues such as adipose, gingiva, muscle, and umbilical cord, with similar functional effects. However, isolation, culture conditions, and markers used to identify and trace the lineage of these MSCs have not been standardized, which is crucial to determine the extent to which MSCs act as multipotent stem cells or sources of secreted factors in wounds. In chronic nonhealing wounds, where efficacy of conventional therapies is unsatisfactory, autotransplantation of MSCs could accelerate wound healing, promote regeneration and restoration of tissue integrity, and reduce recurrence of wounds at characteristically predisposed sites. Regenerative medicine and novel wound therapies using autologous stem cells holds great promise for clinical management of difficult wounds. The ideal candidate stem cells can be used to repopulate the wound bed to mediate appropriate epidermal and dermal regeneration and promote efficient wound repair, while modulating the immune system to prevent infection.

  5. Maintenance of human adipose derived stem cell (hASC) differentiation capabilities using a 3D culture.

    PubMed

    Lin, Ching-Yu; Huang, Chi-Hui; Wu, Yuan-Kun; Cheng, Nai-Chen; Yu, Jiashing

    2014-07-01

    In this study, 3D culture system for human adipose-derived stem cell (hASC) using a BioLevitator as the bioreactor for microcarrier-based cultures was established. During the culturing period, hASCs preferred to grow in crevices between microcarriers and a high viability was maintained even when reaching confluency. Adipogenic or osteogenic differential medium was used to induce hASCs and differential potentials of these cells were compared between 2D and 3D environments via RT-PCR and staining quantifications. CEBP/α gene expression was significant higher in 3D condition at day 21 (P < 0.05). Staining quantification indicates that cells cultured in 3D condition have significant better differentiation potential from day 14 to 21 for both adipogenic and osteogenic lineages (P < 0.01).

  6. Preparation of Cells for Assessing Ultrastructural Localization of Nanoparticles with Transmission Electron Microscopy

    DTIC Science & Technology

    2010-01-01

    scientific disciplines, who are rapidly pursuing a plethora of exciting and new applications. Concurrently, the implications for potential long-term...focus on the NP toxicity-associated bioeffects that produce acute dose-dependent decreases in viability and alterations in cell function (e.g...t h sufficient contrast and that only high atomic number NPs were readily detectable. More recently, de Jonge et al.25 have unveiled a new STEM

  7. Enhancement of cardiomyogenesis in stem cells by low intensity pulsed ultrasound

    NASA Astrophysics Data System (ADS)

    Teo, Ailing; Morshedi, Amir; Wang, Jen-Chieh; Lim, Mayasari; Zhou, Yufeng

    2017-03-01

    Low intensity pulsed ultrasound (LIPUS) has been shown to enhance bone and cartilage regeneration from stem cells. Gene expression of angiotensin II type 1 (AT1) receptor can be increased in LIPUS-treated osteoblasts. The AT1 receptor is a known mechanoreceptor in cardiomyocytes. It suggests that LIPUS may enhance cardiomyogenesis via mechanotransduction by increasing AT1 expression. Murine embryonic stem cells (ESCs) were treated daily by 10-min 1MHz LIPUS at spatial-average temporal-peak acoustic intensities of 30 mW/cm2 and 300 mW/cm2 in both continuous and pulsed wave (20% duty cycle) for 10 days. Polymerase chain reaction (PCR), immunocytochemistry, and beating rate were used to evaluate the cardiac viability quantitatively. After the treatment of LIPUS, beating rate of contractile areas and cardiac gene expression, such as α- and β-myosin heavy chain, were improved. Furthermore, no deleterious effects to the development of cardiac proteins were observed. All results suggest that LIPUS stimulation has the capacity of enhancing cardiomyogenesis from embryonic stem cells. With the benefit and the ease in incorporating LIPUS into various culture platforms, LIPUS has the potential to produce cardiomyocytes for clinical use in the future.

  8. Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodontics

    PubMed Central

    Kamocki, K.; Nör, J. E.; Bottino, M. C.

    2014-01-01

    Aim To evaluate both the drug release profile and the effects on human dental pulp stem cells’ (hDPSC) proliferation and viability of novel bi-mix antibiotic-containing scaffolds intended for use as a drug-delivery system for root canal disinfection prior to regenerative endodontics. Methodology Polydioxanone (PDS)-based fibrous scaffolds containing both metronidazole (MET) and ciprofloxacin (CIP) at selected ratios were synthesized via electrospinning. Fibre diameter was evaluated based on scanning electron microscopy (SEM) images. Pure PDS scaffolds and a saturated CIP/MET solution (i.e. 50 mg of each antibiotic in 1 mL) (hereafter referred to as DAP) served as both negative (non-toxic) and positive (toxic) controls, respectively. High performance liquid chromatography (HPLC) was done to investigate the amount of drug(s) released from the scaffolds. WST-1® proliferation assay was used to evaluate the effect of the scaffolds on cell proliferation. LIVE/DEAD® assay was used to qualitatively assess cell viability. Data obtained from drug release and proliferation assays were statistically analysed at the 5% significance level. Results A burst release of CIP and MET was noted within the first 24 h, followed by a sustained maintenance of the drug(s) concentration for 14 days. A concentration-dependent trend was noticed upon hDPSCs’ exposure to all CIP-containing scaffolds, where increasing the CIP concentration resulted in reduced cell proliferation (P<0.05) and viability. In groups exposed to pure MET or pure PDS scaffolds, no changes in proliferation were observed. Conclusions Synthesized antibiotic-containing scaffolds had significantly lower effects on hDPSCs proliferation when compared to the saturated CIP/MET solution (DAP). PMID:25425048

  9. Complete human serum maintains viability and chondrogenic potential of human synovial stem cells: suitable conditions for transplantation.

    PubMed

    Mizuno, Mitsuru; Katano, Hisako; Otabe, Koji; Komori, Keiichiro; Kohno, Yuji; Fujii, Shizuka; Ozeki, Nobutake; Horie, Masafumi; Tsuji, Kunikazu; Koga, Hideyuki; Muneta, Takeshi; Sekiya, Ichiro

    2017-06-13

    In our clinical practice, we perform transplantations of autologous synovial mesenchymal stem cells (MSCs) for cartilage and meniscus regenerative medicine. One of the most important issues to ensuring clinical efficacy involves the transport of synovial MSCs from the processing facility to the clinic. Complete human serum (100% human serum) is an attractive candidate material in which to suspend synovial MSCs for their preservation during transport. The purpose of this study was to investigate whether complete human serum maintained MSC viability and chondrogenic potential and to examine the optimal temperature conditions for the preservation of human synovial MSCs. Human synovium was harvested from the knees of 14 donors with osteoarthritis during total knee arthroplasty. Passage 2 synovial MSCs were suspended at 2 million cells/100 μL in Ringer's solution or complete human serum at 4, 13, and 37 °C for 48 h. These cells were analyzed for live cell rates, cell surface marker expression, metabolic activity, proliferation, and adipogenic, calcification, and chondrogenic differentiation potentials before and after preservation. After preservation, synovial MSCs maintained higher live cell rates in human serum than in Ringer's solution at 4 and 13 °C. Synovial MSCs preserved in human serum at 4 and 13 °C also maintained high ratios of propidium iodide - and annexin V - cells. MSC surface marker expression was not altered in cells preserved at 4 and 13 °C. The metabolic activities of cells preserved in human serum at 4 and 13 °C was maintained, while significantly reduced in other conditions. Replated MSCs retained their proliferation ability when preserved in human serum at 4 and 13 °C. Adipogenesis and calcification potential could be observed in cells preserved in each condition, whereas chondrogenic potential was retained only in cells preserved in human serum at 4 and 13 °C. The viability and chondrogenic potential of synovial MSCs were maintained when the cells were suspended in human serum at 4 and 13 °C.

  10. Zinc oxide nanoparticles as selective killers of proliferating cells

    PubMed Central

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    Background: It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Methods: Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. Results: In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Conclusion: Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant. PMID:21698081

  11. Zinc oxide nanoparticles as selective killers of proliferating cells.

    PubMed

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant.

  12. Hydrogel fibers encapsulating hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable calcium phosphate scaffold for bone tissue engineering

    PubMed Central

    Wang, Lin; Wang, Ping; Weir, Michael D.; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H. K.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and human umbilical cord MSCs (hUCMSCs) are exciting cell sources for use in regenerative medicine. There has been no report on long hydrogel fibers encapsulating stem cells inside injectable calcium phosphate cement (CPC) scaffold for bone tissue engineering. The objectives of this study were to: (1) develop a novel injectable CPC construct containing hydrogel fibers encapsulating cells for bone engineering, and (2) investigate and compare cell viability, proliferation and osteogenic differentiation of hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable CPC. The stem cell-encapsulating pastes were fully injectable under a small injection force, and the injection did not harm the cells, compared to cells without injection (p > 0.1). Mechanical properties of stem cell-CPC construct were much higher than previous injectable polymers and hydrogels for cell delivery. hiPSC-MSCs, hESC-MSCs and hUCMSCs in hydrogel fibers in CPC had excellent proliferation and osteogenic differentiation. All three cells yielded high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin expressions (mean ± sd; n = 6). Cell-synthesized minerals increased substantially with time (p < 0.05), with no significant difference among the three types of cells (p > 0.1). Mineralization by hiPSC-MSCs, hESC-MSCs and hUCMSCs in CPC at 14 d was 13-fold that at 1 d. In conclusion, all three types of cells (hiPSC-MSCs, hESC-MSCs and hUCMSCs) in CPC scaffold showed high potential for bone tissue engineering, and the novel injectable CPC construct with cell-encapsulating hydrogel fibers is promising to enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27811389

  13. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro.

    PubMed

    Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng

    2011-05-16

    The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells.

    PubMed

    Würth, Roberto; Barbieri, Federica; Florio, Tullio

    2014-01-01

    Despite relevant progress obtained by multimodal treatment, glioblastoma (GBM), the most aggressive primary brain tumor, is still incurable. The most encouraging advancement of GBM drug research derives from the identification of cancer stem cells (CSCs), since these cells appear to represent the determinants of resistance to current standard therapies. The goal of most ongoing studies is to identify drugs able to affect CSCs biology, either inducing selective toxicity or differentiating this tumor cell population into nontumorigenic cells. Moreover, the therapeutic approach for GBM could be improved interfering with chemo- or radioresistance mechanisms, microenvironment signals, and the neoangiogenic process. During the last years, molecular targeted compounds such as sorafenib and old drugs, like metformin, displayed interesting efficacy in preclinical studies towards several tumors, including GBM, preferentially affecting CSC viability. In this review, the latest experimental results, controversies, and prospective application concerning these promising anticancer drugs will be discussed.

  15. Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures.

    PubMed

    Wu, Jincheng; Rostami, Mahboubeh Rahmati; Cadavid Olaya, Diana P; Tzanakakis, Emmanuel S

    2014-01-01

    Stirred-suspension bioreactors are a promising modality for large-scale culture of 3D aggregates of pluripotent stem cells and their progeny. Yet, cells within these clusters experience limitations in the transfer of factors and particularly O2 which is characterized by low solubility in aqueous media. Cultured stem cells under different O2 levels may exhibit significantly different proliferation, viability and differentiation potential. Here, a transient diffusion-reaction model was built encompassing the size distribution and ultrastructural characteristics of embryonic stem cell (ESC) aggregates. The model was coupled to experimental data from bioreactor and static cultures for extracting the effective diffusivity and kinetics of consumption of O2 within mouse (mESC) and human ESC (hESC) clusters. Under agitation, mESC aggregates exhibited a higher maximum consumption rate than hESC aggregates. Moreover, the reaction-diffusion model was integrated with a population balance equation (PBE) for the temporal distribution of ESC clusters changing due to aggregation and cell proliferation. Hypoxia was found to be negligible for ESCs with a smaller radius than 100 µm but became appreciable for aggregates larger than 300 µm. The integrated model not only captured the O2 profile both in the bioreactor bulk and inside ESC aggregates but also led to the calculation of the duration that fractions of cells experience a certain range of O2 concentrations. The approach described in this study can be employed for gaining a deeper understanding of the effects of O2 on the physiology of stem cells organized in 3D structures. Such frameworks can be extended to encompass the spatial and temporal availability of nutrients and differentiation factors and facilitate the design and control of relevant bioprocesses for the production of stem cell therapeutics.

  16. The effects and mechanisms of SLC34A2 on maintaining stem cell-like phenotypes in CD147+ breast cancer stem cells.

    PubMed

    Lv, Yonggang; Wang, Ting; Fan, Jing; Zhang, Zhenzhen; Zhang, Juliang; Xu, Cheng; Li, Yongping; Zhao, Ge; He, Chenyang; Meng, Huimin; Yang, Hua; Wang, Zhen; Liu, Jiayun; Chen, Jianghao; Wang, Ling

    2017-04-01

    The cancer stem cell (CSC) hypothesis has gained significant recognition in describing tumorigenesis. Identification of the factors critical to development of breast cancer stem cells (BCSCs) may provide insight into the improvement of effective therapies against breast cancer. In this study, we aim to investigate the biological function of SLC34A2 in affecting the stem cell-like phenotypes in BCSCs and its underlying mechanisms. We demonstrated that CD147 + cells from breast cancer tissue samples and cell lines possessed BCSC-like features, including the ability of self-renewal in vitro, differentiation, and tumorigenic potential in vivo. Flow cytometry analysis showed the presence of a variable fraction of CD147 + cells in 9 of 10 tumor samples. Significantly, SLC34A2 expression in CD147 + BCSCs was enhanced compared with that in differentiated adherent progeny of CD147 + BCSCs and adherently cultured cell line cells. In breast cancer patient cohorts, SLC34A2 expression was found increased in 9 of 10 tumor samples. By using lentiviral-based approach, si-SLC34A2-transduced CD147 + BCSCs showed decreased ability of sphere formation, cell viability in vitro, and tumorigenicity in vivo, which suggested the essential role of SLC34A2 in CD147 + BCSCs. Furthermore, PI3K/AKT pathway and SOX2 were found necessary to maintain the stemness of CD147 + BCSCs by using LY294002 or lentiviral-si-SOX2. Finally, we indicated that SLC34A2 could regulate SOX2 to maintain the stem cell-like features in CD147 + BCSCs through PI3K/AKT pathway. Therefore, our report identifies a novel role of SLC34A2 in BCSCs' state regulation and establishes a rationale for targeting the SLC34A2/PI3K/AKT/SOX2 signaling pathway for breast cancer therapy.

  17. Morphology, cell viability, karyotype, expression of surface markers and plasticity of three human primary cell line cultures before and after the cryostorage in LN2 and GN2.

    PubMed

    Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael

    2015-02-01

    Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells.

    PubMed

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO 2 ) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO 2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO 2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue.

  19. Induction of murine embryonic stem cell differentiation by medicinal plant extracts.

    PubMed

    Reynertson, Kurt A; Charlson, Mary E; Gudas, Lorraine J

    2011-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. PPARγ agonists regulate the expression of stemness and differentiation genes in brain tumour stem cells

    PubMed Central

    Pestereva, E; Kanakasabai, S; Bright, J J

    2012-01-01

    Background: Brain tumour stem cells (BTSCs) are a small population of cancer cells that exhibit self-renewal, multi-drug resistance, and recurrence properties. We have shown earlier that peroxisome proliferator-activated receptor gamma (PPARγ) agonists inhibit the expansion of BTSCs in T98G and U87MG glioma. In this study, we analysed the influence of PPARγ agonists on the expression of stemness and differentiation genes in BTSCs. Methods: The BTSCs were isolated from T98G and DB29 glioma cells, and cultured in neurobasal medium with epidermal growth factor+basic fibroblast growth factor. Proliferation was measured by WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2 H-5-tetrazolio]-1,3-benzene disulphonate) and 3H thymidine uptake assays, and gene expression was analysed by quantitative reverse--transcription PCR and Taqman array. The expression of CD133, SRY box 2, and nanog homeobox (Nanog) was also evaluated by western blotting, immunostaining, and flow cytometry. Results: We found that PPARγ agonists, ciglitazone and 15-deoxy-Δ12,14-ProstaglandinJ2, inhibited cell viability and proliferation of T98G- and DB29-BTSCs. The PPARγ agonists reduced the expansion of CD133+ BTSCs and altered the expression of stemness and differentiation genes. They also inhibited Sox2 while enhancing Nanog expression in BTSCs. Conclusion: These findings highlight that PPARγ agonists inhibit BTSC proliferation in association with altered expression of Sox2, Nanog, and other stemness genes. Therefore, targeting stemness genes in BTSCs could be a novel strategy in the treatment of glioblastoma. PMID:22531638

  1. Use of culture filtrates of Ceratocystis ulmi as a bioassay to screen for disease tolerant Ulmus americana

    Treesearch

    Paula M. Pijut; Subash C. Domir; R. Daniel Lineberger; Lawrence R. Schreiber

    1990-01-01

    Callus cultures of elm (Ulmus americana L.) derived from Dutch elm disease susceptible, intermediate-resistant, and resistant genotypes were exposed to the culture filtrates of three pathogenic isolates of Ceratocystis ulmi, the causal agent of Dutch elm disease. Callus fresh weights, cell viability, and reactions of stem cuttings...

  2. Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.

    PubMed

    Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah

    2016-01-01

    Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.

  3. Growth and behavior of chondrocytes on nano engineered surfaces and construction of micropatterned co-culture platforms using layer-by-layer platforms using layer-by-layer assembly lift-off method

    NASA Astrophysics Data System (ADS)

    Shaik, Jameel

    Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10-, and 20-bilayer nanofilm beds revealed increasing cell metabolic activity for BSA with increasing bilayers. Micropatterned multilayer beds having poly-L-lysine, poly-D-lysine, laminin poly(dimethyldiallyl-ammonium chloride) and poly(ethyleneimine) as the terminating layers were fabricated using the Layer-by-layer Lift-off (LbL-LO) method that combines photolithography and LbL self-assembly. Most importantly, micropatterned co-culture platforms consisting of anti-CD 44 rat monoclonal and anti-rat osteopontin (MPIIIB101) antibodies were constructed using the LbL-LO method for the first time. These co-culture platforms have several applications especially for studies of stem and progenitor cells. Co-culture platforms exhibiting spatiotempora-based differentiation can be built with LbL-LO for the differentiation of stem cells into the desired cell lineage.

  4. Evaluations of bioantioxidants in cryopreservation of umbilical cord blood using natural cryoprotectants and low concentrations of dimethylsulfoxide.

    PubMed

    Motta, J P R; Gomes, B E; Bouzas, L F; Paraguassú-Braga, F H; Porto, L C

    2010-06-01

    Transplantation using hematopoietic stem cells from umbilical cord blood (UCB) is a life-saving treatment option for patients with select oncologic diseases, immunologic diseases, bone marrow failure, and others. Often this transplant modality requires cryopreservation and storage of hematopoietic stem cells (HSC), which need to remain cryopreserved in UCB banks for possible future use. The most widely used cryoprotectant is dimethylsulfoxide (Me(2)SO), but at 37 degrees C, it is toxic to cells and for patients, infusion of cryopreserved HSC with Me(2)SO has been associated with side effects. Freezing of cells leads to chemical change of cellular components, which results in physical disruption. Reactive oxygen species (ROS) generation also has been implicated as cause of damage to cells during freezing. We assessed the ability of two bioantioxidants and two disaccharides, to enhance the cryopreservation of UCB. UCB was processed and subjected to cryopreservation in solutions containing different concentrations of Me(2)SO, bioantioxidants and disaccharides. Samples were thawed, and then analysed by: flow cytometry analysis, CFU assay and MTT viability assay. In this study, our analyses showed that antioxidants, principally catalase, performed greater preservation of: CD34+ cells, CD123+ cells, colony-forming units and cell viability, all post-thawed, compared with the standard solution of cryopreservation. Our present studies show that the addition of catalase improved the cryopreservation outcome. Catalase may act on reducing levels of ROS, further indicating that accumulation of free radicals indeed leads to death in cryopreserved hematopoietic cells. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Nanochelating based nanocomplex, GFc7, improves quality and quantity of human mesenchymal stem cells during in vitro expansion.

    PubMed

    Hafizi, Maryam; Hajarizadeh, Atena; Atashi, Amir; Kalanaky, Somayeh; Fakharzadeh, Saideh; Masoumi, Zahra; Nazaran, Mohammad Hassan; Soleimani, Masoud

    2015-11-23

    Human mesenchymal stem cells (hMSCs) have been approved for therapeutic applications. Despite the advances in this field, in vitro approaches are still required to improve the essential indices that would pave the way to a bright horizon for an efficient transplantation in the future. Nanotechnology could help to improve these approaches. Studies signified the important role of iron in stem cell metabolism and efficiency of copper chelation application for stem cell expansion For the first time, based on novel Nanochelating technology, we design an iron containing copper chelator nano complex, GFc7 and examined on hMSCs during in vitro expansion. In this study, the hMSCs were isolated, characterized and expanded in vitro in two media (with or without GFc7). Then proliferation, cell viability, cell cycle analysis, surface markers, HLADR, pluripotency genes expression, homing and antioxidative defense at genes and protein expression were investigated. Also we analyzed the spontaneous differentiation and examined osteogenic and lipogenic differentiation. GFc7 affected the expression of key genes, improving both the stemness and fitness of the cells in a precise and balanced manner. We observed significant increases in cell proliferation, enhanced expression of pluripotency genes and homing markers, improved antioxidative defense, repression of genes involved in spontaneous differentiation and exposing the hMSCs to differentiation medium indicated that pretreatment with GFc7 increased the quality and rate of differentiation. Thus, GFc7 appears to be a potential new supplement for cell culture medium for increasing the efficiency of transplantation.

  6. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea

    PubMed Central

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-01-01

    Four new sesquiterpene lactones, 8α-(2′Z-tigloyloxy)-hirsutinolide (1), 8α-(2′Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5–11), three norisoprenoids (12–14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1–16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. PMID:24370662

  7. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea.

    PubMed

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-03-01

    Four new sesquiterpene lactones, 8α-(2'Z-tigloyloxy)-hirsutinolide (1), 8α-(2'Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5-11), three norisoprenoids (12-14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1-16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Integrin-binding elastin-like polypeptide as an in situ gelling delivery matrix enhances the therapeutic efficacy of adipose stem cells in healing full-thickness cutaneous wounds.

    PubMed

    Choi, Seong-Kyoon; Park, Jin-Kyu; Kim, Jung-Hee; Lee, Kyeong-Min; Kim, Enjoo; Jeong, Kyu-Shik; Jeon, Won Bae

    2016-09-10

    One crucial issue in stem cell therapy used for tissue repair is often the lack of selective carriers to deliver stem cells to the site of injury where the native extracellular matrix is pathologically damaged or lost. Therefore, it is necessary to develop a biomaterial that is permissive to stem cells and is suitable to replace injured or missing matrix. The major aim of this study is to investigate the potential of an RGD-containing elastin-like polypeptide (REP) with the structure TGPG[VGRGD(VGVPG)6]20WPC to engraft adipose stem cells (ASC) to full-thickness excisional wounds in mice. We implanted REP into the wound defects via body temperature-induced in situ aggregation. Engrafted REP exhibited a half-life of 2.6days in the wounds and did not elicit any pathological immune responses. REP itself significantly accelerated wound closure and reepithelialization and upregulated the expression of dermal tissue components. A combined administration of REP and ASC formed a hydrogel-like ASC/REP composite, which provided better neovascularization than the use of ASCs alone and increased the viability of transplanted ASC, improving overall wound healing. In vitro and in vivo mechanistic investigations suggested that REP enhances ASC survival at least in part via the Fak/Src adhesion-induced upregulation of Mek/Erk and PI3K/Akt survival pathways. We conclude that REP is a promising therapeutic agent for the improvement of stem cell-based therapy for enhanced tissue regeneration and repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance.

    PubMed

    Yang, Wei; Wei, Jing; Guo, Tiantian; Shen, Yueming; Liu, Fenju

    2014-08-01

    Glioma contains abundant hypoxic regions which provide niches to promote the maintenance and expansion of glioma stem cells (GSCs), which are resistant to conventional therapies and responsible for recurrence. Given the fact that miR-210 plays a vital role in cellular adaption to hypoxia and in stem cell survival and stemness maintenance, strategies correcting the aberrantly expressed miR-210 might open up a new therapeutic avenue to hypoxia GSCs. In the present study, to explore the possibility of miR-210 as an effective therapeutic target to hypoxic GSCs, we employed a lentiviral-mediated anti-sense miR-210 gene transfer technique to knockdown miR-210 expression and analyze phenotypic changes in hypoxic U87s and SHG44s cells. We found that hypoxia led to an increased HIF-2α mRNA expression and miR-210 expression in GSCs. Knockdown of miR-210 decreased neurosphere formation capacity, stem cell marker expression and cell viability, and induced differentiation and G0/G1 arrest in hypoxic GSCs by partially rescued Myc antagonist (MNT) protein expression. Knockdown of MNT could reverse the gene expression changes and the growth inhibition resulting from knockdown of miR-210 in hypoxic GSCs. Moreover, knockdown of miR-210 led to increased apoptotic rate and Caspase-3/7 activity and decreased invasive capacity, reactive oxygen species (ROS) and lactate production and radioresistance in hypoxic GSCs. These findings suggest that miR-210 might be a potential therapeutic target to eliminate GSCs located in hypoxic niches. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering

    PubMed Central

    Kessler, Lukas; Gehrke, Sandra; Winnefeld, Marc; Huber, Birgit; Hoch, Eva; Walter, Torsten; Wyrwa, Ralf; Schnabelrauch, Matthias; Schmidt, Malte; Kückelhaus, Maximilian; Lehnhardt, Marcus; Hirsch, Tobias; Jacobsen, Frank

    2017-01-01

    In vitro–generated soft tissue could provide alternate therapies for soft tissue defects. The aim of this study was to evaluate methacrylated gelatin/hyaluronan as scaffolds for soft tissue engineering and their interaction with human adipose–derived stem cells (hASCs). ASCs were incorporated into methacrylated gelatin/hyaluronan hydrogels. The gels were photocrosslinked with a lithium phenyl-2,4,6-trimethylbenzoylphosphinate photoinitiator and analyzed for cell viability and adipogenic differentiation of ASCs over a period of 30 days. Additionally, an angiogenesis assay was performed to assess their angiogenic potential. After 24 h, ASCs showed increased viability on composite hydrogels. These results were consistent over 21 days of culture. By induction of adipogenic differentiation, the mature adipocytes were observed after 7 days of culture, their number significantly increased until day 28 as well as expression of fatty acid binding protein 4 and adiponectin. Our scaffolds are promising as building blocks for adipose tissue engineering and allowed long viability, proliferation, and differentiation of ASCs. PMID:29318000

  11. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion

    PubMed Central

    Paim, A.; Braghirolli, D.I.; Cardozo, N.S.M.; Pranke, P.; Tessaro, I.C.

    2018-01-01

    Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion. PMID:29590258

  12. NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure.

    PubMed

    Lei, Xiao-hua; Ning, Li-na; Cao, Yu-jing; Liu, Shuang; Zhang, Shou-bing; Qiu, Zhi-fang; Hu, Hui-min; Zhang, Hui-shan; Liu, Shu; Duan, En-kui

    2011-01-01

    The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D) substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG) culture system as a "stimulatory" environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs). hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.

  13. Effects of High-Temperature-Pressure Polymerized Resin-Infiltrated Ceramic Networks on Oral Stem Cells

    PubMed Central

    Nassif, Ali; Berbar, Tsouria; Le Goff, Stéphane; Berdal, Ariane; Sadoun, Michael; Fournier, Benjamin P. J.

    2016-01-01

    Objectives The development of CAD—CAM techniques called for new materials suited to this technique and offering a safe and sustainable clinical implementation. The infiltration of resin in a ceramic network under high pressure and high temperature defines a new class of hybrid materials, namely polymer infiltrated ceramics network (PICN), for this purpose which requires to be evaluated biologically. We used oral stem cells (gingival and pulpal) as an in vitro experimental model. Methods Four biomaterials were grinded, immersed in a culture medium and deposed on stem cells from dental pulp (DPSC) and gingiva (GSC): Enamic (VITA®), Experimental Hybrid Material (EHM), EHM with initiator (EHMi) and polymerized Z100™ composite material (3M®). After 7 days of incubation; viability, apoptosis, proliferation, cytoskeleton, inflammatory response and morphology were evaluated in vitro. Results Proliferation was insignificantly delayed by all the tested materials. Significant cytotoxicity was observed in presence of resin based composites (MTT assay), however no detectable apoptosis and some dead cells were detected like in PICN materials. Cell morphology, major cytoskeleton and extracellular matrix components were not altered. An intimate contact appeared between the materials and cells. Clinical Significance The three new tested biomaterials did not exhibit adverse effects on oral stem cells in our experimental conditions and may be an interesting alternative to ceramics or composite based CAD—CAM blocks. PMID:27196425

  14. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina

    PubMed Central

    Song, Yuanhui; Ju, Yang; Song, Guanbin; Morita, Yasuyuki

    2013-01-01

    Cell adhesion, migration, and proliferation are significantly affected by the surface topography of the substrates on which the cells are cultured. Alumina is one of the most popular implant materials used in orthopedics, but few data are available concerning the cellular responses of mesenchymal stem cells (MSCs) grown on nanoporous structures. MSCs were cultured on smooth alumina substrates and nanoporous alumina substrates to investigate the interaction between surface topographies of nanoporous alumina and cellular behavior. Nanoporous alumina substrates with pore sizes of 20 nm and 100 nm were used to evaluate the effect of pore size on MSCs as measured by proliferation, morphology, expression of integrin β1, and osteogenic differentiation. An MTT assay was used to measure cell viability of MSCs on different substrates, and determined that cell viability decreased with increasing pore size. Scanning electron microscopy was used to investigate the effect of pore size on cell morphology. Extremely elongated cells and prominent cell membrane protrusions were observed in cells cultured on alumina with the larger pore size. The expression of integrin β1 was enhanced in MSCs cultured on porous alumina, revealing that porous alumina substrates were more favorable for cell growth than smooth alumina substrates. Higher levels of osteoblastic differentiation markers such as alkaline phosphatase, osteocalcin, and mineralization were detected in cells cultured on alumina with 100 nm pores compared with cells cultured on alumina with either 20 nm pores or smooth alumina. This work demonstrates that cellular behavior is affected by variation in pore size, providing new insight into the potential application of this novel biocompatible material for the developing field of tissue engineering. PMID:23935364

  15. Aluminum oxide nanoparticles alter cell cycle progression through CCND1 and EGR1 gene expression in human mesenchymal stem cells.

    PubMed

    Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A

    2016-05-01

    Aluminum oxide nanoparticles (Al2 O3 -NPs) are important ceramic materials that have been used in a variety of commercial and industrial applications. However, the impact of acute and chronic exposure to Al2 O3 -NPs on the environment and on human health has not been well studied. In this investigation, we evaluated the cytotoxic effects of Al2 O3 -NPs on human mesenchymal stem cells (hMSCs) by using a cell viability assay and observing cellular morphological changes, analyzing cell cycle progression, and monitoring the expression of cell cycle response genes (PCNA, EGR1, E2F1, CCND1, CCNC, CCNG1, and CYCD3). The Al2 O3 -NPs reduced hMSC viability in a dose- and time-dependent manner. Nuclear condensation and fragmentation, chromosomal DNA fragmentation, and cytoplasmic vacuolization were observed in Al2 O3 -NP-exposed cells. The nuclear morphological changes indicated that Al2 O3 -NPs alter cell cycle progression and gene expression. The cell cycle distribution revealed that Al2 O3 -NPs cause cell cycle arrest in the sub-G0-G1 phase, and this is associated with a reduction in the cell population in the G2/M and G0/G1 phases. Moreover, Al2 O3 -NPs induced the upregulation of cell cycle response genes, including EGR1, E2F1, and CCND1. Our results suggested that exposure to Al2 O3 -NPs could cause acute cytotoxic effects in hMSCs through cell cycle regulatory genes. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  16. Endocytic mechanisms and osteoinductive profile of hydroxyapatite nanoparticles in human umbilical cord Wharton’s jelly-derived mesenchymal stem cells

    PubMed Central

    Zhang, Juan; Wang, Chen

    2018-01-01

    Background As a potentially bioactive material, the widespread application of nanosized hydroxyapatite (nano-HAP) in the field of bone regeneration has increased the risk of human exposure. However, our understanding of the interaction between nano-HAP and stem cells implicated in bone repair remains incomplete. Methods Here, we characterized the adhesion and cellular internalization of HAP nanoparticles (HANPs) with different sizes (20 nm np20 and 80 nm np80) and highlighted the involved pathway in their uptake using human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs). In addition, the effects of HANPs on cell viability, apoptosis response, osteogenic differentiation, and underlying related mechanisms were explored. Results It was shown that both types of HANPs readily adhered to the cellular membrane and were transported into the cells compared to micro-sized HAP particles (m-HAP; 12 μm). Interestingly, the endocytic routes of np20 and np80 differed, although they exhibited similar kinetics of adhesion and uptake. Our study revealed involvement of clathrin- and caveolin-mediated endocytosis as well as macropinocytosis in the np20 uptake. However, for np80, clathrin-mediated endocytosis and some as-yet-unidentified important uptake routes play central roles in their internalization. HANPs displayed a higher preference to accumulate in the cytoplasm compared to m-HAP, and HANPs were not detected in the nucleolus. Exposure to np20 for 24 h caused a decrease in cell viability, while cells completely recovered with an exposure time of 72 h. Furthermore, HANPs did not influence apoptosis and necrosis of hWJ-MSCs. Strikingly, HANPs enhanced mRNA levels of osteoblast-related genes and stimulated calcium mineral deposition, and this directly correlated with the activation in c-Jun N-terminal kinases and p38 pathways. Conclusion Our data provide additional insight about the interactions of HANPs with MSCs and suggest their application potential in hard tissue regeneration. PMID:29559775

  17. CD133 antisense suppresses cancer cell growth and increases sensitivity to cisplatin in vitro

    PubMed Central

    BLANCAS-MOSQUEDA, MARISOL; ZAPATA-BENAVIDES, PABLO; ZAMORA-ÁVILA, DIANA; SAAVEDRA-ALONSO, SANTIAGO; MANILLA-MUÑOZ, EDGAR; FRANCO-MOLINA, MOISÉS; DE LA PEÑA, CARMEN MONDRAGÓN; RODRÍGUEZ-PADILLA, CRISTINA

    2012-01-01

    The increased incidence of cancer in recent years is associated with a high rate of mortality. Numerous types of cancer have a low percentage of CD133+ cells, which have similar features to stem cells. The CD133 molecule is involved in apoptosis and cell proliferation. The aim of this study was to determine the biological effect of CD133 suppression and its role in the chemosensitization of cancer cell lines. RT-PCR and immunocytochemical analyses indicated that CD133 was expressed in the cancer cell lines B16F10, MCF7 and INER51. Downregulation of CD133 by transfection with an antisense sequence (As-CD133) resulted in a decrease in cancer cell viability of up to 52, 47 and 22% in B16F10, MCF-7 and INER51 cancer cell lines, respectively. This decreased viability appeared to be due to the induction of apoptosis. In addition, treatment with As-CD133 in combination with cisplatin had a synergic effect in all of the cancer cell lines analyzed, and in particular, significantly decreased the viability of B16F10 cancer cells compared with each treatment separately (3.1% viability for the combined treatment compared with 48% for 0.4 μg As-CD133 and 25% for 5 ng/μl cisplatin; P<0.05). The results indicate that the downregulation of CD133 by antisense is a potential therapeutic target for cancer and has a synergistic effect when administered with minimal doses of the chemotherapeutic drug cisplatin, suggesting that this combination strategy may be applied in cancer treatment. PMID:23226746

  18. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells.

    PubMed

    Zhu, Jie; Wang, Peng; Yu, Zhimin; Lai, Wei; Cao, Yi; Huang, Pinbo; Xu, Qiaodong; Yu, Menglei; Xu, Junyao; Huang, Zitong; Zeng, Bing

    2016-01-01

    Diabetes mellitus is frequently accompanied by chronic complications like delayed wound healing, which is consider to be attributed to the accumulation of advanced glycosylation end product (AGE). However, the impacts of AGE on epidermal stem cells (ESCs) are largely unknown. This study aims to address the influence and mechanism of AGE on ESCs. ESCs isolated from rats were cultured in AGE-modified bovine serum albumin and transfected with small interfering RNA to knock down AGE-specific receptor (AGER). Expression of stem cell markers integrin β1 (ITGB1) and keratin 19 (KRT19), cell viability, apoptosis and reactive oxygen species (ROS) were examined. Wnt pathway-related factors Wnt family member 1 (WNT1), WNT3A, β-catenin, v-myc avian myelocytomatosis viral oncogene homolog (MYC), cyclin D1 (CCND1) and matrix metallopeptidase 7 (MMP7) were quantified. The interaction between forkhead box O1 (FOXO1) and β-catenin was assessed by co-immunoprecipitation. Results indicated that AGE down-regulated ITGB1 and KRT19 expression, suppressed ESC viability and promoted apoptosis, and ROS level ( P < 0.01), implying decreased capacities of ESCs. AGE also promoted AGER and FOXO1, while AGER knockdown had the opposite effects. Moreover, AGER knockdown elevated the level of WNT1, WNT3A, MYC, CCND1 and MMP7 that were suppressed by AGE ( P < 0.01). Immunoprecipitation analysis showed that FOXO1 could compete with lymphoid enhancer binding factor 1 to interact with β-catenin, which might help to elucidate the mechanism of AGE repressing ESCs. This study helps to understand the mechanism of accumulated AGE in affecting ESC capacities, and provides potential therapeutic targets to meliorate diabetic wound healing.

  19. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells

    PubMed Central

    Gao, B; Han, Y-H; Wang, L; Lin, Y-J; Sun, Z; Lu, W-G; Hu, Y-Q; Li, J-Q; Lin, X-S; Liu, B-H; Jie, Q; Yang, L; Luo, Z-J

    2016-01-01

    Long-term use of glucocorticoids is a widespread clinical problem, which currently has no effective solution other than discontinuing the use. Eicosapentaenoic acid (EPA), an omega-3 long chain polyunsaturated fatty acid (n-3 PUFA), which is largely contained in fish or fish oil, has been reported to promote cell viability and improve bone metabolism. However, little is known about the effects of EPA on dexamethasome (Dex)-induced cell apoptosis. In this study, we showed that EPA-induced autophagy of murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Meanwhile, EPA, but not arachidonic acid (AA), markedly inhibited Dex-induced apoptosis and promoted the viability of mBMMSCs. We also observed that EPA-induced autophagy was modulated by GPR120, but not GPR40. Further experiments showed that the mechanism of EPA-induced autophagy associated with GPR120 modulation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of RAPA. The protective effect of EPA on Dex-induced apoptosis via GPR120-meditated induction of adaptive autophagy was supported by in vivo experiments. In summary, our findings may have important implications in developing future strategies to use EPA in the prevention and therapy of the side effects induced by long-term Dex-abuse. PMID:27228350

  20. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.

    PubMed

    Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel R; Thomson, James A

    2010-08-06

    Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Conditioned medium: a new alternative for cryopreservation of equine umbilical cord mesenchymal stem cells.

    PubMed

    Maia, Leandro; Dias, Marianne Camargos; de Moraes, Carolina Nogueira; de Paula Freitas-Dell'Aqua, Camila; da Mota, Ligia S L Silveira; Santiloni, Valquíria; da Cruz Landim-Alvarenga, Fernanda

    2017-03-01

    Cryopreservation is a feasible alternative to maintaining several cell lines, particularly for immediate therapeutic use, transportation of samples, and implementation of new in vitro studies. This work parts from the hypothesis that the medium of cryopreservation composed by 90% of conditioned medium (CM) supports cryopreservation of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs), allowing the maintenance of the biological properties for the establishment of cell banks intended for therapeutic use and in vitro studies. Thus, we evaluated the viability, apoptosis/necrosis rates, immunophenotypic profile (IP), chromosomal stability, clonicity, and differentiation potential of UCIM-MSCs cryopreserved with four different mediums (with FBS: M1, M3, M4 and without FBS: M2). After 3 months of cryopreservation, samples were thawed and analyzed. The potential of differentiation in the mesodermal lineages, clonicity, and the chromosomal stability were maintained after cryopreservation of UCIM-MSCs with medium containing FBS. Changes (P < 0.05) at IP for some markers were observed at cells cryopreserved with medium M1-M3. Only the UCIM-MSCs cryopreserved with the CM (M4) had similar viability post-thaw (P = 0.23) when compared with fresh cells. We proved the hypothesis that the medium of cryopreservation containing CM supports the cryopreservation of UCIM-MSCs, at the experimental conditions, being the medium that better maintains the biological characteristics observed at fresh cells. Thus, future studies of UCIM-MSCs secretome should be conducted to better understand the beneficial and protective effects of the CM during the freezing process. © 2017 International Federation for Cell Biology.

  2. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.

    PubMed

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-03

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.

  3. Extracellular matrix-derived hydrogels for dental stem cell delivery.

    PubMed

    Viswanath, Aiswarya; Vanacker, Julie; Germain, Loïc; Leprince, Julian G; Diogenes, Anibal; Shakesheff, Kevin M; White, Lisa J; des Rieux, Anne

    2017-01-01

    Decellularized mammalian extracellular matrices (ECM) have been widely accepted as an ideal substrate for repair and remodelling of numerous tissues in clinical and pre-clinical studies. Recent studies have demonstrated the ability of ECM scaffolds derived from site-specific homologous tissues to direct cell differentiation. The present study investigated the suitability of hydrogels derived from different source tissues: bone, spinal cord and dentine, as suitable carriers to deliver human apical papilla derived mesenchymal stem cells (SCAP) for spinal cord regeneration. Bone, spinal cord, and dentine ECM hydrogels exhibited distinct structural, mechanical, and biological characteristics. All three hydrogels supported SCAP viability and proliferation. However, only spinal cord and bone derived hydrogels promoted the expression of neural lineage markers. The specific environment of ECM scaffolds significantly affected the differentiation of SCAP to a neural lineage, with stronger responses observed with spinal cord ECM hydrogels, suggesting that site-specific tissues are more likely to facilitate optimal stem cell behavior for constructive spinal cord regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 319-328, 2017. © 2016 Wiley Periodicals, Inc.

  4. Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells.

    PubMed

    Shao, Han; Li, Tingting; Zhu, Rong; Xu, Xiaoting; Yu, Jiandong; Chen, Shengfeng; Song, Li; Ramakrishna, Seeram; Lei, Zhigang; Ruan, Yiwen; He, Liumin

    2018-08-01

    Carbon nanotubes (CNTs) have shown potential applications in neuroscience as growth substrates owing to their numerous unique properties. However, a key concern in the fabrication of homogeneous composites is the serious aggregation of CNTs during incorporation into the biomaterial matrix. Moreover, the regulation mechanism of CNT-based substrates on neural differentiation remains unclear. Here, a novel strategy was introduced for the construction of CNT nanocomposites via layer-by-layer assembly of negatively charged multi-walled CNTs and positively charged poly(dimethyldiallylammonium chloride). Results demonstrated that the CNT-multilayered nanocomposites provided a potent regulatory signal over neural stem cells (NSCs), including cell adhesion, viability, differentiation, neurite outgrowth, and electrophysiological maturation of NSC-derived neurons. Importantly, the dynamic molecular mechanisms in the NSC differentiation involved the integrin-mediated interactions between NSCs and CNT multilayers, thereby activating focal adhesion kinase, subsequently triggering downstream signaling events to regulate neuronal differentiation and synapse formation. This study provided insights for future applications of CNT-multilayered nanomaterials in neural fields as potent modulators of stem cell behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. New Therapy of Skin Repair Combining Adipose-Derived Mesenchymal Stem Cells with Sodium Carboxymethylcellulose Scaffold in a Pre-Clinical Rat Model

    PubMed Central

    Rodrigues, Cristiano; de Assis, Adriano M.; Moura, Dinara J.; Halmenschlager, Graziele; Saffi, Jenifer; Xavier, Léder Leal; da Cruz Fernandes, Marilda; Wink, Márcia Rosângela

    2014-01-01

    Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC) as a biomaterial, in combination with adipose-derived stem cells (ADSCs), to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a small and transient genotoxicity, only at the highest concentration tested (40 mg/mL). In a rat wound model, CMC at 10 mg/mL associated with ADSCs increased the rate of cell proliferation of the granulation tissue and epithelium thickness when compared to untreated lesions (Sham), but did not increase collagen fibers nor alter the overall speed of wound closure. Taken together, the results show that the CMC is capable to allow the growth of ADSCs and is safe for this biological application up to the concentration of 20 mg/mL. These findings suggest that CMC is a promising biomaterial to be used in cell therapy. PMID:24788779

  6. 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: A Novel Compound Capable of Inducing Cell Death in Epithelial Ovarian Cancer Stem Cells

    PubMed Central

    Green, Jamie M.; Alvero, Ayesha B.; Kohen, Fortune; Mor, Gil

    2009-01-01

    One of the major difficulties in the treatment of epithelial ovarian cancer (EOC) is the high rate of recurrent disease. This is thought to be due to the survival of a population of chemo-resistant cells within the tumor, the ovarian cancer stem cells (OCSCs), that are able to regenerate the tumor following chemotherapy. Therefore, the identification of a compund that can target the OCSCs is one of the main steps in improving overall survival of ovarian cancer patients. The objective of this study was to determine the effect of N-t-boc-Daidzein, a novel daidzain derivative, on OCSCs. The efficacy of this compound was evaluated in OCSC and mature ovarian cancer cell (mOCC) lines isolated from malignant ovarian cancer asicites. Cells were treated with increasing concentrations of N-t-boc-Daidzein (0.003–10 μM) and cell growth was monitored by “real time in vitro micro-imaging” using the IncuCyte system. Cell viability was measured using the CellTiter 96 Assay. Apoptosis was determined by Caspase-Glo 3/7, 8, and 9 assays. The components of the apoptotic cascade were characterized by Western blot analysis. N-t-boc-Daidzein was able to significantly inhibit cell growth and decrease cell viability of OCSC as well as mOCC cells in a dose and time dependent maner. This effect was due to the induction of apoptosis, which is characterized by caspase activation, XIAP and AKT degradation, and mitochondrial depolarization. This study describes a novel compound that can target the OCSCs. These findings may provide vital aide in improving overall survival in patients with EOC. PMID:19738422

  7. 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: a novel compound capable of inducing cell death in epithelial ovarian cancer stem cells.

    PubMed

    Green, Jamie M; Alvero, Ayesha B; Kohen, Fortune; Mor, Gil

    2009-09-01

    One of the major difficulties in the treatment of epithelial ovarian cancer (EOC) is the high rate of recurrent disease. This is thought to be due to the survival of a population of chemo-resistant cells within the tumor, the ovarian cancer stem cells (OCSCs), that are able to regenerate the tumor following chemotherapy. Therefore, the identification of a compund that can target the OCSCs is one of the main steps in improving overall survival of ovarian cancer patients. The objective of this study was to determine the effect of N-t-boc-Daidzein, a novel daidzain derivative, on OCSCs. The efficacy of this compound was evaluated in OCSC and mature ovarian cancer cell (mOCC) lines isolated from malignant ovarian cancer asicites. Cells were treated with increasing concentrations of N-t-boc-Daidzein (0.003-10 microM) and cell growth was monitored by "real time in vitro micro-imaging" using the IncuCyte system. Cell viability was measured using the CellTiter 96 Assay. Apoptosis was determined by Caspase-Glo 3/7, 8 and 9 assays. The components of the apoptotic cascade were characterized by western blot analysis. N-t-boc-Daidzein was able to significantly inhibit cell growth and decrease cell viability of OCSC as well as mOCC cells in a dose and time dependent maner. This effect was due to the induction of apoptosis, which is characterized by caspase activation, XIAP and AKT degradation, and mitochondrial depolarization. This study describes a novel compound that can target the OCSCs. These findings may provide vital aide in improving overall survival in patients with EOC.

  8. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance.

    PubMed

    Li, Yi; Guo, Gang; Li, Li; Chen, Fei; Bao, Ji; Shi, Yu-Jun; Bu, Hong

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation is a promising treatment of many diseases. However, conventional techniques with cells being cultured as a monolayer result in slow cell proliferation and insufficient yield to meet clinical demands. Three-dimensional (3D) culture systems are gaining attention with regard to recreating a complex microenvironment and to understanding the conditions experienced by cells. Our aim is to establish a novel 3D system for the culture of human umbilical cord MSCs (hUC-MSCs) within a real 3D microenvironment but with no digestion or passaging. Primary hUC-MSCs were isolated and grown in serum-free medium (SFM) on a suspension Rocker system. Cell characteristics including proliferation, phenotype and multipotency were recorded. The therapeutic effects of 3D-cultured hUC-MSCs on carbon tetrachloride (CCl4)-induced acute liver failure in mouse models were examined. In the 3D Rocker system, hUC-MSCs formed spheroids in SFM and maintained high viability and active proliferation. Compared with monolayer culture, the 3D-culture system yielded more hUC-MSCs cells within the same volume. The spheroids expressed higher levels of stem cell markers and displayed stronger multipotency. After transplantation into mouse, 3D hUC-MSCs significantly promoted the secretion of interferon-γ and interleukin-6 but inhibited that of tumor necrosis factor-α, thereby alleviating liver necrosis and promoting regeneration following CCl4 injury. The 3D culture of hUC-MSCs thus promotes cell yield and stemness maintenance and represents a promising strategy for hUC-MSCs expansion on an industrial scale with great potential for cell therapy and biotechnology.

  9. Ultrashort laser pulse cell manipulation using nano- and micro- materials

    NASA Astrophysics Data System (ADS)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander

    2010-08-01

    The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.

  10. A novel platelet lysate hydrogel for endothelial cell and mesenchymal stem cell-directed neovascularization.

    PubMed

    Robinson, Scott T; Douglas, Alison M; Chadid, Tatiana; Kuo, Katie; Rajabalan, Ajai; Li, Haiyan; Copland, Ian B; Barker, Thomas H; Galipeau, Jacques; Brewster, Luke P

    2016-05-01

    Mesenchymal stem cells (MSC) hold promise in promoting vascular regeneration of ischemic tissue in conditions like critical limb ischemia of the leg. However, this approach has been limited in part by poor cell retention and survival after delivery. New biomaterials offer an opportunity to localize cells to the desired tissue after delivery, but also to improve cell survival after delivery. Here we characterize the mechanical and microstructural properties of a novel hydrogel composed of pooled human platelet lysate (PL) and test its ability to promote MSC angiogenic activity using clinically relevant in vitro and in vivo models. This PL hydrogel had comparable storage and loss modulus and behaved as a viscoelastic solid similar to fibrin hydrogels despite having 1/4-1/10th the fibrin content of standard fibrin gels. Additionally, PL hydrogels enabled sustained release of endogenous PDGF-BB for up to 20days and were resistant to protease degradation. PL hydrogel stimulated pro-angiogenic activity by promoting human MSC growth and invasion in a 3D environment, and enhancing endothelial cell sprouting alone and in co-culture with MSCs. When delivered in vivo, the combination of PL and human MSCs improved local tissue perfusion after 8days compared to controls when assessed with laser Doppler perfusion imaging in a murine model of hind limb ischemia. These results support the use of a PL hydrogel as a scaffold for MSC delivery to promote vascular regeneration. Innovative strategies for improved retention and viability of mesenchymal stem cells (MSCs) are needed for cellular therapies. Human platelet lysate is a potent serum supplement that improves the expansion of MSCs. Here we characterize our novel PL hydrogel's desirable structural and biologic properties for human MSCs and endothelial cells. PL hydrogel can localize cells for retention in the desired tissue, improves cell viability, and augments MSCs' angiogenic activity. As a result of these unique traits, PL hydrogel is ideally suited to serve as a cell delivery vehicle for MSCs injected into ischemic tissues to promote vascular regeneration, as demonstrated here in a murine model of hindlimb ischemia. Published by Elsevier Ltd.

  11. Effect of cryopreservation on the appearance and liver function of hepatocyte-like cells in cultures of cirrhotic liver of biliary atresia.

    PubMed

    Yamazaki, Taisuke; Enosawa, Shin; Tokiwa, Takayoshi

    2018-06-01

    Previously, we reported that non-parenchymal cell (NPC) fractions from cirrhotic liver of biliary atresia (BA) may contain stem/progenitor cells, and clusters of hepatocyte-like cells appear via hepatocyte growth factor/c-Met signaling in primary cultures of NPCs. BA is a rare and serious liver disease, and procurement of BA cells is difficult. Therefore, cryopreservation of BA liver cells is an unavoidable challenge. In this study, we examined the appearance and liver function of hepatocyte-like cells in cultures of BA liver-derived NPC fractions after cryopreservation for 1 or 6 mo using a chemically defined cryopreservation solution, STEM-CELLBANKER. Although a decrease in cell viability was observed in recovered cells after 1 mo of cryopreservation, clusters of hepatocyte-like cells appeared in the culture of cells that had been cryopreserved for 1 or 6 mo, similar to non-cryopreserved cells. In addition, these hepatocyte-like cells expressed hepatocyte-related mRNAs and demonstrated albumin production and glycogen storage. The present results suggest that hepatic stem/progenitor cells in NPC fractions may be efficiently cryopreserved, as demonstrated by the appearance of hepatocyte-like cells that show various hepatic functions even after cryopreservation. This study may lead to future BA cell therapy using the patient's own cells.

  12. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  13. Paraoxon and Pyridostigmine Interfere with Neural Stem Cell Differentiation

    PubMed Central

    Berríos, Verónica O.; Boukli, Nawal M.; Rodriguez, Jose W.; Negraes, Priscilla D.; Schwindt, Telma T.; Trujillo, Cleber A.; Oliveira, Sophia L. B.; Cubano, Luis A.; Ferchmin, P. A.; Eterovic, Vesna A.; Ulrich, Henning; Martins, Antonio H.

    2015-01-01

    Acetylcholinesterase (AChE) inhibition has been described as the main mechanism of organophosphate (OP)-evoked toxicity. OPs represent a human health threat, because chronic exposure to low doses can damage the developing brain, and acute exposure can produce long-lasting damage to adult brains, despite post-exposure medical countermeasures. Although the main mechanism of OP toxicity is AChE inhibition, several lines of evidence suggest that OPs also act by other mechanisms. We hypothesized that rat neural progenitor cells extracted on embryonic day 14.5 would be affected by constant inhibition of AChE from chronic exposure to OP or pyri-dostigmine (a reversible AChE blocker) during differentiation. In this work, the OP paraoxon decreased cell viability in concentrations >50 μM, as measured with the MTT assay; however, this effect was not dose-dependent. Reduced viability could not be attributed to blockade of AChE activity, since treatment with 200 μM pyri-dostigmine did not affect cell viability, even after 6 days. Although changes in protein expression patterns were noted in both treatments, the distribution of differentiated phenotypes, such as the percentages of neurons and glial cells, was not altered, as determined by flow cytometry. Since paraoxon and pyridostigmine each decreased neurite outgrowth (but did not prevent differentiation), we infer that developmental patterns may have been affected. PMID:25758980

  14. Paraoxon and Pyridostigmine Interfere with Neural Stem Cell Differentiation.

    PubMed

    Berríos, Verónica O; Boukli, Nawal M; Rodriguez, Jose W; Negraes, Priscilla D; Schwindt, Telma T; Trujillo, Cleber A; Oliveira, Sophia L B; Cubano, Luis A; Ferchmin, P A; Eterović, Vesna A; Ulrich, Henning; Martins, Antonio H

    2015-10-01

    Acetylcholinesterase (AChE) inhibition has been described as the main mechanism of organophosphate (OP)-evoked toxicity. OPs represent a human health threat, because chronic exposure to low doses can damage the developing brain, and acute exposure can produce long-lasting damage to adult brains, despite post-exposure medical countermeasures. Although the main mechanism of OP toxicity is AChE inhibition, several lines of evidence suggest that OPs also act by other mechanisms. We hypothesized that rat neural progenitor cells extracted on embryonic day 14.5 would be affected by constant inhibition of AChE from chronic exposure to OP or pyridostigmine (a reversible AChE blocker) during differentiation. In this work, the OP paraoxon decreased cell viability in concentrations >50 μM, as measured with the MTT assay; however, this effect was not dose-dependent. Reduced viability could not be attributed to blockade of AChE activity, since treatment with 200 µM pyridostigmine did not affect cell viability, even after 6 days. Although changes in protein expression patterns were noted in both treatments, the distribution of differentiated phenotypes, such as the percentages of neurons and glial cells, was not altered, as determined by flow cytometry. Since paraoxon and pyridostigmine each decreased neurite outgrowth (but did not prevent differentiation), we infer that developmental patterns may have been affected.

  15. Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs

    PubMed Central

    Costa, Pedro F.; Dias, Ana F.; Reis, Rui L.

    2012-01-01

    The aim of this work was to study the effect of cryopreservation over the functionality of tissue-engineered constructs, analyzing the survival and viability of cells seeded, cultured, and cryopreserved onto 3D scaffolds. Further, it also evaluated the effect of cryopreservation over the properties of the scaffold material itself since these are critical for the engineering of most tissues and in particular, tissues such as bone. For this purpose, porous scaffolds, namely fiber meshes based on a starch and poly(caprolactone) blend were seeded with goat bone marrow stem cells (GBMSCs) and cryopreserved for 7 days. Discs of the same material seeded with GBMSCs were also used as controls. After this period, these samples were analyzed and compared to samples collected before the cryopreservation process. The obtained results demonstrate that it is possible to maintain cell viability and scaffolds properties upon cryopreservation of tissue-engineered constructs based on starch scaffolds and goat bone marrow mesenchymal cells using standard cryopreservation methods. In addition, the outcomes of this study suggest that the greater porosity and interconnectivity of scaffolds favor the retention of cellular content and cellular viability during cryopreservation processes, when compared with nonporous discs. These findings indicate that it might be possible to prepare off-the-shelf engineered tissue substitutes and preserve them to be immediately available upon request for patients' needs. PMID:22676448

  16. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways.

    PubMed

    Brandi, Jessica; Dando, Ilaria; Pozza, Elisa Dalla; Biondani, Giulia; Jenkins, Rosalind; Elliott, Victoria; Park, Kevin; Fanelli, Giuseppina; Zolla, Lello; Costello, Eithne; Scarpa, Aldo; Cecconi, Daniela; Palmieri, Marta

    2017-01-06

    Recently, we have shown that the secretome of pancreatic cancer stem cells (CSCs) is characterized by proteins that participate in cancer differentiation, invasion, and metastasis. However, the differentially expressed intracellular proteins that lead to the specific characteristics of pancreatic CSCs have not yet been identified, and as a consequence the deranged metabolic pathways are yet to be elucidated. To identify the modulated proteins of pancreatic CSCs, iTRAQ-based proteomic analysis was performed to compare the proteome of Panc1 CSCs and Panc1 parental cells, identifying 230 modulated proteins. Pathway analysis revealed activation of glycolysis, the pentose phosphate pathway, the pyruvate-malate cycle, and lipid metabolism as well as downregulation of the Krebs cycle, the splicesome and non-homologous end joining. These findings were supported by metabolomics and immunoblotting analysis. It was also found that inhibition of fatty acid synthase by cerulenin and of mevalonate pathways by atorvastatin have a greater anti-proliferative effect on cancer stem cells than parental cells. Taken together, these results clarify some important aspects of the metabolic network signature of pancreatic cancer stem cells, shedding light on key and novel therapeutic targets and suggesting that fatty acid synthesis and mevalonate pathways play a key role in ensuring their viability. To better understand the altered metabolic pathways of pancreatic cancer stem cells (CSCs), a comprehensive proteomic analysis and metabolite profiling investigation of Panc1 and Panc1 CSCs were carried out. The findings obtained indicate that Panc1 CSCs are characterized by upregulation of glycolysis, pentose phosphate pathway, pyruvate-malate cycle, and lipid metabolism and by downregulation of Krebs cycle, spliceosome and non-homologous end joining. Moreover, fatty acid synthesis and mevalonate pathways are shown to play a critical contribution to the survival of pancreatic cancer stem cells. This study is helpful for broadening the knowledge of pancreatic cancer stem cells and could accelerate the development of novel therapeutic strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo.

    PubMed

    Wang, Xiao-Fei; Song, Yang; Liu, Yun-Song; Sun, Yu-Chun; Wang, Yu-Guang; Wang, Yong; Lyu, Pei-Jun

    2016-01-01

    Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM) compared with that in normal proliferation medium (PM). Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects.

  18. Adipose Stromal Vascular Fraction Isolation: A Head-to-Head Comparison of 4 Cell Separation Systems #2.

    PubMed

    Aronowitz, Joel A; Lockhart, Ryan A; Hakakian, Cloe S; Birnbaum, Zoe E

    2016-09-01

    With stromal vascular fraction (SVF) cell and adipose-derived stem cell-based technologies translating into the clinical setting, numerous isolation systems have been developed for the point of care isolation of SVF cells from adipose tissue. A relative lack of performance data on these systems can make objective assessment difficult for prospective clinicians. This study compared the performance of 4 SVF cell isolation systems. Four isolation systems were compared: the MultiStation by PNC International, the LipoKit by MediKhan, the GID SVF-2 platform by GID Europe Ltd, and the StemSource 900/MB system by Cytori Therapeutics, Inc. Identical lipoaspirate samples for 5 separate donors were used. Stromal vascular fraction output was compared in terms of nucleated cell yield, viability, residual collagenase activity, sterility of the output, colony-forming unit-fibroblast frequency, frequency of CD31-/CD34+/CD45- cells, and operating statistics. Mean process time ranged from 65.4 to 120.8 minutes. Mean nucleated cell yield per milliliter of tissue processed ranged from 1.01 × 10 cells/mL to 6.24 × 10 cells/mL. Mean cellular viability ranged from 50.3% to 84.02%. Residual collagenase activity was negligible across all systems. Observed colony-forming unit-fibroblast frequency ranged from 0.495% to 1.704%. No significant difference was observed in frequency of CD31-/CD34+/CD45- cells. Results of the anaerobic/aerobic cultures were mixed. There was considerable variability between the outputs of each system. The system used by a clinician should be tailored to the individual needs of the practice. There is a range of cost options available. This study may help clinicians make more educated decisions when choosing an isolation system to meet their clinical needs.

  19. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo

    PubMed Central

    Liu, Yun-Song; Sun, Yu-chun; Wang, Yu-guang; Wang, Yong; Lyu, Pei-Jun

    2016-01-01

    Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM) compared with that in normal proliferation medium (PM). Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects. PMID:27332814

  20. Fibrin gel as a scaffold for photoreceptor cells differentiation from conjunctiva mesenchymal stem cells in retina tissue engineering.

    PubMed

    Soleimannejad, Mostafa; Ebrahimi-Barough, Somayeh; Soleimani, Masoud; Nadri, Samad; Tavangar, Seyed Mohammad; Roohipoor, Ramak; Yazdankhah, Meysam; Bayat, Neda; Riazi-Esfahani, Mohammad; Ai, Jafar

    2018-06-01

    Stem cell-based therapies are attraction approaches for regenerative medicine for treating retinal diseases. One of the limitations in cell therapy is cell death following post-injection whit preventing functional integration with retinal tissue. Fibrin gel, a bio-polymeric material with excellent biocompatibility, provides numerous advantages as a tissue engineering scaffold and a stem cell carrier. Therefore, current research is focusing on developing fibrin hydrogel scaffolds to protect stem cells during delivery and to stimulate endogenous regeneration through interactions of transplanted stem cells and retinal tissue. In this study fibrin gel was used as hydrogel scaffold for immobilization of cells. The structural characteristics of fibrin gel scaffold were examined with SEM. Rheological properties of fibrin gel were measured by rheometer and biodegradation rate of fibrin were assayed for 2 weeks. After isolation of stem cells CJMSCs, the cells were differentiated into photoreceptor-like cells by exposing with taurin for 14 days in tissue culture plate (TCP group) and fibrin hydrogel (3 D group). The attachment of cells was analyzed with SEM and MTT. The expression of rhodopsin, PKC, CRX, recoverin, peripherin, nestin and RPE65 as photoreceptor-like cell markers was evaluated by immunocytochemistry and quantitative real-time PCR (RT-PCR) in TCP and 3 D groups. The results of SEM analysis showed CJMSCs were well attached in fibrin gels and there were good integrity between cells and scaffold. The elastic modulus and constant degradation of the gel contributes to the growth and proliferation of cells. There was no toxicity effect of fibrin hydrogel on cells and the viability of cultured cells was higher in 3 D fibrin gels in comparison with TCP groups. After 2 weeks, the expression of rhodopsin, PKC, CRX, peripherin, recoverin, nestin and RPE65 as special markers of photoreceptor cells were detected by Real time PCR and immunofluorescence that these expressions in 3 D groups were higher than TCP groups. In conclusion, our findings showed that application of readily available sources of adult stem cells like human conjunctiva stem cells encapsulated in fibrin gel could be interesting strategy to enhance photoreceptor progenitor cell numbers for repair and regeneration of retina disease such as photoreceptor injury.

  1. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.

    PubMed

    Ball, Owen; Nguyen, Bao-Ngoc B; Placone, Jesse K; Fisher, John P

    2016-12-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.

  2. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor

    PubMed Central

    Ball, Owen; Nguyen, Bao-Ngoc B.; Placone, Jesse K.; Fisher, John P.

    2016-01-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state. PMID:27272210

  3. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-11-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O 2 ) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.

  4. Cryopreservation in Closed Bag Systems as an Alternative to Clean Rooms for Preparations of Peripheral Blood Stem Cells.

    PubMed

    Spoerl, Silvia; Peter, Robert; Krackhardt, Angela M

    2016-01-01

    Autologous and allogeneic stem cell transplantation (SCT) represents a therapeutic option widely used for hematopoietic malignancies. One important milestone in the development of this treatment strategy was the development of effective cryopreservation technologies resulting in a high quality with respect to cell viability as well as lack of contamination of the graft.Stem cell preparations have been initially performed within standard laboratories as it is routinely still the case in many countries. With the emergence of cleanrooms, manufacturing of stem cell preparations within these facilities has become a new standard mandatory in Europe. However, due to high costs and laborious procedures, novel developments recently emerged using closed bag systems as reliable alternatives to conventional cleanrooms. Several hurdles needed to be overcome including the addition of the cryoprotectant dimethylsulfoxide (DMSO) as a relevant manipulation. As a result of the development, closed bag systems proved to be comparable in terms of product quality and patient outcome to cleanroom products. They also comply with the strict regulations of good manufacturing practice.With closed systems being available, costs and efforts of a cleanroom facility may be substantially reduced in the future. The process can be easily extended for other cell preparations requiring minor modifications as donor lymphocyte preparations. Moreover, novel developments may provide solutions for the production of advanced-therapy medicinal products in closed systems.

  5. Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds

    PubMed Central

    Stasuk, Alexander

    2017-01-01

    Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment. PMID:29375625

  6. Complete disassociation of adult pancreas into viable single cells through cold trypsin-EDTA digestion*

    PubMed Central

    Li, Dan; Peng, Shi-yun; Zhang, Zhen-wu; Feng, Rui-cheng; Li, Lu; Liang, Jie; Tai, Sheng; Teng, Chun-bo

    2013-01-01

    The in vitro isolation and analysis of pancreatic stem/progenitor cells are necessary for understanding their properties and function; however, the preparation of high-quality single-cell suspensions from adult pancreas is prerequisite. In this study, we applied a cold trypsin-ethylenediaminetetraacetic acid (EDTA) digestion method to disassociate adult mouse pancreata into single cells. The yield of single cells and the viability of the harvested cells were much higher than those obtained via the two commonly used warm digestion methods. Flow cytometric analysis showed that the ratio of ductal or BCRP1-positive cells in cell suspensions prepared through cold digestion was consistent with that found in vivo. Cell culture tests showed that pancreatic epithelial cells prepared by cold digestion maintained proliferative capacity comparable to those derived from warm collagenase digestion. These results indicate that cold trypsin-EDTA digestion can effectively disassociate an adult mouse pancreas into viable single cells with minimal cell loss, and can be used for the isolation and analysis of pancreatic stem/progenitor cells. PMID:23825145

  7. Effects of silver nanoparticles on human and rat embryonic neural stem cells

    PubMed Central

    Liu, Fang; Mahmood, Meena; Xu, Yang; Watanabe, Fumiya; Biris, Alexandru S.; Hansen, Deborah K.; Inselman, Amy; Casciano, Daniel; Patterson, Tucker A.; Paule, Merle G.; Slikker, William; Wang, Cheng

    2015-01-01

    Silver nano-particles (Ag-NPs) are becoming increasingly prevalent in consumer products as antibacterial agents. The increased use of Ag NP-enhanced products will almost certainly increase environmental silver levels, resulting in increased exposures and the potential for increased adverse reactions including neurotoxic effects. In the present study, embryonic neural stem cells (NSCs) from human and rat fetuses (gestational day-16) were used to determine whether Ag-NPs are capable of causing developmental neurotoxicity. The NSCs were cultured in serum free medium supplemented with appropriate growth factors. On the eighth day in vitro (DIV 8), the cells were exposed to Ag-NPs at concentrations of 1, 5, 10, and 20 μg/ml for 24 h. The cultured cells then were characterized by NSC markers including nestin and SOX2 and a variety of assays were utilized to determine the effects of Ag-NPs on NSC proliferation and viability and the underlying mechanisms associated with these effects. The results indicate that mitochondrial viability (MTT metabolism) was substantially attenuated and LDH release was increased significantly in a dose-dependent manner. Ag-NPs-induced neurotoxicity was further confirmed by up-regulated Bax protein expression, an increased number of TUNEL-positively stained cells, and elevated reactive oxygen species (ROS). NSC proliferation was also significantly decreased by Ag-NPs. Co-administration of acetyl-L-carnitine, an antioxidant agent, effectively blocked the adverse effects associated with Ag-NP exposure. PMID:25904840

  8. Cord blood units collected at a remote site: a collaborative endeavor to collect umbilical cord blood through the Hawaii Cord Blood Bank and store the units at the Puget Sound Blood Center.

    PubMed

    Wada, Randal K; Bradford, Andrea; Moogk, Margery; Yim, Robyn; Strong, D Michael; Drachman, Jonathan; Reems, Jo Anna

    2004-01-01

    Umbilical cord blood is a useful source of hematopoietic stem cells, especially because compared to equivalent HLA-matched stem cells from unrelated adult donors. A network of community collection sites targeted at particular ethnic groups and serviced by a central processing and storage facility can maximize the genetic diversity of banked cord blood units (CBUs) in a cost-effective fashion. The present study compared CBUs collected near the Puget Sound Blood Center in Seattle, WA, with those collected in Honolulu, HI, and processed in Seattle. Evaluated variables include collection volume, total nucleated cell count, cellular viability, CD34+ cell count, clonogenic activity, and donor race for a total of 1646 CBUs received from July 1998 through November 2002. CBUs from the two sites did not differ with regard to volume or total nucleated cells. Those from Hawaii had significantly longer transit times (p < 0.001) and lower whole cord blood cell viability. However, the numbers of CFU and viable CD34+ cells were not affected by remote collection. CBUs screened from Seattle were largely from Caucasian donors, whereas over 85 percent of those from Honolulu were from donors of Asian-Pacific Islander or mixed ethnicity. These studies demonstrate the feasibility of long-distance umbilical cord blood banking. Arrangements such as those described here could be used to help target cost-effective collection from minority populations and increase the HLA and ethnic diversity for CBUs.

  9. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector.

    PubMed

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2005-10-04

    The goal of this study was to modify mesenchymal stem cells (MSCs) cells with a hypoxia-regulated heme oxygenase-1 (HO-1) plasmid to enhance the survival of MSCs in acute myocardial infarction (MI) heart. Although stem cells are being tested clinically for cardiac repair, graft cells die in the ischemic heart because of the effects of hypoxia/reoxygenation, inflammatory cytokines, and proapoptotic factors. Heme oxygenase-1 is a key component in inhibiting most of these factors. Mesenchymal stem cells from bone marrow were transfected with either HO-1 or LacZ plasmids. Cell apoptosis was assayed in vitro after hypoxia-reoxygen treatment. In vivo, 1 x 10(6) of male MSC(HO-1), MSC(LacZ), MSCs, or medium was injected into mouse hearts 1 h after MI (n = 16/group). Cell survival was assessed in a gender-mismatched transplantation model. Apoptosis, left ventricular remodeling, and cardiac function were tested in a gender-matched model. In the ischemic myocardium, the MSC(HO-1) group had greater expression of HO-1 and a 2-fold reduction in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick end labeling-positive cells compared with the MSC(LacZ) group. At seven days after implantation, the survival MSC(HO-1) was five-fold greater than the MSC(LacZ) group; MSC(HO-1) also attenuated left ventricular remodeling and enhanced the functional recovery of infarcted hearts two weeks after MI. A hypoxia-regulated HO-1 vector modification of MSCs enhances the tolerance of engrafted MSCs to hypoxia-reoxygen injury in vitro and improves their viability in ischemic hearts. This demonstration is the first showing that a physiologically inducible vector expressing of HO-1 genes improves the survival of stem cells in myocardial ischemia.

  10. 2,5-hexanedione induces bone marrow mesenchymal stem cell apoptosis via inhibition of Akt/Bad signal pathway.

    PubMed

    Sun, Jingsong; Shi, Xiaoxia; Li, Shuangyue; Piao, Fengyuan

    2018-04-01

    2,5-Hexanedione (HD) is an important bioactive metabolite of n-hexane and mediates the neurotoxicity of parent compound. Studies show that HD induces apoptotic death of neural progenitor cells. However, its underlying mechanism remains unknown. Mesenchymal stem cells (MSCs) are multipotential stem cells with the ability to differentiate into various cell types and have been used as cell model for studying the toxic effects of chemicals on stem cells. In this study, we exposed rat bone marrow MSCs to 0, 10, 20, and 40 mM HD in vitro. Apoptosis and disruption of mitochondrial transmembrane potential were estimated by immunochemistry staining. The expression of Akt, Bad, phosphorylated Akt (p-Akt), and Bad (p-Bad) as well as cytochrome c in mitochondria and cytosol were examined by Western blot. Moreover, caspase 3 activity, viability, and death of cells were measured by spectrophotometry. Our results showed that HD induced cell apoptosis and increased caspase 3 activity. HD down-regulated the expression levels of p-Akt, p-Bad and induced MMP depolarization, followed by cytochrome c release. Moreover, HD led to a concentration-dependent increase in the MSCs death, which was relative to MSCs apoptosis. However, these toxic effects of HD on the MSCs were significantly mitigated in the presence of IGF, which could activate PI3 K/Akt pathway. These results indicated that HD induced mitochondria-mediated apoptosis in the MSCs via inhibiting Akt/Bad signaling pathway and apoptotic death of MSCs via the signaling pathway. These results might provide some clues for studying further the mechanisms of HD-induced stem cell apoptosis and adverse effect on neurogenesis. © 2017 Wiley Periodicals, Inc.

  11. Evaluating Interaction of Cord Blood Hematopoietic Stem/Progenitor Cells with Functionally Integrated Three-Dimensional Microenvironments.

    PubMed

    Mokhtari, Saloomeh; Baptista, Pedro M; Vyas, Dipen A; Freeman, Charles Jordan; Moran, Emma; Brovold, Matthew; Llamazares, Guillermo A; Lamar, Zanneta; Porada, Christopher D; Soker, Shay; Almeida-Porada, Graça

    2018-03-01

    Despite advances in ex vivo expansion of cord blood-derived hematopoietic stem/progenitor cells (CB-HSPC), challenges still remain regarding the ability to obtain, from a single unit, sufficient numbers of cells to treat an adolescent or adult patient. We and others have shown that CB-HSPC can be expanded ex vivo in two-dimensional (2D) cultures, but the absolute percentage of the more primitive stem cells decreases with time. During development, the fetal liver is the main site of HSPC expansion. Therefore, here we investigated, in vitro, the outcome of interactions of primitive HSPC with surrogate fetal liver environments. We compared bioengineered liver constructs made from a natural three-dimensional-liver-extracellular-matrix (3D-ECM) seeded with hepatoblasts, fetal liver-derived (LvSt), or bone marrow-derived stromal cells, to their respective 2D culture counterparts. We showed that the inclusion of cellular components within the 3D-ECM scaffolds was necessary for maintenance of HSPC viability in culture, and that irrespective of the microenvironment used, the 3D-ECM structures led to the maintenance of a more primitive subpopulation of HSPC, as determined by flow cytometry and colony forming assays. In addition, we showed that the timing and extent of expansion depends upon the biological component used, with LvSt providing the optimal balance between preservation of primitive CB HSPC and cellular differentiation. Stem Cells Translational Medicine 2018;7:271-282. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  12. Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL+ leukemia stem cells.

    PubMed

    Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L

    2010-04-01

    The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.

  13. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration.

    PubMed

    Pu, Lei; Meng, Mingyao; Wu, Jian; Zhang, Jing; Hou, Zongliu; Gao, Hui; Xu, Hui; Liu, Boyu; Tang, Weiwei; Jiang, Lihong; Li, Yaxiong

    2017-03-21

    The success of developing cardiovascular tissue engineering (CTE) grafts greatly needs a readily available cell substitute for endothelial and interstitial cells. Perinatal annexes have been proposed as a valuable source of mesenchymal stem cells (MSCs) for tissue engineering and regenerative medicine. The objective of the present study is to evaluate the potential of human Wharton's jelly MSCs (WJ-MSCs) and amniotic membrane MSCs (AM-MSCs) as a seeding cell in CTE and cardiovascular regenerative medicine. WJ-MSCs/AM-MSCs were isolated and characterized in vitro according to their morphology, proliferation, self-renewal, phenotype, and multipotency. More importantly, the characteristics of hemocompatibility, extracellular matrix deposition, and gene expression and viability of both MSCs were investigated. Fibroblast-like human WJ-MSCs and AM-MSCs were successfully isolated and positively expressed the characteristic markers CD73, CD90, and CD105 but were negative for CD34, CD45, and HLA-DR. Both MSCs shared trilineage differentiation toward the adipogenic, osteogenic, and chondrogenic lineages. The proliferative and self-renewal capacity of WJ-MSCs was significantly higher than that of AM-MSCs (P < 0.001). WJ-MSCs provided comparable properties of antiplatelet adhesion and did not activate the coagulation cascade to endothelial cells. However, aggregated platelets were visualized on the surface of AM-MSCs-derived cell sheets and the intrinsic pathway was activated. Furthermore, WJ-MSCs have superior properties of collagen deposition and higher viability than AM-MSCs during cell sheet formation. This study highlights that WJ-MSCs could act as a functional substitute of endothelial and interstitial cells, which could serve as an appealing and practical single-cell source for CTE and regenerative therapy.

  14. Phenotypic and Genetic Evaluation of the Influence of Pseudomonas aeruginosa Culture Fractions on the Human Mesenchymal Stem Cells Viability, Apoptotic Pathways and Cytokine Profile.

    PubMed

    Holban, Alina Maria; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Lazar, Veronica

    2017-01-01

    The objective of this study was to investigate the effects of P. aeruginosa PAO1 cellular and soluble culture fractions on human mesenchymal stem cells (MSCs) death signaling pathways and cytokine profile. The bone marrow isolated MSCs, incubated for different periods of time with one of the three P. aeruginosa PAO1 culture fractions, i.e. low density whole cultures, heat inactivated bacterial cultures sediments and sterile supernatants, were submitted to the following assays: i) fluorescence microscopy evaluation of cellular morphology and viability; ii) bax, caspase 9, relA and bcl-2 genes expression analysis by qRT-PCR; and iii) quantification of the level of IL-1β, IL-6, IL-8 and IL-10 cytokines released in the MSCs supernatants determined by ELISA. Results were statistically analyzed using the GraphPad In Stat software. The PAO1 whole cultures exhibited the most relevant influences, impacting on MSCs morphology and viability, interfering with apoptotic pathways and significantly stimulating the production of IL-1β and IL-10, while decreasing the production of IL-6 and IL-8. The culture supernatants increased the production of IL-1β and reduced the secretion of all other tested cytokines, while heat-inactivated bacterial cells significantly stimulated both IL-1β and IL-10 production. These data could suggest that in vivo, the fate of P. aeruginosa infection depends on the proportion between different bacterial culture fractions (i.e. the number of viable bacterial cells, the number of dead cells and the amount of bacterial soluble products accumulated locally) that could be influenced by the initial infective dose, by the host defense mechanisms, and also by the administered antimicrobial treatment that may thus interfere with the evolution and magnitude of the induced lesions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications.

    PubMed

    Popa, Elena G; Caridade, Sofia G; Mano, João F; Reis, Rui L; Gomes, Manuela E

    2015-05-01

    Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of κ-carrageenan hydrogels for the delivery of stem cells obtained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation method and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v κ-carrageenan solution at a cell density of 5 × 10(6) cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that κ-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mechanical analysis demonstrated an increase in stiffness and viscoelastic properties of κ-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that κ-carrageenan exhibits properties that enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells.

    PubMed

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-05

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  17. Ferritin heavy chain is a negative regulator of ovarian cancer stem cell expansion and epithelial to mesenchymal transition

    PubMed Central

    Pisanu, Maria Elena; Faniello, Maria Concetta; Jakopin, Žiga; Chiarella, Emanuela; Giovannone, Emilia Dora; Mancini, Rita; Ciliberto, Gennaro

    2016-01-01

    Objectives Ferritin is the major intracellular iron storage protein essential for maintaining the cellular redox status. In recent years ferritin heavy chain (FHC) has been shown to be involved also in the control of cancer cell growth. Analysis of public microarray databases in ovarian cancer revealed a correlation between low FHC expression levels and shorter survival. To better understand the role of FHC in cancer, we have silenced the FHC gene in SKOV3 cells. Results FHC-KO significantly enhanced cell viability and induced a more aggressive behaviour. FHC-silenced cells showed increased ability to form 3D spheroids and enhanced expression of NANOG, OCT4, ALDH and Vimentin. These features were accompanied by augmented expression of SCD1, a major lipid metabolism enzyme. FHC apparently orchestrates part of these changes by regulating a network of miRNAs. Methods FHC-silenced and control shScr SKOV3 cells were monitored for changes in proliferation, migration, ability to propagate as 3D spheroids and for the expression of stem cell and epithelial-to-mesenchymal-transition (EMT) markers. The expression of three miRNAs relevant to spheroid formation or EMT was assessed by q-PCR. Conclusions In this paper we uncover a new function of FHC in the control of cancer stem cells. PMID:27566559

  18. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    NASA Astrophysics Data System (ADS)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  19. Implications of the Endothelial Cell Response in Glioblastoma to Stimulation by Mesenchymal Stem Cells and Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Tansy Y.

    Heightened angiogenesis is both the pathophysiologic hallmark and the potential cause of therapy resistance for glioblastoma (GBM), a deadly brain tumor. It is thought that mesenchymal stem cells (MSCs) play important roles in neovascularization and tumor progression. We postulated that MSCs protect ECs against radiotherapy, which subsequently enhances tumor angiogenesis, and promotes GBM tumor recurrence following therapy. We therefore sought to establish the in-vitro endothelial cell response to stimulation by MSC condition media and ionizing radiation (IR) treatment. We established the gene expression profiles of endothelial cells in response to IR, MSCs and the combination of both. Within the same gene profiles, we identified a unique gene signature that was highly predictive of response to Bevacizumab for GBM patients. We also demonstrated that MSC increased the viability of ECs in response to IR. Protein analysis in ECs suggested MSC-mediated cell cycle arrest as a mechanism for radio-resistance in ECs.

  20. Effect of Secreted Molecules of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells on Acute Hepatic Failure Model.

    PubMed

    Lotfinia, Majid; Kadivar, Mehdi; Piryaei, Abbas; Pournasr, Behshad; Sardari, Soroush; Sodeifi, Niloofar; Sayahpour, Forugh-Azam; Baharvand, Hossein

    2016-12-15

    Adult tissue-derived mesenchymal stem cells (MSCs) show tremendous promise for a wide array of therapeutic applications predominantly through paracrine activity. Recent reports showed that human embryonic stem cell (ESC)-derived MSCs are an alternative for regenerative cellular therapy due to manufacturing large quantities of MSCs from a single donor. However, no study has been reported to uncover the secretome of human ESC-MSCs as treatment of an acute liver failure (ALF) mouse model. We demonstrated that human ESC-MSCs showed similar morphology and cell surface markers compared with bone marrow-derived MSCs. ESC-MSCs exhibited a higher growth rate during early in vitro expansion, along with adipogenic and osteogenic differentiation potential. Treatment with ESC-MSC-conditioned medium (CM) led to statistically significant enhancement of primary hepatocyte viability and increased immunomodulatory interleukin-10 secretion from lipopolysaccharide-induced human blood mononuclear cells. Analysis of the MSCs secretome by a protein array screen showed an association between higher frequencies of secretory proteins such as vascular endothelial growth factor (VEGF) and regulation of cell proliferation, cell migration, the development process, immune system process, and apoptosis. In this thioacetamide-induced mouse model of acute liver injury, we observed that systemic infusion of VEGF led to significant survival. These data have provided the first experimental evidence of the therapeutic potential of human ESC-MSC-derived molecules. These molecules show trophic support to hepatocytes, which potentially creates new avenues for the treatment of ALF, as an inflammatory condition.

  1. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.

    PubMed

    Panda, N; Bissoyi, A; Pramanik, K; Biswas, A

    2014-01-01

    Stimulating stem cell differentiation without growth factor supplement offers a potent and cost-effective scaffold for tissue regeneration. We hypothesise that surface precipitation of nano-hydroxyapatite (nHAp) over blends of non-mulberry silk fibroin with better hydrophilicity and RGD amino acid sequences can direct the stem cell towards osteogenesis. This report focuses on the fabrication of a blended eri-tasar silk fibroin nanofibrous scaffold (ET) followed by nHAp deposition by a surface precipitation (alternate soaking in calcium and phosphate solution) method. Morphology, hydrophilicity, composition, and the thermal and mechanical properties of ET/nHAp were examined by field emission scanning electron microscopy, TEM, FT-IR, X-ray diffraction, TGA and contact angle measurement and compared with ET. The composite scaffold demonstrated improved thermal stability and surface hydrophilicity with an increase in stiffness and elastic modulus (778 ± 2.4 N/m and 13.1 ± 0.36 MPa) as compared to ET (160.6 ± 1.34 N/m and 8.3 ± 0.4 MPa). Mineralisation studies revealed an enhanced and more uniform surface deposition of HAp-like crystals, while significant differences in cellular viability and attachment were observed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and confocal microscopy study. The cell viability and expression of adhesion molecules (CD 44 and CD 29) are found to be optimum for subsequent stages of growth proliferation and differentiation. The rates of proliferation have been observed to decrease owing to the transition of MSC from a state of proliferation to a state of differentiation. The confirmation of improved osteogenic differentiation was finally verified through the alkaline phosphatase assay, pattern of gene expression related to osteogenic differentiation and morphological observations of differentiated cord blood human mesenchymal stem cells under fluorescence microscope. The results obtained showed the improved physicochemical and biological properties of the ET/nHAp scaffold for osteogenic differentiation without the addition of any growth factors.

  2. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease

    PubMed Central

    Tirnitz-Parker, Janina Elke Eleonore; Hamson, Elizabeth Jane; Warren, Alessandra; Maneck, Bharvi; Chen, Jinbiao; Patkunanathan, Bramilla; Boland, Jade; Cheng, Robert; Shackel, Nicholas Adam; Seth, Devanshi; Bowen, David Geoffrey; Martelotto, Luciano Gastón; Watkins, D. Neil; McCaughan, Geoffrey William

    2017-01-01

    Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness. PMID:28187190

  3. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease.

    PubMed

    Grzelak, Candice Alexandra; Sigglekow, Nicholas David; Tirnitz-Parker, Janina Elke Eleonore; Hamson, Elizabeth Jane; Warren, Alessandra; Maneck, Bharvi; Chen, Jinbiao; Patkunanathan, Bramilla; Boland, Jade; Cheng, Robert; Shackel, Nicholas Adam; Seth, Devanshi; Bowen, David Geoffrey; Martelotto, Luciano Gastón; Watkins, D Neil; McCaughan, Geoffrey William

    2017-01-01

    Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness.

  4. Sensitivity of human embryonic stem cells to different conditions during cryopreservation.

    PubMed

    Xu, Yanqing; Zhang, Liang; Xu, Jiandong; Wei, Yuping; Xu, Xia

    2015-12-01

    Low cell recovery rate of human embryonic stem cells (hESCs) resulting from cryopreservation damages leads to the difficulty in their successful commercialization of clinical applications. Hence in this study, sensitivity of human embryonic stem cells (hESCs) to different cooling rates, ice seeding and cryoprotective agent (CPA) types was compared and cell viability and recovery after cryopreservation under different cooling conditions were assessed. Both extracellular and intracellular ice formation were observed. Reactive oxidative species (ROS) accumulation of hESCs was determined. Cryopreservation of hESCs at 1 °C/min with the ice seeding and at the theoretically predicted optimal cooling rate (TPOCR) led to lower level of intracellular ROS, and prevented irregular and big ice clump formation compared with cryopreservation at 1 °C/min. This strategy further resulted in a significant increase in the hESC recovery when glycerol and 1,2-propanediol were used as the CPAs, but no increase for Me2SO. hESCs after cryopreservation under all the tested conditions still maintained their pluripotency. Our results provide guidance for improving the hESC cryopreservation recovery through the combination of CPA type, cooling rate and ice seeding. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation.

    PubMed

    Du, Vicard; Luciani, Nathalie; Richard, Sophie; Mary, Gaëtan; Gay, Cyprien; Mazuel, François; Reffay, Myriam; Menasché, Philippe; Agbulut, Onnik; Wilhelm, Claire

    2017-09-12

    The ability to create a 3D tissue structure from individual cells and then to stimulate it at will is a major goal for both the biophysics and regenerative medicine communities. Here we show an integrated set of magnetic techniques that meet this challenge using embryonic stem cells (ESCs). We assessed the impact of magnetic nanoparticles internalization on ESCs viability, proliferation, pluripotency and differentiation profiles. We developed magnetic attractors capable of aggregating the cells remotely into a 3D embryoid body. This magnetic approach to embryoid body formation has no discernible impact on ESC differentiation pathways, as compared to the hanging drop method. It is also the base of the final magnetic device, composed of opposing magnetic attractors in order to form embryoid bodies in situ, then stretch them, and mechanically stimulate them at will. These stretched and cyclic purely mechanical stimulations were sufficient to drive ESCs differentiation towards the mesodermal cardiac pathway.The development of embryoid bodies that are responsive to external stimuli is of great interest in tissue engineering. Here, the authors culture embryonic stem cells with magnetic nanoparticles and show that the presence of magnetic fields could affect their aggregation and differentiation.

  6. Early-stage detection of VE-cadherin during endothelial differentiation of human mesenchymal stem cells using SPR biosensor.

    PubMed

    Fathi, Farzaneh; Rezabakhsh, Aysa; Rahbarghazi, Reza; Rashidi, Mohammad-Reza

    2017-10-15

    Surface plasmon resonance (SPR) biosensors are most commonly applied for real-time dynamic analysis and measurement of interactions in bio-molecular studies and cell-surface analysis without the need for labeling processes. Up to present, SPR application in stem cell biology and biomedical sciences was underused. Herein, a very simple and sensitive method was developed to evaluate human mesenchymal stem cells trans-differentiation to endothelial lineage of over a period of 14 days based on VE-cadherin biomarker. The SPR signals increased with the increase of the amount of VE-cadherin expression on the cell surface during cell differentiation process. The method was able to detect ≈27 cells permm 2 . No significant effect was observed on the cell viability during the cell attachment to the surface of immune-reactive biochips and during the SPR analysis. Using this highly sensitive SPR method, it was possible to sense the early stage of endothelial differentiation on day 3 in label-free form, whereas flow cytometry and fluorescent microscopy methods were found unable to detect the cell differentiation at the same time. Therefore, the proposed method can rapidly and accurately detect cell differentiation in live cells and label-free manner without any need of cell breakage and has great potential for both diagnostic and experimental approaches. Copyright © 2017. Published by Elsevier B.V.

  7. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth

    PubMed Central

    FERNANDES, Ana Paula; JUNQUEIRA, Marina de Azevedo; MARQUES, Nádia Carolina Teixeira; MACHADO, Maria Aparecida Andrade Moreira; SANTOS, Carlos Ferreira; OLIVEIRA, Thais Marchini; SAKAI, Vivien Thiemy

    2016-01-01

    ABSTRACT Low-Level Laser Therapy stimulates the proliferation of a variety of types of cells. However, very little is known about its effect on stem cells from human exfoliated deciduous teeth (SHED). Objective This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. Material and Methods SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW – 10 s), II (2.5 J/cm2 – 10 mW – 10 s), III (3.7 J/cm2 – 15 mW – 10 s), IV (5.0 J/cm2 – 20 mW – 10 s), V (6.2 J/cm2 – 25 mW – 10 s), and VI (not irradiated – control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. Results MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. Conclusions The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study. PMID:27556203

  8. Atmospheric Oxygen Inhibits Growth and Differentiation of Marrow-Derived Mouse Mesenchymal Stem Cells via a p53 Dependent Mechanism: Implications for Long-Term Culture Expansion

    PubMed Central

    Boregowda, Siddaraju; Krishnappa, Veena; Chambers, Jeremy; LoGrasso, Phillip V.; Lai, Wen-Tzu; Ortiz, Luis A.; Phinney, Donald G.

    2013-01-01

    Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that emerge from bone marrow cultures following long-term (months) expansion in atmospheric oxygen. Herein, we demonstrate that exposure to atmospheric oxygen rapidly induced p53, TOP2A and BAX expression and mitochondrial ROS generation in primary mouse MSCs resulting in oxidative stress, reduced cell viability and inhibition of cell proliferation. Alternatively, procurement and culture in 5% oxygen supported more prolific expansion of the CD45−ve/CD44+ve cell fraction in marrow, produced increased MSC yields following immuno-depletion, and supported sustained MSC growth resulting in a 2300-fold increase in cumulative cell yield by 4th passage. MSCs cultured in 5% oxygen also exhibited enhanced tri-lineage differentiation. The oxygen-induced stress response was dependent upon p53 since siRNA mediated knockdown of p53 in wild type cells or exposure of p53−/− MSCs to atmospheric oxygen failed to induce ROS generation, reduce viability, or arrest cell growth. These data indicate that long-term culture expansion of mouse MSCs in atmospheric oxygen selects for clones with absent or impaired p53 function, which allows cells to escape oxygen-induced growth inhibition. In contrast, expansion in 5% oxygen generates large numbers of primary mouse MSCs that retain sensitivity to atmospheric oxygen, and therefore a functional p53 protein, even after long-term expansion in vitro. PMID:22367737

  9. Engraftment of autologous bone marrow cells into the injured cranial cruciate ligament in dogs.

    PubMed

    Linon, E; Spreng, D; Rytz, U; Forterre, S

    2014-12-01

    Current research indicates that exogenous stem cells may accelerate reparative processes in joint disease but, no previous studies have evaluated whether bone marrow cells (BMCs) target the injured cranial cruciate ligament (CCL) in dogs. The objective of this study was to investigate engraftment of BMCs following intra-articular injection in dogs with spontaneous CCL injury. Autologous PKH26-labelled BMCs were injected into the stifle joint of eight client-owned dogs with CCL rupture. The effects of PKH26 staining on cell viability and PKH26 fluorescence intensity were analysed in vitro using a MTT assay and flow cytometry. Labelled BMCs in injured CCL tissue were identified using fluorescence microscopy of biopsies harvested 3 and 13 days after intra-articular BMC injection. The intensity of PKH26 fluorescence declines with cell division but was still detectable after 16 days. Labelling with PKH26 had no detectable effect on cell viability or proliferation. Only rare PKH26-positive cells were present in biopsies of the injured CCL in 3/7 dogs and in synovial fluid in 1/7 dogs. No differences in transforming growth factor-β1, and interleukin-6 before and after BMC treatment were found and no clinical complications were noted during a 1 year follow-up period. In conclusion, BMCs were shown to engraft to the injured CCL in dogs when injected into the articular cavity. Intra-articular application of PKH26-labelled cultured mesenchymal stem cells is likely to result in higher numbers of engrafted cells that can be tracked using this method in a clinical setting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium.

    PubMed

    Blocki, Anna; Beyer, Sebastian; Dewavrin, Jean-Yves; Goralczyk, Anna; Wang, Yingting; Peh, Priscilla; Ng, Michael; Moonshi, Shehzahdi S; Vuddagiri, Susmitha; Raghunath, Michael; Martinez, Eliana C; Bhakoo, Kishore K

    2015-06-01

    The limited efficacy of cardiac cell-based therapy is thought to be due to poor cell retention within the myocardium. Hence, there is an urgent need for biomaterials that aid in long-term cell retention. This study describes the development of injectable microcapsules for the delivery of mesenchymal stem cells (MSCs) into the infarcted cardiac wall. These microcapsules comprise of low concentrations of agarose supplemented with extracellular matrix (ECM) proteins collagen and fibrin. Dextran sulfate, a negatively charged polycarbohydrate, was added to mimic glycosaminoglycans in the ECM. Cell viability assays showed that a combination of all components is necessary to support long-term survival and proliferation of MSCs within microcapsules. Following intramyocardial transplantation, microcapsules degraded slowly in vivo and did not induce a fibrotic foreign body response. Pre-labeling of encapsulated MSCs with iron oxide nanoparticles allowed continued cell-tracking by MRI over several weeks following transplantation into infarcted myocardium. In contrast, MSCs injected as cell suspension were only detectable for two days post transplantation by MRI. Histological analysis confirmed integration of transplanted cells at the infarct site. Therefore, microcapsules proved to be suitable for stem cell delivery into the infarcted myocardium and can overcome current limitations of poor cell retention in cardiac cell-based therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthetic high-density lipoprotein nanoconjugate targets neuroblastoma stem cells, blocking migration and self-renewal.

    PubMed

    Subramanian, Chitra; White, Peter T; Kuai, Rui; Kalidindi, Avinaash; Castle, Valerie P; Moon, James J; Timmermann, Barbara N; Schwendeman, Anna; Cohen, Mark S

    2018-05-09

    Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Variation of mechanical property of single-walled carbon nanotubes-treated cells explored by atomic force microscopy.

    PubMed

    Dulińska-Molak, Ida; Mao, Hongli; Kawazoe, Naoki; Chen, Guoping

    2014-04-01

    With a range of biological properties, single-walled carbon nanotubes (SWCNTs) are a promising material for nanobiotechnology. Concerns about their potential effect on human health have led to the interest in understanding the interaction between SWCNTs and cells. There are many reports showing the potential cellular effects of SWCNTs but this issue is quite controversially discussed in the literature. In this study, we used conventional biological evaluation methods and atomic force microscopy (AFM) to compare the effects of SWCNTs on three different cell types: bovine articular chondrocytes, human bone marrow-derived mesenchymal stem cells and HeLa cells. No obvious effects of SWCNTs on cell morphology and viability were observed during 3 days in vitro culture. However, SWCNTs significantly increased the Young's modulus of all the three types of cells. The effect of SWCNTs on Young's modulus was in an increasing order of Hela cells < chondrocytes < mesenchymal stem cells. AFM was shown to be a useful tool for investigation of the effect of nanomaterials on mechanical property of cells.

  13. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells.

    PubMed

    Sinclair, Amy; Park, Laura; Shah, Mansi; Drotar, Mark; Calaminus, Simon; Hopcroft, Lisa E M; Kinstrie, Ross; Guitart, Amelie V; Dunn, Karen; Abraham, Sheela A; Sansom, Owen; Michie, Alison M; Machesky, Laura; Kranc, Kamil R; Graham, Gerard J; Pellicano, Francesca; Holyoake, Tessa L

    2016-07-21

    The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34(+)Hoescht(-)Pyronin Y(-) and primitive CD34(+)38(-), as compared with proliferating CD34(+)Hoechst(+)Pyronin Y(+) and CD34(+)38(+) stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34(+) hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2(-/-) mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin(-)Sca-1(+)c-Kit(+) subpopulations. Cxcr2(-/-) stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit(+) cells, and Cxcl4(-/-) mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal. © 2016 by The American Society of Hematology.

  14. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells

    PubMed Central

    Sinclair, Amy; Park, Laura; Shah, Mansi; Drotar, Mark; Calaminus, Simon; Hopcroft, Lisa E. M.; Kinstrie, Ross; Guitart, Amelie V.; Dunn, Karen; Abraham, Sheela A.; Sansom, Owen; Michie, Alison M.; Machesky, Laura; Kranc, Kamil R.; Graham, Gerard J.; Pellicano, Francesca

    2016-01-01

    The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34+Hoescht−Pyronin Y− and primitive CD34+38−, as compared with proliferating CD34+Hoechst+Pyronin Y+ and CD34+38+ stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34+ hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2−/− mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin−Sca-1+c-Kit+ subpopulations. Cxcr2−/− stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit+ cells, and Cxcl4−/− mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal. PMID:27222476

  15. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity.

    PubMed

    Gatti, Monica; Pattarozzi, Alessandra; Bajetto, Adriana; Würth, Roberto; Daga, Antonio; Fiaschi, Pietro; Zona, Gianluigi; Florio, Tullio; Barbieri, Federica

    2013-12-15

    Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival and self-renewal was further demonstrated using the CXCR4 antagonist AMD3100 that reduced self-renewal and survival with greater efficacy in the cultures that released higher CXCL12 amounts. The specificity of CXCL12 in sustaining CSC survival was demonstrated by the lack of AMD3100-dependent inhibition of viability in differentiated cells derived from the same GBMs. These findings, although performed on a limited number of tumor samples, suggest that the CXCL12/CXCR4 interaction mediates survival and self-renewal in GBM CSCs with high selectivity, thus emerging as a candidate system responsible for maintenance of cancer progenitors, and providing survival benefits to the tumor. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S.; Schildhauer, Thomas A.; Ludwig, Alfred; Köller, Manfred

    2014-05-01

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  17. Alginate/hyaluronic acid hydrogel delivery system characteristics regulate the differentiation of periodontal ligament stem cells toward chondrogenic lineage.

    PubMed

    Ansari, Sahar; Diniz, Ivana M; Chen, Chider; Aghaloo, Tara; Wu, Benjamin M; Shi, Songtao; Moshaverinia, Alireza

    2017-09-15

    Cartilage tissue regeneration often presents a challenging clinical situation. Recently, it has been shown that Periodontal Ligament Stem Cells (PDLSCs) possess high chondrogenic differentiation capacity. In this study, we developed a stem cell delivery system based on alginate/hyaluronic acid (HA) loaded with TGF-β1 ligand, encapsulating PDLSCs; and investigated the chondrogenic differentiation of encapsulated cells in alginate/HA hydrogel microspheres in vitro and in vivo. The results showed that PDLSCs, as well as human bone marrow mesenchymal stem cells (hBMMSCs), as the positive control, were stained positive for both toluidine blue and alcian blue staining, while exhibiting high levels of gene expression related to chondrogenesis (Col II, Aggrecan and Sox-9), as assessed via qPCR. The quantitative PCR analyses exhibited that the chondrogenic differentiation of encapsulated MSCs can be regulated by the modulus of elasticity of hydrogel delivery system, confirming the vital role of the microenvironment, and the presence of inductive signals for viability and differentiation of MSCs. In vivo, histological and immunofluorescence staining for chondrogenic specific protein markers confirmed ectopic cartilage-like tissue regeneration inside transplanted hydrogels. PDLSCs presented significantly greater capability for chondrogenic differentiation than hBMMSCs (P < 0.05). Altogether, our findings confirmed that alginate/HA hydrogels encapsulating PDLSCs are a promising candidate for cartilage regeneration.

  18. Negative effects of a high tumour necrosis factor-α concentration on human gingival mesenchymal stem cell trophism: the use of natural compounds as modulatory agents.

    PubMed

    Giacomelli, Chiara; Natali, Letizia; Nisi, Marco; De Leo, Marinella; Daniele, Simona; Costa, Barbara; Graziani, Filippo; Gabriele, Mario; Braca, Alessandra; Trincavelli, M Letizia; Martini, Claudia

    2018-05-11

    Adult mesenchymal stem cells (MSCs) play a crucial role in the maintenance of tissue homeostasis and in regenerative processes. Among the different MSC types, the gingiva-derived mesenchymal stem cells (GMSCs) have arisen as a promising tool to promote the repair of damaged tissues secreting trophic mediators that affect different types of cells involved in regenerative processes. Tumour necrosis factor (TNF)-α is one of the key mediators of inflammation that could affect tissue regenerative processes and modify the MSC properties in in-vitro applications. To date, no data have been reported on the effects of TNF-α on GMSC trophic activities and how its modulation with anti-inflammatory agents from natural sources could modulate the GMSC properties. GMSCs were isolated and characterized from healthy subjects. The effects of TNF-α were evaluated on GMSCs and on the well-being of endothelial cells. The secretion of cytokines was measured and related to the modification of GMSC-endothelial cell communication using a conditioned-medium method. The ability to modify the inflammatory response was evaluated in the presence of Ribes nigrum bud extract (RBE). TNF-α differently affected GMSC proliferation and the expression of inflammatory-related proteins (interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β, and cyclooxygenase (COX)-2) dependent on its concentration. A high TNF-α concentration decreased the GMSC viability and impaired the positive cross-talk between GMSCs and endothelial cells, probably by enhancing the amount of pro-inflammatory cytokines in the GMSC secretome. RBE restored the beneficial effects of GMSCs on endothelial viability and motility under inflammatory conditions. A high TNF-α concentration decreased the well-being of GMSCs, modifying their trophic activities and decreasing endothelial cell healing. These data highlight the importance of controlling TNF-α concentrations to maintain the trophic activity of GMSCs. Furthermore, the use of natural anti-inflammatory agents restored the regenerative properties of GMSCs on endothelial cells, opening the way to the use and development of natural extracts in wound healing, periodontal regeneration, and tissue-engineering applications that use MSCs.

  19. Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches

    PubMed Central

    Rodríguez-Jiménez, Francisco Javier; Valdes-Sánchez, Teresa; Carrillo, José M.; Rubio, Mónica; Monleon-Prades, Manuel; García-Cruz, Dunia Mercedes; García, Montserrat; Cugat, Ramón; Moreno-Manzano, Victoria

    2012-01-01

    Osteoarticular pathologies very often require an implementation therapy to favor regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on osteoarticular complications in dogs constitute an ideal model for human clinical translational applications. The adipose-derived mesenchymal stem cells (ASCs) have already been used to accelerate and facilitate the regenerative process. ASCs can be maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a good tool for cell replacement therapies in human and veterinary medicine. Although ACSs can be easily obtained from adipose tissue, the amplification process is usually performed by a time consuming process of successive passages. In this work, we use canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and aseptic method for production of sufficient stem cells with potential further use in clinical applications. We show that plasma rich in growth factors (PRGF) treatment positively contributes to viability and proliferation of canine ASCs into caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) scaffolds. This biomaterial does not need additional modifications for cASCs attachment and proliferation. Here we propose a framework based on a combination of approaches that may contribute to increase the therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for bone and connective tissue regeneration. PMID:24955632

  20. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chih-Hao; Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC; Department of Biomedical Engineering, I-Shou University, Taiwan, ROC

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porousmore » collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.« less

  1. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors.

    PubMed

    Barbieri, Federica; Thellung, Stefano; Ratto, Alessandra; Carra, Elisa; Marini, Valeria; Fucile, Carmen; Bajetto, Adriana; Pattarozzi, Alessandra; Würth, Roberto; Gatti, Monica; Campanella, Chiara; Vito, Guendalina; Mattioli, Francesca; Pagano, Aldo; Daga, Antonio; Ferrari, Angelo; Florio, Tullio

    2015-04-07

    Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals.

  2. Proliferating brain cells are a target of neurotoxic CSF in systemic autoimmune disease

    PubMed Central

    Sakic, Boris; Kirkham, David L.; Ballok, David A.; Mwanjewe, James; Fearon, Ian M.; Macri, Joseph; Yu, Guanhua; Sidor, Michelle M.; Denburg, Judah A.; Szechtman, Henry; Lau, Jonathan; Ball, Alexander K.; Doering, Laurie C.

    2006-01-01

    Brain atrophy, neurologic and psychiatric (NP) manifestations are common complications in the systemic autoimmune disease, lupus erythematosus (SLE). Here we show that the cerebrospinal fluid (CSF) from autoimmune MRL-lpr mice and a deceased NP-SLE patient reduce the viability of brain cells which proliferate in vitro. This detrimental effect was accompanied by periventricular neurodegeneration in the brains of autoimmune mice and profound in vivo neurotoxicity when their CSF was administered to the CNS of a rat. Multiple ionic responses with microfluorometry and protein peaks on electropherograms suggest more than one mechanism of cellular demise. Similar to the CSF from diseased MRL-lpr mice, the CSF from a deceased SLE patient with a history of psychosis, memory impairment, and seizures, reduced viability of the C17.2 neural stem cell line. Proposed mechanisms of cytotoxicity involve binding of intrathecally synthesized IgG autoantibodies to target(s) common to different mammalian species and neuronal populations. More importantly, these results indicate that the viability of proliferative neural cells can be compromised in systemic autoimmune disease. Antibody-mediated lesions of germinal layers may impair the regenerative capacity of the brain in NP-SLE and possibly, brain development and function in some forms of CNS disorders in which autoimmune phenomena have been documented. PMID:16198428

  3. DPSC colonization of functionalized 3D textiles.

    PubMed

    Ortiz, Marine; Rosales-Ibáñez, Raúl; Pozos-Guillén, Amaury; De Bien, Charlotte; Toye, Dominique; Flores, Héctor; Grandfils, Christian

    2017-05-01

    Fiber scaffolds are attractive materials for mimicking, within a 3D in vitro system, any living environment in which animal cells can adhere and proliferate. In three dimensions, cells have the ability to communicate and organize into complex architectures similar to those found in their natural environments. The aim of this study was to evaluate, in terms of cell reactivity, a new in vitro cell model: dental pulp stem cells (DPSCs) in a 3D polymeric textile. Scaffolds were knitted from polyglycolic acid (PGA) or polydioxanone (PDO) fibers differing in surface roughness. To promote cell adhesion, these hydrophobic fabrics were also functionalized with either chitosan or the peptide arginine-glycine-aspartic acid (RGD). Cell behavior was examined 1, 10, and 21 days post-seeding with a LIVE/DEAD ® Kit. Confocal laser scanning microscopy (CLSM) highlighted the biocompatibility of these materials (cell survival rate: 94% to 100%). Fiber roughness was found to influence cell adhesion and viability significantly and favorably. A clear benefit of polymeric textile functionalization with chitosan or RGD was demonstrated in terms of cell adhesion and viability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 785-794, 2017. © 2016 Wiley Periodicals, Inc.

  4. Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors.

    PubMed

    Mohamet, Lisa; Lea, Michelle L; Ward, Christopher M

    2010-09-23

    A fundamental requirement for the exploitation of embryonic stem (ES) cells in regenerative medicine is the ability to reproducibly derive sufficient numbers of cells of a consistent quality in a cost-effective manner. However, undifferentiated ES cells are not ideally suited to suspension culture due to the formation of cellular aggregates, ultimately limiting scalability. Significant advances have been made in recent years in the culture of ES cells, including automated adherent culture and suspension microcarrier or embryoid body bioreactor culture. However, each of these methods exhibits specific disadvantages, such as high cost, additional downstream processes or reduced cell doubling times. Here we show that abrogation of the cell surface protein E-cadherin, using either gene knockout (Ecad-/-) or the neutralising antibody DECMA-1 (EcadAb), allows culture of mouse ES cells as a near-single cell suspension in scalable shake flask culture over prolonged periods without additional media supplements. Both Ecad-/- and EcadAb ES cells exhibited adaptation phases in suspension culture, with optimal doubling times of 7.3 h±0.9 and 15.6 h±4.7 respectively and mean-fold increase in viable cell number of 95.1±2.0 and 16±0.9-fold over 48 h. EcadAb ES cells propagated as a dispersed cell suspension for 15 d maintained expression of pluripotent markers, exhibited a normal karyotype and high viability. Subsequent differentiation of EcadAb ES cells resulted in expression of transcripts and proteins associated with the three primary germ layers. This is the first demonstration of the culture of pluripotent ES cells as a near-single cell suspension in a manual fed-batch shake flask bioreactor and represents a significant improvement on current ES cell culture techniques. Whilst this proof-of-principle method would be useful for the culture of human ES and iPS cells, further steps are necessary to increase cell viability of hES cells in suspension.

  5. ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Elizabeth, Elmy; Baranwal, Gaurav; Krishnan, Amit G.; Menon, Deepthy; Nair, Manitha

    2014-03-01

    Recent trends in titanium implants are towards the development of nanoscale topographies that mimic the nanoscale properties of bone tissue. Although the nanosurface promotes the integration of osteoblast cells, infection related problems can also occur, leading to implant failure. Therefore it is imperative to reduce bacterial adhesion on an implant surface, either with or without the use of drugs/antibacterial agents. Herein, we have investigated two different aspects of Ti surfaces in inhibiting bacterial adhesion and concurrently promoting mammalian cell adhesion. These include (i) the type of nanoscale topography (Titania nanotube (TNT) and Titania nanoleaf (TNL)) and (ii) the presence of an antibacterial agent like zinc oxide nanoparticles (ZnOnp) on Ti nanosurfaces. To address this, periodically arranged TNT (80-120 nm) and non-periodically arranged TNL surfaces were generated by the anodization and hydrothermal techniques respectively, and incorporated with ZnOnp of different concentrations (375 μM, 750 μM, 1.125 mM and 1.5 mM). Interestingly, TNL surfaces decreased the adherence of staphylococcus aureus while increasing the adhesion and viability of human osteosarcoma MG63 cell line and human mesenchymal stem cells, even in the absence of ZnOnp. In contrast, TNT surfaces exhibited an increased bacterial and mammalian cell adhesion. The influence of ZnOnp on these surfaces in altering the bacterial and cell adhesion was found to be concentration dependent, with an optimal range of 375-750 μM. Above 750 μM, although bacterial adhesion was reduced, cellular viability was considerably affected. Thus our study helps us to infer that nanoscale topography by itself or its combination with an optimal concentration of antibacterial ZnOnp would provide a differential cell behavior and thereby a desirable biological response, facilitating the long term success of an implant.

  6. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate

    PubMed Central

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T.; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24− phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents. PMID:27894093

  7. Evaluation of human platelet lysate and dimethyl sulfoxide as cryoprotectants for the cryopreservation of human adipose-derived stem cells.

    PubMed

    Wang, Chuan; Xiao, Ran; Cao, Yi-Lin; Yin, Hong-Yu

    2017-09-09

    Cryopreservation provides an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs). Dimethylsulfoxide (DMSO) and fetal bovine serum (FBS) are frequently used as cryoprotectants for this purpose. However, the use of DMSO can result in adverse effects and toxic reactions and FBS can introduce risks of viral, prion, zoonose contaminations and evoke immune responses after injection. It is therefore crucial to reduce DMSO concentrations and use serum-free solution in the cryopreservation process. Human platelet lysate (PL) is a promising candidate for use as an alternative to DMSO and FBS. Therefore, in this study, with an aim to identify a cryoprotective agent for ASC cryopreservation, we determined the viability, proliferation potential, phenotype, and differentiation potential of fresh ASCs and ASCs cryopreserved using different combinations of three cryoprotective agents: fetal bovine serum (FBS), dimethylsulfoxide (DMSO), and human platelet lysate (PL). The viability of the ASCs cryopreserved with 90% FBS and 10% DMSO, 95% FBS and 5% DMSO, and 97% PL and 3% DMSO was >80%, and the proliferation potentials, cell phenotypes, and differentiation potentials of these groups were similar to those of fresh ASCs. Together, our findings suggest that a combination of 97% PL and 3% DMSO is an ideal cryoprotective agent for the efficient cryopreservation of human ASCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Laminin α5 substrates promote survival, network formation and functional development of human pluripotent stem cell-derived neurons in vitro.

    PubMed

    Hyysalo, Anu; Ristola, Mervi; Mäkinen, Meeri E-L; Häyrynen, Sergei; Nykter, Matti; Narkilahti, Susanna

    2017-10-01

    Laminins are one of the major protein groups in the extracellular matrix (ECM) and specific laminin isoforms are crucial for neuronal functions in the central nervous system in vivo. In the present study, we compared recombinant human laminin isoforms (LN211, LN332, LN411, LN511, and LN521) and laminin isoform fragment (LN511-E8) in in vitro cultures of human pluripotent stem cell (hPSC)-derived neurons. We showed that laminin substrates containing the α5-chain are important for neuronal attachment, viability and network formation, as detected by phase contrast imaging, viability staining, and immunocytochemistry. Gene expression analysis showed that the molecular mechanisms involved in the preference of hPSC-derived neurons for specific laminin isoforms could be related to ECM remodeling and cell adhesion. Importantly, the microelectrode array analysis revealed the widest distribution of electrophysiologically active neurons on laminin α5 substrates, indicating most efficient development of neuronal network functionality. This study shows that specific laminin α5 substrates provide a controlled in vitro culture environment for hPSC-derived neurons. These substrates can be utilized not only to enhance the production of functional hPSC-derived neurons for in vitro applications like disease modeling, toxicological studies, and drug discovery, but also for the production of clinical grade hPSC-derived cells for regenerative medicine applications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Notch3 is involved in adipogenesis of human adipose-derived stromal/stem cells.

    PubMed

    Sandel, Demi A; Liu, Mengcheng; Ogbonnaya, Ngozi; Newman, Jamie J

    2018-07-01

    Human adipose-derived stromal/stem cells (hASCs) have tremendous therapeutic potential and the ability to offer insight into human development and disease. Here we subject human ASCs to siRNA-mediated knockdown of Notch3 cultured under both self-renewing and adipogenic differentiation conditions. Self-renewal was monitored by assessing viability and proliferation rates through staining and alamarBlue assays, respectively. Adipogenesis was measured through Oil-Red O staining, western blot, and quantitative real-time RT-PCR that determined expression levels of multipotency and adipogenic markers over time. Notch3 was expressed in self-renewing hASCs but knockdown, as validated by qRT-PCR and western blot, showed no impact on cell viability, as measured through live-dead staining, or cell proliferation rates, as measured through alamarBlue assays. However, although Notch3 expression was observed to increase during adipogenesis, in the absence of Notch3 there was a significant increase in hASC adipogenesis as demonstrated through an increased number of lipid vesicles, and increased expression of adipogenic markers ppar-γ, adiponectin, fabp4, and plin2. Although Notch3 is only one of four Notch receptors expressed on the surface of hASCs, this receptor appears important for proper regulation of adipogenic differentiation, possibly serving as a negative regulator to prevent inappropriate adipogenesis or promote other lineage commitments of ASCs. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. An Assessment of Gadonanotubes as Magnetic Nanolabels for Improved Stem Cell Detection and Retention in Cardiomyoplasty

    NASA Astrophysics Data System (ADS)

    Tran, Lesa A.

    In this work, gadolinium-based carbon nanocapsules are developed as a novel nanotechnology that addresses the shortcomings of current diagnostic and therapeutic methods of stem cell-based cardiomyoplasty. With cardiovascular disease (CVD) responsible for approximately 30% of deaths worldwide, the growing need for improved cardiomyoplasty has spurred efforts in nanomedicine to develop innovative techniques to enhance the therapeutic retention and diagnostic tracking of transplanted cells. Having previously been demonstrated as a high-performance T1-weighted magnetic resonance imaging (MRI) contrast agent, Gadonanotubes (GNTs) are shown for the first time to intracellularly label pig bone marrow-derived mesenchymal stem cells (MSCs). Without the use of a transfection agent, micromolar concentrations of GNTs deliver up to 109 Gd3+ ions per cell, allowing for MSCs to be visualized in a 1.5 T clinical MRI scanner. The cellular response to the intracellular incorporation of GNTs is also assessed, revealing that GNTs do not compromise the viability, differentiation potential, or phenotype characteristics of the MSCs. However, it is also found that GNT-labeled MSCs exhibit a decreased response to select cell adhesion proteins and experience a nonapoptotic, non-proliferative cell cycle arrest, from which the cells recover 48 h after GNT internalization. In tandem with developing GNTs as a new stem cell diagnostic agent, this current work also explores for the first time the therapeutic application of the magnetically-active GNTs as a magnetic facilitator to increase the retention of transplanted stem cells during cardiomyoplasty. In vitro flow chamber assays, ex vivo perfusion experiments, and in vivo porcine injection procedures all demonstrate the increased magnetic-assisted retention of GNT-labeled MSCs in the presence of an external magnetic field. These studies prove that GNTs are a powerful 'theranostic' agent that provides a novel platform to simultaneously monitor and improve the therapeutic nature of stem cells for the treatment of CVD. It is expected that this new nanotechnology will further catalyze the development of cellular cardiomyoplasty and other stem cellbased therapies for the prevention, detection, and treatment of human diseases.

  11. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking

    PubMed Central

    Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, LF

    2014-01-01

    Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson’s disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 105 cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model. PMID:24531365

  12. Adhesion, Vitality and Osteogenic Differentiation Capacity of Adipose Derived Stem Cells Seeded on Nitinol Nanoparticle Coatings

    PubMed Central

    Strauß, Sarah; Neumeister, Anne; Barcikowski, Stephan; Kracht, Dietmar; Kuhbier, Jörn W.; Radtke, Christine; Reimers, Kerstin; Vogt, Peter M.

    2013-01-01

    Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells. PMID:23308190

  13. Surfactant effects on the viability and function of human mesenchymal stem cells: in vitro and in vivo assessment.

    PubMed

    Chen, Chung-Ming; Chou, Hsiu-Chu; Lin, Willie; Tseng, Chris

    2017-08-03

    Surfactant therapy has become the standard of care for preterm infants with respiratory distress syndrome. Preclinical studies have reported the therapeutic benefits of mesenchymal stem cells (MSCs) in experimental bronchopulmonary dysplasia. This study investigated the effects of a surfactant on the in vitro viability and in vivo function of human MSCs. The viability, phenotype, and mitochondrial membrane potential (MMP) of MSCs were assessed through flow cytometry. The in vivo function was assessed after intratracheal injection of human MSCs (1 × 10 5 cells) diluted in 30 μl of normal saline (NS), 10 μl of a surfactant diluted in 20 μl of NS, and 10 μl of a surfactant and MSCs (1 × 10 5 cells) diluted in 20 μl of NS in newborn rats on postnatal day 5. The pups were reared in room air (RA) or an oxygen-enriched atmosphere (85% O 2 ) from postnatal days 1 to 14; eight study groups were examined: RA + NS, RA + MSCs, RA + surfactant, RA + surfactant + MSCs, O 2  + NS, O 2  + MSCs, O 2  + surfactant, and O 2  + surfactant + MSCs. The lungs were excised for histological and cytokine analysis on postnatal day 14. Compared with the controls, surfactant-treated MSCs showed significantly reduced viability and MMP after exposure to 1:1 and 1:2 of surfactant:MSCs for 15 and 60 minutes. All human MSC samples exhibited similar percentages of CD markers, regardless of surfactant exposure. The rats reared in hyperoxia and treated with NS exhibited a significantly higher mean linear intercept (MLI) than did those reared in RA and treated with NS, MSCs, surfactant, or surfactant + MSCs. Treatment with MSCs, surfactant, or surfactant + MSCs significantly reduced the hyperoxia-induced increase in MLI. The O 2  + surfactant + MSCs group exhibited a significantly higher MLI than did the O 2  + MSCs group. Furthermore, treatment with MSCs and MSCs + surfactant significantly reduced the hyperoxia-induced increase in apoptotic cells. Combination therapy involving a surfactant and MSCs does not exert additive effects on lung development in hyperoxia-induced lung injury.

  14. Magnetic Resonance Imaging Tracking of Ferumoxytol-Labeled Human Neural Stem Cells: Studies Leading to Clinical Use

    PubMed Central

    Gutova, Margarita; Frank, Joseph A.; D'Apuzzo, Massimo; Khankaldyyan, Vazgen; Gilchrist, Megan M.; Annala, Alexander J.; Metz, Marianne Z.; Abramyants, Yelena; Herrmann, Kelsey A.; Ghoda, Lucy Y.; Najbauer, Joseph; Brown, Christine E.; Blanchard, M. Suzette; Lesniak, Maciej S.; Kim, Seung U.; Barish, Michael E.

    2013-01-01

    Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking. PMID:24014682

  15. N-Acetyl cysteine protects diabetic mouse derived mesenchymal stem cells from hydrogen-peroxide-induced injury: A novel hypothesis for autologous stem cell transplantation.

    PubMed

    Ali, Fatima; Khan, Mohsin; Khan, Shaheen N; Riazuddin, Sheikh

    2016-03-01

    Stem cell transplantation is one of the therapeutic options available to repair damaged organs. However, transplanted cells entail several challenges including their survival in diabetes-affected injured tissue. This study was designed to determine the effects of preconditioning of mesenchymal stem cells (MSCs) with N-acetyl cysteine (NAC), a widely used antioxidant drug. Diabetic-mouse-derived MSCs (blood glucose ≥ 300 mg/dL) were preconditioned with 30 mM NAC for 1 hour followed by oxidative injury with 100 μM hydrogen peroxide (H2O2) for 1 hour. Gene expression analysis showed marked upregulation of prosurvival genes (Akt and Bcl-2) and significantly downregulated expression of proapoptotic and stress genes (Capase-3, Bax, Bak, p53, p38, and NF-κB) in the 30 mM-NAC-treated group when compared with those cells treated with H2O2 alone. NAC preconditioning improved cell viability, decreased lactate dehydrogenase release, β-galactosidase activity, and Annexin-V-positive cells. Also, amelioration of oxidative stress, as shown by a decrease in malondialdehyde level and an increase in superoxide dismutase and catalase activities and glutathione level, was observed in the 30 mM-NAC-treated group in comparison to cells treated with H2O2 alone. This study demonstrates the potential benefits of pharmacological preconditioning of diabetic-mouse-derived MSCs with NAC for amelioration of apoptosis and oxidative stress in H2O2 induced injury. Copyright © 2016. Published by Elsevier Taiwan LLC.

  16. Oxidative stress in normal hematopoietic stem cells and leukemia.

    PubMed

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  17. Effects of non-steroidal anti-inflammatory drugs on proliferation, differentiation and migration in equine mesenchymal stem cells.

    PubMed

    Müller, Maike; Raabe, Oksana; Addicks, Klaus; Wenisch, Sabine; Arnhold, Stefan

    2011-03-01

    In equine medicine, stem cell therapies for orthopaedic diseases are routinely accompanied by application of NSAIDs (non-steroidal anti-inflammatory drugs). Thus, it has to be analysed how NSAIDs actually affect the growth and differentiation potential of MSCs (mesenchymal stem cells) in vitro in order to predict the influence of NSAIDs such as phenylbutazone, meloxicam, celecoxib and flunixin on MSCs after grafting in vivo. The effects of NSAIDs were evaluated regarding cell viability and proliferation. Additionally, the multilineage differentiation capacity and cell migration was analysed. NSAIDs at lower concentrations (0.1-1 μM for celecoxib and meloxicam and 10-50 μM for flunixin) exert a positive effect on cell proliferation and migration, while at higher concentrations (10-200 μM for celecoxib and meloxicam and 100-1000 μM for flunixin and phenylbutazone), there is rather a negative influence. While there is hardly any influence on the adipogenic as well as on the chondrogenic MSC differentiation, the osteogenic differentiation potential, as demonstrated with the von Kossa staining, is significantly disturbed. Thus, it can be concluded that the effects of NSAIDs on MSCs are largely dependent on the concentrations used. Additionally, for some differentiation lineages, also the choice of NSAID is critical.

  18. Effects of iron oxide contrast agent in combination with various transfection agents during mesenchymal stem cells labelling: An in vitro toxicological evaluation.

    PubMed

    Mishra, Sushanta Kumar; Khushu, Subash; Gangenahalli, Gurudutta

    2018-03-22

    The use of iron oxide nanoparticles for different biomedical applications, hold immense promise to develop negative tissue contrast in magnetic resonance imaging (MRI). Previously, we have optimized the labelling of mesenchymal stem cells (MSCs) with iron oxide nanoparticles complexed to different transfection agents like poly-l-lysine (IO-PLL) and protamine sulfate (Fe-Pro) on the basis of relaxation behaviour and its biological expressions. However, there is a distinct need to investigate the biocompatibility and biosafety concerns coupled with its cytotoxicity and genotoxicity. This study was prepared to evaluate the viability of cells, generation of ROS, changes in actin cytoskeleton, investigation of cell death, level of GSH and TAC, activities of SOD and GPx, and stability of DNA in MSCs after labelling. Results demonstrated a marginal alteration in toxicological parameters like ROS generation, cell length, actin cytoskeleton, total apoptosis and DNA damage was detected after stem cell labelling. Insignificant depletion of GSH and SOD level, and increase in GPx and TAC level in MSCs were measured after labelling with IO-PLL and Fe-Pro complexes, which later on recovered and normalized to its baseline. This MSCs labelling could provide a reference guideline for toxicological analysis and relaxometry based in vivo MRI detection. Copyright © 2018. Published by Elsevier Ltd.

  19. Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold.

    PubMed

    Liu, Tao; Li, Jian; Shao, Zengwu; Ma, Kaige; Zhang, Zhicai; Wang, Baichuan; Zhang, Yannan

    2018-06-01

    Due to its moldability, biocompatibility, osteoconductivity and resorbability, calcium phosphate cement (CPC) is a highly promising scaffold material for orthopedic applications. However, pH changes and ionic activity during the CPC setting reaction may adversely affect cells seeded directly on CPC. Moreover, a lack of macropores in CPC limits ingrowth of new bone. The objectives of this study were to prepare macroporous CPC scaffolds via porogen leaching, using mannitol crystals as the porogen and to evaluate the in vitro proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) encapsulated in chitosan/β-glycerophosphate (C/GP) hydrogel prior to exposure to the novel CPC scaffold. MSCs were found to be adhered to the surfaces of CPC macropores via scanning electron microscopy. The viability and osteogenic differentiation of MSCs in C/GP hydrogel with or without exposure to CPC constructs containing mannitol crystals indicated that coating with C/GP hydrogel protected the cells during cement mixing and setting. In conclusion, novel, macroporous CPC scaffolds were prepared, and our data indicate that a hydrogel encapsulation-based strategy can be used to protect cells during scaffold formation. Thus, the MSC-laden CPC scaffolds show promise for the delivery of stem cells to promote bone regeneration. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Can human mesenchymal stem cells survive on a NiTi implant material subjected to cyclic loading?

    PubMed

    Habijan, T; Glogowski, T; Kühn, S; Pohl, M; Wittsiepe, J; Greulich, C; Eggeler, G; Schildhauer, T A; Köller, M

    2011-06-01

    Nickel-titanium shape memory alloys (NiTi-SMAs) exhibit mechanical and chemical properties which make them attractive candidate materials for various types of biomedical applications. However, the high nickel content of NiTi-SMAs may result in adverse tissue reactions, especially when they are considered for load-bearing implants. It is generally assumed that a protective titanium oxide layer separates the metallic alloy from its environment and that this explains the good biocompatibility of NiTi. Cyclic loading may result in failure of the protective oxide layer. The scientific objective of this work was to find out whether cyclic dynamic strain, in a range relevant for orthopedic implants, diminishes the biocompatibility of NiTi-SMAs. In order to analyze the biocompatibility of NiTi-SMA surfaces subjected to cyclic loading, NiTi-SMA tensile specimens were preloaded with mesenchymal stem cells, transferred to a sterile cell culture system and fixed to the pull rods of a tensile testing machine. Eighty-six thousand and four hundred strain cycles at 2% pseudoelastic strain were performed for a period of 24 h or 7 days. Cytokines (IL-6, IL-8 and VEGF) and nickel ion release were determined within the cell culture medium. Adherent cells on the tensile specimens were stained with calcein-AM and propidium iodide to determine cell viability. Dynamic loading of the tensile specimens did not influence the viability of adherent human mesenchymal stem cells (hMSCs) after 24 h or 7 days compared with the non-strained control. Dynamic cycles of loading and unloading did not affect nickel ion release from the tensile specimens. The release of IL-6 from hMSCs cultured under dynamic conditions was significantly higher after mechanical load (873 pg ml(-1)) compared with static conditions (323 pg ml(-1)). The present work demonstrates that a new type of mechanical in vitro cell culture experiment can provide information which previously could only be obtained in large animal experiments. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors.

    PubMed

    Skelton, Rhys J P; Khoja, Suhail; Almeida, Shone; Rapacchi, Stanislas; Han, Fei; Engel, James; Zhao, Peng; Hu, Peng; Stanley, Edouard G; Elefanty, Andrew G; Kwon, Murray; Elliott, David A; Ardehali, Reza

    2016-01-01

    Given the limited regenerative capacity of the heart, cellular therapy with stem cell-derived cardiac cells could be a potential treatment for patients with heart disease. However, reliable imaging techniques to longitudinally assess engraftment of the transplanted cells are scant. To address this issue, we used ferumoxytol as a labeling agent of human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) to facilitate tracking by magnetic resonance imaging (MRI) in a large animal model. Differentiating hESCs were exposed to ferumoxytol at different time points and varying concentrations. We determined that treatment with ferumoxytol at 300 μg/ml on day 0 of cardiac differentiation offered adequate cell viability and signal intensity for MRI detection without compromising further differentiation into definitive cardiac lineages. Labeled hESC-CPCs were transplanted by open surgical methods into the left ventricular free wall of uninjured pig hearts and imaged both ex vivo and in vivo. Comprehensive T2*-weighted images were obtained immediately after transplantation and 40 days later before termination. The localization and dispersion of labeled cells could be effectively imaged and tracked at days 0 and 40 by MRI. Thus, under the described conditions, ferumoxytol can be used as a long-term, differentiation-neutral cell-labeling agent to track transplanted hESC-CPCs in vivo using MRI. The development of a safe and reproducible in vivo imaging technique to track the fate of transplanted human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) is a necessary step to clinical translation. An iron oxide nanoparticle (ferumoxytol)-based approach was used for cell labeling and subsequent in vivo magnetic resonance imaging monitoring of hESC-CPCs transplanted into uninjured pig hearts. The present results demonstrate the use of ferumoxytol labeling and imaging techniques in tracking the location and dispersion of cell grafts, highlighting its utility in future cardiac stem cell therapy trials. ©AlphaMed Press.

  2. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (<4 sec) and short-distance (<40 mm) plasma irradiation, and the high transfection efficiency of 53% is realized together with the high cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  3. The proliferative and chronotropic effects of Brillantaisia nitens Lindau (Acanthaceae) extracts on pluripotent stem cells and their cardiomyocytes derivatives.

    PubMed

    Nembo, Erastus Nembu; Dimo, Theophile; Bopda, Orelien Sylvain Mtopi; Hescheler, Jürgen; Nguemo, Filomain

    2014-10-28

    Brillantaisia nitens Lindau (Acanthaceae) leaves are commonly used in traditional medicine in Africa for the treatment of many disorders including heart diseases and malaria. In this study, we therefore evaluated the effect of the methylene chloride/methanol leaf extract of Brillantaisia nitens on the proliferation of mouse pluripotent stem cells and their cardiomyocyte derivatives. In this study, we combined two emerging technologies, pluripotent stem cell-derived cardiomyocytes and modern electrophysiology systems (impedance-based real-time) to assess the cytotoxicity of Brillantaisia nitens extract (BNE). Undifferentiated pluripotent cells and cardiomyocytes were exposed to different concentrations of BNE. Cell viability and contraction were monitored by impedance using the xCELLigence system for short- and long-term treatment whereas the excitability of single cardiomyocytes was captured by patch clamp technique after BNE acute exposure. Brillantaisia nitens extract inhibited the proliferation and increased cytotoxicity of embryonic stem cells in a concentration-dependent manner. With the increase in concentration of BNE, beating rate and the contractile amplitude of cardiomyocytes changed significantly. Spontaneous rhythmic activity of cardiomyocytes was completely suppressed after 48 and 24h exposures to relatively low (4.16 mg/ml) and high (8.32 mg/ml) concentrations of BNE, respectively. Moreover, acute application of 4.16 mg/ml of BNE led to a significant alteration of action potential (AP) parameters such as beating frequency, amplitude and AP duration at 90% of repolarization. Brillantaisia nitens extract inhibits the proliferative capacity of pluripotent stem cells and reduces electrical activity of cardiomyocytes, confirming its depressant action on the heart. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.

    PubMed

    Menaa, Farid; Abdelghani, Adnane; Menaa, Bouzid

    2015-12-01

    The discovery of the interesting intrinsic properties of graphene, a two-dimensional nanomaterial, has boosted further research and development for various types of applications from electronics to biomedicine. During the last decade, graphene and several graphene-derived materials, such as graphene oxide, carbon nanotubes, activated charcoal composite, fluorinated graphenes and three-dimensional graphene foams, have been extensively explored as components of biosensors or theranostics, or to remotely control cell-substrate interfaces, because of their remarkable electro-conductivity. To date, despite the intensive progress in human stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. Interestingly, most of the recent in vitro studies indicate that graphene-based nanomaterials (i.e. mainly graphene, graphene oxide and carbon nanotubes) promote stem cell adhesion, growth, expansion and differentiation. Although cell viability in vitro is not affected, their potential nanocytoxicity (i.e. nanocompatibility and consequences of uncontrolled nanobiodegradability) in a clinical setting using humans remains unknown. Therefore, rigorous internationally standardized clinical studies in humans that would aim to assess their nanotoxicology are requested. In this paper we report and discuss the recent and pertinent findings about graphene and derivatives as valuable nanomaterials for stem cell research (i.e. culture, maintenance and differentiation) and tissue engineering, as well as for regenerative, translational and personalized medicine (e.g. bone reconstruction, neural regeneration). Also, from scarce nanotoxicological data, we also highlight the importance of functionalizing graphene-based nanomaterials to minimize the cytotoxic effects, as well as other critical safety parameters that remain important to take into consideration when developing nanobionanomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  5. The Cleavage Effect of Mesenchymal Stem Cell and Its Derived Matrix Metalloproteinase‐2 on Extracellular α‐Synuclein Aggregates in Parkinsonian Models

    PubMed Central

    Oh, Se Hee; Kim, Ha Na; Park, Hyun Jung; Shin, Jin Young; Kim, Dong Yeol

    2016-01-01

    Abstract Ample evidence has suggested that extracellular α‐synuclein aggregates would play key roles in the pathogenesis and progression of Parkinsonian disorders (PDs). In the present study, we investigated whether mesenchymal stem cells (MSCs) and their derived soluble factors could exert neuroprotective effects via proteolysis of extracellular α‐synuclein. When preformed α‐synuclein aggregates were incubated with MSC‐conditioned medium, α‐synuclein aggregates were disassembled, and insoluble and oligomeric forms of α‐synuclein were markedly decreased, thus leading to a significant increase in neuronal viability. In an animal study, MSC or MSC‐conditioned medium treatment decreased the expression of α‐synuclein oligomers and the induction of pathogenic α‐synuclein with an attenuation of apoptotic cell death signaling. Furthermore, we identified that matrix metalloproteinase‐2 (MMP‐2), a soluble factor derived from MSCs, played an important role in the degradation of extracellular α‐synuclein. Our data demonstrated that MSCs and their derived MMP‐2 exert neuroprotective properties through proteolysis of aggregated α‐synuclein in PD‐related microenvironments. Stem Cells Translational Medicine 2017;6:949–961 PMID:28297586

  6. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Hyunsook; Kim, Ji Young; Lee, Nahyun

    Cancer stem cells (CSCs) play important roles in the formation, growth and recurrence of tumors, particularly following therapeutic intervention. Salinomycin has received recent attention for its ability to target breast cancer stem cells (BCSCs), but the mechanisms of action involved are not fully understood. In the present study, we sought to investigate the mechanisms responsible for salinomycin's selective targeting of BCSCs and its anti-tumor activity. Salinomycin suppressed cell viability, concomitant with the downregulation of cyclin D1 and increased p27{sup kip1} nuclear accumulation. Mammosphere formation assays revealed that salinomycin suppresses self-renewal of ALDH1-positive BCSCs and downregulates the transcription factors Nanog, Oct4more » and Sox2. TUNEL analysis of MDA-MB-231-derived xenografts revealed that salinomycin administration elicited a significant reduction in tumor growth with a marked downregulation of ALDH1 and CD44 levels, but seemingly without the induction of apoptosis. Our findings shed further light on the mechanisms responsible for salinomycin's effects on BCSCs. - Highlights: • Salinomycin suppresses mammosphere formation. • Salinomycin reduces ALDH1 activity and downregulates Nanog, Oct4 and Sox2. • Salinomycin targets BCSCs via an apoptosis-independent pathway.« less

  7. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    PubMed

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.

  8. A rapid co-culture stamping device for studying intercellular communication.

    PubMed

    Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P; Nordon, Robert E; Warkiani, Majid Ebrahimi

    2016-10-18

    Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.

  9. A rapid co-culture stamping device for studying intercellular communication

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P.; Nordon, Robert E.; Warkiani, Majid Ebrahimi

    2016-10-01

    Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.

  10. Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank.

    PubMed

    Laurent, Romain; Nallet, Aurélie; Obert, Laurent; Nicod, Laurence; Gindraux, Florelle

    2014-06-01

    Human amniotic membrane (hAM) is known to have good potential to help the regeneration of tissue. It has been used for over 100 years in many medical disciplines because of its properties, namely a scaffold containing stem cells and growth factors, with low immunogenicity and anti-microbial, anti-inflammatory, anti-fibrotic and analgesic properties. In order to use this "boosted membrane" as an advanced therapeutic medicinal product for bone repair, we aimed to observe the influence of tissue culture and/or cryopreservation on cell viability and tissue structure, and secondly, to adapt to a tissue bank, identify easy processes to store hAM containing viable cells and to verify the quality of the graft before its release for use. To this end, we tested different published culture or cryopreservation storage conditions and cell viability assays. Tissue structure was evaluated by Giemsa staining and was compared to histological analysis. Preliminary results show no dramatic decrease in cell viability in cultured hAM as compared to cryopreserved hAM, but tissue structure alterations were observed with both storage conditions. Histological and immunohistochemical data highlight that tissue damage was associated with significantly modified protein expression, which could lead to a possible loss of differentiation potential. Finally, we report that trypan blue and Giemsa staining could constitute controls that are "materially and easily transferable" to a tissue bank.

  11. TNF-α inhibits SCF, ghrelin, and substance P expressions through the NF-κB pathway activation in interstitial cells of Cajal.

    PubMed

    Ren, Keyu; Yong, Chunming; Yuan, Hao; Cao, Bin; Zhao, Kun; Wang, Jin

    2018-01-01

    Ulcerative colitis is a chronic inflammatory disease of the colon where intestinal motility is disturbed. Interstitial cells of Cajal (ICC) are required to maintain normal intestinal motility. In the present study, we assessed the effect of tumor necrosis factor-alpha (TNF-α) on viability and apoptosis of ICC, as well as on the expression of stem cell factor (SCF), ghrelin, and substance P. ICC were derived from the small intestines of Swiss albino mice. Cell viability and apoptosis were measured using CCK-8 assay and flow cytometry, respectively. ELISA was used to measure the concentrations of IL-1β, IL-6, ghrelin, substance P, and endothelin-1. Quantitative RT-PCR was used to measure the expression of SCF. Western blotting was used to measure the expression of apoptosis-related proteins, interleukins, SCF, and NF-κB signaling pathway proteins. TNF-α induced inflammatory injury in ICC by decreasing cell viability and increasing apoptosis and levels of IL-1β and IL-6. TNF-α decreased the levels of SCF, ghrelin, and substance P, but had no effect on endothelin-1. TNF-α down-regulated expressions of SCF, ghrelin, and substance P by activating the NF-κB pathway in ICC. In conclusion, TNF-α down-regulated the expressions of SCF, ghrelin, and substance P via the activation of the NF-κB pathway in ICC.

  12. Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture

    NASA Astrophysics Data System (ADS)

    Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon

    2015-03-01

    Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel.

  13. Optimization and validation of FePro cell labeling method.

    PubMed

    Janic, Branislava; Rad, Ali M; Jordan, Elaine K; Iskander, A S M; Ali, Md M; Varma, N Ravi S; Frank, Joseph A; Arbab, Ali S

    2009-06-11

    Current method to magnetically label cells using ferumoxides (Fe)-protamine (Pro) sulfate (FePro) is based on generating FePro complexes in a serum free media that are then incubated overnight with cells for the efficient labeling. However, this labeling technique requires long (>12-16 hours) incubation time and uses relatively high dose of Pro (5-6 microg/ml) that makes large extracellular FePro complexes. These complexes can be difficult to clean with simple cell washes and may create low signal intensity on T2* weighted MRI that is not desirable. The purpose of this study was to revise the current labeling method by using low dose of Pro and adding Fe and Pro directly to the cells before generating any FePro complexes. Human tumor glioma (U251) and human monocytic leukemia cell (THP-1) lines were used as model systems for attached and suspension cell types, respectively and dose dependent (Fe 25 to 100 microg/ml and Pro 0.75 to 3 microg/ml) and time dependent (2 to 48 h) labeling experiments were performed. Labeling efficiency and cell viability of these cells were assessed. Prussian blue staining revealed that more than 95% of cells were labeled. Intracellular iron concentration in U251 cells reached approximately 30-35 pg-iron/cell at 24 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. However, comparable labeling was observed after 4 h across the described FePro concentrations. Similarly, THP-1 cells achieved approximately 10 pg-iron/cell at 48 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. Again, comparable labeling was observed after 4 h for the described FePro concentrations. FePro labeling did not significantly affect cell viability. There was almost no extracellular FePro complexes observed after simple cell washes. To validate and to determine the effectiveness of the revised technique, human T-cells, human hematopoietic stem cells (hHSC), human bone marrow stromal cells (hMSC) and mouse neuronal stem cells (mNSC C17.2) were labeled. Labeling for 4 hours using 100 microg/ml of Fe and 3 microg/ml of Pro resulted in very efficient labeling of these cells, without impairing their viability and functional capability. The new technique with short incubation time using 100 microg/ml of Fe and 3 microg/ml of Pro is effective in labeling cells for cellular MRI.

  14. FACS-based isolation, propagation and characterization of mouse embryonic cardiomyocytes based on VCAM-1 surface marker expression.

    PubMed

    Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K; Jovinge, Stefan

    2013-01-01

    Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes.

  15. Synergistic Effect of Transient Receptor Potential Antagonist and Amiloride against Maitotoxin Induced Calcium Increase and Cytotoxicity in Human Neuronal Stem Cells.

    PubMed

    Boente-Juncal, Andrea; Vale, Carmen; Alfonso, Amparo; Botana, Luis M

    2018-05-16

    Maitotoxins (MTX) are among the most potent marine toxins identified to date causing cell death trough massive calcium influx. However, the exact mechanism for the MTX-induced calcium entry and cytotoxicity is still unknown. In this work, the effect of MTX-1 on the cytosolic free calcium concentration and cellular viability of human neuronal stem cells was evaluated. MTX elicited a concentration-dependent decrease in cell viability which was already evident after 1 h of treatment with 0.25 nM MTX; however, at a concentration of 0.1 nM, the toxin did not cause cell death even after 14 days of exposure. Moreover, the toxin caused a concentration dependent rise in the cytosolic calcium concentration which was maximal at toxin concentrations of 1 nM and dependent on the presence of extracellular calcium on the bathing solution. Several pharmacological approaches were employed to evaluate the role of canonical transient potential receptor channels (TRPC) on the MTX effects. The results presented here lead to the identification of the TRPC4 channels as contributors to the MTX effects in human neuronal cells. Both, the calcium increase and the cytotoxicity of MTX were either fully (for the calcium increase) or partially (in the case of cytotoxicity) reverted by the blockade of canonical TRPC4 receptors with the selective antagonist ML204. Furthermore, the sodium proton exchanger blocker amiloride also partially inhibited the calcium rise and the cell death elicited by MTX while the combination of amiloride and ML204 fully prevented both the cytotoxicity and the calcium rise elicited by the toxin.

  16. FACS-Based Isolation, Propagation and Characterization of Mouse Embryonic Cardiomyocytes Based on VCAM-1 Surface Marker Expression

    PubMed Central

    Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K.; Jovinge, Stefan

    2013-01-01

    Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes. PMID:24386094

  17. Three-dimensional co-culture of human hepatocytes and mesenchymal stem cells: improved functionality in long-term bioreactor cultures.

    PubMed

    Rebelo, Sofia P; Costa, Rita; Silva, Marta M; Marcelino, Paulo; Brito, Catarina; Alves, Paula M

    2017-07-01

    The development of human cell models that can efficiently restore hepatic functionality and cope with the reproducibility and scalability required for preclinical development poses a significant effort in tissue engineering and biotechnology. Primary cultures of human hepatocytes (HHs), the preferred model for in vitro toxicity testing, dedifferentiate and have short-term viability in two-dimensional (2D) cultures. In this study, hepatocytes isolated from human liver tissue were co-cultured with human bone marrow mesenchymal stem cells (BM-MSCs) as spheroids in automated, computer-controlled, stirred-tank bioreactors with perfusion operation mode. A dual-step inoculation strategy was used, resulting in an inner core of parenchymal liver tissue with an outer layer of stromal cells. Hepatocyte polarization and morphology as well as the mesenchymal phenotype of BM-MSCs were maintained throughout the culture period and the crosstalk between the two cell types was depicted. The viability, compact morphology and phenotypic stability of hepatocytes were enhanced in co-cultures in comparison to monocultures. Gene expression of phase I and II enzymes was higher and CYP3A4 and CYP1A2 activity was inducible until week 2 of culture, being applicable for repeated-dose toxicity testing. Moreover, the excretory activity was maintained in co-cultures and the biosynthetic hepatocellular functions (albumin and urea secretion) were not affected by the presence of BM-MSCs. This strategy might be extended to other hepatic cell sources and the characterization performed brings knowledge on the interplay between the two cell types, which may be relevant for therapeutic applications. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth

    PubMed Central

    Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali

    2018-01-01

    Background: The aim of this study was to compare the cytotoxicity and the biocompatibility of three different nanofibers scaffolds after seeding of stem cells harvested from human deciduous dental pulp. Given the importance of scaffold and its features in tissue engineering, this study demonstrated the construction of polyhydroxybutyrate (PHB)/chitosan/nano-bioglass (nBG) nanocomposite scaffold using electrospinning method. Materials and Methods: This experimental study was conducted on normal exfoliated deciduous incisors obtained from 6-year-old to 11-year-old healthy children. The dental pulp was extracted from primary incisor teeth which are falling aseptically. After digesting the tissue with 4 mg/ml of type I collagenase, the cells were cultured in medium solution. Identification of stem cells from human exfoliated deciduous teeth was performed by flowcytometry using CD19, CD14, CD146, and CD90 markers. Then, 1 × 104 stem cells were seeded on the scaffold with a diameter of 10 mm × 0.3 mm. Cell viability was evaluated on days 3, 5, and 7 through methyl thiazol tetrazolium techniques (P < 0.05) on different groups that they are groups included (1) PHB scaffold (G1), (2) PHB/chitosan scaffold (G2), (3) the optimal PHB/chitosan/nBG scaffold (G3), (4) mineral trioxide aggregate (MTA), and (5) the G3 + MTA scaffold (G3 + MTA). Data were analyzed with two-way ANOVA at significance level of P < 0.05. Results: The results indicated that the PHB/chitosan/nBG scaffold and PHB/chitosan/nBG scaffold + MTA groups showed significant difference compared with the PHB/chitosan scaffold and PHB scaffold groups on the 7th day (P < 0.05). Conclusion: Thus, it can be concluded that the scaffold with nBG nanoparticles is more biocompatible than the other scaffolds and can be considered as a suitable scaffold for growth and proliferation of stem cells. PMID:29576778

  19. Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth.

    PubMed

    Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali

    2018-01-01

    The aim of this study was to compare the cytotoxicity and the biocompatibility of three different nanofibers scaffolds after seeding of stem cells harvested from human deciduous dental pulp. Given the importance of scaffold and its features in tissue engineering, this study demonstrated the construction of polyhydroxybutyrate (PHB)/chitosan/nano-bioglass (nBG) nanocomposite scaffold using electrospinning method. This experimental study was conducted on normal exfoliated deciduous incisors obtained from 6-year-old to 11-year-old healthy children. The dental pulp was extracted from primary incisor teeth which are falling aseptically. After digesting the tissue with 4 mg/ml of type I collagenase, the cells were cultured in medium solution. Identification of stem cells from human exfoliated deciduous teeth was performed by flowcytometry using CD19, CD14, CD146, and CD90 markers. Then, 1 × 10 4 stem cells were seeded on the scaffold with a diameter of 10 mm × 0.3 mm. Cell viability was evaluated on days 3, 5, and 7 through methyl thiazol tetrazolium techniques ( P < 0.05) on different groups that they are groups included (1) PHB scaffold (G1), (2) PHB/chitosan scaffold (G2), (3) the optimal PHB/chitosan/nBG scaffold (G3), (4) mineral trioxide aggregate (MTA), and (5) the G3 + MTA scaffold (G3 + MTA). Data were analyzed with two-way ANOVA at significance level of P < 0.05. The results indicated that the PHB/chitosan/nBG scaffold and PHB/chitosan/nBG scaffold + MTA groups showed significant difference compared with the PHB/chitosan scaffold and PHB scaffold groups on the 7 th day ( P < 0.05). Thus, it can be concluded that the scaffold with nBG nanoparticles is more biocompatible than the other scaffolds and can be considered as a suitable scaffold for growth and proliferation of stem cells.

  20. Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: Biocompatibility and cryopreservation.

    PubMed

    Mutsenko, Vitalii V; Gryshkov, Oleksandr; Lauterboeck, Lothar; Rogulska, Olena; Tarusin, Dmitriy N; Bazhenov, Vasilii V; Schütz, Kathleen; Brüggemeier, Sophie; Gossla, Elke; Akkineni, Ashwini R; Meißner, Heike; Lode, Anja; Meschke, Stephan; Fromont, Jane; Stelling, Allison L; Tabachnik, Konstantin R; Gelinsky, Michael; Nikulin, Sergey; Rodin, Sergey; Tonevitsky, Alexander G; Petrenko, Alexander Y; Glasmacher, Birgit; Schupp, Peter J; Ehrlich, Hermann

    2017-11-01

    The extraordinary biocompatibility and mechanical properties of chitinous scaffolds from marine sponges endows these structures with unique properties that render them ideal for diverse biomedical applications. In the present work, a technological route to produce "ready-to-use" tissue-engineered products based on poriferan chitin is comprehensively investigated for the first time. Three key stages included isolation of scaffolds from the marine demosponge Ianthella basta, confirmation of their biocompatibility with human mesenchymal stromal cells, and cryopreservation of the tissue-like structures grown within these scaffolds using a slow cooling protocol. Biocompatibility of the macroporous, flat chitin scaffolds has been confirmed by cell attachment, high cell viability and the ability to differentiate into the adipogenic lineage. The viability of cells cryopreserved on chitin scaffolds was reduced by about 30% as compared to cells cryopreserved in suspension. However, the surviving cells were able to retain their differentiation potential; and this is demonstrated for the adipogenic lineage. The results suggest that chitin from the marine demosponge I. basta is a promising, highly biocompatible biomaterial for stem cell-based tissue-engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

Top