Sample records for stem cell-derived embryoid

  1. Novel Bioreactor Platform for Scalable Cardiomyogenic Differentiation from Pluripotent Stem Cell-Derived Embryoid Bodies.

    PubMed

    Rungarunlert, Sasitorn; Ferreira, Joao N; Dinnyes, Andras

    2016-01-01

    Generation of cardiomyocytes from pluripotent stem cells (PSCs) is a common and valuable approach to produce large amount of cells for various applications, including assays and models for drug development, cell-based therapies, and tissue engineering. All these applications would benefit from a reliable bioreactor-based methodology to consistently generate homogenous PSC-derived embryoid bodies (EBs) at a large scale, which can further undergo cardiomyogenic differentiation. The goal of this chapter is to describe a scalable method to consistently generate large amount of homogeneous and synchronized EBs from PSCs. This method utilizes a slow-turning lateral vessel bioreactor to direct the EB formation and their subsequent cardiomyogenic lineage differentiation.

  2. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    PubMed

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  3. Activin A Modulates CRIPTO-1/HNF4α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells

    PubMed Central

    Duelen, Robin; Gilbert, Guillaume; Patel, Abdulsamie; de Schaetzen, Nathalie; De Waele, Liesbeth; Roderick, Llewelyn; Sipido, Karin R.; Verfaillie, Catherine M.; Buyse, Gunnar M.

    2017-01-01

    The use of human pluripotent stem cells in basic and translational cardiac research requires efficient differentiation protocols towards cardiomyocytes. In vitro differentiation yields heterogeneous populations of ventricular-, atrial-, and nodal-like cells hindering their potential applications in regenerative therapies. We described the effect of the growth factor Activin A during early human embryonic stem cell fate determination in cardiac differentiation. Addition of high levels of Activin A during embryoid body cardiac differentiation augmented the generation of endoderm derivatives, which in turn promoted cardiomyocyte differentiation. Moreover, a dose-dependent increase in the coreceptor expression of the TGF-β superfamily member CRIPTO-1 was observed in response to Activin A. We hypothesized that interactions between cells derived from meso- and endodermal lineages in embryoid bodies contributed to improved cell maturation in early stages of cardiac differentiation, improving the beating frequency and the percentage of contracting embryoid bodies. Activin A did not seem to affect the properties of cardiomyocytes at later stages of differentiation, measuring action potentials, and intracellular Ca2+ dynamics. These findings are relevant for improving our understanding on human heart development, and the proposed protocol could be further explored to obtain cardiomyocytes with functional phenotypes, similar to those observed in adult cardiac myocytes. PMID:28163723

  4. Baicalin maintains late-stage functional cardiomyocytes in embryoid bodies derived from murine embryonic stem cells.

    PubMed

    Tang, Meilin; Yin, Mengmeng; Tang, Ming; Liang, Huamin; Yu, Chong; Hu, Xinwu; Luo, Hongyan; Baudis, Birte; Haustein, Moritz; Khalil, Markus; Sarić, Tomo; Hescheler, Jürgen; Xi, Jiaoya

    2013-01-01

    Low efficiency of cardiomyocyte (CM) differentiation from embryonic stem (ES) cells limits their therapeutic use. The objective of this study was to investigate the effect of baicalin, a natural flavonoid compound, on the in vitro cardiac differentiation of murine ES cells. The induction of ES cells into cardiac-like cells was performed by embryoid body (EB)-based differentiation method. The electrophysiological properties of the ES cell-derived CMs (ES-CMs) were measured by patch-clamp. The biomarkers of ES-CMs were determined by quantitative RT-PCR and immunofluorescence. Continuous baicalin treatment decreased the size of EBs, and increased the proportion of α-actinin-positive CMs and transcript level of cardiac specific markers in beating EBs by inducing cell death of non-CMs. Baicalin increased the percentage of working ES-CMs which had typical responses to β-adrenergic and muscarinic stimulations. Baicalin maintains the late-stage functional CMs in EBs derived from murine ES cells. This study describes a new insight into the various biological effects of baicalin on cardiac differentiation of pluripotent stem cells. Copyright © 2013 S. Karger AG, Basel.

  5. Development of Mouse Embryonic Stem (ES) Cells: IV Differentiation to Mature T and B Lymphocytes after Implantation of Embryoid Bodies Into Nude Mice

    PubMed Central

    Mok, Hoyan

    1995-01-01

    Mouse embryonic stem (ES) cells in culture can differentiate into late stages of many lineage-committed precursor cells. Under appropriate organ-culture conditions, ES cels differentiate into lymphoidlike cells at a stage equivalent to lymphoid cells found in fetal liver. These hematopoietic precursors are located in cup-shaped structures found in some embryoid bodies; we called such embryoid bodies “ES fetuses.” In this study, we have followed the maturation of hematopoietic cells after implantation of ES fetuses into nude mice for 3 weeks. ES-cell-derived lymphoid cells-pre-B cells, mature B cells, and mature T cells were found in all lymphoid organs. Interestingly, there was also an increase of T cells of host origin. Because native nude mouse lack thymus, these T cells might be educated by thymuslike epithelium generated from ES fetuses. Practical applications of this combined in vitro and in vivo system are discussed. PMID:9700357

  6. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios

    2016-06-01

    The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.

  7. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    PubMed

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Different effects of enhanced and reduced expression of pub gene on the formation of embryoid bodies by cultured embryonic mouse stem cell.

    PubMed

    Novosadova, E V; Manuilova, E S; Arsen'eva, E L; Khaidarova, N V; Dolotov, O V; Inozemtseva, L S; Kozachenkov, K Yu; Tarantul, V Z; Grivennikov, I A

    2005-07-01

    The effects of pub gene on proliferation and initial stages of differentiation of embryonic mouse stem cells were studied in vitro. To this end we used enhanced expression of human pub gene (hpub) and suppression of expression of mouse endogenous pub gene with RNA-interference in embryonic stem cells. Proliferative activity of genetically modified polyclonal lines of the embryonic stem cells transfected with plasmids carrying expressing hpub gene or plasmids generating small interference RNA to this gene did not differ from that of the control cells. Inhibition of expression of endogenous pub gene in embryonic stem cells using small interference RNA 2-fold decreased the formation of embryoid bodies, at the same time additional expression of exogenous hpub gene almost 2-fold increased their number in comparison with the control. It was hypothesized that pub gene participates in early stages of differentiation of embryonic stem cells leading to the formation of embryoid bodies.

  9. ROCK inhibitor is not required for embryoid body formation from singularized human embryonic stem cells.

    PubMed

    Pettinato, Giuseppe; Vanden Berg-Foels, Wendy S; Zhang, Ning; Wen, Xuejun

    2014-01-01

    We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications.

  10. Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9hi, SSEA-1− Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    PubMed Central

    Lian, Qizhou; Yeo, KengSuan; Que, Jianwen; Tan, EileenKhiaWay; Yu, Fenggang; Yin, Yijun; Salto-Tellez, Manuel; Oakley, Reida Menshawe El; Lim, Sai-Kiang

    2006-01-01

    Background Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r2 = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9hi, SSEA-1− while ESCs are CD9lo, SSEA-1+. Isolation of CD9hi, SSEA-1− cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r2 = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs. PMID:17183690

  11. Organogenesis of heart-vascular system derived from mouse 2 cell stage embryos and from early embryonic stem cells in vitro.

    PubMed

    Ishiwata, Isamu; Tamagawa, Tomoharu; Tokieda, Yuko; Iguchi, Megumi; Sato, Kahei; Ishikawa, Hiroshi

    2003-03-01

    Regenerative medical treatment with embryonic stem cells (an ES cell) is a goal for organ transplantation. Structures that are tubular in nature (i.e. blood capillaries) were induced from early embryonic stem (EES) cells in vitro using embryotrophic factor (ETFs). In addition, cardiac muscle cells could be identified as well. However, differentiation of EES cells into a complete cardiovascular system was difficult because 3 germ layer primordial organs are directed embryologically in various ways and it is not possible to guide only cardiovascular organs. Thus, we introduced ETFs after the formation of an embryoid body and were successful in cloning cell clusters that beat, thus deriving only cardiovascular organs. The application of this to the treatment of various cardiovascular diseases is promising.

  12. In Vivo Generation of Neural Stem Cells Through Teratoma Formation.

    PubMed

    Hong, Yean Ju; Kim, Jong Soo; Choi, Hyun Woo; Song, Hyuk; Park, Chankyu; Do, Jeong Tae

    2016-09-01

    Pluripotent stem cells have the potential to differentiate into all cell types of the body in vitro through embryoid body formation or in vivo through teratoma formation. In this study, we attempted to generate in vivo neural stem cells (NSCs) differentiated through teratoma formation using Olig2-GFP transgenic embryonic stem cells (ESCs). After 4 to 6 weeks of injection with Olig2-GFP transgenic ESCs, Olig2-GFP(+) NSCs were identified in teratomas formed in immunodeficient mice. Interestingly, 4-week-old teratomas contained higher percentage of Olig2-GFP(+) cells (∼11%) than 6-week-old teratomas (∼3%). These in vivo-derived NSCs expressed common NSC markers (Nestin and Sox2) and differentiated into terminal neuronal and glial lineages. These results suggest that pure NSC populations exhibiting properties similar to those of brain-derived NSCs can be established through teratoma formation.

  13. Regulated expression of Brachyury(T), Nkx1.1 and Pax genes in embryoid bodies.

    PubMed

    Yamada, G; Kioussi, C; Schubert, F R; Eto, Y; Chowdhury, K; Pituello, F; Gruss, P

    1994-03-15

    Embryonic stem cells (ES) can be exploited to analyze in vitro mechanisms of cellular differentiation. We have utilized ES-derived embryoid body formation in an attempt to study cell types resulting from in vitro differentiation. To this end, a variety of molecular markers, preferably those which have been associated with regulatory events during mouse embryogenesis, was employed. Specifically, Brachyury (T), Pax-3 and Pax-6 genes as well as Nkx-1.1 were used. We could demonstrate that the expression of these genes in vitro was regulated by growth factors such as activin A or bFGF. Implications of these findings and the possible applications for identifying new genes are discussed.

  14. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation.

    PubMed

    Du, Vicard; Luciani, Nathalie; Richard, Sophie; Mary, Gaëtan; Gay, Cyprien; Mazuel, François; Reffay, Myriam; Menasché, Philippe; Agbulut, Onnik; Wilhelm, Claire

    2017-09-12

    The ability to create a 3D tissue structure from individual cells and then to stimulate it at will is a major goal for both the biophysics and regenerative medicine communities. Here we show an integrated set of magnetic techniques that meet this challenge using embryonic stem cells (ESCs). We assessed the impact of magnetic nanoparticles internalization on ESCs viability, proliferation, pluripotency and differentiation profiles. We developed magnetic attractors capable of aggregating the cells remotely into a 3D embryoid body. This magnetic approach to embryoid body formation has no discernible impact on ESC differentiation pathways, as compared to the hanging drop method. It is also the base of the final magnetic device, composed of opposing magnetic attractors in order to form embryoid bodies in situ, then stretch them, and mechanically stimulate them at will. These stretched and cyclic purely mechanical stimulations were sufficient to drive ESCs differentiation towards the mesodermal cardiac pathway.The development of embryoid bodies that are responsive to external stimuli is of great interest in tissue engineering. Here, the authors culture embryonic stem cells with magnetic nanoparticles and show that the presence of magnetic fields could affect their aggregation and differentiation.

  15. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.

    PubMed

    Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu

    2010-11-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.

  16. Human second trimester amniotic fluid cells are able to create embryoid body-like structures in vitro and to show typical expression profiles of embryonic and primordial germ cells.

    PubMed

    Antonucci, Ivana; Di Pietro, Roberta; Alfonsi, Melissa; Centurione, Maria Antonietta; Centurione, Lucia; Sancilio, Silvia; Pelagatti, Francesca; D'Amico, Maria Angela; Di Baldassarre, Angela; Piattelli, Adriano; Tetè, Stefano; Palka, Giandomenico; Borlongan, Cesar V; Stuppia, Liborio

    2014-01-01

    Human amniotic fluid-derived stem cells (AFSCs) represent a novel class of broadly multipotent stem cells sharing characteristics of both embryonic and adult stem cells. However, both the origin of these cells and their actual properties in terms of pluripotent differentiation potential are still debated. In order to verify the presence of features of pluripotency in human second trimester AFSCs, we have investigated the ability of these cells to form in vitro three-dimensional aggregates, known as embryoid bodies (EBs), and to express specific genes of embryonic stem cells (ESCs) and primordial germ cells (PGCs). EBs were obtained after 5 days of AFSC culture in suspension and showed positivity for alkaline phosphatase (AP) staining and for specific markers of pluripotency (OCT4 and SOX2). Moreover, EB-derived cells showed the expression of specific transcripts of the three germ layers. RT-PCR analysis, carried out at different culture times (second, third, fourth, fifth, and eighth passages), revealed the presence of specific markers of ESCs (such as FGF4 and DAPPA4), as well as of markers typical of PGCs and, in particular, genes involved in early stages of germ cell development (Fragilis, Stella, Vasa, c-Kit, Rnf17). Finally, the expression of genes related to the control of DNA methylation (DNMT3A, DNMT3b1, DNMT1, DNMT3L, MBD1, MBD2, MBD3, MDB4, MeCP2), as well as the lack of inactivation of the X-chromosome in female samples, was also demonstrated. Taken together, these data provide further evidence for the presence of common features among human AFSCs, PGCs, and ESCs.

  17. Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells

    PubMed Central

    Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.

    2013-01-01

    Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development. PMID:23451281

  18. Uniform Embryoid Body Production and Enhanced Mesendoderm Differentiation with Murine Embryonic Stem Cells in a Rotary Suspension Bioreactor.

    PubMed

    Lei, Xiaohua; Deng, Zhili; Duan, Enkui

    2016-01-01

    Embryonic stem cells (ESCs) are capable of differentiating into almost all cell types in vitro and hold great promise for drug screening, developmental studies and have a huge potential in many therapeutic areas. ESCs can aggregate to form embryoid body (EB) in static suspension culture by spontaneous differentiation, which resembles an intact embryo; while static suspension culture cannot prevent agglomeration of cells and offers little control over the size and shape of EBs, it results in aggregation of EBs into large, irregular masses, which prejudice the efficiency of differentiation of cells. Recently, bioreactor-based platforms have been shown to not only offer a beneficial effect on increasing diffusion of nutrients and oxygen which promotes cell viability and proliferation but also display local biomechanical properties (e.g., low fluid shear stresses and hydrodynamic force) in tissue development and organogenesis. This chapter describes a protocol for using a rotary suspension bioreactor to produce embryoid bodies and process the differentiation of mouse embryonic stem cells (mESCs), and to assess the efficiency of EB differentiation in the bioreactor by real-time PCR and immunostaining.

  19. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.

    PubMed

    Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior

    2004-10-01

    Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.

  20. Comparative study of P19 EC stem cell differentiation in between conventional hanging drop and the zebrafish chorion as a bio-derived material.

    PubMed

    Dae Seok Na; Lee, Hwang; Sun Uk Kim; Chang Nam Hwang; Sang Ho Lee; Ji Yoon Kang; Jai Kyeong Kim; James Jungho Pak

    2008-07-01

    Various materials including glass and polymers have been widely used for stem cell culture due to their biocompatibility. However, the roles of these materials are fundamentally limited because they cannot realize or imitate the complex biological functions of living tissues, except in very simple cases. Here, the development of a bio-derived material suitable for stem cell culture and improvement of differentiation efficiency to specific cell lineages with no stimulating agents by using a chorion obtained from a fertilized zebrafish egg through the removal of the yolk and embryonic cell mass from the egg is reported. Mouse P19 EC stem cells introduced into the empty chorion form a uniform embryoid body (EB) without addition of any inducing agent. It is demonstrated that the zebrafish chorion with nanopores improves efficiencies greatly in the EB formation, cell proliferation, and lineage-specific differentiations compared to those of the conventional hanging drop culture method.

  1. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    PubMed

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  2. HLA Engineering of Human Pluripotent Stem Cells

    PubMed Central

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  3. HLA engineering of human pluripotent stem cells.

    PubMed

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-06-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I-negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8(+) T cell responses were reduced in class I-negative cells that had undergone differentiation in embryoid bodies. These B2M(-/-) ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines.

  4. TGF-β1 induces the formation of vascular-like structures in embryoid bodies derived from human embryonic stem cells.

    PubMed

    Wang, Yan; Qian, DE-Jian; Zhong, Wen-Yu; Lu, Jun-Hong; Guo, Xiang-Kai; Cao, Yi-Lin; Liu, Ju

    2014-07-01

    Human embryonic stem cells (ESCs) can differentiate into endothelial cells in response to stimuli from extracellular cytokines. Transforming growth factor (TGF)-β1 signaling is involved in stem cell renewal and vascular development. Previously, human ESCs were isolated from inner cell mass and a stable ESC line was developed. In the present study, the effects of extracellular TGF-β1 were investigated on human ESC-derived embryoid bodies (EB) in suspension. The structures of the EBs were analyzed with light and electron microscopy, while the cellular composition of the EBs was examined via the expression levels of specific markers. Vascular-like tubular structures and cardiomyocyte-like beating cells were observed in the EBs at day 3 and 8, respectively. The frequencies of vascular-like structures and beating cells in the TGF-β1 treated group were significantly higher compared with the control group (84.31 vs. 12.77%; P<0.001; 37.25 vs. 8.51%; P<0.001, respectively). Electron microscopy revealed the presence of lumens and gap junctions in the sections of the tubular structures. Semiquantitative polymerase chain reaction revealed elevated expression levels of CD31 and fetal liver kinase-1 in EBs cultured with TGF-β1. In addition, extensive staining of von Willebrand factor was observed in the vascular-like structures of TGF-β1-treated EBs. Therefore, the results of the present study may aid the understanding of the underlying mechanisms of human ESC differentiation and improve the methods of propagating specific cell types for the clinical therapy of cardiovascular diseases.

  5. Superior Red Blood Cell Generation from Human Pluripotent Stem Cells Through a Novel Microcarrier-Based Embryoid Body Platform.

    PubMed

    Sivalingam, Jaichandran; Lam, Alan Tin-Lun; Chen, Hong Yu; Yang, Bin Xia; Chen, Allen Kuan-Liang; Reuveny, Shaul; Loh, Yuin-Han; Oh, Steve Kah-Weng

    2016-08-01

    In vitro generation of red blood cells (RBCs) from human embryonic stem cells and human induced pluripotent stem cells appears to be a promising alternate approach to circumvent shortages in donor-derived blood supplies for clinical applications. Conventional methods for hematopoietic differentiation of human pluripotent stem cells (hPSC) rely on embryoid body (EB) formation and/or coculture with xenogeneic cell lines. However, most current methods for hPSC expansion and EB formation are not amenable for scale-up to levels required for large-scale RBC generation. Moreover, differentiation methods that rely on xenogenic cell lines would face obstacles for future clinical translation. In this study, we report the development of a serum-free and chemically defined microcarrier-based suspension culture platform for scalable hPSC expansion and EB formation. Improved survival and better quality EBs generated with the microcarrier-based method resulted in significantly improved mesoderm induction and, when combined with hematopoietic differentiation, resulted in at least a 6-fold improvement in hematopoietic precursor expansion, potentially culminating in a 80-fold improvement in the yield of RBC generation compared to a conventional EB-based differentiation method. In addition, we report efficient terminal maturation and generation of mature enucleated RBCs using a coculture system that comprised primary human mesenchymal stromal cells. The microcarrier-based platform could prove to be an appealing strategy for future scale-up of hPSC culture, EB generation, and large-scale generation of RBCs under defined and xeno-free conditions.

  6. Effects of hanging drop culture conditions on embryoid body formation and neuronal cell differentiation using mouse embryonic stem cells: optimization of culture conditions for the formation of well-controlled embryoid bodies.

    PubMed

    Ohnuki, Yoshitsugu; Kurosawa, Hiroshi

    2013-05-01

    Hanging drop (HD) cultures were carried out with a drop volume of either 20 or 30 μl. An incubation period of 3 days was determined to be appropriate for the formation of well-controlled embryoid bodies (EBs), and the initial cell number was identified as the most critical factor in the growth and neuronal cell differentiation of EBs. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Synchrotron Radiation X-Ray Microfluorescence Reveals Polarized Distribution of Atomic Elements during Differentiation of Pluripotent Stem Cells

    PubMed Central

    Paulsen, Bruna S.; Rehen, Stevens K.

    2011-01-01

    The mechanisms underlying pluripotency and differentiation in embryonic and reprogrammed stem cells are unclear. In this work, we characterized the pluripotent state towards neural differentiated state through analysis of trace elements distribution using the Synchrotron Radiation X-ray Fluorescence Spectroscopy. Naive and neural-stimulated embryoid bodies (EB) derived from embryonic and induced pluripotent stem (ES and iPS) cells were irradiated with a spatial resolution of 20 µm to make elemental maps and qualitative chemical analyses. Results show that these embryo-like aggregates exhibit self-organization at the atomic level. Metallic elements content rises and consistent elemental polarization pattern of P and S in both mouse and human pluripotent stem cells were observed, indicating that neural differentiation and elemental polarization are strongly correlated. PMID:22195032

  8. Evaluation of hollow fiber culture for large-scale production of mouse embryonic stem cell-derived hematopoietic stem cells.

    PubMed

    Nakano, Yu; Iwanaga, Shinya; Mizumoto, Hiroshi; Kajiwara, Toshihisa

    2018-03-03

    Hematopoietic stem cells (HSCs) have the ability to differentiate into all types of blood cells and can be transplanted to treat blood disorders. However, it is difficult to obtain HSCs in large quantities because of the shortage of donors. Recent efforts have focused on acquiring HSCs by differentiation of pluripotent stem cells. As a conventional differentiation method of pluripotent stem cells, the formation of embryoid bodies (EBs) is often employed. However, the size of EBs is limited by depletion of oxygen and nutrients, which prevents them from being efficient for the production of HSCs. In this study, we developed a large-scale hematopoietic differentiation approach for mouse embryonic stem (ES) cells by applying a hollow fiber (HF)/organoid culture method. Cylindrical organoids, which had the potential for further spontaneous differentiation, were established inside of hollow fibers. Using this method, we improved the proliferation rate of mouse ES cells to produce an increased HSC population and achieved around a 40-fold higher production volume of HSCs in HF culture than in conventional EB culture. Therefore, the HF/organoid culture method may be a new mass culture method to acquire pluripotent stem cell-derived HSCs.

  9. Establishment of autologous embryonic stem cells derived from preantral follicle culture and oocyte parthenogenesis.

    PubMed

    Lee, Seung Tae; Choi, Mun Hwan; Lee, Eun Ju; Gong, Seung Pyo; Jang, Mi; Park, Sang Hyun; Jee, Hyang; Kim, Dae Yong; Han, Jae Yong; Lim, Jeong Mook

    2008-11-01

    To evaluate whether autologous embryonic stem cells can be established without generating clone embryos. Prospective model study. Gamete and stem cell biotechnology laboratory in Seoul National University, Seoul, Korea. F1 hybrid B6D2F1 mice. Preantral follicles were cultured, and oocytes matured in the follicles were parthenogenetically activated. Preimplantation development and stem cell characterization. More intrafollicular oocytes that were retrieved from secondary follicles matured and developed into blastocysts after parthenogenesis than those that were retrieved from primary follicles. Of those 35 blastocysts derived from 193 parthenotes, one line of colony-forming cells was established from the culturing of early secondary follicles. The established cells were positive for embryonic stem cell-specific markers and had normal diploid karyotype and telomerase activity. They differentiated into embryoid bodies in vitro and teratomas in vivo. Inducible differentiation of the established cells into neuronal lineage cells also was possible. Autologous embryonic stem cells can be established by preantral follicle culture and oocyte parthenogenesis. A combined technique of follicle culture and oocyte parthenogenesis that does not use developmentally competent oocytes has the potential to replace somatic cell nuclear transfer for autologous cell therapy.

  10. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays.

    PubMed

    Navarrete, Enrique G; Liang, Ping; Lan, Feng; Sanchez-Freire, Verónica; Simmons, Chelsey; Gong, Tingyu; Sharma, Arun; Burridge, Paul W; Patlolla, Bhagat; Lee, Andrew S; Wu, Haodi; Beygui, Ramin E; Wu, Sean M; Robbins, Robert C; Bers, Donald M; Wu, Joseph C

    2013-09-10

    Drug-induced arrhythmia is one of the most common causes of drug development failure and withdrawal from market. This study tested whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with a low-impedance microelectrode array (MEA) system could improve on industry-standard preclinical cardiotoxicity screening methods, identify the effects of well-characterized drugs, and elucidate underlying risk factors for drug-induced arrhythmia. hiPSC-CMs may be advantageous over immortalized cell lines because they possess similar functional characteristics as primary human cardiomyocytes and can be generated in unlimited quantities. Pharmacological responses of beating embryoid bodies exposed to a comprehensive panel of drugs at 65 to 95 days postinduction were determined. Responses of hiPSC-CMs to drugs were qualitatively and quantitatively consistent with the reported drug effects in literature. Torsadogenic hERG blockers, such as sotalol and quinidine, produced statistically and physiologically significant effects, consistent with patch-clamp studies, on human embryonic stem cell-derived cardiomyocytes hESC-CMs. False-negative and false-positive hERG blockers were identified accurately. Consistent with published studies using animal models, early afterdepolarizations and ectopic beats were observed in 33% and 40% of embryoid bodies treated with sotalol and quinidine, respectively, compared with negligible early afterdepolarizations and ectopic beats in untreated controls. We found that drug-induced arrhythmias can be recapitulated in hiPSC-CMs and documented with low impedance MEA. Our data indicate that the MEA/hiPSC-CM assay is a sensitive, robust, and efficient platform for testing drug effectiveness and for arrhythmia screening. This system may hold great potential for reducing drug development costs and may provide significant advantages over current industry standard assays that use immortalized cell lines or animal models.

  11. β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs.

    PubMed

    Fujita, Atsushi; Uchida, Naoya; Haro-Mora, Juan J; Winkler, Thomas; Tisdale, John

    2016-06-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552. © 2016 AlphaMed Press.

  12. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors.

    PubMed

    Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H

    2014-07-01

    Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.

  13. Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system

    PubMed Central

    Zhu, Huanqi; Scharnhorst, Kelsey S.; Stieg, Adam Z.; Gimzewski, James K.; Minami, Itsunari; Nakatsuji, Norio; Nakano, Haruko; Nakano, Atsushi

    2017-01-01

    Stem cell-derived cardiomyocytes provide a promising tool for human developmental biology, regenerative therapies, disease modeling, and drug discovery. As human pluripotent stem cell-derived cardiomyocytes remain functionally fetal-type, close monitoring of electrophysiological maturation is critical for their further application to biology and translation. However, to date, electrophysiological analyses of stem cell-derived cardiomyocytes has largely been limited by biologically undefined factors including 3D nature of embryoid body, sera from animals, and the feeder cells isolated from mouse. Large variability in the aforementioned systems leads to uncontrollable and irreproducible results, making conclusive studies difficult. In this report, a chemically-defined differentiation regimen and a monolayer cell culture technique was combined with multielectrode arrays for accurate, real-time, and flexible measurement of electrophysiological parameters in translation-ready human cardiomyocytes. Consistent with their natural counterpart, amplitude and dV/dtmax of field potential progressively increased during the course of maturation. Monolayer culture allowed for the identification of pacemaking cells using the multielectrode array platform and thereby the estimation of conduction velocity, which gradually increased during the differentiation of cardiomyocytes. Thus, the electrophysiological maturation of the human pluripotent stem cell-derived cardiomyocytes in our system recapitulates in vivo development. This system provides a versatile biological tool to analyze human heart development, disease mechanisms, and the efficacy/toxicity of chemicals. PMID:28266620

  14. Generation of urine-derived induced pluripotent stem cells from a patient with phenylketonuria

    PubMed Central

    Qi, Zijuan; Cui, Yazhou; Shi, Liang; Luan, Jing; Zhou, Xiaoyan; Han, Jinxiang

    2018-01-01

    Summary The aim of the study was to establish an induced pluripotent stem cell line from urine-derived cells (UiPSCs) from a patient with phenylketonuria (PKU) in order to provide a useful research tool with which to examine the pathology of this rare genetic metabolic disease. Urine-derived epithelial cells (UCs) from a 15-year-old male patient with PKU were isolated and reprogrammed with integration-free episomal vectors carrying an OCT4, SOX2, KLF4, and miR-302-367 cluster. PKU-UiPSCs were verified as correct using alkaline phosphatase staining. Pluripotency markers were detected with real-time PCR and flow cytometry. Promoter methylation in two pluripotent genes, NANOG and OCT4, was analyzed using bisulphite sequencing. An embryoid body (EB) formation assay was also performed. An induced pluripotent stem cell line (iPSC) was generated from epithelial cells in urine from a patient with PKU. This cell line had increased expression of stem cell biomarkers, it efficiently formed EBs, it stained positive for alkaline phosphatase (ALP), and it had a marked decrease in promoter methylation in the NANOG and OCT4 genes. The PKU-UiPSCs created here had typical characteristics and are suitable for further differentiation.

  15. Blood Cell-Derived Induced Pluripotent Stem Cells Free of Reprogramming Factors Generated by Sendai Viral Vectors

    PubMed Central

    Muench, Marcus O.; Fusaki, Noemi; Beyer, Ashley I.; Wang, Jiaming; Qi, Zhongxia; Yu, Jingwei

    2013-01-01

    The discovery of induced pluripotent stem cells (iPSCs) holds great promise for regenerative medicine since it is possible to produce patient-specific pluripotent stem cells from affected individuals for potential autologous treatment. Using nonintegrating cytoplasmic Sendai viral vectors, we generated iPSCs efficiently from adult mobilized CD34+ and peripheral blood mononuclear cells. After 5–8 passages, the Sendai viral genome could not be detected by real-time quantitative reverse transcription-polymerase chain reaction. Using the spin embryoid body method, we showed that these blood cell-derived iPSCs could efficiently be differentiated into hematopoietic stem and progenitor cells without the need of coculture with either mouse or human stromal cells. We obtained up to 40% CD34+ of which ∼25% were CD34+/CD43+ hematopoietic precursors that could readily be differentiated into mature blood cells. Our study demonstrated a reproducible protocol for reprogramming blood cells into transgene-free iPSCs by the Sendai viral vector method. Maintenance of the genomic integrity of iPSCs without integration of exogenous DNA should allow the development of therapeutic-grade stem cells for regenerative medicine. PMID:23847002

  16. Protein Adsorption Alters Hydrophobic Surfaces Used for Suspension Culture of Pluripotent Stem Cells.

    PubMed

    Jonas, Steven J; Stieg, Adam Z; Richardson, Wade; Guo, Shuling; Powers, David N; Wohlschlegel, James; Dunn, Bruce

    2015-02-05

    This Letter examines the physical and chemical changes that occur at the interface of methyl-terminated alkanethiol self-assembled monolayers (SAMs) after exposure to cell culture media used to derive embryoid bodies (EBs) from pluripotent stem cells. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy analysis of the SAMs indicates that protein components within the EB cell culture medium preferentially adsorb at the hydrophobic interface. In addition, we examined the adsorption process using surface plasmon resonance and atomic force microscopy. These studies identify the formation of a porous, mat-like adsorbed protein film with an approximate thickness of 2.5 nm. Captive bubble contact angle analysis reveals a shift toward superhydrophilic wetting behavior at the cell culture interface due to adsorption of these proteins. These results show how EBs are able to remain in suspension when derived on hydrophobic materials, which carries implications for the rational design of suspension culture interfaces for lineage specific stem-cell differentiation.

  17. Induced Pluripotent Stem Cells: A novel frontier in the study of human primary immunodeficiencies

    PubMed Central

    Pessach, Itai M.; Ordovas-Montanes, Jose; Zhang, Shen-Ying; Casanova, Jean-Laurent; Giliani, Silvia; Gennery, Andrew R.; Al-Herz, Waleed; Manos, Philip D.; Schlaeger, Thorsten M.; Park, In-Hyun; Rucci, Francesca; Agarwal, Suneet; Mostoslavsky, Gustavo; Daley, George Q.; Notarangelo, Luigi D.

    2010-01-01

    Background The novel ability to epigenetically reprogram somatic cells into induced pluripotent stem cells through the exogenous expression of transcription promises to revolutionize the study of human diseases. Objective Here we report on the generation of 25 induced pluripotent stem cell lines from 6 patients with various forms of Primary Immunodeficiencies, affecting adaptive and/or innate immunity. Methods Patients’ dermal fibroblasts were reprogrammed by expression of four transcription factors, OCT4, SOX2, KLF4, and c-MYC using a single excisable polycistronic lentiviral vector. Results Induced pluripotent stem cells derived from patients with primary immunodeficiencies show a stemness profile that is comparable to that observed in human embryonic stem cells. Following in vitro differentiation into embryoid bodies, pluripotency of the patient-derived indiced pluripotent stem cells lines was demonstrated by expression of genes characteristic of each of the three embryonic layers. We have confirmed the patient-specific origin of the induced pluripotent stem cell lines, and ascertained maintenance of karyotypic integrity. Conclusion By providing a limitless source of diseased stem cells that can be differentiated into various cell types in vitro, the repository of induced pluripotent stem cell lines from patients with primary immunodeficiencies represents a unique resource to investigate the pathophysiology of hematopoietic and extra-hematopoietic manifestations of these diseases, and may assist in the development of novel therapeutic approaches based on gene correction. PMID:21185069

  18. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells].

    PubMed

    Tsung, H C; Yao, Z

    1996-09-01

    When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and their immediate progenitor cells) from ES-T6 cells to form vessel-like structures, and that the role of TGF-beta 1 in vasculogenesis might be performed, in part, through the modulation of the composition and organization of the extracellular matrix. In addition, the enhanced expression of bFGF mRNA in derivatives differentiated from both ES-5 cells treated with rhTGF-beta 1 and ES-T6 cells were detected by Northern blot analysis. Thus, aside from its effects on extracellular matrix, TGF-beta 1 might also modulate the bioactivity of bFGF in relation to the growth of vascular endothelial cells in the present system.

  19. Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros.

    PubMed

    Ng, Elizabeth S; Azzola, Lisa; Bruveris, Freya F; Calvanese, Vincenzo; Phipson, Belinda; Vlahos, Katerina; Hirst, Claire; Jokubaitis, Vanta J; Yu, Qing C; Maksimovic, Jovana; Liebscher, Simone; Januar, Vania; Zhang, Zhen; Williams, Brenda; Conscience, Aude; Durnall, Jennifer; Jackson, Steven; Costa, Magdaline; Elliott, David; Haylock, David N; Nilsson, Susan K; Saffery, Richard; Schenke-Layland, Katja; Oshlack, Alicia; Mikkola, Hanna K A; Stanley, Edouard G; Elefanty, Andrew G

    2016-11-01

    The ability to generate hematopoietic stem cells from human pluripotent cells would enable many biomedical applications. We find that hematopoietic CD34 + cells in spin embryoid bodies derived from human embryonic stem cells (hESCs) lack HOXA expression compared with repopulation-competent human cord blood CD34 + cells, indicating incorrect mesoderm patterning. Using reporter hESC lines to track the endothelial (SOX17) to hematopoietic (RUNX1C) transition that occurs in development, we show that simultaneous modulation of WNT and ACTIVIN signaling yields CD34 + hematopoietic cells with HOXA expression that more closely resembles that of cord blood. The cultures generate a network of aorta-like SOX17 + vessels from which RUNX1C + blood cells emerge, similar to hematopoiesis in the aorta-gonad-mesonephros (AGM). Nascent CD34 + hematopoietic cells and corresponding cells sorted from human AGM show similar expression of cell surface receptors, signaling molecules and transcription factors. Our findings provide an approach to mimic in vitro a key early stage in human hematopoiesis for the generation of AGM-derived hematopoietic lineages from hESCs.

  20. Use of “MGE Enhancers” for Labeling and Selection of Embryonic Stem Cell-Derived Medial Ganglionic Eminence (MGE) Progenitors and Neurons

    PubMed Central

    Chen, Ying-Jiun J.; Vogt, Daniel; Wang, Yanling; Visel, Axel; Silberberg, Shanni N.; Nicholas, Cory R.; Danjo, Teruko; Pollack, Joshua L.; Pennacchio, Len A.; Anderson, Stewart; Sasai, Yoshiki; Baraban, Scott C.; Kriegstein, Arnold R.; Alvarez-Buylla, Arturo; Rubenstein, John L. R.

    2013-01-01

    The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function and improves deficits in mouse models of epilepsy, Parkinson's disease, pain, and phencyclidine-induced cognitive deficits. Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6+ cells closely resemble immature interneurons generated from authentic MGE-derived Lhx6+ cells. We hypothesized that enhancers that are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP+ cells, while enhancer 1056 is active in Olig2+ cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays and treatments. PMID:23658702

  1. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    PubMed

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  3. A comparative study on efficiency of adult fibroblast, putative embryonic stem cell and lymphocyte as donor cells for production of handmade cloned embryos in goat and characterization of putative ntES cells obtained from these embryos.

    PubMed

    Dutta, Rahul; Malakar, Dhruba; Khate, Keviletsu; Sahu, Shailendra; Akshey, Yogesh; Mukesh, Manishi

    2011-09-15

    The main purpose of the experiment was to compare the efficiency of three cell types, namely adult fibroblast, putative embryonic stem (ES) cell, and lymphocyte, as donor cells for somatic cell nuclear transfer by handmade cloning in goats. The outcome clearly shows that putative embryonic stem cells, with a cleavage and blastocyst production rate of 74.69% ± 3.92 and 39.75% ± 3.86, respectively, performs better in comparison to adult fibroblast cell and lymphocyte. Between adult fibroblast cell and lymphocyte no statistically significant difference exists at P < 0.05. An overall cleavage and blastocyst formation rate of 67.41% ± 3.92 and 26.96% ± 3.86 was obtained using adult fibroblast donor cells. The study establishes beyond doubt the reprogrammability of lymphocyte by handmade cloning (HMC) protocol with a cleavage and blastocyst production rate of 56.47% ± 3.92 and 24.70% ± 3.86, respectively. PCR analysis of highly polymorphic 286 bp fragment of MHC II DRB genes of cloned embryos and three donor cells were performed to verify the cloned embryos. The amplified PCR products were subjected to SSCP to confirm their genetic identity. The karyotyping of the cloned embryos showed normal chromosomal status as expected in goat. Significantly, in the second stage of the experiment, the produced cloned embryos were successfully used to derive ntES-like cells. The rate of primary colony formation rate was 62.50% ± 4.62 for fibroblast donor cell derived embryos. The same was 60.60% ± 4.62 for putative ES donor cell derived embryos and 66.66% ± 4.62 for lymphocyte donor cell derived embryos, respectively. The putative ntES colonies were positively characterized for alkaline phosphatase, Oct-4, TRA-1-60, TRA-1-81, Sox-2, and Nanog by Immunocytochemistry and Reverse Transcription PCR. To further validate the stem ness, the produced putative ntES colonies were differentiated to embryoid bodies. Immunocytochemistry revealed that embryoid bodies expressed NESTIN specific for ectodermal lineage; GATA-4 for endodermal lineage and smooth muscle actin-I, and troponin-I specific for mesodermal lineage. The study has established an efficient protocol for putative ntES cell derivation from HMC embryos. It could be of substantial significance as patient specific ntES cells have proven therapeutic significance. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Preclinical study of mouse pluripotent parthenogenetic embryonic stem cell derivatives for the construction of tissue-engineered skin equivalent.

    PubMed

    Rao, Yang; Cui, Jihong; Yin, Lu; Liu, Wei; Liu, Wenguang; Sun, Mei; Yan, Xingrong; Wang, Ling; Chen, Fulin

    2016-10-22

    Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo. The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model. Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE. Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts derived from pESCs. pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical concerns, and provide a promising source for regenerative medicine.

  5. Lymphoblast-derived integration-free iPSC line AD-TREM2-3 from a 74 year-old Alzheimer's disease patient expressing the TREM2 p.R47H variant.

    PubMed

    Martins, Soraia; Yigit, Hatice; Bohndorf, Martina; Graffmann, Nina; Fiszl, Aurelian Robert; Wruck, Wasco; Sleegers, Kristel; Van Broeckhoven, Christine; Adjaye, James

    2018-06-01

    Human lymphoblast cells from a male diagnosed with Alzheimer's disease (AD) expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, KLF4, LIN28, L-MYC and p53 shRNA. The derived iPSC line - AD-TREM2-3 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.940. Copyright © 2018. Published by Elsevier B.V.

  6. Induced Pluripotent Stem Cell–Derived Cardiomyocytes Provide In Vivo Biological Pacemaker Function

    PubMed Central

    Chauveau, Samuel; Anyukhovsky, Evgeny P.; Ben-Ari, Meital; Naor, Shulamit; Jiang, Ya-Ping; Danilo, Peter; Rahim, Tania; Burke, Stephanie; Qiu, Xiaoliang; Potapova, Irina A.; Doronin, Sergey V.; Brink, Peter R.; Binah, Ofer

    2017-01-01

    Background— Although multiple approaches have been used to create biological pacemakers in animal models, induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) have not been investigated for this purpose. We now report pacemaker function of iPSC-CMs in a canine model. Methods and Results— Embryoid bodies were derived from human keratinocytes, their action potential characteristics determined, and their gene expression profiles and markers of differentiation identified. Atrioventricular blocked dogs were immunosuppressed, instrumented with VVI pacemakers, and injected subepicardially into the anterobasal left ventricle with 40 to 75 rhythmically contracting embryoid bodies (totaling 1.3–2×106 cells). ECG and 24-hour Holter monitoring were performed biweekly. After 4 to 13 weeks, epinephrine (1 μg kg−1 min−1) was infused, and the heart removed for histological or electrophysiological study. iPSC-CMs largely lost the markers of pluripotency, became positive for cardiac-specific markers. and manifested If-dependent automaticity. Epicardial pacing of the injection site identified matching beats arising from that site by week 1 after implantation. By week 4, 20% of beats were electronically paced, 60% to 80% of beats were matching, and mean and maximal biological pacemaker rates were 45 and 75 beats per minute. Maximum night and day rates of matching beats were 53±6.9 and 69±10.4 beats per minute, respectively, at 4 weeks. Epinephrine increased rate of matching beats from 35±4.3 to 65±4.0 beats per minute. Incubation of embryoid bodies with the vital dye, Dil, revealed the persistence of injected cells at the site of administration. Conclusions— iPSC-CMs can integrate into host myocardium and create a biological pacemaker. Although this is a promising development, rate and rhythm of the iPSC-CMs pacemakers remain to be optimized. PMID:28500172

  7. Differentiation of human foreskin fibroblast-derived induced pluripotent stem cells into hepatocyte-like cells.

    PubMed

    Wang, Jianjun; Zhao, Ping; Wan, Zhihong; Jin, Xueyuan; Cheng, Yongqian; Yan, Tao; Qing, Song; Ding, Ning; Xin, Shaojie

    2016-10-01

    The aim of this study was to investigate the differentiation potential of induced pluripotent stem cells (iPSCs) derived from human foreskin fibroblasts (HFFs) into hepatocyte-like cells (HLCs). The iPSCs were firstly induced by transduction of OCT4, SOX2, KLF4, and c-MYC into HFFs using retrovirus. Afterwards, expressions of pluripotency factors were identified by semiquantitative reverse transcription-polymerase chain reaction and immunofluorescence staining, and karyotype, embryoid, and teratoma were observed by microscope. Then, iPSCs were gradually differentiated into endoderm cells, hepatic progenitor cells, and mature HLCs by special culture medium. During this process, differentiation efficiency into each kind of cells was evaluated by detecting SOX17, HNF4a, and ALB using flow cytometry, respectively. Besides, enzyme-linked immunosorbent assay was conducted to detect the secretion of ALB in iPSC-induced HLCs and quantitative reverse transcription-polymerase chain reaction was performed to detect the expression levels of hepatocyte-specific genes. The iPSCs were successfully induced by HFFs, which exhibited typical embryonic stem cells morphology, positive alkaline phosphatase staining, normal diploid karyotype, and positive expression of various pluripotency factors. Meanwhile, spherical embryoid and teratoma with 3 germ layers were formed by iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells and mature HLCs, and the differentiation efficiency was 55.7 ± 2.9%, 45.7 ± 4.8%, and 35.0 ± 3.9%, respectively. Besides, the secretion of ALB and expression of various hepatocyte-specific genes was highly detected in iPSC-induced HLCs. The iPSCs were successfully derived from HFFs and then differentiated into HLCs, which proved a new source for hepatocyte transplantation. HFFs were successfully induced into iPSCs by transduction of OCT4, SOX2, KLF4, and c-MYC. Positive expressions of various pluripotency factors were exhibited in HFFs-induced iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells, and mature HLCs. Various hepatocyte-specific genes were highly expressed in iPSC-induced HLCs. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules.

    PubMed

    Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen

    2006-03-01

    Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.

  9. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblastsmore » from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.« less

  10. Reprogramming of Sheep Fibroblasts into Pluripotency under a Drug-Inducible Expression of Mouse-Derived Defined Factors

    PubMed Central

    Li, Yang; Cang, Ming; Lee, Andrew Stephen; Zhang, Kehua; Liu, Dongjun

    2011-01-01

    Animal embryonic stem cells (ESCs) provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs), have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB) and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR) with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes. PMID:21253598

  11. Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts.

    PubMed

    George, Aman; Sharma, Ruchi; Singh, Karn P; Panda, Sudeepta K; Singla, Suresh K; Palta, Prabhat; Manik, Radhaysham; Chauhan, Manmohan S

    2011-06-01

    Here, we report the isolation and characterization of embryonic stem (ES) cell-like cells from cloned blastocysts, generated using fibroblasts derived from an adult buffalo (BAF). These nuclear transfer embryonic stem cell-like cells (NT-ES) grew in well-defined and dome-shaped colonies. The expression pattern of pluripotency marker genes was similar in both NT-ES and in vitro fertilization (IVF) embryo-derived embryonic stem cell-like cells (F-ES). Upon spontaneous differentiation via embryoid body formation, cells of different morphology were observed, among which predominant were endodermal-like and epithelial-like cell types. The ES cell-like cells could be passaged only mechanically and did not form colonies when plated as single cell suspension at different concentrations. When F-ES cell-like, NT-ES cell-like, and BAF cells of same genotype were used for hand-made cloning (HMC), no significant difference (p > 0.05) was observed in cleavage and blastocyst rate. Following transfer of HMC embryos to synchronized recipients, pregnancies were established only with F-ES cell-like and BAF cell-derived embryos, and one live calf was born from F-ES cell-like cells. Further, when transfected NT-ES cell-like cells and BAF were used for HMC, no significant difference (p > 0.05) was observed between cleavage and blastocyst rate. In conclusion, here we report for the first time the derivation of ES cell-like cells from an adult buffalo, and its genetic modification. We also report the birth of a live cloned calf from buffalo ES cell-like cells.

  12. Compartmental culture of embryonic stem cell-derived neurons in microfluidic devices for use in axonal biology.

    PubMed

    Shin, Hwa Sung; Kim, Hyung Joon; Min, Seul Ki; Kim, Sung Hoon; Lee, Byung Man; Jeon, Noo Li

    2010-08-01

    Axonal pathology has been clearly implicated in neurodegenerative diseases making the compartmental culture of neurons a useful research tool. Primary neurons have already been cultured in compartmental microfluidic devices but their derivation from an animal is a time-consuming and difficult work and has a limit in their sources. Embryonic stem cell (ESC)-derived neurons (ESC_Ns) overcome this limit, since ESCs can be renewed without limit and can be differentiated into ESC_Ns by robust and reproducible protocols. In this research, ESC_Ns were derived from mouse ESCs in compartmental microfluidic devices, and their axons were isolated from the somal cell bodies. Once embryoid bodies (EBs) were localized in the microfluidic culture chamber, ESC_Ns spread out from the EBs and occupied the cell culture chamber. Their axons traversed the microchannels and finally were isolated from the somata, providing an arrangement comparable to dissociated primary neurons. This ESC_N compartmental microfluidic culture system not only offers a substitute for the primary neuron counterpart system but also makes it possible to make comparisons between the two systems.

  13. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis.

    PubMed

    Fuchs, Christiane; Scheinast, Matthias; Pasteiner, Waltraud; Lagger, Sabine; Hofner, Manuela; Hoellrigl, Alexandra; Schultheis, Martina; Weitzer, Georg

    2012-01-01

    Aggregation of embryonic stem cells gives rise to embryoid bodies (EBs) which undergo developmental processes reminiscent of early eutherian embryonic development. Development of the three germ layers suggests that gastrulation takes place. In vivo, gastrulation is a highly ordered process but in EBs only few data support the hypothesis that self-organization of differentiating cells leads to morphology, reminiscent of the early gastrula. Here we demonstrate that a timely implantation-like process is a prerequisite for the breaking of the radial symmetry of suspended EBs. Attached to a surface, EBs develop a bilateral symmetry and presumptive mesodermal cells emerge between the center of the EBs and a horseshoe-shaped ridge of cells. The development of an epithelial sheet of cells on one side of the EBs allows us to define an 'anterior' and a 'posterior' end of the EBs. In the mesodermal area, first cardiomyocytes (CMCs) develop mainly next to this epithelial sheet of cells. Development of twice as many CMCs at the 'left' side of the EBs breaks the bilateral symmetry and suggests that cardiomyogenesis reflects a local or temporal asymmetry in EBs. The asymmetric appearance of CMCs but not the development of mesoderm can be disturbed by ectopic expression of the muscle-specific protein Desmin. Later, the bilateral morphology becomes blurred by an apparently chaotic differentiation of many cell types. The absence of comparable structures in aggregates of cardiovascular progenitor cells isolated from the heart demonstrates that the self-organization of cells during a gastrulation-like process is a unique feature of embryonic stem cells. Copyright © 2011 S. Karger AG, Basel.

  14. Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells.

    PubMed

    Yang, Dandan; Chen, Shubin; Gao, Changzhao; Liu, Xiaobo; Zhou, Yulai; Liu, Pengfei; Cai, Jinglei

    2016-11-01

    The aim of this study was to improve a method that induce cartilage differentiation of human embryoid stem cells (hESCs) in vitro, and test the effect of in vivo environments on the further maturation of hESCs derived cells. Embryoid bodies (EBs) formed from hESCs, with serum-free KSR-based medium and mesodermal specification related factors, CHIR, and Noggin for first 8days. Then cells were digested and cultured as micropellets in serum-free KSR-based chondrogenic medium that was supplemented with PDGF-BB, TGF β3, BMP4 in sequence for 24days. The morphology, FACS, histological staining as well as the expression of chondrogenic specific genes were detected in each stage, and further in vivo experiments, cell injections and tissue transplantations, further verified the formation of chondrocytes. We were able to obtain chondrocyte/cartilage from hESCs using serum-free KSR-based conditioned medium. qPCR analysis showed that expression of the chondroprogenitor genes and the chondrocyte/cartilage matrix genes. Morphology analysis demonstrated we got PG+COL2+COL1-particles. It indicated we obtained hyaline cartilage-like particles. 32-Day differential cells were injected subcutaneous. Staining results showed grafts developed further mature in vivo. But when transplanted in subrenal capsule, their effect was not good as in subcutaneous. Microenvironment might affect the cartilage formation. The results of this study provide an absolute serum-free and efficient approach for generation of hESC-derived chondrocytes, and cells will become further maturation in vivo. It provides evidence and technology for the hypothesis that hESCs may be a promising therapy for the treatment of cartilage disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.

    2006-11-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ESmore » cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.« less

  16. Three-dimensional neural differentiation of embryonic stem cells with ACM induction in microfibrous matrices in bioreactors.

    PubMed

    Liu, Ning; Ouyang, Anli; Li, Yan; Yang, Shang-Tian

    2013-01-01

    The clinical use of pluripotent stem cell (PSC)-derived neural cells requires an efficient differentiation process for mass production in a bioreactor. Toward this goal, neural differentiation of murine embryonic stem cells (ESCs) in three-dimensional (3D) polyethylene terephthalate microfibrous matrices was investigated in this study. To streamline the process and provide a platform for process integration, the neural differentiation of ESCs was induced with astrocyte-conditioned medium without the formation of embryoid bodies, starting from undifferentiated ESC aggregates expanded in a suspension bioreactor. The 3D neural differentiation was able to generate a complex neural network in the matrices. When compared to 2D differentiation, 3D differentiation in microfibrous matrices resulted in a higher percentage of nestin-positive cells (68% vs. 54%) and upregulated gene expressions of nestin, Nurr1, and tyrosine hydroxylase. High purity of neural differentiation in 3D microfibrous matrix was also demonstrated in a spinner bioreactor with 74% nestin + cells. This study demonstrated the feasibility of a scalable process based on 3D differentiation in microfibrous matrices for the production of ESC-derived neural cells. © 2013 American Institute of Chemical Engineers.

  17. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis

    PubMed Central

    Rosiak, Kamila; Smolarz, Maciej; Stec, Wojciech J.; Peciak, Joanna; Grzela, Dawid; Winiecka-Klimek, Marta; Stoczynska-Fidelus, Ewelina; Krynska, Barbara; Piaskowski, Sylwester; Rieske, Piotr

    2016-01-01

    Background The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1) gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability. Methods Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP) as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot. Results Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells. Conclusions Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust apoptosis causes differentiation deficiency of IDH1R132H-expressing cells. PMID:27145078

  18. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain.

    PubMed

    Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena

    2015-02-01

    A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies. © 2014 AlphaMed Press.

  19. Integration-free induced pluripotent stem cells derived from a patient with autosomal recessive Alport syndrome (ARAS).

    PubMed

    Kuebler, Bernd; Aran, Begoña; Miquel-Serra, Laia; Muñoz, Yolanda; Ars, Elisabet; Bullich, Gemma; Furlano, Monica; Torra, Roser; Marti, Merce; Veiga, Anna; Raya, Angel

    2017-12-01

    A skin biopsy was obtained from a 25-year-old female patient with autosomal recessive Alport syndrome (ARAS) with the homozygous COL4A3 mutation c.345delG, p.(P166Lfs*37). Dermal fibroblasts were derived and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53shRNA. The generated induced Pluripotent Stem Cell (iPSC) clone AS FiPS1 Ep6F-2 was free of genomically integrated reprogramming genes, had the specific homozygous mutation, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. This iPSC line offers a useful resource to study Alport syndrome pathomechanisms and drug testing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    PubMed

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications. © 2013 Wiley Periodicals, Inc.

  1. Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies by Hanging-Drop Cultures.

    PubMed

    Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras

    2016-12-01

    Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. There are an increasing number of differentiating culture conditions that can bias the differentiation of ES cells into desired cell types. Determining the mechanisms that control ES cell differentiation into therapeutically important cell types is a quickly growing area of research. Knowledge gained from these studies may eventually lead to the use of stem cells to repair specific damaged tissues. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. This protocol describes a method to differentiate ES cells into EBs. It produces EBs of comparable size. This aspect is important because the differentiation processes taking place inside an EB are influenced by its size. © 2016 Cold Spring Harbor Laboratory Press.

  2. Development, Characterization, and Pluripotency Analysis of Buffalo (Bubalus bubalis) Embryonic Stem Cell Lines Derived from In Vitro–Fertilized, Hand-Guided Cloned, and Parthenogenetic Embryos

    PubMed Central

    Shah, Syed Mohmad; Saini, Neha; Ashraf, Syma; Zandi, Mohammad; Manik, Radhey Sham; Singla, Suresh Kumar; Palta, Prabhat

    2015-01-01

    Abstract We present the derivation, characterization, and pluripotency analysis of three buffalo embryonic stem cell (buESC) lines, from in vitro–fertilized, somatic cell nuclear–transferred, and parthenogenetic blastocysts. These cell lines were developed for later differentiation into germ lineage cells and elucidation of the signaling pathways involved. The cell lines were established from inner cell masses (ICMs) that were isolated manually from the in vitro–produced blastocysts. Most of the ICMs (45–55%) resulted in formation of primary colonies that were subcultured after 8–10 days, leading subsequently to the formation of three buESC lines, one from each blastocyst type. All the cell lines expressed stem cell markers, such as Alkaline Phosphatase, OCT4, NANOG, SSEA1, SSEA4, TRA-1-60, TRA-1-81, SOX2, REX1, CD-90, STAT3, and TELOMERASE. They differentiated into all three germ layers as determined by ectodermal, mesodermal, and endodermal RNA and protein markers. All of the cell lines showed equal expression of pluripotency markers as well as equivalent differentiation potential into all the three germ layers. The static suspension culture–derived embryoid bodies (EBs) showed greater expression of all the three germ layer markers as compared to hanging drop culture–derived EBs. When analyzed for germ layer marker expression, EBs derived from 15% fetal bovine serum (FBS)-based spontaneous differentiation medium showed greater differentiation across all the three germ layers as compared to those derived from Knock-Out Serum Replacement (KoSR)-based differentiation medium. PMID:26168169

  3. Regeneration of tracheal epithelium using mouse induced pluripotent stem cells.

    PubMed

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Otsuki, Koshi; Miyake, Masao; Hazama, Akihiro; Wada, Ikuo; Omori, Koichi

    2016-01-01

    Conclusion The findings demonstrated the potential use of induced pluripotent stem cells for regeneration of tracheal epithelium. Objective Autologous tissue implantation techniques using skin or cartilage are often applied in cases of tracheal defects with laryngeal inflammatory lesions and malignant tumor invasion. However, these techniques are invasive with an unstable clinical outcome. The purpose of this study was to investigate regeneration in a tracheal defect site of nude rats after implantation of ciliated epithelium that was differentiated from induced pluripotent stem cells. Method Embryoid bodies were formed from mouse induced pluripotent stem cells. They were cultured with growth factors for 5 days, and then cultured at the air-liquid interface. The degree of differentiation achieved prior to implantation was determined by histological findings and the results of real-time polymerase chain reaction. Embryoid bodies including ciliated epithelium were embedded into collagen gel that served as an artificial scaffold, and then implanted into nude rats, creating an 'air-liquid interface model'. Histological evaluation was performed 7 days after implantation. Results The ciliated epithelial structure survived on the lumen side of regenerated tissue. It was demonstrated histologically that the structure was composed of ciliated epithelial cells.

  4. Equivalency of Buffalo (Bubalus Bubalis) Embryonic Stem Cells Derived From Fertilized, Parthenogenetic, and Hand-Made Cloned Embryos

    PubMed Central

    Muzaffar, Musharifa; Selokar, Naresh L.; Singh, Karn P.; Zandi, Mohammad; Singh, Manoj K.; Shah, Riaz A.; Chauhan, Manmohan S.; Singla, Suresh K.; Palta, Prabhat

    2012-01-01

    Abstract This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (p<0.05) in HMC-derived ESCs (6.897±2.3) compared to that in parthenogenesis- and IVF-derived cells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production. PMID:22582863

  5. Equivalency of buffalo (Bubalus bubalis) embryonic stem cells derived from fertilized, parthenogenetic, and hand-made cloned embryos.

    PubMed

    Muzaffar, Musharifa; Selokar, Naresh L; Singh, Karn P; Zandi, Mohammad; Singh, Manoj K; Shah, Riaz A; Chauhan, Manmohan S; Singla, Suresh K; Palta, Prabhat; Manik, Radheysham

    2012-06-01

    This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (p<0.05) in HMC-derived ESCs (6.897±2.3) compared to that in parthenogenesis- and IVF-derived cells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production.

  6. Transgene-free human induced pluripotent stem cell line (HS5-SV.hiPS) generated from cesarean scar-derived fibroblasts.

    PubMed

    Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn

    2016-01-01

    Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Generation of functional cardiomyocytes from rat embryonic and induced pluripotent stem cells using feeder-free expansion and differentiation in suspension culture.

    PubMed

    Dahlmann, Julia; Awad, George; Dolny, Carsten; Weinert, Sönke; Richter, Karin; Fischer, Klaus-Dieter; Munsch, Thomas; Leßmann, Volkmar; Volleth, Marianne; Zenker, Martin; Chen, Yaoyao; Merkl, Claudia; Schnieke, Angelika; Baraki, Hassina; Kutschka, Ingo; Kensah, George

    2018-01-01

    The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model. In this study, we comparatively explored the potential of recently available rat embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs) as a source for cardiomyocytes (CMs). We developed feeder cell-free culture conditions facilitating the expansion of undifferentiated rPSCs and initiated cardiac differentiation by embryoid body (EB)-formation in agarose microwell arrays, which substituted the robust but labor-intensive hanging drop (HD) method. Ascorbic acid was identified as an efficient enhancer of cardiac differentiation in both rPSC types by significantly increasing the number of beating EBs (3.6 ± 1.6-fold for rESCs and 17.6 ± 3.2-fold for riPSCs). These optimizations resulted in a differentiation efficiency of up to 20% cTnTpos rPSC-derived CMs. CMs showed spontaneous contractions, expressed cardiac markers and had typical morphological features. Electrophysiology of riPSC-CMs revealed different cardiac subtypes and physiological responses to cardio-active drugs. In conclusion, we describe rPSCs as a robust source of CMs, which is a prerequisite for detailed preclinical studies of myocardial reconstruction in a physiologically and immunologically relevant small animal model.

  8. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors.

    PubMed

    Kim, Eunhye; Hwang, Seon-Ung; Yoo, Hyunju; Yoon, Junchul David; Jeon, Yubyeol; Kim, Hyunggee; Jeung, Eui-Bae; Lee, Chang-Kyu; Hyun, Sang-Hwan

    2016-03-01

    The establishment of porcine embryonic stem cells (ESCs) would have great impact in biomedical studies and preclinical trials through their use in genetic engineering. However, authentic porcine ESCs have not been established until now. In this study, a total of seven putative ESC lines were derived from porcine embryos of various origins, including in vitro fertilization, parthenogenetic activation, and, in particular, induced pluripotent stem (iPS) nuclear transfer (NT) from a donor cell with induced pluripotent stem cells (iPSCs). To characterize these cell lines, several assays including an assessment of intensive alkaline phosphatase activity, karyotyping, embryoid body formation, expression analysis of the pluripotency-associated markers, and the three germ layerassociated markers were performed. Based on quantitative polymerase chain reaction, the expression levels of REX1 and FGFR2 in iPS-NT lines were higher than those of cells of other origins. Additionally, only iPS-NT lines showed multiple aberrant patterns of nuclear foci elucidated by immunofluorescence staining of H3K27me3 as a marker of the state of X chromosome inactivation and a less mature form of mitochondria like naive ESCs, by transmission electron microscopy. Together, these data suggested that established putative porcine ESC lines generally exhibited a primed pluripotent state, like human ESCs. However, iPS-NT lines have especially unique characteristics distinct from other origins because they have more epigenetic instability and naive-like mitochondrial morphology than other putative ESC lines. This is the first study to establish and characterize the iPSC-derived putative ESC lines and compare them with other lines derived from different origins in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taru Sharma, G., E-mail: gts553@gmail.com; Dubey, Pawan K.; Verma, Om Prakash

    Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBsmore » from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it supported buffalo EBs formation, their subsequent differentiation could prove to be useful as promising candidate for ES cells based therapeutic applications.« less

  10. Rho kinase inhibitor Y-27632 and Accutase dramatically increase mouse embryonic stem cell derivation.

    PubMed

    Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun

    2012-01-01

    Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.

  11. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.

    PubMed

    D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L

    2014-01-01

    Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.

  12. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium

    PubMed Central

    Reichman, Sacha; Terray, Angélique; Slembrouck, Amélie; Nanteau, Céline; Orieux, Gaël; Habeler, Walter; Nandrot, Emeline F.; Sahel, José-Alain; Monville, Christelle; Goureau, Olivier

    2014-01-01

    Progress in retinal-cell therapy derived from human pluripotent stem cells currently faces technical challenges that require the development of easy and standardized protocols. Here, we developed a simple retinal differentiation method, based on confluent human induced pluripotent stem cells (hiPSC), bypassing embryoid body formation and the use of exogenous molecules, coating, or Matrigel. In 2 wk, we generated both retinal pigmented epithelial cells and self-forming neural retina (NR)-like structures containing retinal progenitor cells (RPCs). We report sequential differentiation from RPCs to the seven neuroretinal cell types in maturated NR-like structures as floating cultures, thereby revealing the multipotency of RPCs generated from integration-free hiPSCs. Furthermore, Notch pathway inhibition boosted the generation of photoreceptor precursor cells, crucial in establishing cell therapy strategies. This innovative process proposed here provides a readily efficient and scalable approach to produce retinal cells for regenerative medicine and for drug-screening purposes, as well as an in vitro model of human retinal development and disease. PMID:24912154

  13. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies.

    PubMed

    Ng, Elizabeth S; Davis, Richard; Stanley, Edouard G; Elefanty, Andrew G

    2008-01-01

    In order to promote the uniform and reproducible differentiation of human embryonic stem cells (HESCs) in response to exogenously added growth factors, we have developed a method (spin embryoid bodies (EBs)) that uses a recombinant protein-based, animal product-free medium in which HESCs are aggregated by centrifugation to form EBs. In this protocol we describe the formulation of this medium, denoted APEL (Albumin Polyvinylalcohol Essential Lipids), and its use in spin EB differentiation of HESCs. We also describe a more economical variant, BPEL (Bovine Serum Albumin (BSA) Polyvinylalchohol Essential Lipids), in which BSA replaces the recombinant human albumin. The integration of a medium that includes only defined and recombinant components with a defined number of cells to initiate EB formation results in a generally applicable, robust platform for growth factor-directed HESC differentiation.

  14. Three-Step Method for Proliferation and Differentiation of Human Embryonic Stem Cell (hESC)-Derived Male Germ Cells

    PubMed Central

    Lim, Jung Jin; Shim, Myung Sun; Lee, Jeoung Eun; Lee, Dong Ryul

    2014-01-01

    The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells. PMID:24690677

  15. Expansion and Differentiation of Germline-Derived Pluripotent Stem Cells on Biomaterials

    PubMed Central

    Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R.; Zenke, Martin; Neuss, Sabine

    2013-01-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer® LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level. PMID:23234562

  16. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials.

    PubMed

    Hoss, Mareike; Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R; Zenke, Martin; Neuss, Sabine

    2013-05-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.

  17. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.

    PubMed

    Song, Bing; Fan, Yong; He, Wenyin; Zhu, Detu; Niu, Xiaohua; Wang, Ding; Ou, Zhanhui; Luo, Min; Sun, Xiaofang

    2015-05-01

    The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.

  18. Derivation and Characterization of Induced Pluripotent Stem Cells from Equine Fibroblasts

    PubMed Central

    Breton, Amandine; Sharma, Ruchi; Diaz, Andrea Catalina; Parham, Alea Gillian; Graham, Audrey; Neil, Claire; Whitelaw, Christopher Bruce; Milne, Elspeth

    2013-01-01

    Pluripotent stem cells offer unprecedented potential not only for human medicine but also for veterinary medicine, particularly in relation to the horse. Induced pluripotent stem cells (iPSCs) are particularly promising, as they are functionally similar to embryonic stem cells and can be generated in vitro in a patient-specific manner. In this study, we report the generation of equine iPSCs from skin fibroblasts obtained from a foal and reprogrammed using viral vectors coding for murine Oct4, Sox2, c-Myc, and Klf4 sequences. The reprogrammed cell lines were morphologically similar to iPSCs reported from other species and could be stably maintained over more than 30 passages. Immunostaining and polymerase chain reaction analyses revealed that these cell lines expressed an array of endogenous markers associated with pluripotency, including OCT4, SOX2, NANOG, REX1, LIN28, SSEA1, SSEA4, and TRA1-60. Furthermore, under the appropriate conditions, the equine iPSCs readily formed embryoid bodies and differentiated in vitro into cells expressing markers of ectoderm, mesoderm, and endoderm, and when injected into immunodeficient mice, gave raise to tumors containing differentiated derivatives of the 3 germ layers. Finally, we also reprogrammed fibroblasts from a 2-year-old horse. The reprogrammed cells were similar to iPSCs derived from neonatal fibroblasts in terms of morphology, expression of pluripotency markers, and differentiation ability. The generation of these novel cell lines constitutes an important step toward the understanding of pluripotency in the horse, and paves the way for iPSC technology to potentially become a powerful research and clinical tool in veterinary biomedicine. PMID:22897112

  19. Derivation and characterization of gut-like structures from embryonic stem cells.

    PubMed

    Yamada, Takatsugu; Nakajima, Yoshiyuki

    2006-01-01

    Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages of all three embryonic germ layers in vitro. The hanging drop culture of ES cell suspension in the absence of leukemia inhibitory factor induces aggregation and differentiation of the cells into simple or cystic embryoid bodies (EBs). After 6 d of hanging drop culture, the resulting EBs are plated onto plastic dishes for the outgrowth culture. At d 21 after outgrowth culture, cell populations of EBs can give rise to three-dimensional gut-like structures that exhibit spontaneous contraction and highly coordinated peristalsis. The gut-like structures have large lumens surrounded by three layers: epithelium, lamina propria, and muscularis. Ganglia are scattered along the periphery, and interstitial cells of Cajal are distributed among the smooth muscle cells. The fundamental process of formation of the in vitro organized gut-like structures is similar to embryonic gastrointestinal development in vivo. The EBs at the 6-d egg-cylinder stage may have the potential to regulate developmental programs associated with cell lineage commitment and provide an appropriate microenvironment to differentiate ES cells into enteric derivatives of all three embryonic germ layers and reproduce the gut organization process in vitro.

  20. Efficient Generation of Human Embryonic Stem Cell-Derived Cardiac Progenitors Based on Tissue-Specific Enhanced Green Fluorescence Protein Expression

    PubMed Central

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I.; Sarkadi, Balázs

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFPhigh rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFPhigh rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFPhigh rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications. PMID:24734786

  1. Transcriptome dynamics of human pluripotent stem cell-derived contracting cardiomyocytes using an embryoid body model with fetal bovine serum.

    PubMed

    Jung, Kwang Bo; Son, Ye Seul; Lee, Hana; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young

    2017-07-25

    Cardiomyocyte (CM) differentiation techniques for generating adult-like mature CMs remain imperfect, and the plausible underlying mechanisms remain unclear; however, there are a number of current protocols available. Here, to explore the mechanisms controlling cardiac differentiation, we analyzed the genome-wide transcription dynamics occurring during the differentiation of human pluripotent stem cells (hPSCs) into CMs using embryoid body (EB) formation. We optimized and updated the protocol to efficiently generate contracting CMs from hPSCs by adding fetal bovine serum (FBS) as a medium supplement, which could have a significant impact on the efficiency of cardiac differentiation. To identify genes, biological processes, and pathways involved in the cardiac differentiation of hPSCs, integrative and comparative analyses of the transcriptome profiles of differentiated CMs from hPSCs and of control CMs of the adult human heart (CM-AHH) were performed using gene ontology, functional annotation clustering, and pathway analyses. Several genes commonly regulated in the differentiated CMs and CM-AHH were enriched in pathways related to cell cycle and nucleotide metabolism. Strikingly, we found that current differentiation protocols did not promote sufficient expression of genes involved in oxidative phosphorylation to differentiate CMs from hPSCs compared to the expression levels in CM-AHH. Therefore, to obtain mature CMs similar to CM-AHH, these deficient pathways in CM differentiation, such as energy-related pathways, must be augmented prior to use for in vitro and in vivo applications. This approach opens up new avenues for facilitating the utilization of hPSC-derived CMs in biomedical research, drug evaluation, and clinical applications for patients with cardiac failure.

  2. Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.

    PubMed

    Bose, Bipasha; Shenoy P, Sudheer

    2016-02-01

    Muscle derived stem cells (MDSCs) are multipotent stem cells that can differentiate into several lineages including skeletal muscle precursor cells. Here, we show that MDSCs from myostatin null mice (Mstn (-/-) ) can be readily induced into pluripotent stem cells without using reprogramming factors. Microarray studies revealed a strong upregulation of markers like Leukemia Inhibitory factor (LIF) and Leukemia Inhibitory factor receptor (LIFR) in Mstn (-/-) MDSCs as compared to wild type MDSCs (WT-MDSCs). Furthermore when cultured in mouse embryonic stem cell media with LIF for 95 days, Mstn (-/-) MDSCs formed embryonic stem cell (ES) like colonies. We termed such ES like cells as the culture-induced pluripotent stem cells (CiPSC). CiPSCs from Mstn (-/-) MDSCs were phenotypically similar to ESCs, expressed high levels of Oct4, Nanog, Sox2 and SSEA-1, maintained a normal karyotype. Furthermore, CiPSCs formed embryoid bodies and teratomas when injected into immunocompromised mice. In addition, CiPSCs differentiated into somatic cells of all three lineages. We further show that culturing in ES cell media, resulted in hypermethylation and downregulation of BMP2 in Mstn(-/-) MDSCs. Western blot further confirmed a down regulation of BMP2 signaling in Mstn (-/-) MDSCs in supportive of pluripotent reprogramming. Given that down regulation of BMP2 has been shown to induce pluripotency in cells, we propose that lack of myostatin epigenetically reprograms the MDSCs to become pluripotent stem cells. Thus, here we report the successful establishment of ES-like cells from adult stem cells of the non-germline origin under culture-induced conditions without introducing reprogramming genes.

  3. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation.

    PubMed

    Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S

    2012-12-01

    In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.

  4. A High Proliferation Rate is Critical for Reproducible and Standardized Embryoid Body Formation from Laminin-521-Based Human Pluripotent Stem Cell Cultures.

    PubMed

    Dziedzicka, Dominika; Markouli, Christina; Barbé, Lise; Spits, Claudia; Sermon, Karen; Geens, Mieke

    2016-12-01

    When aiming for homogenous embryoid body (EB) differentiation, the use of equal-sized EBs is required to avoid a size-induced differentiation bias. In this study we developed an efficient and standardized EB formation protocol for human pluripotent stem cells (hPSC) cultured in a laminin-521-based xeno-free system. As the cell proliferation rate of the cells growing on laminin-521 strongly affected the efficiency of aggregate formation, we found that recently passaged cells, as well as the addition of ROCK inhibitor, were essential for reproducible EB formation from hPSC single-cell suspensions. EBs could be obtained in a variety of differentiation media, in 96-well round-bottom plates and in hanging drops. Gene expression studies on differentially sized EBs from three individual human embryonic stem cell lines demonstrated that the medium used for differentiation influenced the differentiation outcome to a much greater extent than the number of cells used for the initial EB formation. Our findings give a new insight into factors that influence the EB formation and differentiation process. This optimized method allows us to easily manipulate EB formation and provide an excellent starting point for downstream EB-based differentiation protocols.

  5. Mouse Mix gene is activated early during differentiation of ES and F9 stem cells and induces endoderm in frog embryos.

    PubMed

    Mohn, Deanna; Chen, Siming W; Dias, Dora Campos; Weinstein, Daniel C; Dyer, Michael A; Sahr, Kenneth; Ducker, Charles E; Zahradka, Elizabeth; Keller, Gordon; Zaret, Kenneth S; Gudas, Lorraine J; Baron, Margaret H

    2003-03-01

    In frog and zebrafish, the Mix/Bix family of paired type homeodomain proteins play key roles in specification and differentiation of mesendoderm. However, in mouse, only a single Mix gene (mMix) has been identified to date and its function is unknown. We have analyzed the expression of mouse Mix RNA and protein in embryos, embryoid bodies formed from embryonic stem cells and F9 teratocarcinoma cells, as well as several differentiated cell types. Expression in embryoid bodies in culture mirrors that in embryos, where Mix is transcribed transiently in primitive (visceral) endoderm (VE) and in nascent mesoderm. In F9 cells induced by retinoic acid to differentiate to VE, mMix is coordinately expressed with three other endodermal transcription factors, well before AFP, and its protein product is localized to the nucleus. In a subpopulation of nascent mesodermal cells from embryonic stem cell embryoid bodies, mMix is coexpressed with Brachyury. Intriguingly, mMix mRNA is detected in a population (T+Flk1+) of cells which may contain hemangioblasts, before the onset of hematopoiesis and activation of hematopoietic markers. In vitro and in vivo, mMix expression in nascent mesoderm is rapidly down-regulated and becomes undetectable in differentiated cell types. In the region of the developing gut, mMix expression is confined to the mesoderm of mid- and hindgut but is absent from definitive endoderm. Injection of mouse mMix RNA into early frog embryos results in axial truncation of developing tadpoles and, in animal cap assays, mMix alone is sufficient to activate expression of several endodermal (but not mesodermal) markers. Although these observations do not exclude a possible cell-autonomous function for mMix in mesendodermal progenitor cells, they do suggest an additional, non-cell autonomous role in nascent mesoderm in the formation and/or patterning of adjacent definitive endoderm. Copyright 2003 Wiley-Liss, Inc.

  6. Loss of heme oxygenase-1 accelerates mesodermal gene expressions during embryoid body development from mouse embryonic stem cells.

    PubMed

    Lai, Yan-Liang; Lin, Chen-Yu; Jiang, Wei-Cheng; Ho, Yen-Chun; Chen, Chung-Huang; Yet, Shaw-Fang

    2018-05-01

    Heme oxygenase (HO)-1 is an inducible stress response protein and well known to protect cells and tissues against injury. Despite its important function in cytoprotection against physiological stress, the role of HO-1 in embryonic stem cell (ESC) differentiation remains largely unknown. We showed previously that induced pluripotent stem (iPS) cells that lack HO-1 are more sensitive to oxidant stress-induced cell death and more prone to lose pluripotent markers upon LIF withdrawal. To elucidate the role of HO-1 in ESC differentiation and to rule out the controversy of potential gene flaws in iPS cells, we derived and established mouse HO-1 knockout ESC lines from HO-1 knockout blastocysts. Using wild type D3 and HO-1 knockout ESCs in the 3-dimensional embryoid body (EB) differentiation model, we showed that at an early time point during EB development, an absence of HO-1 led to enhanced ROS level, concomitant with increased expressions of master mesodermal regulator brachyury and endodermal marker GATA6. In addition, critical smooth muscle cell (SMC) transcription factor serum response factor and its coactivator myocardin were enhanced. Furthermore, HO-1 deficiency increased Smad2 in ESCs and EBs, revealing a role of HO-1 in controlling Smad2 level. Smad2 not only mediates mesendoderm differentiation of mouse ESCs but also SMC development. Collectively, loss of HO-1 resulted in higher level of mesodermal and SMC regulators, leading to accelerated and enhanced SMC marker SM α-actin expression. Our results reveal a previously unrecognized function of HO-1 in regulating SMC gene expressions during ESC-EB development. More importantly, our findings may provide a novel strategy in enhancing ESC differentiation toward SMC lineage. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation.

    PubMed

    Sharma, Arun; Li, Guang; Rajarajan, Kuppusamy; Hamaguchi, Ryoko; Burridge, Paul W; Wu, Sean M

    2015-03-18

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have become an important cell source to address the lack of primary cardiomyocytes available for basic research and translational applications. To differentiate hiPSCs into cardiomyocytes, various protocols including embryoid body (EB)-based differentiation and growth factor induction have been developed. However, these protocols are inefficient and highly variable in their ability to generate purified cardiomyocytes. Recently, a small molecule-based protocol utilizing modulation of Wnt/β-Catenin signaling was shown to promote cardiac differentiation with high efficiency. With this protocol, greater than 50%-60% of differentiated cells were cardiac troponin-positive cardiomyocytes were consistently observed. To further increase cardiomyocyte purity, the differentiated cells were subjected to glucose starvation to specifically eliminate non-cardiomyocytes based on the metabolic differences between cardiomyocytes and non-cardiomyocytes. Using this selection strategy, we consistently obtained a greater than 30% increase in the ratio of cardiomyocytes to non-cardiomyocytes in a population of differentiated cells. These highly purified cardiomyocytes should enhance the reliability of results from human iPSC-based in vitro disease modeling studies and drug screening assays.

  8. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    PubMed

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  9. Generation of human-induced pluripotent stem cells from burn patient-derived skin fibroblasts using a non-integrative method.

    PubMed

    Fu, Shangfeng; Ding, Jianwu; Liu, Dewu; Huang, Heping; Li, Min; Liu, Yang; Tu, Longxiang; Liu, Deming

    2018-01-01

    Patient specific induced pluripotent stem cells (iPSCs) have been recognized as a possible source of cells for skin tissue engineering. They have the potential to greatly benefit patients with large areas of burned skin or skin defects. However, the integration virus-based reprogramming method is associated with a high risk of genetic mutation and mouse embryonic fibroblast feeder-cells may be a pollutant. In the present study, human skin fibroblasts (HSFs) were successfully harvested from patients with burns and patient-specific iPSCs were generated using a non-integration method with a feeder-free approach. The octamer-binding transcription factor 4 (OCT4), sex-determining region Y box 2 (SOX2) and NANOG transcription factors were delivered using Sendai virus vectors. iPSCs exhibited representative human embryonic stem cell-like morphology and proliferation characteristics. They also expressed pluripotent markers, including OCT4, NANOG, SOX2, TRA181, stage-specific embryonic antigen 4 and TRA-160, and exhibited a normal karyotype. Teratoma and embryoid body formation revealed that iPSCs were able to differentiate into cells of all three germ layers in vitro and in vivo. The results of the present study demonstrate that HSFs derived from patients with burns, may be reprogrammed into stem cells with pluripotency, which provides a basis for cell‑based skin tissue engineering in the future.

  10. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically significant differences in the variation of PAX6 and SOX1-positive NPCs between the two human pluripotent cell-derived methods; therefore, both methods are suitable for producing stable dorsal NPCs. When further differentiated into mature neurons, NPCs gave rise to a population of almost exclusively forebrain cortical neurons, confirming the dorsal fate commitment of the progenitors. The methods described in this study show improvements over previously published studies and are highly efficient at differentiating human and mouse pluripotent cell types into dorsal PAX6-positive NPCs and eventually into forebrain cortical neurons.

  11. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation.

    PubMed

    Battista, Sabrina; Guarnieri, Daniela; Borselli, Cristina; Zeppetelli, Stefania; Borzacchiello, Assunta; Mayol, Laura; Gerbasio, Diego; Keene, Douglas R; Ambrosio, Luigi; Netti, Paolo A

    2005-11-01

    The use of embryonic stem (ES) cells as unlimited cell source in tissue engineering has ignited the hope of regenerating any kind of tissue in vitro. However, the role of the material in control and guidance of their development and commitment into complex and viable three-dimensional (3D) tissues is still poorly understood. In this work, we investigate the role of material composition and structure on promoting ES cells growth and differentiation, by culturing mouse ES cell-derived embryoid bodies (EBs) in various semi-interpenetrating polymer networks (SIPNs), made of collagen, fibronectin (FN) and laminin (LM). We show that both composition and strength of the supportive matrix play an important role in EBs development. High collagen concentrations inhibit EBs cavitation and hence the following EBs differentiation, by inhibiting apoptosis. The presence of FN in 3D collagen constructs strongly stimulates endothelial cell differentiation and vascularization. Conversely, LM increases the ability of ES cells to differentiate into beating cardiomyocytes. Our data suggest that matrix composition has an important role in EBs development and that it is possible to influence stem cell differentiation toward preferential pattern, by modulating the physical and biochemical properties of the scaffold.

  12. Neurotrophic requirements of human motor neurons defined using amplified and purified stem cell-derived cultures.

    PubMed

    Lamas, Nuno Jorge; Johnson-Kerner, Bethany; Roybon, Laurent; Kim, Yoon A; Garcia-Diaz, Alejandro; Wichterle, Hynek; Henderson, Christopher E

    2014-01-01

    Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC(50) 1-2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.

  13. Neurotrophic Requirements of Human Motor Neurons Defined Using Amplified and Purified Stem Cell-Derived Cultures

    PubMed Central

    Lamas, Nuno Jorge; Johnson-Kerner, Bethany; Roybon, Laurent; Kim, Yoon A.; Garcia-Diaz, Alejandro; Wichterle, Hynek; Henderson, Christopher E.

    2014-01-01

    Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC50 1–2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening. PMID:25337699

  14. A single EBV-based vector for stable episomal maintenance and expression of GFP in human embryonic stem cells.

    PubMed

    Thyagarajan, Bhaskar; Scheyhing, Kelly; Xue, Haipeng; Fontes, Andrew; Chesnut, Jon; Rao, Mahendra; Lakshmipathy, Uma

    2009-03-01

    Stable expression of transgenes in stem cells has been a challenge due to the nonavailability of efficient transfection methods and the inability of transgenes to support sustained gene expression. Several methods have been reported to stably modify both embryonic and adult stem cells. These methods rely on integration of the transgene into the genome of the host cell, which could result in an expression pattern dependent on the number of integrations and the genomic locus of integration. To overcome this issue, site-specific integration methods mediated by integrase, adeno-associated virus or via homologous recombination have been used to generate stable human embryonic stem cell (hESC) lines. In this study, we describe a vector that is maintained episomally in hESCs. The vector used in this study is based on components derived from the Epstein-Barr virus, containing the Epstein-Barr virus nuclear antigen 1 expression cassette and the OriP origin of replication. The vector also expresses the drug-resistance marker gene hygromycin, which allows for selection and long-term maintenance of cells harboring the plasmid. Using this vector system, we show sustained expression of green fluorescent protein in undifferentiated hESCs and their differentiating embryoid bodies. In addition, the stable hESC clones show comparable expression with and without drug selection. Consistent with this observation, bulk-transfected adipose tissue-derived mesenchymal stem cells showed persistent marker gene expression as they differentiate into adipocytes, osteoblasts and chondroblasts. Episomal vectors offer a fast and efficient method to create hESC reporter lines, which in turn allows one to test the effect of overexpression of various genes on stem cell growth, proliferation and differentiation.

  15. Development of an in vitro culture method for stepwise differentiation of mouse embryonic stem cells and induced pluripotent stem cells into mature osteoclasts.

    PubMed

    Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru

    2014-05-01

    The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.

  16. Mouse androgenetic embryonic stem cells differentiated to multiple cell lineages in three embryonic germ layers in vitro.

    PubMed

    Teramura, Takeshi; Onodera, Yuta; Murakami, Hideki; Ito, Syunsuke; Mihara, Toshihiro; Takehara, Toshiyuki; Kato, Hiromi; Mitani, Tasuku; Anzai, Masayuki; Matsumoto, Kazuya; Saeki, Kazuhiro; Fukuda, Kanji; Sagawa, Norimasa; Osoi, Yoshihiko

    2009-06-01

    The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.

  17. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.

    PubMed

    Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris

    2010-04-01

    The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.

  18. Control of dental-derived induced pluripotent stem cells through modified surfaces for dental application.

    PubMed

    Choi, Hyunmin; Park, Kyu-Hyung; Lee, Ah-Reum; Mun, Chin Hee; Shin, Yong Dae; Park, Yong-Beom; Park, Young-Bum

    2017-07-01

    The aim of this study is to investigate the behaviour of iPSc derived from dental stem cells in terms of initial adhesion, differentiation potential on differently surface-treated titanium disc. iPSc derived from human gingival fibroblasts (hGFs) were established using 4-reprogramming factors transduction with Sendai virus. The hGF-iPSc established in this study exhibited the morphology and growth properties similar to human embryonic stem (ES) cells and expressed pluripotency makers. Alkaline Phosphatase (AP) staining, Embryoid Body (EB) formation and in vitro differentiation and karyotyping further confirmed pluripotency of hGF-iPSc. Then, hGF-iPSc were cultured on machined- and Sandblasted and acid etched (SLA)-treated titanium discs with osteogenic induction medium and their morphological as well as quantitative changes according to different surface types were investigated using Alizrin Red S staining, Scanning electron microscopy (SEM), Flow cytometry and RT-PCR. Time-dependent and surface-dependent morphological changes as well as quantitative change in osteogenic differentiation of hGF-iPSc were identified and osteogenic gene expression of hGF-iPSc cultured on SLA-treated titanium disc found to be greater than machined titanium disc, suggesting the fate of hGF-iPSc may be determined by the characteristics of surface to which hGF-iPSc first adhere. iPSc derived from dental stem cell can be one of the most promising and practical cell sources for personalized regenerative dentistry and their morphological change as well as quantitative change in osteogenic differentiation according to different surface types may be further utilized for future clinical application incorporated with dental implant.

  19. Generation of integration-free induced pluripotent stem cell lines derived from two patients with X-linked Alport syndrome (XLAS).

    PubMed

    Kuebler, Bernd; Aran, Begoña; Miquel-Serra, Laia; Muñoz, Yolanda; Ars, Elisabet; Bullich, Gemma; Furlano, Monica; Torra, Roser; Marti, Merce; Veiga, Anna; Raya, Angel

    2017-12-01

    Skin biopsies were obtained from two male patients with X-linked Alport syndrome (XLAS) with hemizygous COL4A5 mutations in exon 41 or exon 46. Dermal fibroblasts were extracted and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53 shRNA. The generated induced Pluripotent Stem Cell (iPSC) lines AS-FiPS2-Ep6F-28 and AS-FiPS3-Ep6F-9 were free of genomically integrated reprogramming genes, had the specific mutations, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. These iPSC lines offer a useful resource to study Alport syndrome pathomechanisms and drug testing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Formation of Stomach Tissue by Organoid Culture Using Mouse Embryonic Stem Cells.

    PubMed

    Noguchi, Taka-Aki K; Kurisaki, Akira

    2017-01-01

    In this chapter, we describe a method for the induction of stomach organoids from mouse embryonic stem (ES) cells. We used an embryoid body-based differentiation method to induce gastric primordial epithelium covered with mesenchyme and further differentiate it in Matrigel by 3D culture. The differentiated organoid contains both corpus- and antrum-specific mature gastric tissue cells. This protocol may be useful for a variety of studies in developmental biology and disease modeling of the stomach.

  1. Graphene induces spontaneous cardiac differentiation in embryoid bodies

    NASA Astrophysics Data System (ADS)

    Ahadian, Samad; Zhou, Yuanshu; Yamada, Shukuyo; Estili, Mehdi; Liang, Xiaobin; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu

    2016-03-01

    Graphene was embedded into the structure of mouse embryoid bodies (EBs) using the hanging drop technique. The inclusion of 0.2 mg per mL graphene in the EBs did not affect the viability of the stem cells. However, the graphene decreased the stem cell proliferation, probably by accelerating cell differentiation. The graphene also enhanced the mechanical properties and electrical conductivity of the EBs. Interestingly, the cardiac differentiation of the EB-graphene was significantly greater than that of the EBs at day 5 of culture, as confirmed by high-throughput gene analysis. Electrical stimulation (voltage, 4 V; frequency, 1 Hz; and duration, 10 ms for 2 continuous days) further enhanced the cardiac differentiation of the EBs, as demonstrated by analyses of the cardiac protein and gene expression and the beating activity of the EBs. Taken together, the results demonstrated that graphene played a major role in directing the cardiac differentiation of EBs, which has potential cell therapy and tissue regeneration applications.Graphene was embedded into the structure of mouse embryoid bodies (EBs) using the hanging drop technique. The inclusion of 0.2 mg per mL graphene in the EBs did not affect the viability of the stem cells. However, the graphene decreased the stem cell proliferation, probably by accelerating cell differentiation. The graphene also enhanced the mechanical properties and electrical conductivity of the EBs. Interestingly, the cardiac differentiation of the EB-graphene was significantly greater than that of the EBs at day 5 of culture, as confirmed by high-throughput gene analysis. Electrical stimulation (voltage, 4 V; frequency, 1 Hz; and duration, 10 ms for 2 continuous days) further enhanced the cardiac differentiation of the EBs, as demonstrated by analyses of the cardiac protein and gene expression and the beating activity of the EBs. Taken together, the results demonstrated that graphene played a major role in directing the cardiac differentiation of EBs, which has potential cell therapy and tissue regeneration applications. Electronic supplementary information (ESI) available: Fig. S1-S3, Tables S1-S4, and Movies S1-S4. See DOI: 10.1039/c5nr07059g

  2. Autophagy in Human Embryonic Stem Cells

    PubMed Central

    Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark

    2011-01-01

    Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC. PMID:22110659

  3. Human somatic cells acquire the plasticity to generate embryoid-like metamorphosis via the actin cytoskeleton in injured tissues.

    PubMed

    Diaz, Jairo A; Murillo, Mauricio F; Mendoza, Jhonan A; Barreto, Ana M; Poveda, Lina S; Sanchez, Lina K; Poveda, Laura C; Mora, Katherine T

    2016-01-01

    Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype. We captured this hidden collective filamentous assemblage in progress: Hypoxic deformed cells enter into intercellular collisions, generate migratory ejected filaments, and produce self-assembly of triangular chiral hexagon complexes; this dynamic geometry guides the microenvironment scaffold in which this biological process is incubated, recapitulating embryonic morphogenesis. In all injured tissues, especially in damaged skeletal (striated) muscle cells, visibly hypertrophic intercalated actin-myosin filaments are organized in zebra stripe pattern along the anterior-posterior axis in the interior of the cell, generating cephalic-caudal polarity segmentation, with a high selective level of immunopositivity for Actin, Alpha Skeletal Muscle antibody and for Neuron-Specific Enolase expression of ectodermal differentiation. The function of actin filaments in emergent responses to tissue injury is to reconstitute, reactivate and orchestrate cellular metamorphosis, involving the re-expression of fetal genes, providing evidence of the reverse flow of genetic information within a biological system. The resultant embryoid phenotype emerges as a microscopic fractal template copy of the organization of the whole body, likely allowing the modification and reprogramming of the phenotype of the tumor in which these structures develop, as well as establishing a reverse primordial microscopic mold to collectively re-form cellular building blocks to regenerate injured tissues. Tumorigenesis mimics a self-organizing process of early embryo development. All malignant tumors produce fetal proteins, we now know from which these proteins proceed. Embryoid-like metamorphosis phenomena would represent the anatomical and functional entity of the injury stem cell niche. The sufficiently fast identification, isolation, culture, and expansion of these self-organized structures or genetically derived products could, in our opinion, be used to develop new therapeutic strategies against cancer and in regenerative medicine.

  4. Human somatic cells acquire the plasticity to generate embryoid-like metamorphosis via the actin cytoskeleton in injured tissues

    PubMed Central

    Diaz, Jairo A; Murillo, Mauricio F; Mendoza, Jhonan A; Barreto, Ana M; Poveda, Lina S; Sanchez, Lina K; Poveda, Laura C; Mora, Katherine T

    2016-01-01

    Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype. We captured this hidden collective filamentous assemblage in progress: Hypoxic deformed cells enter into intercellular collisions, generate migratory ejected filaments, and produce self-assembly of triangular chiral hexagon complexes; this dynamic geometry guides the microenvironment scaffold in which this biological process is incubated, recapitulating embryonic morphogenesis. In all injured tissues, especially in damaged skeletal (striated) muscle cells, visibly hypertrophic intercalated actin-myosin filaments are organized in zebra stripe pattern along the anterior-posterior axis in the interior of the cell, generating cephalic-caudal polarity segmentation, with a high selective level of immunopositivity for Actin, Alpha Skeletal Muscle antibody and for Neuron-Specific Enolase expression of ectodermal differentiation. The function of actin filaments in emergent responses to tissue injury is to reconstitute, reactivate and orchestrate cellular metamorphosis, involving the re-expression of fetal genes, providing evidence of the reverse flow of genetic information within a biological system. The resultant embryoid phenotype emerges as a microscopic fractal template copy of the organization of the whole body, likely allowing the modification and reprogramming of the phenotype of the tumor in which these structures develop, as well as establishing a reverse primordial microscopic mold to collectively re-form cellular building blocks to regenerate injured tissues. Tumorigenesis mimics a self-organizing process of early embryo development. All malignant tumors produce fetal proteins, we now know from which these proteins proceed. Embryoid-like metamorphosis phenomena would represent the anatomical and functional entity of the injury stem cell niche. The sufficiently fast identification, isolation, culture, and expansion of these self-organized structures or genetically derived products could, in our opinion, be used to develop new therapeutic strategies against cancer and in regenerative medicine. PMID:27725917

  5. Embryonic stem-like cells from rabbit blastocysts cultured with melatonin could differentiate into three germ layers in vitro and in vivo.

    PubMed

    Wei, Ruxue; Zhao, Xueming; Hao, Haisheng; Du, Weihua; Zhu, Huabin

    2016-11-01

    The rabbit is considered an important model animal from which to obtain embryonic stem cells because of the utility of this animal in physiology and reproductive research. Here, we derived rabbit ES-like (rES-like) cells from blastocysts of superovulated Japanese white rabbits using culture medium containing 10 -7  M melatonin, 10 ng/mL basic fibroblast growth factor, and 1,000 IU/mL human leukemia inhibitory factor. This concentration of melatonin had the most significant positive effects on the proliferation inner cell mass-derived cells (improving rates from 19.97% to 34.57%) and the longevity of passaging rES-like cells. Melatonin also enhanced the expression of pluripotent genes-including alkaline phosphatase, Pou5f1, Sox2, Klf4, c-Myc, Nanog, Line28a, and surface marker proteins-in fifth-passage rES-like cells. In vitro, these rES-like cells could spontaneously differentiate into some somatic cells, such as beating cardiomyocytes; formed embryoid bodies; expressed markers of the three germ layers after differentiation; and formed teratomas after injection into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice. Thus, melatonin helped coax ES-like cells from rabbit blastocysts, which raises intriguing questions about the relationship between pluripotency and proliferation in rabbit embryonic stem cells. Mol. Reprod. Dev. 83: 1003-1014, 2016 © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells.

    PubMed

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Nakamura, Ryosuke; Otsuki, Koshi; Murono, Shigeyuki; Omori, Koichi

    2017-07-01

    Compared with using autologous tissue, the use of artificial materials in the regeneration of tracheal defects is minimally invasive. However, this technique requires early epithelialization on the inner side of the artificial trachea. After differentiation from induced pluripotent stem cells (iPSCs), tracheal epithelial tissues may be used to produce artificial tracheas. Herein, we aimed to demonstrate that after differentiation from fluorescent protein-labeled iPSCs, tracheal epithelial tissues survived in nude rats with tracheal defects. Red fluorescent tdTomato protein was electroporated into mouse iPSCs to produce tdTomato-labeled iPSCs. Embryoid bodies derived from these iPSCs were then cultured in differentiation medium supplemented with growth factors, followed by culture on air-liquid interfaces for further differentiation into tracheal epithelium. The cells were implanted with artificial tracheas into nude rats with tracheal defects on day 26 of cultivation. On day 7 after implantation, the tracheas were exposed and examined histologically. Tracheal epithelial tissue derived from tdTomato-labeled iPSCs survived in the tracheal defects. Moreover, immunochemical analyses showed that differentiated tissues had epithelial structures similar to those of proximal tracheal tissues. After differentiation from iPSCs, tracheal epithelial tissues survived in rat bodies, warranting the use of iPSCs for epithelial regeneration in tracheal defects.

  7. Biochemical and morphological effects of hypoxic environment on human embryonic stem cells in long-term culture and differentiating embryoid bodies.

    PubMed

    Lim, Hee-Joung; Han, Jiyou; Woo, Dong-Hun; Kim, Sung-Eun; Kim, Suel-Kee; Kang, Hee-Gyoo; Kim, Jong-Hoon

    2011-02-01

    The mammalian reproductive tract is known to contain 1.5-5.3% oxygen (O(2)), but human embryonic stem cells (hESCs) derived from preimplantation embryos are typically cultured under 21% O(2) tension. The aim of this study was to investigate the effects of O(2) tension on the long-term culture of hESCs and on cell-fate determination during early differentiation. hESCs and embryoid bodies (EBs) were grown under different O(2) tensions (3, 12, and 21% O(2)). The expression of markers associated with pluripotency, embryonic germ layers, and hypoxia was analyzed using RTPCR, immunostaining, and Western blotting. Proliferation, apoptosis, and chromosomal aberrations were examined using BrdU incorporation, caspase-3 immunostaining, and karyotype analysis, respectively. Structural and morphological changes of EBs under different O(2) tensions were comparatively examined using azan- and hematoxylineosin staining, and scanning and transmission electron microscopy. Mild hypoxia (12% O(2)) increased the number of cells expressing Oct4/Nanog and reduced BrdU incorporation and aneuploidy. The percentage of cells positive for active caspase-3, which was high during normoxia (21% O(2)), gradually decreased when hESCs were continuously cultured under mild hypoxia. EBs subjected to hypoxia (3% O(2)) exhibited well-differentiated microvilli on their surface, secreted high levels of collagen, and showed enhanced differentiation into primitive endoderm. These changes were associated with increased expression of Foxa2, Sox17, AFP, and GATA4 on the EB periphery. Our data suggest that mild hypoxia facilitates the slow mitotic division of hESCs in long-term culture and reduces the frequency of chromosomal abnormalities and apoptosis. In addition, hypoxia promotes the differentiation of EBs into extraembryonic endoderm.

  8. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    PubMed

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nutrient supplemented serum-free medium increases cardiomyogenesis efficiency of human pluripotent stem cells.

    PubMed

    Ting, Sherwin; Lecina, Marti; Chan, Yau-Chi; Tse, Hung Fat; Reuveny, Shaul; Oh, Steve Kw

    2013-07-26

    To development of an improved p38 MAPK inhibitor-based serum-free medium for embryoid body cardiomyocyte differentiation of human pluripotent stem cells. Human embryonic stem cells (hESC) differentiated to cardiomyocytes (CM) using a p38 MAPK inhibitor (SB203580) based serum-free medium (SB media). Nutrient supplements known to increase cell viability were added to SB medium. The ability of these supplements to improve cardiomyogenesis was evaluated by measurements of cell viability, total cell count, and the expression of cardiac markers via flow cytometry. An improved medium containing Soy hydrolysate (HySoy) and bovine serum albumin (BSA) (SupSB media) was developed and tested on 2 additional cell lines (H1 and Siu-hiPSC). Characterization of the cardiomyocytes was done by immunohistochemistry, electrophysiology and quantitative real-time reverse transcription-polymerase chain reaction. hESC cell line, HES-3, differentiating in SB medium for 16 d resulted in a cardiomyocyte yield of 0.07 ± 0.03 CM/hESC. A new medium (SupSB media) was developed with the addition of HySoy and BSA to SB medium. This medium resulted in 2.6 fold increase in cardiomyocyte yield (0.21 ± 0.08 CM/hESC). The robustness of SupSB medium was further demonstrated using two additional pluripotent cell lines (H1, hESC and Siu1, hiPSC), showing a 15 and 9 fold increase in cardiomyocyte yield respectively. The age (passage number) of the pluripotent cells did not affect the cardiomyocyte yields. Embryoid body (EB) cardiomyocytes formed in SupSB medium expressed canonical cardiac markers (sarcomeric α-actinin, myosin heavy chain and troponin-T) and demonstrated all three major phenotypes: nodal-, atrial- and ventricular-like. Electrophysiological characteristics (maximum diastolic potentials and action potential durations) of cardiomyocytes derived from SB and SupSB media were similar. The nutrient supplementation (HySoy and BSA) leads to increase in cell viability, cell yield and cardiac marker expression during cardiomyocyte differentiation, translating to an overall increase in cardiomyocyte yield.

  10. Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs).

    PubMed

    Kandasamy, Majury; Roll, Lars; Langenstroth, Daniel; Brüstle, Oliver; Faissner, Andreas

    2017-06-01

    Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487 LeX , 5750 LeX and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage, 487 LeX -, 5750 LeX - and 473HD-related glycans were differently expressed. Later, cells of the three germ layers in embryoid bodies (hEBs) and, even after neuralization of hEBs, subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC), LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs FGF-2/EGF derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs FGF-2/EGF . Finally, we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487 LeX , 5750 LeX and 473HD are promising tools for identifying distinct stages during neural differentiation.

  11. A role for thrombopoietin in hemangioblast development.

    PubMed

    Perlingeiro, Rita C R; Kyba, Michael; Bodie, Susan; Daley, George Q

    2003-01-01

    Vascular endothelial growth factor (VEGF) and stem cell factor (SCF) act as growth factors for the hemangioblast, an embryonic progenitor of the hematopoietic and endothelial lineages. Because thrombopoietin (TPO) and its receptor, c-Mpl, regulate primitive hematopoietic populations, including bone marrow hematopoietic stem cells, we investigated whether TPO acts on the hemangioblasts that derive from differentiation of embryonic stem cells in vitro. Reverse transcriptase polymerase chain reaction analysis detected expression of c-Mpl beginning on day 3 of embryoid body differentiation when the hemangioblast first arises. In assays of the hemangioblast colony-forming cell (BL-CFC), TPO alone supported BL-CFC formation and nearly doubled the number of BL-CFC when added together with VEGF and SCF. When replated under the appropriate conditions, TPO-stimulated BL-CFC gave rise to secondary hematopoietic colonies, as well as endothelial cells, confirming their nature as hemangioblasts. Addition of a neutralizing anti-VEGF antibody did not block TPO enhancement of BL-CFC formation, suggesting that TPO acts independently of VEGF. These results establish that Mpl signaling plays a role in the earliest stages of hematopoietic development and that TPO represents a third growth factor influencing hemangioblast formation.

  12. An Embryonic and Induced Pluripotent Stem Cell Model for Ovarian Granulosa Cell Development and Steroidogenesis.

    PubMed

    Lipskind, Shane; Lindsey, Jennifer S; Gerami-Naini, Behzad; Eaton, Jennifer L; O'Connell, Daniel; Kiezun, Adam; Ho, Joshua W K; Ng, Nicholas; Parasar, Parveen; Ng, Michelle; Nickerson, Michael; Demirci, Utkan; Maas, Richard; Anchan, Raymond M

    2018-05-01

    Embryoid bodies (EBs) can serve as a system for evaluating pluripotency, cellular differentiation, and tissue morphogenesis. In this study, we use EBs derived from mouse embryonic stem cells (mESCs) and human amniocyte-derived induced pluripotent stem cells (hAdiPSCs) as a model for ovarian granulosa cell (GC) development and steroidogenic cell commitment. We demonstrated that spontaneously differentiated murine EBs (mEBs) and human EBs (hEBs) displayed ovarian GC markers, such as aromatase (CYP19A1), FOXL2, AMHR2, FSHR, and GJA1. Comparative microarray analysis identified both shared and unique gene expression between mEBs and the maturing mouse ovary. Gene sets related to gonadogenesis, lipid metabolism, and ovarian development were significantly overrepresented in EBs. Of the 29 genes, 15 that were differentially regulated in steroidogenic mEBs displayed temporal expression changes between embryonic, postnatal, and mature ovarian tissues by polymerase chain reaction. Importantly, both mEBs and hEBs were capable of gonadotropin-responsive estradiol (E2) synthesis in vitro (217-759 pg/mL). Live fluorescence-activated cell sorting-sorted AMHR2 + granulosa-like cells from mEBs continued to produce E2 after purification (15.3 pg/mL) and secreted significantly more E2 than AMHR2 - cells (8.6 pg/mL, P < .05). We conclude that spontaneously differentiated EBs of both mESC and hAdiPSC origin can serve as a biologically relevant model for ovarian GC differentiation and steroidogenic cell commitment. These cells should be further investigated for therapeutic uses, such as stem cell-based hormone replacement therapy and in vitro maturation of oocytes.

  13. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  14. Derivation and characterization of novel nonhuman primate embryonic stem cell lines from in vitro-fertilized baboon preimplantation embryos.

    PubMed

    Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S

    2011-06-01

    The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.

  15. Embryonic stem cells growing in 3-dimensions shift from reliance on the substrate to each other for mechanical support.

    PubMed

    Teo, Ailing; Lim, Mayasari; Weihs, Daphne

    2015-07-16

    Embryonic stem cells (ESCs) grow into three-dimensional (3D) spheroid structures en-route to tissue growth. In vitro spheroids can be controllably induced on a two-dimensional (2D) substrate with high viability. Here we use a method for inducing pluripotent embryoid body (EB) formation on flat polyacrylamide gels while simultaneously evaluating the dynamic changes in the mechano-biology of the growing 3D spheroids. During colony growth in 3D, pluripotency is conserved while the spheroid-substrate interactions change significantly. We correlate colony-size, cell-applied traction-forces, and expressions of cell-surface molecules indicating cell-cell and cell-substrate interactions, while verifying pluripotency. We show that as the colony size increases with time, the stresses applied by the spheroid to the gel decrease in the 3D growing EBs; control cells growing in 2D-monolayers maintain unvarying forces. Concurrently, focal-adhesion mediated cell-substrate interactions give way to E-cadherin cell-cell connections, while pluripotency. The mechano-biological changes occurring in the growing embryoid body are required for stabilization of the growing pluripotent 3D-structure, and can affect its potential uses including differentiation. This could enable development of more effective expansion, differentiation, and separation approaches for clinical purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Dental pulp of the third molar: a new source of pluripotent-like stem cells.

    PubMed

    Atari, Maher; Gil-Recio, Carlos; Fabregat, Marc; García-Fernández, Dani; Barajas, Miguel; Carrasco, Miguel A; Jung, Han-Sung; Alfaro, F Hernández; Casals, Nuria; Prosper, Felipe; Ferrés-Padró, Eduard; Giner, Luis

    2012-07-15

    Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4(+), OCT3/4(+), NANOG(+), SOX2(+), LIN28(+), CD13(+), CD105(+), CD34(-), CD45(-), CD90(+), CD29(+), CD73(+), STRO1(+) and CD146(-), and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4, GATA6, MIXL1, NANOG, OCT3/4, SOX1 and SOX2 to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.

  17. Assessing reprogramming by chimera formation and tetraploid complementation.

    PubMed

    Li, Xin; Xia, Bao-long; Li, Wei; Zhou, Qi

    2015-01-01

    Pluripotent stem cells can be evaluated by pluripotent markers expression, embryoid body aggregation, teratoma formation, chimera contribution and even more, tetraploid complementation. Whether iPS cells in general are functionally equivalent to normal ESCs is difficult to establish. Here, we present the detailed procedure for chimera formation and tetraploid complementation, the most stringent criterion, to assessing pluripotency.

  18. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates.

    PubMed

    Qi, Hao; Huang, Guoyou; Han, Yu Long; Lin, Wang; Li, Xiujun; Wang, Shuqi; Lu, Tian Jian; Xu, Feng

    2016-01-01

    With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.

  19. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.

    PubMed

    Ouyang, Liliang; Yao, Rui; Mao, Shuangshuang; Chen, Xi; Na, Jie; Sun, Wei

    2015-11-04

    With the ability to manipulate cells temporarily and spatially into three-dimensional (3D) tissue-like construct, 3D bioprinting technology was used in many studies to facilitate the recreation of complex cell niche and/or to better understand the regulation of stem cell proliferation and differentiation by cellular microenvironment factors. Embryonic stem cells (ESCs) have the capacity to differentiate into any specialized cell type of the animal body, generally via the formation of embryoid body (EB), which mimics the early stages of embryogenesis. In this study, extrusion-based 3D bioprinting technology was utilized for biofabricating ESCs into 3D cell-laden construct. The influence of 3D printing parameters on ESC viability, proliferation, maintenance of pluripotency and the rule of EB formation was systematically studied in this work. Results demonstrated that ESCs were successfully printed with hydrogel into 3D macroporous construct. Upon process optimization, about 90% ESCs remained alive after the process of bioprinting and cell-laden construct formation. ESCs continued proliferating into spheroid EBs in the hydrogel construct, while retaining the protein expression and gene expression of pluripotent markers, like octamer binding transcription factor 4, stage specific embryonic antigen 1 and Nanog. In this novel technology, EBs were formed through cell proliferation instead of aggregation, and the quantity of EBs was tuned by the initial cell density in the 3D bioprinting process. This study introduces the 3D bioprinting of ESCs into a 3D cell-laden hydrogel construct for the first time and showed the production of uniform, pluripotent, high-throughput and size-controllable EBs, which indicated strong potential in ESC large scale expansion, stem cell regulation and fabrication of tissue-like structure and drug screening studies.

  20. Process-Based Expansion and Neural Differentiation of Human Pluripotent Stem Cells for Transplantation and Disease Modeling

    PubMed Central

    Stover, Alexander E.; Brick, David J.; Nethercott, Hubert E.; Banuelos, Maria G.; Sun, Lei; O’Dowd, Diane K.; Schwartz, Philip H.

    2014-01-01

    Robust strategies for developing patient-specific, human, induced pluripotent stem cell (iPSC)-based therapies of the brain require an ability to derive large numbers of highly defined neural cells. Recent progress in iPSC culture techniques includes partial-to-complete elimination of feeder layers, use of defined media, and single-cell passaging. However, these techniques still require embryoid body formation or coculture for differentiation into neural stem cells (NSCs). In addition, none of the published methodologies has employed all of the advances in a single culture system. Here we describe a reliable method for long-term, single-cell passaging of PSCs using a feeder-free, defined culture system that produces confluent, adherent PSCs that can be differentiated into NSCs. To provide a basis for robust quality control, we have devised a system of cellular nomenclature that describes an accurate genotype and phenotype of the cells at specific stages in the process. We demonstrate that this protocol allows for the efficient, large-scale, cGMP-compliant production of transplantable NSCs from all lines tested. We also show that NSCs generated from iPSCs produced with the process described are capable of forming both glia defined by their expression of S100β and neurons that fire repetitive action potentials. PMID:23893392

  1. Disease characterization using LQTS-specific induced pluripotent stem cells.

    PubMed

    Egashira, Toru; Yuasa, Shinsuke; Suzuki, Tomoyuki; Aizawa, Yoshiyasu; Yamakawa, Hiroyuki; Matsuhashi, Tomohiro; Ohno, Yohei; Tohyama, Shugo; Okata, Shinichiro; Seki, Tomohisa; Kuroda, Yusuke; Yae, Kojiro; Hashimoto, Hisayuki; Tanaka, Tomofumi; Hattori, Fumiyuki; Sato, Toshiaki; Miyoshi, Shunichiro; Takatsuki, Seiji; Murata, Mitsushige; Kurokawa, Junko; Furukawa, Tetsushi; Makita, Naomasa; Aiba, Takeshi; Shimizu, Wataru; Horie, Minoru; Kamiya, Kaichiro; Kodama, Itsuo; Ogawa, Satoshi; Fukuda, Keiichi

    2012-09-01

    Long QT syndrome (LQTS) is an inheritable and life-threatening disease; however, it is often difficult to determine disease characteristics in sporadic cases with novel mutations, and more precise analysis is necessary for the successful development of evidence-based clinical therapies. This study thus sought to better characterize ion channel cardiac disorders using induced pluripotent stem cells (iPSCs). We reprogrammed somatic cells from a patient with sporadic LQTS and from controls, and differentiated them into cardiomyocytes through embryoid body (EB) formation. Electrophysiological analysis of the LQTS-iPSC-derived EBs using a multi-electrode array (MEA) system revealed a markedly prolonged field potential duration (FPD). The IKr blocker E4031 significantly prolonged FPD in control- and LQTS-iPSC-derived EBs and induced frequent severe arrhythmia only in LQTS-iPSC-derived EBs. The IKs blocker chromanol 293B did not prolong FPD in the LQTS-iPSC-derived EBs, but significantly prolonged FPD in the control EBs, suggesting the involvement of IKs disturbance in the patient. Patch-clamp analysis and immunostaining confirmed a dominant-negative role for 1893delC in IKs channels due to a trafficking deficiency in iPSC-derived cardiomyocytes and human embryonic kidney (HEK) cells. This study demonstrated that iPSCs could be useful to characterize LQTS disease as well as drug responses in the LQTS patient with a novel mutation. Such analyses may in turn lead to future progress in personalized medicine.

  2. Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes.

    PubMed

    Gorospe, Giann; Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie; Vidal, Rene

    2014-09-01

    Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes (CMs) is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a CM based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of CMs into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies. While some of the nine cell clusters in the dataset are presented with just one phenotype, the majority of the cell clusters are presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of CMs from an electrophysiological perspective.

  3. Automated Grouping of Action Potentials of Human Embryonic Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Gorospe, Giann; Zhu, Renjun; Millrod, Michal A.; Zambidis, Elias T.; Tung, Leslie; Vidal, René

    2015-01-01

    Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a cardiomyocyte based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of cardiomyocytes into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies (hEBs). While some of the 9 cell clusters in the dataset presented with just one phenotype, the majority of the cell clusters presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of cardiomyocytes from an electrophysiological perspective. PMID:25148658

  4. Generation of Cardiomyocytes from Pluripotent Stem Cells.

    PubMed

    Nakahama, Hiroko; Di Pasquale, Elisa

    2016-01-01

    The advent of pluripotent stem cells (PSCs) enabled a multitude of studies for modeling the development of diseases and testing pharmaceutical therapeutic potential in vitro. These PSCs have been differentiated to multiple cell types to demonstrate its pluripotent potential, including cardiomyocytes (CMs). However, the efficiency and efficacy of differentiation vary greatly between different cell lines and methods. Here, we describe two different methods for acquiring CMs from human pluripotent lines. One method involves the generation of embryoid bodies, which emulates the natural developmental process, while the other method chemically activates the canonical Wnt signaling pathway to induce a monolayer of cardiac differentiation.

  5. Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression.

    PubMed

    Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi

    2017-09-01

    Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N 2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B 27 , N 2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.

  6. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds.

    PubMed

    Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong

    2010-07-01

    Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  7. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Lieu, Deborah K.; Fu, Ji-Dong; Chiamvimonvat, Nipavan; Chan Tung, Kelvin W.; McNerney, Gregory P.; Huser, Thomas; Keller, Gordon; Kong, Chi-Wing

    2013-01-01

    Background Human embryonic stem cells (hESCs) can be efficiently and reproducibly directed into cardiomyocytes (CMs) using stage-specific induction protocols. However, their functional properties and suitability for clinical and other applications have not been evaluated. Methods and Results Here we showed that CMs derived from multiple pluripotent human stem cell lines (hESC: H1, HES2) and types (induced pluripotent stem cell or iPSC) using different in vitro differentiation protocols (embryoid body formation, endodermal induction, directed differentiation) commonly displayed immature, pro-arrhythmic action potential (AP) properties such as high-degree of automaticity, depolarized resting membrane potential (RMP), Phase 4- depolarization and delayed after-depolarization (DAD). Among the panoply of sarcolemmal ionic currents investigated (INa+/ICaL2+/IKr+/INCX+/If+/Ito+/IK1-/IKs-), we pinpointed the lack of the Kir2.1-encoded inwardly rectifying K+ current (IK1) as the single mechanistic contributor to the observed immature electrophysiological properties in hESC-CMs. Forced expression of Kir2.1 in hESC-CMs led to robust expression of Ba2+-sensitive IK1 and more importantly, completely ablated all the pro-arrhythmic AP traits, rendering the electrophysiological phenotype indistinguishable from the adult counterparts. These results provided the first link of a complex developmentally arrested phenotype to a major effector gene, and importantly, further led us to develop a biomimetic culturing strategy for enhancing maturation. Conclusions By providing the environmental cues that are missing in conventional culturing method, this approach did not require any genetic or pharmacological interventions. Our findings can facilitate clinical applications, drug discovery and cardiotoxicity screening by improving the yield, safety and efficacy of derived CMs. PMID:23392582

  8. Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.

    PubMed

    Behboodi, E; Bondareva, A; Begin, I; Rao, K; Neveu, N; Pierson, J T; Wylie, C; Piero, F D; Huang, Y J; Zeng, W; Tanco, V; Baldassarre, H; Karatzas, C N; Dobrinski, I

    2011-03-01

    Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells. Copyright © 2011 Wiley-Liss, Inc.

  9. Derivation and characterization of putative embryonic stem cells from cloned rabbit embryos.

    PubMed

    Intawicha, Payungsuk; Siriboon, Chawalit; Chen, Chien-Hong; Chiu, Yung-Tsung; Lin, Tzu-An; Kere, Michel; Lo, Neng-Wen; Lee, Kun-Hsiung; Chang, Li-Yung; Chiang, Hsing-I; Ju, Jyh-Cherng

    2016-10-15

    The present study aimed to establish embryonic stem (ES) cell lines, i.e., ntES cells, using rabbit blastocyst stage embryos cloned by somatic cell nuclear transfer. First, we investigated the development of cloned rabbit embryos reconstructed with normal fibroblasts and fibroblasts transfected with enhanced green fluorescence protein (eGFP). Blastocyst rates were 27.4% and 23.9%, respectively, for the embryos reconstructed with normal fibroblasts and fibroblasts transfected with eGFP compared with that from the parthenogenetic group (43.1%). One ntES cell line was established from embryos reconstructed with eGFP-transfected fibroblasts (1 of 17, 5.9%), and three ntES cell lines were derived from those with normal fibroblasts (3 of 17, 17.6%). All the ntES cell lines retained alkaline phosphatase activity and expressed ES cell-specific markers SSEA-4, Oct-4, TRA-1-60, and TRA-1-81. The pluripotency was further confirmed by reverse transcription-polymerase chain reaction analyses of Oct-4, Nanog, and Sox-2 expressions in ntES cell lines. The differentiation capacity of ntES cells was also examined in vitro and in vivo, by which these ntES cell lines were able to differentiate into all three germ layers through embryoid bodies and teratomas. In conclusion, it is apparent that the efficiency of ntES cells derived using eGFP-transfected donor cells is lower than that with nontransfected, normal fibroblasts donor cells. Similar to those from parthenogenetic embryos, all ntES cell lines derived from cloned rabbit embryos are able to express pluripotency markers and retain their capability to differentiate into various cell lineages both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Formation and hematopoietic differentiation of human embryoid bodies by suspension and hanging drop cultures.

    PubMed

    Cerdan, Chantal; Hong, Seok Ho; Bhatia, Mickie

    2007-10-01

    The in vitro aggregation of human embryonic stem cells (hESCs) into clusters termed embryoid bodies (EBs) allows for the spontaneous differentiation of cells representing endoderm, mesoderm, and ectoderm lineages. This stochastic process results however, in the generation of low numbers of differentiated cells, and can be enhanced to some extent by the addition of exogenous growth factors or overexpression of regulatory genes. In the authors' laboratory, the use of hematopoietic cytokines in combination with the mesoderm inducer bone morphogenetic protein-4 (BMP-4) was able to generate up to 90% of CD45(+) hematopoietic cells with colony-forming unit (CFU) activity. This unit describes two protocols that have been successfully applied in the authors' laboratory for the generation of EBs in (1) suspension and (2) hanging drop (HD) cultures from enzymatically digested clumps of undifferentiated hESC colonies.

  11. The Role of H1 Linker Histone Subtypes in Preserving the Fidelity of Elaboration of Mesendodermal and Neuroectodermal Lineages during Embryonic Development

    PubMed Central

    Nguyen, Giang D.; Gokhan, Solen; Molero, Aldrin E.; Yang, Seung-Min; Kim, Byung-Ju; Skoultchi, Arthur I.; Mehler, Mark F.

    2014-01-01

    H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs) depleted of H1c, H1d and H1e subtypes (H1-KO ESCs) by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers. PMID:24802750

  12. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair.

    PubMed

    Li, Yueying; Liu, Tie; Van Halm-Lutterodt, Nicholas; Chen, JiaYu; Su, Qingjun; Hai, Yong

    2016-02-17

    An attempt was made to reprogram peripheral blood cells into human induced pluripotent stem cell (hiPSCs) as a new cell source for cartilage repair. We generated chondrogenic lineage from human peripheral blood via hiPSCs using an integration-free method. Peripheral blood cells were either obtained from a human blood bank or freshly collected from volunteers. After transforming peripheral blood cells into iPSCs, the newly derived iPSCs were further characterized through karyotype analysis, pluripotency gene expression and cell differentiation ability. iPSCs were differentiated through multiple steps, including embryoid body formation, hiPSC-mesenchymal stem cell (MSC)-like cell expansion, and chondrogenic induction for 21 days. Chondrocyte phenotype was then assessed by morphological, histological and biochemical analysis, as well as the chondrogenic expression. hiPSCs derived from peripheral blood cells were successfully generated, and were characterized by fluorescent immunostaining of pluripotent markers and teratoma formation in vivo. Flow cytometric analysis showed that MSC markers CD73 and CD105 were present in monolayer cultured hiPSC-MSC-like cells. Both alcian blue and toluidine blue staining of hiPSC-MSC-chondrogenic pellets showed as positive. Immunohistochemistry of collagen II and X staining of the pellets were also positive. The sulfated glycosaminoglycan content was significantly increased, and the expression levels of the chondrogenic markers COL2, COL10, COL9 and AGGRECAN were significantly higher in chondrogenic pellets than in undifferentiated cells. These results indicated that peripheral blood cells could be a potential source for differentiation into chondrogenic lineage in vitro via generation of mesenchymal progenitor cells. This study supports the potential applications of utilizing peripheral blood cells in generating seed cells for cartilage regenerative medicine in a patient-specific and cost-effective approach.

  13. Laser-assisted selection and passaging of human pluripotent stem cell colonies.

    PubMed

    Terstegge, Stefanie; Rath, Barbara H; Laufenberg, Iris; Limbach, Nina; Buchstaller, Andrea; Schütze, Karin; Brüstle, Oliver

    2009-09-10

    The derivation of somatic cell products from human embryonic stem cells (hESCs) requires a highly standardized production process with sufficient throughput. To date, the most common technique for hESC passaging is the manual dissection of colonies, which is a gentle, but laborious and time-consuming process and is consequently inappropriate for standardized maintenance of hESC. Here, we present a laser-based technique for the contact-free dissection and isolation of living hESCs (laser microdissection and pressure catapulting, LMPC). Following LMPC treatment, 80.6+/-8.7% of the cells remained viable as compared to 88.6+/-1.7% of manually dissected hESCs. Furthermore, there was no significant difference in the expression of pluripotency-associated markers when compared to the control. Flow cytometry revealed that 83.8+/-4.1% of hESCs isolated by LMPC expressed the surface marker Tra-1-60 (control: 83.9+/-3.6%). In vitro differentiation potential of LMPC treated hESCs as determined by embryoid body formation and multi-germlayer formation was not impaired. Moreover, we could not detect any overt karyotype alterations as a result of the LMPC process. Our data demonstrate the feasibility of standardized laser-based passaging of hESC cultures. This technology should facilitate both colony selection and maintenance culture of pluripotent stem cells.

  14. Effect of GSK-3 inhibitor on the proliferation of multipotent male germ line stem cells (mGSCs) derived from goat testis.

    PubMed

    Zhu, H; Liu, C; Sun, J; Li, M; Hua, J

    2012-06-01

    The glycogen synthase kinase 3 (GSK3) inhibitor, 6-bromoindirubin-3'-oxime (BIO), is a key regulator of many signaling pathways to maintain pluripotency of human and mouse embryonic stem cells (ESCs). However, the effect of BIO on derivation of dairy goat male germline stem cells (mGSCs) remains unclear. The objectives of this study were to investigate whether BIO influences derivation of dairy goat mGSCs. Dairy goat mGSCs were cultured in mTeSR containing BIO medium and its effects on the proliferation ability of goat mGSCs (derived from goats ≤2 mo of age) were evaluated by 5-Bromo-2-deoxyuridine (BrdU) incorporation and alkaline phosphatase (AP) staining. Furthermore, its effects on maintenance of the undifferentiated state of mGSCs in late passages of cultures, as well as the capacity of mGSCs to differentiate into embryoid bodies (EBs) were examined. The presence of BIO increased the mitosis index and the number of AP positive colonies, as well as expression of pluripotent markers, Oct4, Nanog, Sox2, C-myc, Klf4, E-cadherin, and the proliferative markers, Pcna and C-myc. In contrast, there was no significant change in expression of apoptosis markers, P53, P21 and cyclin-related genes (Cyclin A, CDK2, Cyclin D1), as determined by RT-PCR analysis. When mGSCs were cultured in mTeSR medium containing BIO, EBs were formed, which were capable of further differentiating into various cell types found in the three embryonic germ layers, as determined by immunofluorescence and/or histologic staining. In conclusion, adding BIO to cultures BIO significantly promoted establishment of goat mGSC colonies and maintained their undifferentiated state. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Comparison of Immunological Characteristics of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells and Bone Marrow

    PubMed Central

    Fu, Xin; Chen, Yao; Xie, Fang-Nan; Dong, Ping; Liu, Wen-bo; Cao, Yilin

    2015-01-01

    Mesenchymal stem cell (MSC) has great potential for both regenerative medicine and immunotherapy due to its multipotency and immunomodulatory property. The derivation of MSCs from human tissues involves an invasive procedure and the obtained MSCs often suffer from inconsistent quality. To overcome these issues, the approaches of deriving a highly potent and replenishable population of MSCs from human embryonic stem cells (hESCs) were established. However, few studies compared the immunological characteristics of MSCs derived from hESCs with tissue-derived MSCs or demonstrated differences and the underlying mechanisms. Here, we differentiated H9 hESCs into MSC-like cells (H9-MSCs) through an embryoid body outgrowth method and compared the immunological characteristics of H9-MSCs with bone marrow-derived MSCs (BMSCs). Both sources of derived cells exhibited typical MSC morphologies and surface marker expressions, as well as multipotency to differentiate into osteogenic and adipogenic lineages. A immunological characterization study showed that H9-MSCs and BMSCs had similar immunoprivileged properties without triggering allogeneic lymphocyte proliferation as well as equivalent immunosuppressive effects on T-cell proliferation induced by either cellular or mitogenic stimuli. Flow cytometry analysis revealed a lower expression of human major histocompatability complex class II molecule human lymphocyte antigen (HLA)-DR and a higher expression of coinhibitory molecule B7-H1 in H9-MSCs than in BMSCs. Interferon gamma (IFN-γ) is a proinflammatory cytokine that can induce the expression of HLA class II molecules in many cell types. Our results showed that pretreatment of H9-MSCs and BMSCs with IFN-γ did not change their immunogenicity and immunosuppressive abilities, but increased the difference between H9-MSCs and BMSCs for their expression of HLA-DR. Further detection of expression of molecules involved in IFN-γ signaling pathways suggested that the lower expression of HLA-DR in H9-MSCs could be partially attributed to the lower expression and the less nuclear translocation of its transcriptional factor CIITA. The present study provides evidence that the hESC-derived MSCs share similar immunogenicity and immunosuppressive abilities with BMSCs, but differ in the expression profile of immunological markers and the responsiveness to certain inflammatory cytokines, which suggests that H9-MSCs could be a safe and efficient candidate for MSC treatment in patients with inflammatory disorders. PMID:25256849

  16. Germline competency of parthenogenetic embryonic stem cells from immature oocytes of adult mouse ovary

    PubMed Central

    Liu, Zhong; Hu, Zhe; Pan, Xinghua; Li, Minshu; Togun, Taiwo A.; Tuck, David; Pelizzola, Mattia; Huang, Junjiu; Ye, Xiaoying; Yin, Yu; Liu, Mengyuan; Li, Chao; Chen, Zhisheng; Wang, Fang; Zhou, Lingjun; Chen, Lingyi; Keefe, David L.; Liu, Lin

    2011-01-01

    Parthenogenetic embryonic stem cells (pESCs) have been generated in several mammalian species from parthenogenetic embryos that would otherwise die around mid-gestation. However, previous reports suggest that pESCs derived from in vivo ovulated (IVO) mature oocytes show limited pluripotency, as evidenced by low chimera production, high tissue preference and especially deficiency in germline competence, a critical test for genetic integrity and pluripotency of ESCs. Here, we report efficient generation of germline-competent pESC lines (named as IVM pESCs) from parthenogenetic embryos developed from immature oocytes of adult mouse ovaries following in vitro maturation (IVM) and artificial activation. In contrast, pESCs derived from IVO oocytes show defective germline competence, consistent with previous reports. Further, IVM pESCs resemble more ESCs from fertilized embryos (fESCs) than do IVO pESCs on genome-wide DNA methylation and global protein profiles. In addition, IVM pESCs express higher levels of Blimp1, Lin28 and Stella, relative to fESCs, and in their embryoid bodies following differentiation. This may indicate differences in differentiation potentially to the germline. The mechanisms for acquisition of pluripotency and germline competency of IVM pESCs from immature oocytes remain to be determined. PMID:21239471

  17. Determinants of the epithelial-muscular axis on embryonic stem cell-derived gut-like structures.

    PubMed

    Luo, Yi; Takaki, Miyako; Misawa, Hiromi; Matsuyoshi, Hiroko; Sasahira, Tomonori; Chihara, Yoshitomo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2010-01-01

    Dome-like structures with epithelial-muscular layers resembling the gut have been derived from mouse embryonic stem (ES) cells. These domes have been reported to show spontaneous contractions and are called ES gut. In the present study, we examined the epithelial-muscular axis of these domes by detecting differentiation markers. A normal epithelial-muscular axis was exhibited in the domes with spontaneous motility, whereas the domes without spontaneous motility showed either an inverted or obscure axis. To investigate the factors affecting the epithelial-muscular axis, we examined the expression of hedgehog signaling factors in the domes. Expression of hedgehog family factors was detected in the epithelial components of the domes with motility, whereas this expression was inverted or obscure in the domes without motility. Out of the 25 domes, 10 of the 10 motility (+) domes showed a normal epithelial-muscular axis, whereas 14 of the 15 motility (-) domes lacked a normal epithelial-muscular axis. This implies that activin A upregulated the expression of sonic hedgehog and intestinal alkaline phosphatase in the embryoid bodies. These findings suggest that the motility of the ES gut depends on the domes' epithelial-muscular axis. Copyright © 2010 S. Karger AG, Basel.

  18. Temporal Impact of Substrate Mechanics on Differentiation of Human Embryonic Stem Cells to Cardiomyocytes

    PubMed Central

    Hazeltine, Laurie B.; Badur, Mehmet G.; Lian, Xiaojun; Das, Amritava; Han, Wenqing; Palecek, Sean P.

    2014-01-01

    A significant clinical need exists to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, enabling tissue modeling for in vitro discovery of new drugs or cell-based therapies for heart repair in vivo. Chemical and mechanical microenvironmental factors are known to impact efficiency of stem cell differentiation, but cardiac differentiation protocols in hPSCs are typically performed on rigid tissue culture polystyrene (TCPS) surfaces which do not present a physiological mechanical setting. To investigate the temporal effects of mechanics on cardiac differentiation, we cultured human embryonic stem cells (hESCs) and their derivatives on polyacrylamide hydrogel substrates with a physiologically relevant range of stiffnesses. In directed differentiation and embryoid body culture systems, differentiation of hESCs to cardiac Troponin T-expressing (cTnT+) cardiomyocytes peaked on hydrogels of intermediate stiffness. Brachyury expression also peaked on intermediate stiffness hydrogels at day 1 of directed differentiation, suggesting that stiffness impacted the initial differentiation trajectory of hESCs to mesendoderm. To investigate the impact of substrate mechanics during cardiac specification of mesodermal progenitors, we initiated directed cardiomyocyte differentiation on TCPS and transferred cells to hydrogels at the Nkx2.5/Isl1+ cardiac progenitor cell stage. No differences in cardiomyocyte purity with stiffness were observed on day 15. These experiments indicate that differentiation of hESCs is sensitive to substrate mechanics at early stages of mesodermal induction, and proper application of substrate mechanics can increase the propensity of hESCs to differentiate to cardiomyocytes. PMID:24200714

  19. One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system.

    PubMed

    Waese, Elaine Y L; Stanford, William L

    2011-01-01

    Cartilage defects have limited capacity for repair and are often replaced by fibrocartilage with inferior mechanical properties. To overcome the limitations of artificial joint replacement, high-throughput screens (HTS) could be developed to identify molecules that stimulate differentiation and/or proliferation of articular cartilage for drug therapy or tissue engineering. Currently embryonic stem cells (ESCs) can differentiate into articular cartilage by forming aggregates (embryoid body (EB), pellet, micromass), which are difficult to image. We present a novel, single-step method of generating murine ESC-derived chondrocytes in monolayer cultures under chemically defined conditions. Mesoderm induction was achieved in cultures supplemented with BMP4, activin A, or Wnt3a. Prolonged culture with sustained activin A, TGFβ3, or BMP4 supplementation led to robust chondrogenic induction. A short pulse of activin A or BMP4 also induced chondrogenesis efficiently while Wnt3a acted as a later inducer. Long-term supplementation with activin A or with activin A followed by TGFβ3 promoted articular cartilage formation. Thus, we devised a serum-free (SF) culture system to generate ESC-derived chondrocytes without the establishment of 3D cultures or the aid of cell sorting. Cultures were governed by the same signaling pathways as 3D ESC differentiation systems and limb bud mesenchyme or articular cartilage explant cultures. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. High-Throughput Screening Assay for Embryoid Body Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Outten, Joel T.; Gadue, Paul; French, Deborah L.; Diamond, Scott L.

    2012-01-01

    Serum-free human pluripotent stem cell media offer the potential to develop reproducible clinically applicable differentiation strategies and protocols. The vast array of possible growth factor and cytokine combinations for media formulations makes differentiation protocol optimization both labor and cost-intensive. This unit describes a 96-well plate, 4-color flow cytometry-based screening assay to optimize pluripotent stem cell differentiation protocols. We provide conditions both to differentiate human embryonic stem cells (hESCs) to the three primary germ layers, ectoderm, endoderm, and mesoderm, and to utilize flow cytometry to distinguish between them. This assay exhibits low inter-well variability and can be utilized to efficiently screen a variety of media formulations, reducing cost, incubator space, and labor. Protocols can be adapted to a variety of differentiation stages and lineages. PMID:22415836

  1. Aescin formation in calli and embryoids from cotyledon and stem explants of Aesculus hippocastanum L.

    PubMed

    Profumo, P; Caviglia, A M; Gastaldo, P

    1994-11-01

    Aescin in calli and embryoids obtained from both cotyledon and stem explants of Aesculus hippocastanum were investigated by HPLC. Determinations were carried out on tissues cultured in agarized medium supplemented with growth substances (2,4-dichlorophenoxyacetic acid; kinetin; 1-naphthaleneacetic acid). The results indicate that aescin was produced in all the analysed samples. The amount of active principle present in some samples was higher than that found in horse-chestnut seeds.

  2. Transcriptional profiling of CD31(+) cells isolated from murine embryonic stem cells.

    PubMed

    Mariappan, Devi; Winkler, Johannes; Chen, Shuhua; Schulz, Herbert; Hescheler, Jürgen; Sachinidis, Agapios

    2009-02-01

    Identification of genes involved in endothelial differentiation is of great interest for the understanding of the cellular and molecular mechanisms involved in the development of new blood vessels. Mouse embryonic stem (mES) cells serve as a potential source of endothelial cells for transcriptomic analysis. We isolated endothelial cells from 8-days old embryoid bodies by immuno-magnetic separation using platelet endothelial cell adhesion molecule-1 (also known as CD31) expressed on both early and mature endothelial cells. CD31(+) cells exhibit endothelial-like behavior by being able to incorporate DiI-labeled acetylated low-density lipoprotein as well as form tubular structures on matrigel. Quantitative and semi-quantitative PCR analysis further demonstrated the increased expression of endothelial transcripts. To ascertain the specific transcriptomic identity of the CD31(+) cells, large-scale microarray analysis was carried out. Comparative bioinformatic analysis reveals an enrichment of the gene ontology categories angiogenesis, blood vessel morphogenesis, vasculogenesis and blood coagulation in the CD31(+) cell population. Based on the transcriptomic signatures of the CD31(+) cells, we conclude that this ES cell-derived population contains endothelial-like cells expressing a mesodermal marker BMP2 and possess an angiogenic potential. The transcriptomic characterization of CD31(+) cells enables an in vitro functional genomic model to identify genes required for angiogenesis.

  3. Germ cell tumour growth patterns originating from clear cell carcinomas of the ovary and endometrium: a comparative immunohistochemical study favouring their origin from somatic stem cells.

    PubMed

    Nogales, Francisco F; Prat, Jaime; Schuldt, Maolly; Cruz-Viruel, Nelly; Kaur, Baljeet; D'Angelo, Emanuela; Matias-Guiu, Xavier; Vidal, August; McCluggage, W Glenn; Oosterhuis, J Wolter

    2018-03-01

    To report a series of 11 ovarian and one endometrial neoplasm in elderly patients with mixed clear cell tumour and germ cell tumour (GCT) components, to compare their immunohistochemical profiles and demonstrate a putative stem cell population. The clear cell tumours included 11 clear cell carcinomas (CCC) and one borderline clear cell tumour, while the GCT always included glandular yolk sac tumour (YST). In four cases, there were also foci of teratoma with immature neuroepithelial and endodermal tissues and undifferentiated areas showing true embryoids. To distinguish between the clear cell and YST components, the following antibodies were used: HNF1-β, napsin-A, cytokeratin 7 (CK7), PAX8, EMA, AFP, SALL4, villin, glypican-3 (GPC-3), GATA3, HepPar-1, OCT4, CDX2, CD30 and SOX2. HNF1-β, CK7, EMA and GPC-3 were often expressed in both components. Other markers had higher specificity for each cellular lineage; napsin-A and PAX8 were expressed only in CCC, while SALL4, villin, AFP and HepPar-1 were positive in the glandular YST component but negative in the clear cell component. OCT4 expression occurred in six of 10 cases and consistently in teratoma (four of four). There is considerable immunophenotypical overlap between the two components in these mixed neoplasms, and a panel of markers should be used to facilitate the distinction. We propose that OCT4-expressing somatic cancer cells differentiate into GCT and represent spontaneously induced pluripotent stem cells, possibly conditioned by age-related epigenetic factors. These neoplasms have features of prepubertal type GCT showing lack of 12p gain, preponderance of YST and coexistence with immature neuroectoderm. However, there may also be undifferentiated stem cell areas with embryoid bodies, of the type seen in postpubertal testicular GCT, but lacking a complete embryonal carcinoma immunophenotype. © 2017 John Wiley & Sons Ltd.

  4. Derivation, propagation and differentiation of human embryonic stem cells.

    PubMed

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug discovery, drug testing and repair of damaged or diseased tissues via transplantation.

  5. In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method.

    PubMed

    Wang, Xiang; Yang, Phillip

    2008-07-23

    Stem cells have the remarkable potential to develop into many different cell types. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, This promising of science is leading scientists to investigate the possibility of cell-based therapies to treat disease. When culture in suspension without antidifferentiation factors, embryonic stem cells spontaneously differentiate and form three-dimensional multicellular aggregates. These cell aggregates are called embryoid bodies(EB). Hanging drop culture is a widely used EB formation induction method. The rounded bottom of hanging drop allows the aggregation of ES cells which can provide mES cells a good environment for forming EBs. The number of ES cells aggregatied in a hanging drop can be controlled by varying the number of cells in the initial cell suspension to be hung as a drop from the lid of Petri dish. Using this method we can reproducibly form homogeneous EBs from a predetermined number of ES cells.

  6. Fetal bovine serum enables cardiac differentiation of human embryonic stem cells.

    PubMed

    Bettiol, Esther; Sartiani, Laura; Chicha, Laurie; Krause, Karl Heinz; Cerbai, Elisabetta; Jaconi, Marisa E

    2007-10-01

    During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.

  7. Enrichment of cardiac differentiation of mouse embryonic stem cells by optimizing the hanging drop method.

    PubMed

    Chen, Ming; Lin, Yong-Qing; Xie, Shuang-Lun; Wu, Hong-Fu; Wang, Jing-Feng

    2011-04-01

    Hanging drop (HD) culture is used to induce differentiation of embryonic stem cells (ESCs) into other cell types including cardiomyocytes. However, the factors affecting cardiac differentiation of ESCs with this method remain incompletely understood. We have investigated the effects of the starting number of ESCs in embryoid bodies (EBs) and the time of EB adherence to gelatin-coated plates on cardiac differentiation: cardiac differentiation was increased in the EBs by a larger number of ESCs and was decreased by plating EBs at day 4 or earlier. These two factors can thus be optimized to enrich the cardiac differentiation in ESCs using the HD method.

  8. The cellular prion protein identifies bipotential cardiomyogenic progenitors.

    PubMed

    Hidaka, Kyoko; Shirai, Manabu; Lee, Jong-Kook; Wakayama, Takanari; Kodama, Itsuo; Schneider, Michael D; Morisaki, Takayuki

    2010-01-08

    The paucity of specific surface markers for cardiomyocytes and their progenitors has impeded the development of embryonic or pluripotent stem cell-based transplantation therapy. Identification of relevant surface markers may also enhance our understanding of the mechanisms underlying differentiation. Here, we show that cellular prion protein (PrP) serves as an effective surface marker for isolating nascent cardiomyocytes as well as cardiomyogenic progenitors. Embryonic stem (or embryo-derived) cells were analyzed using flow cytometry to detect surface expression of PrP and intracellular myosin heavy chain (Myhc) proteins. Sorted cells were then analyzed for their differentiation potential. PrP+ cells from beating embryoid bodies (EBs) frequently included nascent Myhc+ cardiomyocytes. Cultured PrP+ cells further differentiated, giving rise to cardiac troponin I+ definitive cardiomyocytes with either an atrial or a ventricular identity. These cells were electrophysiologically functional and able to survive in vivo after transplantation. Combining PrP with a second marker, platelet-derived growth factor receptor (PDGFR)alpha, enabled us to identify an earlier cardiomyogenic population from prebeating EBs, the PrP+PDGFRalpha+ (PRa) cells. The Myhc- PRa cells expressed cardiac transcription factors, such as Nkx2.5, T-box transcription factor 5, and Isl1 (islet LIM homeobox 1), although they were not completely committed. In mouse embryos, PRa cells in cardiac crescent at the 1 to 2 somite stage were Myhc+, whereas they were Myhc- at headfold stages. PRa cells clonally expanded in methlycellulose cultures. Furthermore, single Myhc- PRa cell-derived colonies contained both cardiac and smooth muscle cells. Thus, PrP demarcates a population of bipotential cardiomyogenic progenitor cells that can differentiate into cardiac or smooth muscle cells.

  9. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells.

    PubMed

    Mohr, Jeffrey C; Zhang, Jianhua; Azarin, Samira M; Soerens, Andrew G; de Pablo, Juan J; Thomson, James A; Lyons, Gary E; Palecek, Sean P; Kamp, Timothy J

    2010-03-01

    The differentiation of human embryonic stem cells (hESCs) into cardiomyocytes (CMs) using embryoid bodies (EBs) is relatively inefficient and highly variable. Formation of EBs using standard enzymatic disaggregation techniques results in a wide range of sizes and geometries of EBs. Use of a 3-D cuboidal microwell system to culture hESCs in colonies of defined dimensions, 100-500 microm in lateral dimensions and 120 microm in depth, enabled formation of more uniform-sized EBs. The 300 microm microwells produced highest percentage of contracting EBs, but flow cytometry for myosin light chain 2A (MLC2a) expressing cells revealed a similar percentage (approximately 3%) of cardiomyocytes formed in EBs from 100 microm to 300 microm microwells. These data, and immunolabeling with anti-MF20 and MLC2a, suggest that the smaller EBs are less likely to form contracting EBs, but those contracting EBs are relatively enriched in cardiomyocytes compared to larger EB sizes where CMs make up a proportionately smaller fraction of the total cells. We conclude that microwell-engineered EB size regulates cardiogenesis and can be used for more efficient and reproducible formation of hESC-CMs needed for research and therapeutic applications. (c) 2009 Elsevier Ltd. All rights reserved.

  10. Size-dependent Toxicity of Gold Nanoparticles on Human Embryonic Stem Cells and Their Neural Derivatives

    PubMed Central

    Senut, Marie-Claude; Zhang, Yanhua; Liu, Fangchao; Sen, Arko; Ruden, Douglas M.; Mao, Guangzhao

    2016-01-01

    This study explores the use of human embryonic stem cells (hESCs) for assessing nanotoxicology, specifically, the effect of gold nanoparticles (AuNPs) of different core sizes (1.5 nm, 4 nm, and 14 nm) on the viability, pluripotency, neuronal differentiation, and DNA methylation of hESCs. The hESCs exposed to 1.5 nm thiolate-capped AuNPs exhibited loss of cohesiveness and detachment suggesting ongoing cell death at concentrations as low as 0.1 µg/mL. The cells exposed to 1.5 nm AuNPs at this concentration did not form embryoid bodies but rather disintegrated into single cells within 48 hours. Cell death caused by 1.5 nm AuNPs also occurred in hESC-derived neural progenitor cells. None of the other nanoparticles exhibited toxic effects on the hESCs at concentrations as high as 10 µg/mL during a 19 day neural differentiation period. Thiolate-capped 4 nm AuNPs at 10 µg/mL caused a dramatic decrease in global DNA methylation (5mC) and a corresponding increase in global DNA hydroxymethylation (5hmC) of the hESC’s DNA in only 24 hours. This work identifies a type of AuNPs highly toxic to hESCs and demonstrates the potential of hESCs in predicting nanotoxicity and characterizing their ability to alter the DNA methylation and hydroxymethylation patterns in the cells. PMID:26676601

  11. Derivation of Stromal (Skeletal and Mesenchymal) Stem-Like Cells from Human Embryonic Stem Cells

    PubMed Central

    Harkness, Linda; Abdallah, Basem M.; Elsafadi, Mona; Al-Nbaheen, May S.; Aldahmash, Abdullah; Kassem, Moustapha

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for functional osteogenic cells. PMID:22612317

  12. Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro

    PubMed Central

    2014-01-01

    Background Recent studies suggest that ovarian germ line stem cells replenish oocyte-pool in adult stage, and challenge the central doctrine of ‘fixed germ cell pool’ in mammalian reproductive biology. Two distinct populations of spherical stem cells with high nucleo-cytoplasmic ratio have been recently identified in the adult mammalian ovary surface epithelium (OSE) including nuclear OCT-4A positive very small embryonic-like (VSELs) and cytoplasmic OCT-4 expressing ovarian germ stem cells (OGSCs). Three weeks culture of scraped OSE cells results in spontaneous differentiation of the stem cells into oocyte-like, parthenote-like, embryoid body-like structures and also embryonic stem cell-like colonies whereas epithelial cells attach and transform into a bed of mesenchymal cells. Present study was undertaken, to further characterize ovarian stem cells and to comprehend better the process of spontaneous differentiation of ovarian stem cells into oocyte-like structures in vitro. Methods Ovarian stem cells were enriched by immunomagnetic sorting using SSEA-4 as a cell surface marker and were further characterized. Stem cells and clusters of OGSCs (reminiscent of germ cell nests in fetal ovaries), were characterized by immuno-localization for stem and germ cell specific markers and spontaneous differentiation in OSE cultures was studied by live cell imaging. Results Differential expression of markers specific for pluripotent VSELs (nuclear OCT-4A, SSEA-4, CD133), OGSCs (cytoplasmic OCT-4) primordial germ cells (FRAGILIS, STELLA, VASA) and germ cells (DAZL, GDF-9, SCP-3) were studied. Within one week of culture, stem cells became bigger in size, developed abundant cytoplasm, differentiated into germ cells, revealed presence of Balbiani body-like structure (mitochondrial cloud) and exhibited characteristic cytoplasmic streaming. Conclusions Presence of germ cell nests, Balbiani body-like structures and cytoplasmic streaming extensively described during fetal ovary development, are indeed well recapitulated during in vitro oogenesis in adult OSE cultures along with characteristic expression of stem/germ cell/oocyte markers. Further studies are required to assess the genetic integrity of in vitro derived oocytes before harnessing their clinical potential. Advance in our knowledge about germ cell differentiation from stem cells will enable researchers to design better in vitro strategies which in turn may have relevance to reproductive biology and regenerative medicine. PMID:24568237

  13. EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs.

    PubMed

    Ebert, Allison D; Shelley, Brandon C; Hurley, Amanda M; Onorati, Marco; Castiglioni, Valentina; Patitucci, Teresa N; Svendsen, Soshana P; Mattis, Virginia B; McGivern, Jered V; Schwab, Andrew J; Sareen, Dhruv; Kim, Ho Won; Cattaneo, Elena; Svendsen, Clive N

    2013-05-01

    We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells.

    PubMed

    Li, Xiao-Li; Zeng, Di; Chen, Yan; Ding, Lu; Li, Wen-Ju; Wei, Ting; Ou, Dong-Bo; Yan, Song; Wang, Bin; Zheng, Qiang-Sun

    2017-02-01

    Induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a promising source of cells for regenerative heart disease therapies, but progress towards their use has been limited by their low differentiation efficiency and high cellular heterogeneity. Previous studies have demonstrated expression of adrenergic receptors (ARs) in stem cells after differentiation; however, roles of ARs in fate specification of stem cells, particularly in cardiomyocyte differentiation and development, have not been characterized. Murine-induced pluripotent stem cells (miPSCs) were cultured in hanging drops to form embryoid bodies, cells of which were then differentiated into cardiomyocytes. To determine whether ARs regulated miPSC differentiation into cardiac lineages, effects of the AR agonist, epinephrine (EPI), on miPSC differentiation and underlying signalling mechanisms, were evaluated. Treatment with EPI, robustly enhanced miPSC cardiac differentiation, as indicated by increased expression levels of cardiac-specific markers, GATA4, Nkx2.5 and Tnnt2. Although β-AR signalling is the foremost signalling pathway in cardiomyocytes, EPI-enhanced cardiac differentiation depended more on α-AR signalling than β-AR signalling. In addition, selective activation of α 1 -AR signalling with specific agonists induced vigorous cardiomyocyte differentiation, whereas selective activation of α 2 - or β-AR signalling induced no or less differentiation, respectively. EPI- and α 1 -AR-dependent cardiomyocyte differentiation from miPSCs occurred through specific promotion of CPC proliferation via the MEK-ERK1/2 pathway and regulation of miPS cell-cycle progression. These results demonstrate that activation of ARs, particularly of α 1 -ARs, promoted miPSC differentiation into cardiac lineages via MEK-ERK1/2 signalling. © 2016 John Wiley & Sons Ltd.

  15. Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state.

    PubMed

    Todorova, Mariana G; Soria, Bernat; Quesada, Ivan

    2008-02-01

    Pluripotent embryonic stem (ES) cells are capable of maintaining a self-renewal state and have the potential to differentiate into derivatives of all three embryonic germ layers. Despite their importance in cell therapy and developmental biology, the mechanisms whereby ES cells remain in a proliferative and pluripotent state are still not fully understood. Here we establish a critical role of gap junctional intercellular communication (GJIC) and connexin43 (Cx43) in both processes. Pharmacological blockers of GJIC and Cx43 down-regulation by small interfering RNA (siRNA) caused a profound inhibitory effect on GJIC, as evidenced by experiments of fluorescence recovery after photobleaching. This deficient intercellular communication in ES cells induced a loss of their pluripotent state, which was manifested in morphological changes, a decrease in alkaline phosphatase activity, Oct-3/4 and Nanog expression, as well as an up-regulation of several differentiation markers. A decrease in the proliferation rate was also detected. Under these conditions, the formation of embryoid bodies from mouse ES cells was impaired, although this inhibition was reversible upon restoration of GJIC. Our findings define a major function of GJIC in the regulation of self-renewal and maintenance of pluripotency in ES cells. (c) 2007 Wiley-Liss, Inc.

  16. Temporal impact of substrate mechanics on differentiation of human embryonic stem cells to cardiomyocytes.

    PubMed

    Hazeltine, Laurie B; Badur, Mehmet G; Lian, Xiaojun; Das, Amritava; Han, Wenqing; Palecek, Sean P

    2014-02-01

    A significant clinical need exists to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, enabling tissue modeling for in vitro discovery of new drugs or cell-based therapies for heart repair in vivo. Chemical and mechanical microenvironmental factors are known to impact the efficiency of stem cell differentiation, but cardiac differentiation protocols in hPSCs are typically performed on rigid tissue culture polystyrene (TCPS) surfaces, which do not present a physiological mechanical setting. To investigate the temporal effects of mechanics on cardiac differentiation, we cultured human embryonic stem cells (hESCs) and their derivatives on polyacrylamide hydrogel substrates with a physiologically relevant range of stiffnesses. In directed differentiation and embryoid body culture systems, differentiation of hESCs to cardiac troponin T-expressing (cTnT+) cardiomyocytes peaked on hydrogels of intermediate stiffness. Brachyury expression also peaked on intermediate stiffness hydrogels at day 1 of directed differentiation, suggesting that stiffness impacted the initial differentiation trajectory of hESCs to mesendoderm. To investigate the impact of substrate mechanics during cardiac specification of mesodermal progenitors, we initiated directed cardiomyocyte differentiation on TCPS and transferred cells to hydrogels at the Nkx2.5/Isl1+ cardiac progenitor cell stage. No differences in cardiomyocyte purity with stiffness were observed on day 15. These experiments indicate that differentiation of hESCs is sensitive to substrate mechanics at early stages of mesodermal induction, and proper application of substrate mechanics can increase the propensity of hESCs to differentiate to cardiomyocytes. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells.

    PubMed

    Raof, Nurazhani Abdul; Schiele, Nathan R; Xie, Yubing; Chrisey, Douglas B; Corr, David T

    2011-03-01

    The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of a stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. [Phenotype-based primary screening for drugs promoting neuronal subtype differentiation in embryonic stem cells with light microscope].

    PubMed

    Gao, Yi-ning; Wang, Dan-ying; Pan, Zong-fu; Mei, Yu-qin; Wang, Zhi-qiang; Zhu, Dan-yan; Lou, Yi-jia

    2012-07-01

    To set up a platform for phenotype-based primary screening of drug candidates promoting neuronal subtype differentiation in embryonic stem cells (ES) with light microscope. Hanging drop culture 4-/4+ method was employed to harvest the cells around embryoid body (EB) at differentiation endpoint. Morphological evaluation for neuron-like cells was performed with light microscope. Axons for more than three times of the length of the cell body were considered as neuron-like cells. The compound(s) that promote neuron-like cells was further evaluated. Icariin (ICA, 10(-6)mol/L) and Isobavachin (IBA, 10(-7)mol/L) were selected to screen the differentiation-promoting activity on ES cells. Immunofluorescence staining with specific antibodies (ChAT, GABA) was used to evaluate the neuron subtypes. The cells treated with IBA showed neuron-like phenotype, but the cells treated with ICA did not exhibit the morphological changes. ES cells treated with IBA was further confirmed to be cholinergic and GABAergic neurons. Phenotypic screening with light microscope for molecules promoting neuronal differentiation is an effective method with advantages of less labor and material consuming and time saving, and false-positive results derived from immunofluorescence can be avoided. The method confirms that IBA is able to facilitate ES cells differentiating into neuronal cells, including cholinergic neurons and GABAergic neurons.

  19. Generating size-controlled embryoid bodies using laser direct-write.

    PubMed

    Dias, A D; Unser, A M; Xie, Y; Chrisey, D B; Corr, D T

    2014-06-01

    Embryonic stem cells (ESCs) have the potential to self-renew and differentiate into any specialized cell type. One common method to differentiate ESCs in vitro is through embryoid bodies (EBs), three-dimensional cellular aggregates that spontaneously self-assemble and generally express markers for the three germ layers, endoderm, ectoderm, and mesoderm. It has been previously shown that both EB size and 2D colony size each influence differentiation. We hypothesized that we could control the size of the EB formed by mouse ESCs (mESCs) by using a cell printing method, laser direct-write (LDW), to control both the size of the initial printed colony and the local cell density in printed colonies. After printing mESCs at various printed colony sizes and printing densities, two-way ANOVAs indicated that the EB diameter was influenced by printing density after three days (p = 0.0002), while there was no effect of the printed colony diameter on the EB diameter at the same timepoint (p = 0.74). There was no significant interaction between these two factors. Tukey's honestly significant difference test showed that high-density colonies formed significantly larger EBs, suggesting that printed mESCs quickly aggregate with nearby cells. Thus, EBs can be engineered to a desired size by controlling printing density, which will influence the design of future differentiation studies. Herein, we highlight the capacity of LDW to control the local cell density and colony size independently, at prescribed spatial locations, potentially leading to better stem cell maintenance and directed differentiation.

  20. Formation of gut-like structures in vitro from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko

    2006-01-01

    Embryonic stem (ES) cells have the potential to differentiate into all cell types originating from the three germ layers; however, there are still few reports about the formation of functional organs from embryonic stem cells. Recently, we reported that by hanging drops of mouse ES cells, embryoid bodies (EBs) formed gut-like structures in vitro composed of three layers corresponding to the epithelium, lamina propria, and musculature. The morphological features and the process of formation are similar to gut and its organogenesis in vivo. Thus, this is a good model for development of the gut and a useful tool for analysis of the factors required for gut organogenesis. The protocol basically involves a method of hanging drops to make EBs, which are then plated on coated dishes for outgrowth. EBs develop to form gut-like structures when induced to spontaneously enter a program of differentiation in vitro without addition of any extrinsic factors.

  1. Enhanced Differentiation of Human Preosteoblasts on Electrospun Blend Fiber Mats of Polydioxanone and Anionic Sulfated Polysaccharides

    PubMed Central

    2017-01-01

    The viability and differentiation of SaOS-2 preosteoblasts on fiber mats of blends comprising of the biodegradable poly(ester-ether) polydioxanone (PDX) and the sulfate-containing anionic polysaccharides kappa-carrageenan (KCG) and fucoidan (FUC) were investigated for a range of different blend compositions. The detailed analysis of the blend nanofiber properties revealed a different degree of miscibility of PDX and the polysaccharide leading to a different enrichment at the surface of the blend nanofibers, which were observed to be stable in phosphate buffer solution (PBS) for up to 5 weeks. The fibrous mats of PDX/FUC led to the highest osteogenic differentiation with very good cell viability. The electrospun blend fibers also supported human-induced pluripotent stem (iPS) cells and iPS cell-derived embryoid bodies with high cell viability, which underlines the potential of these novel blend fiber systems for optimized performance in bone tissue engineering applications. PMID:29285521

  2. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    NASA Astrophysics Data System (ADS)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  3. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    PubMed

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  4. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering

    PubMed Central

    Nourse, Marilyn B.; Halpin, Daniel E.; Scatena, Marta; Mortisen, Derek J.; Tulloch, Nathaniel L.; Hauch, Kip D.; Torok-Storb, Beverly; Ratner, Buddy D.; Pabon, Lil; Murry, Charles E.

    2010-01-01

    Objective Human embryonic stem cells (hESCs) offer a sustainable source of endothelial cells for therapeutic vascularization and tissue engineering, but current techniques for generating these cells remain inefficient. We endeavored to induce and isolate functional endothelial cells from differentiating hESCs. Methods and Results To enhance endothelial cell differentiation above a baseline of ∼2% in embryoid body (EB) spontaneous differentiation, three alternate culture conditions were compared. Vascular endothelial growth factor (VEGF) treatment of EBs showed the best induction, with markedly increased expression of endothelial cell proteins CD31, VE-Cadherin, and von Willebrand Factor, but not the hematopoietic cell marker CD45. CD31 expression peaked around days 10-14. Continuous VEGF treatment resulted in a four- to five-fold enrichment of CD31+ cells but did not increase endothelial proliferation rates, suggesting a primary effect on differentiation. CD31+ cells purified from differentiating EBs upregulated ICAM-1 and VCAM-1 in response to TNFα, confirming their ability to function as endothelial cells. These cells also expressed multiple endothelial genes and formed lumenized vessels when seeded onto porous poly(2-hydroxyethyl methacrylate) scaffolds and implanted in vivo subcutaneously in athymic rats. Collagen gel constructs containing hESC-derived endothelial cells and implanted into infarcted nude rat hearts formed robust networks of patent vessels filled with host blood cells. Conclusions VEGF induces functional endothelial cells from hESCs independent of endothelial cell proliferation. These enrichment methods increase endothelial cell yield, enabling applications for revascularization as well as basic studies of human endothelial biology. We demonstrate the ability of hESC-derived endothelial cells to facilitate vascularization of tissue-engineered implants. PMID:19875721

  5. Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells.

    PubMed

    Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel

    2017-09-01

    The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Optimization of Protocols for Derivation of Mouse Embryonic Stem Cell Lines from Refractory Strains, Including the Non Obese Diabetic Mouse

    PubMed Central

    Davies, Timothy J.

    2012-01-01

    The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes. PMID:21933027

  7. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

    PubMed Central

    Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X

    2004-01-01

    Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613

  8. Proliferation in culture of primordial germ cells derived from embryonic stem cell: induction by retinoic acid.

    PubMed

    Makoolati, Zohreh; Movahedin, Mansoureh; Forouzandeh-Moghadam, Mehdi

    2016-12-01

    An in vitro system that supports primordial germ cells (PGCs) survival and proliferation is useful for enhancement of these cells and efficient transplantation in infertility disorders. One approach is cultivation of PGCs under proper conditions that allow self-renewal and proliferation of PGCs. For this purpose, we compared the effects of different concentrations of retinoic acid (RA), and the effect of PGCs co-culture (Co-C) with SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) cells on the proliferation of embryonic stem cells (ESCs)-derived PGCs. One-day-old embryoid body (EB) was cultured for 4 days in simple culture system in the presence of 5 ng/ml bone morphogenetic protein-4 (BMP4) (SCB group) for PGC induction. For PGC enrichment, ESCs-derived germ cells were cultured for 7 days in the presence of different doses (0-5  μM) of RA, both in the simple and STO Co-C systems. At the end of the culture period, viability and proliferation rates were assessed and expression of mouse vasa homologue (Mvh),  α6 integrin,  β1 integrin, stimulated by retinoic acid 8 (Stra8) and piwi (Drosophila)-like 2 (Piwil2) was evaluated using quantitative PCR. Also, the inductive effects were investigated immunocytochemically with Mvh and cadherin1 (CDH1) on the selected groups. Immunocytochemistry/PCR results showed higher expression of Mvh, the PGC-specific marker, in 3  μM RA concentrations on the top of the STO feeder layer. Meanwhile, assessment of the Stra8 mRNA and CDH1 protein, the specific makers for spermatogonia, showed no significant differences between groups. Based on the results, it seems that in the presence of 3 μM RA on top of the STO feeder layer cells, the majority of the cells transdifferentiated into germ cells were PGCs. © 2016 The Author(s).

  9. Paramagnetic Beads and Magnetically Mediated Strain Enhance Cardiomyogenesis in Mouse Embryoid Bodies

    PubMed Central

    Geuss, Laura R.; Wu, Douglas C.; Ramamoorthy, Divya; Alford, Corinne D.; Suggs, Laura J.

    2014-01-01

    Mechanical forces play an important role in proper embryologic development, and similarly such forces can directly impact pluripotency and differentiation of mouse embryonic stem cells (mESC) in vitro. In addition, manipulation of the embryoid body (EB) microenvironment, such as by incorporation of microspheres or microparticles, can similarly influence fate determination. In this study, we developed a mechanical stimulation regimen using permanent neodymium magnets to magnetically attract cells within an EB. Arginine-Glycine-Aspartic Acid (RGD)-conjugated paramagnetic beads were incorporated into the interior of the EBs during aggregation, allowing us to exert force on individual cells using short-term magnetization. EBs were stimulated for one hour at different magnetic field strengths, subsequently exerting a range of force intensity on the cells at different stages of early EB development. Our results demonstrated that following exposure to a 0.2 Tesla magnetic field, ESCs respond to magnetically mediated strain by activating Protein Kinase A (PKA) and increasing phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) expression. The timing of stimulation can also be tailored to guide ESC differentiation: the combination of bone morphogenetic protein 4 (BMP4) supplementation with one hour of magnetic attraction on Day 3 enhances cardiomyogenesis by increasing contractile activity and the percentage of sarcomeric α-actin-expressing cells compared to control samples with BMP4 alone. Interestingly, we also observed that the beads alone had some impact on differentiation by increasingly slightly, albeit not significantly, the percentage of cardiomyocytes. Together these results suggest that magnetically mediated strain can be used to enhance the percentage of mouse ESC-derived cardiomyocytes over current differentiation protocols. PMID:25501004

  10. Phenotype characterization of embryoid body structures generated by a crystal comet effect tail in an intercellular cancer collision scenario.

    PubMed

    Diaz, Jairo A; Murillo, Mauricio F

    2012-01-01

    Cancer is, by definition, the uncontrolled growth of autonomous cells that eventually destroy adjacent tissues and generate architectural disorder. However, this concept cannot be totally true. In three well documented studies, we have demonstrated that cancer tissues produce order zones that evolve over time and generate embryoid body structures in a space-time interval. The authors decided to revise the macroscopic and microscopic material in well-developed malignant tumors in which embryoid bodies were identified to determine the phenotype characterization that serves as a guideline for easy recognition. The factors responsible for this morphogenesis are physical, bioelectric, and magnetic susceptibilities produced by crystals that act as molecular designers for the topographic gradients that guide the surrounding silhouette and establish tissue head-tail positional identities. The structures are located in amniotic-like cavities and show characteristic somite-like embryologic segmentation. Immunophenotypic study has demonstrated exclusion factor positional identity in relation to enolase-immunopositive expression of embryoid body and human chorionic gonadotropin immunopositivity exclusion factor expression in the surrounding tissues. The significance of these observations is that they can also be predicted by experimental image data collected by the Large Hadron Collider (LHC) accelerator at the European Organization for Nuclear Research, in which two-beam subatomic collision particles in the resulting debris show hyperorder domains similar to those identified by us in intercellular cancer collisions. Our findings suggest that we are dealing with true reverse biologic system information in an activated collective cancer stem cell memory, in which physics participates in the elaboration of geometric complexes and chiral biomolecules that serve to build bodies with embryoid print as it develops during gestation. Reversal mechanisms in biology are intimately linked with DNA repair. Further genotype studies must be carried out to determine whether the subproducts of these structures can be used in novel strategies to treat cancer.

  11. Phenotype characterization of embryoid body structures generated by a crystal comet effect tail in an intercellular cancer collision scenario

    PubMed Central

    Diaz, Jairo A; Murillo, Mauricio F

    2012-01-01

    Cancer is, by definition, the uncontrolled growth of autonomous cells that eventually destroy adjacent tissues and generate architectural disorder. However, this concept cannot be totally true. In three well documented studies, we have demonstrated that cancer tissues produce order zones that evolve over time and generate embryoid body structures in a space-time interval. The authors decided to revise the macroscopic and microscopic material in well-developed malignant tumors in which embryoid bodies were identified to determine the phenotype characterization that serves as a guideline for easy recognition. The factors responsible for this morphogenesis are physical, bioelectric, and magnetic susceptibilities produced by crystals that act as molecular designers for the topographic gradients that guide the surrounding silhouette and establish tissue head-tail positional identities. The structures are located in amniotic-like cavities and show characteristic somite-like embryologic segmentation. Immunophenotypic study has demonstrated exclusion factor positional identity in relation to enolase-immunopositive expression of embryoid body and human chorionic gonadotropin immunopositivity exclusion factor expression in the surrounding tissues. The significance of these observations is that they can also be predicted by experimental image data collected by the Large Hadron Collider (LHC) accelerator at the European Organization for Nuclear Research, in which two-beam subatomic collision particles in the resulting debris show hyperorder domains similar to those identified by us in intercellular cancer collisions. Our findings suggest that we are dealing with true reverse biologic system information in an activated collective cancer stem cell memory, in which physics participates in the elaboration of geometric complexes and chiral biomolecules that serve to build bodies with embryoid print as it develops during gestation. Reversal mechanisms in biology are intimately linked with DNA repair. Further genotype studies must be carried out to determine whether the subproducts of these structures can be used in novel strategies to treat cancer. PMID:22346365

  12. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse

    PubMed Central

    Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.

    2011-01-01

    SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168

  13. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells

    PubMed Central

    van den Brink, Susanne C.; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A.; Martinez Arias, Alfonso

    2014-01-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’. PMID:25371360

  14. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells.

    PubMed

    van den Brink, Susanne C; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A; Martinez Arias, Alfonso

    2014-11-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'. © 2014. Published by The Company of Biologists Ltd.

  15. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin

    PubMed Central

    Wiese, Cornelia; Nikolova, Teodora; Zahanich, Ihor; Sulzbacher, Sabine; Fuchs, Joerg; Yamanaka, Satoshi; Graf, Eva; Ravens, Ursula; Boheler, Kenneth R.; Wobus, Anna M.

    2015-01-01

    Background Embryonic stem (ES) cells differentiate into cardiac phenotypes representing early pacemaker-, atrial-, ventricular-, and sinus node-like cells, however, ES-derived specification into sinus nodal cells is not yet known. By using the naphthylamine derivative of urea, suramin, we were able to follow the process of cardiac specialization into sinus node-like cells. Methods Differentiating mouse ES cells were treated with suramin (500 μM) from day 5 to 7 of embryoid body formation, and cells were analysed for their differentiation potential via morphological analysis, flow cytometry, RT-PCR, immunohistochemistry and patch clamp analysis. Results Application of suramin resulted in an increased number of cardiac cells, but inhibition of neuronal, skeletal muscle and definitive endoderm differentiation. Immediately after suramin treatment, a decreased mesendoderm differentiation was found. Brachyury, FGF10, Wnt8 and Wnt3a transcript levels were significantly down-regulated, followed by a decrease in mesoderm- and cardiac progenitor-specific markers BMP2, GATA4/5, Wnt11, Isl1, Nkx2.5 and Tbx5 immediately after removal of the substance. With continued differentiation, a significant up-regulation of Brachyury, FGF10 and GATA5 transcript levels was observed, whereas Nkx2.5, Isl1, Tbx5, BMP2 and Wnt11 levels were normalized to control levels. At advanced differentiation stages, sinus node-specific HCN4, Tbx2 and Tbx3 transcript levels were significantly up-regulated. Immunofluorescence and patch-clamp analysis confirmed the increased number of sinus node-like cells, and electrophysiological analysis revealed a lower number of atrial- and ventricular-like cardiomyocytes following suramin treatment. Conclusion We conclude that the interference of suramin with the cardiac differentiation process modified mesoderm- and cardiac-specific gene expression resulting in enhanced formation of sinus node-like cells. PMID:19775764

  16. Attenuation of teratoma formation by p27 overexpression in induced pluripotent stem cells.

    PubMed

    Matsu-ura, Toru; Sasaki, Hiroshi; Okada, Motoi; Mikoshiba, Katsuhiko; Ashraf, Muhammad

    2016-02-15

    Pluripotent stem cells, such as embryonic stem cells or induced pluripotent stem cells, have a great potential for regenerative medicine. Induced pluripotent stem cells, in particular, are suitable for replacement of tissue by autologous transplantation. However, tumorigenicity is a major risk in clinical application of both embryonic stem cells and induced pluripotent stem cells. This study explores the possibility of manipulating the cell cycle for inhibition of tumorigenicity. We genetically modified mouse induced pluripotent stem cells (miPSCs) to overexpress p27 tumor suppressor and examined their proliferation rate, gene expression, cardiac differentiation, tumorigenicity, and therapeutic potential in a mouse model of coronary artery ligation. Overexpression of p27 inhibited cell division of miPSCs, and that inhibition was dependent on the expression level of p27. p27 overexpressing miPSCs had pluripotency characteristics but lost stemness earlier than normal miPSCs during embryoid body and teratoma formation. These cellular characteristics led to none or smaller teratoma when the cells were injected into nude mice. Transplantation of both miPSCs and p27 overexpressing miPSCs into the infarcted mouse heart reduced the infarction size and improved left ventricular function. The overexpression of p27 attenuated tumorigenicity by reducing proliferation and earlier loss of stemness of miPSCs. The overexpression of p27 did not affect pluripotency and differentiation characteristics of miPSC. Therefore, regulation of the proliferation rate of miPSCs offers great therapeutic potential for repair of the injured myocardium.

  17. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Kamble, Nitin Manchindra; Singh, Karn Pratap; Chauhan, Manmohan Singh; Singla, Suresh Kumar; Manik, Radhey Sham; Palta, Prabhat

    2011-12-01

    A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.

  18. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.

    PubMed

    Hunt, Nicola C; Hallam, Dean; Karimi, Ayesha; Mellough, Carla B; Chen, Jinju; Steel, David H W; Lako, Majlinda

    2017-02-01

    No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is, however, limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel), 0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker, MATH5. Furthermore, 0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1, CRX, RCVRN, AP2α or VSX2) as determined by qRT-PCR, or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE, but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation, transport and transplantation of neural retina and RPE, and may also enhance formation of other pigmented, neural or epithelial tissue. The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However, derivation of retinal tissue from PSCs using defined media is a lengthy process and often variable between different cell lines. This study indicated that alginate hydrogels enhanced retinal tissue development from PSCs, whereas hyaluronic acid-based hydrogels did not. This is the first study to show that 3D culture with a biomaterial scaffold can improve retinal tissue derivation from PSCs. These findings indicate potential for the clinical application of alginate hydrogels for the derivation and subsequent transplantation retinal tissue. This work may also have implications for the derivation of other pigmented, neural or epithelial tissue. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Generation of human β-thalassemia induced pluripotent cell lines by reprogramming of bone marrow-derived mesenchymal stromal cells using modified mRNA.

    PubMed

    Varela, Ioanna; Karagiannidou, Angeliki; Oikonomakis, Vasilis; Tzetis, Maria; Tzanoudaki, Marianna; Siapati, Elena-Konstantina; Vassilopoulos, George; Graphakos, Stelios; Kanavakis, Emmanuel; Goussetis, Evgenios

    2014-12-01

    Synthetic modified mRNA molecules encoding pluripotency transcription factors have been used successfully in reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs). We have applied this method on bone marrow-derived mesenchymal stromal cells (BM-MSCs) obtained from a patient with β-thalassemia (β-thal) with the aim to generate trangene-free β-thal-iPSCs. Transfection of 10(4) BM-MSCs by lipofection with mRNA encoding the reprogramming factors Oct4, Klf4, Sox2, cMyc, and Lin28 resulted in formation of five iPSC colonies, from which three were picked up and expanded in β-thal-iPSC lines. After 10 serial passages in vitro, β-thal-iPSCs maintain genetic stability as shown by array comparative genomic hybridization (aCGH) and are capable of forming embryoid bodies in vitro and teratomas in vivo. Their gene expression profile compared to human embryonic stem cells (ESCs) and BM-MSCs seems to be similar to that of ESCs, whereas it differs from the profile of the parental BM-MSCs. Differentiation cultures toward a hematopoietic lineage showed the generation of CD34(+) progenitors up to 10%, but with a decreased hematopoietic colony-forming capability. In conclusion, we report herein the generation of transgene-free β-thal-iPSCs that could be widely used for disease modeling and gene therapy applications. Moreover, it was demonstrated that the mRNA-based reprogramming method, used mainly in fibroblasts, is also suitable for reprogramming of human BM-MSCs.

  20. Microfluidic-based patterning of embryonic stem cells for in vitro development studies.

    PubMed

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang

    2013-12-07

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.

  1. Microfluidic-based patterning of embryonic stem cells for in vitro development studies

    PubMed Central

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.

    2013-01-01

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509

  2. Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells.

    PubMed

    Shin, Dong-Hyuk; Lee, Jeoung-Eun; Eum, Jin Hee; Chung, Young Gie; Lee, Hoon Taek; Lee, Dong Ryul

    2017-12-01

    Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

  3. Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells

    PubMed Central

    Shin, Dong-Hyuk; Lee, Jeoung-Eun; Eum, Jin Hee; Chung, Young Gie; Lee, Hoon Taek; Lee, Dong Ryul

    2017-01-01

    ABSTRACT Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues. PMID:29359202

  4. Magnolol inhibits angiogenesis by regulating ROS-mediated apoptosis and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells.

    PubMed

    Kim, Gi Dae; Oh, Jedo; Park, Hyen-Joo; Bae, Kihwan; Lee, Sang Kook

    2013-08-01

    Magnolol, a neolignan from the traditional medicinal plant Magnolia obovata, has been shown to possess neuroprotective, anti-inflammatory, anticancer and anti-angiogenic activities. However, the precise mechanism of the anti-angiogenic activity of magnolol remains to be elucidated. In the present study, the anti-angiogenic effect of magnolol was evaluated in mouse embryonic stem (mES)/embryoid body (EB)-derived endothelial-like cells. The endothelial-like cells were obtained by differentiation from mES/EB cells. Magnolol (20 µM) significantly suppressed the transcriptional and translational expression of platelet endothelial cell adhesion molecule (PECAM), an endothelial biomarker, in mES/EB-derived endothelial-like cells. To further understand the molecular mechanism of the suppression of PECAM expression, signaling pathways were analyzed in the mES/EB-derived endothelial-like cells. Magnolol induced the generation of reactive oxygen species (ROS) by mitochondria, a process that was associated with the induction of apoptosis as determined by positive Annexin V staining and the activation of cleaved caspase-3. The involvement of ROS generation by magnolol was confirmed by treatment with an antioxidant, N-acetyl-cysteine (NAC). NAC inhibited the magnolol-mediated induction of ROS generation and suppression of PECAM expression. In addition, magnolol suppressed the activation of MAPKs (ERK, JNK and p38) and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells. Taken together, these findings demonstrate for the first time that the anti-angiogenic activity of magnolol may be associated with ROS-mediated apoptosis and the suppression of the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells.

  5. The Cell-Surface N-Glycome of Human Embryonic Stem Cells and Differentiated Hepatic Cells thereof.

    PubMed

    Montacir, Houda; Freyer, Nora; Knöspel, Fanny; Urbaniak, Thomas; Dedova, Tereza; Berger, Markus; Damm, Georg; Tauber, Rudolf; Zeilinger, Katrin; Blanchard, Véronique

    2017-07-04

    Human embryonic stem cells (hESCs) are pluripotent stem cells that offer a wide range of applications in regenerative medicine. In addition, they have been proposed as an appropriate alternative source of hepatocytes. In this work, hESCs were differentiated into definitive endodermal cells (DECs), followed by maturation into hepatocyte-like cells (HLCs). Their cell-surface N-glycome was profiled and also compared with that of primary human hepatocytes (PHHs). Undifferentiated hESCs contained large amounts of high-mannose N-glycans. In contrast, complex-type N-glycans such as asialylated or monosialylated biantennary and triantennary N-glycans were dominant in HLCs, and fully galactosylated structures were significantly more abundant than in undifferentiated hESCs. The cell-surface N-glycosylation of PHHs was more biologically processed than that of HLCs, with bisialylated biantennary and trisialylated triantennary structures predominant. This is the first report of the cell surface N-glycome of PHHs and of HLCs being directly generated from hESCs without embryoid body formation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    PubMed Central

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  7. Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs).

    PubMed

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Richter, Magdalena; Trzeciak, Tomasz

    2017-04-01

    Stem cells (SCs) are a promising approach to regenerative medicine, with the potential to treat numerous orthopedic disorders, including osteo-degenerative diseases. The development of human-induced pluripotent stem cells (hiPSCs) has increased the potential of SCs for new treatments. However, current methods of differentiating hiPSCs into chondrocyte-like cells are suboptimal and better methods are needed. The aim of the present study was to assess four different chondrogenic differentiation protocols to identify the most efficient method of generating hiPSC-derived chondrocytes. For this study, hiPSCs were obtained from primary human dermal fibroblasts (PHDFs) and differentiated into chondrocyte-like cells using four different protocols: 1) monolayer culture with defined growth factors (GF); 2) embryoid bodies (EBs) in a chondrogenic medium with TGF-β3 cells; 3) EBs in chondrogenic medium conditioned with human chondrocytes (HC-402-05a cell line) and 4) EBs in chondrogenic medium conditioned with human chondrocytes and supplemented with TGF-β3. The cells obtained through these four protocols were evaluated and compared at the mRNA and protein levels. Although chondrogenic differentiation of hiPSCs was successfully achieved with all of these protocols, the two fastest and most cost-effective methods were the monolayer culture with GFs and the medium conditioned with human chondrocytes. Both of these methods are superior to other available techniques. The main advantage of the conditioned medium is that the technique is relatively simple and inexpensive while the directed method (i.e., monolayer culture with GFs) is faster than any protocol described to date because it is does not require additional steps such as EB formation.

  8. Derivation of cat embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells.

    PubMed

    Gómez, M C; Serrano, M A; Pope, C Earle; Jenkins, J A; Biancardi, M N; López, M; Dumas, C; Galiguis, J; Dresser, B L

    2010-09-01

    The domestic cat is a focal mammalian species that is used as a model for developing assisted reproductive technologies for preserving endangered cats and for studying human diseases. The generation of stable characterized cat embryonic stem cells (ESC) lines to use as donor nuclei may help to improve the efficiency of interspecies somatic cell nuclear transfer for preserving endangered cats and allow the creation of knockout cell lines to generate knockout cats for studying function of specific genes related to human diseases. It will also enable the possibility of producing gametes in vitro from ESC of endangered cats. In the present study, we report the generation of cat embryonic stem-like (cESL) cells from blastocysts derived entirely in vitro. We generated 32 cESL cell lines from 331 in vitro derived blastocysts from which inner cell masses were isolated by immunosurgery or by a mechanical method. Inhibition of cat dermal fibroblast (CDF) proliferation after exposure to mitomycin-C was both dose and time dependent, where doses of 30 to 40 microg/mL for 5 h were most efficient. These dosages were higher than that required to inhibit cell proliferation of mouse fetal fibroblasts (MFF; 10 microg/mL for 2.5 h). Mitomycin-C did not significantly increase necrosis of cells from either species, and had an anti-proliferative effect at concentrations below cytotoxicity. A clear species-specific relationship between feeder layers and derivation of cESL cell lines was observed, where higher numbers of cESL cell lines were generated on homologous cat feeder layers (n = 26) than from those derived on heterologous mouse feeder layers (n = 6). Three cESL cell lines generated from immunosurgery and cultured on CDF maintained self-renewal and were morphologically undifferentiated for nine and twelve passages (69-102 days). These lines showed a tightly packed dome shaped morphology, exhibited alkaline phosphatase activity and immuno-expression of the pluripotent marker OCT-4 and surface marker SSEA-1. Primary colonies at P0 to P3 and cat blastocysts expressed transcription factors OCT-4, NANOG and SOX-2 and the proto-oncogene C-MYC. However, expression was at levels significantly lower than in vitro produced blastocysts. During culture, cESL colonies spontaneously differentiated into fibroblasts, cardiomyocytes, and embryoid bodies. Development of techniques to prevent differentiation of cESL cells will be essential for maintaining defined cell lines. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Generation of tooth-periodontium complex structures using high-odontogenic potential dental epithelium derived from mouse embryonic stem cells.

    PubMed

    Zhang, Yancong; Li, Yongliang; Shi, Ruirui; Zhang, Siqi; Liu, Hao; Zheng, Yunfei; Li, Yan; Cai, Jinglei; Pei, Duanqing; Wei, Shicheng

    2017-06-08

    A number of studies have shown that tooth-like structures can be regenerated using induced pluripotent stem cells and mouse embryonic stem (mES) cells. However, few studies have reported the regeneration of tooth-periodontium complex structures, which are more suitable for clinical tooth transplantation. We established an optimized approach to induce high-odontogenic potential dental epithelium derived from mES cells by temporally controlling bone morphogenic protein 4 (BMP4) function and regenerated tooth-periodontium complex structures in vivo. First, immunofluorescence and quantitative reverse transcription-polymerase chain reaction were used to identify the watershed of skin and the oral ectoderm. LDN193189 was then used to inhibit the BMP4 receptor around the watershed, followed by the addition of exogenous BMP4 to promote BMP4 function. The generated dental epithelium was confirmed by western blot analysis and immunofluorescence. The generated epithelium was ultimately combined with embryonic day 14.5 mouse mesenchyme and transplanted into the renal capsules of nude mice. After 4 weeks, the tooth-periodontium complex structure was examined by micro-computed tomography (CT) and hematoxylin and eosin (H&E) staining. Our study found that the turning point of oral ectoderm differentiation occurred around day 3 after the embryoid body was transferred to a common culture plate. Ameloblastin-positive dental epithelial cells were detected following the temporal regulation of BMP4. Tooth-periodontium complex structures, which included teeth, a periodontal membrane, and alveolar bone, were formed when this epithelium was combined with mouse dental mesenchyme and transplanted into the renal capsules of nude mice. Micro-CT and H&E staining revealed that the generated tooth-periodontium complex structures shared a similar histological structure with normal mouse teeth. An optimized induction method was established to promote the differentiation of mES cells into dental epithelium by temporally controlling the function of BMP4. A novel tooth-periodontium complex structure was generated using the epithelium.

  10. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells.

    PubMed

    Sotthibundhu, Areechun; McDonagh, Katya; von Kriegsheim, Alexander; Garcia-Munoz, Amaya; Klawiter, Agnieszka; Thompson, Kerry; Chauhan, Kapil Dev; Krawczyk, Janusz; McInerney, Veronica; Dockery, Peter; Devine, Michael J; Kunath, Tilo; Barry, Frank; O'Brien, Timothy; Shen, Sanbing

    2016-11-15

    Cellular reprogramming is a stressful process, which requires cells to engulf somatic features and produce and maintain stemness machineries. Autophagy is a process to degrade unwanted proteins and is required for the derivation of induced pluripotent stem cells (iPSCs). However, the role of autophagy during iPSC maintenance remains undefined. Human iPSCs were investigated by microscopy, immunofluorescence, and immunoblotting to detect autophagy machinery. Cells were treated with rapamycin to activate autophagy and with bafilomycin to block autophagy during iPSC maintenance. High concentrations of rapamycin treatment unexpectedly resulted in spontaneous formation of round floating spheres of uniform size, which were analyzed for differentiation into three germ layers. Mass spectrometry was deployed to reveal altered protein expression and pathways associated with rapamycin treatment. We demonstrate that human iPSCs express high basal levels of autophagy, including key components of APMKα, ULK1/2, BECLIN-1, ATG13, ATG101, ATG12, ATG3, ATG5, and LC3B. Block of autophagy by bafilomycin induces iPSC death and rapamycin attenuates the bafilomycin effect. Rapamycin treatment upregulates autophagy in iPSCs in a dose/time-dependent manner. High concentration of rapamycin reduces NANOG expression and induces spontaneous formation of round and uniformly sized embryoid bodies (EBs) with accelerated differentiation into three germ layers. Mass spectrometry analysis identifies actin cytoskeleton and adherens junctions as the major targets of rapamycin in mediating iPSC detachment and differentiation. High levels of basal autophagy activity are present during iPSC derivation and maintenance. Rapamycin alters expression of actin cytoskeleton and adherens junctions, induces uniform EB formation, and accelerates differentiation. IPSCs are sensitive to enzyme dissociation and require a lengthy differentiation time. The shape and size of EBs also play a role in the heterogeneity of end cell products. This research therefore highlights the potential of rapamycin in producing uniform EBs and in shortening iPSC differentiation duration.

  11. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    PubMed

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  12. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.

    PubMed

    Wu, Huei-Wen; Hsiao, Yi-Hsing; Chen, Chih-Chen; Yet, Shaw-Fang; Hsu, Chia-Hsien

    2016-07-06

    The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  13. Functional maintenance of differentiated embryoid bodies in microfluidic systems: a platform for personalized medicine.

    PubMed

    Guven, Sinan; Lindsey, Jennifer S; Poudel, Ishwari; Chinthala, Sireesha; Nickerson, Michael D; Gerami-Naini, Behzad; Gurkan, Umut A; Anchan, Raymond M; Demirci, Utkan

    2015-03-01

    Hormone replacement therapies have become important for treating diseases such as premature ovarian failure or menopausal complications. The clinical use of bioidentical hormones might significantly reduce some of the potential risks reportedly associated with the use of synthetic hormones. In the present study, we demonstrate the utility and advantage of a microfluidic chip culture system to enhance the development of personalized, on-demand, treatment modules using embryoid bodies (EBs). Functional EBs cultured on microfluidic chips represent a platform for personalized, patient-specific treatment cassettes that can be cryopreserved until required for treatment. We assessed the viability, differentiation, and functionality of EBs cultured and cryopreserved in this system. During extended microfluidic culture, estradiol, progesterone, testosterone, and anti-müllerian hormone levels were measured, and the expression of differentiated steroidogenic cells was confirmed by immunocytochemistry assay for the ovarian tissue markers anti-müllerian hormone receptor type II, follicle-stimulating hormone receptor, and inhibin β-A and the estrogen biosynthesis enzyme aromatase. Our studies showed that under microfluidic conditions, differentiated steroidogenic EBs continued to secrete estradiol and progesterone at physiologically relevant concentrations (30-120 pg/ml and 150-450 pg/ml, respectively) for up to 21 days. Collectively, we have demonstrated for the first time the feasibility of using a microfluidic chip system with continuous flow for the differentiation and extended culture of functional steroidogenic stem cell-derived EBs, the differentiation of EBs into cells expressing ovarian antigens in a microfluidic system, and the ability to cryopreserve this system with restoration of growth and functionality on thawing. These results present a platform for the development of a new therapeutic system for personalized medicine. ©AlphaMed Press.

  14. Generation of induced pluripotent stem cells with high efficiency from human embryonic renal cortical cells.

    PubMed

    Yao, Ling; Chen, Ruifang; Wang, Pu; Zhang, Qi; Tang, Hailiang; Sun, Huaping

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) emerges as a prospective therapeutic angle in regenerative medicine and a tool for drug screening. Although increasing numbers of iPSCs from different sources have been generated, there has been limited progress in yield of iPSC. Here, we show that four Yamanaka factors Oct4, Sox2, Klf4 and c-Myc can convert human embryonic renal cortical cells (hERCCs) to pluripotent stem cells with a roughly 40-fold higher reprogramming efficiency compared with that of adult human dermal fibroblasts. These iPSCs show pluripotency in vitro and in vivo, as evidenced by expression of pluripotency associated genes, differentiation into three embryonic germ layers by teratoma tests, as well as neuronal fate specification by embryoid body formation. Moreover, the four exogenous genes are effectively silenced in these iPSCs. This study highlights the use of hERCCs to generate highly functional human iPSCs which may aid the study of genetic kidney diseases and accelerate the development of cell-based regenerative therapy.

  15. Generation of Arbas Cashmere Goat Induced Pluripotent Stem Cells Through Fibroblast Reprogramming.

    PubMed

    Tai, Dapeng; Liu, Pengxia; Gao, Jing; Jin, Muzi; Xu, Teng; Zuo, Yongchun; Liang, Hao; Liu, Dongjun

    2015-08-01

    Various factors affect the process of obtaining stable Arbas cashmere goat embryonic stem cells (ESCs), for example, the difficulty in isolating cells at the appropriate stage of embryonic development, the in vitro culture environment, and passage methods. With the emergence of induced pluripotent stem cell (iPSC) technology, it has become possible to use specific genes to induce somatic cell differentiation in PSCs. We transferred OCT4, SOX2, c-MYC, and KLF4 into Arbas cashmere goat fetal fibroblasts, then induced and cultured them using a drug-inducible system to obtain Arbas goat iPSCs that morphologically resembled mouse iPSCs. After identification, the obtained goat iPSCs expressed ESC markers, had a normal karyotype, could differentiate into embryoid bodies in vitro, and could differentiate into three germ layer cell types and form teratomas in vivo. We used microarray gene expression profile analysis to elucidate the reprogramming process. Our results provide the experimental basis for establishing cashmere goat iPSC lines and for future in-depth studies on molecular mechanism of cashmere goat somatic cell reprogramming.

  16. Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation.

    PubMed

    Fu, Jiayin; Chuah, Yon Jin; Ang, Wee Tong; Zheng, Nan; Wang, Dong-An

    2017-05-30

    Myocardiocyte derived from pluripotent stem cells, such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), is a promising cell source for cardiac tissue engineering. Combined with microfluidic technologies, a heart-on-a-chip is very likely to be developed and function as a platform for high throughput drug screening. Polydimethylsiloxane (PDMS) silicone elastomer is a widely-used biomaterial for the investigation of cell-substrate interactions and biochip fabrication. However, the intrinsic PDMS surface hydrophobicity inhibits cell adhesion on the PDMS surface, and PDMS surface modification is required for effective cell adhesion. Meanwhile, the formulation of PDMS also affects the behaviors of the cells. To fabricate PDMS-based biochips for ESC pluripotency maintenance and cardiac differentiation, PDMS surface modification and formulation were optimized in this study. We found that a polydopamine (PD) with gelatin coating greatly improved the ESC adhesion, proliferation and cardiac differentiation on its surface. In addition, different PDMS substrates varied in their surface properties, which had different impacts on ESCs, with the 40 : 1 PDMS substrate being more favorable for ESC adhesion and proliferation as well as embryoid body (EB) attachment than the other PDMS substrates. Moreover, the ESC pluripotency was best maintained on the 5 : 1 PDMS substrate, while the cardiac differentiation of the ESCs was optimal on the 40 : 1 PDMS substrate. Based on the optimized coating method and PDMS formulation, biochips with two different designs were fabricated and evaluated. Compared to the single channels, the multiple channels on the biochips could provide larger areas and accommodate more nutrients to support improved ESC pluripotency maintenance and cardiac differentiation. These results may contribute to the development of a real heart-on-a-chip for high-throughput drug screening in the future.

  17. Derivation of an induced pluripotent stem cell line (MUSIi004-A) from dermal fibroblasts of a 48-year-old spinocerebellar ataxia type 3 patient.

    PubMed

    Ritthaphai, Alisa; Wattanapanitch, Methichit; Pithukpakorn, Manop; Heepchantree, Worapa; Soi-Ampornkul, Rungtip; Mahaisavariya, Panchalee; Triwongwaranat, Daranporn; Pattanapanyasat, Kovit; Vatanashevanopakorn, Chinnavuth

    2018-05-21

    Dermal fibroblasts were obtained from a 48-year-old female patient with spinocerebellar ataxia type 3 (SCA3). Fibroblasts were reprogrammed by nucleofection with episomal plasmids, carrying L-MYC, LIN28, OCT4, SOX2, KLF4, EBNA-1 and shRNA against p53. The SCA3 patient-specific iPSC line, MUSIi004-A, was characterized by immunofluorescence staining to verify the expression of pluripotent markers. The iPSC line exhibited an ability to differentiate into three germ layers by embryoid body (EB) formation. Karyotypic analysis of the MUSIi004-A line was normal. The mutant allele was still present in the iPSC line. This iPSC line represents a useful tool for studying neurodegeneration in SCA3. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Electrophysiological properties of prion-positive cardiac progenitors derived from murine embryonic stem cells.

    PubMed

    Fujii, Hiroshi; Ikeuchi, Yu; Kurata, Yasutaka; Ikeda, Nobuhito; Bahrudin, Udin; Li, Peili; Nakayama, Yuji; Endo, Ryo; Hasegawa, Akira; Morikawa, Kumi; Miake, Junichiro; Yoshida, Akio; Hidaka, Kyoko; Morisaki, Takayuki; Ninomiya, Haruaki; Shirayoshi, Yasuaki; Yamamoto, Kazuhiro; Hisatome, Ichiro

    2012-01-01

    The prion protein (PrP) has been reported to serve as a surface maker for isolation of cardiomyogenic progenitors from murine embryonic stem (ES) cells. Although PrP-positive cells exhibited automaticity, their electrophysiological characteristics remain unresolved. The aim of the present study was therefore to investigate the electrophysiological properties of PrP-positive cells in comparison with those of HCN4p-or Nkx2.5-positive cells. Differentiation of AB1, HCN5p-EGFP and hcgp7 ES cells into cardiac progenitors was induced by embryoid body (EB) formation. EBs were dissociated and cells expressing PrP, HCN4-EGFP and/or Nkx2.5-GFP were collected via flow cytometry. Sorted cells were subjected to reverse transcriptase-polymerase chain reaction, immunostaining and patch-clamp experiments. PrP-positive cells expressed mRNA of undifferentiation markers, first and second heart field markers, and cardiac-specific genes and ion channels, indicating their commitment to cardiomyogenic progenitors. PrP-positive cells with automaticity showed positive and negative chronotropic responses to isoproterenol and carbamylcholine, respectively. Hyperpolarization-activated cation current (I(f)) was barely detectable, whereas Na(+) and L-type Ca(2+) channel currents were frequently observed. Their spontaneous activity was slowed by inhibition of sarcoplasmic reticulum Ca(2+) uptake and release but not by blocking I(f). The maximum diastolic potential of their spontaneous firings was more depolarized than that of Nkx2.5-GFP-positive cells. PrP-positive cells contained cardiac progenitors that separated from the lineage of sinoatrial node cells. PrP can be used as a marker to enrich nascent cardiac progenitors.

  19. A Novel Strategy for Enrichment and Isolation of Osteoprogenitor Cells from Induced Pluripotent Stem Cells Based on Surface Marker Combination

    PubMed Central

    Ochiai-Shino, Hiromi; Kato, Hiroshi; Sawada, Takashi; Onodera, Shoko; Saito, Akiko; Takato, Tsuyoshi; Shibahara, Takahiko; Muramatsu, Takashi; Azuma, Toshifumi

    2014-01-01

    In this study, we developed a new method to stimulate osteogenic differentiation in tissue-nonspecific alkaline phosphatase (TNAP)-positive cells liberated from human induced pluripotent stem cells (hiPSCs)-derived embryoid bodies (EBs) with 14 days long TGF-β/IGF-1/FGF-2 treatment. TNAP is a marker protein of osteolineage cells. We analyzed and isolated TNAP-positive and E-cadherin-negative nonepithelial cells by fluorescence-activated cell sorting. Treating the cells with a combination of transforming growth factor (TGF)-β, insulin-like growth factor (IGF)-1, and fibroblast growth factor (FGF)-2 for 14 days greatly enhanced TNAP expression and maximized expression frequency up to 77.3%. The isolated cells expressed high levels of osterix, which is an exclusive osteogenic marker. Culturing these TNAP-positive cells in osteoblast differentiation medium (OBM) led to the expression of runt-related transcription factor 2, type I collagen, bone sialoprotein, and osteocalcin (OCN). These cells responded to treatment with activated vitamin D3 by upregulating OCN. Furthermore, in OBM they were capable of generating many mineralized nodules with strong expression of receptor activator of NF-kappaB ligand and sclerostin (SOST). Real-time RT-PCR showed a significant increase in the expression of osteocyte marker genes, including SOST, neuropeptide Y, and reelin. Scanning electron microscopy showed dendritic morphology. Examination of semi-thin toluidine blue-stained sections showed many interconnected dendrites. Thus, TNAP-positive cells cultured in OBM may eventually become terminally differentiated osteocyte-like cells. In conclusion, treating hiPSCs-derived cells with a combination of TGF-β, IGF-1, and FGF-2 generated TNAP-positive cells at high frequency. These TNAP-positive cells had a high osteogenic potential and could terminally differentiate into osteocyte-like cells. The method described here may reveal new pathways of osteogenesis and provide a novel tool for regenerative medicine and drug development. PMID:24911063

  20. Ultrastructural characteristics of three undifferentiated mouse embryonic stem cell lines and their differentiated three-dimensional derivatives: a comparative study.

    PubMed

    Alharbi, Suzan; Elsafadi, Mona; Mobarak, Mohammed; Alrwili, Ali; Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Al-Qudsi, Fatma; Karim, Saleh; Al-Nabaheen, May; Aldahmash, Abdullah; Mahmood, Amer

    2014-04-01

    The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential.

  1. Ionizing Radiation Impacts on Cardiac Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Helm, Alexander; Arrizabalaga, Onetsine; Pignalosa, Diana; Schroeder, Insa S.; Durante, Marco

    2016-01-01

    Little is known about the effects of ionizing radiation on the earliest stages of embryonic development although it is well recognized that ionizing radiation is a natural part of our environment and further exposure may occur due to medical applications. The current study addresses this issue using D3 mouse embryonic stem cells as a model system. Cells were irradiated with either X-rays or carbon ions representing sparsely and densely ionizing radiation and their effect on the differentiation of D3 cells into spontaneously contracting cardiomyocytes through embryoid body (EB) formation was measured. This study is the first to demonstrate that ionizing radiation impairs the formation of beating cardiomyocytes with carbon ions being more detrimental than X-rays. However, after prolonged culture time, the number of beating EBs derived from carbon ion irradiated cells almost reached control levels indicating that the surviving cells are still capable of developing along the cardiac lineage although with considerable delay. Reduced EB size, failure to downregulate pluripotency markers, and impaired expression of cardiac markers were identified as the cause of compromised cardiomyocyte formation. Dysregulation of cardiac differentiation was accompanied by alterations in the expression of endodermal and ectodermal markers that were more severe after carbon ion irradiation than after exposure to X-rays. In conclusion, our data show that carbon ion irradiation profoundly affects differentiation and thus may pose a higher risk to the early embryo than X-rays. PMID:26506910

  2. HTR8/SVneo cells display trophoblast progenitor cell-like characteristics indicative of self-renewal, repopulation activity, and expression of "stemness-" associated transcription factors.

    PubMed

    Weber, Maja; Knoefler, Ilka; Schleussner, Ekkehard; Markert, Udo R; Fitzgerald, Justine S

    2013-01-01

    JEG3 is a choriocarcinoma--and HTR8/SVneo a transformed extravillous trophoblast--cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor) cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT-) is distinct from JEG3 (CDX2+ and NOTCH1+) as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo's self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of "stemness-" associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.

  3. Comparative analysis of cardiomyocyte differentiation from human embryonic stem cells under 3-D and 2-D culture conditions.

    PubMed

    Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Bhonde, Ramesh

    2013-02-01

    Post-myocardial infarction cardiomyocytes are the most important target cell types for cardiac repair. Many of the applications envisaged for human embryonic stem cells (hESC)-derived cardiomyocytes demand that the differentiation procedure be robust, cost effective and high yielding. Various lines of evidence including our earlier study suggest that hESCs have distinct preferences to become heart cells. However, a direct comparison between different protocols has not yet been reported to date. Here, we performed a logical and systematic comparison of cardiomyocytes obtained from hESCs via embryoid bodies (EBs) in suspension versus adherent static cultures of feeder-free hES colonies representing three-dimensional (3-D) and two-dimensional (2-D) culture systems, respectively. An in-depth characterization of the beating cells revealed appropriate cardiac marker expression both at gene and protein levels. Despite using similar media, 3-D and 2-D cultures showed significant variation in growth and ability to form beating areas. While the expression of pre-cardiac mesoderm markers like GATA-4, HAND1, Myf5, Msx1, and BMP-IIR remained unaltered; levels of functional heart-specific markers such as MLC-2A/2V, cTnT, ANP, Phospholamban, α-MHC and KV4.3 were substantially up-regulated in 3-D compared to 2-D cultures. Concurrently we observed a sharp decline in the expression of ESC, ectoderm and endoderm markers including Oct-4, Sox-2, NFH, Sox-1, Sox-17 and AFP. Further immunocytochemistry and flow cytometry demonstrated a higher percentage of cells positive for Brachyury, desmin and cardiac troponin in 3-D cultures. Our results underscore the higher efficiency of cardiomyocytes derived via 3-D cultures. This finding enriches our basic understanding of the differentiation pattern in hESC-derived cardiomyocytes. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells.

    PubMed

    Huang, Boxian; Ning, Song; Zhuang, Lili; Jiang, Chunyan; Cui, Yugui; Fan, Guoping; Qin, Lianju; Liu, Jiayin

    2015-01-01

    Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice.

  5. A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood.

    PubMed

    Monti, Manuela; Imberti, Barbara; Bianchi, Niccolò; Pezzotta, Anna; Morigi, Marina; Del Fante, Claudia; Redi, Carlo Alberto; Perotti, Cesare

    2017-09-01

    Very small embryonic-like cells (VSELs) are a population of very rare pluripotent stem cells isolated in adult murine bone marrow and many other tissues and organs, including umbilical cord blood (UCB). VSEL existence is still not universally accepted by the scientific community, so for this purpose, we sought to investigate whether presumptive VSELs (pVSELs) could be isolated from human UCB with an improved protocol based on the isolation of enriched progenitor cells by depletion of nonprogenitor cells with magnetic separation. Progenitor cells, likely including VSELs, cultured with retinoic acid were able to form dense colonies and cystic embryoid bodies and to differentiate toward the ecto-meso-endoderm lineages as shown by the positivity to specific markers. VSEL differentiative potential toward mesodermal lineage was further demonstrated in vitro upon exposure to an established inductive protocol, which induced the acquisition of renal progenitor cell phenotype. VSEL-derived renal progenitors showed regenerative potential in a cisplatin model of acute kidney injury by restoring renal function and tubular structure through induction of proliferation of endogenous renal cells. The data presented here foster the great debate that surrounds VSELs and, more in general, the existence of cells endowed with pluripotent features in adult tissues. In fact, the possibility to find and isolate subpopulations of cells that fully fit all the criteria utilized to define pluripotency remains, nowadays, almost unproven. Thus, efforts to better characterize the phenotype of these intriguing cells are crucial to understand their possible applications for regenerative and precision medicine purposes.

  6. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.

    PubMed

    Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan

    2006-02-01

    Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.

  7. Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation.

    PubMed

    Fuchs, Christiane; Rosner, Margit; Dolznig, Helmut; Mikula, Mario; Kramer, Nina; Hengstschläger, Markus

    2012-03-01

    Embryoid bodies (EBs) are three-dimensional multicellular aggregates allowing the in vitro investigation of stem-cell differentiation processes mimicking early embryogenesis. Human amniotic fluid stem (AFS) cells harbor high proliferation potential, do not raise the ethical issues of embryonic stem cells, have a lower risk for tumor development, do not need exogenic induction of pluripotency and are chromosomal stable. Starting from a single human AFS cell, EBs can be formed accompanied by the differentiation into cells of all three embryonic germ layers. Here, we report that siRNA-mediated knockdown of the endogenous tuberous sclerosis complex-2 (TSC2) gene product tuberin or of proline-rich Akt substrate of 40 kDa (PRAS40), the two major negative regulators of mammalian target of rapamycin (mTOR), leads to massive apoptotic cell death during EB development of human AFS cells without affecting the endodermal, mesodermal and ectodermal cell differentiation spectrum. Co-knockdown of endogenous mTOR demonstrated these effects to be mTOR-dependent. Our findings prove this enzyme cascade to be an essential anti-apoptotic gatekeeper of stem-cell differentiation during EB formation. These data allow new insights into the regulation of early stem-cell maintenance and differentiation and identify a new role of the tumor suppressor tuberin and the oncogenic protein PRAS40 with the relevance for a more detailed understanding of the pathogenesis of diseases associated with altered activities of these gene products.

  8. Isolation and culture of rabbit embryonic stem cells.

    PubMed

    Honda, Arata

    2013-01-01

    Mammalian stem cells are invaluable research resources for the study of cell and embryonic development as well as practical tools for use in the production of genetically engineered animals and further therapeutics. It is important that we further our knowledge and understanding of a variety of stem cells from several different animal species before trials in humans commence. Here we describe methods for establishing rabbit embryonic stem (rES) cell lines with indefinite proliferation potential. rES cells attain maximum proliferation potential when cultured at a feeder cell density of one-sixth of that of full confluency. Higher and lower densities of feeder cells induced ES cell differentiation or division arrest. Fibroblast growth factor (FGF)2 can maintain the undifferentiated status of rES cells; however leukemia inhibitory factor (LIF) is dispensable. Under optimized conditions, rES cells could be passaged by trypsinization 50 times. This culture system enabled efficient gene transduction and clonal expansion from single cells. rES cells grew as flat monolayer cell colonies, as reported for monkey and human ES cells, and expressed pluripotency markers. Embryoid bodies and teratomas formed readily in vitro and in vivo, respectively. Characterization of ES cells from different species is important for establishing common features of pluripotency. We have demonstrated the similarity of ES cells between rabbit and humans. These cell lines could be applied directly using gene-targeting techniques, or in combination with induced pluripotent stem cells. Thus, rES cells are a suitable model for studying human transplantation therapy and disease treatments.

  9. Histone h1 depletion impairs embryonic stem cell differentiation.

    PubMed

    Zhang, Yunzhe; Cooke, Marissa; Panjwani, Shiraj; Cao, Kaixiang; Krauth, Beth; Ho, Po-Yi; Medrzycki, Magdalena; Berhe, Dawit T; Pan, Chenyi; McDevitt, Todd C; Fan, Yuhong

    2012-01-01

    Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.

  10. Developmental insights from early mammalian embryos and core signaling pathways that influence human pluripotent cell growth and differentiation.

    PubMed

    Chen, Kevin G; Mallon, Barbara S; Johnson, Kory R; Hamilton, Rebecca S; McKay, Ronald D G; Robey, Pamela G

    2014-05-01

    Human pluripotent stem cells (hPSCs) have two potentially attractive applications: cell replacement-based therapies and drug discovery. Both require the efficient generation of large quantities of clinical-grade stem cells that are free from harmful genomic alterations. The currently employed colony-type culture methods often result in low cell yields, unavoidably heterogeneous cell populations, and substantial chromosomal abnormalities. Here, we shed light on the structural relationship between hPSC colonies/embryoid bodies and early-stage embryos in order to optimize current culture methods based on the insights from developmental biology. We further highlight core signaling pathways that underlie multiple epithelial-to-mesenchymal transitions (EMTs), cellular heterogeneity, and chromosomal instability in hPSCs. We also analyze emerging methods such as non-colony type monolayer (NCM) and suspension culture, which provide alternative growth models for hPSC expansion and differentiation. Furthermore, based on the influence of cell-cell interactions and signaling pathways, we propose concepts, strategies, and solutions for production of clinical-grade hPSCs, stem cell precursors, and miniorganoids, which are pivotal steps needed for future clinical applications. Published by Elsevier B.V.

  11. Serum replacement with a growth factor-free synthetic substance in culture medium contributes to effective establishment of mouse embryonic stem cells of various origins.

    PubMed

    Lee, Seung Tae; Oh, Se Woong; Kim, Dae Yong; Han, Jae Yong; Moon, Shin Yong; Lim, Jeong Mook

    2006-10-01

    To evaluate whether serum replacement with growth factor-free synthetic substances contributed to the effective establishment of embryonic stem (ES) cells. Randomized, prospective model study. Gamete and stem cell biotechnology laboratory at Seoul National University in Korea. F1 (C57BL6 x DBA2) mice. Blastocysts of different origins were cultured in serum-replaced media. Embryonic stem cell establishment. Eight batches of ES cells were established from colony-forming inner cell mass cells after the replacement of fetal bovine serum (FBS) with synthetic knockout serum replacement (KSR) in mkDMEM. The established cells were positive for ES cell markers and formed both embryoid bodies in vitro and teratomas in vivo, but the established cell batches and control (transformed) ES cells responded differently to the culture media. Higher levels of cell viability were detected after the replacement with the 75:25 FBS-KSR mixture than with any other mixtures, and a gradual decrease in viability was detected as the KSR volume ratio was increased. The 75:25 FBS-KSR mixture-containing medium supported ES cell establishment of outbred ICR, F1, and F2 of C57BL6/DBA2; F1 parthenogenetic and ES cell-complemented tetraploid blastocysts; and single ES-cell cultures. A serum-replaced medium could be used for effective ES-cell establishment of various origins.

  12. Inhibition of Cardiomyocytes Differentiation of Mouse Embryonic Stem Cells by CD38/cADPR/Ca2+ Signaling Pathway*

    PubMed Central

    Wei, Wen-Jie; Sun, Hai-Ying; Ting, Kai Yiu; Zhang, Li-He; Lee, Hon-Cheung; Li, Gui-Rong; Yue, Jianbo

    2012-01-01

    Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells. PMID:22908234

  13. Establishment of induced pluripotent stem cell (iPSC) line from 55-year old male patient with hemorrhagic Moyamoya disease.

    PubMed

    Cardano, Marina; Marsoner, Fabio; Marcatili, Matteo; Karnavas, Thodoris; Zasso, Jacopo; Lanterna, Luigi Andrea; Conti, Luciano

    2016-11-01

    Peripheral blood mononuclear cells (PBMCs) were collected from 55-year old male patient with a confirmed diagnosis of hemorrhagic Moyamoya disease (MMD). PBMCs were reprogrammed using Sendai virus particles delivering the four Yamanaka factors. A footprint-free hiPSC line was characterized by the expression of pluripotency markers and a normal karyotype. These cells were able to give rise to Embryoid Bodies and to a progeny of differentiated cells belonging to the 3 germ layers. This hiPSC line represents a suitable tool for modelling in vitro MMD disease to investigate the cellular mechanisms underlying the occurrence of this pathology. Copyright © 2016. Published by Elsevier B.V.

  14. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. In vitro organogenesis of gut-like structures from mouse embryonic stem cells.

    PubMed

    Kuwahara, M; Ogaeri, T; Matsuura, R; Kogo, H; Fujimoto, T; Torihashi, S

    2004-04-01

    Embryonic stem (ES) cells have pluripotency and give rise to many cell types and tissues, including representatives of all three germ layers in the embryo. We have reported previously that mouse ES cells formed contracting gut-like organs from embryoid bodies (EBs). These gut-like structures contracted spontaneously, and had large lumens surrounded by three layers, i.e. epithelium, lamina propria and muscularis. Ganglia were scattered along the periphery, and interstitial cells of Cajal (ICC) were distributed among the smooth muscle cells. In the present study, to determine whether they can be a model of gut organogenesis, we investigated the formation process of the gut-like structures in comparison with embryonic gut development. As a result, we found that the fundamental process of formation in vitro was similar to embryonic gut development in vivo. The result indicates that the gut-like structure is a useful tool not only for developmental study to determine the factors that induce gut organogenesis, but also for studies of enteric neurone and ICC development.

  16. Nanotechnology & human stem cells: Applications in cardiogenesis and neurogenesis

    NASA Astrophysics Data System (ADS)

    Tomov, Martin L.

    Human stem cell research holds an unprecedented promise to revolutionize the way we approach medicine and healthcare in general, moving us from a position of mostly addressing the symptoms to a state where treatments can focus on removing the underlying causes of a condition. Stem cell research can shed light into normal developmental pathways, as we are beginning to replicate them in a petri dish and can also be used to model diseases and abnormal conditions. Direct applications can range from finding cures for single or multigene diseases to demonstrating that we can replace these genes with a normal copy. We can even begin to model lifelong conditions such as aging by iPSC technology by relying on fetal, young, adult, and centenarian populations to provide insights into the process. We have also begun to understand the microenvironment in which specific cell populations reside. Being able to replicate the chemical, physical mechanical, and spatial needs of those cells, research groups are successfully generating full organs using cadaver scaffolds of heart and kidney, and there is promising research to reach the same success with other organs, such as the liver, and pancreas. Advances in those areas open an enormous potential to study organs, organoids, organ valves, tubes or other functional elements such as beating cardiomyocytes in vitro. There is also the need to evaluate the whole genome of induced and differentiated cells, with its myriad of interacting pathways. Bioinformatics can help our understanding of embryogenesis, organ differentiation and function. It can also help optimize our stem cell and bio-scaffold tools to advance closer to functional organs and tissues. Such a combination approach will also include pluripotency evaluation and multi-lineage differentiation, as well as platforms that may assist in cell therapies: 3D structures, micro-ribbons, directed patterning to name a few. There is now a clearer path forward with stem cell research than was ever before possible. My research has made fundamental contributions to the stem cell field by detailed analysis of uniformly generated 3D stem cell intermediates that are embryoid bodies. I have also contributed to the derivation of the first fully characterized ethnically diverse induced pluripotent stem cells from minority populations (ED-iPSCs), and advances in generating functional beating cardiomyocytes in vitro to aid cardiomyoplasty therapies. My work has also explored scaffolds for directing neural cell assembly or encouraging self-assembly for applications in CNS neurodegeneration, addiction, and spinal cord injury. These contributions to the field are outlined in my Specific Aims below and detailed in the chapters of my thesis.

  17. Human embryonic stem cells express a unique set of microRNAs.

    PubMed

    Suh, Mi-Ra; Lee, Yoontae; Kim, Jung Yeon; Kim, Soo-Kyoung; Moon, Sung-Hwan; Lee, Ji Yeon; Cha, Kwang-Yul; Chung, Hyung Min; Yoon, Hyun Soo; Moon, Shin Yong; Kim, V Narry; Kim, Kye-Seong

    2004-06-15

    Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by difficulties in culture and by scant knowledge concerning the regulatory mechanism. Recent evidence from plants and animals indicates small RNAs of approximately 22 nucleotides (nt), collectively named microRNAs, play important roles in developmental regulation. Here we describe 36 miRNAs (from 32 stem-loops) identified by cDNA cloning in hES cells. Importantly, most of the newly cloned miRNAs are specifically expressed in hES cells and downregulated during development into embryoid bodies (EBs), while miRNAs previously reported from other human cell types are poorly expressed in hES cells. We further show that some of the ES-specific miRNA genes are highly related to each other, organized as clusters, and transcribed as polycistronic primary transcripts. These miRNA gene families have murine homologues that have similar genomic organizations and expression patterns, suggesting that they may operate key regulatory networks conserved in mammalian pluripotent stem cells. The newly identified hES-specific miRNAs may also serve as molecular markers for the early embryonic stage and for undifferentiated hES cells.

  18. Profiling ethanol-targeted transcription factors in human carcinoma cell-derived embryoid bodies.

    PubMed

    Mandal, Chanchal; Halder, Debasish; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-15

    Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    PubMed

    Merkl, Claudia; Saalfrank, Anja; Riesen, Nathalie; Kühn, Ralf; Pertek, Anna; Eser, Stefan; Hardt, Markus Sebastian; Kind, Alexander; Saur, Dieter; Wurst, Wolfgang; Iglesias, Antonio; Schnieke, Angelika

    2013-01-01

    Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4) into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.

  20. Generation of organized germ layers from a single mouse embryonic stem cell.

    PubMed

    Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning

    2014-05-30

    Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.

  1. Defined culture medium for stem cell differentiation: applicability of serum-free conditions in the mouse embryonic stem cell test.

    PubMed

    Riebeling, Christian; Schlechter, Katharina; Buesen, Roland; Spielmann, Horst; Luch, Andreas; Seiler, Andrea

    2011-06-01

    The embryonic stem cell test (EST) is a validated method to assess the developmental toxicity potency of chemicals. It was developed to reduce animal use and allow faster testing for hazard assessment. The cells used in this method are maintained and differentiated in media containing foetal calf serum. This animal product is of considerable variation in quality, and individual batches require extensive testing for their applicability in the EST. Moreover, its production involves a large number of foetuses and possible animal suffering. We demonstrate the serum-free medium and feeder cell-free maintenance of the mouse embryonic stem cell line D3 and investigate the use of specific growth factors for induction of cardiac differentiation. Using a combination of bone morphogenetic protein-2, bone morphogenetic protein-4, activin A and ascorbic acid, embryoid bodies efficiently differentiated into contracting myocardium. Additionally, examining levels of intracellular marker proteins by flow cytometry not only confirmed differentiation into cardiomyocytes, but demonstrated significant differentiation into neuronal cells in the same time frame. Thus, this approach might allow for simultaneous detection of developmental effects on both early mesodermal and neuroectodermal differentiation. The serum-free conditions for maintenance and differentiation of D3 cells described here enhance the transferability and standardisation and hence the performance of the EST. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Development of an ES-like cell culture system (RESC) from rohu, Labeo rohita (Ham.).

    PubMed

    Goswami, M; Lakra, W S; Yadav, Kamalendra; Jena, J K

    2012-12-01

    An embryonic stem (ES)-like cell culture system RESC from a commercially important freshwater carp, Labeo rohita, was developed using blastula stage embryos. The cells were cultured in Leibovitz-15 (L-15) medium in gelatin-coated cell culture flask supplemented with 15 % fetal bovine serum along with 10 ng ml(-1) basic fibroblast growth factor at 28 °C under feeder-free conditions. The ES-like cells were characterized by their unique morphology, alkaline phosphatase activity, embryoid body formation tendency, expression of transcription factor Oct4, and consistent chromosome count. The RESC cells when treated with retinoic acid differentiated into cells of different lineages. The RESC developed from mid-blastula embryos of L. rohita would be a useful tool for cellular differentiation and gene expression studies.

  3. VEGF and IHH rescue definitive hematopoiesis in Gata-4 and Gata-6-deficient murine embryoid bodies.

    PubMed

    Pierre, Monique; Yoshimoto, Momoko; Huang, Lan; Richardson, Matthew; Yoder, Mervin C

    2009-09-01

    Murine embryonic stem cells can be differentiated into embryoid bodies (EBs), which serve as an in vitro model recapitulating many aspects of embryonic yolk sac hematopoiesis. Differentiation of embryonic stem cells deficient in either Gata-4 or Gata-6 results in EBs with disrupted visceral endoderm (VE). While lack of VE has detrimental effects on hematopoiesis in vivo, it is unclear whether lack of VE affects hematopoiesis in EBs. Therefore, we compared Gata-4 null (G4N) and Gata-6 null (G6N) EBs with wild-type EBs to assess their ability to commit to hematopoietic cells. EB VE formation was examined using cell-sorting techniques and analysis visceral endoderm gene expression. Hematopoietic progenitor potential of EBs cultured under various conditions was assessed using colony-forming assays. Definitive erythroid, granulocyte-macrophage, and mixed colonies were significantly reduced in G4N and G6N EBs compared to wild-type EBs. Vascular endothelial growth factor (VEGF) expression and secretion were also reduced in both G4N and G6N EBs, consistent with VE serving as a site of VEGF production. Addition of exogenous VEGF(165), to EB cultures completely rescued definitive colony-forming cells in G4N and G6N EBs. This rescue response could be blocked by addition of soluble Flk-1 Fc to EB cultures. Similarly, addition of exogenous Indian hedgehog to EB cultures also recovers the diminishment in definitive hematopoiesis in a reversible manner. These results suggest that the absence of VE in G4N and G6N EBs does not prevent emergence of definitive progenitors from EBs. However, the decreased level of VEGF and Indian hedgehog production in VE devoid G4N and G6N EBs attenuates definitive hematopoietic progenitor cell expansion.

  4. Somatic embryogenesis and plant regeneration in tissue cultures of sweet potato (Ipomea batatas Poir.).

    PubMed

    Liu, J R; Cantliffe, D J

    1984-06-01

    Leaf, shoot-tip, stem, and root explants of sweet potato (Ipomea batatas Poir.) gave rise to two kinds of callus on nutrient agar medium containing 0.5 to 2.0 mg/l 2,4-D. One callus, bright- to pale-yellow, was compact and organized, while the other was dull-yellow and friable. The former callus gave rise to numerous globular and heart-shaped embryoids. When transferred onto hormone-free medium, the embryoids readily developed into a torpedo-shape before germination. The plantlets were transplanted to soil where they flowered and formed storage roots at maturity.

  5. Leucine-rich Repeat Neuronal Protein 1 Regulates Differentiation of Embryonic Stem Cells by Posttranslational Modifications of Pluripotency Factors.

    PubMed

    Liao, Chien Huang; Wang, Ya-Hui; Chang, Wei-Wei; Yang, Bei-Chia; Wu, Tsai-Jung; Liu, Wei-Li; Yu, Alice L; Yu, John

    2018-06-11

    Stem cell surface markers may facilitate a better understanding of stem cell biology through molecular function studies or serve as tools to monitor the differentiation status and behavior of stem cells in culture or tissue. Thus, it is important to identify additional, novel stem cell markers. We used glycoproteomics to discover surface glycoproteins on human embryonic stem cells (hESCs) that may be useful stem cell markers. We found that a surface glycoprotein, leucine-rich repeat neuronal protein 1 (LRRN1), is expressed abundantly on the surface of hESCs prior to differentiation into embryoid bodies (EBs). Silencing of LRRN1 with short hairpin RNA (shLRRN1) in hESCs resulted in decreased capacity of self-renewal, and skewed differentiation toward endoderm/mesoderm lineages in vitro and in vivo. Meanwhile, the protein expression levels of the pluripotency factors OCT4, NANOG and SOX2 were reduced. Interestingly, the mRNA levels of these pluripotency factors were not affected in LRRN1 silenced cells, but protein half-lives were substantially shortened. Furthermore, we found LRRN1 silencing led to nuclear export and proteasomal degradation of all three pluripotency factors. In addition, the effects on nuclear export were mediated by AKT phosphorylation. These results suggest that LRRN1 plays an important role in maintaining the protein stability of pluripotency factors through AKT phosphorylation, thus maintaining hESC self-renewal capacity and pluripotency. Overall, we found that LRRN1 contributes to pluripotency of hESC by preventing translocation of OCT4, NANOG and SOX2 from nucleus to cytoplasm, thereby lessening their post-translational modification and degradation. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  6. Porcine induced pluripotent stem cells produce chimeric offspring.

    PubMed

    West, Franklin D; Terlouw, Steve L; Kwon, Dae Jin; Mumaw, Jennifer L; Dhara, Sujoy K; Hasneen, Kowser; Dobrinsky, John R; Stice, Steven L

    2010-08-01

    Ethical and moral issues rule out the use of human induced pluripotent stem cells (iPSCs) in chimera studies that would determine the full extent of their reprogrammed state, instead relying on less rigorous assays such as teratoma formation and differentiated cell types. To date, only mouse iPSC lines are known to be truly pluripotent. However, initial mouse iPSC lines failed to form chimeric offspring, but did generate teratomas and differentiated embryoid bodies, and thus these specific iPSC lines were not completely reprogrammed or truly pluripotent. Therefore, there is a need to address whether the reprogramming factors and process used eventually to generate chimeric mice are universal and sufficient to generate reprogrammed iPSC that contribute to chimeric offspring in additional species. Here we show that porcine mesenchymal stem cells transduced with 6 human reprogramming factors (POU5F1, SOX2, NANOG, KLF4, LIN28, and C-MYC) injected into preimplantation-stage embryos contributed to multiple tissue types spanning all 3 germ layers in 8 of 10 fetuses. The chimerism rate was high, 85.3% or 29 of 34 live offspring were chimeras based on skin and tail biopsies harvested from 2- to 5-day-old pigs. The creation of pluripotent porcine iPSCs capable of generating chimeric offspring introduces numerous opportunities to study the facets significantly affecting cell therapies, genetic engineering, and other aspects of stem cell and developmental biology.

  7. Self-organization of human embryonic stem cells on micropatterns

    PubMed Central

    Deglincerti, Alessia; Etoc, Fred; Guerra, M. Cecilia; Martyn, Iain; Metzger, Jakob; Ruzo, Albert; Simunovic, Mijo; Yoney, Anna; Brivanlou, Ali H.; Siggia, Eric; Warmflash, Aryeh

    2018-01-01

    Fate allocation in the gastrulating embryo is spatially organized as cells differentiate to specialized cell types depending on their positions with respect to the body axes. There is a need for in vitro protocols that allow the study of spatial organization associated with this developmental transition. While embryoid bodies and organoids can exhibit some spatial organization of differentiated cells, these methods do not yield consistent and fully reproducible results. Here, we describe a micropatterning approach where human embryonic stem cells are confined to disk-shaped, sub-millimeter colonies. After 42 hours of BMP4 stimulation, cells form self-organized differentiation patterns in concentric radial domains, which express specific markers associated with the embryonic germ layers, reminiscent of gastrulating embryos. Our protocol takes 3 days; it uses commercial microfabricated slides (CYTOO), human laminin-521 (LN-521) as extra-cellular matrix coating, and either conditioned or chemically-defined medium (mTeSR). Differentiation patterns within individual colonies can be determined by immunofluorescence and analyzed with cellular resolution. Both the size of the micropattern and the type of medium affect the patterning outcome. The protocol is appropriate for personnel with basic stem cell culture training. This protocol describes a robust platform for quantitative analysis of the mechanisms associated with pattern formation at the onset of gastrulation. PMID:27735934

  8. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders.

    PubMed

    Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata

    2016-12-01

    Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.

  9. Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing.

    PubMed

    Han, Xiaoping; Chen, Haide; Huang, Daosheng; Chen, Huidong; Fei, Lijiang; Cheng, Chen; Huang, He; Yuan, Guo-Cheng; Guo, Guoji

    2018-04-05

    Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.

  10. Generation of chondrocytes from embryonic stem cells.

    PubMed

    Khillan, Jaspal Singh

    2006-01-01

    Pluripotent embryonic stem (ES) cells have complete potential for all the primary germ layers, such as ectoderm, mesoderm, and endoderm. However, the cellular and molecular mechanisms that control their lineage-restricted differentiation are not understood. Although embryoid bodies, which are formed because of the spontaneous differentiation of ES cells, have been used to study the differentiation into different cell types, including neurons, chondrocytes, insulin-producing cells, bone-forming cells, hematopoietic cells, and so on, this system has limitations for investigating the upstream events that lead to commitment of cells that occur during the inaccessible period of development. Recent developments in human ES cells have offered a challenge to develop strategies for understanding the basic mechanisms that play a key role in differentiation of stem cell into specific cell types for their applications in regenerative medicine and cell-based therapies. A micromass culture system was developed to induce the differentiation of ES cells into chondrocytes, the cartilage-producing cells, as a model to investigate the upstream events of stem cell differentiation. ES cells were co-cultured with limb bud progenitor cells. A high percentage of differentiated cells exhibit typical morphological characteristics of chondrocytes and express cartilage matrix genes such as collagen type II and proteoglycans, suggesting that signals from the progenitor cells are sufficient to induce ES cells into the chondrogenic lineage. Degeneration of cartilage in the joints is associated with osteoarthritis, which affects the quality of life of human patients. Therefore, the quantitative production of chondrocytes can be a powerful resource to alleviate the suffering of those patients.

  11. 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation.

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Wallace, Gordon G; Crook, Jeremy M

    2017-09-01

    The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human iPSCs for in situ expansion and sequential differentiation. Specifically, we have extrusion printed the bioink including iPSCs, alginate (Al; 5% weight/volume [w/v]), carboxymethyl-chitosan (5% w/v), and agarose (Ag; 1.5% w/v), crosslinked the bioink in calcium chloride for a stable and porous construct, proliferated the iPSCs within the construct and differentiated the same iPSCs into either EBs comprising cells of three germ lineages-endoderm, ectoderm, and mesoderm, or more homogeneous neural tissues containing functional migrating neurons and neuroglia. This defined, scalable, and versatile platform is envisaged being useful in iPSC research and translation for pharmaceuticals development and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gene expression profile in human induced pluripotent stem cells: Chondrogenic differentiation in vitro, part A

    PubMed Central

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Richter, Magdalena; Trzeciak, Tomasz

    2017-01-01

    Human induced pluripotent stem cells (hiPSCs) offer promise in regenerative medicine, however more data are required to improve understanding of key aspects of the cell differentiation process, including how specific chondrogenic processes affect the gene expression profile of chondrocyte-like cells and the relative value of cell differentiation markers. The main aims of the present study were as follows: To determine the gene expression profile of chondrogenic-like cells derived from hiPSCs cultured in mediums conditioned with HC-402-05a cells or supplemented with transforming growth factor β3 (TGF-β3), and to assess the relative utility of the most commonly used chondrogenic markers as indicators of cell differentiation. These issues are relevant with regard to the use of human fibroblasts in the reprogramming process to obtain hiPSCs. Human fibroblasts are derived from the mesoderm and thus share a wide range of properties with chondrocytes, which also originate from the mesenchyme. Thus, the exclusion of dedifferentiation instead of chondrogenic differentiation is crucial. The hiPSCs were obtained from human primary dermal fibroblasts during a reprogramming process. Two methods, both involving embryoid bodies (EB), were used to obtain chondrocytes from the hiPSCs: EBs formed in a chondrogenic medium supplemented with TGF-β3 (10 ng/ml) and EBs formed in a medium conditioned with growth factors from HC-402-05a cells. Based on immunofluorescence and reverse transcription-quantiative polymerase chain reaction analysis, the results indicated that hiPSCs have the capacity for effective chondrogenic differentiation, in particular cells differentiated in the HC-402-05a-conditioned medium, which present morphological features and markers that are characteristic of mature human chondrocytes. By contrast, cells differentiated in the presence of TGF-β3 may demonstrate hypertrophic characteristics. Several genes [paired box 9, sex determining region Y-box (SOX) 5, SOX6, SOX9 and cartilage oligomeric matrix protein] were demonstrated to be good markers of early hiPSC chondrogenic differentiation: Insulin-like growth factor 1, Tenascin-C, and β-catenin were less valuable. These observations provide valuable data on the use of hiPSCs in cartilage tissue regeneration. PMID:28447755

  13. Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors.

    PubMed

    Mohamet, Lisa; Lea, Michelle L; Ward, Christopher M

    2010-09-23

    A fundamental requirement for the exploitation of embryonic stem (ES) cells in regenerative medicine is the ability to reproducibly derive sufficient numbers of cells of a consistent quality in a cost-effective manner. However, undifferentiated ES cells are not ideally suited to suspension culture due to the formation of cellular aggregates, ultimately limiting scalability. Significant advances have been made in recent years in the culture of ES cells, including automated adherent culture and suspension microcarrier or embryoid body bioreactor culture. However, each of these methods exhibits specific disadvantages, such as high cost, additional downstream processes or reduced cell doubling times. Here we show that abrogation of the cell surface protein E-cadherin, using either gene knockout (Ecad-/-) or the neutralising antibody DECMA-1 (EcadAb), allows culture of mouse ES cells as a near-single cell suspension in scalable shake flask culture over prolonged periods without additional media supplements. Both Ecad-/- and EcadAb ES cells exhibited adaptation phases in suspension culture, with optimal doubling times of 7.3 h±0.9 and 15.6 h±4.7 respectively and mean-fold increase in viable cell number of 95.1±2.0 and 16±0.9-fold over 48 h. EcadAb ES cells propagated as a dispersed cell suspension for 15 d maintained expression of pluripotent markers, exhibited a normal karyotype and high viability. Subsequent differentiation of EcadAb ES cells resulted in expression of transcripts and proteins associated with the three primary germ layers. This is the first demonstration of the culture of pluripotent ES cells as a near-single cell suspension in a manual fed-batch shake flask bioreactor and represents a significant improvement on current ES cell culture techniques. Whilst this proof-of-principle method would be useful for the culture of human ES and iPS cells, further steps are necessary to increase cell viability of hES cells in suspension.

  14. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state.

    PubMed

    Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong

    2011-08-01

    Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.

  15. Identification and characterization of a transient outward K+ current in human induced pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Cordeiro, Jonathan M.; Nesterenko, Vladislav V.; Sicouri, Serge; Goodrow, Robert J.; Treat, Jacqueline A.; Desai, Mayurika; Wu, Yuesheng; Doss, Michael Xavier; Antzelevitch, Charles; Di Diego, José M.

    2013-01-01

    Background The ability to recapitulate mature adult phenotypes is critical to the development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) as models of disease. The present study examines the characteristics of the transient outward current (Ito) and its contribution to the hiPSC-CM action potential (AP). Method Embryoid bodies were made from a hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Sharp microelectrodes were used to record APs from beating-clusters (BC) and patch-clamp techniques were used to record Ito in single hiPSC-CM. mRNA levels of Kv1.4, KChIP2 and Kv4.3 were quantified from BCs. Results BCs exhibited spontaneous beating (60.5 ± 2.6 bpm) and maximum-diastolic-potential (MDP) of 67.8 ± 0.8 mV (n = 155). A small 4-aminopyridine-sensitive phase-1-repolarization was observed in only 6/155 BCs. A robust Ito was recorded in the majority of cells (13.7 ± 1.9 pA/pF at +40 mV; n = 14). Recovery of Ito from inactivation (at −80 mV) showed slow kinetics (τ1 = 200 ± 110 ms (12%) and τ2 = 2380 ± 240 ms (80%)) accounting for its minimal contribution to the AP. Transcript data revealed relatively high expression of Kv1.4 and low expression of KChIP2 compared to human native ventricular tissues. Mathematical modeling predicted that restoration of IK1 to normal levels would result in a more negative MDP and a prominent phase-1-repolarization. Conclusion The slow recovery kinetics of Ito coupled with a depolarized MDP account for the lack of an AP notch in the majority of hiPSC-CM. These characteristics reveal a deficiency for the development of in vitro models of inherited cardiac arrhythmia syndromes in which Ito-induced AP notch is central to the disease phenotype. PMID:23542310

  16. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    PubMed

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  17. HoxBlinc RNA Recruits Set1/MLL Complexes to Activate Hox Gene Expression Patterns and Mesoderm Lineage Development.

    PubMed

    Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Naohiro; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming

    2016-01-05

    Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1(+) mesoderm and then promotes hematopoietic differentiation through regulation of hoxb pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated knockdown or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1(+) precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1(+) precursors and differentiation of Flk1(+) cells into hematopoietic lineages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. HoxBlinc RNA recruits Set1/MLL complexes to activate Hox gene expression patterns and mesoderm lineage development

    PubMed Central

    Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Nao; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming

    2015-01-01

    Summary Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1+ mesoderm and then promotes hematopoietic differentiation through regulating hoxb gene pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated KD or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb gene expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1+ precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1+ precursors and differentiation of Flk1+ cells into hematopoietic lineages. PMID:26725110

  19. Reprogramming of fibroblasts from older women with pelvic floor disorders alters cellular behavior associated with donor age.

    PubMed

    Wen, Yan; Wani, Prachi; Zhou, Lu; Baer, Tom; Phadnis, Smruti Madan; Reijo Pera, Renee A; Chen, Bertha

    2013-02-01

    We aimed to derive induced pluripotent stem cell (iPSC) lines from vaginal fibroblasts from older women with pelvic organ prolapse. We examined the effect of donor age on iPSCs and on the cells redifferentiated from these iPSCs. Vaginal fibroblasts were isolated from younger and older subjects for reprogramming. iPSCs were generated simultaneously using an excisable polycistronic lentiviral vector expressing Oct4, Klf4, Sox2, and cMyc. The pluripotent markers of iPSCs were confirmed by immunocytochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Spectral karyotyping was performed. The ability of the iPSCs to differentiate into three germ layers was confirmed by embryoid body and teratoma formation. Senescence marker (p21, p53, and Bax) expressions were determined by qRT-PCR and Western blot. The iPSCs were redifferentiated to fibroblasts and were evaluated with senescence-associated β-galactosidase (SA) activity and mitotic index using time-lapse dark-field microscopy. iPSCs derived from both the younger and older subjects expressed pluripotency markers and showed normal karyotype and positive teratoma assays. There was no significant difference in expression of senescence and apoptosis markers (p21, p53, and Bax) in iPSCs derived from the younger subject compared with the older subject. Furthermore, fibroblasts redifferentiated from these iPSCs did not differ in SA activity or mitotic index. We report successful derivation of iPSCs from women with pelvic organ prolapse. Older age did not interfere with successful reprogramming. Donor age differences were not observed in these iPSCs using standard senescence markers, and donor age did not appear to affect cell mitotic activity in fibroblasts redifferentiated from iPSCs.

  20. Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis

    PubMed Central

    Li, Jian; Pucéat, Michel; Perez-Terzic, Carmen; Mery, Annabelle; Nakamura, Kimitoshi; Michalak, Marek; Krause, Karl-Heinz; Jaconi, Marisa E.

    2002-01-01

    Calreticulin (crt) is an ubiquitously expressed and multifunctional Ca2+-binding protein that regulates diverse vital cell functions, including Ca2+ storage in the ER and protein folding. Calreticulin deficiency in mice is lethal in utero due to defects in heart development and function. Herein, we used crt − / − embryonic stem (ES) cells differentiated in vitro into cardiac cells to investigate the molecular mechanisms underlying heart failure of knockout embryos. After 8 d of differentiation, beating areas were prominent in ES-derived wild-type (wt) embryoid bodies (EBs), but not in ES-derived crt − / − EBs, despite normal expression levels of cardiac transcription factors. Crt − / − EBs exhibited a severe decrease in expression and a lack of phosphorylation of ventricular myosin light chain 2 (MLC2v), resulting in an impaired organization of myofibrils. Crt − / − phenotype could be recreated in wt cells by chelating extracellular or cytoplasmic Ca2+ with EGTA or BAPTA, or by inhibiting Ca2+/calmodulin-dependent kinases (CaMKs). An imposed ionomycin-triggered cystolic-free Ca2+ concentration ([Ca2+]c) elevation restored the expression, phosphorylation, and insertion of MLC2v into sarcomeric structures and in turn the myofibrillogenesis. The transcription factor myocyte enhancer factor C2 failed to accumulate into nuclei of crt − / − cardiac cells in the absence of ionomycin-triggered [Ca2+]c increase. We conclude that the absence of calreticulin interferes with myofibril formation. Most importantly, calreticulin deficiency revealed the importance of a Ca2+-dependent checkpoint critical for early events during cardiac myofibrillogenesis. PMID:12105184

  1. Generation of hepatocyte-like cells from human induced pluripotent stem (iPS) cells by co-culturing embryoid body cells with liver non-parenchymal cell line TWNT-1.

    PubMed

    Javed, M Shahid; Yaqoob, Naeem; Iwamuro, Masaya; Kobayashi, Naoya; Fujiwara, Toshiyoshi

    2014-02-01

    To generate a homogeneous population of patient-specific hepatocyte-like cells (HLCs) from human iPS cells those show the morphologic and phenotypic properties of primary human hepatocytes. An experimental study. Department of Surgery, Okayama University, Graduate School of Medicine, Japan, from April to December 2011. Human iPS cells were generated and maintained on ES qualified matrigel coated plates supplemented with mTeSR medium or alternatively on mitotically inactivated MEF feeder layer in DMEM/F12 medium containing 20% KOSR, 4ng/ml bFGF-2, 1 x 10-4 M 2-mercaptoethanol, 1 mmol/L NEAA, 2mM L-glutamine and 1% penicillin-streptomycin. iPS cells were differentiated to HLCs by sequential culture using a four step differentiation protocol: (I) Generation of embryoid bodies (EBs) in suspension culture; (II) Induction of definitive endoderm (DE) from 2 days old EBs by growth in human activin-A (100 ng/ml) and basic fibroblasts growth factor (bFGF2) (100 ng/ml) on matrigel coated plates; (III) Induction of hepatic progenitors by co-culture with non-parenchymal human hepatic stellate cell line (TWNT-1); and (IV) Maturation by culture in dexamethasone. Characterization was performed by RT-PCR and functional assays. The generated HLCs showed microscopically morphological phenotype of human hepatocytes, expressed liver-specific genes (ASGPR, Albumin, AFP, Sox17, Fox A2), secreted human liver-specific proteins such as albumin, synthesized urea and metabolized ammonia. Functional HLCs were generated from human iPS cells, which could be used for autologus hepatocyte transplantation for liver failure and as in vitro model for determining the metabolic and toxicological properties of drug compounds.

  2. Differentiation of Swine iPSC into Rod Photoreceptors and Their Integration into the Retina

    PubMed Central

    Zhou, Liang; Wang, Wei; Liu, Yongqing; de Castro, Juan Fernandez; Ezashi, Toshihiko; Telugu, Bhanu Prakash V.L.; Roberts, R. Michael; Kaplan, Henry J.; Dean, Douglas C.

    2014-01-01

    Absence of a regenerative pathway for damaged retina following injury or disease has led to experiments utilizing stem cell transplantation for retinal repair, and encouraging results have been obtained in rodents. The swine eye is a closer anatomical and physiological match to the human eye, but embryonic stem cells have not been isolated from pig, and photoreceptor differentiation has not been demonstrated with swine induced pluripotent stem cells (iPSC). Here, we subjected swine iPSC to a rod photoreceptor differentiation protocol consisting of floating culture as embryoid bodies followed by differentiation in adherent culture. Real time PCR and immunostaining of differentiated cells demonstrated loss of expression of the pluripotent genes POU5F1, NANOG and SOX2 and induction of rod photoreceptor genes RCVRN, NRL, RHO and ROM1. While these differentiated cells displayed neuronal morphology, culturing on a Matrigel substratum triggered a further morphological change resulting in concentration of RHO and ROM1 in outer segment-like projections resembling those on primary cultures of rod photoreceptors. The differentiated cells were transplanted into the subretinal space of pigs treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, engrafted RHO+ cells were evident in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had generated projections resembling outer segments. These results demonstrate that swine iPSC can differentiate into photoreceptors in culture and these cells can integrate into the damaged swine neural retina thus laying a foundation for future studies using the pig as a model for retinal stem cell transplantation. PMID:21491544

  3. Liquid marble as microbioreactor for bioengineering applications

    NASA Astrophysics Data System (ADS)

    Sarvi, Fatemeh; Jain, Kanika; Alhasan, Layla; Arbatan, Tina; Shen, Wei; Chan, Peggy P. Y.

    2015-12-01

    This paper reports the use of liquid marbles (LMs) as miniature bioreactors to produce three-dimensional (3D) spheroids including tumor-like spheriods from cancer cells and embryoid bodies (EBs) from stem cells. A liquid marble microbioreactor is prepared by placing a drop of cell suspension onto a polytetrafluoroethylene (PTFE) particle bed. Without the addition of growth factors, suspended EBs from liquid marbles exhibit spontaneous contraction. These results indicate that the liquid marble provides a suitable microenvironment to induce EB formation and spontaneous cardiac differentiation. The EBs were further plated onto gelatin-coated tissue culture dishes. Plated EBs express mature cardiomyocyte marker cardiac troponinT (cTnT), indicating that these EBs have differentiated into functional cardiomyocytes. The cardiomyocytes generated using this liquid marble approach could be useful for transplantation.

  4. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    PubMed

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

  5. Putative Porcine Embryonic Stem Cell Lines Derived from Aggregated Four-Celled Cloned Embryos Produced by Oocyte Bisection Cloning

    PubMed Central

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state. PMID:25680105

  6. Regulated expression and role of c-Myb in the cardiovascular-directed differentiation of mouse embryonic stem cells.

    PubMed

    Ishida, Masayoshi; El-Mounayri, Omar; Kattman, Steven; Zandstra, Peter; Sakamoto, Hiroshi; Ogawa, Minetaro; Keller, Gordon; Husain, Mansoor

    2012-01-20

    c-myb null (knockout) embryonic stem cells (ESC) can differentiate into cardiomyocytes but not contractile smooth muscle cells (SMC) in embryoid bodies (EB). To define the role of c-Myb in SMC differentiation from ESC. In wild-type (WT) EB, high c-Myb levels on days 0-2 of differentiation undergo ubiquitin-mediated proteosomal degradation on days 2.5-3, resurging on days 4-6, without changing c-myb mRNA levels. Activin-A and bone morphogenetic protein 4-induced cardiovascular progenitors were isolated by FACS for expression of vascular endothelial growth factor receptor (VEGFR)2 and platelet-derived growth factor receptor (PDGFR)α. By day 3.75, hematopoesis-capable VEGFR2+ cells were fewer, whereas cardiomyocyte-directed VEGFR2+/PDGFRα+ cells did not differ in abundance in knockout versus WT EB. Importantly, highest and lowest levels of c-Myb were observed in VEGFR2+ and VEGFR2+/PDGFRα+ cells, respectively. Proteosome inhibitor MG132 and lentiviruses enabling inducible expression or knockdown of c-myb were used to regulate c-Myb in WT and knockout EB. These experiments showed that c-Myb promotes expression of VEGFR2 over PDGFRα, with chromatin immunopreciptation and promoter-reporter assays defining specific c-Myb-responsive binding sites in the VEGFR2 promoter. Next, FACS-sorted VEGFR2+ cells expressed highest and lowest levels of SMC- and fibroblast-specific markers, respectively, at days 7-14 after retinoic acid (RA) as compared with VEGFR2+/PDGFRα+ cells. By contrast, VEGFR2+/PDGFRα+ cells cultured without RA beat spontaneously, like cardiomyocytes between days 7 and 14, and expressed cardiac troponin. Notably, RA was required to more fully differentiate SMC from VEGFR2+ cells and completely blocked differentiation of cardiomyocytes from VEGFR2+/PDGFRα+ cells. c-Myb is tightly regulated by proteosomal degradation during cardiovascular-directed differentiation of ESC, expanding early-stage VEGFR2+ progenitors capable of RA-responsive SMC formation.

  7. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker.

    PubMed

    David, Robert; Groebner, Michael; Franz, Wolfgang-Michael

    2005-04-01

    Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.

  8. The expression of the class 1 glucose transporter isoforms in human embryonic stem cells, and the potential use of GLUT2 as a marker for pancreatic progenitor enrichment.

    PubMed

    Segev, Hana; Fishman, Betina; Schulman, Rita; Itskovitz-Eldor, Joseph

    2012-07-01

    Even before the first appearance of the developing pancreas, glucose is the major substrate in the growing embryo. The transport of glucose across cell membranes is facilitated by a family of membranal glucose transporters (GLUT). We analyzed changes in expression of class 1 glucose transporters (GLUT1-4) during human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPSC) differentiation, from undifferentiated cells to 28-day-old embryoid bodies (EBs). We also examined the potential use of GLUT2 as a marker for differentiating pancreatic progenitor cells. Using quantitative real time polymerase chain reaction (qPCR), western blot, and immunofluorescence, we observed enhanced expression of GLUT1 and GLUT2 during differentiation, but only minor change in GLUT3 expression. GLUT4 expression was found to be very low both at the RNA and in the protein levels. Expression of the early pancreatic transcription factor, pancreatic duodenal homeobox gene 1 (PDX1), correlated with GLUT2 expression, suggesting the potential use of GLUT2 as a surface marker for tracking pancreatic precursor cells. After sorting EBs according to their membranal GLUT2 expression, GLUT2 and PDX1 expression were found elevated, as was expression of other endodermal markers such as PAX4, NGN3, CXCR4, and SOX17. This simple method may be used to differentiate embryonic stem cells and to isolate from them, using GLUT2 as a surface marker, an enriched pancreatic progenitor cell population in order to achieve insulin-producing cells. The sorted GLUT2 cells may potentially be used in the future as insulin-producing cells for beta cell therapies.

  9. Generation of three-dimensional retinal organoids expressing rhodopsin and S- and M-cone opsins from mouse stem cells.

    PubMed

    Ueda, Kaori; Onishi, Akishi; Ito, Shin-Ichiro; Nakamura, Makoto; Takahashi, Masayo

    2018-01-22

    Three-dimensional retinal organoids can be differentiated from embryonic stem cells/induced pluripotent stem cells (ES/iPS cells) under defined medium conditions. We modified the serum-free floating culture of embryoid body-like aggregates with quick reaggregation (SFEBq) culture procedure to obtain retinal organoids expressing more rod photoreceptors and S- and M-cone opsins. Retinal organoids differentiated from mouse Nrl-eGFP iPS cells were cultured in various mediums during photoreceptor development. To promote rod photoreceptor development, organoids were maintained in media containing 9-cis retinoic acids (9cRA). To obtain retinal organoids with M-opsin expression, we cultured in medium with 1% fetal bovine serum (FBS) supplemented with T3, BMP4, and DAPT. Section immunohistochemistry was performed to visualize the expression of photoreceptor markers. In three-dimensional (3D) retinas exposed to 9cRA, rhodopsin was expressed earlier and S-cone opsins were suppressed. We could maintain 3D retinas up to DD 35 in culture media with 1% FBS. The 3D retinas expressed rhodopsin, S- and M-opsins, but most cone photoreceptors expressed either S- or M-opsins. By modifying culture conditions in the SFEBq protocol, we obtained rod-dominated 3D retinas and S- and M-opsin expressing 3D retinas. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells.

    PubMed

    Stryjewska, Agata; Dries, Ruben; Pieters, Tim; Verstappen, Griet; Conidi, Andrea; Coddens, Kathleen; Francis, Annick; Umans, Lieve; van IJcken, Wilfred F J; Berx, Geert; van Grunsven, Leo A; Grosveld, Frank G; Goossens, Steven; Haigh, Jody J; Huylebroeck, Danny

    2017-03-01

    In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell-fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA-sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state. However, most cells in these EBs stall in an early epiblast-like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial-to-mesenchymal transition (EMT), and DNA-(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1-binding sites correlate with loss-of-methylation in neural-stimulating conditions, however, after the cells initially acquired the correct DNA-methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re-adapt to 2i + LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA-methylation with irreversible commitment to differentiation. Stem Cells 2017;35:611-625. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  11. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    PubMed

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  12. A hollow sphere soft lithography approach for long-term hanging drop methods.

    PubMed

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J; Bae, Hojae; Khademhosseini, Ali

    2010-04-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 microL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10-15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 microL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine.

  13. A Hollow Sphere Soft Lithography Approach for Long-Term Hanging Drop Methods

    PubMed Central

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J.; Bae, Hojae

    2010-01-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 μL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10–15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 μL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine. PMID:19505251

  14. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.

    PubMed

    Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D

    2005-01-01

    I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.

  15. Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Alan Tin-Lun, E-mail: alan_lam@bti.a-star.edu.sg; Chen, Allen Kuan-Liang; Ting, Sherwin Qi-Peng

    Current methods for human pluripotent stem cells (hPSC) expansion and differentiation can be limited in scalability and costly (due to their labor intensive nature). This can limit their use in cell therapy, drug screening and toxicity assays. One of the approaches that can overcome these limitations is microcarrier (MC) based cultures in which cells are expanded as cell/MC aggregates and then directly differentiated as embryoid bodies (EBs) in the same agitated reactor. This integrated process can be scaled up and eliminate the need for some culture manipulation used in common monolayer and EBs cultures. This review describes the principles ofmore » such microcarriers based integrated hPSC expansion and differentiation process, and parameters that can affect its efficiency (such as MC type and extracellular matrix proteins coatings, cell/MC aggregates size, and agitation). Finally examples of integrated process for generation cardiomyocytes (CM) and neural progenitor cells (NPC) as well as challenges to be solved are described. - Highlights: • Expansion of hPSC on microcarriers. • Differentiation of hPSC on microcarriers. • Parameters that can affect the expansion and differentiation of hPSC on microcarriers. • Integration of expansion and differentiation of hPSC on microcarriers in one unit operation.« less

  16. Lower Oncogenic Potential of Human Mesenchymal Stem Cells Derived from Cord Blood Compared to Induced Pluripotent Stem Cells

    PubMed Central

    Foroutan, T.; Najmi, M.; Kazemi, N.; Hasanlou, M.; Pedram, A.

    2015-01-01

    Background: In regenerative medicine, use of each of the mesenchymal stem cells derived from bone marrow, cord blood, and adipose tissue, has several cons and pros. Mesenchymal stem cells derived from cord blood have been considered the best source for precursor transplantation. Direct reprogramming of a somatic cell into induced pluripotent stem cells by over-expression of 6 transcription factors Oct4, Sox2, Klf4, lin28, Nanog, and c-Myc has great potential for regenerative medicine, eliminating the ethical issues of embryonic stem cells and the rejection problems of using non-autologous cells. Objective: To compare reprogramming and pluripotent markers OCT4, Sox-2, c-Myc, Klf4, Nanog, and lin28 in mesenchymal stem cells derived from cord blood and induced pluripotent stem cells. Methods: We analyzed the expression level of OCT4, Sox-2, c-Myc, Klf4, Nanog and lin28 genes in human mesenchymal stem cells derived from cord blood and induced pluripotent stem cells by cell culture and RT-PCR. Results: The expression level of pluripotent genes OCT4 and Sox-2, Nanog and lin28 in mesenchymal stem cells derived from cord blood were significantly higher than those in induced pluripotent stem cells. In contrast to OCT-4A and Sox-2, Nanog and lin28, the expression level of oncogenic factors c-Myc and Klf4 were significantly higher in induced pluripotent stem cells than in mesenchymal stem cells derived from cord blood. Conclusion: It could be concluded that mesenchymal stem cells derived from human cord blood have lower oncogenic potential compared to induced pluripotent stem cells. PMID:26306155

  17. Stem Cell Therapy for Erectile Dysfunction.

    PubMed

    Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony

    2018-04-06

    The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  18. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    PubMed

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835. © 2016 AlphaMed Press.

  19. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.

    PubMed

    Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun

    2015-09-01

    TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    PubMed

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  1. A Simple and Robust Method for Culturing Human-Induced Pluripotent Stem Cells in an Undifferentiated State Using Botulinum Hemagglutinin.

    PubMed

    Kim, Mee-Hae; Matsubara, Yoshifumi; Fujinaga, Yukako; Kino-Oka, Masahiro

    2018-02-01

    Clinical and industrial applications of human-induced pluripotent stem cells (hiPSCs) is hindered by the lack of robust culture strategies capable of sustaining a culture in an undifferentiated state. Here, a simple and robust hiPSC-culture-propagation strategy incorporating botulinum hemagglutinin (HA)-mediated selective removal of cells deviating from an undifferentiated state is developed. After HA treatment, cell-cell adhesion is disrupted, and deviated cells detached from the central region of the colony to subsequently form tight monolayer colonies following prolonged incubation. The authors find that the temporal and dose-dependent activity of HA regulated deviated-cell removal and recoverability after disruption of cell-cell adhesion in hiPSC colonies. The effects of HA are confirmed under all culture conditions examined, regardless of hiPSC line and feeder-dependent or -free culture conditions. After routine application of our HA-treatment paradigm for serial passages, hiPSCs maintains expression of pluripotent markers and readily forms embryoid bodies expressing markers for all three germ-cell layers. This method enables highly efficient culturing of hiPSCs and use of entire undifferentiated portions without having to pick deviated cells manually. This simple and readily reproducible culture strategy is a potentially useful tool for improving the robust and scalable maintenance of undifferentiated hiPSC cultures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Human Adipose-Derived Stem Cells Labeled with Plasmonic Gold Nanostars for Cellular Tracking and Photothermal Cancer Cell Ablation.

    PubMed

    Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T

    2017-04-01

    Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.

  3. Adipose‑derived stem cells and hyaluronic acid based gel compatibility, studied in vitro.

    PubMed

    Guo, Jiayan; Guo, Shu; Wang, Yuxin; Yu, Yanqiu

    2017-10-01

    Minimally invasive aesthetic and cosmetic procedures have increased in popularity. Injectable dermal fillers provide soft tissue augmentation, improve facial rejuvenation and wrinkles, and correct tissue defects. To investigate the use of adipose‑derived stem cells integrated with a hyaluronic acid based gel as a dermal filler, the present study used cytotoxicity studies, proliferation studies, adipogenic and osteogenic differentiation, apoptosis assays and scanning electron microscopy. Although hyaluronic acid induced low levels of apoptosis in adipose‑derived stem cells, its significantly promoted proliferation of adipose‑derived stem cells. Hyaluronic acid demonstrates little toxicity against adipose‑derived stem cells. Adipose‑derived stem cells were able to differentiate into adipocytes and osteoblasts. Furthermore, scanning electron microscopy revealed that adipose‑derived stem cells maintained intact structures on the surface of hyaluronic acid as well as in it, and demonstrated abundant cell attachments. The present study demonstrated the compatibility of adipose‑derived stem cells and hyaluronic acid based gels in vitro.

  4. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway

    NASA Astrophysics Data System (ADS)

    Wu, Youjun; Zhu, Rongrong; Zhou, Yang; Zhang, Jun; Wang, Wenrui; Sun, Xiaoyu; Wu, Xianzheng; Cheng, Liming; Zhang, Jing; Wang, Shilong

    2015-06-01

    Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ~100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ~100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02339d

  5. Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles.

    PubMed

    Yuan, Ye; Du, Weijie; Liu, Jiaqi; Ma, Wenya; Zhang, Lai; Du, Zhimin; Cai, Benzhi

    2018-01-01

    The stem cell-based therapy has emerged as the promising therapeutic strategies for cardiovascular diseases (CVDs). Recently, increasing evidence suggest stem cell-derived active exosomes are important communicators among cells in the heart via delivering specific substances to the adjacent/distant target cells. These exosomes and their contents such as certain proteins, miRNAs and lncRNAs exhibit huge beneficial effects on preventing heart damage and promoting cardiac repair. More importantly, stem cell-derived exosomes are more effective and safer than stem cell transplantation. Therefore, administration of stem cell-derived exosomes will expectantly be an alternative stem cell-based therapy for the treatment of CVDs. Furthermore, modification of stem cell-derived exosomes or artificial synthesis of exosomes will be the new therapeutic tools for CVDs in the future. In addition, stem cell-derived exosomes also have been implicated in the diagnosis and prognosis of CVDs. In this review, we summarize the current advances of stem cell-derived exosome-based treatment and prognosis for CVDs, including their potential benefits, underlying mechanisms and limitations, which will provide novel insights of exosomes as a new tool in clinical therapeutic translation in the future.

  6. Characterization of Amniotic Stem Cells

    PubMed Central

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio

    2014-01-01

    Abstract The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow–derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow–derived MSCs. The sorted TRA1-60–positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60–negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells. PMID:25068631

  7. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    PubMed

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Developmental characteristics of somatic cell hybrids between totipotent mouse teratocarcinoma and rat intestinal villus cells.

    PubMed

    van der Kamp, A W; Roza-de Jongh, E J; Houwen, R H; Magrane, G G; van Dongen, J M; Evans, M J

    1984-09-01

    Hybrids between mouse PCC4-azal teratocarcinoma cells and rat epithelial intestinal villus cells (PCI hybrids) are phenotypically teratocarcinoma cells. They express several teratocarcinoma-specific traits but do not express functions specific for differentiated cells. Tumour formation is partially or completely suppressed. Some of the hybrids show more extensive differentiation both in vitro and in vivo than the PCC4-azal parental line. The hybrids are capable of endoderm formation in monolayer cultures and of the formation of embryoid bodies in suspension cultures. Two of the tumour-forming hybrids generate derivatives of all three germ layers, whereas differentiation in the PCC4-azal tumours is restricted to the formation of primitive neuronal tissues.

  9. Analysis for apoptosis and necrosis on adipocytes, stromal vascular fraction, and adipose-derived stem cells in human lipoaspirates after liposuction.

    PubMed

    Wang, Wei Z; Fang, Xin-Hua; Williams, Shelley J; Stephenson, Linda L; Baynosa, Richard C; Wong, Nancy; Khiabani, Kayvan T; Zamboni, William A

    2013-01-01

    Adipose-derived stem cells have become the most studied adult stem cells. The authors examined the apoptosis and necrosis rates for adipocyte, stromal vascular fraction, and adipose-derived stem cells in fresh human lipoaspirates. Human lipoaspirate (n = 8) was harvested using a standard liposuction technique. Stromal vascular fraction cells were separated from adipocytes and cultured to obtain purified adipose-derived stem cells. A panel of stem cell markers was used to identify the surface phenotypes of cultured adipose-derived stem cells. Three distinct stem cell subpopulations (CD90/CD45, CD105/CD45, and CD34/CD31) were selected from the stromal vascular fraction. Apoptosis and necrosis were determined by annexin V/propidium iodide assay and analyzed by flow cytometry. The cultured adipose-derived stem cells demonstrated long-term proliferation and differentiation evidenced by cell doubling time and positive staining with oil red O and alkaline phosphatase. Isolated from lipoaspirates, adipocytes exhibited 19.7 ± 3.7 percent apoptosis and 1.1 ± 0.3 percent necrosis; stromal vascular fraction cells revealed 22.0 ± 6.3 percent of apoptosis and 11.2 ± 1.9 percent of necrosis; stromal vascular fraction cells had a higher rate of necrosis than adipocytes (p < 0.05). Among the stromal vascular fraction cells, 51.1 ± 3.7 percent expressed CD90/CD45, 7.5 ± 1.0 percent expressed CD105/CD45, and 26.4 ± 3.8 percent expressed CD34/CD31. CD34/CD31 adipose-derived stem cells had lower rates of apoptosis and necrosis compared with CD105/CD45 adipose-derived stem cells (p < 0.05). Adipose-derived stem cells had a higher rate of apoptosis and necrosis than adipocytes. However, the extent of apoptosis and necrosis was significantly different among adipose-derived stem cell subpopulations.

  10. The mevalonate pathway regulates primitive streak formation via protein farnesylation

    PubMed Central

    Okamoto-Uchida, Yoshimi; Yu, Ruoxing; Miyamura, Norio; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Yoshida, Suguru; Hosoya, Takamitsu; Nawa, Makiko; Kasama, Takeshi; Asaoka, Yoichi; Alois, Reiner Wimmer; Elling, Ulrich; Penninger, Josef M.; Nishina, Sachiko; Azuma, Noriyuki; Nishina, Hiroshi

    2016-01-01

    The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation. PMID:27883036

  11. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    PubMed

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  12. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    PubMed

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  13. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro

    PubMed Central

    Zheng, Bei; Wang, Jiadan; Tang, Leilei; Tan, Chao; Zhao, Zhe; Xiao, Yi; Ge, Renshan; Zhu, Danyan

    2017-01-01

    Rictor is a key regulatory/structural subunit of the mammalian target of rapamycin complex 2 (mTORC2) and is required for phosphorylation of Akt at serine 473. It plays an important role in cell survival, actin cytoskeleton organization and other processes in embryogenesis. However, the role of Rictor/mTORC2 in the embryonic cardiac differentiation has been uncovered. In the present study, we examined a possible link between Rictor expression and cardiomyocyte differentiation of the mouse embryonic stem (mES) cells. Knockdown of Rictor by shRNA significantly reduced the phosphorylation of Akt at serine 473 followed by a decrease in cardiomyocyte differentiation detected by beating embryoid bodies. The protein levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein) and α-Actinin (cardiomyocyte biomarker) decreased in Rictor knockdown group during cardiogenesis. Furthermore, knockdown of Rictor specifically inhibited the ventricular-like cells differentiation of mES cells with reduced level of ventricular-specific protein, MLC-2v. Meanwhile, patch-clamp analysis revealed that shRNA-Rictor significantly increased the number of cardiomyocytes with abnormal electrophysiology. In addition, the expressions and distribution patterns of cell-cell junction proteins (Cx43/Desmoplakin/N-cadherin) were also affected in shRNA-Rictor cardiomyocytes. Taken together, the results demonstrated that Rictor/mTORC2 might play an important role in the cardiomyocyte differentiation of mES cells. Knockdown of Rictor resulted in inhibiting ventricular-like myocytes differentiation and induced arrhythmias symptom, which was accompanied by interfering the expression and distribution patterns of cell-cell junction proteins. Rictor/mTORC2 might become a new target for regulating cardiomyocyte differentiation and a useful reference for application of the induced pluripotent stem cells. PMID:28123351

  14. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes

    PubMed Central

    Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie

    2013-01-01

    Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130

  15. Hepatic differentiation of pluripotent stem cells.

    PubMed

    Loya, Komal; Eggenschwiler, Reto; Ko, Kinarm; Sgodda, Malte; André, Francoise; Bleidissel, Martina; Schöler, Hans R; Cantz, Tobias

    2009-10-01

    In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.

  16. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    PubMed

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  17. [In vitro regeneration and applications using vegetable cell and tissue culture].

    PubMed

    Jordán, M

    1990-10-01

    Plant cells by means of their totipotency and aided by in vitro culture techniques can be induced to perform morphogenesis leading to somatic embryoids and massive clonal multiplication; microspores or pollen can be triggered to recover haploid plants, then characters expressed via haploidy can be selected and fixed. Protoplasts from different species can lead to recombinations. We report here work done on Carica pubescens, where somatic embryoids were obtained from cells; in Prunus avium androgenesis leading to pollen calli was triggered, while plants were recovered from Nicotiana tabacum anthers. Fusion products were obtained using C. pubescens and C. papaya protoplasts, leading up to calli and shoots.

  18. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    PubMed

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  19. Role of adipose tissue-derived stem cells in the progression of renal disease.

    PubMed

    Donizetti-Oliveira, Cassiano; Semedo, Patricia; Burgos-Silva, Marina; Cenedeze, Marco Antonio; Malheiros, Denise Maria Avancini Costa; Reis, Marlene Antônia Dos; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2011-03-01

    To analyze the role of adipose tissue-derived stem cells in reducing the progression of renal fibrosis. adipose tissue-derived stem cells were isolated from C57Bl/6 mice and characterized by cytometry and differentiation. Renal fibrosis was established after unilateral clamping of the renal pedicle for 1 hour. Four hours after reperfusion, 2.105 adipose tissue-derived stem cells were administered intraperitoneally and the animals were followed for 24 hours during 6 weeks. In another experimental group, 2.105adipose tissue-derived stem cells were administered only after 6 weeks of reperfusion, and they were euthanized and studied 4 weeks later. Twenty-four hours after reperfusion, the animals treated with adipose tissue-derived stem cells displayed reduced renal and tubular dysfunction and an increase of the regenerative process. Renal expression of IL-6 and TNF mRNA were decreased in the animals treated with adipose tissue-derived stem cells, while the levels of IL-4, IL-10, and HO-1 were increased, despite the fact that adipose tissue-derived stem cells were not observed in the kidneys via SRY analysis. In 6 weeks, the kidneys of non-treated animals decreased in size, and the kidneys of the animals treated with adipose tissue-derived stem cells remained at normal size and display less deposition of type 1 collagen and FSP-1. The renal protection observed in animals treated with adipose tissue-derived stem cells was followed by a drop in serum levels of TNF-α, KC, RANTES, and IL-1a. Treatment with adipose tissue-derived stem cells after 6 weeks, when the animals already displayed established fibrosis, demonstrated an improvement in functional parameters and less fibrosis analyzed by Picrosirius stain, as well as a reduction of the expression of type 1 collagen and vimentin mRNA. Treatment with adipose tissue-derived stem cells may deter the progression of renal fibrosis by modulation of the early inflammatory response, likely via reduction of the epithelial-mesenchymal transition.

  20. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    USDA-ARS?s Scientific Manuscript database

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  1. PCL-PDMS-PCL copolymer-based microspheres mediate cardiovascular differentiation from embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Song, Liqing

    Poly-epsilon-caprolactone (PCL) based copolymers have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. Copolymers of PCL and polydimethylsiloxane (PDMS) also have shape memory behaviors and can be made into thermoresponsive shape memory polymers for various biomedical applications such as smart sutures and vascular stents. However, the influence of biophysical properties of PCL-PDMS-PCL copolymers on stem cell lineage commitment is not well understood. In this study, PDMS was used as soft segments of varying length to tailor the biophysical properties of PCL-based co-polymers. While low elastic modulus (<10 kPa) of the tri-block copolymer PCL-PDMS-PCL affected cardiovascular differentiation of embryonic stem cells, the range of 60-100 MPa PCL-PDMS-PCL showed little influence on the differentiation. Then different size (30-140 mum) of microspheres were fabricated from PCL-PDMS-PCL copolymers and incorporated within embryoid bodies (EBs). Mesoderm differentiation was induced using bone morphogenetic protein (BMP)-4 for cardiovascular differentiation. Differential expressions of mesoderm progenitor marker KDR and vascular markers CD31 and VE-cadherin were observed for the cells differentiated from EBs incorporated with microspheres of different size, while little difference was observed for cardiac marker alpha-actinin expression. Small size of microspheres (30 mum) resulted in higher expression of KDR while medium size of microspheres (94 mum) resulted in higher CD31 and VE-cadherin expression. This study indicated that the biophysical properties of PCL-based copolymers impacted stem cell lineage commitment, which should be considered for drug delivery and tissue engineering applications.

  2. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    PubMed Central

    Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.

    2016-01-01

    Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064

  3. Evaluation of the osteogenic differentiation of gingiva-derived stem cells grown on culture plates or in stem cell spheroids: Comparison of two- and three-dimensional cultures.

    PubMed

    Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2017-09-01

    Three-dimensional cell culture systems provide a convenient in vitro model for the study of complex cell-cell and cell-matrix interactions in the absence of exogenous substrates. The current study aimed to evaluate the osteogenic differentiation potential of gingiva-derived stem cells cultured in two-dimensional or three-dimensional systems. To the best of our knowledge, the present study is the first to compare the growth of gingiva-derived stem cells in monolayer culture to a three-dimensional culture system with microwells. For three-dimensional culture, gingiva-derived stem cells were isolated and seeded into polydimethylsiloxane-based concave micromolds. Alkaline phosphatase activity and alizarin red S staining assays were then performed to evaluate osteogenesis and the degree of mineralization, respectively. Stem cell spheroids had a significantly increased level of alkaline phosphatase activity and mineralization compared with cells from the two-dimensional culture. In addition, an increase in mineralized deposits was observed with an increase in the loading cell number. The results of present study indicate that gingiva-derived stem cell spheroids exhibit an increased osteogenic potential compared with stem cells from two-dimensional culture. This highlights the potential of three-dimensional culture systems using gingiva-derived stem cells for regenerative medicine applications requiring stem cells with osteogenic potential.

  4. ROCK inhibitor Y-27632 enhances the survivability of dissociated buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2013-01-01

    This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50-80. Y-27632 increased mean colony area (P<0.05) although it did not improve their survival. It decreased OCT4 expression (P<0.05), increased NANOG expression (P<0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P<0.05) and decreased that of pro-apoptotic genes BAX and BID (P<0.05). It increased plating efficiency of single-cell suspensions of ES cells (P<0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P<0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1-60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.

  5. Defined Essential 8™ Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems

    PubMed Central

    Badenes, Sara M.; Fernandes, Tiago G.; Cordeiro, Cláudia S. M.; Boucher, Shayne; Kuninger, David; Vemuri, Mohan C.; Diogo, Maria Margarida; Cabral, Joaquim M. S.

    2016-01-01

    Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells. PMID:26999816

  6. In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells

    PubMed Central

    Yamauchi, Kaori; Hasegawa, Kouichi; Chuma, Shinichiro; Nakatsuji, Norio; Suemori, Hirofumi

    2009-01-01

    Background Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. Methods and Findings To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. Conclusion VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates. PMID:19399191

  7. Hypoxia enhances the protective effects of placenta-derived mesenchymal stem cells against scar formation through hypoxia-inducible factor-1α.

    PubMed

    Du, Lili; Lv, Runxiao; Yang, Xiaoyi; Cheng, Shaohang; Xu, Jing; Ma, Tingxian

    2016-06-01

    To explore the effect of placenta-derived mesenchymal stem cells on scar formation as well as the underlying mechanism. The isolated placenta-derived mesenchymal stem cells from mice were distributed in the wounded areas of scalded mouse models, attenuated inflammatory responses and decreased the deposition of collagens, thus performing a beneficial effect against scar formation. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells and hypoxia-inducible factor-1α was involved in the protective effect of placenta-derived mesenchymal stem cells in hypoxic condition. Hypoxia enhanced the protective effect of placenta-derived mesenchymal stem cells through hypoxia-inducible factor-1α and PMSCs may have a potential application in the treatment of wound.

  8. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.

    PubMed

    Eyni, Hossein; Ghorbani, Sadegh; Shirazi, Reza; Salari Asl, Leila; P Beiranvand, Shahram; Soleimani, Masoud

    2017-09-01

    Infertility caused by the disruption or absence of germ cells is a major and largely incurable medical problem. Germ cells (i.e., sperm or egg) play a key role in the transmission of genetic and epigenetic information across generations. Generation of gametes derived in vitro from stem cells hold promising prospects which could potentially help infertile men and women. Menstrual blood-derived stem cells are a unique stem cell source. Evidence suggests that menstrual blood-derived stem cells exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. To maintain the three-dimensional structure of natural extra cellular matrices in vitro, scaffolds can do this favor and mimic a microenvironment for cell proliferation and differentiation. According to previous studies, poly(lactic acid) and multi-wall carbon nanotubes have been introduced as novel and promising biomaterials for the proliferation and differentiation of stem cells. Some cell types have been successfully grown on a matrix containing carbon nanotubes in tissue engineering but there is no report for this material to support stem cells differentiation into germ cells lineage. This study designed a 3D wet-electrospun poly(lactic acid) and poly(lactic acid)/multi-wall carbon nanotubes composite scaffold to compare infiltration, proliferation, and differentiation potential of menstrual blood-derived stem cells toward germ cell lineage with 2D culture. Our primary data revealed that the fabricated scaffold has mechanical and biological suitable qualities for supporting and attachments of stem cells. The differentiated menstrual blood-derived stem cells tracking in scaffolds using scanning electron microscopy confirmed cell attachment, aggregation, and distribution on the porous scaffold. Based on the differentiation assay by RT-PCR analysis, stem cells and germ-like cells markers were expressed in 3D groups as well as 2D one. It seems that poly(lactic acid)/multi-wall carbon nanotubes scaffold-seeded menstrual blood-derived stem cells could be viewed as a novel, safe, and accessible construct for these cells, as they enhance germ-like generation from menstrual blood-derived stem cells.

  9. Establishment of mouse expanded potential stem cells

    PubMed Central

    Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao

    2018-01-01

    Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987

  10. CRISPR/Cas9-Mediated Deletion of C1EIS Inhibits Chicken Embryonic Stem Cell Differentiation Into Male Germ Cells (Gallus gallus).

    PubMed

    Zuo, Qisheng; Jin, Kai; Wang, Yingjie; Song, Jiuzhou; Zhang, Yani; Li, Bichun

    2017-08-01

    We previously found that C1EIS is preferentially expressed in Chicken spermatogonial stem cells (SSCs) by RNA sequencing (RNA-seq), so our current study focused on C1EIS's role in Chicken embryonic stem cells (ESCs) differentiation into male germ cells. We constructed a CRISPR/Cas9 vector targeting C1EIS. T7 endonuclease I (T7EI) digestion method and sequencing of TA cloning were used to detect the knock-out efficiency of the Single guide RNA (sgRNA) after the cas9/gRNA vector transfected into D fibroblasts 1(DF-1), ESCs, and Chicken embryos. The results showed that CRISPR/Cas9 gene knockout efficiency is about 40%. Differentiation of the targeted ESCs into SSCs was inhibited at the embryoid body stage due to C1EIS deficiency. Immunofluorescent staining revealed that the mutagenized ESCs (RA (Retinoic Acid) with C1EIS Knock out) expressed lower levels of integrin α6 and integrin β1 compared to wild type cells. Quantitative real-time PCR (QRT-PCR) revealed Oct4 and Sox2 expression significantly increased, contrarily integrin β1 and Stra8 expression significantly decreased than RA induced group and RA with C1EIS Overexpression. During retinoic acid-induced differentiation, knockout of C1EIS in ESCs inhibited formation of SSC-like cells, suggesting C1EIS plays a vital role in promoting differentiation of avian ESCs to SSCs by regulating expression of multiple pluripotency-related genes. J. Cell. Biochem. 118: 2380-2386, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells

    PubMed Central

    Stryjewska, Agata; Dries, Ruben; Pieters, Tim; Verstappen, Griet; Conidi, Andrea; Coddens, Kathleen; Francis, Annick; Umans, Lieve; van IJcken, Wilfred F. J.; Berx, Geert; van Grunsven, Leo A.; Grosveld, Frank G.; Goossens, Steven; Haigh, Jody J.

    2016-01-01

    Abstract In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm versus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulatory network in these cell‐fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal RNA‐sequencing (RNA‐seq) and reduced representation bisulfite sequencing (RRBS) analysis in neural differentiation. This shows that Zeb2 acts preferentially as a transcriptional repressor associated with developmental progression and that Zeb2 KO ESCs can exit from their naïve state. However, most cells in these EBs stall in an early epiblast‐like state and are impaired in both neural and mesendodermal differentiation. Genes involved in pluripotency, epithelial‐to‐mesenchymal transition (EMT), and DNA‐(de)methylation, including Tet1, are deregulated in the absence of Zeb2. The observed elevated Tet1 levels in the mutant cells and the knowledge of previously mapped Tet1‐binding sites correlate with loss‐of‐methylation in neural‐stimulating conditions, however, after the cells initially acquired the correct DNA‐methyl marks. Interestingly, cells from such Zeb2 KO EBs maintain the ability to re‐adapt to 2i + LIF conditions even after prolonged differentiation, while knockdown of Tet1 partially rescues their impaired differentiation. Hence, in addition to its role in EMT, Zeb2 is critical in ESCs for exit from the epiblast state, and links the pluripotency network and DNA‐methylation with irreversible commitment to differentiation. Stem Cells 2017;35:611–625 PMID:27739137

  12. Application of adipocyte-derived stem cells in treatment of cutaneous radiation syndrome.

    PubMed

    Riccobono, Diane; Agay, Diane; Scherthan, Harry; Forcheron, Fabien; Vivier, Mylène; Ballester, Bruno; Meineke, Viktor; Drouet, Michel

    2012-08-01

    Cutaneous radiation syndrome caused by local high dose irradiation is characterized by delayed outcome and incomplete healing. Recent therapeutic management of accidentally irradiated burn patients has suggested the benefit of local cellular therapy using mesenchymal stem cell grafting. According to the proposed strategy of early treatment, large amounts of stem cells would be necessary in the days following exposure and hospitalization, which would require allogeneic stem cells banking. In this context, the authors compared the benefit of local autologous and allogeneic adipocyte-derived stem cell injection in a large animal model. Minipigs were locally irradiated using a 60Co gamma source at a dose of 50 Gy and divided into three groups. Two groups were grafted with autologous (n = 5) or allogeneic (n = 5) adipocyte-derived stem cells four times after the radiation exposure, whereas the control group received the vehicle without cells (n = 8). A clinical score was elaborated to compare the efficiency of the three treatments. All controls exhibited local inflammatory injuries leading to a persistent painful necrosis, thus mimicking the clinical evolution in human victims. In the autologous adipocyte-derived stem cells group, skin healing without necrosis or uncontrollable pain was observed. In contrast, the clinical outcome was not significantly different in the adipocyte-derived stem cell allogeneic group when compared with controls. This study suggests that autologous adipocyte-derived stem cell grafting improves cutaneous radiation syndrome wound healing, whereas allogeneic adipocyte derived stem cells do not. Further studies will establish whether manipulation of allogeneic stem cells will improve their therapeutic potential.

  13. Amnion-derived stem cells: in quest of clinical applications

    PubMed Central

    2011-01-01

    In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research. PMID:21596003

  14. Bilayer Hydrogel with Autologous Stem Cells Derived from Debrided Human Burn Skin for Improved Skin Regeneration

    DTIC Science & Technology

    2013-02-01

    derived stem cells (ASCs), in particular, can be obtained in abundance with a minimally invasive liposuction technique.16,17 Unfortunately, after...substi- tutes. Stem Cells 2008;26:2713–23. 16. Aust L, Devlin B, Foster SJ, et al. Yield of human adipose- derived adult stem cells from liposuction ...Matsumoto D, et al. Character- ization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell

  15. Can bone marrow differentiate into renal cells?

    PubMed

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  16. An Optimized and Simplified System of Mouse Embryonic Stem Cell Cardiac Differentiation for the Assessment of Differentiation Modifiers

    PubMed Central

    Hartman, Matthew E.; Librande, Jason R.; Medvedev, Ivan O.; Ahmad, Rabiah N.; Moussavi-Harami, Farid; Gupta, Pritha P.; Chien, Wei-Ming; Chin, Michael T.

    2014-01-01

    Generating cardiomyocytes from embryonic stem cells is an important technique for understanding cardiovascular development, the origins of cardiovascular diseases and also for providing potential reagents for cardiac repair. Numerous methods have been published but often are technically challenging, complex, and are not easily adapted to assessment of specific gene contributions to cardiac myocyte differentiation. Here we report the development of an optimized protocol to induce the differentiation of mouse embryonic stem cells to cardiac myocytes that is simplified and easily adapted for genetic studies. Specifically, we made four critical findings that distinguish our protocol: 1) mouse embryonic stem cells cultured in media containing CHIR99021 and PD0325901 to maintain pluripotency will efficiently form embryoid bodies containing precardiac mesoderm when cultured in these factors at a reduced dosage, 2) low serum conditions promote cardiomyocyte differentiation and can be used in place of commercially prepared StemPro nutrient supplement, 3) the Wnt inhibitor Dkk-1 is dispensable for efficient cardiac differentiation and 4) tracking differentiation efficiency may be done with surface expression of PDGFRα alone. In addition, cardiac mesodermal precursors generated by this system can undergo lentiviral infection to manipulate the expression of specific target molecules to assess effects on cardiac myocyte differentiation and maturation. Using this approach, we assessed the effects of CHF1/Hey2 on cardiac myocyte differentiation, using both gain and loss of function. Overexpression of CHF1/Hey2 at the cardiac mesoderm stage had no apparent effect on cardiac differentiation, while knockdown of CHF1/Hey2 resulted in increased expression of atrial natriuretic factor and connexin 43, suggesting an alteration in the phenotype of the cardiomyocytes. In summary we have generated a detailed and simplified protocol for generating cardiomyocytes from mES cells that is optimized for investigating factors that affect cardiac differentiation. PMID:24667642

  17. Adipose-derived mesenchymal stem cells and regenerative medicine.

    PubMed

    Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2013-04-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  18. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    PubMed Central

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance. PMID:20419139

  19. wnt3a but not wnt11 supports self-renewal of embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singla, Dinender K.; Schneider, David J.; LeWinter, Martin M.

    2006-06-30

    wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not.more » Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state.« less

  20. Pluripotent stem cells and reprogrammed cells in farm animals.

    PubMed

    Nowak-Imialek, Monika; Kues, Wilfried; Carnwath, Joseph W; Niemann, Heiner

    2011-08-01

    Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.

  1. Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair.

    PubMed

    Erwin, W Mark; Islam, Diana; Eftekarpour, Eftekhar; Inman, Robert D; Karim, Muhammad Zia; Fehlings, Michael G

    2013-02-01

    An in vitro and in vivo evaluation of intervertebral disc (IVD)-derived stem/progenitor cells. To determine the chondrogenic, adipogenic, osteogenic, and neurogenic differentiation capacity of disc-derived stem/progenitor cells in vitro and neurogenic differentiation in vivo. Tissue repair strategies require a source of appropriate cells that could be used to replace dead or damaged cells and tissues such as stem cells. Here we examined the potential use of IVD-derived stem cells in regenerative medicine approaches and neural repair. Nonchondrodystrophic canine IVD nucleus pulposus (NP) cells were used to generate stem/progenitor cells (NP progenitor cells [NPPCs]) and the NPPCs were differentiated in vitro into chondrogenic, adipogenic, and neurogenic lineages and in vivo into the neurogenic lineage. NPPCs were compared with bone marrow-derived mesenchymal (stromal) stem cells in terms of the expression of stemness genes. The expression of the neural crest marker protein 0 and the Brachyury gene were evaluated in NP cells and NPPCs. NPPCs contain stem/progenitor cells and express "stemness" genes such as Sox2, Oct3/4, Nanog, CD133, Nestin, and neural cell adhesion molecule but differ from mesenchymal (stromal) stem cells in the higher expression of the Nanog gene by NPPCs. NPPCs do not express protein 0 or the Brachyury gene both of which are expressed by the totality of IVD NP cells. The percentage of NPPCs within the IVD is 1% of the total as derived by colony-forming assay. NPPCs are capable of differentiating along chondrogenic, adipogenic, and neurogenic lineages in vitro and into oligodendrocyte, neuron, and astroglial specific precursor cells in vivo within the compact myelin-deficient shiverer mouse. We propose that the IVD NP represents a regenerative niche suggesting that the IVD could represent a readily accessible source of precursor cells for neural repair and regeneration.

  2. Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS

    DTIC Science & Technology

    2012-10-01

    Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS PRINCIPAL INVESTIGATOR: Nicholas J. Maragakis, M.D...Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS 5b. GRANT NUMBER W81XWH-10-1-0520 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...into astrocytes following transplantation. 15. SUBJECT TERMS Stem Cells , iPS cells, astrocytes, familial ALS 16. SECURITY CLASSIFICATION OF

  3. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  4. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration.

    PubMed

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  5. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    PubMed Central

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  6. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    PubMed

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G

    2017-06-01

    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Molecular Analysis of Neutrophil Differentiation from Human Induced Pluripotent Stem Cells Delineates the Kinetics of Key Regulators of Hematopoiesis.

    PubMed

    Sweeney, Colin L; Teng, Ruifeng; Wang, Hongmei; Merling, Randall K; Lee, Janet; Choi, Uimook; Koontz, Sherry; Wright, Daniel G; Malech, Harry L

    2016-06-01

    In vitro generation of mature neutrophils from human induced pluripotent stem cells (iPSCs) requires hematopoietic progenitor development followed by myeloid differentiation. The purpose of our studies was to extensively characterize this process, focusing on the critical window of development between hemogenic endothelium, hematopoietic stem/progenitor cells (HSPCs), and myeloid commitment, to identify associated regulators and markers that might enable the stem cell field to improve the efficiency and efficacy of iPSC hematopoiesis. We utilized a four-stage differentiation protocol involving: embryoid body (EB) formation (stage-1); EB culture with hematopoietic cytokines (stage-2); HSPC expansion (stage-3); and neutrophil maturation (stage-4). CD34(+) CD45(-) putative hemogenic endothelial cells were observed in stage-3 cultures, and expressed VEGFR-2/Flk-1/KDR and VE-cadherin endothelial markers, GATA-2, AML1/RUNX1, and SCL/TAL1 transcription factors, and endothelial/HSPC-associated microRNAs miR-24, miR-125a-3p, miR-126/126*, and miR-155. Upon further culture, CD34(+) CD45(-) cells generated CD34(+) CD45(+) HSPCs that produced hematopoietic CFUs. Mid-stage-3 CD34(+) CD45(+) HSPCs exhibited increased expression of GATA-2, AML1/RUNX1, SCL/TAL1, C/EBPα, and PU.1 transcription factors, but exhibited decreased expression of HSPC-associated microRNAs, and failed to engraft in immune-deficient mice. Mid-stage-3 CD34(-) CD45(+) cells maintained PU.1 expression and exhibited increased expression of hematopoiesis-associated miR-142-3p/5p and a trend towards increased miR-223 expression, indicating myeloid commitment. By late Stage-4, increased CD15, CD16b, and C/EBPɛ expression were observed, with 25%-65% of cells exhibiting morphology and functions of mature neutrophils. These studies demonstrate that hematopoiesis and neutrophil differentiation from human iPSCs recapitulates many features of embryonic hematopoiesis and neutrophil production in marrow, but reveals unexpected molecular signatures that may serve as a guide for enhancing iPSC hematopoiesis. Stem Cells 2016;34:1513-1526. © 2016 AlphaMed Press.

  8. Gene function in early mouse embryonic stem cell differentiation

    PubMed Central

    Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A

    2007-01-01

    Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database. PMID:17394647

  9. The potential of chondrogenic pre-differentiation of adipose-derived mesenchymal stem cells for regeneration in harsh nucleus pulposus microenvironment.

    PubMed

    Wang, Jingkai; Tao, Yiqing; Zhou, Xiaopeng; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qi-Xin

    2016-12-01

    Recent studies indicated that cell-based therapy could be a promising approach to treat intervertebral disc degeneration. Though the harsh microenvironment in disc is still challenging to implanted cells, it could be overcome by pre-conditioning graft cells before transplantation, suggested by previous literatures. Therefore, we designed this study to identify the potential effect of chondrogenic pre-differentiation on adipose-derived mesenchymal stem cells in intervertebral disc-like microenvironment, characterized by limited nutrition, acidic, and high osmosis in vitro. Adipose-derived mesenchymal stem cells of rat were divided into five groups, embedded in type II collagen scaffold, and cultured in chondrogenic differentiation medium for 0, 3, 7, 10, and 14 days. Then, the adipose-derived mesenchymal stem cells were implanted and cultured in intervertebral disc-like condition. The proliferation and differentiation of adipose-derived mesenchymal stem cells were evaluated by cell counting kit-8 test, real-time quantitative polymerase chain reaction, and Western blotting and immunofluorescence analysis. Analyzed by the first week in intervertebral disc-like condition, the results showed relatively greater proliferative capability and extracellular matrix synthesis ability of the adipose-derived mesenchymal stem cells pre-differentiated for 7 and 10 days than the control. We concluded that pre-differentiation of rat adipose-derived mesenchymal stem cells in chondrogenic culture medium for 7 to 10 days could promote the regeneration effect of adipose-derived mesenchymal stem cells in intervertebral disc-like condition, and the pre-differentiated cells could be a promising cell source for disc regeneration medicine.

  10. Adipose tissue-derived stem cells enhance bioprosthetic mesh repair of ventral hernias.

    PubMed

    Altman, Andrew M; Abdul Khalek, Feras J; Alt, Eckhard U; Butler, Charles E

    2010-09-01

    Bioprosthetic mesh used for ventral hernia repair becomes incorporated into the musculofascial edge by cellular infiltration and vascularization. Adipose tissue-derived stem cells promote tissue repair and vascularization and may increase the rate or degree of tissue incorporation. The authors hypothesized that introducing these cells into bioprosthetic mesh would result in adipose tissue-derived stem cell engraftment and proliferation and enhance incorporation of the bioprosthetic mesh. Adipose tissue-derived stem cells were isolated from the subcutaneous adipose tissue of syngeneic Brown Norway rats, expanded in vitro, and labeled with green fluorescent protein. Thirty-six additional rats underwent inlay ventral hernia repair with porcine acellular dermal matrix. Two 12-rat groups had the cells (1.0 x 10(6)) injected directly into the musculofascial/porcine acellular dermal matrix interface after repair or received porcine acellular dermal matrix on which the cells had been preseeded; the 12-rat control group received no stem cells. At 2 weeks, adipose tissue-derived stem cells in both stem cell groups engrafted, survived, migrated, and proliferated. Mean cellular infiltration into porcine acellular dermal matrix at the musculofascial/graft interface was significantly greater in the preseeded and injected stem cell groups than in the control group. Mean vascular infiltration of the porcine acellular dermal matrix was significantly greater in both stem cell groups than in the control group. Preseeded and injected adipose tissue-derived stem cells engraft, migrate, proliferate, and enhance the vascularity of porcine acellular dermal matrix grafts at the musculofascial/graft interface. These cells can thus enhance incorporation of porcine acellular dermal matrix into the abdominal wall after repair of ventral hernias.

  11. Mesenchymal stem cells induce dermal fibroblast responses to injury

    PubMed Central

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2009-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury. PMID:19666021

  12. Balancing Ethical Pros and Cons of Stem Cell Derived Gametes.

    PubMed

    Segers, Seppe; Mertes, Heidi; de Wert, Guido; Dondorp, Wybo; Pennings, Guido

    2017-07-01

    In this review we aim to provide an overview of the most important ethical pros and cons of stem cell derived gametes (SCD-gametes), as a contribution to the debate about reproductive tissue engineering. Derivation of gametes from stem cells holds promising applications both for research and for clinical use in assisted reproduction. We explore the ethical issues connected to gametes derived from embryonic stem cells (both patient specific and non-patient specific) as well as those related to gametes derived from induced pluripotent stem cells. The technology of SCD-gametes raises moral concerns of how reproductive autonomy relates to issues of embryo destruction, safety, access, and applications beyond clinical infertility.

  13. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection.

    PubMed

    Hong, Danping; Ding, Jiongyan; Li, Ouyang; He, Quan; Ke, Minxia; Zhu, Mengyi; Liu, Lili; Ou, Wen-Bin; He, Yulong; Wu, Yuehong

    2018-02-26

    Induced pluripotent stem cells (iPS) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). Mφ show great promise in disease pathogenesis, particularly tuberculosis. However, there is no information about human iPS-derived (hiPS) macrophages (hiPS-Mφ) in response to tuberculosis infection. In the present study, macrophages derived from hiPS were established via embryoid body (EB) formation by using feeder-free culture conditions, and the human monocyte cell line THP-1 (THP-1-Mφ) was used as control. iPS-Mφ were characterized by using morphology, Giemsa staining, nonspecific esterase staining (α-NAE), phagocytosis, and surface phenotype. Additionally, after treatment with Bacillus Calmette-Guérin (BCG) for 24 h, cell apoptosis was detected by using an Annexin V-FITC Apoptosis Detection assay. The production of nitric oxide (NO), expression of tumor necrosis factor alpha (TNF-α), activity of apoptosis-related protein cysteine-3 (Caspase-3) and expression of B-cell lymphoma-2 (Bcl-2) were analyzed. With respect to morphology, surface phenotype, and function, the iPS-Mφ closely resembled their counterparts generated in vitro from a human monocyte cell line. iPS-Mφ exhibited the typically morphological characteristics of macrophages, such as round, oval, fusiform and irregular characteristics. The cells were Giemsa-stained-positive, α-NAE-positive, and possessed phagocytic ability. iPS-Mφ express high levels of CD14, CD11b, CD40, CD68, and major histocompatibility complex II (MHC-II). Moreover, with regard to the apoptotic rate, the production of NO, expression of TNF-α, and activity of Caspase-3 and Bcl-2, iPS-Mφ closely resemble that of their counterparts generated in vitro from human monocyte cell line in response to BCG infection. The rate of apoptosis of BCG-treated iPS-Mφ was 37.77 ± 7.94% compared to that of the untreated group at 4.97 ± 1.60% (P < 0.01) by using Annexin V-FITC Apoptosis Detection. Additionally, the rate of apoptosis of BCG-treated THP-1-Mφ was 37.1 ± 2.84% compared to that of the untreated group at 6.19 ± 1.68% (P < 0.001). The expression of TNF-α and the production of NO were significantly increased (P < 0.001), and the activity of Caspase-3 was increased. However, the expression of Bcl-2 was inhibited (P < 0.001). Our results demonstrate that Mφ derived from hiPS perform the immunological function in response to Bacillus Calmette-Guérin infection by undergoing apoptosis, increasing the production of NO and expression of TNF-α. Thus, our study may help to overcome the limitations of research into certain rare diseases due to the lack of adequate supply of disease-specific primary cells.

  14. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells.

    PubMed

    Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Bhonde, Ramesh

    2012-04-01

    In vitro disease modeling using pluripotent stem cells can be a fast track screening tool for toxicological testing of candidate drug molecules. Dimethyl sulfoxide (DMSO) is one of the most commonly used solvents in drug screening. In the present investigation, we exposed 14- to 21-day-old embryoid bodies (EBs) to three different concentrations of DMSO [0.01% (low dose), 0.1% (medium dose) and 1.0% (high dose)] to identify the safest dose that could effectively be used as solvent. We found that DMSO treatment substantially altered the morphology and attachment of cells in concurrence with a significant reduction in cell viability in a dose-dependent manner. Gene expression studies revealed a selective downregulation of key markers associated with stemness (Oct-4, Sox-2, Nanog and Rex-1); ectoderm (Nestin, TuJ1, NEFH and Keratin-15); mesoderm (HAND-1, MEF-2C, GATA-4 and cardiac-actin); and endoderm (SOX-17, HNF-3β, GATA-6 and albumin), indicating an aberrant and untimely differentiation trajectory. Furthermore, immunocytochemistry, flow cytometry and histological analyses demonstrated substantial decrease in the levels of albumin and CK-18 proteins coupled with a massive reduction in the number of cells positive for PAS staining, implicating reduced deposits of glycogen. Our study advocates for the first time that DMSO exposure not only affects the phenotypic characteristics but also induces significant alteration in gene expression, protein content and functionality of the differentiated hepatic cells. Overall, our experiments warrant that hESC-based assays can provide timely alerts about the outcome of widespread applications of DMSO as drug solvent, cryoprotectant and differentiating agent.

  15. Gene screening of Wharton's jelly derived stem cells.

    PubMed

    Mechiche Alami, S; Velard, F; Draux, F; Siu Paredes, F; Josse, J; Lemaire, F; Gangloff, S C; Graesslin, O; Laurent-Maquin, D; Kerdjoudj, H

    2014-01-01

    Stem cells are the most powerful candidate for the treatment of various diseases. Suitable stem cell source should be harvested with minimal invasive procedure, found in great quantity, and transplanted with no risk of immune response and tumor formation. Fetal derived stem cells have been introduced as an excellent alternative to adult and embryonic stem cells use, but unfortunately, their degree of "stemness" and molecular characterization is still unclear. Several studies have been performed deciphering whether fetal stem cells meet the needs of regenerative medicine. We believe that a transcriptomic screening of Wharton's jelly stem cells will bring insights on cell population features.

  16. A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes without Growth Factor Stimulation

    DTIC Science & Technology

    2011-01-01

    A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes Without Growth Factor Stimulation...Ph.D.3 This work describes the differentiation of adipose-derived mesenchymal stem cells (ASC) in a composite hy- drogel for use as a vascularized...tissue from a single population of ASC. This work underscores the importance of the extracellular matrix in controlling stem cell phenotype. It is our

  17. Translating stem cell research: challenges at the research frontier.

    PubMed

    Magnus, David

    2010-01-01

    This paper will address the translation of basic stem cell research into clinical research. While "stem cell" trials are sometimes used to describe established practices of bone marrow transplantation or transplantation of primary cells derived from bone marrow, for the purposes of this paper, I am primarily focusing on stem cell trials which are far less established, including use of hESC derived stem cells. The central ethical challenges in stem cell clinical trials arise in frontier research, not in standard, well-established areas of research.

  18. Peripheral Motor and Sensory Nerve Conduction following Transplantation of Undifferentiated Autologous Adipose Tissue-Derived Stem Cells in a Biodegradable U.S. Food and Drug Administration-Approved Nerve Conduit.

    PubMed

    Klein, Silvan M; Vykoukal, Jody; Li, De-Pei; Pan, Hui-Lin; Zeitler, Katharina; Alt, Eckhard; Geis, Sebastian; Felthaus, Oliver; Prantl, Lukas

    2016-07-01

    Conduits preseeded with either Schwann cells or stem cells differentiated into Schwann cells demonstrated promising results for the outcome of nerve regeneration in nerve defects. The concept of this trial combines nerve repair by means of a commercially available nerve guidance conduit and preseeding with autologous, undifferentiated, adipose tissue-derived stem cells. Adipose tissue-derived stem cells were harvested from rats and subsequently seeded onto a U.S. Food and Drug Administration-approved type I collagen conduit. Sciatic nerve gaps 10 mm in length were created, and nerve repair was performed by the transplantation of either conduits preseeded with autologous adipose tissue-derived stem cells or acellular (control group) conduits. After 6 months, the motor and sensory nerve conduction velocity were assessed. Nerves were removed and examined by hematoxylin and eosin, van Gieson, and immunohistochemistry (S100 protein) staining for the quality of axonal regeneration. Nerve gaps treated with adipose tissue-derived stem cells showed superior nerve regeneration, reflected by higher motor and sensory nerve conduction velocity values. The motor and sensory nerve conduction velocity were significantly greater in nerves treated with conduits preseeded with adipose tissue-derived stem cells than in nerves treated with conduits alone (p < 0.05). Increased S100 immunoreactivity was detected for the adipose tissue-derived stem cell group. In this group, axon arrangement inside the conduits was more organized. Transplantation of adipose tissue-derived stem cells significantly improves motor and sensory nerve conduction velocity in peripheral nerve gaps. Preseeded conduits showed a more organized axon arrangement inside the conduit in comparison with nerve conduits alone. The approach used here could readily be translated into a clinical therapy. Therapeutic, V.

  19. Mesenchymal stem cells induce dermal fibroblast responses to injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Andria N., E-mail: snosmith@u.washington.edu; Willis, Elise, E-mail: elise.willis@gmail.com; Chan, Vincent T.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. Whenmore » co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.« less

  20. Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods

    PubMed Central

    González, Sheyla; Ibáñez, Elena

    2010-01-01

    Purpose The aim of the present study is to compare three previously described mouse embryonic stem cell derivation methods to evaluate the influence of culture conditions, number of isolated blastomeres and embryonic stage in the derivation process. Methods Three embryonic stem cell derivation methods: standard, pre-adhesion and defined culture medium method, were compared in the derivation from isolated blastomeres and whole embryos at 4- and 8-cell stages. Results A total of 200 embryonic stem cell lines were obtained with an efficiency ranging from 1.9% to 72%. Conclusions Using either isolated blastomeres or whole embryos, the highest rates of mouse embryonic stem cell establishment were achieved with the defined culture medium method and efficiencies increased as development progressed. Using isolated blastomeres, efficiencies increased in parallel to the proportion of the embryo volume used to start the derivation process. PMID:20862536

  1. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients.

    PubMed

    Verneuil, Laurence; Leboeuf, Christophe; Bousquet, Guilhem; Brugiere, Charlotte; Elbouchtaoui, Morad; Plassa, Louis-François; Peraldi, Marie-Noelle; Lebbé, Celeste; Ratajczak, Philippe; Janin, Anne

    2015-12-08

    Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion.Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells.For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug.The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin.The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance.Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker. We identified here donor-derived stem cells within skin SCC in kidney-transplant recipients. They were located in invasive areas of SCC and had EMT characteristics.

  2. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    DTIC Science & Technology

    2012-07-01

    Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases as a function of age and may contribute to age-related...problem of age-related reduced availability of MSC we propose to examine the bone anabolic potential of induced pluripotent stem cell (iPS) derived MSC

  3. Cigarette Smoke Inhibits Recruitment of Bone-Marrow-Derived Stem cells to The Uterus

    PubMed Central

    Zhou, Yuping; Gan, Ye; Taylor, Hugh S.

    2011-01-01

    Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues. PMID:20955787

  4. Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration

    PubMed Central

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2016-01-01

    Platelet rich blood derivatives have been widely used in different fields of medicine and stem cell based tissue engineering. They represent natural cocktails of autologous growth factor, which could provide an alternative for recombinant protein based approaches. Platelet rich blood derivatives, such as platelet rich plasma, have consistently shown to potentiate stem cell proliferation, migration, and differentiation. Here, we review the spectrum of platelet rich blood derivatives, discuss their current applications in tissue engineering and regenerative medicine, reflect on their effect on stem cells, and highlight current translational challenges. PMID:27047733

  5. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications

    PubMed Central

    Minteer, Danielle Marie; Young, Matthew T; Lin, Yen-Chih; Over, Patrick J; Rubin, J Peter; Gerlach, Jorg C

    2015-01-01

    To address the functionality of diabetic adipose-derived stem cells in tissue engineering applications, adipose-derived stem cells isolated from patients with and without type II diabetes mellitus were cultured in bioreactor culture systems. The adipose-derived stem cells were differentiated into adipocytes and maintained as functional adipocytes. The bioreactor system utilizes a hollow fiber–based technology for three-dimensional perfusion of tissues in vitro, creating a model in which long-term culture of adipocytes is feasible, and providing a potential tool useful for drug discovery. Daily metabolic activity of the adipose-derived stem cells was analyzed within the medium recirculating throughout the bioreactor system. At experiment termination, tissues were extracted from bioreactors for immunohistological analyses in addition to gene and protein expression. Type II diabetic adipose-derived stem cells did not exhibit significantly different glucose consumption compared to adipose-derived stem cells from patients without type II diabetes (p > 0.05, N = 3). Expression of mature adipocyte genes was not significantly different between diabetic/non-diabetic groups (p > 0.05, N = 3). Protein expression of adipose tissue grown within all bioreactors was verified by Western blotting.The results from this small-scale study reveal adipose-derived stem cells from patients with type II diabetes when removed from diabetic environments behave metabolically similar to the same cells of non-diabetic patients when cultured in a three-dimensional perfusion bioreactor, suggesting that glucose transport across the adipocyte cell membrane, the hindrance of which being characteristic of type II diabetes, is dependent on environment. The presented observation describes a tissue-engineered tool for long-term cell culture and, following future adjustments to the culture environment and increased sample sizes, potentially for anti-diabetic drug testing. PMID:26090087

  6. Wound Healing and Angiogenesis through Combined Use of a Vascularized Tissue Flap and Adipose-Derived Stem Cells in a Rat Hindlimb Irradiated Ischemia Model.

    PubMed

    Yoshida, Shuhei; Yoshimoto, Hiroshi; Hirano, Akiyoshi; Akita, Sadanori

    2016-05-01

    Treatment of critical limb ischemia is sometimes difficult because of the patient's condition, and some novel approaches are needed. The hindlimbs of Sprague-Dawley rats, after 20-Gy x-ray irradiation and surgical occlusion, were divided into four groups: with a superficial fascial flap, 5.0 × 10 adipose-derived stromal/stem cells, and both combined. The rats were tested for laser tissue blood flow, immunohistologic blood vessel density, and foot paw punch hole wound healing. Green fluorescent protein-tagged Sprague-Dawley rats were used for further investigation by cell tracking for 2 weeks. Laser tissue blood flow demonstrated a significant increase in the combined treatment of flap and adipose-derived stem cells at both 1 and 2 weeks. There were no significant differences between the treatment groups treated with flaps alone and those treated with adipose-derived stem cells alone. Wound healing was significantly increased following combined treatment at 1 week, and there was no wound by 2 weeks except for the no-flap and no-adipose-derived stem cell group. The number of vessels depicted by von Willebrand factor showed a significant increase in the combined treatment group, at both 1 week and 2 weeks. In the cell tracking group, at 2 weeks, the green fluorescent protein-tagged adipose-derived stem cells were significantly more positive in the no-flap group than in the flap group. Adipose-derived stem cells may be a potent cell source in irradiated and occluded limbs by enhancing tissue blood flow and blood vessel density. Adipose-derived stem cells may play an important role in some difficult ischemic conditions in terms of wound healing.

  7. Vitrification of mouse embryo-derived ICM cells: a tool for preserving embryonic stem cell potential?

    PubMed

    Desai, Nina; Xu, Jing; Tsulaia, Tamara; Szeptycki-Lawson, Julia; AbdelHafez, Faten; Goldfarb, James; Falcone, Tommaso

    2011-02-01

    Vitrification technology presents new opportunities for preservation of embryo derived stem cells without first establishing a viable ESC line. This study tests the feasibility of cryopreserving ICM cells using vitrification. ICMs from mouse embryos were isolated and vitrified in HSV straws or on cryoloops. Upon warming, the vitrified ICMs were cultured and observed for attachment and morphology. Colonies were passaged every 3-6 days. ICMs and ICM-derived ESC colonies were tested for expression of stem cell specific markers. ICMs vitrified on both the cryoloop and the HSV straw had high survival rates. ICM derived ESCs remained undifferentiated for several passages and demonstrated expression of typical stem cell markers; SSEA-1, Sox-2, Oct 4 and alkaline phosphatase. This is the first report on successful vitrification of isolated ICMs and the subsequent derivation of ESC colonies. Vitrification of isolated ICMs is a novel approach for preservation of the "stem cell source" material.

  8. Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age.

    PubMed

    Devitt, Sean M; Carter, Cynthia M; Dierov, Raia; Weiss, Scott; Gersch, Robert P; Percec, Ivona

    2015-01-01

    We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2-1159 days) from patients of varying ages (26-62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.

  9. WNT-C59, a Small-Molecule WNT Inhibitor, Efficiently Induces Anterior Cortex That Includes Cortical Motor Neurons From Human Pluripotent Stem Cells.

    PubMed

    Motono, Makoto; Ioroi, Yoshihiko; Ogura, Takenori; Takahashi, Jun

    2016-04-01

    The recapitulation of human neural development in a controlled, defined manner from pluripotent stem cells (PSCs) has considerable potential for studies of human neural development, circuit formation and function, and the construction of in vitro models of neurological diseases. The inhibition of Wnt signaling, often by the recombinant protein DKK1, is important for the induction of cortical neurons. Here, we report a novel differentiation method using a small-molecule WNT inhibitor, WNT-C59 (C59), to efficiently induce human anterior cortex. We compared two types of small molecules, C59 and XAV939 (XAV), as substitutes for DKK1 to induce cortical neurons from PSCs in serum-free embryoid body-like aggregate culture. DKK1 and XAV inhibited only the canonical pathway of Wnt signaling, whereas C59 inhibited both the canonical and noncanonical pathways. C59 efficiently induced CTIP2+/COUP-TF1- cells, which are characteristic of the cells found in the anterior cortex. In addition, when grafted into the cortex of adult mice, the C59-induced cells showed abundant axonal fiber extension toward the spinal cord. These results raise the possibility of C59 contributing to cell replacement therapy for motor neuron diseases or insults. For a cell therapy against damaged corticospinal tract caused by neurodegenerative diseases or insults, cortical motor neurons are needed. Currently, their induction from pluripotent stem cells is considered very promising; however, an efficient protocol to induce motor neurons is not available. For efficient induction of anterior cortex, where motor neurons are located, various WNT inhibitors were investigated. It was found that one of them could induce anterior cortical cells efficiently. In addition, when grafted into the cortex of adult mice, the induced cells showed more abundant axonal fiber extension toward spinal cord. These results raise the possibility that this inhibitor contributes to a cell-replacement therapy for motor neuron diseases or insults. ©AlphaMed Press.

  10. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.

  11. Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.

    PubMed

    Shah, Sandeep N; Gelderman, Monique P; Lewis, Emily M A; Farrel, John; Wood, Francine; Strader, Michael Brad; Alayash, Abdu I; Vostal, Jaroslav G

    2016-01-01

    Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.

  12. Role of stem cell derived exosomes in tumor biology.

    PubMed

    Sharma, Aman

    2018-03-15

    Exosomes are nano-scale messengers loaded with bio-molecular cargo of RNA, DNA, and Proteins. As a master regulator of cellular signaling, stem cell (both normal, and cancer stem cells) secreted exosome orchestrate various autocrine and paracrine functions which alter tumor micro-environment, growth and progression. Exosomes secreted by one of the two important stem cell phenotypes in cancers a) Mesenchymal stem cells, and b) Cancer stem cells not only promote cancerous growth but also impart therapy resistance in cancer cells. In tumors, normal or mesenchymal stem cell (MSCs) derived exosomes (MSC-exo) modulate tumor hallmarks by delivering unique miRNA species to neighboring cells and help in tumor progression. Apart from regulating tumor cell fate, MSC-exo are also capable of inducing physiological processes, for example, angiogenesis, metastasis and so forth. Similarly, cancer stem cells (CSCs) derived exosomes (CSC-exo) contain stemness-specific proteins, self-renewal promoting regulatory miRNAs, and survival factors. CSC-exo specific cargo maintains tumor heterogeneity and alters tumor progression. In this review we critically discuss the importance of stem cell specific exosomes in tumor cell signaling pathways with their role in tumor biology. © 2017 UICC.

  13. Stem cell research in cell transplantation: sources, geopolitical influence, and transplantation.

    PubMed

    Eve, David J; Fillmore, Randolph W; Borlongan, Cesar V; Sanberg, Paul R

    2010-01-01

    If the rapidly progressing field of stem cell research reaches its full potential, successful treatments and enhanced understanding of many diseases are the likely results. However, the full potential of stem cell science will only be reached if all possible avenues can be explored and on a worldwide scale. Until 2009, the US had a highly restrictive policy on obtaining cells from human embryos and fetal tissue, a policy that pushed research toward the use of adult-derived cells. Currently, US policy is still in flux, and retrospective analysis does show the US lagging behind the rest of the world in the proportional increase in embryonic/fetal stem cell research. The majority of US studies being on either a limited number of cell lines, or on cells derived elsewhere (or funded by other sources than Federal) rather than on freshly isolated embryonic or fetal material. Neural, mesenchymal, and the mixed stem cell mononuclear fraction are the most commonly investigated types, which can generally be classified as adult-derived stem cells, although roughly half of the neural stem cells are fetal derived. Other types, such as embryonic and fat-derived stem cells, are increasing in their prominence, suggesting that new types of stem cells are still being pursued. Sixty percent of the reported stem cell studies involved transplantation, of which over three quarters were allogeneic transplants. A high proportion of the cardiovascular systems articles were on allogeneic transplants in a number of different species, including several autologous studies. A number of pharmaceutical grade stem cell products have also recently been tested and reported on. Stem cell research shows considerable promise for the treatment of a number of disorders, some of which have entered clinical trials; over the next few years it will be interesting to see how these treatments progress in the clinic.

  14. CD34+ Testicular Stromal Cells Support Long-Term Expansion of Embryonic and Adult Stem and Progenitor Cells

    PubMed Central

    Kim, Jiyeon; Seandel, Marco; Falciatori, Ilaria; Wen, Duancheng; Rafii, Shahin

    2010-01-01

    Stem cells reside in specialized microenvironments created by supporting stromal cells that orchestrate self-renewal and lineage-specific differentiation. However, the precise identity of the cellular and molecular pathways that support self-renewal of stem cells is not known. For example, long-term culture of prototypical stem cells, such as adult spermatogonial stem and progenitor cells (SPCs), in vitro has been impeded by the lack of an optimal stromal cell line that initiates and sustains proliferation of these cells. Indeed, current methods, including the use of mouse embryonic fibroblasts (MEFs), have not been efficient and have generally led to inconsistent results. Here, we report the establishment of a novel CD34-positive cell line, referred to as JK1, derived from mouse testicular stromal cells that not only facilitated long-term SPC culture but also allowed faithful generation of SPCs and multipotent stem cells. SPCs generated on JK1 maintained key features of germ line stem cells, including expression of PLZF, DAZL, and GCNA. Furthermore, these feeders also promoted the long-term cultivation of other types of primitive cells including multi-potent adult spermatogonial-derived stem cells, pluripotent murine embryonic stem cells, and embryonic germ cells derived from primordial germ cells. Stem cells could be passaged serially and still maintained expression of characteristic markers such as OCT4 and NANOG in vitro, as well as the ability to generate all three germ layers in vivo. These results indicate that the JK1 cell line is capable of promoting long-term culture of primitive cells. As such, this cell line allows for identification of stromal-derived factors that support long-term proliferation of various types of stem cells and constitutes a convenient alternative to other types of feeder layers. PMID:18669907

  15. Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells.

    PubMed

    Raabe, Oksana; Shell, Katja; Würtz, Antonia; Reich, Christine Maria; Wenisch, Sabine; Arnhold, Stefan

    2011-08-01

    Adipose tissue-derived stem cells (ADSCs) represent a promising subpopulation of adult stem cells for tissue engineering applications in veterinary medicine. In this study we focused on the morphological and molecular biological properties of the ADSCs. The expression of stem cell markers Oct4, Nanog and the surface markers CD90 and CD105 were detected using RT-PCR. ADSCs showed a proliferative potential and were capable of adipogenic and osteogenic differentiation. Expression of Alkaline phosphatase (AP), phosphoprotein (SPP1), Runx2 and osteocalcin (OC) mRNA were positive in osteogenic lineages and peroxisome proliferator activated receptor (Pparγ2) mRNA was positive in adipogenic lineages. ADSCs show stem cell and surface marker profiles and differentiation characteristics that are similar to but distinct from other adult stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs). The availability of an easily accessible and reproducible cell source may greatly facilitate the development of stem cell based tissue engineering and therapies for regenerative equine medicine.

  16. Neural Stem Cells Derived Directly from Adipose Tissue.

    PubMed

    Petersen, Eric D; Zenchak, Jessica R; Lossia, Olivia V; Hochgeschwender, Ute

    2018-05-01

    Neural stem cells (NSCs) are characterized as self-renewing cell populations with the ability to differentiate into the multiple tissue types of the central nervous system. These cells can differentiate into mature neurons, astrocytes, and oligodendrocytes. This category of stem cells has been shown to be a promisingly effective treatment for neurodegenerative diseases and neuronal injury. Most treatment studies with NSCs in animal models use embryonic brain-derived NSCs. This approach presents both ethical and feasibility issues for translation to human patients. Adult tissue is a more practical source of stem cells for transplantation therapies in humans. Some adult tissues such as adipose tissue and bone marrow contain a wide variety of stem cell populations, some of which have been shown to be similar to embryonic stem cells, possessing many pluripotent properties. Of these stem cell populations, some are able to respond to neuronal growth factors and can be expanded in vitro, forming neurospheres analogous to cells harvested from embryonic brain tissue. In this study, we describe a method for the collection and culture of cells from adipose tissue that directly, without going through intermediates such as mesenchymal stem cells, results in a population of NSCs that are able to be expanded in vitro and be differentiated into functional neuronal cells. These adipose-derived NSCs display a similar phenotype to those directly derived from embryonic brain. When differentiated into neurons, cells derived from adipose tissue have spontaneous spiking activity with network characteristics similar to that of neuronal cultures.

  17. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data.

    PubMed

    Gamie, Zakareya; MacFarlane, Robert J; Tomkinson, Alicia; Moniakis, Alexandros; Tran, Gui Tong; Gamie, Yehya; Mantalaris, Athanasios; Tsiridis, Eleftherios

    2014-11-01

    Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources. In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases. Enhanced results have been found when combining bone marrow-derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue-derived stem cells and umbilical cord tissue-derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.

  18. [Establishment of sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo].

    PubMed

    Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong

    2008-10-14

    To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.

  19. Disease and Stem Cell-Based Analysis of the 2014 ASNTR Meeting

    PubMed Central

    Eve, David J.

    2015-01-01

    A wide variety of subjects are presented at the annual American Society of Neural Therapy and Repair meeting every year, as typified by this summary of the 2014 meeting. Parkinson’s disease-related presentations were again the most popular topic, with traumatic brain injury, spinal cord injury, and stroke being close behind. Other disorders included Huntington’s disease, brain cancer, and bipolar disorders. Several studies were related to multiple diseases, and many studies attempted to reveal more about the disease process. The use of scaffolds, drugs, and gene therapy as disease models and/or potential therapies were also featured. An increasing proportion of presentations related to stem cells, with the study of multiple stem cell types being the most common. Induced pluripotent stem cells were increasingly popular, including two presentations each on a muscle-derived dedifferentiated cell type and cells derived from bipolar patients. Other stem cells, including neural stem cells, mesenchymal stem cells, umbilical cord blood cells, and embryonic stem cells, were featured. More than 55% of the stem cell studies involved transplantation, with human-derived cells being the most frequently transplanted, while rats were the most common recipient. Two human autologous studies for spinal cord injury and hypoxia-derived encephalopathy, while a further three allogenic studies for stroke and spinal cord injury, were also featured. This year’s meeting highlights the increasing promise of stem cells and other therapies for the treatment of neurodegenerative disorders. PMID:26858901

  20. Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease.

    PubMed

    Uchida, Naoya; Haro-Mora, Juan J; Fujita, Atsushi; Lee, Duck-Yeon; Winkler, Thomas; Hsieh, Matthew M; Tisdale, John F

    2017-03-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596. © 2016 AlphaMed Press.

  1. Recruitment of bone marrow-derived cells to the periodontal ligament via the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 axis.

    PubMed

    Kaku, M; Kitami, M; Rosales Rocabado, J M; Ida, T; Akiba, Y; Uoshima, K

    2017-08-01

    The periodontal ligament (PDL) is a non-mineralized connective tissue that exists between the alveolar bone and root surface cementum and plays important roles in tooth function. The PDL harbors a remarkable reserve of multipotent stem cells, which maintain various types of cells. However, the sources of these stem cells, other than their developmental origin, are not well understood. To elucidate the recruitment of bone marrow (BM)-derived stem cells in the PDL, green fluorescent protein (GFP)-expressing BM-derived cells were transplanted into the femoral BM of immunodeficient rats, and the distribution and expression of stem cell markers in the PDL were analyzed in vivo. To evaluate the functional significance of BM-derived cells to the PDL, tooth replantation was performed and the expression of stromal cell-derived factor (SDF)-1, a critical chemotactic signal for mesenchymal stem cell recruitment, was analyzed. To confirm the SDF-1-dependency of BM-derived cell migration to the PDL, PDL-conditioned medium (CM) was prepared, and BM-derived cell migration was analyzed using a transwell culture system. Four weeks after cell transplantation, GFP-positive cells were detected in the PDL, and some of them were also positive for stem cell markers (i.e., CD29, SSEA4, and αSMA). Seven days after tooth replantation, the number of GFP- and SDF-1-positive cells significantly increased in PDL. Concurrently, the concentration of SDF-1 and the number of colony-forming units of fibroblasts in peripheral blood were increased. BM-derived cell migration increased in PDL-CM and was inhibited by an inhibitor of C-X-C chemokine receptor type 4 (CXCR4), an SDF-1 receptor. These results indicate that stem cells and their progeny in PDL are not only derived from their developmental origin but are also supplied from the BM via the blood as the need arises. Moreover, this BM-derived cell recruitment appears to be regulated, at least partially, by the SDF-1/CXCR4 axis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.

    PubMed

    Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah

    2016-01-01

    Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.

  3. Stem Cell Therapy in Bladder Dysfunction: Where Are We? And Where Do We Have to Go?

    PubMed Central

    Lee, Sang-Rae; Song, Yun Seob; Lee, Hong Jun

    2013-01-01

    To date, stem cell therapy for the bladder has been conducted mainly on an experimental basis in the areas of bladder dysfunction. The therapeutic efficacy of stem cells was originally thought to be derived from their ability to differentiate into various cell types. Studies about stem cell therapy for bladder dysfunction have been limited to an experimental basis and have been less focused than bladder regeneration. Bladder dysfunction was listed in MESH as “urinary bladder neck obstruction”, “urinary bladder, overactive”, and “urinary bladder, neurogenic”. Using those keywords, several articles were searched and studied. The bladder dysfunction model includes bladder outlet obstruction, cryoinjured, diabetes, ischemia, and spinal cord injury. Adipose derived stem cells (ADSCs), bone marrow stem cells (BMSCs), and skeletal muscle derived stem cells (SkMSCs) are used for transplantation to treat bladder dysfunction. The main mechanisms of stem cells to reconstitute or restore bladder dysfunction are migration, differentiation, and paracrine effects. The aim of this study is to review the stem cell therapy for bladder dysfunction and to provide the status of stem cell therapy for bladder dysfunction. PMID:24151627

  4. PCL-PDMS-PCL Copolymer-Based Microspheres Mediate Cardiovascular Differentiation from Embryonic Stem Cells.

    PubMed

    Song, Liqing; Ahmed, Mohammad Faisel; Li, Yan; Bejoy, Julie; Zeng, Changchun; Li, Yan

    2017-10-01

    Poly-ɛ-caprolactone (PCL) based microspheres have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. In addition, PCL and polydimethylsiloxane (PDMS) can be fabricated into thermoresponsive shape memory polymers for various biomedical applications (e.g., smart sutures and vascular stents). However, the influence of biophysical properties of PCL-PDMS based microspheres on stem cell lineage commitment has not been well understood. In this study, PDMS was used as soft segments of varying length to tailor the elastic modulus of PCL-based copolymers. It was found that lower elastic modulus (<10 kPa) of the tri-block copolymer PCL-PDMS-PCL promoted vascular differentiation of embryonic stem cells, but the range of 60-100 MPa PCL-PDMS-PCL had little influence on cardiovascular differentiation. Then different sizes (30-140 μm) of PCL-PDMS-PCL microspheres were fabricated and incorporated with embryoid bodies (EBs). Differential expression of KDR, CD31, and VE-cadherin was observed for the EBs containing microspheres of different sizes. Higher expression of KDR was observed for the condition with small size of microspheres (32 μm), while higher CD31 and VE-cadherin expression was observed for the group of medium size of microspheres (94 μm). Little difference in cardiac marker α-actinin was observed for different microspheres. This study indicates that the biophysical properties of PCL-PDMS-PCL microspheres impact vascular lineage commitment and have implications for drug delivery and tissue engineering.

  5. Efficient Generation of iPS Cells from Skeletal Muscle Stem Cells

    PubMed Central

    Tan, Kah Yong; Eminli, Sarah; Hettmer, Simone; Hochedlinger, Konrad; Wagers, Amy J.

    2011-01-01

    Reprogramming of somatic cells into inducible pluripotent stem cells generally occurs at low efficiency, although what limits reprogramming of particular cell types is poorly understood. Recent data suggest that the differentiation status of the cell targeted for reprogramming may influence its susceptibility to reprogramming as well as the differentiation potential of the induced pluripotent stem (iPS) cells that are derived from it. To assess directly the influence of lineage commitment on iPS cell derivation and differentiation, we evaluated reprogramming in adult stem cell and mature cell populations residing in skeletal muscle. Our data using clonal assays and a second-generation inducible reprogramming system indicate that stem cells found in mouse muscle, including resident satellite cells and mesenchymal progenitors, reprogram with significantly greater efficiency than their more differentiated daughters (myoblasts and fibroblasts). However, in contrast to previous reports, we find no evidence of biased differentiation potential among iPS cells derived from myogenically committed cells. These data support the notion that adult stem cells reprogram more efficiently than terminally differentiated cells, and argue against the suggestion that “epigenetic memory” significantly influences the differentiation potential of iPS cells derived from distinct somatic cell lineages in skeletal muscle. PMID:22028872

  6. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle.

    PubMed

    Lapidos, Karen A; Chen, Yiyin E; Earley, Judy U; Heydemann, Ahlke; Huber, Jill M; Chien, Marcia; Ma, Averil; McNally, Elizabeth M

    2004-12-01

    Pluripotent bone marrow-derived side population (BM-SP) stem cells have been shown to repopulate the hematopoietic system and to contribute to skeletal and cardiac muscle regeneration after transplantation. We tested BM-SP cells for their ability to regenerate heart and skeletal muscle using a model of cardiomyopathy and muscular dystrophy that lacks delta-sarcoglycan. The absence of delta-sarcoglycan produces microinfarcts in heart and skeletal muscle that should recruit regenerative stem cells. Additionally, sarcoglycan expression after transplantation should mark successful stem cell maturation into cardiac and skeletal muscle lineages. BM-SP cells from normal male mice were transplanted into female delta-sarcoglycan-null mice. We detected engraftment of donor-derived stem cells into skeletal muscle, with the majority of donor-derived cells incorporated within myofibers. In the heart, donor-derived nuclei were detected inside cardiomyocytes. Skeletal muscle myofibers containing donor-derived nuclei generally failed to express sarcoglycan, with only 2 sarcoglycan-positive fibers detected in the quadriceps muscle from all 14 mice analyzed. Moreover, all cardiomyocytes with donor-derived nuclei were sarcoglycan-negative. The absence of sarcoglycan expression in cardiomyocytes and skeletal myofibers after transplantation indicates impaired differentiation and/or maturation of bone marrow-derived stem cells. The inability of BM-SP cells to express this protein severely limits their utility for cardiac and skeletal muscle regeneration.

  7. Adult bone marrow-derived stem cells for organ regeneration and repair.

    PubMed

    Tögel, Florian; Westenfelder, Christof

    2007-12-01

    Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine. 2007 Wiley-Liss, Inc

  8. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells.

    PubMed

    Wang, Ruoxing; Guo, Yan-Lin

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Retracted article: In vitro derivation of mammalian germ cells from stem cells and their potential therapeutic application.

    PubMed

    Saito, Shigeo; Lin, Ying-Chu; Murayama, Yoshinobu; Nakamura, Yukio; Eckner, Richard; Niemann, Heiner; Yokoyama, Kazunari K

    2015-12-01

    Pluripotent stem cells (PSCs) are a unique type of cells because they exhibit the characteristics of self-renewal and pluripotency. PSCs may be induced to differentiate into any cell type, even male and female germ cells, suggesting their potential as novel cell-based therapeutic treatment for infertility problems. Spermatogenesis is an intricate biological process that starts from self-renewal of spermatogonial stem cells (SSCs) and leads to differentiated haploid spermatozoa. Errors at any stage in spermatogenesis may result in male infertility. During the past decade, much progress has been made in the derivation of male germ cells from various types of progenitor stem cells. Currently, there are two main approaches for the derivation of functional germ cells from PSCs, either the induction of in vitro differentiation to produce haploid cell products, or combination of in vitro differentiation and in vivo transplantation. The production of mature and fertile spermatozoa from stem cells might provide an unlimited source of autologous gametes for treatment of male infertility. Here, we discuss the current state of the art regarding the differentiation potential of SSCs, embryonic stem cells, and induced pluripotent stem cells to produce functional male germ cells. We also discuss the possible use of livestock-derived PSCs as a novel option for animal reproduction and infertility treatment.

  10. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    USDA-ARS?s Scientific Manuscript database

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  11. Serum-free differentiation of murine embryonic stem cells into alveolar type II epithelial cells.

    PubMed

    Winkler, Monica E; Mauritz, Christina; Groos, Stephanie; Kispert, Andreas; Menke, Sandra; Hoffmann, Anika; Gruh, Ina; Schwanke, Kristin; Haverich, Axel; Martin, Ulrich

    2008-03-01

    Alveolar type II (AT2) epithelial cells have important functions including the production of surfactant and regeneration of lost alveolar type I epithelial cells. The ability of in vitro production of AT2 cells would offer new therapeutic options in treating pulmonary injuries and disorders including genetically based surfactant deficiencies. Aiming at the generation of AT2-like cells, the differentiation of murine embryonic stem cells (mESCs) toward mesendodermal progenitors (MEPs) was optimized using a "Brachyury-eGFP-knock in" mESC line. eGFP expression demonstrated generation of up to 65% MEPs at day 4 after formation of embryoid bodies (EBs) under serum-free conditions. Plated EBs were further differentiated into AT2-like cells for a total of 25 days in serum-free media resulting in the expression of endodermal marker genes (FoxA2, Sox17, TTR, TTF-1) and of markers for distal lung epithelium (surfactant proteins (SP-) A, B, C, and D, CCSP, aquaporin 5). Notably, expression of SP-C as the only known AT2 cell specific marker could be detected after serum-induction as well as under serum-free conditions. Cytoplasmic localization of SP-C was demonstrated by confocal microscopy. The presence of AT2-like cells was confirmed by electron microscopy providing evidence for polarized cells with apical microvilli and lamellar body-like structures. Our results demonstrate the differentiation of AT2-like cells from mESCs after serum-induction and under serum-free conditions. The established serum-free differentiation protocol will facilitate the identification of key differentiation factors leading to a more specific and effective generation of AT2-like cells from ESCs.

  12. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis.

    PubMed

    Nairn, Alison V; Aoki, Kazuhiro; dela Rosa, Mitche; Porterfield, Mindy; Lim, Jae-Min; Kulik, Michael; Pierce, J Michael; Wells, Lance; Dalton, Stephen; Tiemeyer, Michael; Moremen, Kelley W

    2012-11-02

    The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.

  13. Use of pluripotent stem cells for reproductive medicine: are we there yet?

    PubMed

    Duggal, Galbha; Heindryckx, Björn; Deroo, Tom; De Sutter, Petra

    2014-01-01

    In recent years, pluripotent stem cells have demonstrated to be exciting tools to understand embryonic development, cell lineage specification, tissue generation and repair, and various other biological processes. In addition, the identification and isolation of germ line stem cells has given more insight into germ cell biology at the molecular level and into the underlying causes of infertility which was not possible earlier. The recent derivation of in vitro derived sperm and oocytes from pluripotent stem cells in the mouse model represents a major breakthrough in the field and substantiates the critical relevance of stem cells as a potential alternative resource for treating infertility. Although the past years have yielded compelling information in understanding germ cell development via in vitro stem cell assays, extended investigative research is necessary in order to derive fully functional 'artificial gametes' in a safe way for future therapeutic applications.

  14. Dendrimer-driven neurotrophin expression differs in temporal patterns between rodent and human stem cells.

    PubMed

    Shakhbazau, Antos; Shcharbin, Dzmitry; Seviaryn, Ihar; Goncharova, Natalya; Kosmacheva, Svetlana; Potapnev, Mihail; Bryszewska, Maria; Kumar, Ranjan; Biernaskie, Jeffrey; Midha, Rajiv

    2012-05-07

    This study reports the use of a nonviral expression system based on polyamidoamine dendrimers for time-restricted neurotrophin overproduction in mesenchymal stem cells and skin precursor-derived Schwann cells. The dendrimers were used to deliver plasmids for brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) expression in both rodent and human stem cells, and the timelines of expression were studied. We have found that, despite the fact that transfection efficiencies and protein expression levels were comparable, dendrimer-driven expression in human mesenchymal stem cells was characterized by a more rapid decline compared to rodent cells. Transient expression systems can be beneficial for some neurotrophins, which were earlier reported to cause unwanted side effects in virus-based long-term expression models. Nonviral neurotrophin expression is a biologically safe and accessible alternative to increase the therapeutic potential of autologous adult stem cells and stem cell-derived functional differentiated cells.

  15. Stem cells in retinal regeneration: past, present and future.

    PubMed

    Ramsden, Conor M; Powner, Michael B; Carr, Amanda-Jayne F; Smart, Matthew J K; da Cruz, Lyndon; Coffey, Peter J

    2013-06-01

    Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardt's disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.

  16. Chick stem cells: Current progress and future prospects

    PubMed Central

    Intarapat, Sittipon; Stern, Claudio D.

    2013-01-01

    Chick embryonic stem cells (cESCs) can be derived from cells obtained from stage X embryos (blastoderm stage); these have the ability to contribute to all somatic lineages in chimaeras, but not to the germ line. However, lines of stem cells that are able to contribute to the germ line can be established from chick primordial germ cells (cPGCs) and embryonic germ cells (cEGCs). This review provides information on avian stem cells, emphasizing different sources of cells and current methods for derivation and culture of pluripotent cells from chick embryos. We also review technologies for isolation and derivation of chicken germ cells and the production of transgenic birds. PMID:24103496

  17. Investigating the mincing method for isolation of adipose-derived stem cells from pregnant women fat.

    PubMed

    Li, Yuan-Sheng; Chen, Pao-Jen; Wu, Li-Wei; Chou, Pei-Wen; Sun, Li-Yi; Chiou, Tzyy-Wen

    2018-02-01

    The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.

  18. Congenital anomalies

    PubMed Central

    Kunisaki, Shaun M.

    2012-01-01

    Over the past decade, amniotic fluid-derived stem cells have emerged as a novel, experimental approach for the treatment of a wide variety of congenital anomalies diagnosed either in utero or postnatally. There are a number of unique properties of amniotic fluid stem cells that have allowed it to become a major research focus. These include the relative ease of accessing amniotic fluid cells in a minimally invasive fashion by amniocentesis as well as the relatively rich population of progenitor cells obtained from a small aliquot of fluid. Mesenchymal stem cells, c-kit positive stem cells, as well as induced pluripotent stem cells have all been derived from human amniotic fluid in recent years. This article gives a pediatric surgeon’s perspective on amniotic fluid stem cell therapy for the management of congenital anomalies. The current status in the use of amniotic fluid-derived stem cells, particularly as they relate as substrates in tissue engineering-based applications, is described in various animal models. A roadmap for further study and eventual clinical application is also proposed. PMID:22986340

  19. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells.

    PubMed

    Yokoo, Takashi; Fukui, Akira; Matsumoto, Kei; Ohashi, Toya; Sado, Yoshikazu; Suzuki, Hideaki; Kawamura, Tetsuya; Okabe, Masataka; Hosoya, Tatsuo; Kobayashi, Eiji

    2008-06-15

    Differentiation of autologous stem cells into functional transplantable tissue for organ regeneration is a promising regenerative therapeutic approach for cancer, diabetes, and many human diseases. Yet to be established, however, is differentiation into tissue capable of producing erythropoietin (EPO), which has a critical function in anemia. We report a novel EPO-producing organ-like structure (organoid) derived from human mesenchymal stem cells. Using our previously established relay culture system, a human mesenchymal stem cell-derived, human EPO-competent organoid was established in rat omentum. The organoid-derived levels of human EPO increased in response to anemia induced by rapid blood withdrawal. In addition, the presence of an organoid in rats suppressed for native (rat) EPO production enhanced recovery from anemia when compared with control animals lacking the organoid. Together these results confirmed the generation of a stem cell-derived organoid that is capable of producing EPO and sensitive to physiological regulation.

  20. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Yan; Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou; Li, Yuan

    2011-04-15

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined usingmore » reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.« less

  1. Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration

    PubMed Central

    Becker, Silke; Jayaram, Hari; Limb, G. Astrid

    2012-01-01

    Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice. PMID:24710533

  2. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells.

    PubMed

    Ishikura, Yukiko; Yabuta, Yukihiro; Ohta, Hiroshi; Hayashi, Katsuhiko; Nakamura, Tomonori; Okamoto, Ikuhiro; Yamamoto, Takuya; Kurimoto, Kazuki; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori

    2016-12-06

    The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Expansion of donor-derived hematopoietic stem cells with PIGA mutation associated with late graft failure after allogeneic stem cell transplantation.

    PubMed

    Mochizuki, Kanako; Sugimori, Chiharu; Qi, Zhirong; Lu, Xuzhang; Takami, Akiyoshi; Ishiyama, Ken; Kondo, Yukio; Yamazaki, Hirohito; Okumura, Hirokazu; Nakao, Shinji

    2008-09-01

    A small population of CD55(-)CD59(-) blood cells was detected in a patient who developed donor-type late graft failure after allogeneic stem cell transplantation (SCT) for treatment of aplastic anemia (AA). Chimerism and PIGA gene analyses showed the paroxysmal nocturnal hemoglobinuria (PNH)-type granulocytes to be of a donor-derived stem cell with a thymine insertion in PIGA exon 2. A sensitive mutation-specific polymerase chain reaction (PCR)-based analysis detected the mutation exclusively in DNA derived from the donor bone marrow (BM) cells. The patient responded to immunosuppressive therapy and achieved transfusion independence. The small population of PNH-type cells was undetectable in any of the 50 SCT recipients showing stable engraftment. The de novo development of donor cell-derived AA with a small population of PNH-type cells in this patient supports the concept that glycosyl phosphatidylinositol-anchored protein-deficient stem cells have a survival advantage in the setting of immune-mediated BM injury.

  4. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics.

    PubMed

    Kooreman, Nigel G; de Almeida, Patricia E; Stack, Jonathan P; Nelakanti, Raman V; Diecke, Sebastian; Shao, Ning-Yi; Swijnenburg, Rutger-Jan; Sanchez-Freire, Veronica; Matsa, Elena; Liu, Chun; Connolly, Andrew J; Hamming, Jaap F; Quax, Paul H A; Brehm, Michael A; Greiner, Dale L; Shultz, Leonard D; Wu, Joseph C

    2017-08-22

    There is growing interest in using embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an "allogenized" mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era

    PubMed Central

    Huang, Hongyun; Chen, Lin; Sanberg, Paul

    2010-01-01

    Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology. PMID:21359168

  6. TRA-1–60+, SSEA-4+, POU5F1+, SOX2+, NANOG+ Clones of Pluripotent Stem Cells in the Embryonal Carcinomas of the Testes

    PubMed Central

    Malecki, Marek; Tombokan, Xenia; Anderson, Mark; Malecki, Raf; Beauchaine, Michael

    2013-01-01

    Introduction Cancer of the testes is currently the most frequent neoplasm and a leading cause of morbidity in men 15–35 years of age. Its incidence is increasing. Embryonal carcinoma is its most malignant form, which either may be resistant or may develop resistance to therapies, which results in relapses. Cancer stem cells are hypothesized to be drivers of these phenomena. Specific aim The specific aim of this work was identification and isolation of spectra of single, living cancer stem cells, which were acquired directly from the patients’ biopsies, followed by testing of their pluripotency. Patients. Methods Biopsies were obtained from the patients with the clinical and histological diagnoses of the primary, pure embryonal carcinomas of the testes. The magnetic and fluorescent antibodies were genetically engineered. The SSEA-4 and TRA-1–60 cell surface display was analyzed by multiphoton fluorescence spectroscopy (MPFS), flow cytometry (FCM), immunoblotting (IB), nuclear magnetic resonance spectroscopy (NMRS), energy dispersive x-ray spectroscopy (EDXS), and total reflection x-ray spectroscopy (TRXFS). The single, living cells were isolated by magnetic or fluorescent sorting followed by their clonal expansion. The OCT4A, SOX2, and NANOG genes’ transcripts were analyzed by qRTPCR and the products by IB and MPFS. Results The clones of cells, with the strong surface display of TRA-1–60 and SSEA-4, were identified and isolated directly from the biopsies acquired from the patients diagnosed with the pure embryonal carcinomas of the testes. These cells demonstrated high levels of transcription and translation of the pluripotency genes: OCT4A, SOX2, and NANOG. They formed embryoid bodies, which differentiated into ectoderm, mesoderm, and endoderm. Conclusion In the pure embryonal carcinomas of the testes, acquired directly from the patients, we identified, isolated with high viability and selectivity, and profiled the clones of the pluripotent stem cells. These results may help in explaining therapy-resistance and relapses of these neoplasms, as well as, in designing targeted, personalized therapy. PMID:23772337

  7. GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy.

    PubMed

    Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cells, which can be derived from different sources, demonstrate promising therapeutic evidences for cellular therapies. Among various types of stem cell, mesenchymal stem cells are one of the most common stem cells that are used in cellular therapy. Human subcutaneous adipose tissue provides an easy accessible source of mesenchymal stem cells with some considerable advantages. Accordingly, various preclinical and clinical investigations have shown enormous potential of adipose-derived stromal cells in regenerative medicine. Consequently, increasing clinical applications of these cells has elucidated the importance of safety concerns regarding clinical transplantation. Therefore, clinical-grade preparation of adipose-derived stromal cells in accordance with current good manufacturing practice guidelines is an essential part of their clinical applications to ensure the safety, quality, characteristics, and identity of cell products. Additionally, GMP-compliant cell manufacturing involves several issues to provide a quality assurance system during translation from the basic stem cell sciences into clinical investigations and applications. On the other hand, advanced cellular therapy requires extensive validation, process control, and documentation. It also evidently elucidates the critical importance of production methods and probable risks. Therefore, implementation of a quality management and assurance system in accordance with GMP guidelines can greatly reduce these risks particularly in the higher-risk category or "more than minimally manipulated" products.

  8. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.

    PubMed

    Tung, Yi-Chung; Torisawa, Yu-suke; Futai, Nobuyuki; Takayama, Shuichi

    2007-11-01

    This paper describes a micro flow cytometer system designed for efficient and non-damaging analysis of samples with small numbers of precious cells. The system utilizes actuation of Braille-display pins for micro-scale fluid manipulation and a fluorescence microscope with a CCD camera for optical detection. The microfluidic chip is fully disposable and is composed of a polydimethylsiloxane (PDMS) slab with microchannel features sealed against a thin deformable PDMS membrane. The channels are designed with diffusers to alleviate pulsatile flow behaviors inherent in pin actuator-based peristaltic pumping schemes to maximize hydrodynamic focusing of samples with minimal disturbances in the laminar streams within the channel. A funnel connected to the microfluidic channel is designed for efficient loading of samples with small number of cells and is also positioned on the chip to prevent physical damages of the samples by the squeezing actions of Braille pins during actuation. The sample loading scheme was characterized by both computational fluidic dynamics (CFD) simulation and experimental observation. A fluorescein solution was first used for flow field investigation, followed by use of fluorescence beads with known relative intensities for optical detection performance calibration. Murine myoblast cells (C2C12) were exploited to investigate cell viability for the sample loading scheme of the device. Furthermore, human promyelocytic leukemia (HL60) cells stained by hypotonic DNA staining buffer were also tested in the system for cell cycle analysis. The ability to efficiently analyze cellular samples where the number of cells is small was demonstrated by analyzing cells from a single embryoid body derived from mouse embryonic stem cells. Consequently, the designed microfluidic device reported in this paper is promising for easy-to-use, small sample size flow cytometric analysis, and has potential to be further integrated with other Braille display-based microfluidic devices to facilitate a multi-functional lab-on-a-chip for mammalian cell manipulations.

  9. Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff.

    PubMed

    Savatier, Pierre; Osteil, Pierre; Tam, Patrick P L

    2017-03-01

    The diverse cell states and in vitro conditions for the derivation and maintenance of the mammalian embryo-derived pluripotent stem cells raise the questions of whether there are multiple states of pluripotency of the stem cells of each species, and if there are innate species-specific variations in the pluripotency state. We will address these questions by taking a snapshot of our knowledge of the properties of the pluripotent stem cells, focusing on the maintenance of pluripotency and inter-conversion of the different types of pluripotent stem cells from rodents, lagomorphs and primates. We conceptualize pluripotent stem cells acquiring a series of cellular states represented as terraces on a slope of descending gradient of pluripotency. We propose that reprogramming pluripotent stem cells from a primed to a naive state is akin to moving upstream over a steep cliff to a higher terrace. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Tooth, hair and claw: comparing epithelial stem cell niches of ectodermal appendages

    PubMed Central

    Naveau, Adrien; Seidel, Kerstin; Klein, Ophir D.

    2014-01-01

    The vertebrate ectoderm gives rise to organs that produce mineralized or keratinized substances, including teeth, hair, and claws. Most of these ectodermal derivatives grow continuously throughout the animal’s life and have active pools of adult stem cells that generate all the necessary cell types. These organs provide powerful systems for understanding the mechanisms that enable stem cells to regenerate or renew ectodermally derived tissues, and remarkable progress in our understanding of these systems has been made in recent years using mouse models. We briefly compare what is known about stem cells and their niches in incisors, hair follicles, and claws, and we examine expression of Gli1 as a potential example of a shared stem cell marker. We summarize some of the features, structures, and functions of the stem cell niches in these ectodermal derivatives; definition of the basic elements of the stem cell niches in these organs will provide guiding principles for identification and characterization of the niche in similar systems. PMID:24530577

  11. Cardiac Progenitor Cells and Bone Marrow-Derived Very Small Embryonic-Like Stem Cells for Cardiac Repair After Myocardial Infarction

    PubMed Central

    Tang, Xian-Liang; Rokosh, D. Gregg; Guo, Yiru; Bolli, Roberto

    2010-01-01

    Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration. PMID:20081317

  12. Comparative Chondrogenesis of Human Cell Sources in 3D Scaffolds

    PubMed Central

    Tıg̑lı, R. Seda; Ghosh, Sourabh; Laha, Michael M.; Shevde, Nirupama K.; Daheron, Laurence; Gimble, Jeffrey; Gümüşdereliog̑lu, Menemşe; Kaplan, David L.

    2009-01-01

    Cartilage tissue can be engineered by starting from a diversity of cell sources, including stem-cell based and primary cell-based platforms. Selecting an appropriate cell source for the process of cartilage tissue engineering or repair is critical and challenging due to the variety of cell options available. In this study, cellular responses of isolated human chondrocytes, human embryonic stem cells and mesenchymal stem cells (MSCs) derived from three sources, human embryonic stem cells, bone marrow and adipose tissue, were assessed for chondrogenic potential in 3D culture. All cell sources were characterized by FACS analysis to compare expression of some surface markers. The cells were differentiated in two different biomaterial matrices, silk and chitosan scaffolds, in the presence and absence of bone morphogenetic protein 6 (BMP-6) along with the standard chondrogenic differentiating factors. Embryonic stem cells derived MSCs showed unique characteristics with preserved chondrogenic phenotype in both scaffolds with regard to chondrogenesis, as determined by real time RT-PCR, histological and microscopic analyses. After 4 weeks of cultivation, embryonic stem cells derived MSCs were promising for chondrogenesis, particularly in the silk scaffolds with BMP-6. The results suggest that cell source differences are important to consider with regard to chondrogenic outcomes and with the variables addressed here, the human embryonic stem cells derived MSCs were the preferred cell source. PMID:19382119

  13. Scaling down the size and increasing the throughput of glycosyltransferase assays: activity changes on stem cell differentiation.

    PubMed

    Patil, Shilpa A; Chandrasekaran, E V; Matta, Khushi L; Parikh, Abhirath; Tzanakakis, Emmanuel S; Neelamegham, Sriram

    2012-06-15

    Glycosyltransferases (glycoTs) catalyze the transfer of monosaccharides from nucleotide-sugars to carbohydrate-, lipid-, and protein-based acceptors. We examined strategies to scale down and increase the throughput of glycoT enzymatic assays because traditional methods require large reaction volumes and complex chromatography. Approaches tested used (i) microarray pin printing, an appropriate method when glycoT activity was high; (ii) microwells and microcentrifuge tubes, a suitable method for studies with cell lysates when enzyme activity was moderate; and (iii) C(18) pipette tips and solvent extraction, a method that enriched reaction product when the extent of reaction was low. In all cases, reverse-phase thin layer chromatography (RP-TLC) coupled with phosphorimaging quantified the reaction rate. Studies with mouse embryonic stem cells (mESCs) demonstrated an increase in overall β(1,3)galactosyltransferase and α(2,3)sialyltransferase activity and a decrease in α(1,3)fucosyltransferases when these cells differentiate toward cardiomyocytes. Enzymatic and lectin binding data suggest a transition from Lewis(x)-type structures in mESCs to sialylated Galβ1,3GalNAc-type glycans on differentiation, with more prominent changes in enzyme activity occurring at later stages when embryoid bodies differentiated toward cardiomyocytes. Overall, simple, rapid, quantitative, and scalable glycoT activity analysis methods are presented. These use a range of natural and synthetic acceptors for the analysis of complex biological specimens that have limited availability. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Stem cells and female reproduction.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2009-02-01

    Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent.

  15. Cardiotoxicity evaluation using human embryonic stem cells and induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Zhao, Qi; Wang, Xijie; Wang, Shuyan; Song, Zheng; Wang, Jiaxian; Ma, Jing

    2017-03-09

    Cardiotoxicity remains an important concern in drug discovery. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate cardiotoxicity. However, the consistency between human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in prediction of cardiotoxicity has yet to be elucidated. Here we screened the toxicities of four representative drugs (E-4031, isoprenaline, quinidine, and haloperidol) using both hESC-CMs and hiPSC-CMs, combined with an impedance-based bioanalytical method. It showed that both hESC-CMs and hiPSC-CMs can recapitulate cardiotoxicity and identify the effects of well-characterized compounds. The combined platform of hPSC-CMs and an impedance-based bioanalytical method could improve preclinical cardiotoxicity screening, holding great potential for increasing drug development accuracy.

  16. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    PubMed

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  17. Hematopoietic Responses to Lipopolysaccharide in C57BL/10Sn and C57BL/10ScN Strain Mice

    DTIC Science & Technology

    1982-12-01

    Responses of endogenous (E-CFU) stem cells as well as bone marrow and spleen-derived exogenous (CFU-s) stem cells, granulocyte-macrophage (GM;-CFC... endogenous (E-CFU) stem cells as well as bone marrow and spleen-derived exogenous (CFU-s) stem cells, granulocyte-macrophage (GM-CFC) and macrophage (M...IOScN in comparison to the normal C57BL/1OSn strain mice, as measured by endogenous (E-CFU) and exogenous (CFU-s) stem cells and committed granulocyte

  18. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.

    PubMed

    Leucht, Philipp; Kim, Jae-Beom; Amasha, Raimy; James, Aaron W; Girod, Sabine; Helms, Jill A

    2008-09-01

    The fetal skeleton arises from neural crest and from mesoderm. Here, we provide evidence that each lineage contributes a unique stem cell population to the regeneration of injured adult bones. Using Wnt1Cre::Z/EG mice we found that the neural crest-derived mandible heals with neural crest-derived skeletal stem cells, whereas the mesoderm-derived tibia heals with mesoderm-derived stem cells. We tested whether skeletal stem cells from each lineage were functionally interchangeable by grafting mesoderm-derived cells into mandibular defects, and vice versa. All of the grafting scenarios, except one, healed through the direct differentiation of skeletal stem cells into osteoblasts; when mesoderm-derived cells were transplanted into tibial defects they differentiated into osteoblasts but when transplanted into mandibular defects they differentiated into chondrocytes. A mismatch between the Hox gene expression status of the host and donor cells might be responsible for this aberration in bone repair. We found that initially, mandibular skeletal progenitor cells are Hox-negative but that they adopt a Hoxa11-positive profile when transplanted into a tibial defect. Conversely, tibial skeletal progenitor cells are Hox-positive and maintain this Hox status even when transplanted into a Hox-negative mandibular defect. Skeletal progenitor cells from the two lineages also show differences in osteogenic potential and proliferation, which translate into more robust in vivo bone regeneration by neural crest-derived cells. Thus, embryonic origin and Hox gene expression status distinguish neural crest-derived from mesoderm-derived skeletal progenitor cells, and both characteristics influence the process of adult bone regeneration.

  19. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    PubMed Central

    Davy, Philip MC; Lye, Kevin D; Mathews, Juanita; Owens, Jesse B; Chow, Alice Y; Wong, Livingston; Moisyadi, Stefan; Allsopp, Richard C

    2015-01-01

    Background Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs) as well as induced cardiac-like progenitors (iCPs) derived from ASCs for the treatment of myocardial infarction. Methods and results Human bone marrow (BM)-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. PMID:26604802

  20. Generation of stomach tissue from mouse embryonic stem cells.

    PubMed

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  1. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency.

    PubMed

    Yang, Yang; Liu, Bei; Xu, Jun; Wang, Jinlin; Wu, Jun; Shi, Cheng; Xu, Yaxing; Dong, Jiebin; Wang, Chengyan; Lai, Weifeng; Zhu, Jialiang; Xiong, Liang; Zhu, Dicong; Li, Xiang; Yang, Weifeng; Yamauchi, Takayoshi; Sugawara, Atsushi; Li, Zhongwei; Sun, Fangyuan; Li, Xiangyun; Li, Chen; He, Aibin; Du, Yaqin; Wang, Ting; Zhao, Chaoran; Li, Haibo; Chi, Xiaochun; Zhang, Hongquan; Liu, Yifang; Li, Cheng; Duo, Shuguang; Yin, Ming; Shen, Huan; Belmonte, Juan Carlos Izpisua; Deng, Hongkui

    2017-04-06

    Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body.

    PubMed

    Annese, Valentina; Navarro-Guerrero, Elena; Rodríguez-Prieto, Ismael; Pardal, Ricardo

    2017-04-18

    Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Human embryonic stem cell lines: socio-legal concerns and therapeutic promise.

    PubMed

    McLaren, Anne

    2002-10-01

    Stem cell lines would be very valuable for the repair of diseased or damaged organs. Stem cells derived from adult tissues raise few ethical problems, and would not be rejected if derived from the patient. They show considerable plasticity and might be appropriate for some clinical conditions, but they tend not to grow well in culture. Stem cells derived from the early human embryo proliferate indefinitely in culture and can give rise to many different tissues, but their derivation requires destruction of the embryo, which is not ethically acceptable in some countries. Other countries allow strictly regulated destructive research on human embryos, usually those that have been produced for infertile couples in infertility clinics. Embryos that are no longer required for the couple's own reproductive project could be donated for research rather than just discarded. Different approaches are being developed to avoid immunological rejection of embryonic stem cells used for therapy. Derivation of embryonic stem cell lines by somatic cell nuclear transfer ('cloning') from the patients themselves might be one possible approach, but is unlikely to be used in routine clinical practice if more cost-effective methods are available.

  4. Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes.

    PubMed

    Lü, Shuanghong; Liu, Sheng; He, Wenjun; Duan, Cuimi; Li, Yanmin; Liu, Zhiqiang; Zhang, Ye; Hao, Tong; Wang, Yanmeng; Li, Dexue; Wang, Changyong; Gao, Shaorong

    2008-09-01

    Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.

  5. Relationship between ketamine-induced developmental neurotoxicity and NMDA receptor-mediated calcium influx in neural stem cell-derived neurons.

    PubMed

    Wang, Cheng; Liu, Fang; Patterson, Tucker A; Paule, Merle G; Slikker, William

    2017-05-01

    Ketamine, a noncompetitive NMDA receptor antagonist, is used as a general anesthetic and recent data suggest that general anesthetics can cause neuronal damage when exposure occurs during early brain development. To elucidate the underlying mechanisms associated with ketamine-induced neurotoxicity, stem cell-derived models, such as rodent neural stem cells harvested from rat fetuses and/or neural stem cells derived from human induced pluripotent stem cells (iPSC) can be utilized. Prolonged exposure of rodent neural stem cells to clinically-relevant concentrations of ketamine resulted in elevated NMDA receptor levels as indicated by NR1subunit over-expression in neurons. This was associated with enhanced damage in neurons. In contrast, the viability and proliferation rate of undifferentiated neural stem cells were not significantly affected after ketamine exposure. Calcium imaging data indicated that 50μM NMDA did not cause a significant influx of calcium in typical undifferentiated neural stem cells; however, it did produce an immediate elevation of intracellular free Ca 2+ [Ca 2+ ] i in differentiated neurons derived from the same neural stem cells. This paper reviews the literature on this subject and previous findings suggest that prolonged exposure of developing neurons to ketamine produces an increase in NMDA receptor expression (compensatory up-regulation) which allows for a higher/toxic influx of calcium into neurons once ketamine is removed from the system, leading to neuronal cell death likely due to elevated reactive oxygen species generation. The absence of functional NMDA receptors in cultured neural stem cells likely explains why clinically-relevant concentrations of ketamine did not affect undifferentiated neural stem cell viability. Published by Elsevier B.V.

  6. A natural stem cell therapy? How novel findings and biotechnology clarify the ethics of stem cell research

    PubMed Central

    Patel, P

    2006-01-01

    The natural replacement of damaged cells by stem cells occurs actively and often in adult tissues, especially rapidly dividing cells such as blood cells. An exciting case in Boston, however, posits a kind of natural stem cell therapy provided to a mother by her fetus—long after the fetus is born. Because there is a profound lack of medical intervention, this therapy seems natural enough and is unlikely to be morally suspect. Nevertheless, we feel morally uncertain when we consider giving this type of therapy to patients who would not naturally receive it. Much has been written about the ethics of stem cell research and therapy; this paper will focus on how recent advances in biotechnology and biological understandings of development narrow the debate. Here, the author briefly reviews current stem cell research practices, revisits the natural stem cell therapy case for moral evaluation, and ultimately demonstrates the importance of permissible stem cell research and therapy, even absent an agreement about the definition of when embryonic life begins. Although one promising technology, blighted ovum utilisation, uses fertilised but developmentally bankrupt eggs, it is argued that utilisation of unfertilised eggs to derive totipotent stem cells obviates the moral debate over when life begins. There are two existing technologies that fulfil this criterion: somatic cell nuclear transfer and parthenogenic stem cell derivation. Although these technologies are far from therapeutic, concerns over the morality of embryonic stem cell derivation should not hinder their advancement. PMID:16574879

  7. Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow

    PubMed Central

    Kim, Su-Hwan; Kim, Young-Sung; Lee, Su-Yeon; Kim, Kyoung-Hwa; Lee, Yong-Moo; Kim, Won-Kyung

    2011-01-01

    Purpose The aim of this study is to compare the gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow for characterization of dental stem cells. Methods We employed GeneChip analysis to the expression levels of approximately 32,321 kinds of transcripts in 5 samples of bone-marrow-derived mesenchymal stem cells (BMSCs) (n=1), periodontal ligament stem cells (PDLSCs) (n=2), and dental pulp stem cells (DPSCs) (n=2). Each cell was sorted by a FACS Vantage Sorter using immunocytochemical staining of the early mesenchymal stem cell surface marker STRO-1 before the microarray analysis. Results We identified 379 up-regulated and 133 down-regulated transcripts in BMSCs, 68 up-regulated and 64 down-regulated transcripts in PDLSCs, and 218 up-regulated and 231 down-regulated transcripts in DPSCs. In addition, anatomical structure development and anatomical structure morphogenesis gene ontology (GO) terms were over-represented in all three different mesenchymal stem cells and GO terms related to blood vessels, and neurons were over-represented only in DPSCs. Conclusions This study demonstrated the genome-wide gene expression patterns of STRO-1+ mesenchymal stem cells derived from dental tissues and bone marrow. The differences among the expression profiles of BMSCs, PDLSCs, and DPSCs were shown, and 999 candidate genes were found to be definitely up- or down-regulated. In addition, GOstat analyses of regulated gene products provided over-represented GO classes. These data provide a first step for discovering molecules key to the characteristics of dental stem cells. PMID:21954424

  8. The clinical use of regenerative therapy in COPD

    PubMed Central

    Lipsi, Roberto; Rogliani, Paola; Calzetta, Luigino; Segreti, Andrea; Cazzola, Mario

    2014-01-01

    Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation. PMID:25548520

  9. Mesenchymal Stem Cells Suppress Chronic Rejection in Heterotopic Small Intestine Transplant Rat Models Via Inhibition of CD68, Transforming Growth Factor- β1, and Platelet-Derived Growth Factor Expression.

    PubMed

    Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong

    2017-04-01

    Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.

  10. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    PubMed

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  11. The Immunogenicity and Immune Tolerance of Pluripotent Stem Cell Derivatives

    PubMed Central

    Liu, Xin; Li, Wenjuan; Fu, Xuemei; Xu, Yang

    2017-01-01

    Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all cell types in human body, and therefore hold great potential for cell therapy of currently incurable diseases including neural degenerative diseases, heart failure, and macular degeneration. This potential is further underscored by the promising safety and efficacy data from the ongoing clinical trials of hESC-based therapy of macular degeneration. However, one main challenge for the clinical application of hESC-based therapy is the allogeneic immune rejection of hESC-derived cells by the recipient. The breakthrough of the technology to generate autologous-induced pluripotent stem cells (iPSCs) by nuclear reprogramming of patient’s somatic cells raised the possibility that autologous iPSC-derived cells can be transplanted into the patients without the concern of immune rejection. However, accumulating data indicate that certain iPSC-derived cells can be immunogenic. In addition, the genomic instability associated with iPSCs raises additional safety concern to use iPSC-derived cells in human cell therapy. In this review, we will discuss the mechanism underlying the immunogenicity of the pluripotent stem cells and recent progress in developing immune tolerance strategies of human pluripotent stem cell (hPSC)-derived allografts. The successful development of safe and effective immune tolerance strategy will greatly facilitate the clinical development of hPSC-based cell therapy. PMID:28626459

  12. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources.

    PubMed

    Vinardell, Tatiana; Sheehy, Eamon J; Buckley, Conor T; Kelly, Daniel J

    2012-06-01

    Joint-derived stem cells are a promising alternative cell source for cartilage repair therapies that may overcome many of the problems associated with the use of primary chondrocytes (CCs). The objective of this study was to compare the in vitro functionality and in vivo phenotypic stability of cartilaginous tissues engineered using bone marrow-derived stem cells (BMSCs) and joint tissue-derived stem cells following encapsulation in agarose hydrogels. Culture-expanded BMSCs, fat pad-derived stem cells (FPSCs), and synovial membrane-derived stem cells (SDSCs) were encapsulated in agarose and maintained in a chondrogenic medium supplemented with transforming growth factor-β3. After 21 days of culture, constructs were either implanted subcutaneously into the back of nude mice for an additional 28 days or maintained for a similar period in vitro in either chondrogenic or hypertrophic media formulations. After 49 days of in vitro culture in chondrogenic media, SDSC constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG) (∼2.8% w/w) and collagen (∼1.8% w/w) and were mechanically stiffer than constructs engineered using other cell types. After subcutaneous implantation in nude mice, sGAG content significantly decreased for all stem cell-seeded constructs, while no significant change was observed in the control constructs engineered using primary CCs, indicating that the in vitro chondrocyte-like phenotype generated in all stem cell-seeded agarose constructs was transient. FPSCs and SDSCs appeared to undergo fibrous dedifferentiation or resorption, as evident from increased collagen type I staining and a dramatic loss in sGAG content. BMSCs followed a more endochondral pathway with increased type X collagen expression and mineralization of the engineered tissue. In conclusion, while joint tissue-derived stem cells possess a strong intrinsic chondrogenic capacity, further studies are needed to identify the factors that will lead to the generation of a more stable chondrogenic phenotype.

  13. 21st Nantes Actualités Transplantation: "When Stem Cells Meet Immunology".

    PubMed

    Anegon, Ignacio; Nguyen, Tuan Huy

    2017-01-01

    "When Stem Cells Meet Immunology" has been the topic of the 21st annual "Nantes Actualités en Transplantation" meeting (June 9-10, 2016, Nantes, France). This meeting brought together pioneers and leading experts in the fields of stem cells, biomaterials and immunoregulation. Presentations covered multipotent (mesenchymal and hematopoietic) and pluripotent stem cells (embryonic and induced) for regenerative medicine of incurable diseases, immunotherapy and blood transfusions. An additional focus had been immune rejections and responses of allogeneic or autologous stem cells. Conversely, stem cells are also able to directly modulate the immune response through the production of immunoregulatory molecules. Moreover, stem cells may also provide an unlimited source of immune cells (DCs, NK cells, B cells, and T cells) that can operate as "super" immune cells, for example, through genetic engineering with chimeric antigen receptors.This meeting report puts presentations into an overall context highlighting new potential biomarkers for potency prediction of mesenchymal stem cell-derived and pluripotent stem cell-derived multicellular organoids. Finally, we propose future directions arising from the flourishing encounter of stem cell and immune biology.

  14. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  15. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming.

    PubMed

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.

  16. Regenerative therapy for vestibular disorders using human induced pluripotent stem cells (iPSCs): neural differentiation of human iPSC-derived neural stem cells after in vitro transplantation into mouse vestibular epithelia.

    PubMed

    Taura, Akiko; Nakashima, Noriyuki; Ohnishi, Hiroe; Nakagawa, Takayuki; Funabiki, Kazuo; Ito, Juichi; Omori, Koichi

    2016-10-01

    Vestibular ganglion cells, which convey sense of motion from vestibular hair cells to the brainstem, are known to degenerate with aging and after vestibular neuritis. Thus, regeneration of vestibular ganglion cells is important to aid in the recovery of balance for associated disorders. The present study derived hNSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mouse utricle tissues. After a 7-day co-culture period, histological and electrophysiological examinations of transplanted hNSCs were performed. Injected hNSC-derived cells produced elongated axon-like structures within the utricle tissue that made contact with vestibular hair cells. A proportion of hNSC-derived cells showed spontaneous firing activities, similar to those observed in cultured mouse vestibular ganglion cells. However, hNSC-derived cells around the mouse utricle persisted as immature neurons or occasionally differentiated into putative astrocytes. Moreover, electrophysiological examination showed hNSC-derived cells around utricles did not exhibit any obvious spontaneous firing activities. Injected human neural stem cells (hNSCs) showed signs of morphological maturation including reconnection to denervated hair cells and partial physiological maturation, suggesting hNSC-derived cells possibly differentiated into neurons.

  17. Health Span-Extending Activity of Human Amniotic Membrane- and Adipose Tissue-Derived Stem Cells in F344 Rats

    PubMed Central

    Kim, Dajeong; Kyung, Jangbeen; Park, Dongsun; Choi, Ehn-Kyoung; Kim, Kwang Sei; Shin, Kyungha; Lee, Hangyoung; Shin, Il Seob; Kang, Sung Keun

    2015-01-01

    Aging brings about the progressive decline in cognitive function and physical activity, along with losses of stem cell population and function. Although transplantation of muscle-derived stem/progenitor cells extended the health span and life span of progeria mice, such effects in normal animals were not confirmed. Human amniotic membrane-derived mesenchymal stem cells (AMMSCs) or adipose tissue-derived mesenchymal stem cells (ADMSCs) (1 × 106 cells per rat) were intravenously transplanted to 10-month-old male F344 rats once a month throughout their lives. Transplantation of AMMSCs and ADMSCs improved cognitive and physical functions of naturally aging rats, extending life span by 23.4% and 31.3%, respectively. The stem cell therapy increased the concentration of acetylcholine and recovered neurotrophic factors in the brain and muscles, leading to restoration of microtubule-associated protein 2, cholinergic and dopaminergic nervous systems, microvessels, muscle mass, and antioxidative capacity. The results indicate that repeated transplantation of AMMSCs and ADMSCs elongate both health span and life span, which could be a starting point for antiaging or rejuvenation effects of allogeneic or autologous stem cells with minimum immune rejection. Significance This study demonstrates that repeated treatment with stem cells in normal animals has antiaging potential, extending health span and life span. Because antiaging and prolonged life span are issues currently of interest, these results are significant for readers and investigators. PMID:26315571

  18. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy.

    PubMed

    Millman, Jeffrey R; Pagliuca, Felicia W

    2017-05-01

    Development of stem cell technologies for cell replacement therapy has progressed rapidly in recent years. Diabetes has long been seen as one of the first applications for stem cell-derived cells because of the loss of only a single cell type-the insulin-producing β-cell. Recent reports have detailed strategies that overcome prior hurdles to generate functional β-like cells from human pluripotent stem cells in vitro, including from human induced pluripotent stem cells (hiPSCs). Even with this accomplishment, addressing immunological barriers to transplantation remains a major challenge for the field. The development of clinically relevant hiPSC derivation methods from patients and demonstration that these cells can be differentiated into β-like cells presents a new opportunity to treat diabetes without immunosuppression or immunoprotective encapsulation or with only targeted protection from autoimmunity. This review focuses on the current status in generating and transplanting autologous β-cells for diabetes cell therapy, highlighting the unique advantages and challenges of this approach. © 2017 by the American Diabetes Association.

  19. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation.

    PubMed

    Sun, Peng; Xia, Shuli; Lal, Bachchu; Eberhart, Charles G; Quinones-Hinojosa, Alfredo; Maciaczyk, Jarek; Matsui, William; Dimeco, Francesco; Piccirillo, Sara M; Vescovi, Angelo L; Laterra, John

    2009-07-01

    Neurospheres derived from glioblastoma (GBM) and other solid malignancies contain neoplastic stem-like cells that efficiently propagate tumor growth and resist cytotoxic therapeutics. The primary objective of this study was to use histone-modifying agents to elucidate mechanisms by which the phenotype and tumor-promoting capacity of GBM-derived neoplastic stem-like cells are regulated. Using established GBM-derived neurosphere lines and low passage primary GBM-derived neurospheres, we show that histone deacetylase (HDAC) inhibitors inhibit growth, induce differentiation, and induce apoptosis of neoplastic neurosphere cells. A specific gene product induced by HDAC inhibition, Delta/Notch-like epidermal growth factor-related receptor (DNER), inhibited the growth of GBM-derived neurospheres, induced their differentiation in vivo and in vitro, and inhibited their engraftment and growth as tumor xenografts. The differentiating and tumor suppressive effects of DNER, a noncanonical Notch ligand, contrast with the previously established tumor-promoting effects of canonical Notch signaling in brain cancer stem-like cells. Our findings are the first to implicate noncanonical Notch signaling in the regulation of neoplastic stem-like cells and suggest novel neoplastic stem cell targeting treatment strategies for GBM and potentially other solid malignancies.

  20. Human adipose-derived stem cells promote vascularization of collagen-based scaffolds transplanted into nude mice

    PubMed Central

    Cherubino, Mario; Valdatta, Luigi; Balzaretti, Riccardo; Pellegatta, Igor; Rossi, Federica; Protasoni, Marina; Tedeschi, Alessandra; Accolla, Roberto S; Bernardini, Giovanni; Gornati, Rosalba

    2016-01-01

    Aim: After in vivo implantation of cell-loaded devices, only the cells close to the capillaries can obtain nutrients to maintain their functions. It is known that factors secreted by stem cells, rather than stem cells themselves, are fundamental to guarantee new vascularization in the area of implant. Materials & methods: To investigate this possibility, we have grafted mice with Bilayer and Flowable Integra® scaffolds, loaded or not with human adipose-derived stem cells. Results: Our results support the therapeutic potential of human adipose-derived stem cells to induce new vascular networks of engineered organs and tissues. Conclusion: This finding suggests that our approach can help to form new vascular networks that allow sufficient vascularization of engineered organs and tissues in cases of difficult wound healing due to ischemic conditions. PMID:26965659

  1. Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern

    PubMed Central

    Matigian, Nicholas; Brooke, Gary; Zaibak, Faten; Rossetti, Tony; Kollar, Katarina; Pelekanos, Rebecca; Heazlewood, Celena; Mackay-Sim, Alan; Wells, Christine A.; Atkinson, Kerry

    2014-01-01

    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues. PMID:26484151

  2. Stem Cells: What They Are and What They Do

    MedlinePlus

    Stem cells: What they are and what they do Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and possible uses, ethical issues, and ...

  3. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    PubMed

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evaluation of the maintenance of stemness, viability, and differentiation potential of gingiva-derived stem-cell spheroids.

    PubMed

    Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2017-05-01

    Gingiva-derived stem cells have been applied for tissue-engineering purposes and may be considered a favorable source of mesenchymal stem cells as harvesting stem cells from the mandible or maxilla may be performed with ease under local anesthesia. The present study was performed to fabricate stem-cell spheroids using concave microwells and to evaluate the maintenance of stemness, viability, and differentiation potential. Gingiva-derived stem cells were isolated, and the stem cells of 4×10 5 (group A) or 8×10 5 (group B) cells were seeded into polydimethylsiloxane-based, concave micromolds with 600 µm diameters. The morphology of the microspheres and the change of the diameters of the spheroids were evaluated. The viability of spheroids was qualitatively analyzed via Live/Dead kit assay. A cell viability analysis was performed on days 1, 3, 6, and 12 with Cell Counting Kit-8. The maintenance of stemness was evaluated with immunocytochemical staining using SSEA-4, TRA-1-60(R) (positive markers), and SSEA-1 (negative marker). Osteogenic, adipogenic, and chondrogenic differentiation potential was evaluated by incubating spheroids in osteogenic, adipogenic and chondrogenic induction medium, respectively. The gingiva-derived stem cells formed spheroids in the concave microwells. The diameters of the spheroids were larger in group A than in group B. The majority of cells in the spheroids emitted green fluorescence, indicating the presence of live cells at day 6. At day 12, the majority of cells in the spheroids emitted green fluorescence, and a small portion of red fluorescence was also noted, which indicated the presence of dead cells. The spheroids were positive for the stem-cell markers SSEA-4 and TRA-1-60(R) and were negative for SSEA-1, suggesting that these spheroids primarily contained undifferentiated human stem cells. Osteogenic, adipogenic, and chondrogenic differentiation was more evident with an increase of incubation time: Mineralized extracellular deposits were observed following Alizarin Red S staining at days 14 and 21; oil globules were increased at day 18 when compared with day 6; and Alcian blue staining was more evident at day 18 when compared with day 6. Within the limits of this study, stem-cell spheroids from gingival cells maintained the stemness, viability, and differentiation potential during the experimental periods. This method may be applied for a promising strategy for stem-cell therapy.

  5. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury☆

    PubMed Central

    Jiang, Jindou; Bu, Xingyao; Liu, Meng; Cheng, Peixun

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. PMID:25806058

  6. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases.

    PubMed

    Conese, Massimo; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2013-01-01

    Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders. Copyright © 2013 S. Karger AG, Basel.

  7. Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis

    PubMed Central

    2017-01-01

    ABSTRACT Cells have an intrinsic ability to self-assemble and self-organize into complex and functional tissues and organs. By taking advantage of this ability, embryoids, organoids and gastruloids have recently been generated in vitro, providing a unique opportunity to explore complex embryological events in a detailed and highly quantitative manner. Here, we examine how such approaches are being used to answer fundamental questions in embryology, such as how cells self-organize and assemble, how the embryo breaks symmetry, and what controls timing and size in development. We also highlight how further improvements to these exciting technologies, based on the development of quantitative platforms to precisely follow and measure subcellular and molecular events, are paving the way for a more complete understanding of the complex events that help build the human embryo. PMID:28292844

  8. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  9. Stem cells for cardiac repair: an introduction

    PubMed Central

    du Pré, Bastiaan C; Doevendans, Pieter A; van Laake, Linda W

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair. PMID:23888179

  10. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    PubMed

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  11. Stem cell treatment of degenerative eye disease.

    PubMed

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A H; Leadbeater, Wendy; Scheven, Ben A

    2015-05-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

  12. Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.

    PubMed

    Rodrigues, Gonçalo M C; Fernandes, Tiago G; Rodrigues, Carlos A V; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-01-01

    Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs), and their neuronal progeny, will play an important role in disease modeling, drug screening tests, central nervous system development studies, and may even become valuable for regenerative medicine treatments. Nonetheless, it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs, and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here, we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days, and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS), leaving the NP population nearly free of PSCs.

  13. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    PubMed

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic cell origins. Further studies are warranted to characterize electrophysiological properties of hiPSC-derived cardiomyocytes generated from CPCs. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  14. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy.

    PubMed

    Tao, Wensi; Ayala-Haedo, Juan A; Field, Matthew G; Pelaez, Daniel; Wester, Sara T

    2017-12-01

    The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.

  15. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation.

    PubMed

    Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae

    2017-01-01

    Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established.

  16. Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells

    PubMed Central

    Barberi, Tiziano; Willis, Lucy M; Socci, Nicholas D; Studer, Lorenz

    2005-01-01

    Background Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. Methods and Findings Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. Conclusion Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications. PMID:15971941

  17. Genetic Transformation of Metroxylon sagu (Rottb.) Cultures via Agrobacterium-Mediated and Particle Bombardment

    PubMed Central

    Ibrahim, Evra Raunie

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  18. Human embryonic stem cells and therapeutic cloning.

    PubMed

    Hwang, Woo Suk; Lee, Byeong Chun; Lee, Chang Kyu; Kang, Sung Keun

    2005-06-01

    The remarkable potential of embryonic stem (ES) cells is their ability to develop into many different cell types. ES cells make it possible to treat patients by transplanting specialized healthy cells derived from them to repair damaged and diseased cells or tissues, known as "stem cell therapy". However, the issue of immunocompatibility is one of considerable significance in ES cell transplantation. One approach to overcome transplant rejection of human ES (hES) cells is to derive hES cells from nuclear transfer of the patient's own cells. This concept is known as "therapeutic cloning". In this review, we describe the derivations of ES cells and cloned ES cells by somatic cell nuclear transfer, and their potential applications in transplantation medicine.

  19. Differentiation and Characterization of Dopaminergic Neurons From Baboon Induced Pluripotent Stem Cells.

    PubMed

    Grow, Douglas A; Simmons, DeNard V; Gomez, Jorge A; Wanat, Matthew J; McCarrey, John R; Paladini, Carlos A; Navara, Christopher S

    2016-09-01

    : The progressive death of dopamine producing neurons in the substantia nigra pars compacta is the principal cause of symptoms of Parkinson's disease (PD). Stem cells have potential therapeutic use in replacing these cells and restoring function. To facilitate development of this approach, we sought to establish a preclinical model based on a large nonhuman primate for testing the efficacy and safety of stem cell-based transplantation. To this end, we differentiated baboon fibroblast-derived induced pluripotent stem cells (biPSCs) into dopaminergic neurons with the application of specific morphogens and growth factors. We confirmed that biPSC-derived dopaminergic neurons resemble those found in the human midbrain based on cell type-specific expression of dopamine markers TH and GIRK2. Using the reverse transcriptase quantitative polymerase chain reaction, we also showed that biPSC-derived dopaminergic neurons express PAX6, FOXA2, LMX1A, NURR1, and TH genes characteristic of this cell type in vivo. We used perforated patch-clamp electrophysiology to demonstrate that biPSC-derived dopaminergic neurons fired spontaneous rhythmic action potentials and high-frequency action potentials with spike frequency adaption upon injection of depolarizing current. Finally, we showed that biPSC-derived neurons released catecholamines in response to electrical stimulation. These results demonstrate the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of PD. Functional dopamine neurons were produced from baboon induced pluripotent stem cells, and their properties were compared to baboon midbrain cells in vivo. The baboon has advantages as a clinically relevant model in which to optimize the efficacy and safety of stem cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. Baboons possess crucial neuroanatomical and immunological similarities to humans, and baboon pluripotent stem cells can be differentiated into functional neurons that mimic those in the human brain, thus laying the foundation for the utility of the baboon model for evaluating stem cell therapies. ©AlphaMed Press.

  20. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    PubMed

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  1. Gene therapy and tissue engineering based on muscle-derived stem cells.

    PubMed

    Deasy, Bridget M; Huard, Johnny

    2002-08-01

    Skeletal muscle represents a convenient source of stem cells for cell-based tissue and genetic engineering. Muscle-derived stem cells (MDSCs) exhibit both multipotentiality and self-renewal capabilities, and are considered to be distinct from the well-studied satellite cell, another type of muscle stem cell that is capable of self-renewal and myogenic lineage differentiation. The MDSC appears to have less restricted differentiation capabilities as compared with the satellite cell, and may be a precursor of the satellite cell. This review considers the evidence for the existence of MDSCs as well as their origin. We will discuss recent investigations highlighting the potential of stem cell transplantation for the treatment of skeletal, cardiac and smooth muscle injuries and disease. We will highlight challenges in bridging the gap between understanding basic stem cell biology and clinical utilization for cell therapy.

  2. [Analysis of factors related to the number of mesenchymal stem cells derived from synovial fluid of the temporomandibular joint].

    PubMed

    Sun, Y P; Zheng, Y H; Zhang, Z G

    2017-06-09

    Objective: To analyze related factors on the number of mesenchymal stem cells in the synovial fluid of the temporomandibular joint (TMJ) and provide an research basis for understanding of the source and biological role of mesenchymal stem cells derived from synovial fluid in TMJ. Methods: One hundred and twenty-two synovial fluid samples from 91 temporomandibular disorders (TMD) patients who visited in Department of TMJ Center, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University from March 2013 to December 2013 were collected in this study, and 6 TMJ synovial fluid samples from 6 normal volunteers who were studying in the North Campus of Sun Yat-sen University were also collected, so did their clinical information. Then the relation between the number of mesenchymal stem cells derived from synovial fluid and the health status of the joints, age of donor, disc perforation, condylar bony destruction, blood containing and visual analogue scale score of pain were investigated using Mann-Whitney U test and Spearman rank correlation test. Results: The number of mesenchymal stem cells derived from synovial fluid had no significant relation with visual analogue scale score of pain ( r= 0.041, P= 0.672), blood containing ( P= 0.063), condylar bony destruction ( P= 0.371). Linear correlation between the number of mesenchymal stem cells derived from synovial fluid and age of donor was very week ( r= 0.186, P= 0.043). The number of mesenchymal stem cells up-regulated when the joint was in a disease state ( P= 0.001). The disc perforation group had more mesenchymal stem cells in synovial fluid than without disc perforation group ( P= 0.042). Conclusions: The number of mesenchymal stem cells derived from synovial fluid in TMJ has no correlation with peripheral blood circulation and condylar bony destruction, while has close relation with soft tissue structure damage of the joint.

  3. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  4. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    PubMed

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  5. Application of Graphene Based Nanotechnology in Stem Cells Research.

    PubMed

    Hu, Shanshan; Zeng, Yongxiang; Yang, Shuying; Qin, Han; Cai, He; Wang, Jian

    2015-09-01

    The past several years have witnessed significant advances in stem cell therapy, tissue engineering and regenerative medicine. Graphene, with its unique properties such as high electrical conductivity, elasticity and good molecule absorption, have potential for creating the next generation of biomaterials. This review summarizes the interrelationship between graphene and stem cells. The analysis of graphene when applied on mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, embryonic stem cells, periodontal ligament stem cells, human adipose-derived stem cells and cancer stem cells, and how graphene influences cell behavior and differentiation are discussed in details.

  6. Concise review: Patient-derived olfactory stem cells: new models for brain diseases.

    PubMed

    Mackay-Sim, Alan

    2012-11-01

    Traditional models of brain diseases have had limited success in driving candidate drugs into successful clinical translation. This has resulted in large international pharmaceutical companies moving out of neuroscience research. Cells are not brains, obviously, but new patient-derived stem models have the potential to elucidate cell biological aspects of brain diseases that are not present in worm, fly, or rodent models, the work horses of disease investigations and drug discovery. Neural stem cells are present in the olfactory mucosa, the organ of smell in the nose. Patient-derived olfactory mucosa has demonstrated disease-associated differences in a variety of brain diseases and recently olfactory mucosa stem cells have been generated from patients with schizophrenia, Parkinson's disease, and familial dysautonomia. By comparison with cells from healthy controls, patient-derived olfactory mucosa stem cells show disease-specific alterations in gene expression and cell functions including: a shorter cell cycle and faster proliferation in schizophrenia, oxidative stress in Parkinson's disease, and altered cell migration in familial dysautonomia. Olfactory stem cell cultures thus reveal patient-control differences, even in complex genetic diseases such as schizophrenia and Parkinson's disease, indicating that multiple genes of small effect can converge on shared cell signaling pathways to present as a disease-specific cellular phenotype. Olfactory mucosa stem cells can be maintained in homogeneous cultures that allow robust and repeatable multiwell assays suitable for screening libraries of drug candidate molecules. Copyright © 2012 AlphaMed Press.

  7. Integrated Immunotherapy for Breast Cancer

    DTIC Science & Technology

    2015-09-01

    patterns in these reconstructed co-cultured cancer cell /stromal cell 3D organoids (Figure 2). The role of mesenchymal stem cells in cancer Bone...marrow-derived mesenchymal stem cells (MSC) have been the subject of interest in solid tumor. Because of their ability to migrate to sites of inflammation...10 Figure 3. Characterization of ex-vivo expanded C57 B6 derived bone marrow mesenchymal stem cells . The cells are positive for CD44, CD140β

  8. Large Scale Production of Stem Cells and Their Derivatives

    NASA Astrophysics Data System (ADS)

    Zweigerdt, Robert

    Stem cells have been envisioned to become an unlimited cell source for regenerative medicine. Notably, the interest in stem cells lies beyond direct therapeutic applications. They might also provide a previously unavailable source of valuable human cell types for screening platforms, which might facilitate the development of more efficient and safer drugs. The heterogeneity of stem cell types as well as the numerous areas of application suggests that differential processes are mandatory for their in vitro culture. Many of the envisioned applications would require the production of a high number of stem cells and their derivatives in scalable, well-defined and potentially clinical compliant manner under current good manufacturing practice (cGMP). In this review we provide an overview on recent strategies to develop bioprocesses for the expansion, differentiation and enrichment of stem cells and their progenies, presenting examples for adult and embryonic stem cells alike.

  9. Tumorigenicity studies for human pluripotent stem cell-derived products.

    PubMed

    Kuroda, Takuya; Yasuda, Satoshi; Sato, Yoji

    2013-01-01

    Human pluripotent stem cells (hPSCs), i.e. human embryonic stem cells and human induced pluripotent stem cells, are able to self-renew and differentiate into multiple cell types. Because of these abilities, numerous attempts have been made to utilize hPSCs in regenerative medicine/cell therapy. hPSCs are, however, also tumorigenic, that is, they can give rise to the progressive growth of tumor nodules in immunologically unresponsive animals. Therefore, assessing and managing the tumorigenicity of all final products is essential in order to prevent ectopic tissue formation, tumor development, and/or malignant transformation elicited by residual pluripotent stem cells after implantation. No detailed guideline for the tumorigenicity testing of hPSC-derived products has yet been issued for regenerative medicine/cell therapy, despite the urgent necessity. Here, we describe the current situations and issues related to the tumorigenicity testing of hPSC-derived products and we review the advantages and disadvantages of several types of tumorigenicity-associated tests. We also refer to important considerations in the execution and design of specific studies to monitor the tumorigenicity of hPSC-derived products.

  10. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  11. PTEN induces apoptosis and cavitation via HIF-2-dependent Bnip3 upregulation during epithelial lumen formation.

    PubMed

    Qi, Y; Liu, J; Saadat, S; Tian, X; Han, Y; Fong, G-H; Pandolfi, P P; Lee, L Y; Li, S

    2015-05-01

    The tumor suppressor phosphatase and tensin homolog (PTEN) dephosphorylates PIP3 and antagonizes the prosurvival PI3K-Akt pathway. Targeted deletion of PTEN in mice led to early embryonic lethality. To elucidate its role in embryonic epithelial morphogenesis and the underlying mechanisms, we used embryonic stem cell-derived embryoid body (EB), an epithelial cyst structurally similar to the periimplantation embryo. PTEN is upregulated during EB morphogenesis in parallel with apoptosis of core cells, which mediates EB cavitation. Genetic ablation of PTEN causes Akt overactivation, apoptosis resistance and cavitation blockade. However, rescue experiments using mutant PTEN and pharmacological inhibition of Akt suggest that the phosphatase activity of PTEN and Akt are not involved in apoptosis-mediated cavitation. Instead, hypoxia-induced upregulation of Bnip3, a proapoptotic BH3-only protein, mediates PTEN-dependent apoptosis and cavitation. PTEN inactivation inhibits hypoxia- and reactive oxygen species-induced Bnip3 elevation. Overexpression of Bnip3 in PTEN-null EBs rescues apoptosis of the core cells. Mechanistically, suppression of Bnip3 following PTEN loss is likely due to reduction of hypoxia-inducible factor-2α (HIF-2α) because forced expression of an oxygen-stable HIF-2α mutant rescues Bnip3 expression and apoptosis. Lastly, we show that HIF-2α is upregulated by PTEN at both transcriptional and posttranscriptional levels. Ablation of prolyl hydroxylase domain-containing protein 2 (PHD2) in normal EBs or inhibition of PHD activities in PTEN-null EBs stabilizes HIF-2α and induces Bnip3 and caspase-3 activation. Altogether, these results suggest that PTEN is required for apoptosis-mediated cavitation during epithelial morphogenesis by regulating the expression of HIF-2α and Bnip3.

  12. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    PubMed

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  13. 'New embryos' - new challenges for the ethics of stem cell research.

    PubMed

    Holm, Søren

    2008-01-01

    Among the many ethical issues raised by human embryonic stem cell research (in the following all references to 'stem cells' should be read as references to human embryonic stem cells), two have gained specific prominence: (1) whether stem cell research is ethically problematic because it entails the destruction of human embryos and (2) what kind of control embryo donors should have over the stem cell lines derived from their embryos. In the present paper, I will analyse how these two issues are engaged by various attempts to derive stem cells from anomalous embryos (e.g. embryos in cleavage arrest, embryos not implanted following pre-implantation genetic diagnosis or embryos created by altered nuclear transfer) or in ways that are claimed to be non-destructive for the embryo (e.g. blastocyst or blastomere biopsy). Copyright 2008 S. Karger AG, Basel.

  14. Health Span-Extending Activity of Human Amniotic Membrane- and Adipose Tissue-Derived Stem Cells in F344 Rats.

    PubMed

    Kim, Dajeong; Kyung, Jangbeen; Park, Dongsun; Choi, Ehn-Kyoung; Kim, Kwang Sei; Shin, Kyungha; Lee, Hangyoung; Shin, Il Seob; Kang, Sung Keun; Ra, Jeong Chan; Kim, Yun-Bae

    2015-10-01

    Aging brings about the progressive decline in cognitive function and physical activity, along with losses of stem cell population and function. Although transplantation of muscle-derived stem/progenitor cells extended the health span and life span of progeria mice, such effects in normal animals were not confirmed. Human amniotic membrane-derived mesenchymal stem cells (AMMSCs) or adipose tissue-derived mesenchymal stem cells (ADMSCs) (1×10(6) cells per rat) were intravenously transplanted to 10-month-old male F344 rats once a month throughout their lives. Transplantation of AMMSCs and ADMSCs improved cognitive and physical functions of naturally aging rats, extending life span by 23.4% and 31.3%, respectively. The stem cell therapy increased the concentration of acetylcholine and recovered neurotrophic factors in the brain and muscles, leading to restoration of microtubule-associated protein 2, cholinergic and dopaminergic nervous systems, microvessels, muscle mass, and antioxidative capacity. The results indicate that repeated transplantation of AMMSCs and ADMSCs elongate both health span and life span, which could be a starting point for antiaging or rejuvenation effects of allogeneic or autologous stem cells with minimum immune rejection. This study demonstrates that repeated treatment with stem cells in normal animals has antiaging potential, extending health span and life span. Because antiaging and prolonged life span are issues currently of interest, these results are significant for readers and investigators. ©AlphaMed Press.

  15. The differential effects of 2% oxygen preconditioning on the subsequent differentiation of mouse and human pluripotent stem cells.

    PubMed

    Fynes, Kate; Tostoes, Rui; Ruban, Ludmila; Weil, Ben; Mason, Christopher; Veraitch, Farlan S

    2014-08-15

    A major challenge facing the development of effective cell therapies is the efficient differentiation of pluripotent stem cells (PSCs) into pure populations. Lowering oxygen tension to physiological levels can affect both the expansion and differentiation stages. However, to date, there are no studies investigating the knock-on effect of culturing PSCs under low oxygen conditions on subsequent lineage commitment at ambient oxygen levels. PSCs were passaged three times at 2% O2 before allowing cells to spontaneously differentiate as embryoid bodies (EBs) in high oxygen (20% O2) conditions. Maintenance of mouse PSCs in low oxygen was associated with a significant increase in the expression of early differentiation markers FGF5 and Eomes, while conversely we observed decreased expression of these genes in human PSCs. Low oxygen preconditioning primed mouse PSCs for their subsequent differentiation into mesodermal and endodermal lineages, as confirmed by increased gene expression of Eomes, Goosecoid, Brachyury, AFP, Sox17, FoxA2, and protein expression of Brachyury, Eomes, Sox17, FoxA2, relative to high oxygen cultures. The effects extended to the subsequent formation of more mature mesodermal lineages. We observed significant upregulation of cardiomyocyte marker Nkx2.5, and critically a decrease in the number of contaminant pluripotent cells after 12 days using a directed cardiomyocyte protocol. However, the impact of low oxygen preconditioning was to prime human cells for ectodermal lineage commitment during subsequent EB differentiation, with significant upregulation of Nestin and β3-tubulin. Our research demonstrates the importance of oxygen tension control during cell maintenance on the subsequent differentiation of both mouse and human PSCs, and highlights the differential effects.

  16. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts.

    PubMed

    Streckfuss-Bömeke, Katrin; Wolf, Frieder; Azizian, Azadeh; Stauske, Michael; Tiburcy, Malte; Wagner, Stefan; Hübscher, Daniela; Dressel, Ralf; Chen, Simin; Jende, Jörg; Wulf, Gerald; Lorenz, Verena; Schön, Michael P; Maier, Lars S; Zimmermann, Wolfram H; Hasenfuss, Gerd; Guan, Kaomei

    2013-09-01

    Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell origins are similar. However, MSC-derived hiPSCs revealed a higher cardiac differentiation efficiency than keratinocyte- and fibroblast-derived hiPSCs.

  17. Review article: stem cells in human reproduction.

    PubMed

    Gargett, Caroline E

    2007-07-01

    The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell-like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction.

  18. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy

    PubMed Central

    Tao, Wensi; Ayala-Haedo, Juan A.; Field, Matthew G.; Pelaez, Daniel; Wester, Sara T.

    2017-01-01

    Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell–specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways. PMID:29214313

  19. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture.

    PubMed

    Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai

    2015-05-01

    Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p < 0.05), and was the highest in bone marrow-derived mesenchymal stem cells and platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best in group A. Both bone marrow-derived mesenchymal stem cells and platelet-rich fibrin are capable of improving the repair of dog alveolar cleft, and the mixture of them is more potent than each one of them used singly for enhancing new bone regeneration.

  20. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    PubMed

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells.

    PubMed

    Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T

    2006-01-01

    Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.

  2. Analysis of Neural Stem Cells from Human Cortical Brain Structures In Vitro.

    PubMed

    Aleksandrova, M A; Poltavtseva, R A; Marei, M V; Sukhikh, G T

    2016-05-01

    Comparative immunohistochemical analysis of the neocortex from human fetuses showed that neural stem and progenitor cells are present in the brain throughout the gestation period, at least from week 8 through 26. At the same time, neural stem cells from the first and second trimester fetuses differed by the distribution, morphology, growth, and quantity. Immunocytochemical analysis of neural stem cells derived from fetuses at different gestation terms and cultured under different conditions showed their differentiation capacity. Detailed analysis of neural stem cell populations derived from fetuses on gestation weeks 8-9, 18-20, and 26 expressing Lex/SSEA1 was performed.

  3. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes

    PubMed Central

    Eng, George; Lee, Benjamin W.; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S.; Keller, Gordon; Robinson, Richard B.; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  4. Generation of Mesenchymal-Like Stem Cells From Urine in Pediatric Patients.

    PubMed

    He, W; Zhu, W; Cao, Q; Shen, Y; Zhou, Q; Yu, P; Liu, X; Ma, J; Li, Y; Hong, K

    2016-01-01

    Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine. Traditionally, the procedures of MSC isolation are usually invasive and time-consuming. Urine is merely a body waste, and recent studies have suggested that urine represents an alternative source of stem cells. We, therefore, determined whether the possibility of isolating mesenchymal-like stem cells was practical from human urine. A total of 16 urine samples were collected from pediatric patients. Urine-derived cells were isolated, expanded, and identified for specific cell surface markers using flow cytometry. Cell morphology was observed by microscopy. Osteogenic and adipogenic differentiation potential were determinded by culturing cells in specific induction medium, and assessed by alkaline phosphatase and oil red O stainings, respectively. Clones were established and passaged successfully from primary cultures of urine cells. Cultured urine-derived cells at passage 3 were fusiform and arranged with certain directionality. Urine-derived cells at passage 5 displayed expressions of cell surface markers (CD29, CD105, CD166, CD90, and CD13). There was no expression of the general hematopoietic cell markers (CD45, CD34, and HLA-DR). Under in vitro induction conditions, urine-derived cells at passage 5 were able to differentiate into osteoblasts, but not adipocytes. Urine may be a noninvasive source for mesenchymal-like stem cells. These cells could potentially provide a new source of autologous stem cells for regenerative medicine and cell therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Prospect of stem cell conditioned medium in regenerative medicine.

    PubMed

    Pawitan, Jeanne Adiwinata

    2014-01-01

    Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.

  6. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future.

    PubMed

    Luo, Mingyue; Chen, Youxin

    2018-01-01

    As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  7. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study.

    PubMed

    Elabd, Christian; Centeno, Christopher J; Schultz, John R; Lutz, Gregory; Ichim, Thomas; Silva, Francisco J

    2016-09-01

    Chronic low back pain due to disc degeneration represents a major social and economic burden worldwide. The current standard of care is limited to symptomatic relief and no current approved therapy promotes disc regeneration. Bone marrow-derived mesenchymal stem cells (MSCs) are easily accessible and well characterized. These MSCs are multipotent and exhibit great tissue regenerative potential including bone, cartilage, and fibrous tissue regeneration. The use of this cell-based biologic for treating protruding disc herniation and/or intervertebral disc degeneration is a promising therapeutic strategy, due to their known regenerative, immuno-modulatory and anti-inflammatory properties. Five patients diagnosed with degenerative disc disease received an intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells (15.1-51.6 million cells) as part of a previous study. These patients were re-consented to participate in this study in order to assess long-term safety and feasibility of intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells 4-6 years post mesenchymal stem cell infusion. The follow-up study consisted of a physical examination, a low back MRI, and a quality of life questionnaire. Patients' lower back MRI showed absence of neoplasms or abnormalities surrounding the treated region. Based on the physical examination and the quality of life questionnaire, no adverse events were reported due to the procedure or to the stem cell treatment 4-6 years post autologous, hypoxic cultured mesenchymal stem cell infusion. All patients self-reported overall improvement, as well as improvement in strength, post stem cell treatment, and four out of five patients reported improvement in mobility. This early human clinical data suggests the safety and feasibility of the clinical use of hypoxic cultured bone marrow-derived mesenchymal stem cells for the treatment of lower back pain due to degenerative disc disorders and support further studies utilizing hypoxic cultured bone marrow-derived stem cells. The overall improvements reported are encouraging, but a larger double-blind, controlled, randomized clinical study with significant number of patients and implementation of validated endpoint measurements are next steps in order to demonstrate efficacy of this cell-based biologic.

  8. Pluripotent Stem Cells as a Robust Source of Mesenchymal Stem Cells.

    PubMed

    Luzzani, Carlos D; Miriuka, Santiago G

    2017-02-01

    Mesenchymal stem cells (MSC) have been extensively studied over the past years for the treatment of different diseases. Most of the ongoing clinical trials currently involve the use of MSC derived from adult tissues. This source may have some limitations, particularly with therapies that may require extensive and repetitive cell dosage. However, nowadays, there is a staggering growth in literature on a new source of MSC. There is now increasing evidence about the mesenchymal differentiation from pluripotent stem cell (PSC). Here, we summarize the current knowledge of pluripotent-derived mesenchymal stem cells (PD-MSC). We present a historical perspective on the subject, and then discuss some critical questions that remain unanswered.

  9. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    PubMed

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. Copyright © 2012 AlphaMed Press.

  10. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  11. Identification of Regulatory Factors for Mesenchymal Stem Cell-Derived Salivary Epithelial Cells in a Co-Culture System

    PubMed Central

    Park, Yun-Jong; Koh, Jin; Gauna, Adrienne E.; Chen, Sixue; Cha, Seunghee

    2014-01-01

    Patients with Sjögren’s syndrome or head and neck cancer patients who have undergone radiation therapy suffer from severe dry mouth (xerostomia) due to salivary exocrine cell death. Regeneration of the salivary glands requires a better understanding of regulatory mechanisms by which stem cells differentiate into exocrine cells. In our study, bone marrow-derived mesenchymal stem cells were co-cultured with primary salivary epithelial cells from C57BL/6 mice. Co-cultured bone marrow-derived mesenchymal stem cells clearly resembled salivary epithelial cells, as confirmed by strong expression of salivary gland epithelial cell-specific markers, such as alpha-amylase, muscarinic type 3 receptor, aquaporin-5, and cytokeratin 19. To identify regulatory factors involved in this differentiation, transdifferentiated mesenchymal stem cells were analyzed temporarily by two-dimensional-gel-electrophoresis, which detected 58 protein spots (>1.5 fold change, p<0.05) that were further categorized into 12 temporal expression patterns. Of those proteins only induced in differentiated mesenchymal stem cells, ankryin-repeat-domain-containing-protein 56, high-mobility-group-protein 20B, and transcription factor E2a were selected as putative regulatory factors for mesenchymal stem cell transdifferentiation based on putative roles in salivary gland development. Induction of these molecules was confirmed by RT-PCR and western blotting on separate sets of co-cultured mesenchymal stem cells. In conclusion, our study is the first to identify differentially expressed proteins that are implicated in mesenchymal stem cell differentiation into salivary gland epithelial cells. Further investigation to elucidate regulatory roles of these three transcription factors in mesenchymal stem cell reprogramming will provide a critical foundation for a novel cell-based regenerative therapy for patients with xerostomia. PMID:25402494

  12. Solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation: piece by piece.

    PubMed

    Lundy, David J; Lee, Desy S; Hsieh, Patrick C H

    2017-03-01

    There is a growing need for in vitro models which can serve as platforms for drug screening and basic research. Human adult cardiomyocytes cannot be readily obtained or cultured, and so pluripotent stem cell-derived cardiomyocytes appear to be an attractive option. Unfortunately, these cells are structurally and functionally immature-more comparable to foetal cardiomyocytes than adult. A recent study by Ruan et al ., provides new insights into accelerating the maturation process and takes us a step closer to solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation.

  13. Adipose-derived adult stem cells: available technologies for potential clinical regenerative applications in dentistry.

    PubMed

    Catalano, Enrico; Cochis, Andrea; Varoni, Elena; Rimondini, Lia; Carrassi, Antonio; Azzimonti, Barbara

    2013-01-01

    Tissue homeostasis depends closely on the activity and welfare of adult stem cells. These cells represent a promising tool for biomedical research since they can aid in treatment and promote the regeneration of damaged organs in many human disorders. Adult stem cells indefinitely preserve their ability to self-renew and differentiate into various phenotypes; this capacity could be promoted in vitro by particular culture conditions (differentiation media) or spontaneously induced in vivo by exploiting the biochemical and mechanical properties of the tissue in which the stem cells are implanted. Among the different sources of adult stem cells, adipose tissue is an attractive possibility thanks to its ready availability and the standard extraction techniques at our disposal today. This review discusses the isolation, characterization, and differentiation of human adipose-derived adult stem cells, as well as regeneration strategies, therapeutic uses, and adverse effects of their delivery. In particular, since oral disorders (e.g., trauma, erosion, and chronic periodontitis) often cause the loss of dental tissue along with functional, phonetic, and aesthetic impairment, this review focuses on the application of human adipose-derived adult stem cells, alone or in combination with biomaterials, in treating oral diseases.

  14. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo.

    PubMed

    Marchetti, Sandrine; Gimond, Clotilde; Iljin, Kristiina; Bourcier, Christine; Alitalo, Kari; Pouysségur, Jacques; Pagès, Gilles

    2002-05-15

    Large scale purification of endothelial cells is of great interest as it could improve tissue transplantation, reperfusion of ischemic tissues and treatment of pathologies in which an endothelial cell dysfunction exists. In this study, we describe a novel genetic approach that selects for endothelial cells from differentiating embryonic stem (ES) cells. Our strategy is based on the establishment of ES-cell clones that carry an integrated puromycin resistance gene under the control of a vascular endothelium-specific promoter, tie-1. Using EGFP as a reporter gene, we first confirmed the endothelial specificity of the tie-1 promoter in the embryoid body model and in cells differentiated in 2D cultures. Subsequently, tie-1-EGFP ES cells were used as recipients for the tie-1-driven puror transgene. The resulting stable clones were expanded and differentiated for seven days in the presence of VEGF before puromycin selection. As expected, puromycin-resistant cells were positive for EGFP and also expressed several endothelial markers, including CD31, CD34, VEGFR-1, VEGFR-2, Tie-1, VE-cadherin and ICAM-2. Release from the puromycin selection resulted in the appearance of alpha-smooth muscle actin-positive cells. Such cells became more numerous when the population was cultured on laminin-1 or in the presence of TGF-beta1, two known inducers of smooth muscle cell differentiation. The hypothesis that endothelial cells or their progenitors may differentiate towards a smooth muscle cell phenotype was further supported by the presence of cells expressing both CD31 and alpha-smooth muscle actin markers. Finally, we show that purified endothelial cells can incorporate into the neovasculature of transplanted tumors in nude mice. Taken together, these results suggest that application of endothelial lineage selection to differentiating ES cells may become a useful approach for future pro-angiogenic and endothelial cell replacement therapies.

  15. Neural stem cell-based treatment for neurodegenerative diseases.

    PubMed

    Kim, Seung U; Lee, Hong J; Kim, Yun B

    2013-10-01

    Human neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell-based cell therapies for neurodegenerative diseases have been developed. A recent advance in generation of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenerative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell-mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury. © 2013 Japanese Society of Neuropathology.

  16. Liver fibrosis alleviation after co-transplantation of hematopoietic stem cells with mesenchymal stem cells in patients with thalassemia major.

    PubMed

    Ghavamzadeh, Ardeshir; Sotoudeh, Masoud; Hashemi Taheri, Amir Pejman; Alimoghaddam, Kamran; Pashaiefar, Hossein; Jalili, Mahdi; Shahi, Farhad; Jahani, Mohammad; Yaghmaie, Marjan

    2018-02-01

    The aims of this study are to determine the replacement rate of damaged hepatocytes by donor-derived cells in sex-mismatched recipient patients with thalassemia major and to determine whether co-transplantation of mesenchymal stem cells and hematopoietic stem cells (HSCs) can alleviate liver fibrosis. Ten sex-mismatched donor-recipient pairs who received co-transplantation of HSCs with mesenchymal stem cells were included in our study. Liver biopsy was performed before transplantation. Two other liver biopsies were performed between 2 and 5 years after transplantation. The specimens were studied for the presence of donor-derived epithelial cells or hepatocytes using fluorescence in situ hybridization by X- and Y-centromeric probes and immunohistochemical staining for pancytokeratin, CD45, and a hepatocyte-specific antigen. All sex-mismatched tissue samples demonstrated donor-derived hepatocyte independent of donor gender. XY-positive epithelial cells or hepatocytes accounted for 11 to 25% of the cells in histologic sections of female recipients in the first follow-up. It rose to 47-95% in the second follow-up. Although not statistically significant, four out of ten patients showed signs of improvement in liver fibrosis. Our results showed that co-transplantation of HSC with mesenchymal stem cells increases the rate of replacement of recipient hepatocytes by donor-derived cells and may improve liver fibrosis.

  17. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research.

    PubMed

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-08-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.

  18. Stem-cell therapy for dilated cardiomyopathy: a pilot study evaluating retrograde coronary venous delivery.

    PubMed

    Pogue, B; Estrada, A H; Sosa-Samper, I; Maisenbacher, H W; Lamb, K E; Mincey, B D; Erger, K E; Conlon, T J

    2013-07-01

    To evaluate retrograde coronary venous stem-cell delivery for Dobermanns with dilated cardiomyopathy. Retrograde coronary venous delivery of adipose-derived mesenchymal stem cells transduced with tyrosine mutant adeno-associated virus 2 to express stromal-derived factor-1 was performed in Dobermanns with dilated cardiomyopathy. Cases were followed for 2 years and electrocardiograms (ECG), echocardiograms and Holter monitoring were performed. Delivery of cells was feasible in 15 of 15 dogs. One dog died following the development of ventricular fibrillation 24 hours after cell delivery. The remaining 14 dogs were discharged the following day without complications. Echocardiographic measurements of left ventricular size and function showed continued progression of disease. On the basis of Kaplan-Meier product limit estimates, median survival for dogs following stem-cell delivery was 620 days (range of 1-799 days). When including only the occult-dilated cardiomyopathy population and excluding those dogs already in congestive heart failure, median survival was 652 days (range of 46-799 days). Retrograde venous delivery of tyrosine mutant adeno-associated virus 2-stromal-derived factor-1 adipose-derived mesenchymal stem cells appears safe. Stem-cell therapy in dogs with occult-dilated cardiomyopathy does not appear to offer advantage compared to recently published survival data in similarly affected Dobermanns. © 2013 British Small Animal Veterinary Association.

  19. Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells

    PubMed Central

    Varela, Christine; Denis, Jérôme Alexandre; Polentes, Jérôme; Feyeux, Maxime; Aubert, Sophie; Champon, Benoite; Piétu, Geneviève; Peschanski, Marc; Lefort, Nathalie

    2012-01-01

    Human pluripotent stem cells offer a limitless source of cells for regenerative medicine. Neural derivatives of human embryonic stem cells (hESCs) are currently being used for cell therapy in 3 clinical trials. However, hESCs are prone to genomic instability, which could limit their clinical utility. Here, we report that neural differentiation of hESCs systematically produced a neural stem cell population that could be propagated for more than 50 passages without entering senescence; this was true for all 6 hESC lines tested. The apparent spontaneous loss of evolution toward normal senescence of somatic cells was associated with a jumping translocation of chromosome 1q. This chromosomal defect has previously been associated with hematologic malignancies and pediatric brain tumors with poor clinical outcome. Neural stem cells carrying the 1q defect implanted into the brains of rats failed to integrate and expand, whereas normal cells engrafted. Our results call for additional quality controls to be implemented to ensure genomic integrity not only of undifferentiated pluripotent stem cells, but also of hESC derivatives that form cell therapy end products, particularly neural lines. PMID:22269325

  20. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    USDA-ARS?s Scientific Manuscript database

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  1. Stem-cell Based Therapies for Epidermolysis Bullosa

    DTIC Science & Technology

    2013-10-01

    This application addresses the FY11 PRMRP Topic Area, Epidermolysis Bullosa, and proposes to develop stem - cell based therapies for junctional...accomplish this goal, we are proposing to develop stem - cell based therapies for EB using autologous induced pluripotent stem cells (iPSCs) derived from

  2. Stem-Cell Based Therapies for Epidermolysis Bullosa

    DTIC Science & Technology

    2014-10-01

    This application addresses the FY11 PRMRP Topic Area, Epidermolysis Bullosa, and proposes to develop stem - cell based therapies for junctional...accomplish this goal, we are proposing to develop stem - cell based therapies for EB using autologous induced pluripotent stem cells (iPSCs) derived from

  3. Adventive plants from ovules and nucelli in Citrus.

    PubMed

    Kochba, J; Spiegel-Roy, P; Safran, H

    1972-09-01

    1- to 8-week-old ovules and nucelli from three Citrus cultivars-Shamouti and Valencia (Citrus sinensis) oranges and Marsh Seedless (C. paradisi) grapefruit-were cultured in vitro. No embryo differentiation was observed in the explants prior to culture. The Shamouti ovules had degenerated and were apparently unfertilized. Embryoids formed on Murashige and Tucker nutrient medium supplemented with 500 mg/l malt extract. Whole plants developed on the same basal medium supplemented with kinetin and indole-3-acetic acid (IAA), coconut milk or gibberellic acid (GA3). A higher kinetin/IAA ratio or the addition of coconut milk favoured stem elongation more than root formation while a lower kinetin/IAA ratio favoured root formation and inhibited stem elongation. The addition of GA3 to the basal medium stimulated rooting and stem elongation. These results can be of aid in mutation research, allowing irradiation at stages prior to embryonic development.

  4. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells

    PubMed Central

    Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  5. Application of adipose-derived stem cells on scleral contact lens carrier in an animal model of severe acute alkaline burn.

    PubMed

    Espandar, Ladan; Caldwell, Delmar; Watson, Richard; Blanco-Mezquita, Tomas; Zhang, Shijia; Bunnell, Bruce

    2014-07-01

    To evaluate the therapeutic effect of human adipose-derived stem cells (hASCs) overlaid on a scleral contact lens (SCL) carrier in a rabbit model of ocular alkaline burn. After inducing alkaline burn in 11 New Zealand white rabbits, hASCs cultured on SCLs were placed on the right eye of 5 rabbits, SCLs without cells were used in 5, and no treatment was applied in 1 eye. Each eye was examined and photographed for corneal vascularization, opacities, and epithelial defect in week 1, 2, and 4 after surgery. After 1 month, rabbits were killed and the corneas were removed and cut in half for electron and light microscopy examination. Human adipose-derived stem cells were attached to SCL surface and confluent easily. Human adipose-derived stem cells on SCL eyes showed smaller epithelial defect, less corneal opacity, corneal neovascularization relative to SCL eyes. Both groups showed no symblepharon. However, the cornea in the untreated eye was melted in 2 weeks and developed severe symblepharon. Human adipose-derived stem cells on SCL can reduce inflammation and corneal haziness in severe ocular alkaline burn injury in rabbits.

  6. Application of Adipose-Derived Stem Cells on Scleral Contact Lens Carrier in an Animal Model of Severe Acute Alkaline Burn

    PubMed Central

    Espandar, Ladan; Caldwell, Delmar; Watson, Richard; Blanco-Mezquita, Tomas; Zhang, Shijia; Bunnell, Bruce

    2015-01-01

    Purpose To evaluate the therapeutic effect of human adipose-derived stem cells (hASCs) overlaid on a scleral contact lens (SCL) carrier in a rabbit model of ocular alkaline burn. Materials and Methods After inducing alkaline burn in 11 New Zealand white rabbits, hASCs cultured on SCLs were placed on the right eye of 5 rabbits, SCLs without cells were used in 5, and no treatment was applied in 1 eye. Each eye was examined and photographed for corneal vascularization, opacities, and epithelial defect in week 1, 2, and 4 after surgery. After 1 month, rabbits were killed and the corneas were removed and cut in half for electron and light microscopy examination. Results Human adipose-derived stem cells were attached to SCL surface and confluent easily. Human adipose-derived stem cells on SCL eyes showed smaller epithelial defect, less corneal opacity, corneal neovascularization relative to SCL eyes. Both groups showed no symblepharon. However, the cornea in the untreated eye was melted in 2 weeks and developed severe symblepharon. Conclusion Human adipose-derived stem cells on SCL can reduce inflammation and corneal haziness in severe ocular alkaline burn injury in rabbits. PMID:24901976

  7. The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells.

    PubMed

    Fan, F; Bellister, S; Lu, J; Ye, X; Boulbes, D R; Tozzi, F; Sceusi, E; Kopetz, S; Tian, F; Xia, L; Zhou, Y; Bhattacharya, R; Ellis, L M

    2015-02-03

    Isolation of colorectal cancer (CRC) cell populations enriched for cancer stem cells (CSCs) may facilitate target identification. There is no consensus regarding the best methods for isolating CRC stem cells (CRC-SCs). We determined the suitability of various cellular models and various stem cell markers for the isolation of CRC-SCs. Established human CRC cell lines, established CRC cell lines passaged through mice, patient-derived xenograft (PDX)-derived cells, early passage/newly established cell lines, and cells directly from clinical specimens were studied. Cells were FAC-sorted for the CRC-SC markers CD44, CD133, and aldehyde dehydrogenase (ALDH). Sphere formation and in vivo tumorigenicity studies were used to validate CRC-SC enrichment. None of the markers studied in established cell lines, grown either in vitro or in vivo, consistently enriched for CRC-SCs. In the three other cellular models, CD44 and CD133 did not reliably enrich for stemness. In contrast, freshly isolated PDX-derived cells or early passage/newly established CRC cell lines with high ALDH activity formed spheres in vitro and enhanced tumorigenicity in vivo, whereas cells with low ALDH activity did not. PDX-derived cells, early passages/newly established CRC cell lines and cells from clinical specimen with high ALDH activity can be used to identify CRC-SC-enriched populations. Established CRC cell lines should not be used to isolate CSCs.

  8. Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources

    DTIC Science & Technology

    2013-10-01

    stem cell lines have been successfully isolated from adults, in this proposal we aim to isolate and characterize GSC populations from pediatric patients. In the past two years we have successfully derived and cultured eight patient-derived pediatric glioma stem cell lines. In the past year we have continued molecular and phenotypic characterization of these lines. This characterization included analysis of gene expression and patient-specific gene mutations, and also proof-of-concept shRNA screens. In addition we have begun to identify candidate

  9. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity.

    PubMed

    Hope, Kristin J; Jin, Liqing; Dick, John E

    2004-07-01

    Emerging evidence suggests cancer stem cells sustain neoplasms; however, little is understood of the normal cell initially targeted and the resultant cancer stem cells. We show here, by tracking individual human leukemia stem cells (LSCs) in nonobese diabetic-severe combined immunodeficiency mice serially transplanted with acute myeloid leukemia cells, that LSCs are not functionally homogeneous but, like the normal hematopoietic stem cell (HSC) compartment, comprise distinct hierarchically arranged LSC classes. Distinct LSC fates derived from heterogeneous self-renewal potential. Some LSCs emerged only in recipients of serial transplantation, indicating they divided rarely and underwent self-renewal rather than commitment after cell division within primary recipients. Heterogeneity in LSC self-renewal potential supports the hypothesis that they derive from normal HSCs. Furthermore, normal developmental processes are not completely abolished during leukemogenesis. The existence of multiple stem cell classes shows the need for LSC-targeted therapies.

  10. Placental-derived stem cells: Culture, differentiation and challenges

    PubMed Central

    Oliveira, Maira S; Barreto-Filho, João B

    2015-01-01

    Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice. PMID:26029347

  11. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives.

    PubMed

    Huang, Yi-Zhou; Xie, Hui-Qi; Silini, Antonietta; Parolini, Ornella; Zhang, Yi; Deng, Li; Huang, Yong-Can

    2017-10-01

    Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.

  12. Application of a novel sorting system for equine mesenchymal stem cells (MSCs)

    PubMed Central

    Radtke, Catherine L.; Nino-Fong, Rodolfo; Esparza Gonzalez, Blanca P.; McDuffee, Laurie A.

    2014-01-01

    The objective of this study was to validate non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs) into subpopulations, for use with MSCs derived from equine muscle tissue, periosteal tissue, bone marrow, and adipose tissue. Cells were collected from 6 young, adult horses, postmortem. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and left supragluteal subcutaneous adipose tissue. Aliquots of 800 × 103 MSCs from each tissue source were separated and injected into a ribbon-like capillary device by continuous flow (GrFFF proprietary system). Cells were sorted into 6 fractions and absorbencies [optical density (OD)] were read. Six fractions from each of the 6 aliquots were then combined to provide pooled fractions that had adequate cell numbers to seed at equal concentrations into assays. Equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells were consistently sorted into 6 fractions that remained viable for use in further assays. Fraction 1 had more cuboidal morphology in culture when compared to the other fractions. Statistical analysis of the fraction absorbencies (OD) revealed a P-value of < 0.05 when fractions 2 and 3 were compared to fractions 1, 4, 5, and 6. It was concluded that non-equilibrium GrFFF is a valid method for sorting equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells into subpopulations that remain viable, thus securing its potential for use in equine stem cell applications and veterinary medicine. PMID:25355998

  13. Modeling TSC and LAM Using Patient Derived Induced Pluripotent Stem Cells

    DTIC Science & Technology

    2016-10-01

    lentiviral knockdown, and CRISPR /Cas9 genome editing in embryonic stem cells (ESCs). We have characterized the iPSCs extensively and found that they display...induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) reprogramming CRISPR /Cas9 genome editing neural stem cells (NSCs) neural crest... CRISPR /cas9 in two additional human pluripotent stem cell lines (WA07 (H7) – female cell line registry #0061; and a control male iPSC lines generated

  14. Functional characterization of human pluripotent stem cell-derived arterial endothelial cells.

    PubMed

    Zhang, Jue; Chu, Li-Fang; Hou, Zhonggang; Schwartz, Michael P; Hacker, Timothy; Vickerman, Vernella; Swanson, Scott; Leng, Ning; Nguyen, Bao Kim; Elwell, Angela; Bolin, Jennifer; Brown, Matthew E; Stewart, Ron; Burlingham, William J; Murphy, William L; Thomson, James A

    2017-07-25

    Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.

  15. Therapeutic strategies involving uterine stem cells in reproductive medicine.

    PubMed

    Simoni, Michael; Taylor, Hugh S

    2018-06-01

    The current review provides an update on recent advances in stem cell biology relevant to female reproduction. Stem cells are undifferentiated cells that often serve as a reservoir of cells to regenerate tissue in settings or injury or cell loss. The endometrium has progenitor stem cells that can replace all of the endometrium during each menstrual cycle. In addition, multipotent endometrial cells replace these progenitor cells when depleted. Recruitment of stem cells from outside of the uterus occurs in setting of increased demand such as ischemia or injury. Bone marrow-derived multipotent stem cells are recruited to the uterus by estrogen or injury-induced expression of the chemokine CXCL12. In the setting of overwhelming injury, especially in the setting of low estrogen levels, there may be insufficient stem cell recruitment to adequately repair the uterus resulting in conditions such as Asherman syndrome or other endometrial defects. In contrast, excessive recruitment of stem cells underlies endometriosis. Enhanced understanding of stem-cell mobilization, recruitment, and engraftment has created the possibility of improved therapy for endometrial defects and endometriosis through enhanced manipulation of stem-cell trafficking. Further, the normal endometrium is a rich source of multipotent stem cells that can be used for numerous applications in regenerative medicine beyond reproduction. A better understanding of reproductive stem-cell biology may allow improved treatment of endometrial disease such as Asherman syndrome and other endometrial receptivity defects. Inhibiting stem-cell mobilization may also be helpful in endometriosis therapy. Finally, endometrial derived multipotent stem cells may play a crucial role in cell therapy for regenerative medicine.

  16. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration

    PubMed Central

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante

    2016-01-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6–13 cm2) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Significance Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown to contribute to tissue renewal and homeostasis, the derivation, biological function, and application potential of stem/progenitor cells found in adult human articular cartilage are incompletely understood. This study reports the derivation of a population of cartilage stem/progenitor cells from fully differentiated chondrocytes under specific culture conditions, which have the potential to reassume their chondrocytic phenotype for efficient cartilage regeneration. These findings support the possibility of using in vitro amplified chondrocyte-derived progenitor cells for joint cartilage repair. PMID:27130221

  17. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration.

    PubMed

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante; Tuan, Rocky S; Ouyang, Hong Wei

    2016-06-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6-13 cm(2)) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown to contribute to tissue renewal and homeostasis, the derivation, biological function, and application potential of stem/progenitor cells found in adult human articular cartilage are incompletely understood. This study reports the derivation of a population of cartilage stem/progenitor cells from fully differentiated chondrocytes under specific culture conditions, which have the potential to reassume their chondrocytic phenotype for efficient cartilage regeneration. These findings support the possibility of using in vitro amplified chondrocyte-derived progenitor cells for joint cartilage repair. ©AlphaMed Press.

  18. Placenta-an alternative source of stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matikainen, Tiina; Laine, Jarmo

    2005-09-01

    The two most promising practical applications of human stem cells are cellular replacement therapies in human disease and toxicological screening of candidate drug molecules. Both require a source of human stem cells that can be isolated, purified, expanded in number and differentiated into the cell type of choice in a controlled manner. Currently, uses of both embryonic and adult stem cells are investigated. While embryonic stem cells are pluripotent and can differentiate into any specialised cell type, their use requires establishment of embryonic stem cell lines using the inner cell mass of an early pre-implantation embryo. As the blastocyst ismore » destroyed during the process, ethical issues need to be carefully considered. The use of embryonic stem cells is also limited by the difficulties in growing large numbers of the cells without inducing spontaneous differentiation, and the problems in controlling directed differentiation of the cells. The use of adult stem cells, typically derived from bone marrow, but also from other tissues, is ethically non-controversial but their differentiation potential is more limited than that of the embryonic stem cells. Since human cord blood, umbilical cord, placenta and amnion are normally discarded at birth, they provide an easily accessible alternative source of stem cells. We review the potential and current status of the use of adult stem cells derived from the placenta or umbilical cord in therapeutic and toxicological applications.« less

  19. The science of stem cell biobanking: investing in the future.

    PubMed

    Diaferia, Giuseppe R; Cardano, Marina; Cattaneo, Monica; Spinelli, Chiara C; Dessì, Sara S; DeBlasio, Pasquale; Biunno, Ida

    2012-01-01

    The use of human stem cells in biomedical research projects is increasing steadily and the number of cells that are being derived develops at a remarkable pace. However, stem cells around the world are vastly different in their provenance, programming, and potentials. Furthermore, knowledge on the actual number of cell types, their derivation, availability, and characteristics is rather sparse. Usually, "colleague-supply" avenues constantly furnish cells to laboratories around the world without ensuring their correct identity, characterization, and quality. These parameters are critical if the cells will be eventually used in toxicology studies and drug discovery. Here, we outline some basic principles in establishing a stem cell-specific bank. Copyright © 2011 Wiley Periodicals, Inc.

  20. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    PubMed

    Kim, Jong Hyun; Kim, Hyung Woo; Cha, Kyoung Je; Han, Jiyou; Jang, Yu Jin; Kim, Dong Sung; Kim, Jong-Hoon

    2016-03-22

    Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.

  1. Bone-Derived Stem Cells Repair the Heart after Myocardial Infarction Through Transdifferentiation and Paracrine Signaling Mechanisms

    PubMed Central

    Duran, Jason M.; Makarewich, Catherine A.; Sharp, Thomas E.; Starosta, Timothy; Fang, Zhu; Hoffman, Nicholas E.; Chiba, Yumi; Madesh, Muniswamy; Berretta, Remus M.; Kubo, Hajime; Houser, Steven R.

    2013-01-01

    Rationale Autologous bone marrow- or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is key toward improving clinical outcomes. Objective To determine the mechanism by which novel bone-derived stem cells support the injured heart. Methods and Results Cortical bone stem cells (CBSCs) and cardiac-derived stem cells (CDCs) were isolated from EGFP+ transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction (MI) with injection of CBSCs (n=67), CDCs (n=36) or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor) and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to CDC- or saline-treated MI controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle and endothelial cells could be identified in CBSC- but not in CDC-treated animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. Conclusions CBSCs improve survival, cardiac function, and attenuate remodeling through two mechanisms:1) secretion of pro-angiogenic factors that stimulate endogenous neovascularization, and 2) differentiation into functional adult myocytes and vascular cells. PMID:23801066

  2. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    PubMed Central

    Dai, Ru; Wang, Zongjie; Samanipour, Roya; Koo, Kyo-in; Kim, Keekyoung

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine. PMID:27057174

  3. Role of adipose-derived stem cells in wound healing.

    PubMed

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  4. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells.

    PubMed

    Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko

    2012-02-01

    Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.

  5. Characterization of insulin-producing cells derived from PDX-1-transfected neural stem cells.

    PubMed

    Wang, Hailan; Jiang, Zesheng; Li, Aihui; Gao, Yi

    2012-12-01

    Islet cell transplantation is a promising treatment strategy for type-1 diabetes. However, functional islet cells are hard to obtain for transplantation and are in short supply. Directing the differentiation of stem cells into insulin‑producing cells, which serve as islet cells, would overcome this shortage. Bone marrow contains hematopoietic stem cells and mesenchymal stem cells. The present study used bone marrow cells isolated from rats and neural stem cells (NSCs) that were derived from bone marrow cells in culture. Strong nestin staining was detected in NSCs, but not in bone marrow stromal cells (BMSCs). In vitro transfection of the pancreatic duodenal homeobox-1 (PDX-1) gene into NSCs generated insulin‑producing cells. Reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analysis confirmed that PDX-1-transfected NSCs expressed insulin mRNA and released insulin protein. However, insulin release from PDX-1-transfected NSCs did not respond to the challenge of glucose and glucagon-like peptide-1. These results support the use of bone marrow-derived NSCs as a renewable source of insulin-producing cells for autologous transplantation to treat type-1 diabetes.

  6. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches

    PubMed Central

    Toyoshima, Koh-ei; Asakawa, Kyosuke; Ishibashi, Naoko; Toki, Hiroshi; Ogawa, Miho; Hasegawa, Tomoko; Irié, Tarou; Tachikawa, Tetsuhiko; Sato, Akio; Takeda, Akira; Tsuji, Takashi

    2012-01-01

    Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy. PMID:22510689

  7. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes.

    PubMed

    Young, Nathan P; Kamireddy, Anwesh; Van Nostrand, Jeanine L; Eichner, Lillian J; Shokhirev, Maxim Nikolaievich; Dayn, Yelena; Shaw, Reuben J

    2016-03-01

    Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK(-/-) EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation. © 2016 Young et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Structural phenotyping of stem cell-derived cardiomyocytes.

    PubMed

    Pasqualini, Francesco Silvio; Sheehy, Sean Paul; Agarwal, Ashutosh; Aratyn-Schaus, Yvonne; Parker, Kevin Kit

    2015-03-10

    Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the localization of the contractile protein α-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived cardiomyocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Current state of the opportunities for derivation of germ-like cells from pluripotent stem cells: are you a man, or a mouse?

    PubMed Central

    Petkova, Rumena; Arabadjiev, Borislav; Chakarov, Stoyan; Pankov, Roumen

    2014-01-01

    The concept of pluripotency as a prerogative of cells of early mammal embryos and cultured embryonic stem cells (ESC) has been invalidated with the advent of induced pluripotent stem cells. Later, it became clear that the ability to generate all cell types of the adult organism is also a questionable aspect of pluripotency, as there are cell types, such as germ cells, which are difficult to produce from pluripotent stem cells. Recently it has been proposed that there are at least two different states of pluripotency; namely, the naïve, or ground state, and the primed state, which may differ radically in terms of timeline of existence, signalling mechanisms, cell properties, capacity for differentiation into different cell types, etc. Germ-like male and female rodent cells have been successfully produced in vitro from ESC and induced pluripotent stem cells. The attempts to derive primate primordial germ cells (PGC) and germ cells in vitro from pluripotent stem cells, however, still have a low success rate, especially with the female germline. The paper reviews the properties of rodent and primate ESC with regard to their capacity for differentiation in vitro to germ-like cells, outlining the possible caveats to derivation of PGC and germ cells from primate and human pluripotent cells. PMID:26019504

  10. Muscle Stem Cell Therapy for the Treatment of DMD Associated Cardiomyopathy

    DTIC Science & Technology

    2015-12-01

    Amelioration of hyperbilirubinemia in Gunn rats after transplantation of human induced pluripotent stem cell -derived hepatocytes. Stem Cell Reports 2015...use of differentiated pluripotent stem cells as replacement therapy in treating disease. Science 2014; 345:1247391. 12. Nishikawa T, Bell A, Brooks...Award Number: W81XWH-11-1-0803 TITLE: Muscle Stem Cell Therapy for the Treatment of DMD Associated Cardiomyopathy PRINCIPAL INVESTIGATOR

  11. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Yijing; Tang, Huijuan; Guo, Yan

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOCmore » cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.« less

  12. Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.

    PubMed

    Lojewski, Xenia; Srimasorn, Sumitra; Rauh, Juliane; Francke, Silvan; Wobus, Manja; Taylor, Verdon; Araúzo-Bravo, Marcos J; Hallmeyer-Elgner, Susanne; Kirsch, Matthias; Schwarz, Sigrid; Schwarz, Johannes; Storch, Alexander; Hermann, Andreas

    2015-10-01

    Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation potential in vitro and in vivo after in utero transplantation. This study showed the lack of an innate neuronal but high mesodermal differentiation potential. Because of their relationship to mesenchymal stem cells, these adult brain perivascular mesodermal cells are of great interest for possible autologous therapeutic use. ©AlphaMed Press.

  13. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    PubMed

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  14. In vitro generation of three-dimensional substrate-adherent embryonic stem cell-derived neural aggregates for application in animal models of neurological disorders.

    PubMed

    Hargus, Gunnar; Cui, Yi-Fang; Dihné, Marcel; Bernreuther, Christian; Schachner, Melitta

    2012-05-01

    In vitro-differentiated embryonic stem (ES) cells comprise a useful source for cell replacement therapy, but the efficiency and safety of a translational approach are highly dependent on optimized protocols for directed differentiation of ES cells into the desired cell types in vitro. Furthermore, the transplantation of three-dimensional ES cell-derived structures instead of a single-cell suspension may improve graft survival and function by providing a beneficial microenvironment for implanted cells. To this end, we have developed a new method to efficiently differentiate mouse ES cells into neural aggregates that consist predominantly (>90%) of postmitotic neurons, neural progenitor cells, and radial glia-like cells. When transplanted into the excitotoxically lesioned striatum of adult mice, these substrate-adherent embryonic stem cell-derived neural aggregates (SENAs) showed significant advantages over transplanted single-cell suspensions of ES cell-derived neural cells, including improved survival of GABAergic neurons, increased cell migration, and significantly decreased risk of teratoma formation. Furthermore, SENAs mediated functional improvement after transplantation into animal models of Parkinson's disease and spinal cord injury. This unit describes in detail how SENAs are efficiently derived from mouse ES cells in vitro and how SENAs are isolated for transplantation. Furthermore, methods are presented for successful implantation of SENAs into animal models of Huntington's disease, Parkinson's disease, and spinal cord injury to study the effects of stem cell-derived neural aggregates in a disease context in vivo.

  15. Hematopoietic stem cells: can old cells learn new tricks?

    PubMed

    Ho, Anthony D; Punzel, Michael

    2003-05-01

    Since the establishment of cell lines derived from human embryonic stem (ES) cells, it has been speculated that out of such "raw material," we could some day produce all sorts of replacement parts for the human body. Human pluripotent stem cells can be isolated from embryonic, fetal, or adult tissues. Enormous self-renewal capacity and developmental potential are the characteristics of ES cells. Somatic stem cells, especially those derived from hematopoietic tissues, have also been reported to exhibit developmental potential heretofore not considered possible. The initial evidences for the plasticity potential of somatic stem cells were so encouraging that the opponents of ES cell research used them as arguments for restricting ES cell research. In the past months, however, critical issues have been raised challenging the validity and the interpretation of the initial data. Whereas hematopoietic stem-cell therapy has been a clinical reality for almost 40 years, there is still a long way to go in basic research before novel therapy strategies with stem cells as replacement for other organ systems can be established. Given the present status, we should keep all options open for research in ES cells and adult stem cells to appreciate the complexity of their differentiation pathways and the relative merits of various types of stem cells for regenerative medicine.

  16. Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice.

    PubMed

    Farace, Francoise; Prestoz, Laetitita; Badaoui, Sabrina; Guillier, Martine; Haond, Celine; Opolon, Paule; Thomas, Jean-Leon; Zalc, Bernard; Vainchenker, William; Turhan, Ali G

    2004-02-01

    Muscle tissue of adult mice has been shown to contain stem cells with hematopoietic repopulation ability in vivo. To determine the functional characteristics of stem cells giving rise to this hematopoietic activity, we have performed hematopoietic reconstitution experiments by the use of muscle versus marrow transplantation in lethally irradiated mice and followed the fate of transplanted cells by Y-chimerism using PCR and fluorescence in situ hybridization (FISH) analysis. We report here that transplantation of murine muscle generate a major hematopoietic chimerism at the level of CFU-C, CFU-S, and terminally-differentiated cells in three generations of lethally irradiated mice followed up to 1 year after transplantation. This potential is totally abolished when muscle grafts were performed by the use of muscle from previously irradiated mice. As compared to marrow transplantation, muscle transplants were able to generate similar potencies to give rise to myeloid, T, B, and natural killer (NK) cells. Interestingly, marrow stem cells that have been generated in primary and then in secondary recipients were able to contribute efficiently to myofibers in the muscle tissue of tertiary recipients. Altogether, our data demonstrate that muscle-derived stem cells present a major hematopoietic repopulating ability with evidence of self-replication in vivo. They are radiation-sensitive and similar to marrow-derived stem cells in terms of their ability to generate multilineage hematopoiesis. Finally, our data demonstrate that muscle-derived hematopoietic stem cells do not lose their ability to contribute to myofiber generation after at least two rounds of serial transplantation, suggesting a potential that is probably equivalent to that generated by marrow transplantation.

  17. Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain.

    PubMed

    Hawkins, Kate E; Corcelli, Michelangelo; Dowding, Kate; Ranzoni, Anna M; Vlahova, Filipa; Hau, Kwan-Leong; Hunjan, Avina; Peebles, Donald; Gressens, Pierre; Hagberg, Henrik; de Coppi, Paolo; Hristova, Mariya; Guillot, Pascale V

    2018-05-01

    Human mesenchymal stem cells (MSCs) have huge potential for regenerative medicine. In particular, the use of pluripotent stem cell-derived mesenchymal stem cells (PSC-MSCs) overcomes the hurdle of replicative senescence associated with the in vitro expansion of primary cells and has increased therapeutic benefits in comparison to the use of various adult sources of MSCs in a wide range of animal disease models. On the other hand, fetal MSCs exhibit faster growth kinetics and possess longer telomeres and a wider differentiation potential than adult MSCs. Here, for the first time, we compare the therapeutic potential of PSC-MSCs (ES-MSCs from embryonic stem cells) to fetal MSCs (AF-MSCs from the amniotic fluid), demonstrating that ES-MSCs have a superior neuroprotective potential over AF-MSCs in the mouse brain following hypoxia-ischemia. Further, we demonstrate that nuclear factor (NF)-κB-stimulated interleukin (IL)-13 production contributes to an increased in vitro anti-inflammatory potential of ES-MSC-conditioned medium (CM) over AF-MSC-CM, thus suggesting a potential mechanism for this observation. Moreover, we show that induced pluripotent stem cell-derived MSCs (iMSCs) exhibit many similarities to ES-MSCs, including enhanced NF-κB signaling and IL-13 production in comparison to AF-MSCs. Future studies should assess whether iMSCs also exhibit similar neuroprotective potential to ES-MSCs, thus presenting a potential strategy to overcome the ethical issues associated with the use of embryonic stem cells and providing a potential source of cells for autologous use against neonatal hypoxic-ischemic encephalopathy in humans. Stem Cells Translational Medicine 2018;7:439-449. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology.

    PubMed

    De Rosa, Alfredo; De Francesco, Francesco; Tirino, Virginia; Ferraro, Giuseppe A; Desiderio, Vincenzo; Paino, Francesca; Pirozzi, Giuseppe; D'Andrea, Francesco; Papaccio, Gianpaolo

    2009-12-01

    Recent studies have shown potential ways for improving stem cell cryopreservation. The major need for autologous stem cell use is a long-term storage: this arises from the humans' hope of future use of their own cells. Therefore, it is important to evaluate the cell potential of vitality and differentiation before and after cryopreservation. Although several studies have shown a long-term preservation of adipose tissue, a few of them focused their attention to stem cells. The aim of this study was to evaluate the fate of cryopreserved stem cells collected from adipose tissue and stored at low a temperature in liquid nitrogen through an optimal cryopreservation solution (using slowly cooling in 6% threalose, 4% dimethyl sulfoxide, and 10% fetal bovine serum) and to develop a novel approach to efficiently preserve adipose-derived stem cells (ASCs) for future clinical applications. Results showed that stem cells, after being thawed, are still capable of differentiation and express all surface antigens detected before storage, confirming the integrity of their biology. In particular, ASCs differentiated into adipocytes, showed diffuse positivity for PPARgamma and adiponectin, and were also able to differentiate into endothelial cells without addition of angiogenic factors. Therefore, ASCs can be long-term cryopreserved, and this, due to their great numbers, is an attractive tool for clinical applications as well as of impact for the derived market.

  19. Apelin: an endogenous peptide essential for cardiomyogenic differentiation of mesenchymal stem cells via activating extracellular signal-regulated kinase 1/2 and 5.

    PubMed

    Wang, Li; Zhu, Zhi-Ming; Zhang, Ning-Kun; Fang, Zhi-Rong; Xu, Xiao-Hong; Zheng, Nan; Gao, Lian-Ru

    2016-05-01

    Growing evidence has shown that apelin/APJ system functions as a critical mediator of cardiac development as well as cardiovascular function. Here, we investigated the role of apelin in the cardiomyogenic differentiation of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord in vitro. In this research, we used RNA interference methodology and gene transfection technique to regulate the expression of apelin in Wharton's jelly-derived mesenchymal stem cells and induced cells with a effective cardiac differentiation protocol including 5-azacytidine and bFGF. Four weeks after induction, induced cells assumed a stick-like morphology and myotube-like structures except apelin-silenced cells and the control group. The silencing expression of apelin in Wharton's jelly-derived mesenchymal stem cells decreased the expression of several critical cardiac progenitor transcription factors (Mesp1, Mef2c, NKX2.5) and cardiac phenotypes (cardiac α-actin, β-MHC, cTnT, and connexin-43). Meanwhile, endogenous compensation of apelin contributed to differentiating into cells with characteristics of cardiomyocytes in vitro. Further experiment showed that exogenous apelin peptide rescued the cardiomyogenic differentiation of apelin-silenced mesenchymal stem cells in the early stage (1-4 days) of induction. Remarkably, our experiment indicated that apelin up-regulated cardiac specific genes in Wharton's jelly-derived mesenchymal stem cells via activating extracellular signal-regulated kinase (ERK) 1/2 and 5. © 2016 International Federation for Cell Biology.

  20. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards.

    PubMed

    Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C

    2013-02-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.

Top