A revisionist history of adult marrow stem cell biology or 'they forgot about the discard'.
Quesenberry, P; Goldberg, L
2017-08-01
The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.
Chakraborty, Chiranjib; Chin, Kok-Yong; Das, Srijit
2016-10-01
Over the last few years, microRNAs (miRNA)-controlled cancer stem cells have drawn enormous attention. Cancer stem cells are a small population of tumor cells that possess the stem cell property of self-renewal. Recent data shows that miRNA regulates this small population of stem cells. In the present review, we explained different characteristics of cancer stem cells as well as miRNA regulation of self-renewal and differentiation in cancer stem cells. We also described the migration and tumor formation. Finally, we described the different miRNAs that regulate various types of cancer stem cells, such as prostate cancer stem cells, head and neck cancer stem cells, breast cancer stem cells, colorectal cancer stem cells, lung cancer stem cells, gastric cancer stem cells, pancreatic cancer stem cells, etc. Extensive research is needed in order to employ miRNA-based therapeutics to control cancer stem cell population in various cancers in the future.
Skin appendage-derived stem cells: cell biology and potential for wound repair.
Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing
2016-01-01
Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.
Stem Cell Banking for Regenerative and Personalized Medicine
Harris, David T.
2014-01-01
Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source. PMID:28548060
The longest telomeres: a general signature of adult stem cell compartments
Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.
2008-01-01
Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121
Stem cells and female reproduction.
Du, Hongling; Taylor, Hugh S
2009-02-01
Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent.
The potential of nanofibers in tissue engineering and stem cell therapy.
Gholizadeh-Ghaleh Aziz, Shiva; Gholizadeh-Ghaleh Aziz, Sara; Akbarzadeh, Abolfazl
2016-08-01
Electrospinning is a technique in which materials in solution are shaped into continuous nano- and micro-sized fibers. Combining stem cells with biomaterial scaffolds and nanofibers affords a favorable approach for bone tissue engineering, stem cell growth and transfer, ocular surface reconstruction, and treatment of congenital corneal diseases. This review seeks to describe the current examples of the use of scaffolds in stem cell therapy. Stem cells are classified as adult or embryonic stem (ES) cells, and the advantages and drawbacks of each group are detailed. The nanofibers and scaffolds are further classified in Tables I and II , which describe specific examples from the literature. Finally, the current applications of biomaterial scaffolds containing stem cells for tissue engineering applications are presented. Overall, this review seeks to give an overview of the biomaterials available for use in combination with stem cells, and the application of nanofibers in stem cell therapy.
2016-03-01
1 AD_____________ Award Number: W81XWH-11-1-0623 TITLE: Coexpression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A...Novel Approach to Target Ovarian Cancer Stem Cells PRINCIPAL INVESTIGATOR: David W. Schomberg, PhD CONTRACTING ORGANIZATION: Duke University...Durham, NC 27705 REPORT DATE: March 2016 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick
21st Nantes Actualités Transplantation: "When Stem Cells Meet Immunology".
Anegon, Ignacio; Nguyen, Tuan Huy
2017-01-01
"When Stem Cells Meet Immunology" has been the topic of the 21st annual "Nantes Actualités en Transplantation" meeting (June 9-10, 2016, Nantes, France). This meeting brought together pioneers and leading experts in the fields of stem cells, biomaterials and immunoregulation. Presentations covered multipotent (mesenchymal and hematopoietic) and pluripotent stem cells (embryonic and induced) for regenerative medicine of incurable diseases, immunotherapy and blood transfusions. An additional focus had been immune rejections and responses of allogeneic or autologous stem cells. Conversely, stem cells are also able to directly modulate the immune response through the production of immunoregulatory molecules. Moreover, stem cells may also provide an unlimited source of immune cells (DCs, NK cells, B cells, and T cells) that can operate as "super" immune cells, for example, through genetic engineering with chimeric antigen receptors.This meeting report puts presentations into an overall context highlighting new potential biomarkers for potency prediction of mesenchymal stem cell-derived and pluripotent stem cell-derived multicellular organoids. Finally, we propose future directions arising from the flourishing encounter of stem cell and immune biology.
Stem cell aging: mechanisms, regulators and therapeutic opportunities
Oh, Juhyun; Lee, Yang David; Wagers, Amy J
2014-01-01
Aging tissues experience a progressive decline in homeostatic and regenerative capacities, which has been attributed to degenerative changes in tissue-specific stem cells, stem cell niches and systemic cues that regulate stem cell activity. Understanding the molecular pathways involved in this age-dependent deterioration of stem cell function will be critical for developing new therapies for diseases of aging that target the specific causes of age-related functional decline. Here we explore key molecular pathways that are commonly perturbed as tissues and stem cells age and degenerate. We further consider experimental evidence both supporting and refuting the notion that modulation of these pathways per se can reverse aging phenotypes. Finally, we ask whether stem cell aging establishes an epigenetic ‘memory’ that is indelibly written or one that can be reset. PMID:25100532
Stem Cells in Skeletal Tissue Engineering: Technologies and Models
Langhans, Mark T.; Yu, Shuting; Tuan, Rocky S.
2017-01-01
This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering is presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering. PMID:26423296
Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy.
Pozzobon, Michela; Piccoli, Martina; De Coppi, Paolo
2014-06-01
Stem cell therapy is in constant need of new cell sources to conceive regenerative medicine approaches for diseases that are still without therapy. Scientists drew the attention toward amniotic membrane and amniotic fluid stem cells, since these sources possess many advantages: first of all as cells can be extracted from discarded foetal material it is inexpensive, secondly abundant stem cells can be obtained and finally, these stem cell sources are free from ethical considerations. Many studies have demonstrated the differentiation potential in vitro and in vivo toward mesenchymal and non-mesenchymal cell types; in addition the immune-modulatory properties make these cells a good candidate for allo- and xenotransplantation. This review offers an overview on markers characterisation and on the latest findings in pre-clinical or clinical setting of the stem cell populations isolated from these sources.
Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface.
Zhang, Yan; Gordon, Andrew; Qian, Weiyi; Chen, Weiqiang
2015-09-16
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aging, metabolism and stem cells: Spotlight on muscle stem cells.
García-Prat, Laura; Muñoz-Cánoves, Pura
2017-04-15
All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Anisimov, S V
2009-01-01
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Numerous cell replacement therapy approaches have been developed and tested, including these based on donor cell transplantation (embryonic and adult tissue-derived), adult mesenchymal stem cells (hMSCs)-, neural stem cells (hNSCs)- and finally human embryonic stem cells (hESCs)-based. Despite the progress achieved, numerous difficulties prevent wider practical application of stem cell-based therapy approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety and technical issues stand out. Current series of reviews (Cell therapy for Parkinson's disease: I. Embryonic and adult donor tissue-based applications; II. Adult stem cell-based applications; III. Neonatal, fetal and embryonic stem cell-based applications; IV. Risks and future trends) aims providing a balanced and updated view on various issues associated with cell types (including stem cells) in regards to their potential in the treatment of Parkinson's disease. Essential features of the individual cell subtypes, principles of available cell handling protocols, transplantation, and safety issues are discussed extensively.
The epithelial-mesenchymal transition generates cells with properties of stem cells.
Mani, Sendurai A; Guo, Wenjun; Liao, Mai-Jing; Eaton, Elinor Ng; Ayyanan, Ayyakkannu; Zhou, Alicia Y; Brooks, Mary; Reinhard, Ferenc; Zhang, Cheng Cheng; Shipitsin, Michail; Campbell, Lauren L; Polyak, Kornelia; Brisken, Cathrin; Yang, Jing; Weinberg, Robert A
2008-05-16
The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.
TGFβ lengthens the G1 phase of stem cells in aged mouse brain.
Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André
2014-12-01
Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.
Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.
Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M
2017-06-01
This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.
Du, Hongling; Taylor, Hugh S
2010-06-01
To review the latest developments in reproductive tract stem cell biology. In 2004, two studies indicated that ovaries contain stem cells which form oocytes in adults and that can be cultured in vitro into mature oocytes. A live birth after orthotopic transplantation of cryopreserved ovarian tissue in a woman whose ovaries were damaged by chemotherapy demonstrates the clinical potential of these cells. In the same year, another study provided novel evidence of endometrial regeneration by stem cells in women who received bone marrow transplants. This finding has potential for the use in treatment of uterine disorders. It also supports a new theory for the cause of endometriosis, which may have its origin in ectopic transdifferentiation of stem cells. Several recent studies have demonstrated that fetal cells enter the maternal circulation and generate microchimerism in the mother. The uterus is a dynamic organ permeable to fetal stem cells, capable of transdifferentiation and an end organ in which bone marrow stem cells may differentiate. Finally stem cell transformation can be an underlying cause of ovarian cancer. Whereas we are just beginning to understand stem cells, the potential implications of stem cells to reproductive biology and medicine are apparent.
Our Fat Future: Translating Adipose Stem Cell Therapy.
Nordberg, Rachel C; Loboa, Elizabeth G
2015-09-01
Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation. We discuss the progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational technology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research. ©AlphaMed Press.
Engineering stem cells for future medicine.
Ricotti, Leonardo; Menciassi, Arianna
2013-03-01
Despite their great potential in regenerative medicine applications, stem cells (especially pluripotent ones) currently show a limited clinical success, partly due to a lack of biological knowledge, but also due to a lack of specific and advanced technological instruments able to overcome the current boundaries of stem cell functional maturation and safe/effective therapeutic delivery. This paper aims at describing recent insights, current limitations, and future horizons related to therapeutic stem cells, by analyzing the potential of different bioengineering disciplines in bringing stem cells toward a safe clinical use. First, we clarify how and why stem cells should be properly engineered and which could be in a near future the challenges and the benefits connected with this process. Second, we identify different routes toward stem cell differentiation and functional maturation, relying on chemical, mechanical, topographical, and direct/indirect physical stimulation. Third, we highlight how multiscale modeling could strongly support and optimize stem cell engineering. Finally, we focus on future robotic tools that could provide an added value to the extent of translating basic biological knowledge into clinical applications, by developing ad hoc enabling technologies for stem cell delivery and control.
Stress Altered Stem Cells with Decellularized Allograft to Improve Rate of Nerve Regeneration
2015-12-01
AWARD NUMBER: W81XWH-13-1-0298 TITLE: “Stress Altered Stem Cells with Decellularized Allograft to Improve Rate of Nerve Regeneration...Cells with Decellularized Allograft to Improve Rate of Nerve Regeneration 5b. GRANT NUMBER W81XWH-13-1-0298 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S... allograft , neural regeneration, stem cells, stress altered cells, peripheral nerve injury model, nerve graft 3 This comprehensive final report summarizes
New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?
Goldstein, Lawrence S B
2012-11-12
Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.
Stem Cell Extracellular Vesicles: Extended Messages of Regeneration
Riazifar, Milad; Pone, Egest J.; Lötvall, Jan; Zhao, Weian
2017-01-01
Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell–derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications. PMID:27814025
Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling
2013-07-01
Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.
[Cell therapy for Parkinson's disease: IV. Risks and future trends].
Anisimov, S V
2009-01-01
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Numerous cell replacement therapy approaches have been developed and tested, including these based on donor cell transplantation (embryonic and adult tissue-derived), adult mesenchymal stem cells (hMSCs)-, neural stem cells (hNSCs)- and finally human embryonic stem cells (hESCs)-based. Despite the progress achieved, numerous difficulties prevent wider practical application of stem cell-based therapy approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety and technical issues stand out. Current series of reviews (Cell therapy for Parkinson's disease: I. Embryonic and adult donor tissue-based applications; II. Adult stem cell-based applications; III. Neonatal, fetal and embryonic stem cell-based applications; IV. Risks and future trends) aims providing a balanced and updated view on various issues associated with cell types (including stem cells) in regards to their potential in the treatment of Parkinson's disease. Essential features of the individual cell subtypes, principles of available cell handling protocols, transplantation, and safety issues are discussed extensively.
Therapeutic strategies involving uterine stem cells in reproductive medicine.
Simoni, Michael; Taylor, Hugh S
2018-06-01
The current review provides an update on recent advances in stem cell biology relevant to female reproduction. Stem cells are undifferentiated cells that often serve as a reservoir of cells to regenerate tissue in settings or injury or cell loss. The endometrium has progenitor stem cells that can replace all of the endometrium during each menstrual cycle. In addition, multipotent endometrial cells replace these progenitor cells when depleted. Recruitment of stem cells from outside of the uterus occurs in setting of increased demand such as ischemia or injury. Bone marrow-derived multipotent stem cells are recruited to the uterus by estrogen or injury-induced expression of the chemokine CXCL12. In the setting of overwhelming injury, especially in the setting of low estrogen levels, there may be insufficient stem cell recruitment to adequately repair the uterus resulting in conditions such as Asherman syndrome or other endometrial defects. In contrast, excessive recruitment of stem cells underlies endometriosis. Enhanced understanding of stem-cell mobilization, recruitment, and engraftment has created the possibility of improved therapy for endometrial defects and endometriosis through enhanced manipulation of stem-cell trafficking. Further, the normal endometrium is a rich source of multipotent stem cells that can be used for numerous applications in regenerative medicine beyond reproduction. A better understanding of reproductive stem-cell biology may allow improved treatment of endometrial disease such as Asherman syndrome and other endometrial receptivity defects. Inhibiting stem-cell mobilization may also be helpful in endometriosis therapy. Finally, endometrial derived multipotent stem cells may play a crucial role in cell therapy for regenerative medicine.
Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie
2013-01-01
Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130
Stem-Cell-Based Tumorigenesis in Adult Drosophila.
Hou, S X; Singh, S R
2017-01-01
Recent studies suggest that a small subset of cells within a tumor, the so-called cancer stem cells (CSCs), are responsible for tumor propagation, relapse, and the eventual death of most cancer patients. CSCs may derive from a few tumor-initiating cells, which are either transformed normal stem cells or reprogrammed differentiated cells after acquiring initial cancer-causing mutations. CSCs and normal stem cells share some properties, but CSCs differ from normal stem cells in their tumorigenic ability. Notably, CSCs are usually resistant to chemo- and radiation therapies. Despite the apparent roles of CSCs in human cancers, the biology underlying their behaviors remains poorly understood. Over the past few years, studies in Drosophila have significantly contributed to this new frontier of cancer research. Here, we first review how stem-cell tumors are initiated and propagated in Drosophila, through niche appropriation in the posterior midgut and through stem-cell competition for niche occupancy in the testis. We then discuss the differences between normal and tumorigenic stem cells, revealed by studying Ras V12 -transformed stem-cell tumors in the Drosophila kidney. Finally, we review the biology behind therapy resistance, which has been elucidated through studies of stem-cell resistance and sensitivity to death inducers using female germline stem cells and intestinal stem cells of the posterior midgut. We expect that screens using adult Drosophila neoplastic stem-cell tumor models will be valuable for identifying novel and effective compounds for treating human cancers. © 2017 Elsevier Inc. All rights reserved.
The Development of Stem Cell-Based Treatment for Liver Failure.
Zhu, Tiantian; Li, Yuwen; Guo, Yusheng; Zhu, Chuanlong
2017-01-01
Liver failure is a devastating clinical syndrome with a persistently mortality rate despite advanced care. Orthotopic liver transplantation protected patients from hepatic failure. Yet, limitations including postoperative complications, high costs, and shortages of donor organs defect its application. The development of stem cell therapy complements the deficiencies of liver transplantation, due to the inherent ability of stem cells to proliferate and differentiate. Understand the source of stem cells, as well as the advantages and disadvantages of stem cell therapy. Based on published papers, we discussed the cell sources and therapeutic effect of stem cells. We also summarized the pros and cons, as well as optimization of stem cell-based treatment. Finally outlook future prospects of stem cell therapy. Stem cells may be harvested from a variety of human tissues, and then used to promote the convalescence of hepatocellular function. The emergence of the co-cultured system, tissueengineered technology and genetic modfication has further enhanced the functionality of stem cells. However, the tumorigenicity, the low survival rate and the scarcity of long-term treatment effect are obstacles for the further development of stem cell therapy. In this review, we highlight current research findings and present the future prospects in the area of stem cell-based treatment for liver failure. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells.
Shi, Ying; Liu, Na; Lai, Weiwei; Yan, Bin; Chen, Ling; Liu, Shouping; Liu, Shuang; Wang, Xiang; Xiao, Desheng; Liu, Xiaoli; Mao, Chao; Jiang, Yiqun; Jia, Jiantao; Liu, Yating; Yang, Rui; Cao, Ya; Tao, Yongguang
2018-05-28
Radiation therapy has become an important tool in the treatment of cancer patients, but most patients relapse within 5 years. Relapse is due to the presence of cancer stem cells (CSCs), but the molecular mechanism of radioresistance in CSCs remains largely elusive. Here, we found that irradiation-resistant (IR) cells exhibited increased stem cell-like properties together with elevated anchorage-independent growth and metastasis ability. EGFR not only leads to increased acquisition of endometrial cancer stem cell markers in radioresistant sublines but is critical for the cancer stem-cell phenotype and tumorigenicity. Moreover, PKM2 functions as an interacting partner of EGFR, which induces the EMT phenotype and stem cell-like properties in IR cells. Finally, we found that the regulatory function of the EGFR-PKM2 axis is dependent on nuclear EGFR. In sum, our study indicated that EGFR and PKM2 directly interact and bind with each other to regulate the transcription of stemness-related genes and promote the stem-like phenotype, thus promoting invasion and metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.
Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy.
Lan, Xiaoyang; Jörg, David J; Cavalli, Florence M G; Richards, Laura M; Nguyen, Long V; Vanner, Robert J; Guilhamon, Paul; Lee, Lilian; Kushida, Michelle M; Pellacani, Davide; Park, Nicole I; Coutinho, Fiona J; Whetstone, Heather; Selvadurai, Hayden J; Che, Clare; Luu, Betty; Carles, Annaick; Moksa, Michelle; Rastegar, Naghmeh; Head, Renee; Dolma, Sonam; Prinos, Panagiotis; Cusimano, Michael D; Das, Sunit; Bernstein, Mark; Arrowsmith, Cheryl H; Mungall, Andrew J; Moore, Richard A; Ma, Yussanne; Gallo, Marco; Lupien, Mathieu; Pugh, Trevor J; Taylor, Michael D; Hirst, Martin; Eaves, Connie J; Simons, Benjamin D; Dirks, Peter B
2017-09-14
Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.
Rodrigues, Gonçalo M C; Fernandes, Tiago G; Rodrigues, Carlos A V; Cabral, Joaquim M S; Diogo, Maria Margarida
2015-01-01
Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs), and their neuronal progeny, will play an important role in disease modeling, drug screening tests, central nervous system development studies, and may even become valuable for regenerative medicine treatments. Nonetheless, it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs, and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here, we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days, and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS), leaving the NP population nearly free of PSCs.
The cell fate determinant Scribble is required for maintenance of hematopoietic stem cell function.
Mohr, Juliane; Dash, Banaja P; Schnoeder, Tina M; Wolleschak, Denise; Herzog, Carolin; Tubio Santamaria, Nuria; Weinert, Sönke; Godavarthy, Sonika; Zanetti, Costanza; Naumann, Michael; Hartleben, Björn; Huber, Tobias B; Krause, Daniela S; Kähne, Thilo; Bullinger, Lars; Heidel, Florian H
2018-05-01
Cell fate determinants influence self-renewal potential of hematopoietic stem cells. Scribble and Llgl1 belong to the Scribble polarity complex and reveal tumor-suppressor function in drosophila. In hematopoietic cells, genetic inactivation of Llgl1 leads to expansion of the stem cell pool and increases self-renewal capacity without conferring malignant transformation. Here we show that genetic inactivation of its putative complex partner Scribble results in functional impairment of hematopoietic stem cells (HSC) over serial transplantation and during stress. Although loss of Scribble deregulates transcriptional downstream effectors involved in stem cell proliferation, cell signaling, and cell motility, these effectors do not overlap with transcriptional targets of Llgl1. Binding partner analysis of Scribble in hematopoietic cells using affinity purification followed by mass spectometry confirms its role in cell signaling and motility but not for binding to polarity modules described in drosophila. Finally, requirement of Scribble for self-renewal capacity also affects leukemia stem cell function. Thus, Scribble is a regulator of adult HSCs, essential for maintenance of HSCs during phases of cell stress.
Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun
2015-08-01
We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.
Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna
2011-01-01
A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251
Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path?
Müller, Albrecht M.; Huppertz, Sascha; Henschler, Reinhard
2016-01-01
Hematopoietic stem cells (HSCs) are the best characterized adult stem cells and the only stem cell type in routine clinical use. The concept of stem cell transplantation laid the foundations for the development of novel cell therapies within, and even outside, the hematopoietic system. Here, we report on the history of hematopoietic cell transplantation (HCT) and of HSC isolation, we briefly summarize the capabilities of HSCs to reconstitute the entire hemato/lymphoid cell system, and we assess current indications for HCT. We aim to draw the lines between areas where HCT has been firmly established, areas where HCT can in the future be expected to be of clinical benefit using their regenerative functions, and areas where doubts persist. We further review clinical trials for diverse approaches that are based on HCT. Finally, we highlight the advent of genome editing in HSCs and critically view the use of HSCs in non-hematopoietic tissue regeneration. PMID:27721700
The role of nanotechnology in induced pluripotent and embryonic stem cells research.
Chen, Lukui; Qiu, Rong; Li, Lushen
2014-12-01
This paper reviews the recent studies on development of nanotechnology in the field of induced pluripotent and embryonic stem cells. Stem cell therapy is a promising therapy that can improve the quality of life for patients with refractory diseases. However, this option is limited by the scarcity of tissues, ethical problem, and tumorigenicity. Nanotechnology is another promising therapy that can be used to mimic the extracellular matrix, label the implanted cells, and also can be applied in the tissue engineering. In this review, we briefly introduce implementation of nanotechnology in induced pluripotent and embryonic stem cells research. Finally, the potential application of nanotechnology in tissue engineering and regenerative medicine is also discussed.
Regenerative toxicology: the role of stem cells in the development of chronic toxicities.
Canovas-Jorda, David; Louisse, Jochem; Pistollato, Francesca; Zagoura, Dimitra; Bremer, Susanne
2014-01-01
Human stem cell lines and their derivatives, as alternatives to the use of animal cells or cancer cell lines, have been widely discussed as cellular models in predictive toxicology. However, the role of stem cells in the development of long-term toxicities and carcinogenesis has not received great attention so far, despite growing evidence indicating the relationship of stem cell damage to adverse effects later in life. However, testing this in vitro is a scientific/technical challenge in particular due to the complex interplay of factors existing under physiological conditions. Current major research programs in stem cell toxicity are not aiming to demonstrate that stem cells can be targeted by toxicants. Therefore, this knowledge gap needs to be addressed in additional research activities developing technical solutions and defining appropriate experimental designs. The current review describes selected examples of the role of stem cells in the development of long-term toxicities in the brain, heart or liver and in the development of cancer. The presented examples illustrate the need to analyze the contribution of stem cells to chronic toxicity in order to make a final conclusion whether stem cell toxicities are an underestimated risk in mechanism-based safety assessments. This requires the development of predictive in vitro models allowing the assessment of adverse effects to stem cells on chronic toxicity and carcinogenicity.
Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review.
Satthenapalli, Venkata R; Lamberts, Regis R; Katare, Rajesh G
2017-09-01
Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies. In this review, we first discuss the most common molecular alterations occurring in the diabetic stem cells/progenitor cells. Next, we highlight the key signaling pathways that can be dysregulated in a diabetic environment and impair the mobilization of stem/progenitor cells, which is essential for the transplanted/endogenous stem cells to reach the site of injury. We further discuss the possible methods of preconditioning the diabetic cardiac progenitor cell (CPC) with an aim to enrich the availability of efficient stem cells to regenerate the diseased diabetic heart. Finally, we propose new modalities for enriching the diabetic CPC through genetic or tissue engineering that would aid in developing autologous therapeutic strategies, improving the proliferative, angiogenic, and cardiogenic properties of diabetic stem/progenitor cells. Stem Cells 2017;35:2009-2026. © 2017 AlphaMed Press.
Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?
Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia
2010-01-01
The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420
Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A; Then, Kong Yong
2017-02-08
Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.
Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj.; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A.; Then, Kong Yong
2017-01-01
Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases. PMID:28208719
Stem cells for cardiac repair: an introduction
du Pré, Bastiaan C; Doevendans, Pieter A; van Laake, Linda W
2013-01-01
Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair. PMID:23888179
Extinction models for cancer stem cell therapy
Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.
2012-01-01
Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. PMID:22001354
Extinction models for cancer stem cell therapy.
Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S; Lange, Kenneth L
2011-12-01
Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth-death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. Copyright © 2011 Elsevier Inc. All rights reserved.
Signals that regulate the oncogenic fate of neural stem cells and progenitors
Swartling, Fredrik J.; Bolin, Sara; Phillips, Joanna J.; Persson, Anders I.
2013-01-01
Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors. PMID:23376224
Pramanik, Subrata; Sulistio, Yanuar Alan; Heese, Klaus
2017-11-01
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Lee, Jin-Ho; Park, Hun-Kuk; Kim, Kyung Sook
2016-05-06
Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.
Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury☆
Jiang, Jindou; Bu, Xingyao; Liu, Meng; Cheng, Peixun
2012-01-01
Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. PMID:25806058
Towards a global human embryonic stem cell bank.
Lott, Jason P; Savulescu, Julian
2007-08-01
An increasingly unbridgeable gap exists between the supply and demand of transplantable organs. Human embryonic stem cell technology could solve the organ shortage problem by restoring diseased or damaged tissue across a range of common conditions. However, such technology faces several largely ignored immunological challenges in delivering cell lines to large populations. We address some of these challenges and argue in favor of encouraging contribution or intentional creation of embryos from which widely immunocompatible stem cell lines could be derived. Further, we argue that current immunological constraints in tissue transplantation demand the creation of a global stem cell bank, which may hold particular promise for minority populations and other sub-groups currently marginalized from organ procurement and allocation systems. Finally, we conclude by offering a number of practical and ethically oriented recommendations for constructing a human embryonic stem cell bank that we hope will help solve the ongoing organ shortage problem.
Cancer stem cells: A product of clonal evolution?
van Niekerk, Gustav; Davids, Lester M; Hattingh, Suzèl M; Engelbrecht, Anna-Mart
2017-03-01
The cancer stem cell (CSC) model has emerged as a prominent paradigm for explaining tumour heterogeneity. CSCs in tumour recurrence and drug resistance have also been implicated in a number of studies. In fact, CSCs are often identified by their expression of drug-efflux proteins which are also highly expressed in normal stem cells. Similarly, pro-survival or proliferation signalling often exhibited by stem cells is regularly reported as being upregulated by CSC. Here we review evidence suggesting that many aspects of CSCs are more readily described by clonal evolution. As an example, cancer cells often exhibit copy number gains of genes involved in drug-efflux proteins and pro-survival signalling. Consequently, clonal selection for stem cell traits may result in cancer cells developing "stemness" traits which impart a fitness advantage, without strictly following a CSC model. Finally, since symmetric cell division would give rise to more cells than asymmetric division, it is expected that more advanced tumours would depart from a CSC. Collectively, these observations suggest clonal evolution may explain many aspects of the CSC. © 2016 UICC.
3D Cell Printed Tissue Analogues: A New Platform for Theranostics
Choi, Yeong-Jin; Yi, Hee-Gyeong; Kim, Seok-Won; Cho, Dong-Woo
2017-01-01
Stem cell theranostics has received much attention for noninvasively monitoring and tracing transplanted therapeutic stem cells through imaging agents and imaging modalities. Despite the excellent regenerative capability of stem cells, their efficacy has been limited due to low cellular retention, low survival rate, and low engraftment after implantation. Three-dimensional (3D) cell printing provides stem cells with the similar architecture and microenvironment of the native tissue and facilitates the generation of a 3D tissue-like construct that exhibits remarkable regenerative capacity and functionality as well as enhanced cell viability. Thus, 3D cell printing can overcome the current concerns of stem cell therapy by delivering the 3D construct to the damaged site. Despite the advantages of 3D cell printing, the in vivo and in vitro tracking and monitoring of the performance of 3D cell printed tissue in a noninvasive and real-time manner have not been thoroughly studied. In this review, we explore the recent progress in 3D cell technology and its applications. Finally, we investigate their potential limitations and suggest future perspectives on 3D cell printing and stem cell theranostics. PMID:28839468
Mario Gonzalez-Meljem, Jose; Haston, Scott; Carreno, Gabriela; Apps, John R; Pozzi, Sara; Stache, Christina; Kaushal, Grace; Virasami, Alex; Panousopoulos, Leonidas; Neda Mousavy-Gharavy, Seyedeh; Guerrero, Ana; Rashid, Mamunur; Jani, Nital; Goding, Colin R; Jacques, Thomas S; Adams, David J; Gil, Jesus; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro
2017-11-28
Senescent cells may promote tumour progression through the activation of a senescence-associated secretory phenotype (SASP), whether these cells are capable of initiating tumourigenesis in vivo is not known. Expression of oncogenic β-catenin in Sox2+ young adult pituitary stem cells leads to formation of clusters of stem cells and induction of tumours resembling human adamantinomatous craniopharyngioma (ACP), derived from Sox2- cells in a paracrine manner. Here, we uncover the mechanisms underlying this paracrine tumourigenesis. We show that expression of oncogenic β-catenin in Hesx1+ embryonic precursors also results in stem cell clusters and paracrine tumours. We reveal that human and mouse clusters are analogous and share a common signature of senescence and SASP. Finally, we show that mice with reduced senescence and SASP responses exhibit decreased tumour-inducing potential. Together, we provide evidence that senescence and a stem cell-associated SASP drive cell transformation and tumour initiation in vivo in an age-dependent fashion.
Singh, Ashok; Morris, Rebecca J
2012-09-01
The skin provides an anatomical barrier to physical, chemical and biological agents. Hence, it is not surprising that it has well-developed innate immunity. What we find surprising is that the CD49f(+) /CD34(+) hair follicle stem cells should have an enriched expression profile of so many genes involved in innate immunity. Do these stem cells require extra protection from environmental insults? Or, could there be a new role for these genes? To probe these questions, we first summarize the roles of some key players in epidermal innate immunity. We next focus on their expression in CD49f(+) /CD34(+) hair follicle stem cells. Then, we consider recent data suggesting a new role for these 'old players' in the regulation and mobilization of haematopoietic and mesenchymal stem cells. Finally, we hypothesize that the 'old players' in these hair follicle stem cells may be playing a 'new game'. © 2012 John Wiley & Sons A/S.
Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon
Baker, Ann-Marie; Cereser, Biancastella; Melton, Samuel; Fletcher, Alexander G.; Rodriguez-Justo, Manuel; Tadrous, Paul J.; Humphries, Adam; Elia, George; McDonald, Stuart A.C.; Wright, Nicholas A.; Simons, Benjamin D.; Jansen, Marnix; Graham, Trevor A.
2014-01-01
Summary Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+). Furthermore, we show that, in adenomatous crypts (APC−/−), there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics. PMID:25127143
McLean, Alison K; Stewart, Cameron; Kerridge, Ian
2015-02-09
An increasing number of private clinics in Australia are marketing and providing autologous stem cell therapies to patients. Although advocates point to the importance of medical innovation and the primacy of patient choice, these arguments are unconvincing. First, it is a stark truth that these clinics are flourishing while the efficacy and safety of autologous stem cell therapies, outside of established indications for hematopioetic stem cell transplantation, are yet to be shown. Second, few of these therapies are offered within clinical trials. Third, patients with chronic and debilitating illnesses, who are often the ones who take up these therapies, incur significant financial burdens in the expectation of benefiting from these treatments. Finally, the provision of these stem cell therapies does not follow the established pathways for legitimate medical advancement. We argue that greater regulatory oversight and professional action are necessary to protect vulnerable patients and that at this time the provision of unproven stem cell therapies outside of clinical trials is unethical.
Borowiak, Malgorzata
2010-01-01
Diabetic patients suffer from the loss of insulin-secreting β-cells, or from an improper working β-cell mass. Due to the increasing prevalence of diabetes across the world, there is a compelling need for a renewable source of cells that could replace pancreatic β-cells. In recent years, several promising approaches to the generation of new β-cells have been developed. These include directed differentiation of pluripotent cells such as embryonic stem (ES) cells or induced pluripotent stem (iPS) cells, or reprogramming of mature tissue cells. High yield methods to differentiate cell populations into β-cells, definitive endoderm, and pancreatic progenitors, have been established using growth factors and small molecules. However, the final step of directed differentiation to generate functional, mature β-cells in sufficient quantities has yet to be achieved in vitro. Beside the needs of transplantation medicine, a renewable source of β-cells would also be important in terms of a platform to study the pathogenesis of diabetes, and to seek alternative treatments. Finally, by generating new β-cells, we could learn more details about pancreatic development and β-cell specification. This review gives an overview of pancreas ontogenesis in the perspective of stem cell differentiation, and highlights the critical aspects of small molecules in the generation of a renewable β-cell source. Also, it discusses longer term challenges and opportunities in moving towards a therapeutic goal for diabetes.
Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel.
He, Li; Si, Guangwei; Huang, Jiuhong; Samuel, Aravinthan D T; Perrimon, Norbert
2018-03-01
Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca 2+ levels, and increases in cytosolic Ca 2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca 2+ signalling. Further studies suggest that Ca 2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca 2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.
Park, Dong-Hyuk; Eve, David J; Borlongan, Cesario V; Klasko, Stephen K; Cruz, L Eduardo; Sanberg, Paul R
2009-02-01
The annual meeting of the American Society for Neural Therapy and Repair (ASNTR) showcases the latest research trends in neurodegenerative disease and the related medical regenerative science. The 2008 ASNTR meeting covered a variety of different topics ranging from basic research to exploration of currently unknown pathogenesis and mechanisms for specific neurodegenerative disease such as Parkinson's disease, Alzheimer's disease, or stroke. This included studies to characterize stem cells, such as neural stem cells, embryonic stem cells, bone marrow mesenchymal stem cells, and human umbilical cord blood cells, for transplantation and the conditions necessary to maximize the efficacy of endogenous and exogenous stem cells, such as isolation, purification, differentiation, and migration. Moreover, a number of studies looked at methods for more advanced application of transplantation of cells or specific factors, through tissue engineering or manipulation beyond simple injection. Finally, well-known or previously un-known dietary supplementation or pharmacological materials that can affect the nervous system positively or negatively, were also important topics.
Yeasmin, Shamima; Ceccarelli, Jacob; Vigen, Marina; Carrion, Bita; Putnam, Andrew J; Tarle, Susan A; Kaigler, Darnell
2014-04-01
In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential, which could make them a very attractive cell population for utilization in regenerative cell therapies.
Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui
2011-04-01
Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo development research, along with clinical treatments for diabetes and some hepatic diseases.
Governing stem cell banks and registries: emerging issues.
Isasi, Rosario M; Knoppers, Bartha M
2009-01-01
The expansion of national and international research efforts in stem cell research is increasingly paired with the trend of establishing stem cell banks and registries. In jurisdictions crossing the spectrum of restrictive to liberal stem cell policies, banks and registries are emerging as an essential resource for transnational access to quality-controlled and ethically sourced stem cell lines. In this study, we report the preliminary findings of a survey of stem cell banks participating in the International Stem Cell Forum's International Stem Cell Banking Initiative (ISCBI). The questionnaire circulated to all ISCBI members addressed both general issues surrounding research policies (e.g., national policies regulating the permissibility of conducting embryonic stem cell research (hESCR)) and, more specifically, issues relating to the governance of stem cell banking projects. The results of the questionnaire were complemented by scholarly research conducted by the authors. This article provides an overview of the current international hESC banking landscape (I). For this purpose, the policy and governance approaches adopted in the surveyed stem cell banks at the national level will be analyzed and areas of convergence and variance will be identified (II). It is beyond the scope of this paper to provide a comprehensive analysis of the wide range of possible governance approaches, policy responses, and their implications. However, we want to provide a starting point for discussion surrounding key questions and challenges as concerns provenance, access, and deposit of hESC lines (III). Finally, while our analysis is focused on research grade hESCs, the lessons to be gleaned from this examination will encourage further thought, analysis, and research into the issues raised in the banking and governance of other sources of stem cell lines (e.g., SCNT, parthenogenesis, iPs) (IV).
Stem cells and corneal epithelial maintenance – insights from the mouse and other animal models
Mort, Richard L.; Douvaras, Panagiotis; Morley, Steven D.; Dorà, Natalie; Hill, Robert E.; Collinson, J. Martin; West, John D.
2012-01-01
Maintenance of the corneal epithelium is essential for vision and is a dynamic process incorporating constant cell production, movement and loss. Although cell based therapies involving the transplantation of putative stem cells are well advanced for the treatment of human corneal defects, the scientific understanding of these interventions is poor. No definitive marker that discriminates stem cells that maintain the corneal epithelium from the surrounding tissue has been discovered and the identity of these elusive cells is, therefore, hotly debated. The key elements of corneal epithelial maintenance have long been recognised but it is still not known how this dynamic balance is coordinated during normal homeostasis to ensure the corneal epithelium is maintained at a uniform thickness. Most indirect experimental evidence supports the limbal epithelial stem cell (LESC) hypothesis, which proposes that the adult corneal epithelium is maintained by stem cells located in the limbus at the corneal periphery. However, this has been challenged recently by the corneal epithelial stem cell (CESC) hypothesis, which proposes that during normal homeostasis the mouse corneal epithelium is maintained by stem cells located throughout the basal corneal epithelium with LESCs only contributing during wound healing. In this chapter we review experimental studies, mostly based on animal work, that provide insights into how stem cells maintain the normal corneal epithelium and consider the merits of the alternative LESC and CESC hypotheses. Finally, we highlight some recent research on other stem cell systems and consider how this could influence future research directions for identifying the stem cells that maintain the corneal epithelium. PMID:22918816
New Advanced Technologies In Stem Cell Therapy
2011-09-01
rejuvenate the phenotype of aged muscle stem and progenitor cells. Clinical research should be conducted to test the efficacy of p65 inhibition...entothelial cells or pericytes). Finally we will investigate the influence that age plays on the regeneration capacity of the cells. Study Design: We...skeletal muscle when compared to male MDSCs, we will determine the influence that sex has on the hMDCs. Due to the fact that MDSCs isolated from aged
Patent prosecution strategies for stem cell related applications.
Kumar, Rajeev; Yeh, Jenny J; Fernandez, Dennis; Hansen, Nels
2007-09-01
Stem cell research and the intellectual property derived from it, because of its potential to completely transform health care, demand an especially high level of consideration from business and patent prosecution perspectives. As with other revolutionary technologies, ordinary risks are amplified (e.g., litigation), and ordinarily irrelevant considerations may become important (e.g., heightened level of both domestic and foreign legislative risk). In the first part of this article, general strategies for patent prosecutors such as several prosecution considerations and methods for accelerating patent prosecution process are presented. In the second part, patent prosecution challenges of stem cell-related patents and possible solutions are discussed. In the final part, ethical and public policy issues particular to stem cell-related and other biotechnological inventions are summarized.
Navabazam, Ali Reza; Sadeghian Nodoshan, Fatemeh; Sheikhha, Mohammad Hasan; Miresmaeili, Sayyed Mohsen; Soleimani, Mehrdad; Fesahat, Farzaneh
2013-03-01
Human dental stem cells have high proliferative potential for self-renewal that is important to the regenerative capacity of the tissue. Objective : The aim was to isolate human dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC) and periapical follicle stem cells (PAFSC) for their potential role in tissue regeneration. In this experimental study, the postnatal stem cells were isolated from dental pulp, preapical follicle and periodontal ligament .The cells were stained for different stem cell markers by immunocytochemistry. To investigate the mesenchymal nature of cells, differentiation potential along osteoblastic and adipogenic lineages and gene expression profile were performed. For proliferation potential assay, Brdu staining and growth curve tests were performed. Finally, all three cell types were compared together regarding their proliferation, differentiation and displaying phenotype. The isolated cell populations have similar fibroblastic like morphology and expressed all examined cell surface molecule markers. These cells were capable of differentiating into osteocyte with different capability and adipocyte with the same rate. PAFSCs showed more significant proliferation rate than others. Reverse transcriptase PCR (RT-PCR) for nanog, oct4, Alkaline phosphatase (ALP) and glyceraldehydes-3-phosphate dehydrogenease (GADPH) as control gene showed strong positive expression of these genes in all three isolated cell types. PDLSCs, DPSCs and PAFSCs exist in various tissues of the teeth and can use as a source of mesenchymal stem cells for developing bioengineered organs and also in craniomaxillofacial reconstruction with varying efficiency in differentiation and proliferation.
Placental-derived stem cells: Culture, differentiation and challenges
Oliveira, Maira S; Barreto-Filho, João B
2015-01-01
Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice. PMID:26029347
Adult Palatum as a Novel Source of Neural Crest-Related Stem Cells
Widera, Darius; Zander, Christin; Heidbreder, Meike; Kasperek, Yvonne; Noll, Thomas; Seitz, Oliver; Saldamli, Belma; Sudhoff, Holger; Sader, Robert; Kaltschmidt, Christian; Kaltschmidt, Barbara
2009-01-01
Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies. Stem Cells 2009;27:1899–1910 PMID:19544446
Phenotypical and Pharmacological Characterization of Stem-Like Cells in Human Pituitary Adenomas.
Würth, Roberto; Barbieri, Federica; Pattarozzi, Alessandra; Gaudenzi, Germano; Gatto, Federico; Fiaschi, Pietro; Ravetti, Jean-Louis; Zona, Gianluigi; Daga, Antonio; Persani, Luca; Ferone, Diego; Vitale, Giovanni; Florio, Tullio
2017-09-01
The presence and functional role of tumor stem cells in benign tumors, and in human pituitary adenomas in particular, is a debated issue that still lacks a definitive formal demonstration. Fifty-six surgical specimens of human pituitary adenomas were processed to establish tumor stem-like cultures by selection and expansion in stem cell-permissive medium or isolating CD133-expressing cells. Phenotypic and functional characterization of these cells was performed (1) ex vivo, by immunohistochemistry analysis on paraffin-embedded tissues; (2) in vitro, attesting marker expression, proliferation, self-renewal, differentiation, and drug sensitivity; and (3) in vivo, using a zebrafish model. Within pituitary adenomas, we identified rare cell populations expressing stem cell markers but not pituitary hormones; we isolated and expanded in vitro these cells, obtaining fibroblast-free, stem-like cultures from 38 pituitary adenoma samples. These cells grow as spheroids, express stem cell markers (Oct4, Sox2, CD133, and nestin), show sustained in vitro proliferation as compared to primary cultures of differentiated pituitary adenoma cells, and are able to differentiate in hormone-expressing pituitary cells. Besides, pituisphere cells, apparently not tumorigenic in mice, engrafted in zebrafish embryos, inducing pro-angiogenic and invasive responses. Finally, pituitary adenoma stem-like cells express regulatory pituitary receptors (D2R, SSTR2, and SSTR5), whose activation by a dopamine/somatostatin chimeric agonist exerts antiproliferative effects. In conclusion, we provide evidence that human pituitary adenomas contain a subpopulation fulfilling biological and phenotypical signatures of tumor stem cells that may represent novel therapeutic targets for therapy-resistant tumors.
Adult pituitary stem cells: from pituitary plasticity to adenoma development.
Florio, Tullio
2011-01-01
The pituitary needs high plasticity of the hormone-producing cell compartment to generate the continuously changing hormonal signals that govern the key physiological processes it is involved in, as well as homeostatic cell turnover. However, the underlying mechanisms are still poorly understood. It was proposed that adult stem cells direct the generation of newborn cells with a hormonal phenotype according to the physiological requirements. However, only in recent years adult pituitary stem cells have begun to be phenotypically characterized in several studies that identified multiple stem/progenitor cell candidates. Also considering the incompletely defined features of this cell subpopulation, some discrepancies among the different reports are clearly apparent and long-term self-renewal remains to be unequivocally demonstrated. Here, all the recently published evidence is analyzed, trying, when possible, to reconcile the results of the different studies. Finally, with the perspective of shedding light on pituitary tumorigenesis and the development of potentially new pharmacological approaches directed against these cells, very recent evidence on the presence of putative cancer stem cells in human pituitary adenomas is discussed. Copyright © 2011 S. Karger AG, Basel.
Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer.
Rodríguez, Marta; Silva, Javier; Herrera, Alberto; Herrera, Mercedes; Peña, Cristina; Martín, Paloma; Gil-Calderón, Beatriz; Larriba, María Jesús; Coronado, M Josés; Soldevilla, Beatriz; Turrión, Víctor S; Provencio, Mariano; Sánchez, Antonio; Bonilla, Félix; García-Barberán, Vanesa
2015-12-01
Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in proliferation, migration and invasion capacities. Furthermore, recipient cells treated with exosomes from CXCR4-cells showed increased in the same abilities. Moreover, inoculation of CXCR4-cell-derived exosomes in immunocompromised mice stimulated primary tumor growth and metastatic potential. Comparison of nucleic acids contained into exosomes isolated from patients revealed a "stemness and metastatic" signature in exosomes of patients with worse prognosis. Finally, our data supported the view that cancer cells with stem-like properties show concomitant metastatic behavior, and their exosomes stimulate tumor progression and metastasis. Exosomes-derived nucleic acids from plasma of breast cancer patients are suitable markers in the prognosis of such patients.
Gouadon, Elodie; Moore-Morris, Thomas; Smit, Nicoline W; Chatenoud, Lucienne; Coronel, Ruben; Harding, Sian E; Jourdon, Philippe; Lambert, Virginie; Rucker-Martin, Catherine; Pucéat, Michel
2016-01-01
Heart failure is still a major cause of hospitalization and mortality in developed countries. Many clinical trials have tested the use of multipotent stem cells as a cardiac regenerative medicine. The benefit for the patients of this therapeutic intervention has remained limited. Herein, we review the pluripotent stem cells as a cell source for cardiac regeneration. We more specifically address the various challenges of this cell therapy approach. We question the cell delivery systems, the immune tolerance of allogenic cells, the potential proarrhythmic effects, various drug mediated interventions to facilitate cell grafting and, finally, we describe the pathological conditions that may benefit from such an innovative approach. As members of a transatlantic consortium of excellence of basic science researchers and clinicians, we propose some guidelines to be applied to cell types and modes of delivery in order to translate pluripotent stem cell cardiac derivatives into safe and effective clinical trials. © 2015 AlphaMed Press.
[Role of let-7 in maintaining characteristics of breast cancer stem cells].
Sun, Xin; Fan, Chong; Hu, Li-juan; Du, Ning; Xu, Chong-wen; Ren, Hong
2012-08-01
To observe the expression of let-7 in breast cancer stem cells and explore the role of let-7 in maintaining the characteristics of breast cancer stem cells. We separated breast cancer stem cells (SP and NSP) from MCF-7 cell line using SP sorting, and observed the expression of let-7a/b/c on SP and NSP cells using quantitative real-time PCR and the expressions of Ras and ERK using Western blotting to study the mechanism by which let-7 maintains the characteristics of breast cancer stem cells. The SP cells accounted for 3.3% in MCF-7 cells, however, the rate dropped to 0.4% when verapamil was added into the process of seperation. The level of Let-7a/b/c in SP cells were lower than that in NSP cells, and among let-7 miRNAs, let-7b/c showed the most obvious difference. The expressions of t-Ras and t-ERK showed no difference between SP and NSP cells, nevertheless, the expressions of p-Ras, p-ERK were higher in SP cells than in NSP cells. SP sorting is an effective method to separate cancer stem cells. There do exist cancer stem cells in MCF-7 breast cancer cell line. Let-7 is down-regulated in SP cells, and the down-regulation makes let-7 lose the opportunity to restrain Ras mRNA, finally, p-Ras and p-ERK are activated. They play an important role in maintaining the characteristics of breast cancer stem cells.
Femtosecond laser pulses for chemical-free embryonic and mesenchymal stem cell differentiation
NASA Astrophysics Data System (ADS)
Mthunzi, Patience; Dholakia, Kishan; Gunn-Moore, Frank
2011-10-01
Owing to their self renewal and pluripotency properties, stem cells can efficiently advance current therapies in tissue regeneration and/or engineering. Under appropriate culture conditions in vitro, pluripotent stem cells can be primed to differentiate into any cell type some examples including neural, cardiac and blood cells. However, there still remains a pressing necessity to answer the biological questions concerning how stem cell renewal and how differentiation programs are operated and regulated at the genetic level. In stem cell research, an urgent requirement on experimental procedures allowing non-invasive, marker-free observation of growth, proliferation and stability of living stem cells under physiological conditions exists. Femtosecond (fs) laser pulses have been reported to non-invasively deliver exogenous materials, including foreign genetic species into both multipotent and pluripotent stem cells successfully. Through this multi-photon facilitated technique, directly administering fs laser pulses onto the cell plasma membrane induces transient submicrometer holes, thereby promoting cytosolic uptake of the surrounding extracellular matter. To display a chemical-free cell transfection procedure that utilises micro-litre scale volumes of reagents, we report for the first time on 70 % transfection efficiency in ES-E14TG2a cells using the enhanced green fluorescing protein (EGFP) DNA plasmid. We also show how varying the average power output during optical transfection influences cell viability, proliferation and cytotoxicity in embryonic stem cells. The impact of utilizing objective lenses of different numerical aperture (NA) on the optical transfection efficiency in ES-E14TG2a cells is presented. Finally, we report on embryonic and mesenchymal stem cell differentiation. The produced specialized cell types could thereafter be characterized and used for cell based therapies.
Macri-Pellizzeri, Laura; De-Juan-Pardo, Elena M; Prosper, Felipe; Pelacho, Beatriz
2018-04-01
Tissue-specific stem cells reside in a specialized environment known as niche. The niche plays a central role in the regulation of cell behaviour and, through the concerted action of soluble molecules, supportive somatic cells, and extracellular matrix components, directs stem cells to proliferate, differentiate, or remain quiescent. Great efforts have been done to decompose and separately analyse the contribution of these cues in the in vivo environment. Specifically, the mechanical properties of the extracellular matrix influence many aspects of cell behaviour, including self-renewal and differentiation. Deciphering the role of biomechanics could thereby provide important insights to control the stem cells responses in a more effective way with the aim to promote their therapeutic potential. In this review, we provide a wide overview of the effect that the microenvironment stiffness exerts on the control of cell behaviour with a particular focus on the induction of stem cells differentiation. We also describe the process of mechanotransduction and the molecular effectors involved. Finally, we critically discuss the potential involvement of tissue biomechanics in the design of novel tissue engineering strategies. Copyright © 2017 John Wiley & Sons, Ltd.
YAP controls retinal stem cell DNA replication timing and genomic stability
Cabochette, Pauline; Vega-Lopez, Guillermo; Bitard, Juliette; Parain, Karine; Chemouny, Romain; Masson, Christel; Borday, Caroline; Hedderich, Marie; Henningfeld, Kristine A; Locker, Morgane; Bronchain, Odile; Perron, Muriel
2015-01-01
The adult frog retina retains a reservoir of active neural stem cells that contribute to continuous eye growth throughout life. We found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in these stem cells. Yap knock-down leads to an accelerated S-phase and an abnormal progression of DNA replication, a phenotype likely mediated by upregulation of c-Myc. This is associated with an increased occurrence of DNA damage and eventually p53-p21 pathway-mediated cell death. Finally, we identified PKNOX1, a transcription factor involved in the maintenance of genomic stability, as a functional and physical interactant of YAP. Altogether, we propose that YAP is required in adult retinal stem cells to regulate the temporal firing of replication origins and quality control of replicated DNA. Our data reinforce the view that specific mechanisms dedicated to S-phase control are at work in stem cells to protect them from genomic instability. DOI: http://dx.doi.org/10.7554/eLife.08488.001 PMID:26393999
Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W
2016-02-01
Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.
Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui
2017-01-01
Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood-brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p -aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood-brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p -aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells.
Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui
2017-01-01
Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood–brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p-aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood–brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p-aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells. PMID:28260885
Advances in reprogramming somatic cells to induced pluripotent stem cells.
Patel, Minal; Yang, Shuying
2010-09-01
Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.
The "Growing" Reality of the Neurological Complications of Global "Stem Cell Tourism".
Julian, Katie; Yuhasz, Nick; Hollingsworth, Ethan; Imitola, Jaime
2018-04-01
"Stem cell tourism" is defined as the unethical practice of offering unproven cellular preparations to patients suffering from various medical conditions. This phenomenon is rising in the field of neurology as patients are requesting information and opportunities for treatment with stem cells for incurable conditions such as multiple sclerosis and amyotrophic lateral sclerosis, despite their clinical research and experimental designation. Here, we review the recent trends in "stem cell tourism" in both the United States and abroad, and discuss the recent reports of neurological complications from these activities. Finally, we frame critical questions for the field of neurology regarding training in the ethical, legal, and societal issues of the global "stem cell tourism," as well as suggest strategies to alleviate this problem. Although there are ongoing legitimate clinical trials with stem cells for neurological diseases, procedures offered by "stem cell clinics" cannot be defined as clinical research. They lack the experimental and state-of-the-art framework defined by peers and the FDA that focus on human research that safeguard the protection of human subjects against economical exploitation, unwanted side effects, and futility of unproven procedures. "Stem cell tourism" ultimately exploits therapeutic hope of patients and families with incurable neurological diseases and can put in danger the legitimacy of stem cell research as a whole. We posit that an improvement in education, regulation, legislation, and involvement of authorities in global health in neurology and neurosurgery is required. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Dysregulation of haematopoietic stem cell regulatory programs in acute myeloid leukaemia.
Basilico, Silvia; Göttgens, Berthold
2017-07-01
Haematopoietic stem cells (HSC) are situated at the apex of the haematopoietic differentiation hierarchy, ensuring the life-long supply of mature haematopoietic cells and forming a reservoir to replenish the haematopoietic system in case of emergency such as acute blood loss. To maintain a balanced production of all mature lineages and at the same time secure a stem cell reservoir, intricate regulatory programs have evolved to control multi-lineage differentiation and self-renewal in haematopoietic stem and progenitor cells (HSPCs). Leukaemogenic mutations commonly disrupt these regulatory programs causing a block in differentiation with simultaneous enhancement of proliferation. Here, we briefly summarize key aspects of HSPC regulatory programs, and then focus on their disruption by leukaemogenic fusion genes containing the mixed lineage leukaemia (MLL) gene. Using MLL as an example, we explore important questions of wider significance that are still under debate, including the importance of cell of origin, to what extent leukaemia oncogenes impose specific regulatory programs and the relevance of leukaemia stem cells for disease development and prognosis. Finally, we suggest that disruption of stem cell regulatory programs is likely to play an important role in many other pathologies including ageing-associated regenerative failure.
Stem cell fusion as an ultimate line of defense against xenobiotics.
Padron Velazquez, Julio Lazaro
2006-01-01
There are several indications that the potential of stem cells to fuse with somatic cells is extremely high and, what's more exciting, in some instances goes as far as reprogramming and/or rescuing altered cells. It remains unclear, however, how frequent this mechanism is and what patho-physiological role it might play in nature. A plausible hypothesis, discussed in this paper, suggests that stem cell niches might provide a safeguard for the intact genome and epigenome. By fusing with somatic de-differentiated cells, stem cells might consent epigenetic reprogramming and/or genetic recovery of genes which otherwise could drive altered cells to malignancy. If the many sophisticated mechanisms of metabolism, cell repair, programmed cell death and tissue regeneration should fail, stem cells might represent a final attempt to recover dedifferentiated cells to avoid inflowing in cancer. In the current reappraisal of the different mechanisms of defense against xenobiotics, even the incidence of cancer itself is considered an evolving mechanism which, through a kind of programmed death of individuals exhibiting defective mutations, favors advancement of the phenotypes which adapt best. Additionally, with regard to the mechanisms of transmitting somatic mutations, based on stem cells' capacity to migrate and to fuse, here it is speculated that stem cells might be capable of carrying acquired somatic mutations from peripheral tissues to the gonads, and transmit that information into the germinal line. If appropriately demonstrated, these mechanisms might delineate a novel therapeutic area to be explored. The use of stem cells to reprogram/recover irreversibly damaged cells or to transmit beneficial mutations might be a valuable therapeutic approach in the future.
TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems.
Bhave, Neela S; Veley, Kira M; Nadeau, Jeanette A; Lucas, Jessica R; Bhave, Sanjay L; Sack, Fred D
2009-01-01
Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.
Deriving excitatory neurons of the neocortex from pluripotent stem cells
Hansen, David V.; Rubenstein, John L.R.; Kriegstein, Arnold R.
2011-01-01
The human cerebral cortex is an immensely complex structure that subserves critical functions that can be disrupted in developmental and degenerative disorders. Recent innovations in cellular reprogramming and differentiation techniques have provided new ways to study the cellular components of the cerebral cortex. Here we discuss approaches to generate specific subtypes of excitatory cortical neurons from pluripotent stem cells. We review spatial and temporal aspects of cortical neuron specification that can guide efforts to produce excitatory neuron subtypes with increased resolution. Finally, we discuss distinguishing features of human cortical development and their translational ramifications for cortical stem cell technologies. PMID:21609822
Guo, Mei; Dong, Zheng; Qiao, Jianhui; Yu, Changlin; Sun, Qiyun; Hu, Kaixun; Liu, Guangxian; Wei, Li; Yao, Bo; Man, Qiuhong; Sun, Xuedong; Liu, Zhiqing; Song, Zhiwu; Yu, Chengze; Chen, Ying; Luo, Qingliang; Liu, Sugang; Ai, Hui-Sheng
2014-03-01
This is a case report of a 32-year-old man exposed to a total body dose of 14.5 Gy γ-radiation in a lethal (60)Co-source irradiation accident in 2008 in China. Frequent nausea, vomiting and marked neutropenia and lymphopenia were observed from 30 min to 45 h after exposure. HLA-mismatched peripheral blood stem cell transplantation combined with infusion of mesenchymal stem cells was used at Day 7. Rapid hematopoietic recovery, stable donor engraftment and healing of radioactive skin ulceration were achieved during Days 18-36. The patient finally developed intestinal obstruction and died of multi-organ failure on Day 62, although intestinal obstruction was successfully released by emergency bowel resection.
miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1.
Guo, Xiaodong; Yu, Ling; Zhang, Zhengpei; Dai, Guo; Gao, Tian; Guo, Weichun
2017-01-01
Evidence is accumulating to link cancer stem cells to the pathogenesis and progression of osteosarcoma. The aim of this study is to investigate the role of miR-335 in osteosarcoma stem cells. Tumor spheroid culture and flow cytometry were applied to screen out osteosarcoma stem cells. Real-time quantitative PCR was used to detect the expression level of miR-335 in MG63, U2OS and 143B osteosarcoma stem cells. The relationship of miR-335 expression with osteosarcoma stem cells was then analyzed. Transwell assay and transplantation assay were performed to elucidate biological effects of miR-335 on cell invasion and vivo tumor formation. Western Blot and luciferase assays were executed to investigate the regulation of POU5F1 by miR-335. The expression of miR-335 in osteosarcoma stem cells was lower than their differentiated counterparts. Cells expressing miR-335 possessed decreased stem cell-like properties. Gain or loss of function assays were applied to find that miR-335 antagonist promoted stem cell-like properties as well as invasion. Luciferase report and transfection assay showed that POU5F1 was downregulated by miR-335. Pre-miR-335 resulted in tumor enhanced sensitivity to traditional chemotherapy, whereas anti-miR-335 promoted chemoresistance. Finally, the inhibitory effect of miR-335 on in vivo tumor formation showed that combination of pre-miR-335 with cisplatin further reduced the tumor size, and miR-335 brought down the sphere formation capacity induced by cisplatin. The current study demonstrates that miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1, and miR-335 could target CSCs to synergize with traditional chemotherapeutic agents to overcome osteosarcoma.
Tumorigenicity studies for human pluripotent stem cell-derived products.
Kuroda, Takuya; Yasuda, Satoshi; Sato, Yoji
2013-01-01
Human pluripotent stem cells (hPSCs), i.e. human embryonic stem cells and human induced pluripotent stem cells, are able to self-renew and differentiate into multiple cell types. Because of these abilities, numerous attempts have been made to utilize hPSCs in regenerative medicine/cell therapy. hPSCs are, however, also tumorigenic, that is, they can give rise to the progressive growth of tumor nodules in immunologically unresponsive animals. Therefore, assessing and managing the tumorigenicity of all final products is essential in order to prevent ectopic tissue formation, tumor development, and/or malignant transformation elicited by residual pluripotent stem cells after implantation. No detailed guideline for the tumorigenicity testing of hPSC-derived products has yet been issued for regenerative medicine/cell therapy, despite the urgent necessity. Here, we describe the current situations and issues related to the tumorigenicity testing of hPSC-derived products and we review the advantages and disadvantages of several types of tumorigenicity-associated tests. We also refer to important considerations in the execution and design of specific studies to monitor the tumorigenicity of hPSC-derived products.
Advances in tissue engineering through stem cell-based co-culture.
Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A
2015-05-01
Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.
Crouch, Elizabeth E; Liu, Chang; Silva-Vargas, Violeta; Doetsch, Fiona
2015-03-18
Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states. Copyright © 2015 the authors 0270-6474/15/354528-12$15.00/0.
The union of somatic gonad precursors and primordial germ cells during C. elegans embryogenesis
Rohrschneider, Monica R.; Nance, Jeremy
2013-01-01
Somatic gonadal niche cells control the survival, differentiation, and proliferation of germline stem cells. The establishment of this niche-stem cell relationship is critical, and yet the precursors to these two cell types are often born at a distance from one another. The simple C. elegans gonadal primordium, which contains two somatic gonad precursors (SGPs) and two primordial germ cells (PGCs), provides an accessible model for determining how stem cell and niche cell precursors first assemble during development. To visualize the morphogenetic events that lead to formation of the gonadal primordium, we generated transgenic strains to label the cell membranes of the SGPs and PGCs and captured time-lapse movies as the gonadal primordium formed. We identify three distinct phases of SGP behavior: posterior migration along the endoderm towards the PGCs, extension of a single long projection around the adjacent PGC, and a dramatic wrapping over the PGC surfaces. We show that the endoderm and PGCs are dispensable for SGP posterior migration and initiation of projections. However, both tissues are required for the final positioning of the SGPs and the morphology of their projections, and PGCs are absolutely required for SGP wrapping behaviors. Finally, we demonstrate that the basement membrane component laminin, which localizes adjacent to the developing gonadal primordium, is required to prevent the SGPs from over-extending past the PGCs. Our findings provide a foundation for understanding the cellular and molecular regulation of the establishment of a niche-stem cell relationship. PMID:23562590
A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis.
Daum, Gabor; Medzihradszky, Anna; Suzaki, Takuya; Lohmann, Jan U
2014-10-07
Cell-cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell-cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell-cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.
Resveratrol Enhances Self-Renewal of Mouse Embryonic Stem Cells.
Li, Na; Du, Zhaoyu; Shen, Qiaoyan; Lei, Qijing; Zhang, Ying; Zhang, Mengfei; Hua, Jinlian
2017-07-01
Resveratrol (RSV) has been shown to affect the differentiation of several types of stem cells, while the detailed mechanism is elusive. Here, we aim to investigate the function of RSV in self-renewal of mouse embryonic stem cells (ESCs) and the related mechanisms. In contrast with its reported roles, we found unexpectedly that differentiated ESCs or iPSCs treated by RSV would not show further differentiation, but regained a naïve pluripotency state with higher expressions of core transcriptional factors and with the ability to differentiate into all three germ layers when transplanted in vivo. In accordance with these findings, RSV also enhanced cell cycle progression of ESCs via regulating cell cycle-related proteins. Finally, enhanced activation of JAK/STAT3 signaling pathway and suppressed activation of mTOR were found essential in enhancing the self-renewal of ESCs by RSV. Our finding discovered a novel function of RSV in enhancing the self-renewal of ESCs, and suggested that the timing of treatment and concentration of RSV determined the final effect of it. Our work may contribute to understanding of RSV in the self-renewal maintenance of pluripotent stem cells, and may also provide help to the generation and maintenance of iPSCs in vitro. J. Cell. Biochem. 118: 1928-1935, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer
Liu, Shu-Yan; Zheng, Peng-Sheng
2013-01-01
High aldehyde dehydrogenase (ALDH) activity characterizes a subpopulation of cells with cancer stem cell (CSC) properties in several malignancies. To clarify whether ALDH can be used as a marker of cervical cancer stem cells (CCSCs), ALDHhigh and ALDHlow cells were sorted from 4 cervical cancer cell lines and 5 primary tumor xenografts and examined for CSC characteristics. Here, we demonstrate that cervical cancer cells with high ALDH activity fulfill the functional criteria for CSCs: (1) ALDHhigh cells, unlike ALDHlow cells, are highly tumorigenic in vivo; (2) ALDHhigh cells can give rise to both ALDHhigh and ALDHlow cells in vitro and in vivo, thereby establishing a cellular hierarchy; and (3) ALDHhigh cells have enhanced self-renewal and differentiation potentials. Additionally, ALDHhigh cervical cancer cells are more resistant to cisplatin treatment than ALDHlow cells. Finally, expression of the stem cell self-renewal-associated transcription factors OCT4, NANOG, KLF4 and BMI1 is elevated in ALDHhigh cervical cancer cells. Taken together, our data indicated that high ALDH activity may represent both a functional marker for CCSCs and a target for novel cervical cancer therapies. PMID:24318570
Mimeault, M; Hauke, R; Batra, S K
2007-09-01
Basic and clinical research accomplished during the last few years on embryonic, fetal, amniotic, umbilical cord blood, and adult stem cells has constituted a revolution in regenerative medicine and cancer therapies by providing the possibility of generating multiple therapeutically useful cell types. These new cells could be used for treating numerous genetic and degenerative disorders. Among them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson's and Alzheimer's diseases, arthritis, and muscular, skin, lung, eye, and digestive disorders as well as aggressive and recurrent cancers could be successfully treated by stem cell-based therapies. This review focuses on the recent advancements in adult stem cell biology in normal and pathological conditions. We describe how these results have improved our understanding on critical and unique functions of these rare sub-populations of multipotent and undifferentiated cells with an unlimited self-renewal capacity and high plasticity. Finally, we discuss some major advances to translate the experimental models on ex vivo and in vivo expanded and/or differentiated stem cells into clinical applications for the development of novel cellular therapies aimed at repairing genetically altered or damaged tissues/organs in humans. A particular emphasis is made on the therapeutic potential of different tissue-resident adult stem cell types and their in vivo modulation for treating and curing specific pathological disorders.
Chang, Yu-Jen; Tien, Kuei-Erh; Wen, Cheng-Hao; Hsieh, Tzu-Bou; Hwang, Shiaw-Min
2014-04-01
Very small embryonic-like (VSEL) stem cells are a rare cell population present in bone marrow, cord blood and other tissues that displays a distinct small cell size and the ability to give rise to cells of the three germ layers. VSEL stem cells were reported to be discarded in the red blood cell fraction by Ficoll-Paque density gradient centrifugation during the processing of bone marrow and cord blood specimens. However, most cord blood banks do not include density gradient centrifugation in their procedures while red blood cells are removed by Hespan sedimentation following the Cord Blood Transplantation Study cord blood bank standard operating procedures (COBLT SOP). To clarify the retention of VSEL stem cells, we investigated the recovery of VSEL stem cells following COBLT SOP guidelines. The recovery of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells of umbilical cord blood was examined by flow cytometry before and after COBLT SOP processing, and relative expression of pluripotent genes was analyzed by quantitative polymerase chain reaction. CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells were mostly recovered in the final products following COBLT SOP guidelines. The expression of pluripotent genes could be maintained at >80% in products after hetastarch (Hespan; B. Braun Medical Inc., Irvine, CA, USA) processing. The rare sub-population of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells survived after Hespan sedimentation. This finding suggests that umbilical cord blood units cryopreserved by COBLT SOP in cord blood banks should retain most VSEL stem cells present in the un-processed specimens. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, V.E.; Lange, C.S.
1976-07-01
The planarian owes its extensive powers of regeneration to the possession of a totipotential stem cell system. The survival of the animal after irradiation depends mainly upon this system. In this respect the planarian is analogous to mammalian organ systems such as bone marrow or gut epithelium. The differentiated cells control the course of stem cell mediated tissue renewal by the secretion of differentiator and/or inhibitor substances. One such inhibitor substance, present in extracts prepared from homogenized whole planarians, specifically inhibits brain formation. This substance is organ specific, but not species specific. The differentiative integrity of the stem cells aftermore » irradiation is measured by comparing the regenerated brain volumes resulting from the presence or absence of the brain inhibitory extract during the regeneration period. Our data suggest that increasing doses of x irradiation decreases the ability of the stem cells to respond to differentiative substances. The data presented also explore the possibility of altering the postirradiation recovery pattern by shifting the differentiative demands placed on the stem cells. The final proportions of animals (one-half regenerated with, and one-half without, the extract) surviving after 60 days were not significantly different.« less
The Hippo Pathway Regulates Homeostatic Growth of Stem Cell Niche Precursors in the Drosophila Ovary
Sarikaya, Didem P.; Extavour, Cassandra G.
2015-01-01
The Hippo pathway regulates organ size, stem cell proliferation and tumorigenesis in adult organs. Whether the Hippo pathway influences establishment of stem cell niche size to accommodate changes in organ size, however, has received little attention. Here, we ask whether Hippo signaling influences the number of stem cell niches that are established during development of the Drosophila larval ovary, and whether it interacts with the same or different effector signaling pathways in different cell types. We demonstrate that canonical Hippo signaling regulates autonomous proliferation of the soma, while a novel hippo-independent activity of Yorkie regulates autonomous proliferation of the germ line. Moreover, we demonstrate that Hippo signaling mediates non-autonomous proliferation signals between germ cells and somatic cells, and contributes to maintaining the correct proportion of these niche precursors. Finally, we show that the Hippo pathway interacts with different growth pathways in distinct somatic cell types, and interacts with EGFR and JAK/STAT pathways to regulate non-autonomous proliferation of germ cells. We thus provide evidence for novel roles of the Hippo pathway in establishing the precise balance of soma and germ line, the appropriate number of stem cell niches, and ultimately regulating adult female reproductive capacity. PMID:25643260
Human Papillomavirus Infections and Cancer Stem Cells of Tumors from the Uterine Cervix
López, Jacqueline; Ruíz, Graciela; Organista-Nava, Jorge; Gariglio, Patricio; García-Carrancá, Alejandro
2012-01-01
Different rate of development of productive infections (as low grade cervical intraepithelial neoplasias), or high grade lesions and cervical malignant tumors associated with infections of the Transformation zone (TZ) by High-Risk Human Papillomavirus (HR-HPV), could suggest that different epithelial host target cells could exist. If there is more than one target cell, their differential infection by HR-HPV may play a central role in the development of cervical cancer. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support in several solid tumors, including cervical cancer (CC). According to the cancer stem cell (CSC) hypothesis, CC can now be considered a disease in which stem cells of the TZ are converted to cervical cancer stem cells by the interplay between HR-HPV viral oncogenes and cellular alterations that are thought to be finally responsible for tumor initiation and maintenance. Current studies of CSC could provide novel insights regarding tumor initiation and progression, their relation with viral proteins and interplay with the tumor micro-environment. This review will focus on the biology of cervical cancer stem cells, which might contribute to our understanding of the mechanisms responsible for cervical tumor development. PMID:23341858
Yeasmin, Shamima; Ceccarelli, Jacob; Vigen, Marina; Carrion, Bita; Putnam, Andrew J.; Tarle, Susan A.
2014-01-01
In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential, which could make them a very attractive cell population for utilization in regenerative cell therapies. PMID:24147894
Perteghella, Sara; Crivelli, Barbara; Catenacci, Laura; Sorrenti, Milena; Bruni, Giovanna; Necchi, Vittorio; Vigani, Barbara; Sorlini, Marzio; Torre, Maria Luisa; Chlapanidas, Theodora
2017-03-30
The aim of this work was to develop a novel carrier-in-carrier system based on stem cell-extracellular vesicles loaded of silk/curcumin nanoparticles by endogenous technique. Silk nanoparticles were produced by desolvation method and curcumin has been selected as drug model because of its limited water solubility and poor bioavailability. Nanoparticles were stable, with spherical geometry, 100nm in average diameter and the drug content reached about 30%. Cellular uptake studies, performed on mesenchymal stem cells (MSCs), showed the accumulation of nanoparticles in the cytosol around the nuclear membrane, without cytotoxic effects. Finally, MSCs were able to release extracellular vesicles entrapping silk/curcumin nanoparticles. This combined biological-technological approach represents a novel class of nanosystems, combining beneficial effects of both regenerative cell therapies and pharmaceutical nanomedicine, avoiding the use of viable replicating stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi
2017-09-01
Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lin, Alexander Y T; Pearson, Bret J
2014-03-01
During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.
Stem cells and bone diseases: new tools, new perspective.
Riminucci, Mara; Remoli, Cristina; Robey, Pamela G; Bianco, Paolo
2015-01-01
Postnatal skeletal stem cells are a unique class of progenitors with biological properties that extend well beyond the limits of stemness as commonly defined. Skeletal stem cells sustain skeletal tissue homeostasis, organize and maintain the complex architectural structure of the bone marrow microenvironment and provide a niche for hematopoietic progenitor cells. The identification of stem cells in the human post-natal skeleton has profoundly changed our approach to the physiology and pathology of this system. Skeletal diseases have been long interpreted essentially in terms of defective function of differentiated cells and/or abnormal turnover of the matrix that they produce. The notion of a skeletal stem cell has brought forth multiple, novel concepts in skeletal biology that provide potential alternative concepts. At the same time, the recognition of the complex functions played by skeletal progenitors, such as the structural and functional organization of the bone marrow, has provided an innovative, unifying perspective for understanding bone and bone marrow changes simultaneously occurring in many disorders. Finally, the possibility to isolate and highly enrich for skeletal progenitors, enables us to reproduce perfectly normal or pathological organ miniatures. These, in turn, provide suitable models to investigate and manipulate the pathogenetic mechanisms of many genetic and non-genetic skeletal diseases. This article is part of a Special Issue entitled Stem cells and Bone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair
Mondadori, Carlotta; Mainardi, Valerio Luca; Talò, Giuseppe; Candrian, Christian; Święszkowski, Wojciech
2018-01-01
Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects. PMID:29535776
He, Pengfei; Fu, Jiayin; Wang, Dong-An
2016-04-15
By means of appropriate cell type and scaffold, tissue-engineering approaches aim to construct grafts for cartilage repair. Pluripotent stem cells especially induced pluripotent stem cells (iPSCs) are of promising cell candidates due to the pluripotent plasticity and abundant cell source. We explored three dimensional (3D) culture and chondrogenesis of murine iPSCs (miPSCs) on an alginate-based micro-cavity hydrogel (MCG) platform in pursuit of fabricating synthetic-scaffold-free cartilage grafts. Murine embryonic stem cells (mESCs) were employed in parallel as the control. Chondrogenesis was fulfilled using a consecutive protocol via mesoderm differentiation followed by chondrogenic differentiation; subsequently, miPSC and mESC-seeded constructs were further respectively cultured in chondrocyte culture (CC) medium. Alginate phase in the constructs was then removed to generate a graft only comprised of induced chondrocytic cells and cartilaginous extracellular matrix (ECMs). We found that from the mESC-seeded constructs, formation of intact grafts could be achieved in greater sizes with relatively fewer chondrocytic cells and abundant ECMs; from miPSC-seeded constructs, relatively smaller sized cartilaginous grafts could be formed by cells with chondrocytic phenotype wrapped by abundant and better assembled collagen type II. This study demonstrated successful creation of pluripotent stem cells-derived cartilage/chondroid graft from a 3D MCG interim platform. By the support of materials and methodologies established from this study, particularly given the autologous availability of iPSCs, engineered autologous cartilage engraftment may be potentially fulfilled without relying on the limited and invasive autologous chondrocytes acquisition. In this study, we explored chondrogenic differentiation of pluripotent stem cells on a 3D micro-cavitary hydrogel interim platform and creation of pluripotent stem cells-derived cartilage/chondroid graft via a consecutive procedure. Our results demonstrated chondrogenic differentiation could be realized on the platform via mesoderm differentiation. The mESCs/miPSCs derived chondrocytic cells were further cultured to finally generate a pluripotent stem cells-derived scaffold-free construct based on the micro-cavitary hydrogel platform, in which alginate hydrogel could be removed finally. Our results showed that miPSC-derived graft could be formed by cells with chondrocytic phenotype wrapped by abundant and assembled collagen type II. To our knowledge, this study is the first study that initials from pluripotent stem cell seeding on 3D scaffold environment and ends with a scaffold-free chondrogenic micro-tissue. By the support of materials and methodologies established from this study, engineered autologous iPSC-derived cartilage engraftment may be potentially developed instead of autologous chondrocytes grafts that have limited source. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Human Embryonic Stem Cell Therapy in Crohn’s Disease: A Case Report
Shroff, Geeta
2016-01-01
Patient: Male, 21 Final Diagnosis: Crohn’s disease Symptoms: Intolerance to specific foods • abdominal pain and diarrhea Medication: Human embryonic stem cell therapy Clinical Procedure: Human embryonic stem cell transplantation Specialty: Gastroenterology Objective: Unusual or unexpected effect of treatment Background: Crohn’s disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565 000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn’s disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn’s disease. Case Report: A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Conclusions: Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn’s disease. PMID:26923312
Lee, Patrick C; Truong, Brian; Vega-Crespo, Agustin; Gilmore, W Blake; Hermann, Kip; Angarita, Stephanie Ak; Tang, Jonathan K; Chang, Katherine M; Wininger, Austin E; Lam, Alex K; Schoenberg, Benjamen E; Cederbaum, Stephen D; Pyle, April D; Byrne, James A; Lipshutz, Gerald S
2016-11-29
Urea cycle disorders are incurable enzymopathies that affect nitrogen metabolism and typically lead to hyperammonemia. Arginase deficiency results from a mutation in Arg1, the enzyme regulating the final step of ureagenesis and typically results in developmental disabilities, seizures, spastic diplegia, and sometimes death. Current medical treatments for urea cycle disorders are only marginally effective, and for proximal disorders, liver transplantation is effective but limited by graft availability. Advances in human induced pluripotent stem cell research has allowed for the genetic modification of stem cells for potential cellular replacement therapies. In this study, we demonstrate a universally-applicable CRISPR/Cas9-based strategy utilizing exon 1 of the hypoxanthine-guanine phosphoribosyltransferase locus to genetically modify and restore arginase activity, and thus ureagenesis, in genetically distinct patient-specific human induced pluripotent stem cells and hepatocyte-like derivatives. Successful strategies restoring gene function in patient-specific human induced pluripotent stem cells may advance applications of genetically modified cell therapy to treat urea cycle and other inborn errors of metabolism.
Barone, Angela; Benktander, John; Ångström, Jonas; Aspegren, Anders; Björquist, Petter; Teneberg, Susann; Breimer, Michael. E.
2013-01-01
Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 109 cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Lex pentaosylceramide, and the Ley hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated. PMID:23404501
Ali, Mohamed A E; Fuse, Kyoko; Tadokoro, Yuko; Hoshii, Takayuki; Ueno, Masaya; Kobayashi, Masahiko; Nomura, Naho; Vu, Ha Thi; Peng, Hui; Hegazy, Ahmed M; Masuko, Masayoshi; Sone, Hirohito; Arai, Fumio; Tajima, Atsushi; Hirao, Atsushi
2017-09-12
Hematopoietic stem cells (HSCs) in a steady state can be efficiently purified by selecting for a combination of several cell surface markers; however, such markers do not consistently reflect HSC activity. In this study, we successfully enriched HSCs with a unique stemness-monitoring system using a transgenic mouse in which green florescence protein (GFP) is driven by the promoter/enhancer region of the nucleostemin (NS) gene. We found that the phenotypically defined long-term (LT)-HSC population exhibited the highest level of NS-GFP intensity, whereas NS-GFP intensity was strongly downregulated during differentiation in vitro and in vivo. Within the LT-HSC population, NS-GFP high cells exhibited significantly higher repopulating capacity than NS-GFP low cells. Gene expression analysis revealed that nine genes, including Vwf and Cdkn1c (p57), are highly expressed in NS-GFP high cells and may represent a signature of HSCs, i.e., a stemness signature. When LT-HSCs suffered from remarkable stress, such as transplantation or irradiation, NS-GFP intensity was downregulated. Finally, we found that high levels of NS-GFP identified HSC-like cells even among CD34 + cells, which have been considered progenitor cells without long-term reconstitution ability. Thus, high NS-GFP expression represents stem cell characteristics in hematopoietic cells, making this system useful for identifying previously uncharacterized HSCs.
Sipahi, Rifat; Zupanc, Günther K H
2018-05-14
Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Joint morphogenetic cells in the adult mammalian synovium
Roelofs, Anke J.; Zupan, Janja; Riemen, Anna H. K.; Kania, Karolina; Ansboro, Sharon; White, Nathan; Clark, Susan M.; De Bari, Cosimo
2017-01-01
The stem cells that safeguard synovial joints in adulthood are undefined. Studies on mesenchymal stromal/stem cells (MSCs) have mainly focused on bone marrow. Here we show that lineage tracing of Gdf5-expressing joint interzone cells identifies in adult mouse synovium an MSC population largely negative for the skeletal stem cell markers Nestin-GFP, Leptin receptor and Gremlin1. Following cartilage injury, Gdf5-lineage cells underpin synovial hyperplasia through proliferation, are recruited to a Nestin-GFPhigh perivascular population, and contribute to cartilage repair. The transcriptional co-factor Yap is upregulated after injury, and its conditional ablation in Gdf5-lineage cells prevents synovial lining hyperplasia and decreases contribution of Gdf5-lineage cells to cartilage repair. Cultured Gdf5-lineage cells exhibit progenitor activity for stable chondrocytes and are able to self-organize three-dimensionally to form a synovial lining-like layer. Finally, human synovial MSCs transduced with Bmp7 display morphogenetic properties by patterning a joint-like organ in vivo. Our findings further the understanding of the skeletal stem/progenitor cells in adult life. PMID:28508891
Vahidi Ferdousi, Leyla; Rocheteau, Pierre; Chayot, Romain; Montagne, Benjamin; Chaker, Zayna; Flamant, Patricia; Tajbakhsh, Shahragim; Ricchetti, Miria
2014-11-01
The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs. Copyright © 2014. Published by Elsevier B.V.
Giachino, Claudio; Taylor, Verdon
2009-07-01
The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo. Taking advantage of the recombination characteristics of a nestin::CreER(T2) allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER(T2)-expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER(T2)-expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER(T2)-targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.
Roeder, Ingo; Loeffler, Markus; Glauche, Ingmar
2011-04-15
Here we report about an interdisciplinary workshop focusing on the effects of the local growth-environment on the regulation of stem cell development. Under the title "Towards a quantitative understanding of stem cell/ niche interaction: Experiments, models, and technologies", 33 experts from eight countries discussed current knowledge, new experimental and theoretical results as well as innovative measurement technologies. Specifically, the workshop addressed the following questions: What defines a stem cell niche? What are functional/regulatory characteristics of stem cell- microenvironment interactions? What experimental systems and technologies for quantifying niche function are available? As a consensus result it was recorded that there is no unique niche architecture across tissues but that there are generic principles of niche organization guaranteeing a proper function of stem cells. This functional aspect, as the major defining criterion, leads to the conclusion that stem cells and their niches need to be considered as an inseparable pair with implications for their experimental assessment: To be able to study any of those two components, the other component has to be accounted for. In this context, a number of classical in vitro assays using co-cultures of stem and stroma cells, but also new, specifically bioengineered culture systems have been discussed with respect to their advantages and disadvantages. Finally, there was a general agreement that the comprehensive understanding of niche-mediated stem cell regulation will, due to the complexity of involved mechanisms, require an interdisciplinary, systems biological approach. In addition to cell and molecular biology, biochemistry, biophysics and bioengineering also bioinformatics and mathematical modeling will play a major role in the future of this field. Copyright © 2011 Elsevier Inc. All rights reserved.
Jin, Heiying; Chen, Li; Wang, Shuiming; Chao, Deng
2017-07-01
To investigate whether Portulaca oleracea extract affects tumor formation in colon cancer stem cells and its chemotherapy sensitivity. In addition, to analyze associated genetic changes within the Notch signal transduction pathway. Serum-free cultures of colon cancer cells (HT-29) and HT-29 cancer stem cells were treated with the chemotherapeutic drug 5-fluorouracil to assess sensitivity. Injections of the stem cells were also given to BALB/c mice to confirm tumor growth and note its characteristics. In addition, the effect of different concentrations of P. oleracea extract was tested on the growth of HT-29 colon cancer cells and HT-29 cancer stem cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The effects of P. oleracea extract on the expression of β-catenin, Notch1, and Notch2 in the HT-29 cells were studied using reverse transcription polymerase chain reaction and Western blotting. The tumor volume of the HT29 cells was two times larger than that of HT29 cancer stem cells. Treatment with P. oleracea extract inhibited the proliferation of both HT-29 cancer cells and HT-29 cancer stem cells at doses from 0.07 to 2.25 µg/mL. Apoptosis of HT-29 cancer cells and HT-29 cancer stem cells was assessed by flow cytometry; it was enhanced by the addition of P. oleracea extract. Finally, treatment with P. oleracea extract significantly downregulated the expression of the Notch1 and β-catenin genes in both cell types. The results of this study show that P. oleracea extract inhibits the growth of colon cancer stem cells in a dose-dependent manner. Furthermore, it inhibits the expression of the Notch1 and β-catenin genes. Taken together, this suggests that it may elicit its effects through regulatory and target genes that mediate the Notch signal transduction pathway.
Stem cells and bone diseases: new tools, new perspective
Riminucci, Mara; Remoli, Cristina; Robey, Pamela G.; Bianco, Paolo
2017-01-01
Postnatal skeletal stem cells are a unique class of progenitors with biological properties that extend well beyond the limits of stemness as commonly defined. Skeletal stem cells sustain skeletal tissue homeostasis, organize and maintain the complex architectural structure of the bone marrow microenvironment and provide a niche for hematopoietic progenitor cells. The identification of stem cells in the human post-natal skeleton has profoundly changed our approach to the physiology and pathology of this system. Skeletal diseases have been long interpreted essentially in terms of defective function of differentiated cells and/or abnormal turnover of the matrix they produce. The notion of a skeletal stem cell has brought forth multiple, novel concepts in skeletal biology that provide potential alternative concepts. At the same time, the recognition of the complex functions played by skeletal progenitors, such as the structural and functional organization of the bone marrow, has provided an innovative, unifying perspective for understanding bone and bone marrow changes simultaneously occurring in many disorders. Finally, the possibility to isolate and highly enrich for skeletal progenitors, enables us to reproduce perfectly normal or pathological organ miniatures. These, in turn, provide suitable models to investigate and manipulate the pathogenetic mechanisms of many genetic and non-genetic skeletal diseases. PMID:25240458
Heiser, Diane; Tan, Yee Sun; Kaplan, Ian; Godsey, Brian; Morisot, Sebastien; Cheng, Wen-Chih; Small, Donald; Civin, Curt I
2014-01-01
Several individual miRNAs (miRs) have been implicated as potent regulators of important processes during normal and malignant hematopoiesis. In addition, many miRs have been shown to fine-tune intricate molecular networks, in concert with other regulatory elements. In order to study hematopoietic networks as a whole, we first created a map of global miR expression during early murine hematopoiesis. Next, we determined the copy number per cell for each miR in each of the examined stem and progenitor cell types. As data is emerging indicating that miRs function robustly mainly when they are expressed above a certain threshold (∼100 copies per cell), our database provides a resource for determining which miRs are expressed at a potentially functional level in each cell type. Finally, we combine our miR expression map with matched mRNA expression data and external prediction algorithms, using a Bayesian modeling approach to create a global landscape of predicted miR-mRNA interactions within each of these hematopoietic stem and progenitor cell subsets. This approach implicates several interaction networks comprising a "stemness" signature in the most primitive hematopoietic stem cell (HSC) populations, as well as "myeloid" patterns associated with two branches of myeloid development.
Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.
Lund, Carina; Pulli, Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin, Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli
2016-08-09
Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Label-free screening of niche-to-niche variation in satellite stem cells using functionalized pores
NASA Astrophysics Data System (ADS)
Chapman, Matthew R.; Balakrishnan, Karthik; Conboy, Michael J.; Mohanty, Swomitra; Jabart, Eric; Huang, Haiyan; Hack, James; Conboy, Irina M.; Sohn, Lydia L.
2012-02-01
Combinations of surface markers are currently used to identify muscle satellite cells. Using pores functionalized with specific antibodies and measuring the transit time of cells passing through these pores, we discovered remarkable heterogeneity in the expression of these markers in muscle (satellite) stem cells that reside in different single myofibers. Microniche-specific variation in stem cells of the same organ has not been previously described, as bulk analysis does not discriminate between separate myofibers or even separate hind-leg muscle groups. We found a significant population of Sca-1+ satellite cells that form myotubes, thereby demonstrating the myogenic potential of Sca-1+ cells, which are currently excluded in bulk sorting. Finally, using our label-free pore screening technique, we have been able to quantify directly surface expression of Notch1 without activation of the Notch pathway. We show for the first time Notch1-expression heterogeneity in unactivated satellite cells. The discovery of fiber-to-fiber variations prompts new research into the reasons for such diversity in muscle stem cells.
Histone h1 depletion impairs embryonic stem cell differentiation.
Zhang, Yunzhe; Cooke, Marissa; Panjwani, Shiraj; Cao, Kaixiang; Krauth, Beth; Ho, Po-Yi; Medrzycki, Magdalena; Berhe, Dawit T; Pan, Chenyi; McDevitt, Todd C; Fan, Yuhong
2012-01-01
Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.
Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Singh, A. J. A. Ranjith; Peng, I-Chia; Priya, Sivan Padma; Hamat, Rukman Awang; Higuchi, Akon
2014-01-01
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation. PMID:25526563
Nanotechnology for mesenchymal stem cell therapies.
Corradetti, Bruna; Ferrari, Mauro
2016-10-28
Mesenchymal stem cells (MSC) display great proliferative, differentiative, chemotactic, and immune-modulatory properties required to promote tissue repair. Several clinical trials based on the use of MSC are currently underway for therapeutic purposes. The aim of this article is to examine the current trends and potential impact of nanotechnology in MSC-driven regenerative medicine. Nanoparticle-based approaches are used as powerful carrier systems for the targeted delivery of bioactive molecules to ensure MSC long-term maintenance in vitro and to enhance their regenerative potential. Nanostructured materials have been developed to recapitulate the stem cell niche within a tissue and to instruct MSC toward the creation of regeneration-permissive environment. Finally, the capability of MSC to migrate toward the site of injury/inflammation has allowed for the development of diagnostic imaging systems able to monitor transplanted stem cell bio-distribution, toxicity, and therapeutic effectiveness. Copyright © 2015 Elsevier B.V. All rights reserved.
Stem Cells for Osteochondral Regeneration.
Canadas, Raphaël F; Pirraco, Rogério P; Oliveira, J Miguel; Reis, Rui L; Marques, Alexandra P
2018-01-01
Stem cell research plays a central role in the future of medicine, which is mainly dependent on the advances on regenerative medicine (RM), specifically in the disciplines of tissue engineering (TE) and cellular therapeutics. All RM strategies depend upon the harnessing, stimulation, or guidance of endogenous developmental or repair processes in which cells have an important role. Among the most clinically challenging disorders, cartilage degeneration, which also affects subchondral bone becoming an osteochondral (OC) defect, is one of the most demanding. Although primary cells have been clinically applied, stem cells are currently seen as the promising tool of RM-related research because of its availability, in vitro proliferation ability, pluri- or multipotency, and immunosuppressive features. Being the OC unit, a transition from the bone to cartilage, mesenchymal stem cells (MSCs) are the main focus for OC regeneration. Promising alternatives, which can also be obtained from the patient or at banks and have great differentiation potential toward a wide range of specific cell types, have been reported. Still, ethical concerns and tumorigenic risk are currently under discussion and assessment. In this book chapter, we revise the existing stem cell-based approaches for engineering bone and cartilage, focusing on cell therapy and TE. Furthermore, 3D OC composites based on cell co-cultures are described. Finally, future directions and challenges still to be faced are critically discussed.
Archibald, Peter R T; Williams, David J
2015-11-01
In the present study a cost-effectiveness analysis of allogeneic islet transplantation was performed and the financial feasibility of a human induced pluripotent stem cell-derived β-cell therapy was explored. Previously published cost and health benefit data for islet transplantation were utilized to perform the cost-effectiveness and sensitivity analyses. It was determined that, over a 9-year time horizon, islet transplantation would become cost saving and 'dominate' the comparator. Over a 20-year time horizon, islet transplantation would incur significant cost savings over the comparator (GB£59,000). Finally, assuming a similar cost of goods to islet transplantation and a lack of requirement for immunosuppression, a human induced pluripotent stem cell-derived β-cell therapy would dominate the comparator over an 8-year time horizon.
Translating Stem Cell Research to Cardiac Disease Therapies: Pitfalls and Prospects for Improvement
Rosen, Michael R.; Myerburg, Robert J.; Francis, Darrel P.; Cole, Graham D.; Marbán, Eduardo
2014-01-01
Over the past 2 decades, there have been numerous stem cell studies focused on cardiac diseases, ranging from proof-of-concept to phase 2 trials. This series of articles focuses on the legacy of these studies and the outlook for future treatment of cardiac diseases with stem cell therapies. The first section by Rosen and Myerburg is an independent review that analyzes the basic science and translational strategies supporting the rapid advance of stem cell technology to the clinic, the philosophies behind them, trial designs, and means for going forward that may impact favorably on progress. The second and third sections were collected in response to the initial section of this review. The commentary by Francis and Cole discusses the Rosen and Myerburg review and details how trial outcomes can be affected by noise, poor trial design (particularly the absence of blinding), and normal human tendencies toward optimism and denial. The final, independent article by Marbán takes a different perspective concerning the potential for positive impact of stem cell research applied to heart disease and future prospects for its clinical application. PMID:25169179
Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G
2017-08-14
This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.
Assessment of stem cell differentiation based on genome-wide expression profiles.
Godoy, Patricio; Schmidt-Heck, Wolfgang; Hellwig, Birte; Nell, Patrick; Feuerborn, David; Rahnenführer, Jörg; Kattler, Kathrin; Walter, Jörn; Blüthgen, Nils; Hengstler, Jan G
2018-07-05
In recent years, protocols have been established to differentiate stem and precursor cells into more mature cell types. However, progress in this field has been hampered by difficulties to assess the differentiation status of stem cell-derived cells in an unbiased manner. Here, we present an analysis pipeline based on published data and methods to quantify the degree of differentiation and to identify transcriptional control factors explaining differences from the intended target cells or tissues. The pipeline requires RNA-Seq or gene array data of the stem cell starting population, derived 'mature' cells and primary target cells or tissue. It consists of a principal component analysis to represent global expression changes and to identify possible problems of the dataset that require special attention, such as: batch effects; clustering techniques to identify gene groups with similar features; over-representation analysis to characterize biological motifs and transcriptional control factors of the identified gene clusters; and metagenes as well as gene regulatory networks for quantitative cell-type assessment and identification of influential transcription factors. Possibilities and limitations of the analysis pipeline are illustrated using the example of human embryonic stem cell and human induced pluripotent cells to generate 'hepatocyte-like cells'. The pipeline quantifies the degree of incomplete differentiation as well as remaining stemness and identifies unwanted features, such as colon- and fibroblast-associated gene clusters that are absent in real hepatocytes but typically induced by currently available differentiation protocols. Finally, transcription factors responsible for incomplete and unwanted differentiation are identified. The proposed method is widely applicable and allows an unbiased and quantitative assessment of stem cell-derived cells.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).
Modeling to Optimize Terminal Stem Cell Differentiation
Gallicano, G. Ian
2013-01-01
Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy. PMID:24278782
Cossetti, Chiara; Iraci, Nunzio; Mercer, Tim R.; Leonardi, Tommaso; Alpi, Emanuele; Drago, Denise; Alfaro-Cervello, Clara; Saini, Harpreet K.; Davis, Matthew P.; Schaeffer, Julia; Vega, Beatriz; Stefanini, Matilde; Zhao, CongJian; Muller, Werner; Garcia-Verdugo, Jose Manuel; Mathivanan, Suresh; Bachi, Angela; Enright, Anton J.; Mattick, John S.; Pluchino, Stefano
2015-01-01
SUMMARY The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system. PMID:25242146
Embryonic stem cells and the next generation of developmental toxicity testing.
Kugler, Josephine; Huhse, Bettina; Tralau, Tewes; Luch, Andreas
2017-08-01
The advent of stem cell technology has seen the establishment of embryonic stem cells (ESCs) as molecular model systems and screening tools. Although ESCs are nowadays widely used in research, regulatory implementation for developmental toxicity testing is pending. Areas Covered: This review evaluates the performance of current ESC, including human (h)ESC testing systems, trying to elucidate their potential for developmental toxicity testing. It shall discuss defining parameters and mechanisms, their relevance and contemplate what can realistically be expected. Crucially this includes the question of how to ascertain the quality of currently employed cell lines and tests based thereon. Finally, the use of hESCs will raise ethical concerns which should be addressed early on. Expert Opinion: While the suitability of (h)ESCs as tools for research and development goes undisputed, any routine use for developmental toxicity testing currently still seems premature. The reasons for this comprise inherent biological deficiencies as well as cell line quality and system validation. Overcoming these issues will require collaboration of scientists, test developers and regulators. Also, validation needs to be made worthwhile for academia. Finally we have to continuously rethink existing strategies, making room for improved testing and innovative approaches.
García-Cruz, Karla V.; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A.; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R.
2016-01-01
Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components. PMID:27474508
Grow, Douglas A; Simmons, DeNard V; Gomez, Jorge A; Wanat, Matthew J; McCarrey, John R; Paladini, Carlos A; Navara, Christopher S
2016-09-01
: The progressive death of dopamine producing neurons in the substantia nigra pars compacta is the principal cause of symptoms of Parkinson's disease (PD). Stem cells have potential therapeutic use in replacing these cells and restoring function. To facilitate development of this approach, we sought to establish a preclinical model based on a large nonhuman primate for testing the efficacy and safety of stem cell-based transplantation. To this end, we differentiated baboon fibroblast-derived induced pluripotent stem cells (biPSCs) into dopaminergic neurons with the application of specific morphogens and growth factors. We confirmed that biPSC-derived dopaminergic neurons resemble those found in the human midbrain based on cell type-specific expression of dopamine markers TH and GIRK2. Using the reverse transcriptase quantitative polymerase chain reaction, we also showed that biPSC-derived dopaminergic neurons express PAX6, FOXA2, LMX1A, NURR1, and TH genes characteristic of this cell type in vivo. We used perforated patch-clamp electrophysiology to demonstrate that biPSC-derived dopaminergic neurons fired spontaneous rhythmic action potentials and high-frequency action potentials with spike frequency adaption upon injection of depolarizing current. Finally, we showed that biPSC-derived neurons released catecholamines in response to electrical stimulation. These results demonstrate the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of PD. Functional dopamine neurons were produced from baboon induced pluripotent stem cells, and their properties were compared to baboon midbrain cells in vivo. The baboon has advantages as a clinically relevant model in which to optimize the efficacy and safety of stem cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. Baboons possess crucial neuroanatomical and immunological similarities to humans, and baboon pluripotent stem cells can be differentiated into functional neurons that mimic those in the human brain, thus laying the foundation for the utility of the baboon model for evaluating stem cell therapies. ©AlphaMed Press.
Urbanska, Marta; Winzi, Maria; Neumann, Katrin; Abuhattum, Shada; Rosendahl, Philipp; Müller, Paul; Taubenberger, Anna; Anastassiadis, Konstantinos; Guck, Jochen
2017-12-01
Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells. © 2017. Published by The Company of Biologists Ltd.
Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes
Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D.; Bullens, Dominique M.; Pinxteren, Jef; Verfaillie, Catherine M.; Van Gool, Stefaan W.
2016-01-01
MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8+ cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was—even after major histocompatibility complex class I upregulation—insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8−CD69+ T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Significance Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8+ T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy. PMID:27465071
Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes.
Plessers, Jeroen; Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D; Bullens, Dominique M; Pinxteren, Jef; Verfaillie, Catherine M; Van Gool, Stefaan W
2016-12-01
: MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8 + cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was-even after major histocompatibility complex class I upregulation-insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8 - CD69 + T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8 + T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy. ©AlphaMed Press.
Bone biomaterials and interactions with stem cells
Gao, Chengde; Peng, Shuping; Feng, Pei; Shuai, Cijun
2017-01-01
Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed. PMID:29285402
Willems, Christophe; Fu, Qiuli; Roose, Heleen; Mertens, Freya; Cox, Benoit; Chen, Jianghai; Vankelecom, Hugo
2016-02-01
We recently showed that the mouse pituitary holds regenerative competence. Young-adult GHCre/iDTR mice, expressing diphtheria toxin (DT) receptor in GH-producing cells, regenerate the GH(+) cells, as ablated by 3-day DT treatment (3DT), up to 60% after 5 months. The pituitary's stem cells participate in this restoration process. Here, we characterized this regenerative capacity in relation to age and recovery period and started to search for underlying molecular mechanisms. Extending the recovery period (up to 19 mo) does not result in higher regeneration levels. In addition, the regenerative competence disappears at older age, coinciding with a reduction in pituitary stem cell number and fitness. Surprisingly, prolonging DT treatment of young-adult mice to 10 days (10DT) completely blocks the regeneration, although the stem cell compartment still reacts by promptly expanding, and retains in vitro stem cell functionality. To obtain a first broad view on molecular grounds underlying reparative capacity and/or failure, the stem cell-clustering side population was analyzed by whole-genome expression analysis. A number of stemness factors and components of embryonic, epithelial-mesenchymal transition, growth factor and Hippo pathways are higher expressed in the stem cell-clustering side population of the regenerating pituitary (after 3DT) when compared with the basal gland and to the nonregenerating pituitary (after 10DT). Together, the regenerative capacity of the pituitary is limited both in age-related terms and final efficacy, and appears to rely on stem cell-associated pathway activation. Dissection of the molecular profiles may eventually identify targets to induce or boost regeneration in situations of (injury-related) pituitary deficiency.
Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.
Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F
2018-02-01
Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.
Iacono, E; Rossi, B; Merlo, B
2015-06-01
Over the past decade, stem cell research has emerged as an area of major interest for its potential in regenerative medicine applications. This is in constant need of new cell sources to conceive regenerative medicine approaches for diseases that are still without therapy. Scientists drew the attention towards alternative sources such as foetal adnexa and fluid, as these sources possess many advantages: first of all, cells can be extracted from discarded foetal material and it is non-invasive and inexpensive for the patient; secondly, abundant stem cells can be obtained; and finally, these stem cell sources are free from ethical considerations. Cells derived from foetal adnexa and fluid preserve some of the characteristics of the primitive embryonic layers from which they originate. Many studies have demonstrated the differentiation potential in vitro and in vivo towards mesenchymal and non-mesenchymal cell types; in addition, the immune-modulatory properties make these cells a good candidate for allo- and xenotransplantation. Naturally occurring diseases in domestic animals can be more ideal as disease model of human genetic and acquired diseases and could help to define the potential therapeutic use efficiency and safety of stem cells therapies. This review offers an update on the state of the art of characterization of domestic animals' MSCs derived from foetal adnexa and fluid and on the latest findings in pre-clinical or clinical setting of the stem cell populations isolated from these sources. © 2015 Blackwell Verlag GmbH.
Farace, Francoise; Prestoz, Laetitita; Badaoui, Sabrina; Guillier, Martine; Haond, Celine; Opolon, Paule; Thomas, Jean-Leon; Zalc, Bernard; Vainchenker, William; Turhan, Ali G
2004-02-01
Muscle tissue of adult mice has been shown to contain stem cells with hematopoietic repopulation ability in vivo. To determine the functional characteristics of stem cells giving rise to this hematopoietic activity, we have performed hematopoietic reconstitution experiments by the use of muscle versus marrow transplantation in lethally irradiated mice and followed the fate of transplanted cells by Y-chimerism using PCR and fluorescence in situ hybridization (FISH) analysis. We report here that transplantation of murine muscle generate a major hematopoietic chimerism at the level of CFU-C, CFU-S, and terminally-differentiated cells in three generations of lethally irradiated mice followed up to 1 year after transplantation. This potential is totally abolished when muscle grafts were performed by the use of muscle from previously irradiated mice. As compared to marrow transplantation, muscle transplants were able to generate similar potencies to give rise to myeloid, T, B, and natural killer (NK) cells. Interestingly, marrow stem cells that have been generated in primary and then in secondary recipients were able to contribute efficiently to myofibers in the muscle tissue of tertiary recipients. Altogether, our data demonstrate that muscle-derived stem cells present a major hematopoietic repopulating ability with evidence of self-replication in vivo. They are radiation-sensitive and similar to marrow-derived stem cells in terms of their ability to generate multilineage hematopoiesis. Finally, our data demonstrate that muscle-derived hematopoietic stem cells do not lose their ability to contribute to myofiber generation after at least two rounds of serial transplantation, suggesting a potential that is probably equivalent to that generated by marrow transplantation.
The touch dome defines an epidermal niche specialized for mechanosensory signaling
Doucet, Yanne S.; Woo, Seung-Hyun; Ruiz, Marlon E.; Owens, David M.
2013-01-01
Summary In mammalian skin, Merkel cells are mechanoreceptor cells that are required for the perception of gentle touch. Recent evidence indicates that mature Merkel cells descend from the proliferative layer of skin epidermis; however, the stem cell niche for Merkel cell homeostasis has not been reported. Here, we provide the first genetic evidence for maintenance of mature Merkel cells during homeostasis by Krt17+ stem cells located in epidermal touch domes of hairy skin and in the tips of the rete ridges of glabrous skin. Lineage tracing analysis indicated that the entire pool of mature Merkel cells is turned over every 7–8 weeks in adult epidermis and that Krt17+ stem cells also maintain squamous differentiation in the touch dome and in glabrous skin. Finally, selective genetic ablation of Krt17+ touch dome keratinocytes indicates that these cells, and not mature Merkel cells, are primarily responsible for maintaining innervation of the Merkel cell-neurite complex. PMID:23727240
Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy
Bieback, Karen; Brinkmann, Irena
2010-01-01
Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop innovative therapeutics for organ failure. Utilizing stem and progenitor cells for organ replacement has been conducted for many years when performing hematopoietic stem cell transplantation. Since the first successful transplantation of umbilical cord blood to treat hematological malignancies, non-hematopoietic stem and progenitor cell populations have recently been identified within umbilical cord blood and other perinatal and fetal tissues. A cell population entitled mesenchymal stromal cells (MSCs) emerged as one of the most intensely studied as it subsumes a variety of capacities: MSCs can differentiate into various subtypes of the mesodermal lineage, they secrete a large array of trophic factors suitable of recruiting endogenous repair processes and they are immunomodulatory. Focusing on perinatal tissues to isolate MSCs, we will discuss some of the challenges associated with these cell types concentrating on concepts of isolation and expansion, the comparison with cells derived from other tissue sources, regarding phenotype and differentiation capacity and finally their therapeutic potential. PMID:21607124
Ni, Su-Jie; Zhao, Li-Qin; Wang, Xiao-Feng; Wu, Zhen-Hua; Hua, Rui-Xi; Wan, Chun-Hua; Zhang, Jie-Yun; Zhang, Xiao-Wei; Huang, Ming-Zhu; Gan, Lu; Sun, Hua-Lin; Dimri, Goberdhan P; Guo, Wei-Jian
2018-02-08
Chromobox protein homolog 7 (CBX7), a member of the polycomb group (PcG) family of proteins, is involved in the regulation of cell proliferation and cancer progression. PcG family members, such as BMI, Mel-18, and EZH2, are integral constituents of the polycomb repressive complexes (PRCs) and have been known to regulate cancer stem cell (CSC) phenotype. However, the role of other PRCs' constituents such as CBX7 in the regulation of CSC phenotype remains largely elusive. This study was to investigate the role of CBX7 in regulating stem cell-like properties of gastric cancer and the underlying mechanisms. Firstly, the role of CBX7 in regulating stem cell-like properties of gastric cancer was investigated using sphere formation, Western blot, and xenograft tumor assays. Next, RNA interference and ectopic CBX7 expression were employed to determine the impact of CBX7 on the expression of CSC marker proteins and CSC characteristics. The expression of CBX7, its downstream targets, and stem cell markers were analyzed in gastric stem cell spheres, common cancer cells, and gastric cancer tissues. Finally, the pathways by which CBX7 regulates stem cell-like properties of gastric cancer were explored. We found that CBX7, a constituent of the polycomb repressive complex 1 (PRC1), plays an important role in maintaining stem cell-like characteristics of gastric cancer cells via the activation of AKT pathway and the downregulation of p16. Spearman rank correlation analysis showed positive correlations among the expression of CBX7 and phospho-AKT (pAKT), stem cell markers OCT-4, and CD133 in gastric cancer tissues. In addition, CBX7 was found to upregulate microRNA-21 (miR-21) via the activation of AKT-NF-κB pathway, and miR-21 contributes to CBX7-mediated CSC characteristics. CBX7 positively regulates stem cell-like characteristics of gastric cancer cells by inhibiting p16 and activating AKT-NF-κB-miR-21 pathway.
Clonal analysis of lineage fate in native haematopoiesis.
Rodriguez-Fraticelli, Alejo E; Wolock, Samuel L; Weinreb, Caleb S; Panero, Riccardo; Patel, Sachin H; Jankovic, Maja; Sun, Jianlong; Calogero, Raffaele A; Klein, Allon M; Camargo, Fernando D
2018-01-11
Haematopoiesis, the process of mature blood and immune cell production, is functionally organized as a hierarchy, with self-renewing haematopoietic stem cells and multipotent progenitor cells sitting at the very top. Multiple models have been proposed as to what the earliest lineage choices are in these primitive haematopoietic compartments, the cellular intermediates, and the resulting lineage trees that emerge from them. Given that the bulk of studies addressing lineage outcomes have been performed in the context of haematopoietic transplantation, current models of lineage branching are more likely to represent roadmaps of lineage potential than native fate. Here we use transposon tagging to clonally trace the fates of progenitors and stem cells in unperturbed haematopoiesis. Our results describe a distinct clonal roadmap in which the megakaryocyte lineage arises largely independently of other haematopoietic fates. Our data, combined with single-cell RNA sequencing, identify a functional hierarchy of unilineage- and oligolineage-producing clones within the multipotent progenitor population. Finally, our results demonstrate that traditionally defined long-term haematopoietic stem cells are a significant source of megakaryocyte-restricted progenitors, suggesting that the megakaryocyte lineage is the predominant native fate of long-term haematopoietic stem cells. Our study provides evidence for a substantially revised roadmap for unperturbed haematopoiesis, and highlights unique properties of multipotent progenitors and haematopoietic stem cells in situ.
Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor.
Lemkine, G F; Raj, A; Alfama, G; Turque, N; Hassani, Z; Alegria-Prévot, O; Samarut, J; Levi, G; Demeneix, B A
2005-05-01
Thyroid hormones (TH) are essential for brain development. However, information on if and how this key endocrine factor affects adult neurogenesis is fragmentary. We thus investigated the effects of TH on proliferation and apoptosis of stem cells in the subventricular zone (SVZ), as well as on migration of transgene-tagged neuroblasts out of the stem cell niche. Hypothyroidism significantly reduced all three of these processes, inhibiting generation of new cells. To determine the mechanisms relaying TH action in the SVZ, we analyzed which receptor was implicated and whether the effects were played out directly at the level of the stem cell population. The alpha TH receptor (TRalpha), but not TRbeta, was found to be expressed in nestin positive progenitor cells of the SVZ. Further, use of TRalpha mutant mice showed TRalpha to be required to maintain full proliferative activity. Finally, a direct TH transcriptional effect, not mediated through other cell populations, was revealed by targeted gene transfer to stem cells in vivo. Indeed, TH directly modulated transcription from the c-myc promoter reporter construct containing a functional TH response element containing TRE but not from a mutated TRE sequence. We conclude that liganded-TRalpha is critical for neurogenesis in the adult mammalian brain.
Coordinated Regulation of Niche and Stem Cell Precursors by Hormonal Signaling
Gancz, Dana; Lengil, Tamar; Gilboa, Lilach
2011-01-01
Stem cells and their niches constitute units that act cooperatively to achieve adult body homeostasis. How such units form and whether stem cell and niche precursors might be coordinated already during organogenesis are unknown. In fruit flies, primordial germ cells (PGCs), the precursors of germ line stem cells (GSCs), and somatic niche precursors develop within the larval ovary. Together they form the 16–20 GSC units of the adult ovary. We show that ecdysone receptors are required to coordinate the development of niche and GSC precursors. At early third instar, ecdysone receptors repress precocious differentiation of both niches and PGCs. Early repression is required for correct morphogenesis of the ovary and for protecting future GSCs from differentiation. At mid-third instar, ecdysone signaling is required for niche formation. Finally, and concurrent with the initiation of wandering behavior, ecdysone signaling initiates PGC differentiation by allowing the expression of the differentiation gene bag of marbles in PGCs that are not protected by the newly formed niches. All the ovarian functions of ecdysone receptors are mediated through early repression, and late activation, of the ecdysone target gene broad. These results show that, similar to mammals, a brain-gland-gonad axis controls the initiation of oogenesis in insects. They further exemplify how a physiological cue coordinates the formation of a stem cell unit within an organ: it is required for niche establishment and to ensure that precursor cells to adult stem cells remain undifferentiated until the niches can accommodate them. Similar principles might govern the formation of additional stem cell units during organogenesis. PMID:22131903
Ramalho-Santos, João; Varum, Sandra; Amaral, Sandra; Mota, Paula C; Sousa, Ana Paula; Amaral, Alexandra
2009-01-01
Mitochondria are multitasking organelles involved in ATP synthesis, reactive oxygen species (ROS) production, calcium signalling and apoptosis; and mitochondrial defects are known to cause physiological dysfunction, including infertility. The goal of this review was to identify and discuss common themes in mitochondrial function related to mammalian reproduction. The scientific literature was searched for studies reporting on the several aspects of mitochondrial activity in mammalian testis, sperm, oocytes, early embryos and embryonic stem cells. ATP synthesis and ROS production are the most discussed aspects of mitochondrial function. Metabolic shifts from mitochondria-produced ATP to glycolysis occur at several stages, notably during gametogenesis and early embryo development, either reflecting developmental switches or substrate availability. The exact role of sperm mitochondria is especially controversial. Mitochondria-generated ROS function in signalling but are mostly described when produced under pathological conditions. Mitochondria-based calcium signalling is primarily important in embryo activation and embryonic stem cell differentiation. Besides pathologically triggered apoptosis, mitochondria participate in apoptotic events related to the regulation of spermatogonial cell number, as well as gamete, embryo and embryonic stem cell quality. Interestingly, data from knock-out (KO) mice is not always straightforward in terms of expected phenotypes. Finally, recent data suggests that mitochondrial activity can modulate embryonic stem cell pluripotency as well as differentiation into distinct cellular fates. Mitochondria-based events regulate different aspects of reproductive function, but these are not uniform throughout the several systems reviewed. Low mitochondrial activity seems a feature of 'stemness', being described in spermatogonia, early embryo, inner cell mass cells and embryonic stem cells.
Imaizumi, Keitaro; Iha, Momoe; Nishishita, Naoki; Kawamata, Shin; Nishikawa, Shinichi; Akuta, Teruo
2016-01-01
Protocols available for the cryopreservation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells are very inefficient and laborious compared to those for the cryopreservation of murine ES/iPS cells or other general cell lines. While the vitrification method may be adequate when working with small numbers of human ES/iPS cells, it requires special skills and is unsuitable when working with large cell numbers. Here, we describe a simple and efficient method for the cryopreservation of hES/hiPS cells that is based on a conventional slow freezing method that uses a combination of Pronase/EDTA for Stem™ and CP-5E™ [final concentrations: 6 % hydroxyethyl starch, 5 % DMSO, and 5 % ethylene glycol in saline]. CP-5E™ is highly effective for the cryopreservation of small cell clumps produced by hES/hiPS colony detachment in the presence of Pronase and EDTA (Pronase/EDTA for Stem™, a formulation containing multiple digestive enzymes from Streptomyces griseus). This novel method would be quite useful for large-scale hES/iPS cell banking for use in clinical applications.
Inada, Emi; Saitoh, Issei; Kubota, Naoko; Soda, Miki; Matsueda, Kazunari; Murakami, Tomoya; Sawami, Tadashi; Kagoshima, Akiko; Yamasaki, Youichi; Sato, Masahiro
2017-11-01
The aim of the present study was to prove that primary cells enriched with stem cells are more easily reprogrammed to generate induced pluripotent stem (iPS) cells than those with scarce numbers of stem cells. We surveyed the alkaline phosphatase (ALP) activity in five primarily-isolated human deciduous teeth-derived dental pulp cells (HDDPC) with cytochemical staining to examine the possible presence of stem cells. Next, the expression of stemness-specific factors, such as OCT(Octumer-binding transcription factor)3/4, NANOG, SOX2(SRY (sex determining region Y)-box 2), CD90, muscle segment homeodomain homeobox (MSX) 1, and MSX2, was assessed with a reverse transcription polymerase chain reaction method. Finally, these isolated HDDPC were transfected with plasmids carrying genes coding Yamanaka factors to determine whether these cells could be reprogrammed to generate iPS cells. Of the five primarily-isolated HDDPC, two (HDDPC-1 and -5) exhibited higher degrees of ALP activity. OCT-3/4 expression was also prominent in those two lines. Furthermore, these two lines proliferated faster than the other three lines. The transfection of HDDPC with Yamanaka factors resulted in the generation of iPS cells from HDDPC-1 and -5. The number of cells with the stemness property of HDDPC differs among individuals, which suggests that HDDPC showing an increased expression of both ALP and OCT-3/4 can be more easily reprogrammed to generate iPS cells after the forced expression of reprogramming factors. © 2016 John Wiley & Sons Australia, Ltd.
Ostrovidov, Serge; Shi, Xuetao; Sadeghian, Ramin Banan; Salehi, Sahar; Fujie, Toshinori; Bae, Hojae; Ramalingam, Murugan; Khademhosseini, Ali
2015-12-01
Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.
Mills, Jason C.; Sansom, Owen J.
2016-01-01
It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, post-mitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the longterm maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like stomach and intestine, reprogramming may allow mature cells to serve as reserve (“quiescent”) stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, post-mitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferations in stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. PMID:26175494
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de; Navarrete Santos, Anne; Navarrete Santos, Alexander
Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study,more » we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.« less
Ames, Kristina; Da Cunha, Dayse S; Gonzalez, Brenda; Konta, Marina; Lin, Feng; Shechter, Gabriel; Starikov, Lev; Wong, Sara; Bülow, Hannes E; Meléndez, Alicia
2017-03-20
The decision of stem cells to proliferate and differentiate is finely controlled. The Caenorhabditis elegans germline provides a tractable system for studying the mechanisms that control stem cell proliferation and homeostasis [1-4]. Autophagy is a conserved cellular recycling process crucial for cellular homeostasis in many different contexts [5], but its function in germline stem cell proliferation remains poorly understood. Here, we describe a function for autophagy in germline stem cell proliferation. We found that autophagy genes such as bec-1/BECN1/Beclin1, atg-16.2/ATG16L, atg-18/WIPI1/2, and atg-7/ATG7 are required for the late larval expansion of germline stem cell progenitors in the C. elegans gonad. We further show that BEC-1/BECN1/Beclin1 acts independently of the GLP-1/Notch or DAF-7/TGF-β pathways but together with the DAF-2/insulin IGF-1 receptor (IIR) signaling pathway to promote germline stem cell proliferation. Similar to DAF-2/IIR, BEC-1/BECN1/Beclin1, ATG-18/WIPI1/2, and ATG-16.2/ATG16L all promote cell-cycle progression and are negatively regulated by the phosphatase and tensin homolog DAF-18/PTEN. However, whereas BEC-1/BECN1/Beclin1 acts through the transcriptional regulator SKN-1/Nrf1, ATG-18/WIPI1/2 and ATG-16.2/ATG16L exert their function through the DAF-16/FOXO transcription factor. In contrast, ATG-7 functions in concert with the DAF-7/TGF-β pathway to promote germline proliferation and is not required for cell-cycle progression. Finally, we report that BEC-1/BECN1/Beclin1 functions non-cell-autonomously to facilitate cell-cycle progression and stem cell proliferation. Our findings demonstrate a novel non-autonomous role for BEC-1/BECN1/Beclin1 in the control of stem cell proliferation and cell-cycle progression, which may have implications for the understanding and development of therapies against malignant cell growth in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Integrating human stem cell expansion and neuronal differentiation in bioreactors
Serra, Margarida; Brito, Catarina; Costa, Eunice M; Sousa, Marcos FQ; Alves, Paula M
2009-01-01
Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors. PMID:19772662
Making Blood: The Haematopoietic Niche throughout Ontogeny
Al-Drees, Mohammad A.; Yeo, Jia Hao; Boumelhem, Badwi B.; Antas, Veronica I.; Brigden, Kurt W. L.; Colonne, Chanukya K.; Fraser, Stuart T.
2015-01-01
Approximately one-quarter of all cells in the adult human body are blood cells. The haematopoietic system is therefore massive in scale and requires exquisite regulation to be maintained under homeostatic conditions. It must also be able to respond when needed, such as during infection or following blood loss, to produce more blood cells. Supporting cells serve to maintain haematopoietic stem and progenitor cells during homeostatic and pathological conditions. This coalition of supportive cell types, organised in specific tissues, is termed the haematopoietic niche. Haematopoietic stem and progenitor cells are generated in a number of distinct locations during mammalian embryogenesis. These stem and progenitor cells migrate to a variety of anatomical locations through the conceptus until finally homing to the bone marrow shortly before birth. Under stress, extramedullary haematopoiesis can take place in regions that are typically lacking in blood-producing activity. Our aim in this review is to examine blood production throughout the embryo and adult, under normal and pathological conditions, to identify commonalities and distinctions between each niche. A clearer understanding of the mechanism underlying each haematopoietic niche can be applied to improving ex vivo cultures of haematopoietic stem cells and potentially lead to new directions for transplantation medicine. PMID:26113865
Ying, Xue; Wang, Yahua; Xu, Haolun; Li, Xia; Yan, Helu; Tang, Hui; Wen, Chen; Li, Yingchun
2017-01-01
Brain gliomas, one of the most fatal tumors to human, severely threat the health and life of human. They are capable of extremely strong invasion ability. And invasive glioma cells could rapidly penetrate into normal brain tissues and break them. We prepared a kind of functional liposomes, which could be transported acrossing the blood-brain barrier (BBB) and afterwards induce the apoptosis of glioma stem cells. In this research, we chose ursolic acids (UA) as an anti-cancer drug to inhibit the growth of C6 glioma cells, while epigallocatechin 3-gallate(EGCG) as the agent that could induce the apoptosis of C6 glioma stem cells. With the targeting ability of MAN, the liposomes could be delivered through the BBB and finally were concentrated on the brain gliomas. Cell experiments in vitro demonstrated that the functional liposomes were able to significantly enhance the anti-cancer effects of the drugs due to promoting the apoptosis and endocytosis effects of C6 glioma cells and C6 glioma stem cells at the same time. Furthermore, the evaluations through animal models showed that the drugs could obviously prolong the survival period of brain glioma-bearing mice and inhibit the tumor growth. Consequently, multifunctional targeting ursolic acids liposomes could potentially improve the therapeutic effects on C6 glioma cells and C6 glioma stem cells. PMID:28969057
The NOTCH Ligand JAG1 Regulates GDNF Expression in Sertoli Cells
Garcia, Thomas X.; Parekh, Parag; Gandhi, Pooja; Sinha, Krishna
2017-01-01
In the seminiferous epithelium of the testis, Sertoli cells are key niche cells directing proliferation and differentiation of spermatogonial stem cells (SSCs) into spermatozoa. Sertoli cells produce glial cell line-derived neurotrophic factor (GDNF), which is essential for SSC self-renewal and progenitor expansion. While the role of GDNF in the testis stem cell niche is established, little is known about how this factor is regulated. Our previous studies on NOTCH activity in Sertoli cells demonstrated a role of this pathway in limiting stem/progenitor cell numbers, thus ultimately downregulating sperm cell output. In this study we demonstrate through a double-mutant mouse model that NOTCH signaling in Sertoli cells functions solely through the canonical pathway. Further, we demonstrate through Dual luciferase assay and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) analysis that the NOTCH targets HES1 and HEY1, which are transcriptional repressors, directly downregulate GDNF expression by binding to the Gdnf promoter, thus antagonizing the effects of FSH/cAMP. Finally, we demonstrate that testicular stem/progenitors cells are activating NOTCH signaling in Sertoli cells in vivo and in vitro through the NOTCH ligand JAG1 at their surface, indicating that these cells may ensure their own homeostasis through negative feedback regulation. PMID:28051360
Periodontal Ligament Stem Cells: Current Status, Concerns, and Future Prospects
Zhu, Wenjun; Liang, Min
2015-01-01
Periodontal ligament stem cells (PDLSCs), which reside in the perivascular space of the periodontium, possess characteristics of mesenchymal stem cells and are a promising tool for periodontal regeneration. Recently, great progress has been made in PDLSC transplantation. Investigators are attempting to maximize the proliferation and differentiation potential of PDLSCs by modifying culture conditions and applying growth factors. Nevertheless, problems remain. First, incomparability among different studies must be minimized by establishing standard guidelines for culture and identification of PDLSCs. Notably, attention should be paid to the biological safety of PDLSC transplantation. The present review updates the latest findings regarding PDLSCs and discusses standard criteria for culture and identification of PDLSCs. Finally, the review calls for careful consideration of PDLSC transplantation safety. PMID:25861283
Sanz-Ruiz, Ricardo; Casado Plasencia, Ana; Borlado, Luis R; Fernández-Santos, María Eugenia; Al-Daccak, Reem; Claus, Piet; Palacios, Itziar; Sádaba, Rafael; Charron, Dominique; Bogaert, Jan; Mulet, Miguel; Yotti, Raquel; Gilaberte, Immaculada; Bernad, Antonio; Bermejo, Javier; Janssens, Stefan; Fernández-Avilés, Franciso
2017-06-23
Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398. © 2017 American Heart Association, Inc.
Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia
Mosna, Federico
2016-01-01
Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease. PMID:26880987
Cell differentiation: therapeutical challenges in diabetes.
Roche, Enrique; Vicente-Salar, Nestor; Arribas, Maribel; Paredes, Beatriz
2012-01-01
Stem cells, derived from either embryonic or adult tissues, are considered to be potential sources of insulin-secreting cells to be transplanted into type 1 and advanced stages of type 2 diabetic patients. Many laboratories have considered this possibility, resulting in a large amount of published protocols, with a wide degree of complexity among them. Our group was the first to report that it was possible to obtain insulin-secreting cells from mouse embryonic stem cells, proving the feasibility of this new challenge. The same observation was immediately reported using human embryonic stem cells. However, the resulting cell product was not properly characterised, affecting the reproducibility of the protocol by other groups. A more elaborated protocol was developed by Lumelsky and co-workers, demonstrating that neuroectodermal cells could be an alternative source for insulin-producing cells. However, the resulting cells of this protocol produced low amounts of the hormone. This aimed other groups to perform key changes in order to improve the insulin content of the resulting cells. Recently, Baetge's group has published a new protocol based on the knowledge accumulated in pancreatic development. In this protocol, human embryonic stem cells were differentiated into islet-like structures through a five step protocol, emulating the key steps during embryonic development of the endocrine pancreas. The final cell product, however, seemed to be in an immature state, thus further improvement is required. Despite this drawback, the protocol represents the culmination of work performed by different groups and offers new research challenges for the investigators in this exciting field. Concerning adult stem cells, the possibility of identifying pancreatic precursors or of reprogramming extrapancreatic derived cells are key possibilities that may circumvent the problems that appear when using embryonic stem cells, such as immune rejection and tumour formation.
Kim, Eunjoo; Davidson, Laurie A; Zoh, Roger S; Hensel, Martha E; Salinas, Michael L; Patil, Bhimanagouda S; Jayaprakasha, Guddadarangavvanahally K; Callaway, Evelyn S; Allred, Clinton D; Turner, Nancy D; Weeks, Brad R; Chapkin, Robert S
2016-11-10
The majority of colon tumors are driven by aberrant Wnt signaling in intestinal stem cells, which mediates an efficient route toward initiating intestinal cancer. Natural lipophilic polyphenols and long-chain polyunsaturated fatty acids (PUFAs) generally suppress Wnt- and NF-κB- (nuclear factor-κ light-chain enhancer of activated B-cell) related pathways. However, the effects of these extrinsic agents on colonic leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5 + ) stem cells, the cells of origin of colon cancer, have not been documented to date. Therefore, we examined the effect of n-3 PUFA and polyphenol (curcumin) combination on Lgr5 + stem cells during tumor initiation and progression in the colon compared with an n-6 PUFA-enriched control diet. Lgr5-EGFP-IRES- creERT2 knock-in mice were fed diets containing n-6 PUFA (control), n-3 PUFA, n-6 PUFA+curcumin or n-3 PUFA+curcumin for 3 weeks, followed by 6 azoxymethane (AOM) injections, and terminated 17 weeks after the last injection. To further elucidate the effects of the dietary bioactives at the tumor initiation stage, Lgr5 + stem cells were also assessed at 12 and 24 h post AOM injection. Only n-3 PUFA+curcumin feeding reduced nuclear β-catenin in aberrant crypt foci (by threefold) compared with control at the progression time point. n-3 PUFA+curcumin synergistically increased targeted apoptosis in DNA-damaged Lgr5 + stem cells by 4.5-fold compared with control at 12 h and maximally reduced damaged Lgr5 + stem cells at 24 h, down to the level observed in saline-treated mice. Finally, RNAseq analysis indicated that p53 signaling in Lgr5 + stem cells from mice exposed to AOM was uniquely upregulated only following n-3 PUFA+curcumin cotreatment. These novel findings demonstrate that Lgr5 + stem cells are uniquely responsive to external dietary cues following the induction of DNA damage, providing a therapeutic strategy for eliminating damaged Lgr5 + stem cells to reduce colon cancer initiation.
Kim, Eunjoo; Davidson, Laurie A; Zoh, Roger S; Hensel, Martha E; Salinas, Michael L; Patil, Bhimanagouda S; Jayaprakasha, Guddadarangavvanahally K; Callaway, Evelyn S; Allred, Clinton D; Turner, Nancy D; Weeks, Brad R; Chapkin, Robert S
2016-01-01
The majority of colon tumors are driven by aberrant Wnt signaling in intestinal stem cells, which mediates an efficient route toward initiating intestinal cancer. Natural lipophilic polyphenols and long-chain polyunsaturated fatty acids (PUFAs) generally suppress Wnt- and NF-κB- (nuclear factor-κ light-chain enhancer of activated B-cell) related pathways. However, the effects of these extrinsic agents on colonic leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) stem cells, the cells of origin of colon cancer, have not been documented to date. Therefore, we examined the effect of n-3 PUFA and polyphenol (curcumin) combination on Lgr5+ stem cells during tumor initiation and progression in the colon compared with an n-6 PUFA-enriched control diet. Lgr5-EGFP-IRES-creERT2 knock-in mice were fed diets containing n-6 PUFA (control), n-3 PUFA, n-6 PUFA+curcumin or n-3 PUFA+curcumin for 3 weeks, followed by 6 azoxymethane (AOM) injections, and terminated 17 weeks after the last injection. To further elucidate the effects of the dietary bioactives at the tumor initiation stage, Lgr5+ stem cells were also assessed at 12 and 24 h post AOM injection. Only n-3 PUFA+curcumin feeding reduced nuclear β-catenin in aberrant crypt foci (by threefold) compared with control at the progression time point. n-3 PUFA+curcumin synergistically increased targeted apoptosis in DNA-damaged Lgr5+ stem cells by 4.5-fold compared with control at 12 h and maximally reduced damaged Lgr5+ stem cells at 24 h, down to the level observed in saline-treated mice. Finally, RNAseq analysis indicated that p53 signaling in Lgr5+ stem cells from mice exposed to AOM was uniquely upregulated only following n-3 PUFA+curcumin cotreatment. These novel findings demonstrate that Lgr5+ stem cells are uniquely responsive to external dietary cues following the induction of DNA damage, providing a therapeutic strategy for eliminating damaged Lgr5+ stem cells to reduce colon cancer initiation. PMID:27831561
Costantino, Vincenzo; Curci, Claudia; Cox, Sharon N.; De Palma, Giuseppe; Schena, Francesco P.
2013-01-01
Adult renal progenitor cells (ARPCs) were recently identified in the cortex of the renal parenchyma and it was demonstrated that they were positive for PAX2, CD133, CD24 and exhibited multipotent differentiation ability. Recent studies on stem cells indicated that microRNAs (miRNAs), a class of noncoding small RNAs that participate in the regulation of gene expression, may play a key role in stem cell self-renewal and differentiation. Distinct sets of miRNAs are specifically expressed in pluripotent stem cells but not in adult tissues, suggesting a role for miRNAs in stem cell self-renewal. We compared miRNA expression profiles of ARPCs with that of mesenchymal stem cells (MSCs) and renal proximal tubular cells (RPTECs) finding distinct sets of miRNAs that were specifically expressed in ARPCs. In particular, miR-1915 and miR-1225-5p regulated the expression of important markers of renal progenitors, such as CD133 and PAX2, and important genes involved in the repair mechanisms of ARPCs, such as TLR2. We demonstrated that the expression of both the renal stem cell markers CD133 and PAX2 depends on lower miR-1915 levels and that the increase of miR-1915 levels improved capacity of ARPCs to differentiate into adipocyte-like and epithelial-like cells. Finally, we found that the low levels of miR-1225-5p were responsible for high TLR2 expression in ARPCs. Therefore, together, miR-1915 and miR-1225-5p seem to regulate important traits of renal progenitors: the stemness and the repair capacity. PMID:23861881
Oliveira, J Miguel; Carvalho, Luisa; Silva-Correia, Joana; Vieira, Sílvia; Majchrzak, Malgorzata; Lukomska, Barbara; Stanaszek, Luiza; Strymecka, Paulina; Malysz-Cymborska, Izabela; Golubczyk, Dominika; Kalkowski, Lukasz; Reis, Rui L; Janowski, Miroslaw; Walczak, Piotr
2018-01-01
The prospects for cell replacement in spinal cord diseases are impeded by inefficient stem cell delivery. The deep location of the spinal cord and complex surgical access, as well as densely packed vital structures, question the feasibility of the widespread use of multiple spinal cord punctures to inject stem cells. Disorders characterized by disseminated pathology are particularly appealing for the distribution of cells globally throughout the spinal cord in a minimally invasive fashion. The intrathecal space, with access to a relatively large surface area along the spinal cord, is an attractive route for global stem cell delivery, and, indeed, is highly promising, but the success of this approach relies on the ability of cells (1) to survive in the cerebrospinal fluid (CSF), (2) to adhere to the spinal cord surface, and (3) to migrate, ultimately, into the parenchyma. Intrathecal infusion of cell suspension, however, has been insufficient and we postulate that embedding transplanted cells within hydrogel scaffolds will facilitate reaching these goals. In this review, we focus on practical considerations that render the intrathecal approach clinically viable, and then discuss the characteristics of various biomaterials that are suitable to serve as scaffolds. We also propose strategies to modulate the local microenvironment with nanoparticle carriers to improve the functionality of cellular grafts. Finally, we provide an overview of imaging modalities for in vivo monitoring and characterization of biomaterials and stem cells. This comprehensive review should serve as a guide for those planning preclinical and clinical studies on intrathecal stem cell transplantation.
Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu
2014-01-01
During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623
Kim, Bo-Bae; Kim, Minji; Park, Yun-Hee; Ko, Youngkyung; Park, Jun-Beom
2017-06-01
Objective Next-generation sequencing was performed to evaluate the effects of short-term application of dexamethasone on human gingiva-derived mesenchymal stem cells. Methods Human gingiva-derived stem cells were treated with a final concentration of 10 -7 M dexamethasone and the same concentration of vehicle control. This was followed by mRNA sequencing and data analysis, gene ontology and pathway analysis, quantitative real-time polymerase chain reaction of mRNA, and western blot analysis of RUNX2 and β-catenin. Results In total, 26,364 mRNAs were differentially expressed. Comparison of the results of dexamethasone versus control at 2 hours revealed that 7 mRNAs were upregulated and 25 mRNAs were downregulated. The application of dexamethasone reduced the expression of RUNX2 and β-catenin in human gingiva-derived mesenchymal stem cells. Conclusion The effects of dexamethasone on stem cells were evaluated with mRNA sequencing, and validation of the expression was performed with qualitative real-time polymerase chain reaction and western blot analysis. The results of this study can provide new insights into the role of mRNA sequencing in maxillofacial areas.
Stem cell therapy for the systemic right ventricle.
Si, Ming-Sing; Ohye, Richard G
2017-11-01
In specific forms of congenital heart defects and pulmonary hypertension, the right ventricle (RV) is exposed to systemic levels of pressure overload. The RV is prone to failure in these patients because of its vulnerability to chronic pressure overload. As patients with a systemic RV reach adulthood, an emerging epidemic of RV failure has become evident. Medical therapies proven for LV failure are ineffective in treating RV failure. Areas covered: In this review, the pathophysiology of the failing RV under pressure overload is discussed, with specific emphasis on the pivotal roles of angiogenesis and oxidative stress. Studies investigating the ability of stem cell therapy to improve angiogenesis and mitigate oxidative stress in the setting of pressure overload are then reviewed. Finally, clinical trials utilizing stem cell therapy to prevent RV failure under pressure overload in congenital heart disease will be discussed. Expert commentary: Although considerable hurdles remain before their mainstream clinical implementation, stem cell therapy possesses revolutionary potential in the treatment of patients with failing systemic RVs who currently have very limited long-term treatment options. Rigorous clinical trials of stem cell therapy for RV failure that target well-defined mechanisms will ensure success adoption of this therapeutic strategy.
Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance
West, John D; Dorà, Natalie J; Collinson, J Martin
2015-01-01
In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed by the LESC hypothesis. PMID:25815115
Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga
2015-01-01
Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. Copyright © 2015. Published by Elsevier B.V.
Wang, Min-Cong; Jiao, Min; Wu, Tao; Jing, Li; Cui, Jie; Guo, Hui; Tian, Tao; Ruan, Zhi-ping; Wei, Yong-Chang; Jiang, Li-Li; Sun, Hai-Feng; Huang, Lan-Xuan; Nan, Ke-Jun; Li, Chun-Li
2016-01-01
Cancer stem cell theory indicates cancer stem cells are the key to promote tumor invasion and metastasis. Studies showed that BMI-1 could promote self-renew, differentiation and tumor formation of CSCs and invasion/metastasis of human cancer. However, whether BMI-1 could regulate invasion and metastasis ability of CSCs is still unclear. In our study, we found that up-regulated expression of BMI-1 was associated with tumor invasion, metastasis and poor survival of pancreatic cancer patients. CD133+ cells were obtained by using magnetic cell sorting and identified of CSCs properties such as self-renew, multi-differentiation and tumor formation ability. Then, we found that BMI-1 expression was up-regulated in pancreatic cancer stem cells. Knockdown of BMI-1 expression attenuated invasion ability of pancreatic cancer stem cells in Transwell system and liver metastasis capacity in nude mice which were injected CSCs through the caudal vein. We are the first to reveal that BMI-1 could promote invasion and metastasis ability of pancreatic cancer stem cells. Finally, we identified that BMI-1 expression activating PI3K/AKT singing pathway by negative regulating PTEN was the main mechanism of promoting invasion and metastasis ability of pancreatic CSCs. In summary, our findings indicate that BMI-1 could be used as the therapeutic target to inhibiting CSCs-mediated pancreatic cancer metastasis. PMID:26840020
Reprogramming to a pluripotent state modifies mesenchymal stem cell resistance to oxidative stress
Asensi, Karina D; Fortunato, Rodrigo S; dos Santos, Danúbia S; Pacheco, Thaísa S; de Rezende, Danielle F; Rodrigues, Deivid C; Mesquita, Fernanda C P; Kasai-Brunswick, Tais H; de Carvalho, Antonio C Campos; Carvalho, Denise P; Carvalho, Adriana B; Goldenberg, Regina C dos S
2014-01-01
Properties of induced pluripotent stem cells (iPSC) have been extensively studied since their first derivation in 2006. However, the modification in reactive oxygen species (ROS) production and detoxification caused by reprogramming still needs to be further elucidated. The objective of this study was to compare the response of iPSC generated from menstrual blood–derived mesenchymal stem cells (mb-iPSC), embryonic stem cells (H9) and adult menstrual blood–derived mesenchymal stem cells (mbMSC) to ROS exposure and investigate the effects of reprogramming on cellular oxidative stress (OS). mbMSC were extremely resistant to ROS exposure, however, mb-iPSC were 10-fold less resistant to H2O2, which was very similar to embryonic stem cell sensitivity. Extracellular production of ROS was also similar in mb-iPSC and H9 and almost threefold lower than in mbMSC. Furthermore, intracellular amounts of ROS were higher in mb-iPSC and H9 when compared with mbMSC. As the ability to metabolize ROS is related to antioxidant enzymes, we analysed enzyme activities in these cell types. Catalase and superoxide dismutase activities were reduced in mb-iPSC and H9 when compared with mbMSC. Finally, cell adhesion under OS conditions was impaired in mb-iPSC when compared with mbMSC, albeit similar to H9. Thus, reprogramming leads to profound modifications in extracellular ROS production accompanied by loss of the ability to handle OS. PMID:24528612
Sebrango, Ana; Vicuña, Isabel; de Laiglesia, Almudena; Millán, Isabel; Bautista, Guiomar; Martín-Donaire, Trinidad; Regidor, Carmen; Cabrera, Rafael; Fernandez, Manuel N
2010-06-01
We describe results of the strategy, developed by our group, of co-infusion of mobilized haematopoietic stem cells as a support for single-unit unrelated cord blood transplant (dual CB/TPD-MHSC transplants) for treatment of haematological malignancies in adults, and a comparative analysis of results obtained using this strategy and transplants performed with mobilized haematopoietic stem cells from related HLA-identical donors (RTD) for treatment of adults with acute leukaemia and myelodysplastic syndromes. Our data show that the dual CB/TPD-MHSC transplant strategy results in periods of post-transplant neutropenia, final rates of full donor chimerism and transplant-related mortality rates comparable to those of the RTD. Final survival outcomes are comparable in adults transplanted because of acute leukaemia, with different incidences of the complications that most influence these: a higher incidence of infections related to late recovery of protective immunity dependent on T cell functions, and a lower incidence of serious acute graft-versus-host disease and relapses. Recent advances in cord blood transplant techniques allow allogeneic haematopoietic stem cell transplantation (HSCT) to be a viable option for almost every patient who may benefit from this therapeutic approach. Development of innovative strategies to improve the post-transplant recovery of T cells function is currently the main challenge to further improving the possibilities of unrelated cord blood transplantation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cell and tissue engineering and clinical applications: an overview.
Stoltz, J F; Bensoussan, D; Decot, V; Ciree, A; Netter, P; Gillet, P
2006-01-01
Most human tissues do not regenerate spontaneously; this is why cell therapies and tissue engineering are promising alternatives. The principle is simple: cells are collected in a patient and introduced in the damaged tissue or in a tridimentional porous support and harvested in a bioreactor in which the physico-chemical and mechanical parameters are controlled. Once the tissues (or the cells) are mature they may be implanted. In parallel, the development of biotherapies with stem cells is a field of research in turmoil given the hopes for clinical applications that it brings up. Embryonic stem cells are potentially more interesting since they are totipotent, but they can only be obtained at the very early stages of the embryo. The potential of adult stem cells is limited but isolating them induces no ethical problem and it has been known for more than 40 years that bone marrow does possess the regenerating functions of blood cells. Finally, the properties of foetal stem cells (blood cells from the umbilical cord) are forerunners of the haematopoietic system but the ability of these cells to participate to the formation of other tissues is more problematic. Another field for therapeutic research is that of dendritic cells, antigen presenting cells. Their efficiency in cell therapy relies on the initiation of specific immune responses. They represent a promising tool in the development of a protective immune response against antigens which the host is usually unable to generate an efficient response (melanomas, breast against cancer, prostate cancer, ..). Finally, gene therapy, has been nourishing high hopes but few clinical applications can be envisaged in the short term, although potential applications are multiple (haemophilia, myopathies, ..). A large number of clinical areas stand as candidates for clinical applications: leukaemia and cancers, cardiac insufficiency and vascular diseases, cartilage and bone repair, ligaments and tendons, liver diseases, ophthalmology, diabetes, neurological diseases (Parkinson, Huntington disease, ..), .. Various aspects of this new regenerative therapeutic medicine are developed in this work.
Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru
2014-05-01
The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.
Stem cell therapy for retinal diseases
Garcia, José Mauricio; Mendonça, Luisa; Brant, Rodrigo; Abud, Murilo; Regatieri, Caio; Diniz, Bruno
2015-01-01
In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions. PMID:25621115
Assessment of Regenerative Capacity in the Dolphin
2012-06-30
markers and stem cell related genes. Cultured cells were also cryogenically frozen for autologous and allogeneic cell therapy treatment of dolphin skin...Regenerative Cells, Marine Mammals, Atlantic Bottlenose Dolphin, Autologous Cell Therapy , Allogeneic Cell Therapy 16. SECURITY CLASSIFICATION OF...cultured ASCs will be used as autologous cellular therapy for dolphin skin wounds. Finally, the cells will be tested for immunogenicity to develop an
[Therapeutic cloning. Biology, perspectives and alternatives].
Maddox-Hyttel, Poul
2003-02-24
Certain diseases are caused by or cause irreversible loss of cells and may in the future be treated by cell-based therapies where spare cells are introduced into the body. Therapeutic cloning constitutes a scientifically and ethically challenging route to the generation of autologous patient specific spare cells: Stem cells for subsequent differentiation and transplantation are isolated from one week old embryos, which are produced by cloning by nuclear transfer from normal cells retrieved from a patient. Research in therapeutic cloning should be pursued in line with alternative strategies for obtaining stem cells. Finally, the molecular biology of cloning by nuclear transfer may hold the key to understanding trans-differentiation, which ultimately may allow for de-differentiation and subsequent re-differentiation of adult somatic cells for therapeutic purposes.
In vitro bioactivity of Bioroot™ RCS, via A4 mouse pulpal stem cells.
Dimitrova-Nakov, Sasha; Uzunoglu, Emel; Ardila-Osorio, Hector; Baudry, Anne; Richard, Gilles; Kellermann, Odile; Goldberg, Michel
2015-11-01
To evaluate the biocompatibility and osteoinductive properties of Bioroot™ RCS (BR, Septodont, France) compared to Kerr's Pulp Canal Sealer™ (PCS, Kerr, Italy) using the mouse pulp-derived stem cell line A4, which have an osteo/odontogenic potential in vitro and contribute to efficient bone repair in vivo. A4 cells were cultured at the stem cell stage in the presence of solid disks of BR or PCS, whereas untreated A4 cells were used as control. After 3, 7, 10 days of direct contact with the sealers, cell viability was quantified using Trypan Blue exclusion assay. Immunolabelings were performed to assess the expression of odontoblast markers i.e. type 1 collagen, DMP1 or BSP. Finally, sealer-treated cells were induced toward osteo/odontogenic differentiation to assess the impact of the sealers on mineralization by Von Kossa staining. Statistical significance was evaluated by one-way analysis of variance and t-test (p<0.05). BR did not alter the viability and morphology of A4 pulpal cells compared to control group (p>0.05); however, living cell percentage of PCS was significantly lower compared to control and BR groups (p<0.05). BR preserved the intrinsic ability of A4 cells to express type 1 collagen, DMP1 or BSP at the stem cell stage. It did not alter the integrity of collagen fibers surrounding the cells and promoted overexpression of BSP and DMP1 at the cell surface. In contrast to PCS, BR did not compromise the mineralization potential of pulpal A4 stem cells. Bioroot™ RCS was not as cytotoxic as PCS. It did not recruit the pulpal stem cells toward differentiation but preserve their osteo-odontogenic intrinsic properties. Bioroot™ RCS might provide more suitable environment to induce stem cells for hard tissue deposition. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Reconciling the effects of inflammatory cytokines on mesenchymal cell osteogenic differentiation
Deshpande, Sagar; James, Aaron W.; Blough, Jordan; Donneys, Alexis; Wang, Stewart C.; Cederna, Paul S.; Buchman, Steven R.; Levi, Benjamin
2015-01-01
Therapies using mesenchymal stem cells are a popular current avenue for development and utilization, especially in the fields of de novo tissue engineering (Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000;164:247.) or tissue regeneration after physical injury (Kitoh H, Kitakoji T, Tsuchiya H, et al. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone 2004;35:892; Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med 2003;136:192; Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994;56:283.). The osteogenic potential of these cells is of particular interest, given their recent usage for the closure of critical-sized bone defects and other nonhealing bone scenarios such as a nonunion. Recent literature suggests that inflammatory cytokines can significantly impact the osteogenic potential of these cells. A review of relevant, recent literature is presented regarding the impact of the inflammatory cascade on the osteogenic differentiation of these cells and how this varies across species. Finally, we identify areas of conflicting or absent evidence regarding the behavior of mesenchymal stem cells in response to inflammatory cytokines. PMID:23972621
The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Peter W.; Hosper, Nynke A.; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen
Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This responsemore » was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.« less
García-Cruz, Karla V; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R
2016-07-29
Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Melve, Guro Kristin; Ersvaer, Elisabeth; Akkök, Çiğdem Akalın; Ahmed, Aymen Bushra; Kristoffersen, Einar K.; Hervig, Tor; Bruserud, Øystein
2016-01-01
Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. The frequency of severe graft versus host disease is similar for patients receiving peripheral blood and bone marrow allografts, even though the blood grafts contain more T cells, indicating mobilization-related immunoregulatory effects. The regulatory phosphoprotein osteopontin was quantified in plasma samples from healthy donors before G-CSF treatment, after four days of treatment immediately before and after leukapheresis, and 18–24 h after apheresis. Myeloma patients received chemotherapy, combined with G-CSF, for stem cell mobilization and plasma samples were prepared immediately before, immediately after, and 18–24 h after leukapheresis. G-CSF treatment of healthy stem cell donors increased plasma osteopontin levels, and a further increase was seen immediately after leukapheresis. The pre-apheresis levels were also increased in myeloma patients compared to healthy individuals. Finally, in vivo G-CSF exposure did not alter T cell expression of osteopontin ligand CD44, and in vitro osteopontin exposure induced only small increases in anti-CD3- and anti-CD28-stimulated T cell proliferation. G-CSF treatment, followed by leukapheresis, can increase systemic osteopontin levels, and this effect may contribute to the immunomodulatory effects of G-CSF treatment. PMID:27447610
USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance
Lee, Jin-Ku; Chang, Nakho; Yoon, Yeup; Yang, Heekyoung; Cho, Heejin; Kim, Eunhee; Shin, Yongjae; Kang, Wonyoung; Oh, Young Taek; Mun, Gyeong In; Joo, Kyeung Min; Nam, Do-Hyun; Lee, Jeongwu
2016-01-01
Background Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. Methods We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. Results USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. Conclusion USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM. PMID:26032834
Maguire, Eithne Margaret; Xiao, Qingzhong; Xu, Qingbo
2017-11-01
Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell-derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell-derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell-derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease. © 2017 American Heart Association, Inc.
Barckhausen, Christina; Rice, Brent; Baila, Stefano; Sensebé, Luc; Schrezenmeier, Hubert; Nold, Philipp; Hackstein, Holger; Rojewski, Markus Thomas
2016-01-01
This chapter describes a method for GMP-compliant expansion of human mesenchymal stromal/stem cells (hMSC) from bone marrow aspirates, using the Quantum(®) Cell Expansion System from Terumo BCT. The Quantum system is a functionally closed, automated hollow fiber bioreactor system designed to reproducibly grow cells in either GMP or research laboratory environments. The chapter includes protocols for preparation of media, setup of the Quantum system, coating of the hollow fiber bioreactor, as well as loading, feeding, and harvesting of cells. We suggest a panel of quality controls for the starting material, the interim product, as well as the final product.
The variable role of SIRT1 in the maintenance and differentiation of mesenchymal stem cells.
Zainabadi, Kayvan
2018-04-01
SIRT1 is an NAD + -dependent deacetylase that acts as a nutrient sensitive regulator of longevity. SIRT1 also acts as a key regulator of mesenchymal stem cells (MSCs), adult stem cells that give rise to tissues such as bone, fat, muscle and cartilage. This review focuses on how SIRT1 regulates the self-renewal, multipotency and differentiation of MSCs. The variable role of SIRT1 in promoting the differentiation of MSCs towards certain lineages, while repressing others, will be examined within the broader context of aging, calorie restriction, and regenerative medicine. Finally, recent animal and human studies will be highlighted which paint an overall salutary role for SIRT1 in protecting MSCs (and resulting tissues) from age-related atrophy and dysfunction.
Energy Metabolism in Human Pluripotent Stem Cells and Their Differentiated Counterparts
Moura, Michelle B.; Momcilovic, Olga; Easley, Charles A.; Ramalho-Santos, João; Van Houten, Bennett; Schatten, Gerald
2011-01-01
Background Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH). PMID:21698063
Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors.
Bar-Nur, Ori; Gerli, Mattia F M; Di Stefano, Bruno; Almada, Albert E; Galvin, Amy; Coffey, Amy; Huebner, Aaron J; Feige, Peter; Verheul, Cassandra; Cheung, Priscilla; Payzin-Dogru, Duygu; Paisant, Sylvain; Anselmo, Anthony; Sadreyev, Ruslan I; Ott, Harald C; Tajbakhsh, Shahragim; Rudnicki, Michael A; Wagers, Amy J; Hochedlinger, Konrad
2018-05-08
Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to dystrophin-expressing myofibers upon transplantation in vivo. Notably, a subset of transplanted iMPCs maintain Pax7 expression and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7 + cells and require Pax7 itself for maintenance. Finally, we show that myogenic progenitor cell lines can be established from muscle tissue following small-molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Role of the immune system in regeneration and its dynamic interplay with adult stem cells.
Abnave, Prasad; Ghigo, Eric
2018-04-09
The immune system plays an indispensable role in the process of tissue regeneration following damage as well as during homeostasis. Inflammation and immune cell recruitment are signs of early onset injury. At the wound site, immune cells not only help to clear debris but also secrete numerous signalling molecules that induce appropriate cell proliferation and differentiation programmes essential for successful regeneration. However, the immune system does not always perform a complementary role in regeneration and several reports have suggested that increased inflammation can inhibit the regeneration process. Successful regeneration requires a balanced immune cell response, with the recruitment of accurately polarised immune cells in an appropriate quantity. The regulatory interactions of the immune system with regeneration are not unidirectional. Stem cells, as key players in regeneration, can also modulate the immune system in several ways to facilitate regeneration. In this review, we will focus on recent research demonstrating the key role of immune system in the regeneration process as well as the immunomodulatory effects of stem cells. Finally, we propose that research investigating the interplay between the immune system and stem cells within highly regenerating animals can benefit the identification of the key interactions and molecules required for successful regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xavier, Joana M; Morgado, Ana L; Rodrigues, Cecília MP; Solá, Susana
2014-01-01
The low survival and differentiation rates of stem cells after either transplantation or neural injury have been a major concern of stem cell-based therapy. Thus, further understanding long-term survival and differentiation of stem cells may uncover new targets for discovery and development of novel therapeutic approaches. We have previously described the impact of mitochondrial apoptosis-related events in modulating neural stem cell (NSC) fate. In addition, the endogenous bile acid, tauroursodeoxycholic acid (TUDCA) was shown to be neuroprotective in several animal models of neurodegenerative disorders by acting as an anti-apoptotic and anti-oxidant molecule at the mitochondrial level. Here, we hypothesize that TUDCA might also play a role on NSC fate decision. We found that TUDCA prevents mitochondrial apoptotic events typical of early-stage mouse NSC differentiation, preserves mitochondrial integrity and function, while enhancing self-renewal potential and accelerating cell cycle exit of NSCs. Interestingly, TUDCA prevention of mitochondrial alterations interfered with NSC differentiation potential by favoring neuronal rather than astroglial conversion. Finally, inhibition of mitochondrial reactive oxygen species (mtROS) scavenger and adenosine triphosphate (ATP) synthase revealed that the effect of TUDCA is dependent on mtROS and ATP regulation levels. Collectively, these data underline the importance of mitochondrial stress control of NSC fate decision and support a new role for TUDCA in this process. PMID:25483094
Bioreactor expansion of human mesenchymal stem cells according to GMP requirements.
Elseberg, Christiane L; Salzig, Denise; Czermak, Peter
2015-01-01
In cell therapy, the use of autologous and allogenic human mesenchymal stem cells is rising. Accordingly, the supply of cells for clinical applications in highest quality is required. As hMSCs are considered as an advanced therapy medicinal products (ATMP), they underlie the requirements of GMP and PAT according to the authorities (FDA and EMA). The production process of these cells must therefore be documented according to GMP, which is usually performed via a GMP protocol based on standard operating procedures. This chapter provides an example of such a GMP protocol for hMSC, here a genetically modified allogenic cell line, based on a production process in a microcarrier-based stirred tank reactor including process monitoring according to PAT and final product quality assurance.
Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy
Lan, Xiaoyang; Jörg, David J.; Cavalli, Florence M. G.; Richards, Laura M.; Nguyen, Long V.; Vanner, Robert J.; Guilhamon, Paul; Lee, Lilian; Kushida, Michelle; Pellacani, Davide; Park, Nicole I.; Coutinho, Fiona J.; Whetstone, Heather; Selvadurai, Hayden J.; Che, Clare; Luu, Betty; Carles, Annaick; Moksa, Michelle; Rastegar, Naghmeh; Head, Renee; Dolma, Sonam; Prinos, Panagiotis; Cusimano, Michael D.; Das, Sunit; Bernstein, Mark; Arrowsmith, Cheryl H.; Mungall, Andrew J.; Moore, Richard A.; Ma, Yussanne; Gallo, Marco; Lupien, Mathieu; Pugh, Trevor J.; Taylor, Michael D.; Hirst, Martin; Eaves, Connie J.; Simons, Benjamin D.; Dirks, Peter B.
2017-01-01
Summary Human glioblastomas (GBMs) harbour a subpopulation of glioblastoma stem cells (GSCs) that drive tumourigenesis. However, the origin of intra-tumoural functional heterogeneity between GBM cells remains poorly understood. Here we study the clonal evolution of barcoded GBM cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of GBM clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in GSCs. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, that in turn generates non-proliferative cells. We also identify rare “outlier” clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant GSCs. Finally, we show that functionally distinct GSCs can be separately targeted using epigenetic compounds, suggesting new avenues for GBM targeted therapy. PMID:28854171
Lv, Yonggang; Wang, Ting; Fan, Jing; Zhang, Zhenzhen; Zhang, Juliang; Xu, Cheng; Li, Yongping; Zhao, Ge; He, Chenyang; Meng, Huimin; Yang, Hua; Wang, Zhen; Liu, Jiayun; Chen, Jianghao; Wang, Ling
2017-04-01
The cancer stem cell (CSC) hypothesis has gained significant recognition in describing tumorigenesis. Identification of the factors critical to development of breast cancer stem cells (BCSCs) may provide insight into the improvement of effective therapies against breast cancer. In this study, we aim to investigate the biological function of SLC34A2 in affecting the stem cell-like phenotypes in BCSCs and its underlying mechanisms. We demonstrated that CD147 + cells from breast cancer tissue samples and cell lines possessed BCSC-like features, including the ability of self-renewal in vitro, differentiation, and tumorigenic potential in vivo. Flow cytometry analysis showed the presence of a variable fraction of CD147 + cells in 9 of 10 tumor samples. Significantly, SLC34A2 expression in CD147 + BCSCs was enhanced compared with that in differentiated adherent progeny of CD147 + BCSCs and adherently cultured cell line cells. In breast cancer patient cohorts, SLC34A2 expression was found increased in 9 of 10 tumor samples. By using lentiviral-based approach, si-SLC34A2-transduced CD147 + BCSCs showed decreased ability of sphere formation, cell viability in vitro, and tumorigenicity in vivo, which suggested the essential role of SLC34A2 in CD147 + BCSCs. Furthermore, PI3K/AKT pathway and SOX2 were found necessary to maintain the stemness of CD147 + BCSCs by using LY294002 or lentiviral-si-SOX2. Finally, we indicated that SLC34A2 could regulate SOX2 to maintain the stem cell-like features in CD147 + BCSCs through PI3K/AKT pathway. Therefore, our report identifies a novel role of SLC34A2 in BCSCs' state regulation and establishes a rationale for targeting the SLC34A2/PI3K/AKT/SOX2 signaling pathway for breast cancer therapy.
Lahiji, Armin; Kučerová-Levisohn, Martina; Lovett, Jordana; Holmes, Roxanne; Zúñiga-Pflücker, Juan Carlos; Ortiz, Benjamin D.
2013-01-01
Locus Control Regions (LCR) are cis-acting gene regulatory elements with the unique, integration site-independent ability to transfer the characteristics of their locus-of-origin’s gene expression pattern to a linked transgene in mice. LCR activities have been discovered in numerous T cell lineage expressed gene loci. These elements can be adapted to the design of stem cell gene therapy vectors that direct robust therapeutic gene expression to the T cell progeny of engineered stem cells. Currently, transgenic mice provide the only experimental approach that wholly supports all the critical aspects of LCR activity. Herein we report manifestation of all key features of mouse T cell receptor (TCR)-α gene LCR function in T cells derived in vitro from mouse embryonic stem cells (ESC). High level, copy number-related TCRα LCR-linked reporter gene expression levels are cell type-restricted in this system, and upregulated during the expected stage transition of T cell development. We further report that de novo introduction of TCRα LCR linked transgenes into existing T cell lines yields incomplete LCR activity. Together, these data indicate that establishing full TCRα LCR activity requires critical molecular events occurring prior to final T-lineage determination. This study additionally validates a novel, tractable and more rapid approach for the study of LCR activity in T cells, and its translation to therapeutic genetic engineering. PMID:23720809
Riechmann, Veit
2017-01-01
In vivo RNAi in Drosophila facilitates simple and rapid analysis of gene functions in a cell- or tissue-specific manner. The versatility of the UAS-GAL4 system allows to control exactly where and when during development the function of a gene is depleted. The epithelium of the ovary is a particularly good model to study in a living animal how stem cells are maintained and how their descendants proliferate and differentiate. Here I provide basic information about the publicly available reagents for in vivo RNAi, and I describe how the oogenesis system can be applied to analyze stem cells and epithelial development at a histological level. Moreover, I give helpful hints to optimize the use of the UAS-GAL4 system for RNAi induction in the follicular epithelium. Finally, I provide detailed step-by-step protocols for ovary dissection, antibody stainings, and ovary mounting for microscopic analysis.
Giri, Shibashish; Acikgöz, Ali; Bader, Augustinus
2015-01-01
Background Currently, undifferentiated cells are found in all tissue and term as local stem cells which are quiescent in nature and less in number under normal healthy conditions but activate upon injury and repair the tissue or organs via automated activating mechanism. Due to very scanty presence of local resident somatic local stem cells in healthy organs, isolation and expansion of these adult stems is an immense challenge for medical research and cell based therapy. Particularly organ like liver, there is an ongoing controversy about existence of liver stem cells. Methods Herein, Hepatic stem cells population was identified during culture of primary hepatocyte cells upon immediate isolation of primary hepatocyte cells. These liver stem cells has been expanded extensively and differentiated into primary hepatocytes under defined culture conditions in a nanostructured self assembling peptides modular bioreactor that mimic the state of art of liver microenvironment and compared with Matrigel as a positive control. Nanostructured self assembling peptides were used a defined extracellular matrix and Matrigel was used for undefined extracellular matrix. Proliferation of hepatic stem cells was investigated by two strategies. First strategy is to provide high concentration of hepatocyte growth factor (HGF) and second strategy is to evaluate the role of recombinant human erythropoietin (rHuEPO) in presence of trauma/ischemia cytokines (IL-6, TNF-α). Expansion to hepatic differentiation is observed by morphological analysis and was evaluated for the expression of hepatocyte-specific genes using RT-PCR and biochemical methods. Results Hepatocyte-specific genes are well expressed at final stage (day 21) of differentiation period. The differentiated hepatocytes exhibited functional hepatic characteristics such as albumin secretion, urea secretion and cytochrome P450 expression. Additionally, immunofluorescence analysis revealed that hepatic stem cells derived hepatocytes exhibited mature hepatocyte markers (albumin, CK-19, CPY3A1, alpha 1-antitrypsin). Expansion and hepatic differentiation was efficiently in nanostructured self assembling peptides without such batch to batch variation while there was much variation in Matrigel coated bioreactor. In conclusion, the results of the study suggest that the nanostructured self assembling peptides coated bioreactor supports expansion as well as hepatic differentiation of liver stem cells which is superior than Matrigel. Conclusion This defined microenvironment conditions in bioreactor module can be useful for research involving bioartificial liver system, stem cell research and engineered liver tissue which could contribute to regenerative cell therapies or drug discovery and development. PMID:26155038
Alonso-Martin, Sonia; Auradé, Frédéric; Mademtzoglou, Despoina; Rochat, Anne; Zammit, Peter S; Relaix, Frédéric
2018-06-08
Muscle satellite cells are the primary source of stem cells for postnatal skeletal muscle growth and regeneration. Understanding genetic control of satellite cell formation, maintenance, and acquisition of their stem cell properties is on-going, and we have identified SOXF (SOX7, SOX17, SOX18) transcriptional factors as being induced during satellite cell specification. We demonstrate that SOXF factors regulate satellite cell quiescence, self-renewal and differentiation. Moreover, ablation of Sox17 in the muscle lineage impairs postnatal muscle growth and regeneration. We further determine that activities of SOX7, SOX17 and SOX18 overlap during muscle regeneration, with SOXF transcriptional activity requisite. Finally, we show that SOXF factors also control satellite cell expansion and renewal by directly inhibiting the output of β-catenin activity, including inhibition of Ccnd1 and Axin2 . Together, our findings identify a key regulatory function of SoxF genes in muscle stem cells via direct transcriptional control and interaction with canonical Wnt/β-catenin signaling. © 2018, Alonso-Martin et al.
Liu, Jun; Zhang, Xi; Zhong, Jiang F; Zhang, Cheng
2017-10-01
Relapsed/refractory acute lymphoblastic leukemia (ALL) has a low remission rate after chemotherapy, a high relapse rate and poor long-term survival even when allogeneic hematopoietic stem cell transplantation (allo-HSCT) is performed. Chimeric antigen receptors redirected T cells (CAR-T cells) can enhance disease remission with a favorable outcome for relapsed/refractory ALL, though some cases quickly relapsed after CAR-T cell treatment. Thus, treatment with CAR-T cells followed by allo-HSCT may be the best way to treat relapsed/refractory ALL. In this review, we first discuss the different types of CAR-T cells. We then discuss the treatment of relapsed/refractory ALL using only CAR-T cells. Finally, we discuss the use of CAR-T cells, followed by allo-HSCT, for the treatment of relapsed/refractory ALL.
Aging and insulin signaling differentially control normal and tumorous germline stem cells.
Kao, Shih-Han; Tseng, Chen-Yuan; Wan, Chih-Ling; Su, Yu-Han; Hsieh, Chang-Che; Pi, Haiwei; Hsu, Hwei-Jan
2015-02-01
Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC-male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Bourkoula, Evgenia; Mangoni, Damiano; Ius, Tamara; Pucer, Anja; Isola, Miriam; Musiello, Daniela; Marzinotto, Stefania; Toffoletto, Barbara; Sorrentino, Marisa; Palma, Anita; Caponnetto, Federica; Gregoraci, Giorgia; Vindigni, Marco; Pizzolitto, Stefano; Falconieri, Giovanni; De Maglio, Giovanna; Pecile, Vanna; Ruaro, Maria Elisabetta; Gri, Giorgia; Parisse, Pietro; Casalis, Loredana; Scoles, Giacinto; Skrap, Miran; Beltrami, Carlo Alberto; Beltrami, Antonio Paolo; Cesselli, Daniela
2014-05-01
Translational medicine aims at transferring advances in basic science research into new approaches for diagnosis and treatment of diseases. Low-grade gliomas (LGG) have a heterogeneous clinical behavior that can be only partially predicted employing current state-of-the-art markers, hindering the decision-making process. To deepen our comprehension on tumor heterogeneity, we dissected the mechanism of interaction between tumor cells and relevant components of the neoplastic environment, isolating, from LGG and high-grade gliomas (HGG), proliferating stem cell lines from both the glioma stroma and, where possible, the neoplasm. We isolated glioma-associated stem cells (GASC) from LGG (n=40) and HGG (n=73). GASC showed stem cell features, anchorage-independent growth, and supported the malignant properties of both A172 cells and human glioma-stem cells, mainly through the release of exosomes. Finally, starting from GASC obtained from HGG (n=13) and LGG (n=12) we defined a score, based on the expression of 9 GASC surface markers, whose prognostic value was assayed on 40 subsequent LGG-patients. At the multivariate Cox analysis, the GASC-based score was the only independent predictor of overall survival and malignant progression free-survival. The microenvironment of both LGG and HGG hosts non-tumorigenic multipotent stem cells that can increase in vitro the biological aggressiveness of glioma-initiating cells through the release of exosomes. The clinical importance of this finding is supported by the strong prognostic value associated with the characteristics of GASC. This patient-based approach can provide a groundbreaking method to predict prognosis and to exploit novel strategies that target the tumor stroma. © 2013 AlphaMed Press.
James, Aaron W.; Zara, Janette N.; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben
2012-01-01
Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34−CD45−) and adventitial cells (CD146−CD34+CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis. PMID:23197855
Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra
2015-01-01
Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription.
Biologic agents for anterior cruciate ligament healing: A systematic review
Di Matteo, Berardo; Loibl, Markus; Andriolo, Luca; Filardo, Giuseppe; Zellner, Johannes; Koch, Matthias; Angele, Peter
2016-01-01
AIM To systematically review the currently available literature concerning the application of biologic agents such as platelet-rich plasma (PRP) and stem cells to promote anterior cruciate ligament (ACL) healing. METHODS A systematic review of the literature was performed on the use of biologic agents (i.e., PRP or stem cells) to favor ACL healing during reconstruction or repair. The following inclusion criteria for relevant articles were used: Clinical reports of any level of evidence, written in English language, on the use of PRP or stem cells during ACL reconstruction/repair. Exclusion criteria were articles written in other languages, reviews, or studies analyzing other applications of PRP/stem cells in knee surgery not related to promoting ACL healing. RESULTS The database search identified 394 records that were screened. A total of 23 studies were included in the final analysis: In one paper stem cells were applied for ACL healing, in one paper there was a concomitant application of PRP and stem cells, whereas in the remaining 21 papers PRP was used. Based on the ACL injury pattern, two papers investigated biologic agents in ACL partial tears whereas 21 papers in ACL reconstruction. Looking at the quality of the available literature, 17 out of 21 studies dealing with ACL reconstruction were randomized controlled trials. Both studies on ACL repair were case series. CONCLUSION There is a paucity of clinical trials investigating the role of stem cells in promoting ACL healing both in case of partial and complete tears. The role of PRP is still controversial and the only advantage emerging from the literature is related to a better graft maturation over time, without documenting beneficial effects in terms of clinical outcome, bone-graft integration and prevention of bony tunnel enlargement. PMID:27672573
Favaron, Phelipe Oliveira; Mess, Andrea; Will, Sônia Elisabete; Maiorka, Paulo César; de Oliveira, Moacir Franco; Miglino, Maria Angelica
2014-01-01
Fetal membranes are abundant, ethically acceptable and readily accessible sources of stem cells. In particular, the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in mice and human, whereas other cell types and species are dramatically underrepresented. Here we studied the nature and differentiation potential of yolk sac derived mesenchymal stem cells from a New World mouse, Necromys lasiurus. Explants from mid-gestation were cultured in DMEM-High glucose medium with 10% defined fetal bovine serum. The cells were characterized by standard methods including immunophenotyping by fluorescence and flow cytometry, growth and differentiation potential and tumorigenicity assays. The first adherent cells were observed after 7 days of cell culture and included small, elongated fibroblast-like cells (92.13%) and large, round epithelial-like cells with centrally located nuclei (6.5%). Only the fibroblast-like cells survived the first passages. They were positive to markers for mesenchymal stem cells (Stro-1, CD90, CD105, CD73) and pluripotency (Oct3/4, Nanog) as well as precursors of hematopoietic stem cells (CD117). In differentiation assays, they were classified as a multipotent lineage, because they differentiated into osteogenic, adipogenic, and chondrogenic lineages and, finally, they did not develop tumors. In conclusion, mesenchymal progenitor cells with multipotent differentiation potential and sufficient growth and proliferation abilities were able to be obtained from Necromys yolk sacs, therefore, we inferred that these cells may be promising for a wide range of applications in regenerative medicine. PMID:24918429
Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A
2017-11-01
Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.
Aging and reprogramming: a two-way street
Mahmoudi, Salah; Brunet, Anne
2012-01-01
Aging is accompanied by the functional decline of cells, tissues, and organs, as well as a striking increase in a wide range of diseases. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) opens new avenues for the aging field and has important applications for therapeutic treatments of age-related diseases. Here we review emerging studies on how aging and age-related pathways influence iPSC generation and property. We discuss the exciting possibility that reverting to a pluripotent stem cell stage erases several deficits associated with aging and will provide new strategies for rejuvenation. Finally, we argue that reprogramming provides a unique opportunity to model aging and perhaps exceptional longevity. PMID:23146768
Liao, Tian; Kaufmann, Andreas M; Qian, Xu; Sangvatanakul, Voramon; Chen, Chao; Kube, Tina; Zhang, Guoyou; Albers, Andreas E
2013-01-01
To explore cancer stem cell susceptibility to a host's cytotoxic T lymphocyte (CTL)-mediated immune response. We compared the susceptibility of putative CSC generated from cancer cell lines to immunologic recognition and killing by alloantigen-specific CD8(+) CTL. CSC-enriched spheroid culture-derived cells (SDC) exhibited higher expression of ALDH, ICAM1 and of stem/progenitor cell markers on all 3 tumor cell lines investigated and lower MHC class I on the cervical cancer cell line as compared to their monolayer-derived cells (MDC). The expression of ICAM1 and MHCI was upregulated by IFN-γ treatment. CSC populations were less sensitive to MHC class I-restricted alloantigen-specific CD8(+) CTL lysis as compared to matched MDC. IFN-γ pretreatment resulted in over-proportionally enhanced lysis of SDC. Finally, the subset of ALDH(high) expressing SDC presented more sensitivity toward CD8(+) CTL killing than the ALDH(low) SDC. Tumor therapy resistance has been attributed to cancer stem cells (CSC). We show in vitro susceptibility of CSC to CTL-mediated lysis. Immunotherapy targeting of ALDH(+) CSC may therefore be a promising approach. Our results and method may be helpful for the development and optimization of adjuvants, as here exemplified for INF-γ, for CSC-targeted vaccines, independent of the availability of CSC-specific antigens.
Kanda, Pushpinder; Alarcon, Emilio I; Yeuchyk, Tanya; Parent, Sandrine; de Kemp, Robert A; Variola, Fabio; Courtman, David; Stewart, Duncan J; Davis, Darryl R
2018-04-20
Although cocooning explant-derived cardiac stem cells (EDCs) in protective nanoporous gels (NPGs) prior to intramyocardial injection boosts long-term cell retention, the number of EDCs that finally engraft is trivial and unlikely to account for salutary effects on myocardial function and scar size. As such, we investigated the effect of varying the NPG content within capsules to alter the physical properties of cocoons without influencing cocoon dimensions. Increasing NPG concentration enhanced cell migration and viability while improving cell-mediated repair of injured myocardium. Given that the latter occurred with NPG content having no detectable effect on the long-term engraftment of transplanted cells, we found that changing the physical properties of cocoons prompted explant-derived cardiac stem cells to produce greater amounts of cytokines, nanovesicles, and microRNAs that boosted the generation of new blood vessels and new cardiomyocytes. Thus, by altering the physical properties of cocoons by varying NPG content, the paracrine signature of encapsulated cells can be enhanced to promote greater endogenous repair of injured myocardium.
Kievit, Forrest M.; Zhang, Miqin
2012-01-01
Cancer nanotheranostics aims to combine imaging and therapy of cancer through use of nanotechnology. The ability to engineer nanomaterials to interact with cancer cells at the molecular level can significantly improve the effectiveness and specificity of therapy to cancers that are currently difficult to treat. In particular, metastatic cancers, drug-resistant cancers, and cancer stem cells impose the greatest therapeutic challenge that requires targeted therapy to treat effectively. Targeted therapy can be achieved with appropriate designed drug delivery vehicles such as nanoparticles, adult stem cells, or T cells in immunotherapy. In this article, we first review the different types of materials commonly used to synthesize nanotheranostic particles and their use in imaging. We then discuss biological barriers that these nanoparticles encounter and must bypass to reach the target cancer cells, including the blood, liver, kidneys, spleen, and particularly the blood-brain barrier. We then review how nanotheranostics can be used to improve targeted delivery and treatment of cancer cells using nanoparticles, adult stem cells, and T cells in immunotherapy. Finally, we discuss development of nanoparticles to overcome current limitations in cancer therapy. PMID:21842473
Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; ...
2013-01-31
In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicatesmore » minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.« less
Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.
Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara
2012-09-01
The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.
Donot, Pierre Emmanuel
2009-01-01
JACIE, a European certification program for stem cell transplantation, has now been recognized by the French Health Authorities. It can be considered as an evaluation of professional practice, an activity that can be promoted by health centres. The present article has two aims: firstly, it describes the structure of the certification standard based on the relative structure of each of its components; secondly, it reports on the experience acquired by the Léon-Bérard cancer centre (Lyon-France) during the certification of its own stem cell transplantation program. The JACIE manual written in English is divided into three parts corresponding to the three processes identified. Part B describes the clinical haematopoietic stem cell transplantation program. Part C is dedicated to the collection of haematopoietic stem cells from blood and marrow. Finally, part D applies to the cell therapy laboratory in charge of cell preservation and the preparation of grafts for re-infusion. After the application has been submitted to the JACIE board, a date is set for an inspection visit. The cell therapy laboratory at Léon-Bérard cancer centre has already participated to a certified transplantation project of the Edouard-Herriot Hospital (Lyon public hospitals) [parts C and D of the certification]. The executive board proposed that the clinical haematology unit of the cancer centre also applied for JACIE certification. A multidisciplinary work group-combining document writing skills and a real capacity to convince and motivate clinical staff was formed. Secondly, a comprehensive collection of existing documents was issued and the clinical pathway of the patients was formalized so that no step of the graft process would be omitted. A physician from another hospital also tested the evaluation process with the organisation of a mock visit. He confirmed that everything was in good way and provided recommendations to improve the program. This huge preparation provided invaluable learning opportunities to the participants. After the final visit by JACIE inspectors, the cancer centre received four-year certification. The challenge is now to maintain this momentum for the next certifications and to better take into account the ethical and juridical constraints of haematopoietic stem cell transplantation.
Alnasser, Qasem; Abu Kharmah, Salahel Deen; Attia, Manal; Aljafari, Akram; Agyekum, Felicia; Ahmed, Falak Aftab
2018-04-01
To explore the lived experience of the patients post-haematopoietic stem cell transplantation and specifically after engraftment and before discharge. Patients post-stem cell transplantation experience significant changes in all life aspects. Previous studies carried out by other researchers focused mainly on the postdischarge experience, where patients reported their perceptions that have always been affected by the life post-transplantation and influenced by their surroundings. The lived experience of patients, specifically after engraftment and prior to discharge (the "transition" phase), has not been adequately explored in the literature. Doing so might provide greater insight into the cause of change post-haematopoietic stem cell transplantation. This study is a phenomenological description of the participants' perception about their lived experience post-haematopoietic stem cell transplantation. The study used Giorgi's method of analysis. Through purposive sampling, 15 post-haematopoietic stem cell transplantation patients were recruited. Data were collected by individual interviews. Data were then analysed based on Giorgi's method of analysis to reveal the meaning of a phenomenon as experienced through the identification of essential themes. The analysis process revealed 12 core themes covered by four categories that detailed patients lived experience post-haematopoietic stem cell transplantation. The four categories were general transplant experience, effects of transplantation, factors of stress alleviation and finally life post-transplantation. This study showed how the haematopoietic stem cell transplantation affected the patients' physical, psychological and spiritual well-being. Transplantation also impacted on the patients' way of thinking and perception of life. Attending to patients' needs during transplantation might help to alleviate the severity of the effects and therefore improve experience. Comprehensive information about transplantation needs to be provided over different intervals and at different occasions. The role of the haematopoietic stem cell transplantation coordinators is important, and their communication skills and knowledge were found to be significant in patients' preparation and decision-making. As healthcare providers usually attend to only the patients' physical and psychological needs, spirituality was found to play an important role in maintaining morale and making sense of the meaning of life. © 2018 John Wiley & Sons Ltd.
Crypt dynamics and colorectal cancer: advances in mathematical modelling.
van Leeuwen, I M M; Byrne, H M; Jensen, O E; King, J R
2006-06-01
Mathematical modelling forms a key component of systems biology, offering insights that complement and stimulate experimental studies. In this review, we illustrate the role of theoretical models in elucidating the mechanisms involved in normal intestinal crypt dynamics and colorectal cancer. We discuss a range of modelling approaches, including models that describe cell proliferation, migration, differentiation, crypt fission, genetic instability, APC inactivation and tumour heterogeneity. We focus on the model assumptions, limitations and applications, rather than on the technical details. We also present a new stochastic model for stem-cell dynamics, which predicts that, on average, APC inactivation occurs more quickly in the stem-cell pool in the absence of symmetric cell division. This suggests that natural niche succession may protect stem cells against malignant transformation in the gut. Finally, we explain how we aim to gain further understanding of the crypt system and of colorectal carcinogenesis with the aid of multiscale models that cover all levels of organization from the molecular to the whole organ.
Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang
2016-02-01
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Shin, Jae-Yeon; Kong, Sun-Young; Yoon, Hye Jin; Ann, Jihyae; Lee, Jeewoo; Kim, Hyun-Jung
2015-07-01
P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.
GMP-conformant on-site manufacturing of a CD133+ stem cell product for cardiovascular regeneration.
Skorska, Anna; Müller, Paula; Gaebel, Ralf; Große, Jana; Lemcke, Heiko; Lux, Cornelia A; Bastian, Manuela; Hausburg, Frauke; Zarniko, Nicole; Bubritzki, Sandra; Ruch, Ulrike; Tiedemann, Gudrun; David, Robert; Steinhoff, Gustav
2017-02-10
CD133 + stem cells represent a promising subpopulation for innovative cell-based therapies in cardiovascular regeneration. Several clinical trials have shown remarkable beneficial effects following their intramyocardial transplantation. Yet, the purification of CD133 + stem cells is typically performed in centralized clean room facilities using semi-automatic manufacturing processes based on magnetic cell sorting (MACS®). However, this requires time-consuming and cost-intensive logistics. CD133 + stem cells were purified from patient-derived sternal bone marrow using the recently developed automatic CliniMACS Prodigy® BM-133 System (Prodigy). The entire manufacturing process, as well as the subsequent quality control of the final cell product (CP), were realized on-site and in compliance with EU guidelines for Good Manufacturing Practice. The biological activity of automatically isolated CD133 + cells was evaluated and compared to manually isolated CD133 + cells via functional assays as well as immunofluorescence microscopy. In addition, the regenerative potential of purified stem cells was assessed 3 weeks after transplantation in immunodeficient mice which had been subjected to experimental myocardial infarction. We established for the first time an on-site manufacturing procedure for stem CPs intended for the treatment of ischemic heart diseases using an automatized system. On average, 0.88 × 10 6 viable CD133 + cells with a mean log 10 depletion of 3.23 ± 0.19 of non-target cells were isolated. Furthermore, we demonstrated that these automatically isolated cells bear proliferation and differentiation capacities comparable to manually isolated cells in vitro. Moreover, the automatically generated CP shows equal cardiac regeneration potential in vivo. Our results indicate that the Prodigy is a powerful system for automatic manufacturing of a CD133 + CP within few hours. Compared to conventional manufacturing processes, future clinical application of this system offers multiple benefits including stable CP quality and on-site purification under reduced clean room requirements. This will allow saving of time, reduced logistics and diminished costs.
Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.
Song, Min Jae; Dean, David; Knothe Tate, Melissa L
2013-07-01
Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells.
Morgado-Palacin, Lucia; Llanos, Susana; Serrano, Manuel
2012-02-01
Ribosome biogenesis is the most demanding energetic process in proliferating cells and it is emerging as a critical sensor of cellular homeostasis. Upon disturbance of ribosome biogenesis, specific free ribosomal proteins, most notably L11, bind and inhibit Mdm2, resulting in activation of the tumor suppressor p53. This pathway has been characterized in somatic and cancer cells, but its function in embryonic pluripotent cells has remained unexplored. Here, we show that treatment with low doses of Actinomycin D or depletion of ribosomal protein L37, two well-established inducers of ribosomal stress, activate p53 in an L11-dependent manner in mouse embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). Activation of p53 results in transcriptional induction of p53 targets, including p21, Mdm2, Pidd, Puma, Noxa and Bax. Finally, ribosomal stress elicits L11- and p53-dependent apoptosis in ESCs/iPSCs. These results extend to pluripotent cells the functionality of the ribosomal stress pathway and we speculate that this could be a relevant cellular checkpoint during early embryogenesis.
Tumorigenicity assessment of human cell-processed therapeutic products.
Yasuda, Satoshi; Sato, Yoji
2015-09-01
Human pluripotent stem cells (hPSCs) are expected to be sources of various cell types used for cell therapy, although hPSCs are intrinsically tumorigenic and form teratomas in immunodeficient animals after transplant. Despite the urgent need, no detailed guideline for the assessment of tumorigenicity of human cell-processed therapeutic products (hCTPs) has been issued. Here we describe our consideration on tumorigenicity and related tests of hCTPs. The purposes of those tests for hPSC-based products are classified into three categories: 1) quality control of raw materials; 2) quality control of intermediate/final products; and 3) safety assessment of final products. Appropriate types of tests need to be selected, taking the purpose(s) into consideration. In contrast, human somatic (and somatic stem) cells are believed to have little tumorigenicity. Therefore, GMP-compliant quality control is essential to avoid contamination of somatic cell-derived products with tumorigenic cells. Compared with in vivo tumorigenicity tests, in vitro cell proliferation assays may be more useful and reasonable for detecting immortalized cells that have a growth advantage in somatic cell-based products. The results obtained from tumorigenicity and related tests for hCTPs should meet the criteria for decisions on product development, manufacturing processes, and clinical applications. Copyright © 2015.
Tateno, Hiroaki; Saito, Sayoko
2017-07-10
The use of human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) in regenerative medicine is hindered by their tumorigenic potential. Previously, we developed a recombinant lectin-toxin fusion protein of the hPSC-specific lectin rBC2LCN, which has a 23 kDa catalytic domain (domain III) of Pseudomonas aeruginosa exotoxin A (rBC2LCN-PE23). This fusion protein could selectively eliminate hPSCs following its addition to the cell culture medium. Here we conjugated rBC2LCN lectin with a 38 kDa domain of exotoxin A containing domains Ib and II in addition to domain III (PE38). The developed rBC2LCN-PE38 fusion protein could eliminate 50% of 201B7 hPSCs at a concentration of 0.003 μg/mL (24 h incubation), representing an approximately 556-fold higher activity than rBC2LCN-PE23. Little or no effect on human fibroblasts, human mesenchymal stem cells, and hiPSC-derived hepatocytes was observed at concentrations lower than 1 μg/mL. Finally, we demonstrate that rBC2LCN-PE38 selectively eliminates hiPSCs from a mixed culture of hiPSCs and hiPSC-derived hepatocytes. Since rBC2LCN-PE38 can be prepared from soluble fractions of E. coli culture at a yield of 9 mg/L, rBC2LCN-PE38 represents a practical reagent to remove human pluripotent stem cells residing in cultured cells destined for transplantation.
Gentry, Sara N; Jackson, Trachette L
2013-01-01
Hierarchical organized tissue structures, with stem cell driven cell differentiation, are critical to the homeostatic maintenance of most tissues, and this underlying cellular architecture is potentially a critical player in the development of a many cancers. Here, we develop a mathematical model of mutation acquisition to investigate how deregulation of the mechanisms preserving stem cell homeostasis contributes to tumor initiation. A novel feature of the model is the inclusion of both extrinsic and intrinsic chemical signaling and interaction with the niche to control stem cell self-renewal. We use the model to simulate the effects of a variety of types and sequences of mutations and then compare and contrast all mutation pathways in order to determine which ones generate cancer cells fastest. The model predicts that the sequence in which mutations occur significantly affects the pace of tumorigenesis. In addition, tumor composition varies for different mutation pathways, so that some sequences generate tumors that are dominated by cancerous cells with all possible mutations, while others are primarily comprised of cells that more closely resemble normal cells with only one or two mutations. We are also able to show that, under certain circumstances, healthy stem cells diminish due to the displacement by mutated cells that have a competitive advantage in the niche. Finally, in the event that all homeostatic regulation is lost, exponential growth of the cancer population occurs in addition to the depletion of normal cells. This model helps to advance our understanding of how mutation acquisition affects mechanisms that influence cell-fate decisions and leads to the initiation of cancers.
Ban, Kiwon; Wile, Brian; Kim, Sangsung; Park, Hun-Jun; Byun, Jaemin; Cho, Kyu-Won; Saafir, Talib; Song, Ming-Ke; Yu, Shan Ping; Wagner, Mary; Bao, Gang; Yoon, Young-Sup
2013-10-22
Although methods for generating cardiomyocytes from pluripotent stem cells have been reported, current methods produce heterogeneous mixtures of cardiomyocytes and noncardiomyocyte cells. Here, we report an entirely novel system in which pluripotent stem cell-derived cardiomyocytes are purified by cardiomyocyte-specific molecular beacons (MBs). MBs are nanoscale probes that emit a fluorescence signal when hybridized to target mRNAs. Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among 5 MBs, an MB that targeted myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 cardiomyocytes, a mouse cardiomyocyte cell line, but <3% of 4 noncardiomyocyte cell types in flow cytometry analysis, which indicates that MHC1-MB is specific for identifying cardiomyocytes. We delivered MHC1-MB into cardiomyogenically differentiated pluripotent stem cells through nucleofection. The detection rate of cardiomyocytes was similar to the percentages of cardiac troponin T- or cardiac troponin I-positive cardiomyocytes, which supports the specificity of MBs. Finally, MHC1-MB-positive cells were sorted by fluorescence-activated cell sorter from mouse and human pluripotent stem cell differentiating cultures, and ≈97% cells expressed cardiac troponin T or cardiac troponin I as determined by flow cytometry. These MB-based sorted cells maintained their cardiomyocyte characteristics, which was verified by spontaneous beating, electrophysiological studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified cardiomyocytes improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. We developed a novel cardiomyocyte selection system that allows production of highly purified cardiomyocytes. These purified cardiomyocytes and this system can be valuable for cell therapy and drug discovery.
Melve, Guro Kristin; Ersvaer, Elisabeth; Paulsen Rye, Kristin; Bushra Ahmed, Aymen; Kristoffersen, Einar K; Hervig, Tor; Reikvam, Håkon; Hatfield, Kimberley Joanne; Bruserud, Øystein
2018-05-01
Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis. Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment. Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen, including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed correlations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used. Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. G-CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a prognostic impact. Copyright © 2018. Published by Elsevier Inc.
Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra
2015-01-01
Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription. PMID:26642061
Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells
Fox, Mark S.; Clark, Amander T.; El Majdoubi, Mohammed; Vigne, Jean-Louis; Urano, Jun; Hostetler, Chris E.; Griswold, Michael D.; Weiner, Richard I.; Pera, Renee A. Reijo
2007-01-01
In some species such as flies, worms, frogs, and fish the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically-distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration, that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells. PMID:16996493
Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model
NASA Astrophysics Data System (ADS)
Holbek, Simon; Bendtsen, Kristian Moss; Juul, Jeppe
2013-10-01
Mammalian cells are restricted from proliferating indefinitely. Telomeres at the end of each chromosome are shortened at cell division and when they reach a critical length, the cell will enter permanent cell cycle arrest—a state known as senescence. This mechanism is thought to be tumor suppressing, as it helps prevent precancerous cells from dividing uncontrollably. Stem cells express the enzyme telomerase, which elongates the telomeres, thereby postponing senescence. However, unlike germ cells and most types of cancer cells, stem cells only express telomerase at levels insufficient to fully maintain the length of their telomeres, leading to a slow decline in proliferation potential. It is not yet fully understood how this decline influences the risk of cancer and the longevity of the organism. We here develop a stochastic model to explore the role of telomere dynamics in relation to both senescence and cancer. The model describes the accumulation of cancerous mutations in a multicellular organism and creates a coherent theoretical framework for interpreting the results of several recent experiments on telomerase regulation. We demonstrate that the longest average cancer-free lifespan before cancer onset is obtained when stem cells start with relatively long telomeres that are shortened at a steady rate at cell division. Furthermore, the risk of cancer early in life can be reduced by having a short initial telomere length. Finally, our model suggests that evolution will favor a shorter than optimal average cancer-free lifespan in order to postpone cancer onset until late in life.
Barazzuol, Lara; Rickett, Nicole; Ju, Limei; Jeggo, Penny A
2015-10-01
The embryonic neural stem cell compartment is characterised by rapid proliferation from embryonic day (E)11 to E16.5, high endogenous DNA double-strand break (DSB) formation and sensitive activation of apoptosis. Here, we ask whether DSBs arise in the adult neural stem cell compartments, the sub-ventricular zone (SVZ) of the lateral ventricles and the sub-granular zone (SGZ) of the hippocampal dentate gyrus, and whether they activate apoptosis. We used mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C)), ataxia telangiectasia mutated (Atm(-/-)) and double mutant Atm(-/-)/Lig4(Y288C) mice. We demonstrate that, although DSBs do not arise at a high frequency in adult neural stem cells, the low numbers of DSBs that persist endogenously in Lig4(Y288C) mice or that are induced by low radiation doses can activate apoptosis. A temporal analysis shows that DSB levels in Lig4(Y288C) mice diminish gradually from the embryo to a steady state level in adult mice. The neonatal SVZ compartment of Lig4(Y288C) mice harbours diminished DSBs compared to its differentiated counterpart, suggesting a process selecting against unfit stem cells. Finally, we reveal high endogenous apoptosis in the developing SVZ of wild-type newborn mice. © 2015. Published by The Company of Biologists Ltd.
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.
Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold
2016-08-25
Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. © 2016 by The American Society of Hematology.
Stem cell transplantation (cord blood transplants).
Chao, Nelson J; Emerson, Stephen G; Weinberg, Kenneth I
2004-01-01
Allogeneic stem cell transplantation is an accepted treatment modality for selected malignant and non-malignant diseases. However, the ability to identify suitably matched related or unrelated donors can be difficult in some patients. Alternative sources of stem cells such as cord blood provide a readily available graft for such patients. Data accumulated over the past several years have demonstrated that the use of cord blood is an accepted source of stem cells for pediatric patients. Since the cell numbers of hematopoietic progenitors in cord blood is limited and the collection can occur only in a single occasion, its use in adult patients can be more problematic. Here, new developments in the use of cord blood for adults and studies aimed at expansion of cord blood cells and immune reconstitution are described. In Section I, Dr. Nelson Chao describes the early data in cord blood transplantation in adult patients. The patient outcomes are reviewed and analyzed for various factors such as cell dose, HLA typing, and patient selection that could have contributed to the final outcome of these adult patients. Myeloablative as well as nonmyeloablative approaches are presented. Discussion of the various benefits and risks are presented. More recent data from multiple single institutions as well as larger registry data comparisons are also provided. Analyses of these studies suggest methods to improve on the outcome. These newer data should lead to a logical progression in the use of cord blood cells in adult patients. In Section II, Dr. Stephen Emerson describes the historical efforts associated with expansion of hematopoietic stem cells, specifically with cord blood cells. These efforts to expand cord blood cells continue with novel methods. Moreover, a better understanding of stem cell biology and signaling is critical if we are to be able to effectively expand these cells for clinical use. An alternative, more direct, approach to expanding stem cells could be achieved by specific genetic pathways known or believed to support primitive HSC proliferation such as Notch-1 receptor activation, Wnt/LEF-1 pathway induction, telomerase or the Homeobox (Hox) gene products. The clinical experience with the use of expanded cord blood cells is also discussed. In Section III, Dr. Kenneth Weinberg describes immune reconstitution or lack thereof following cord blood transplantation. One of the hallmarks of successful hematopoietic stem cell transplantation is the ability to fully reconstitute the immune system of the recipient. Thus, the relationship between stem cell source and the development of T lymphocyte functions required for protection of the recipient from infection will be described, and cord blood recipients will be compared with those receiving other sources of stem cells. T cell development is described in detail, tracking from prethymic to postthymic lymphocytes with specific attention to umbilical cord blood as the source of stem cells. Moreover, a discussion of the placenta as a special microenvironment for umbilical cord blood is presented. Strategies to overcome the immunological defects are presented to improve the outcome of these recipients.
Governing stem cell therapy in India: regulatory vacuum or jurisdictional ambiguity?
Tiwari, Shashank S.; Raman, Sujatha
2014-01-01
Stem cell treatments are being offered in Indian clinics although preclinical evidence of their efficacy and safety is lacking. This is attributed to a governance vacuum created by the lack of legally binding research guidelines. By contrast, this paper highlights jurisdictional ambiguities arising from trying to regulate stem cell therapy under the auspices of research guidelines when treatments are offered in a private market disconnected from clinical trials. While statutory laws have been strengthened in 2014, prospects for their implementation remain weak, given embedded challenges of putting healthcare laws and professional codes into practice. Finally, attending to the capacities of consumer law and civil society activism to remedy the problem of unregulated treatments, the paper finds that the very definition of a governance vacuum needs to be reframed to clarify whose rights to health care are threatened by the proliferation of commercial treatments and individualized negligence-based remedies for grievances. PMID:25431534
Substantial contribution of extrinsic risk factors to cancer development
Wu, Song; Powers, Scott; Zhu, Wei; Hannun, Yusuf A
2015-01-01
Summary Recent research has highlighted a strong correlation between tissue-specific cancer risk and the lifetime number of tissue-specific stem cell divisions. Whether such correlation implies a high unavoidable intrinsic cancer risk has become a key public health debate with dissemination of the ‘bad luck’ hypothesis. Here we provide evidence that intrinsic risk factors contribute only modestly (<10~30%) to cancer development. First, we demonstrate that the correlation between stem-cell division and cancer risk does not distinguish between the effects of intrinsic and extrinsic factors. Next, we show that intrinsic risk is better estimated by the lower bound risk controlling for total stem cell divisions. Finally, we show that the rates of endogenous mutation accumulation by intrinsic processes are not sufficient to account for the observed cancer risks. Collectively, we conclude that cancer risk is heavily influenced by extrinsic factors. These results carry immense consequences for strategizing cancer prevention, research, and public health. PMID:26675728
The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy.
Fábián, Ákos; Vereb, György; Szöllősi, János
2013-01-01
Cancer stem cell (CSC) biology is a rapidly developing field within cancer research. CSCs are postulated to be a unique cell population exclusively capable of infinite self renewal, multilineage differentiation and with ability to evade conventional cytotoxic cancer therapy. These traits distinguish CSCs from their more differentiated counterparts, which possess only limited or no potential for self renewal and tumor initiation. Therefore, CSCs would be the driving motor of malignant growth and therapy resistance. Accordingly, successful cancer treatment would need to eliminate this highly potent group of cells, since even small residual numbers would suffice to recapitulate the disease after therapy. Putative CSCs has been identified in a broad range of human malignancies and several cell surface markers have been associated with their stem cell phenotype. Despite all efforts, a pure CSC population has not been isolated and often in vitro clonogenic and in vivo tumorigenic potential is found in several cell populations with occasionally contradictory surface marker signatures. Here, we give a brief overview of recent advances in CSC theory, including the signaling pathways in CSCs that also appear crucial for stem cells homeostasis in normal tissues. We discuss evidence for the interaction of CSCs with the stromal tumor environment. Finally, we review the emerging potentially effective CSC-targeted treatment strategies and their future role in therapy. Copyright © 2012 International Society for Advancement of Cytometry.
A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.
Cecchelli, Romeo; Aday, Sezin; Sevin, Emmanuel; Almeida, Catarina; Culot, Maxime; Dehouck, Lucie; Coisne, Caroline; Engelhardt, Britta; Dehouck, Marie-Pierre; Ferreira, Lino
2014-01-01
The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.
Toward a CRISPR Picture: Use of CRISPR/Cas9 to Model Diseases in Human Stem Cells In Vitro.
Freiermuth, Jamie L; Powell-Castilla, Ian J; Gallicano, G Ian
2018-01-01
Human induced pluripotent stem cells (iPSCs) can be differentiated into any cell in the body unlocking enormous research potential. Combined with the recent discovery of CRISPR/Cas9 endonucleases in bacteria and their modification for use in biomedical research, these methods have the potential to revolutionize the field of genetic engineering and open the door to generating in vitro models that more closely resemble the in vivo system than ever before. Use of CRISPR/Cas9 has created a whirlwind within the scientific community in the last few years, as the race to move beyond just disease analysis and toward the goal of gene and cell therapy moves further. This review will detail the CRISPR/Cas9 method and its use in stem cells as well as highlight recent studies that demonstrate its use in creating robust disease models. Finally, recent results and current controversies in the field are reviewed and lingering challenges to further development are explored. J. Cell. Biochem. 119: 62-68, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment
Blaser, Bradley W.; Moore, Jessica L.; Hagedorn, Elliott J.; Li, Brian; Riquelme, Raquel; Yang, Song; Zhou, Yi; Tamplin, Owen J.; Binder, Vera
2017-01-01
The microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSPC) biology. Recent advances marking fluorescent HSPCs have allowed exquisite visualization of HSPCs in the caudal hematopoietic tissue (CHT) of the developing zebrafish. Here, we show that the chemokine cxcl8 and its receptor, cxcr1, are expressed by zebrafish endothelial cells, and we identify cxcl8/cxcr1 signaling as a positive regulator of HSPC colonization. Single-cell tracking experiments demonstrated that this is a result of increases in HSPC–endothelial cell “cuddling,” HSPC residency time within the CHT, and HSPC mitotic rate. Enhanced cxcl8/cxcr1 signaling was associated with an increase in the volume of the CHT and induction of cxcl12a expression. Finally, using parabiotic zebrafish, we show that cxcr1 acts HSPC nonautonomously to improve the efficiency of donor HSPC engraftment. This work identifies a mechanism by which the hematopoietic niche remodels to promote HSPC engraftment and suggests that cxcl8/cxcr1 signaling is a potential therapeutic target in patients undergoing hematopoietic stem cell transplantation. PMID:28351983
Plasticity of the Muscle Stem Cell Microenvironment.
Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph
2017-01-01
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.
USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance.
Lee, Jin-Ku; Chang, Nakho; Yoon, Yeup; Yang, Heekyoung; Cho, Heejin; Kim, Eunhee; Shin, Yongjae; Kang, Wonyoung; Oh, Young Taek; Mun, Gyeong In; Joo, Kyeung Min; Nam, Do-Hyun; Lee, Jeongwu
2016-01-01
Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cao, Jun; Shang, Chang-zhen; Lü, Li-hong; Qiu, De-chuan; Ren, Meng; Chen, Ya-jin; Min, Jun
2010-11-01
To establish an efficient culture system to support embryonic stem (ES) cell differentiation into hepatocytes that coexpress F-VIII and F-IX. Mouse E14 ES cells were cultured in differentiation medium containing sodium butyrate (SB), basic fibroblast growth factor (bFGF), and/or bone morphogenetic protein 4 (BMP4) to induce the differentiation of endoderm cells and hepatic progenitor cells. Hepatocyte growth factor, oncostatin M, and dexamethasone were then used to induce the maturation of ES cell-derived hepatocytes. The mRNA expression levels of endoderm-specific genes and hepatocyte-specific genes, including the levels of F-VIII and F-IX, were detected by RT-PCR and real-time PCR during various stages of differentiation. Protein expression was examined by immunofluorescence and Western blot. At the final stage of differentiation, flow cytometry was performed to determine the percentage of cells coexpressing F-VIII and F-IX, and ELISA was used to detect the levels of F-VIII and F-IX protein secreted into the culture medium. The expression of endoderm-specific and hepatocyte-specific markers was upregulated to highest level in response to the combination of SB, bFGF, and BMP4. Treatment with the three inducers during hepatic progenitor differentiation significantly enhanced the mRNA and protein levels of F-VIII and F-IX in ES cell-derived hepatocytes. More importantly, F-VIII and F-IX were coexpressed with high efficiency at the final stage of differentiation, and they were also secreted into the culture medium. We have established a novel in vitro differentiation protocol for ES-derived hepatocytes that coexpress F-VIII and F-IX that may provide a foundation for stem cell replacement therapy for hemophilia.
Barbieri, Federica; Thellung, Stefano; Ratto, Alessandra; Carra, Elisa; Marini, Valeria; Fucile, Carmen; Bajetto, Adriana; Pattarozzi, Alessandra; Würth, Roberto; Gatti, Monica; Campanella, Chiara; Vito, Guendalina; Mattioli, Francesca; Pagano, Aldo; Daga, Antonio; Ferrari, Angelo; Florio, Tullio
2015-04-07
Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals.
Zinc oxide nanoparticles as selective killers of proliferating cells
Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred
2011-01-01
Background: It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Methods: Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. Results: In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Conclusion: Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant. PMID:21698081
Zinc oxide nanoparticles as selective killers of proliferating cells.
Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred
2011-01-01
It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant.
ABO and Rh blood group genotypes in a cohort of Saudi stem cell donors.
Alzahrani, M; Jawdat, D; Alaskar, A; Cereb, N; Hajeer, A H
2018-04-01
The ABO and rhesus (Rh) blood group antigens are the most frequently studied genetic markers in a large group of people. Blood type frequencies vary in different racial/ethnic groups. Our objective was to investigate the distribution of the ABO and rhesus (Rh) blood groups by molecular typing method in a population of Saudi stem cell donors. Our data indicate that the most common blood group in our population is group O followed by group A then group B, and finally, the least common is group AB. © 2018 John Wiley & Sons Ltd.
Sugai, Keiko; Fukuzawa, Ryuji; Shofuda, Tomoko; Fukusumi, Hayato; Kawabata, Soya; Nishiyama, Yuichiro; Higuchi, Yuichiro; Kawai, Kenji; Isoda, Miho; Kanematsu, Daisuke; Hashimoto-Tamaoki, Tomoko; Kohyama, Jun; Iwanami, Akio; Suemizu, Hiroshi; Ikeda, Eiji; Matsumoto, Morio; Kanemura, Yonehiro; Nakamura, Masaya; Okano, Hideyuki
2016-09-19
The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.
Quarta, Marco; Cromie, Melinda; Chacon, Robert; Blonigan, Justin; Garcia, Victor; Akimenko, Igor; Hamer, Mark; Paine, Patrick; Stok, Merel; Shrager, Joseph B.; Rando, Thomas A.
2017-01-01
Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML. PMID:28631758
Tari, Kaveh; Atashi, Amir; Kaviani, Saied; AkhavanRahnama, Mahshid; Anbarlou, Azadeh; Mossahebi-Mohammadi, Majid
2017-01-01
Hepatocyte Growth Factor (HGF) plays a pivotal role in hematopoiesis, motility, growth and mobilization of hematopoietic stem/progenitor cells (HSPCs). HGF mainly is produced by bone marrow mesenchymal stem cells (BM-MSCs). MSCs express erythropoietin (EPO) receptor. In this study, we aimed to assess the effect of EPO on HGF secretion in BM-MSCs. The BM-MSCs treated with EPO (4 IU/ml) for 6, 24 and 48 h. HGF gene expression and protein level were assessed using quantitative real time PCR (qRT-PCR) and Enzyme-linked immunosorbant Assay. In order to show the effect of secreted HGF on migration of HSPCs, hematopoietic stem cells (HSCs) were isolated from cord blood and evaluated using transwell migration assay. We observed a significant increase in level of HGF in cell supernatant after 48 h compared to control group (P < 0.05). Also, qRT-PCR results demonstrated a significant elevation in HGF expression level after 24 and 48 h treatment with EPO compared to control group (P < 0.05). Finally, migration assay results showed a significant increase in migration of HSCs in treated group after 48 h. Our data indicated that EPO may play an important role in stem cell mobilization through up regulating HGF in MSCs and inducing migration of HSCs. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells
Juliano, Celina E.; Reich, Adrian; Liu, Na; Götzfried, Jessica; Zhong, Mei; Uman, Selen; Reenan, Robert A.; Wessel, Gary M.; Steele, Robert E.; Lin, Haifan
2014-01-01
PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI–piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality. PMID:24367095
PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells.
Juliano, Celina E; Reich, Adrian; Liu, Na; Götzfried, Jessica; Zhong, Mei; Uman, Selen; Reenan, Robert A; Wessel, Gary M; Steele, Robert E; Lin, Haifan
2014-01-07
PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI-piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality.
Alvero, Ayesha B; Heaton, Andrew; Lima, Eydis; Pitruzzello, Mary; Sumi, Natalia; Yang-Hartwich, Yang; Cardenas, Carlos; Steinmacher, Sahra; Silasi, Dan-Arin; Brown, David; Mor, Gil
2016-06-01
Chemoresistance is a major hurdle in the management of patients with epithelial ovarian cancer and is responsible for its high mortality. Studies have shown that chemoresistance is due to the presence of a subgroup of cancer cells with stemness properties and a high capacity for tumor repair. We have developed a library of super-benzopyran analogues to generate potent compounds that can induce cell death in chemoresistant cancer stem cells. TRX-E-002-1 is identified as the most potent analogue and can induce cell death in all chemoresistant CD44(+)/MyD88(+) ovarian cancer stem cells tested (IC50 = 50 nmol/L). TRX-E-002-1 is also potent against spheroid cultures formed from cancer stem cells, chemosensitive CD44(-)/MyD88(-) ovarian cancer cells, and heterogeneous cultures of ovarian cancer cells. Cell death was associated with the phosphorylation and increased levels of c-Jun and induction of caspases. In vivo, TRX-E-002-1 given as daily intraperitoneal monotherapy at 100 mg/kg significantly decreased intraperitoneal tumor burden compared with vehicle control. When given in combination with cisplatin, animals receiving the combination of cisplatin and TRX-E-002-1 showed decreased tumor burden compared with each monotherapy. Finally, TRX-E-002-1 given as maintenance treatment after paclitaxel significantly delayed disease recurrence. Our results suggest that TRX-E-002-1 may fill the current need for better therapeutic options in the control and management of recurrent ovarian cancer and may help improve patient survival. Mol Cancer Ther; 15(6); 1279-90. ©2016 AACR. ©2016 American Association for Cancer Research.
Mineda, Kazuhide; Feng, Jingwei; Ishimine, Hisako; Takada, Hitomi; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Kanayama, Koji; Kato, Harunosuke; Mashiko, Takanobu; Hashimoto, Ichiro; Nakanishi, Hideki; Kurisaki, Akira; Yoshimura, Kotaro
2015-12-01
Three-dimensional culture of mesenchymal stem/stromal cells for spheroid formation is known to enhance their therapeutic potential for regenerative medicine. Spheroids were prepared by culturing human adipose-derived stem/stromal cells (hASCs) in a non-cross-linked hyaluronic acid (HA) gel and compared with dissociated hASCs and hASC spheroids prepared using a nonadherent dish. Preliminary experiments indicated that a 4% HA gel was the most appropriate for forming hASC spheroids with a relatively consistent size (20-50 µm) within 48 hours. Prepared spheroids were positive for pluripotency markers (NANOG, OCT3/4, and SOX-2), and 40% of the cells were SSEA-3-positive, a marker of the multilineage differentiating stress enduring or Muse cell. In contrast with dissociated ASCs, increased secretion of cytokines such as hepatocyte growth factor was detected in ASC spheroids cultured under hypoxia. On microarray ASC spheroids showed upregulation of some pluripotency markers and downregulation of genes related to the mitotic cell cycle. After ischemia-reperfusion injury to the fat pad in SCID mice, local injection of hASC spheroids promoted tissue repair and reduced the final atrophy (1.6%) compared with that of dissociated hASCs (14.3%) or phosphate-buffered saline (20.3%). Part of the administered hASCs differentiated into vascular endothelial cells. ASC spheroids prepared in a HA gel contain undifferentiated cells with therapeutic potential to promote angiogenesis and tissue regeneration after damage. This study shows the therapeutic value of human adipose-derived stem cell spheroids prepared in hyarulonic acid gel. The spheroids have various benefits as an injectable cellular product and show therapeutic potential to the stem cell-depleted conditions such as diabetic chronic skin ulcer. ©AlphaMed Press.
NASA Astrophysics Data System (ADS)
Spector, A. A.; Yuan, D.; Somers, S.; Grayson, W. L.
2018-04-01
Stem cells play a key role in the healthy development and maintenance of organisms. They are also critically important in medical treatments of various diseases. It has been recently demonstrated that the mechanical factors such as forces, adhesion, stiffness, relaxation, etc. have significant effects on stem cell functions. Under physiological conditions, cells (stem cells) in muscles, heart, and blood vessels are under the action of externally applied strains. We consider the stem cell microenvironment and performance associated with their conversion (differentiation) into skeletal muscle cells. Two problems are studied by using mathematical models whose parameters are then optimized by fitting experiments. First, we present our analysis of the process of stem cell differentiation under the application of cyclic unidirectional strain. This process is interpreted as a transition through several (six) stages where each of them is defined in terms of expression of a set of factors typical to skeletal muscle cells. The stem cell evolution toward muscle cells is described by a system of nonlinear ODEs. The parameters of the model are determined by fitting the experimental data on the time course of expression of the factors under consideration. Second, we analyse the mechanical (relaxation) properties of a scaffold that serves as the microenvironment for stem cells differentiation into skeletal muscle cells. This scaffold (surrounded by a liquid solution) is composed of unidirectional fibers with pores between them. The relaxation properties of the scaffold are studied in an experiment where a long cylindrical specimen is loaded by the application of ramp displacement until the strain reaches a prescribed value. The magnitude of the corresponding load is recorded. The specimen is considered as transversely isotropic poroelastic cylinder whose force relaxation is associated with liquid diffusion through the pores. An analytical solution for the total force applied to the cylinder in terms of the mechanical properties of the scaffold (longitudinal and lateral Young’s moduli, two Poisson’s ratios, and typical time of liquid diffusion) is used. The number of constant is then reduced to three by estimating the longitudinal Young’s modulus and one of Poisson’s ratios from an earlier experiment. Finally, three remaining parameters are estimated by fitting the relaxation curve corresponding to strain rate of loading of 0.01 s‑1. The developed mathematical solution is then tested by comparing the theoretical and experimental results for another strain rate of 0.0025 s‑1. The scaffold relaxation properties can be important for differentiation of stem cells inside the pores.
The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential
Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre
2015-01-01
Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205
Stem Cell Research and Clinical Translation: A Roadmap about Good Clinical Practice and Patient Care
Scopetti, Matteo; Gatto, Vittorio
2017-01-01
The latest research achievements in the field of stem cells led in 2016 to the publication of “Guidelines for Stem Cell Research and Clinical Translation” by the International Society for Stem Cell Research (ISSCR). Updating the topics covered in previous publications, the new recommendations offer interesting ethical and scientific insights. Under the common principles of research integrity, protection of patient's welfare, respect for the research subjects, transparency and social justice, the centrality of good clinical practice, and informed consent in research and translational medicine is supported. The guidelines implement the abovementioned publications, requiring rigor in all areas of research, promoting the validity of the scientific activity results and emphasizing the need for an accurate and efficient public communication. This paper aims to analyze the aforementioned guidelines in order to provide a valid interpretive tool for experts. In particular, a research activity focused on the bioethical, scientific, and social implications of the new recommendations is carried out in order to provide food for thought. Finally, as an emerging issue of potential impact of current guidelines, an overview on implications of compensation for egg donation is offered. PMID:29090010
Frati, Paola; Scopetti, Matteo; Santurro, Alessandro; Gatto, Vittorio; Fineschi, Vittorio
2017-01-01
The latest research achievements in the field of stem cells led in 2016 to the publication of "Guidelines for Stem Cell Research and Clinical Translation" by the International Society for Stem Cell Research (ISSCR). Updating the topics covered in previous publications, the new recommendations offer interesting ethical and scientific insights. Under the common principles of research integrity, protection of patient's welfare, respect for the research subjects, transparency and social justice, the centrality of good clinical practice, and informed consent in research and translational medicine is supported. The guidelines implement the abovementioned publications, requiring rigor in all areas of research, promoting the validity of the scientific activity results and emphasizing the need for an accurate and efficient public communication. This paper aims to analyze the aforementioned guidelines in order to provide a valid interpretive tool for experts. In particular, a research activity focused on the bioethical, scientific, and social implications of the new recommendations is carried out in order to provide food for thought. Finally, as an emerging issue of potential impact of current guidelines, an overview on implications of compensation for egg donation is offered.
Cho, In K; Wang, Silun; Mao, Hui; Chan, Anthony WS
2016-01-01
Recent advances in stem cell-based regenerative medicine, cell replacement therapy, and genome editing technologies (i.e. CRISPR-Cas 9) have sparked great interest in in vivo cell monitoring. Molecular imaging promises a unique approach to noninvasively monitor cellular and molecular phenomena, including cell survival, migration, proliferation, and even differentiation at the whole organismal level. Several imaging modalities and strategies have been explored for monitoring cell grafts in vivo. We begin this review with an introduction describing the progress in stem cell technology, with a perspective toward cell replacement therapy. The importance of molecular imaging in reporting and assessing the status of cell grafts and their relation to the local microenvironment is highlighted since the current knowledge gap is one of the major obstacles in clinical translation of stem cell therapy. Based on currently available imaging techniques, we provide a brief discussion on the pros and cons of each imaging modality used for monitoring cell grafts with particular emphasis on magnetic resonance imaging (MRI) and the reporter gene approach. Finally, we conclude with a comprehensive discussion of future directions of applying molecular imaging in regenerative medicine to emphasize further the importance of correlating cell graft conditions and clinical outcomes to advance regenerative medicine. PMID:27766183
Differentiation of human pluripotent stem cells into highly functional classical brown adipocytes.
Nishio, Miwako; Saeki, Kumiko
2014-01-01
We describe a detailed method for directed differentiation of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), into functional classical brown adipocytes (BAs) under serum-free and feeder-free conditions. It is a two-tiered culture system, based on very simple techniques, a floating culture and a subsequent adherent culture. It does not require gene transfer. The entire process can be carried out in about 10 days. The key point is the usage of our special hematopoietic cytokine cocktail. Almost all the differentiated cells express uncoupling protein 1, a BA-selective marker, as determined by immunostaining. The differentiated cells show characteristics of classical BA as assessed by morphology and gene/protein expression. Moreover, the expression of myoblast marker genes is transiently induced during the floating culture step. hESC/hiPSC-derived BAs show significantly higher oxygen consumption rates (OCRs) than white adipocytes generated from human mesenchymal stem cell. They also show responsiveness to adrenergic stimuli, with about twofold upregulation in OCR by β-adrenergic receptor (β-AR) agonist treatments. hESC/hiPSC-derived BAs exert in vivo calorigenic activities in response to β-AR agonist treatments as assessed by thermography. Finally, lipid and glucose metabolisms are significantly improved in hESC/hiPSC-derived BA-transplanted mice. Our system provides a highly feasible way to produce functional classical BA bearing metabolism-improving capacities from hESC/hiPSC under a feeder-free and serum-free condition without gene transfer. © 2014 Elsevier Inc. All rights reserved.
Inhibition of EGFR Induces a c-MET Driven Stem Cell Population in Glioblastoma
Jun, Hyun Jung; Bronson, Roderick T.; Charest, Al
2015-01-01
Glioblastoma multiforme (GBM) is the most lethal form of primary brain tumors, characterized by highly invasive and aggressive tumors that are resistant to all current therapeutic options. GBMs are highly heterogeneous in nature and contain a small but highly tumorigenic and self-renewing population of stem or initiating cells (Glioblastoma stem cells or GSCs). GSCs have been shown to contribute to tumor propagation and resistance to current therapeutic modalities. Recent studies of human GBMs have elucidated the genetic alterations common in these tumors, but much remains unknown about specific signaling pathways that regulate GSCs. Here we identify a distinct fraction of cells in a genetically engineered mouse model of EGFR-driven GBM that respond to anti-EGFR therapy by inducing high levels of c-MET expression. The MET positive cells displayed clonogenic potential and long-term self-renewal ability in vitro and are capable of differentiating into multiple lineages. The MET positive GBM cells are resistant to radiation and highly tumorigenic in vivo. Activation of MET signaling led to an increase in expression of the stemness transcriptional regulators Oct4, Nanog and Klf4. Pharmacological inhibition of MET activity in GSCs prevented the activation of Oct4, Nanog and Klf4 and potently abrogated stemness. Finally, the MET expressing cells were preferentially localized in perivascular regions of mouse tumors consistent with their function as GSCs. Together, our findings indicate that EGFR inhibition in GBM induces MET activation in GSCs, which is a functional requisite for GSCs activity and thus represents a promising therapeutic target. PMID:24115218
Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering
NASA Astrophysics Data System (ADS)
Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke
Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.
Kusumoto, Dai; Lachmann, Mark; Kunihiro, Takeshi; Yuasa, Shinsuke; Kishino, Yoshikazu; Kimura, Mai; Katsuki, Toshiomi; Itoh, Shogo; Seki, Tomohisa; Fukuda, Keiichi
2018-06-05
Deep learning technology is rapidly advancing and is now used to solve complex problems. Here, we used deep learning in convolutional neural networks to establish an automated method to identify endothelial cells derived from induced pluripotent stem cells (iPSCs), without the need for immunostaining or lineage tracing. Networks were trained to predict whether phase-contrast images contain endothelial cells based on morphology only. Predictions were validated by comparison to immunofluorescence staining for CD31, a marker of endothelial cells. Method parameters were then automatically and iteratively optimized to increase prediction accuracy. We found that prediction accuracy was correlated with network depth and pixel size of images to be analyzed. Finally, K-fold cross-validation confirmed that optimized convolutional neural networks can identify endothelial cells with high performance, based only on morphology. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells
Tominaga, K; Shimamura, T; Kimura, N; Murayama, T; Matsubara, D; Kanauchi, H; Niida, A; Shimizu, S; Nishioka, K; Tsuji, E-i; Yano, M; Sugano, S; Shimono, Y; Ishii, H; Saya, H; Mori, M; Akashi, K; Tada, K-i; Ogawa, T; Tojo, A; Miyano, S; Gotoh, N
2017-01-01
The transcription factor nuclear factor-κB (NF-κB) has important roles for tumorigenesis, but how it regulates cancer stem cells (CSCs) remains largely unclear. We identified insulin-like growth factor 2 (IGF2) is a key target of NF-κB activated by HER2/HER3 signaling to form tumor spheres in breast cancer cells. The IGF2 receptor, IGF1 R, was expressed at high levels in CSC-enriched populations in primary breast cancer cells. Moreover, IGF2-PI3K (IGF2-phosphatidyl inositol 3 kinase) signaling induced expression of a stemness transcription factor, inhibitor of DNA-binding 1 (ID1), and IGF2 itself. ID1 knockdown greatly reduced IGF2 expression, and tumor sphere formation. Finally, treatment with anti-IGF1/2 antibodies blocked tumorigenesis derived from the IGF1Rhigh CSC-enriched population in a patient-derived xenograft model. Thus, NF-κB may trigger IGF2-ID1-IGF2-positive feedback circuits that allow cancer stem-like cells to appear. Then, they may become addicted to the circuits. As the circuits are the Achilles' heels of CSCs, it will be critical to break them for eradication of CSCs. PMID:27546618
Aponte, Pedro Manuel
2015-05-26
Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.
Caseiro, Ana Rita; Pereira, Tiago; Ivanova, Galya; Luís, Ana Lúcia; Maurício, Ana Colette
2016-01-01
Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest. PMID:26880998
Chen, Amanda X.; Hoffman, Michael D.; Chen, Caressa S.; Shubin, Andrew D.; Reynolds, Daniel S.; Benoit, Danielle S. W.
2015-01-01
Cell-cell contact-mediated Notch signaling is essential for mesenchymal stem cell (MSC) chondrogenesis during development. However, subsequent deactivation of Notch signaling is also required to allow for stem cell chondrogenic progression. Recent literature has shown that Notch signaling can also influence Wnt/β-catenin signaling, critical for MSC differentiation, through perturbations in cell-cell contacts. Traditionally, abundant cell-cell contacts, consistent with development, are emulated in vitro using pellet cultures for chondrogenesis. However, cells are often encapsulated within biomaterials-based scaffolds, such as hydrogels, to improve therapeutic cell localization in vivo. To explore the role of Notch and Wnt/β-catenin signaling in the context of hydrogel-encapsulated MSC chondrogenesis, we compared signaling and differentiation capacity of MSCs in both hydrogels and traditional pellet cultures. We demonstrate that encapsulation within poly(ethylene glycol) (PEG) hydrogels reduces cell-cell contacts, and both Notch (7.5-fold) and Wnt/β-catenin (84.7-fold) pathway activation. Finally, we demonstrate that following establishment of cell-cell contacts and transient Notch signaling in pellet cultures, followed by Notch signaling deactivation, resulted in a 1.5-fold increase in MSC chondrogenesis. Taken together, these findings support that cellular condensation, and the establishment of initial cell-cell contacts is critical for MSC chondrogenesis, and this process is inhibited by hydrogel encapsulation. PMID:25504509
Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D
2014-02-01
The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.
Saeinasab, Morvarid; Matin, Maryam M; Rassouli, Fatemeh B; Bahrami, Ahmad Reza
2016-05-01
Stem cells (SCs) are known as undifferentiated cells with self-renewal and differentiation capacities. Regeneration is a phenomenon that occurs in a limited number of animals after injury, during which blastema tissue is formed. It has been hypothesized that upon injury, the dedifferentiation of surrounding tissues leads into the appearance of cells with SC characteristics. In present study, stem-like cells (SLCs) were obtained from regenerating tissue of New Zealand white rabbit's pinna and their stemness properties were examined by their capacity to differentiate toward insulin producing cells (IPCs), as well as neural and osteogenic lineages. Differentiation was induced by culture of SLCs in defined medium, and cell fates were monitored by specific staining, RT-PCR and flow cytometry assays. Our results revealed that dithizone positive cells, which represent IPCs, and islet-like structures appeared 1 week after induction of SLCs, and this observation was confirmed by the elevated expression of Ins, Pax6 and Glut4 at mRNA level. Furthermore, SLCs were able to express neural markers as early as 1 week after retinoic acid treatment. Finally, SLCs were able to differentiate into osteogenic lineage, as confirmed by Alizarin Red S staining and RT-PCR studies. In conclusion, SLCs, which could successfully differentiate into cells derived from all three germ layers, can be considered as a valuable model to study developmental biology and regenerative medicine.
Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla
2016-08-01
Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.
2015-04-01
The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.
Liu, Xiaolin; Yang, Yunlong; Li, Yan; Niu, Xin; Zhao, Bizeng; Wang, Yang; Bao, Chunyan; Xie, Zongping; Lin, Qiuning; Zhu, Linyong
2017-03-30
The regeneration of articular cartilage, which scarcely shows innate self-healing ability, is a great challenge in clinical treatment. Stem cell-derived exosomes (SC-Exos), an important type of extracellular nanovesicle, exhibit great potential for cartilage regeneration to replace stem cell-based therapy. Cartilage regeneration often takes a relatively long time and there is currently no effective administration method to durably retain exosomes at cartilage defect sites to effectively exert their reparative effect. Therefore, in this study, we exploited a photoinduced imine crosslinking hydrogel glue, which presents excellent operation ability, biocompatibility and most importantly, cartilage-integration, as an exosome scaffold to prepare an acellular tissue patch (EHG) for cartilage regeneration. It was found that EHG can retain SC-Exos and positively regulate both chondrocytes and hBMSCs in vitro. Furthermore, EHG can integrate with native cartilage matrix and promote cell deposition at cartilage defect sites, finally resulting in the promotion of cartilage defect repair. The EHG tissue patch therefore provides a novel, cell-free scaffold material for wound repair.
Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche
Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting
2015-01-01
Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202
Stem cell research in Germany: ethics of healing vs. human dignity.
Oduncu, Fuat S
2003-01-01
On 25 April 2002, the German Parliament has passed a strict new law referring to stem cell research. This law took effect on July 1, 2002. The so-called embryonic Stem Cell Act ("Stammzellgesetz-StZG") permits the import of embryonic stem (ES) cells isolated from surplus lvF-embryos for research reasons. The production itself of ES cells from human blastocysts has been prohibited by the German Embryo Protection Act of 1990, with the exception of the use of ES cells which exist already. The debate on the legitimate use of ES cells escalated, after the main German research funding agency, the Deutsche Forschungsgemeinschaft (DFG), unexpectedly published new guidelines recommending a restricted use of human ES cells for research. Meanwhile, the debate has ethically divided society, political parties, government and church members into a group supporting and a group rejecting ES cell research. The arguments in favour of such a research can be summarized as arguments derived from a new "ethics of healing" calling for a therapeutic imperative, whereas the arguments against can be summarized as arguments violating the fundamental principle of human dignity as they imply the destruction of human embryos. This article will try to present and evaluate various ethical arguments founded on the latest biological and medical data on the potential use of stem cell technologies. It will finally come to the conclusion that ES cell research is opposed to human dignity, since the procedures of isolating ES cells require the destruction and instrumentalization of human embryos. Human embryos are human beings at a very early stage of their development, fully possessing the ability of completing their development. At this very early stage, human embryos are extremely dependent and fragile, and thus vulnerable corporealities. Vulnerability and human dignity demand the protection of the embryo's corporeal integrity. Hence, this essay will try to propagate research with adult stem (AS) cells, a procedure which does not require the destruction of human embryos; with regard to the necessary plasticity, it should be emphasized that AS cells very much resemble ES cells.
Casado, María; de Lecuona, Itziar
2013-01-01
This paper identifies problems and analyzes those conflicts posed by the evaluation of research projects involving the collection and use of human induced pluripotent stem cells (iPS) in Spain. Current legislation is causing problems of interpretation, circular and unnecessary referrals, legal uncertainty and undue delays. Actually, this situation may cause a lack of control and monitoring, and even some paralysis in regenerative medicine and cell therapy research, that is a priority nowadays. The analysis of the current legislation and its bioethical implications, led us to conclude that the review of iPS research projects cannot be assimilated to the evaluation of research projects that involve human embryonic stem cell (hESC). In this context, our proposal is based on the review by the Research Ethics Committees and the checkout by the Spanish Comission of Guarantees for Donation and Use of Human Cells and Tissues (CGDUCTH) of human iPS cells research projects. Moreover, this article claims for a more transparent research system, by effectively articulating the Registry on Research Projects. Finally, a model of verification protocol (checklist) for checking out biomedical research projects involving human iPS cells is suggested.
Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G
2016-06-01
To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y
2010-06-01
Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.
Lim, Jung Jin; Shim, Myung Sun; Lee, Jeoung Eun; Lee, Dong Ryul
2014-01-01
The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells. PMID:24690677
Ocaña, Oscar H; Córcoles, Rebeca; Fabra, Angels; Moreno-Bueno, Gema; Acloque, Hervé; Vega, Sonia; Barrallo-Gimeno, Alejandro; Cano, Amparo; Nieto, M Angela
2012-12-11
The epithelial-mesenchymal transition (EMT) is required in the embryo for the formation of tissues for which cells originate far from their final destination. Carcinoma cells hijack this program for tumor dissemination. The relevance of the EMT in cancer is still debated because it is unclear how these migratory cells colonize distant tissues to form macrometastases. We show that the homeobox factor Prrx1 is an EMT inducer conferring migratory and invasive properties. The loss of Prrx1 is required for cancer cells to metastasize in vivo, which revert to the epithelial phenotype concomitant with the acquisition of stem cell properties. Thus, unlike the classical EMT transcription factors, Prrx1 uncouples EMT and stemness, and is a biomarker associated with patient survival and lack of metastasis. Copyright © 2012 Elsevier Inc. All rights reserved.
Plasticity of the Muscle Stem Cell Microenvironment
Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph
2018-01-01
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology – quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes. PMID:29204832
Kandasamy, Majury; Roll, Lars; Langenstroth, Daniel; Brüstle, Oliver; Faissner, Andreas
2017-06-01
Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487 LeX , 5750 LeX and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage, 487 LeX -, 5750 LeX - and 473HD-related glycans were differently expressed. Later, cells of the three germ layers in embryoid bodies (hEBs) and, even after neuralization of hEBs, subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC), LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs FGF-2/EGF derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs FGF-2/EGF . Finally, we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487 LeX , 5750 LeX and 473HD are promising tools for identifying distinct stages during neural differentiation.
Cocks, Graham; Romanyuk, Nataliya; Amemori, Takashi; Jendelova, Pavla; Forostyak, Oksana; Jeffries, Aaron R; Perfect, Leo; Thuret, Sandrine; Dayanithi, Govindan; Sykova, Eva; Price, Jack
2013-06-07
The use of immortalized neural stem cells either as models of neural development in vitro or as cellular therapies in central nervous system (CNS) disorders has been controversial. This controversy has centered on the capacity of immortalized cells to retain characteristic features of the progenitor cells resident in the tissue of origin from which they were derived, and the potential for tumorogenicity as a result of immortalization. Here, we report the generation of conditionally immortalized neural stem cell lines from human fetal spinal cord tissue, which addresses these issues. Clonal neural stem cell lines were derived from 10-week-old human fetal spinal cord and conditionally immortalized with an inducible form of cMyc. The derived lines were karyotyped, transcriptionally profiled by microarray, and assessed against a panel of spinal cord progenitor markers with immunocytochemistry. In addition, the lines were differentiated and assessed for the presence of neuronal fate markers and functional calcium channels. Finally, a clonal line expressing eGFP was grafted into lesioned rat spinal cord and assessed for survival, differentiation characteristics, and tumorogenicity. We demonstrate that these clonal lines (a) retain a clear transcriptional signature of ventral spinal cord progenitors and a normal karyotype after extensive propagation in vitro, (b) differentiate into relevant ventral neuronal subtypes with functional T-, L-, N-, and P/Q-type Ca(2+) channels and spontaneous calcium oscillations, and (c) stably engraft into lesioned rat spinal cord without tumorogenicity. We propose that these cells represent a useful tool both for the in vitro study of differentiation into ventral spinal cord neuronal subtypes, and for examining the potential of conditionally immortalized neural stem cells to facilitate functional recovery after spinal cord injury or disease.
Stem cells, blood vessels, and angiogenesis as major determinants for musculoskeletal tissue repair.
Huard, Johnny
2018-05-22
This manuscript summarizes 20 years of research from my laboratories at the University of Pittsburgh and more recently, at the University of Texas Health Science Center at Houston and the Steadman Philippon Research Institute in Vail, Colorado. The discovery of muscle-derived stem cells (MDSCs) did not arise from a deliberate search to find a novel population of muscle cells with high regenerative potential, but instead was conceived in response to setbacks encountered while working in muscle cell transplantation for Duchenne muscular dystrophy (DMD). DMD is a devastating inherited X-linked muscle disease characterized by progressive muscle weakness due to lack of dystrophin expression in muscle fiber sarcolemma. Although the transplantation of normal myoblasts into dystrophin-deficient muscle can restore dystrophin, this approach has been hindered by limited survival (less than 1%) of the injected cells. The fact that 99% of the cells were not surviving implantation was seen as a major weakness with this technology by most. My research team decided to investigate which cells represent the 1% of the cells surviving post-implantation. We have subsequently confirmed that the few cells which exhibit high survival post-implantation also display stem cell characteristics, and were termed "muscle-derived stem cells" or MDSCs. Herein, I will describe the origin of these MDSCs, the mechanisms of MDSC action during tissue repair, and finally the development of therapeutic strategies to improve regeneration and repair of musculoskeletal tissues. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-9, 2018. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Anaka, Matthew; Freyer, Claudia; Gedye, Craig; Caballero, Otavia; Davis, Ian D; Behren, Andreas; Cebon, Jonathan
2012-02-01
The ability of cell lines to accurately represent cancer is a major concern in preclinical research. Culture of glioma cells as neurospheres in stem cell media (SCM) has been shown to better represent the genotype and phenotype of primary glioblastoma in comparison to serum cell lines. Despite the use of neurosphere-like models of many malignancies, there has been no robust analysis of whether other cancers benefit from a more representative phenotype and genotype when cultured in SCM. We analyzed the growth properties, transcriptional profile, and genotype of melanoma cells grown de novo in SCM, as while melanocytes share a common precursor with neural cells, melanoma frequently demonstrates divergent behavior in cancer stem cell assays. SCM culture of melanoma cells induced a neural lineage gene expression profile that was not representative of matched patient tissue samples and which could be induced in serum cell lines by switching them into SCM. There was no enrichment for expression of putative melanoma stem cell markers, but the SCM expression profile did overlap significantly with that of SCM cultures of glioma, suggesting that the observed phenotype is media-specific rather than melanoma-specific. Xenografts derived from either culture condition provided the best representation of melanoma in situ. Finally, SCM culture of melanoma did not prevent ongoing acquisition of DNA copy number abnormalities. In conclusion, SCM culture of melanoma does not provide a better representation of the phenotype or genotype of metastatic melanoma, and the resulting neural bias could potentially confound therapeutic target identification. Copyright © 2011 AlphaMed Press.
Generating gene knockout rats by homologous recombination in embryonic stem cells
Tong, Chang; Huang, Guanyi; Ashton, Charles; Li, Ping; Ying, Qi-Long
2013-01-01
We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell–based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats. PMID:21637202
Induced pluripotent stem cells for the treatment of stroke: the potential and the pitfalls.
Yu, Fenggang; Li, Yingying; Morshead, Cindi M
2013-09-01
The extraordinary discovery of induced pluripotent stem cells (iPSCs) has led to the very real possibility that patient-specific cell therapy can be realized. The potential to develop cell replacement therapies outside the ethical and legal limitations, has initiated a new era of hope for regenerative strategies to treat human neurological disease including stroke. In this article, we will review and compare the current approaches to derive iPSCs from different somatic cells, and the induction into neuronal phenotypes, considering the advantages and disadvantages to the methodologies of derivation. We will highlight the work relating to the use of iPSC-based therapies in models of stroke and their potential use in clinical trials. Finally, we will consider future directions and areas of exploration which may promote the realization of iPSC-based cell replacement strategies for the treatment of stroke.
Sasaki, Toshiya; Oh, Ki-Bong; Matsuoka, Hideaki; Saito, Mikako
2008-03-01
Bioactive compounds that may control the specific differentiation from mouse embryonic stem (ES) cells into cardiac-like cells have been screened from herbal medicines. Among seven preparations, Panax ginseng was found to promote the differentiation into beating cells and to sustain their beating for longer than the control. Active compounds were found in its water-soluble fraction. Although they were not isolated, their candidates were surveyed in 42 compounds selected from the database of P. ginseng. Finally we found that vitamin B12 (VB12) and methionine were active. VB12 accelerated the differentiation into beating cells and made the beating rate constantly 100%. Moreover, VB12 was effective in the recovery of beating that was inhibited by spermine action. The mechanism of action of VB12 is discussed in termo of the relevance of intercellular electrical signal transduction.
Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C.; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat
2015-01-01
Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684
Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo
2016-06-01
Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.
The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.
Zhu, Shu Jun; Pearson, Bret J
2013-01-15
Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival. Copyright © 2012 Elsevier Inc. All rights reserved.
Airborne particle monitoring in clean room environments for stem cell cultures.
Cobo, Fernando; Grela, David; Concha, Angel
2008-01-01
Modern high-technology industrial practices like pharmaceutical and stem cell line production demand high-quality environmental conditions to avoid particle contamination in the final product. Particles are important because their presence can affect both the output and the productivity and because they can have repercussion on human health. In this kind of production practice it is necessary to implement optimal methods for particle management and to introduce an environmental monitoring program. This should also address the regional regulatory requirements and will depend on local conditions in each processing center. Each center must evaluate its specific needs and establish appropriate monitoring procedures.
Regenerative medicine in kidney disease: where we stand and where to go.
Borges, Fernanda T; Schor, Nestor
2017-07-22
The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.
Di Baldassarre, Angela; Cimetta, Elisa; Bollini, Sveva; Gaggi, Giulia; Ghinassi, Barbara
2018-05-25
Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.
Whole kidney engineering for clinical translation.
Kim, Ick-Hee; Ko, In Kap; Atala, Anthony; Yoo, James J
2015-04-01
Renal transplantation is currently the only definitive treatment for end-stage renal disease; however, this treatment is severely limited by the shortage of implantable kidneys. To address this shortcoming, development of an engineered, transplantable kidney has been proposed. Although current advances in engineering kidneys based on decellularization and recellularization techniques have offered great promises for the generation of functional kidney constructs, most studies have been conducted using rodent kidney constructs and short-term in-vivo evaluation. Toward clinical translations of this technique, several limitations need to be addressed. Human-sized renal scaffolds are desirable for clinical application, and the fabrication is currently feasible using native porcine and discarded human kidneys. Current progress in stem cell biology and cell culture methods have demonstrated feasibility of the use of embryonic stem cells, induced pluripotent stem cells, and primary renal cells as clinically relevant cell sources for the recellularization of renal scaffolds. Finally, approaches to long-term implantation of engineered kidneys are under investigation using antithrombogenic strategies such as functional reendothelialization of acellular kidney matrices. In the field of bioengineering, whole kidneys have taken a number of important initial steps toward clinical translations, but many challenges must be addressed to achieve a successful treatment for the patient with end-stage renal disease.
Rivas, Daniel; Akter, Rahima; Duque, Gustavo
2007-01-01
Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630
SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation
Takahashi, Yutaka; Carpino, Nick; Cross, James C.; Torres, Miguel; Parganas, Evan; Ihle, James N.
2003-01-01
Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation. PMID:12554639
Greene, Neil G.; Narciso, Ana R.; Filipe, Sergio R.; Camilli, Andrew
2015-01-01
Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens. PMID:26114646
Greene, Neil G; Narciso, Ana R; Filipe, Sergio R; Camilli, Andrew
2015-06-01
Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens.
Salerno, Simona; Messina, Antonietta; Giordano, Francesca; Bader, Augustinus; Drioli, Enrico; De Bartolo, Loredana
2017-02-01
Dermal-epidermal membrane systems were developed by co-culturing human keratinocytes with Skin derived Stem Cells (SSCs), which are Mesenchymal Stem Cells (MSCs) isolated from dermis, on biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT and PCL. The membranes display physico-chemical, morphological, mechanical and biodegradation properties that could satisfy and fulfil specific requirements in skin tissue engineering. CHT membrane exhibits an optimal biodegradation rate for acute wounds; CHT-PCL for the chronic ones. On the other hand, PCL membrane in spite of its very slow biodegradation rate exhibits mechanical properties similar to in vivo dermis, a lower hydrophilic character, and a surface roughness, all properties that make it able to sustain cell adhesion and proliferation for in vitro skin models. Both CHT-PCL and PCL membranes guided epidermal and dermal differentiation of SSCs as pointed out by the expression of cytokeratins and the deposition of the ECM protein fibronectin, respectively. In the dermal-epidermal membrane systems, a more suitable microenvironment for the SSCs differentiation was promoted by the interactions and the mutual interplay with keratinocytes. Being skin tissue-biased stem cells committed to their specific final dermal and/or epidermal cell differentiation, SSCs are more suitable for skin tissue engineering than other adult MSCs with different origin. For this reason, they represent a useful autologous cell source for engineering skin substitutes for both in vivo and in vitro applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Targeting Developmental Pathways: The Achilles Heel of Cancer?
Dempke, Wolfram C M; Fenchel, Klaus; Uciechowski, Peter; Chevassut, Timothy
2017-01-01
Developmental pathways (e.g., Notch, Hippo, Hedgehog, Wnt, and TGF-β/BMP/FGF) are networks of genes that act co-ordinately to establish the body plan, and disruptions of genes in one pathway can have effects in related pathways and may result in serious dysmorphogenesis or cancer. Interestingly, all developmental pathways are highly conserved cell signalling systems present in almost all multicellular organisms. In addition, they have a crucial role in cell proliferation, apoptosis, differentiation, and finally in organ development. Of note, almost all of these pathways promote oncogenesis through synergistic associations with the Hippo signalling pathway, and several lines of evidence have also indicated that these pathways (e.g., Wnt/β-catenin) may be implicated in checkpoint inhibitor resistance (e.g., CTLA-4, PD-1, and PD-L1). Since Notch inhibition in vivo results in partial loss of its stemness features such as self-renewal, chemoresistance, invasive and migratory potential, and tumorigenesis, these highly conserved developmental pathways are regarded as being critical for regulation of self-renewal in both embryonic and adult stem cells and hence are likely to be implicated in the maintenance of cancer stem cells. Many small molecules are currently in preclinical and early clinical development, and only two compounds are approved for treatment of advanced or metastatic basal cell carcinoma (vismodegib and sonidegib). Furthermore, therapeutic targeting of cancer stem cells using drugs that disrupt activated developmental pathways may also represent an attractive strategy that is potentially relevant to many types of malignancy, notably blood cancers, where the evidence for leukaemia stem cells is well established. Future work will hopefully pave the way for the development of new strategies for targeting these pervasive oncogenic pathways. © 2017 S. Karger AG, Basel.
Childhood bilateral limbal stem cell deficiency: long-term management and outcome
Jain, Rajat; Sangwan, Virender S
2013-01-01
A 6-year-old boy presented in 1998 with a 1 month history of lime injury in both eyes. Grade 4 chemical injury (Roper-Hall classification) progressed to total limbal stem cell deficiency in both eyes. Between July 2000 and July 2009, he cumulatively underwent 11 limbal stem cell transplantation surgeries, either direct or cultivated from either his father or mother, and 3 corneal transplants in both eyes. Each of the procedures led to a transient clearing of his visual axis to give vision in the range of 20/60 to 20/100 for a period of 1–3 months after which it failed. He finally underwent Boston keratoprosthesis implantation and now enjoys 20/20 vision with stable optic disc and visual field at a follow-up of 41 months. Timely intervention in childhood helped in prevention of amblyopia in this patient. Perseverance by the patient, his relatives and treating ophthalmologist is very important. PMID:23723104
RNA editing-dependent epitranscriptome diversity in cancer stem cells
Jiang, Qingfei; Crews, Leslie A.; Holm, Frida; Jamieson, Catriona H. M.
2017-01-01
Cancer stem cells (CSCs) can regenerate all facets of a tumour as a result of their stem cell-like capacity to self-renew, survive and become dormant in protective microenvironments. CSCs evolve during tumour progression in a manner that conforms to Charles Darwin’s principle of natural selection. Although somatic DNA mutations and epigenetic alterations promote evolution, post-transcriptional RNA modifications together with RNA binding protein activity (the ‘epitranscriptome’) might also contribute to clonal evolution through dynamic determination of RNA function and gene expression diversity in response to environmental stimuli. Deregulation of these epitranscriptomic events contributes to CSC generation and maintenance, which governs cancer progression and drug resistance. In this Review, we discuss the role of malignant RNA processing in CSC generation and maintenance, including mechanisms of RNA methylation, RNA editing and RNA splicing, and the functional consequences of their aberrant regulation in human malignancies. Finally, we highlight the potential of these events as novel CSC biomarkers as well as therapeutic targets. PMID:28416802
López-Serrano, Clara; Torres-Espín, Abel; Hernández, Joaquim; Alvarez-Palomo, Ana B; Requena, Jordi; Gasull, Xavier; Edel, Michael J; Navarro, Xavier
2016-10-01
Spinal cord injury (SCI) causes loss of neural functions below the level of the lesion due to interruption of spinal pathways and secondary neurodegenerative processes. The transplant of neural stem cells (NSCs) is a promising approach for the repair of SCI. Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is expected to provide an autologous source of iPSC-derived NSCs, avoiding the immune response as well as ethical issues. However, there is still limited information on the behavior and differentiation pattern of transplanted iPSC-derived NSCs within the damaged spinal cord. We transplanted iPSC-derived NSCs, obtained from adult human somatic cells, into rats at 0 or 7 days after SCI, and evaluated motor-evoked potentials and locomotion of the animals. We histologically analyzed engraftment, proliferation, and differentiation of the iPSC-derived NSCs and the spared tissue in the spinal cords at 7, 21, and 63 days posttransplant. Both transplanted groups showed a late decline in functional recovery compared to vehicle-injected groups. Histological analysis showed proliferation of transplanted cells within the tissue and that cells formed a mass. At the final time point, most grafted cells differentiated to neural and astroglial lineages, but not into oligodendrocytes, while some grafted cells remained undifferentiated and proliferative. The proinflammatory tissue microenviroment of the injured spinal cord induced proliferation of the grafted cells and, therefore, there are possible risks associated with iPSC-derived NSC transplantation. New approaches are needed to promote and guide cell differentiation, as well as reduce their tumorigenicity once the cells are transplanted at the lesion site.
Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness.
Del Amo, Pedro Costa; Beneytez, Julio Lahoz; Boelen, Lies; Ahmed, Raya; Miners, Kelly L; Zhang, Yan; Roger, Laureline; Jones, Rhiannon E; Marraco, Silvia A Fuertes; Speiser, Daniel E; Baird, Duncan M; Price, David A; Ladell, Kristin; Macallan, Derek; Asquith, Becca
2018-06-22
Adaptive immunity relies on the generation and maintenance of memory T cells to provide protection against repeated antigen exposure. It has been hypothesised that a self-renewing population of T cells, named stem cell-like memory T (TSCM) cells, are responsible for maintaining memory. However, it is not clear if the dynamics of TSCM cells in vivo are compatible with this hypothesis. To address this issue, we investigated the dynamics of TSCM cells under physiological conditions in humans in vivo using a multidisciplinary approach that combines mathematical modelling, stable isotope labelling, telomere length analysis, and cross-sectional data from vaccine recipients. We show that, unexpectedly, the average longevity of a TSCM clone is very short (half-life < 1 year, degree of self-renewal = 430 days): far too short to constitute a stem cell population. However, we also find that the TSCM population is comprised of at least 2 kinetically distinct subpopulations that turn over at different rates. Whilst one subpopulation is rapidly replaced (half-life = 5 months) and explains the rapid average turnover of the bulk TSCM population, the half-life of the other TSCM subpopulation is approximately 9 years, consistent with the longevity of the recall response. We also show that this latter population exhibited a high degree of self-renewal, with a cell residing without dying or differentiating for 15% of our lifetime. Finally, although small, the population was not subject to excessive stochasticity. We conclude that the majority of TSCM cells are not stem cell-like but that there is a subpopulation of TSCM cells whose dynamics are compatible with their putative role in the maintenance of T cell memory.
Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min
2016-06-21
Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration.
Snider, Eric J; Vannatta, R Taylor; Schildmeyer, Lisa; Stamer, W Daniel; Ethier, C Ross
2018-03-01
Glaucoma, a leading cause of blindness, is characterized by an increase in intraocular pressure, which is largely determined by resistance to aqueous humour outflow through the trabecular meshwork (TM). In glaucoma, the cellularity of the TM is decreased, and, as a result, stem cell therapies for the TM represent a potential therapeutic option for restoring TM function and treating glaucoma patients. We here focus on adipose derived mesenchymal stem cells (MSCs) as a potential autologous cell source for TM regenerative medicine applications and describe characterization techniques at the messenger (reverse transcription-quantitative polymerase chain reaction), protein (western blotting, flow cytometry), and functional (contractility, phagocytosis) levels to distinguish MSCs from TM cells. We present a panel of 12 transcripts to allow: (a) suitable normalization of reverse transcription-quantitative polymerase chain reaction results across cell types and after exposure to potential differentiation stimuli; (b) distinguishing MSCs from TM cells; (c) distinguishing subtypes of TM cells; and (d) distinguishing TM cells from those in neighbouring tissue. At the protein level, dexamethasone induction of myocilin was a robust discriminating factor between MSCs and TM cells and was complemented by other protein markers. Finally, we show that contractility and phagocytosis differ between MSCs and TM cells. These methods are recommended for use in future differentiation studies to fully define if a functional TM-like phenotype is being achieved. Copyright © 2017 John Wiley & Sons, Ltd.
Gruenloh, William; Kambal, Amal; Sondergaard, Claus; McGee, Jeannine; Nacey, Catherine; Kalomoiris, Stefanos; Pepper, Karen; Olson, Scott; Fierro, Fernando
2011-01-01
Mesenchymal stem cells (MSCs) have been shown to contribute to the recovery of tissues through homing to injured areas, especially to hypoxic, apoptotic, or inflamed areas and releasing factors that hasten endogenous repair. In some cases genetic engineering of the MSC is desired, since they are excellent delivery vehicles. We have derived MSCs from the human embryonic stem cell (hESC) line H9 (H9-MSCs). They expressed CD105, CD90, CD73, and CD146, and lacked expression of CD45, CD34, CD14, CD31, and HLA-DR, the hESC pluripotency markers SSEA-4 and Tra-1-81, and the hESC early differentiation marker SSEA-1. Marrow-derived MSCs showed a similar phenotype. H9-MSCs did not form teratoma in our initial studies, whereas the parent H9 line did so robustly. H9-MSCs differentiated into bone, cartilage, and adipocytes in vitro, and displayed increased migration under hypoxic conditions. Finally, using a hindlimb ischemia model, H9-MSCs were shown to home to the hypoxic muscle, but not the contralateral limb, by 48 h after IV injection. In summary, we have defined methods for differentiation of hESCs into MSCs and have defined their characteristics and in vivo migratory properties. PMID:21275830
Cancer stem cell drugs target K-ras signaling in a stemness context
Najumudeen, A K; Jaiswal, A; Lectez, B; Oetken-Lindholm, C; Guzmán, C; Siljamäki, E; Posada, I M D; Lacey, E; Aittokallio, T; Abankwa, D
2016-01-01
Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC. PMID:26973241
Farsi, Zahra
2015-12-01
Some studies have shown that patients with cancer may experience significant spiritual distress as well as spiritual growth, that there is a positive association between spirituality and coping, and that positive religious coping predicts enhanced health outcomes. This study was designed to help explain how the meaning of disease and spiritual responses to threatening stressors influence the final experiential outcomes of adults with leukemia undergoing hematopoietic stem cell transplantation in Iran. This grounded theory study conducted in-depth interviews between 2009 and 2011 on 10 adults in Iran with leukemia undergoing hematopoietic stem cell transplantation. Recorded audio interviews were transcribed verbatim in Persian and coded and analyzed using Corbin and Strauss (2008)'s approach. Main categories that emerged from data included "experiencing the meaning of cancer"; "changing perceptions of death, life and health"; and "moving toward perfection and sublimity." "Finding meaning" was the main concept that defined the final outcome of the experience of participants. Understanding the meaning to patients of disease and treatments may help healthcare providers better appreciate the patients' perspective and improve the physician-patient relationship. Nurses are well positioned to play a decisive role in helping patients cope effectively with their treatment process and in helping ensure positive outcomes for treatments through their helping patients find the unique meaning of their experience.
Derivation and Characterization of Induced Pluripotent Stem Cells from Equine Fibroblasts
Breton, Amandine; Sharma, Ruchi; Diaz, Andrea Catalina; Parham, Alea Gillian; Graham, Audrey; Neil, Claire; Whitelaw, Christopher Bruce; Milne, Elspeth
2013-01-01
Pluripotent stem cells offer unprecedented potential not only for human medicine but also for veterinary medicine, particularly in relation to the horse. Induced pluripotent stem cells (iPSCs) are particularly promising, as they are functionally similar to embryonic stem cells and can be generated in vitro in a patient-specific manner. In this study, we report the generation of equine iPSCs from skin fibroblasts obtained from a foal and reprogrammed using viral vectors coding for murine Oct4, Sox2, c-Myc, and Klf4 sequences. The reprogrammed cell lines were morphologically similar to iPSCs reported from other species and could be stably maintained over more than 30 passages. Immunostaining and polymerase chain reaction analyses revealed that these cell lines expressed an array of endogenous markers associated with pluripotency, including OCT4, SOX2, NANOG, REX1, LIN28, SSEA1, SSEA4, and TRA1-60. Furthermore, under the appropriate conditions, the equine iPSCs readily formed embryoid bodies and differentiated in vitro into cells expressing markers of ectoderm, mesoderm, and endoderm, and when injected into immunodeficient mice, gave raise to tumors containing differentiated derivatives of the 3 germ layers. Finally, we also reprogrammed fibroblasts from a 2-year-old horse. The reprogrammed cells were similar to iPSCs derived from neonatal fibroblasts in terms of morphology, expression of pluripotency markers, and differentiation ability. The generation of these novel cell lines constitutes an important step toward the understanding of pluripotency in the horse, and paves the way for iPSC technology to potentially become a powerful research and clinical tool in veterinary biomedicine. PMID:22897112
Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells.
Tanaka, Tomohiro; Obana, Masanori; Mohri, Tomomi; Ebara, Masaki; Otani, Yuta; Maeda, Makiko; Fujio, Yasushi
2015-10-01
Cytokines play important roles in cardiac repair and regeneration. Recently, we demonstrated that interleukin (IL)-6 family cytokines induce the endothelial differentiation of Sca-1+ cardiac resident stem cells through STAT3/Pim-1 signaling pathway. In contrast, the biological functions of IL-12 family cytokines in heart remain to be elucidated, though they show structural homology with IL-6. In the present study, we examined the effects of IL-12 family cytokines on the transdifferentiation of cardiac Sca-1+ cells into cardiac cells. RT-PCR analyses revealed that IL-27 receptor α (IL-27Rα), but not IL-12R or IL-23R, was expressed in cardiac Sca-1+ cells. The transcript expression of IL-27 was elevated in murine hearts in cardiac injury models. Intriguingly, IL-27 stimulation for 14 days induced the endothelial cell (EC) marker genes, such as CD-31 and VE-cadherin. Immunoblot analyses clarified that IL-27 treatment rapidly phosphorylated STAT3. IL-27 upregulated the expression of Pim-1, but the overexpression of dominant negative STAT3 abrogated the induction of Pim-1 by IL-27. Finally, adenoviral transfection of dominant negative Pim-1 inhibited IL-27-induced EC differentiation of cardiac Sca-1+ cells. These findings demonstrated that IL-27 promoted the commitment of cardiac stem cells into the EC lineage, possibly leading to neovascularization as a novel biological function. IL-27 could not only regulate the inflammation but also contribute to the maintenance of the tissue homeostasis through stem cell differentiation at inflammatory sites. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cell sources for in vitro human liver cell culture models.
Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny
2016-09-01
In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. © 2016 by the Society for Experimental Biology and Medicine.
Cell sources for in vitro human liver cell culture models
Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny
2016-01-01
In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595
Human stem cell decorated nanocellulose threads for biomedical applications.
Mertaniemi, Henrikki; Escobedo-Lucea, Carmen; Sanz-Garcia, Andres; Gandía, Carolina; Mäkitie, Antti; Partanen, Jouni; Ikkala, Olli; Yliperttula, Marjo
2016-03-01
Upon surgery, local inflammatory reactions and postoperative infections cause complications, morbidity, and mortality. Delivery of human adipose mesenchymal stem cells (hASC) into the wounds is an efficient and safe means to reduce inflammation and promote wound healing. However, administration of stem cells by injection often results in low cell retention, and the cells deposit in other organs, reducing the efficiency of the therapy. Thus, it is essential to improve cell delivery to the target area using carriers to which the cells have a high affinity. Moreover, the application of hASC in surgery has typically relied on animal-origin components, which may induce immune reactions or even transmit infections due to pathogens. To solve these issues, we first show that native cellulose nanofibers (nanofibrillated cellulose, NFC) extracted from plants allow preparation of glutaraldehyde cross-linked threads (NFC-X) with high mechanical strength even under the wet cell culture or surgery conditions, characteristically challenging for cellulosic materials. Secondly, using a xenogeneic free protocol for isolation and maintenance of hASC, we demonstrate that cells adhere, migrate and proliferate on the NFC-X, even without surface modifiers. Cross-linked threads were not found to induce toxicity on the cells and, importantly, hASC attached on NFC-X maintained their undifferentiated state and preserved their bioactivity. After intradermal suturing with the hASC decorated NFC-X threads in an ex vivo experiment, cells remained attached to the multifilament sutures without displaying morphological changes or reducing their metabolic activity. Finally, as NFC-X optionally allows facile surface tailoring if needed, we anticipate that stem-cell-decorated NFC-X opens a versatile generic platform as a surgical bionanomaterial for fighting postoperative inflammation and chronic wound healing problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq
Shepard, Peter J.; Choi, Eun-A; Lu, Jente; Flanagan, Lisa A.; Hertel, Klemens J.; Shi, Yongsheng
2011-01-01
Alternative polyadenylation (APA) of mRNAs has emerged as an important mechanism for post-transcriptional gene regulation in higher eukaryotes. Although microarrays have recently been used to characterize APA globally, they have a number of serious limitations that prevents comprehensive and highly quantitative analysis. To better characterize APA and its regulation, we have developed a deep sequencing-based method called Poly(A) Site Sequencing (PAS-Seq) for quantitatively profiling RNA polyadenylation at the transcriptome level. PAS-Seq not only accurately and comprehensively identifies poly(A) junctions in mRNAs and noncoding RNAs, but also provides quantitative information on the relative abundance of polyadenylated RNAs. PAS-Seq analyses of human and mouse transcriptomes showed that 40%–50% of all expressed genes produce alternatively polyadenylated mRNAs. Furthermore, our study detected evolutionarily conserved polyadenylation of histone mRNAs and revealed novel features of mitochondrial RNA polyadenylation. Finally, PAS-Seq analyses of mouse embryonic stem (ES) cells, neural stem/progenitor (NSP) cells, and neurons not only identified more poly(A) sites than what was found in the entire mouse EST database, but also detected significant changes in the global APA profile that lead to lengthening of 3′ untranslated regions (UTR) in many mRNAs during stem cell differentiation. Together, our PAS-Seq analyses revealed a complex landscape of RNA polyadenylation in mammalian cells and the dynamic regulation of APA during stem cell differentiation. PMID:21343387
Breast cancer stem cell-like cells generated during TGFβ-induced EMT are radioresistant.
Konge, Julie; Leteurtre, François; Goislard, Maud; Biard, Denis; Morel-Altmeyer, Sandrine; Vaurijoux, Aurélie; Gruel, Gaetan; Chevillard, Sylvie; Lebeau, Jérôme
2018-05-04
Failure of conventional antitumor therapy is commonly associated with cancer stem cells (CSCs), which are often defined as inherently resistant to radiation and chemotherapeutic agents. However, controversy about the mechanisms involved in the radiation response remains and the inherent intrinsic radioresistance of CSCs has also been questioned. These discrepancies observed in the literature are strongly associated with the cell models used. In order to clarify these contradictory observations, we studied the radiosensitivity of breast CSCs using purified CD24 -/low /CD44 + CSCs and their corresponding CD24 + /CD44 low non-stem cells. These cells were generated after induction of the epithelial-mesenchymal transition (EMT) by transforming growth factor β (TGFβ) in immortalized human mammary epithelial cells (HMLE). Consequently, these 2 cellular subpopulations have an identical genetic background, their differences being related exclusively to TGFβ-induced cell reprogramming. We showed that mesenchymal CD24 -/low /CD44 + CSCs are more resistant to radiation compared with CD24 + /CD44 low parental cells. Cell cycle distribution and free radical scavengers, but not DNA repair efficiency, appeared to be intrinsic determinants of cellular radiosensitivity. Finally, for the first time, we showed that reduced radiation-induced activation of the death receptor pathways (FasL, TRAIL and TNF-α) at the transcriptional level was a key causal event in the radioresistance of CD24 -/low / CD44+ cells acquired during EMT.
... Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...
Chen, Shu-Huey; Yang, Shang-Hsien; Chu, Sung-Chao; Su, Yu-Chieh; Chang, Chu-Yu; Chiu, Ya-Wen; Kao, Ruey-Ho; Li, Dian-Kun; Yang, Kuo-Liang; Wang, Tso-Fu
2011-05-01
Granulocyte colony-stimulating factor (G-CSF) is now widely used for stem cell mobilization. We evaluated the role of post-G-CSF white blood cell (WBC) counts and donor factors in predicting adverse events and yields associated with mobilization. WBC counts were determined at baseline, after the third and the fifth dose of G-CSF in 476 healthy donors. Donors with WBC ≥ 50 × 10(3)/μL post the third dose of G-CSF experienced more fatigue, myalgia/arthralgia, and chills, but final post-G-CSF CD34(+) cell counts were similar. Although the final CD34(+) cell count was higher in donors with WBC ≥ 50 × 10(3)/μL post the fifth G-CSF, the incidence of side effects was similar. Females more frequently experienced headache, nausea/anorexia, vomiting, fever, and lower final CD34(+) cell count than did males. Donors with body mass index (BMI) ≥ 25 showed higher incidences of sweat and insomnia as well as higher final CD34(+) cell counts. Donor receiving G-CSF ≥ 10 μg/kg tended to experience bone pain, headache and chills more frequently. Multivariate analysis indicated that female gender is an independent factor predictive of the occurrence of most side effects, except for ECOG > 1 and chills. Higher BMI was also an independent predictor for fatigue, myalgia/arthralgia, and sweat. Higher G-CSF dose was associated with bone pain, while the WBC count post the third G-CSF was associated with fatigue only. In addition, one donor in the study period did not complete the mobilization due to suspected anaphylactoid reaction. Observation for 1 h after the first injection of G-CSF is required to prevent complications from unpredictable side effects.
Laiosa, Michael D; Tate, Everett R; Ahrenhoerster, Lori S; Chen, Yuhong; Wang, Demin
2016-07-01
Human epidemiological and animal studies suggest that developmental exposure to contaminants that activate the aryl hydrocarbon receptor (AHR) lead to suppression of immune system function throughout life. The persistence of immune deficiency throughout life suggests that the cellular target of AHR activation is a fetal hematopoietic progenitor or stem cell. The aim of this study was to identify the effects of transplacental exposure to an AHR agonist on long-term self-renewal of fetal hematopoietic stem cells. Pregnant C57BL/6 or AHR+/- mice were exposed to the AHR agonist, 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD). On day 14 of gestation, hematopoietic progenitors from wild-type or AHR-deficient fetuses were placed into in vitro T-lymphocyte differentiation cultures to identify the effects of transplacental TCDD on AHR activation in the fetus. We next analyzed the fetal hematopoietic progenitor cells for changes in reactive oxygen species (ROS). Finally, hematopoietic progenitors from fetuses exposed transplacentally to TCDD were mixed 1:1 with cells from congenic controls and used to reconstitute lethally irradiated recipients for analysis of long-term self-renewal potential. Our findings suggested that the effects of TCDD on the developing hematopoietic system were mediated by direct AHR activation in the fetus. Furthermore, developmental AHR activation by TCDD increased ROS in the fetal hematopoietic stem cells, and the elevated ROS was associated with a reduced capacity of the TCDD-exposed fetal cells to compete with control cells in a mixed competitive irradiation/reconstitution assay. Our findings indicate that AHR activation by TCDD in the fetus during pregnancy leads to impairment of long-term self-renewal of hematopoietic stem cells. Laiosa MD, Tate ER, Ahrenhoerster LS, Chen Y, Wang D. 2016. Effects of developmental activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin on long-term self-renewal of murine hematopoietic stem cells. Environ Health Perspect 124:957-965; http://dx.doi.org/10.1289/ehp.1509820.
Bukong, Terence N; Lo, Tracie; Szabo, Gyongyi; Dolganiuc, Angela
2012-05-01
Liver diseases are common in the United States and often require liver transplantation; however, donated organs are limited and thus alternative sources for liver cells are in high demand. Embryonic stem cells (ESC) can provide a continuous and readily available source of liver cells. ESC differentiation to liver cells is yet to be fully understood and comprehensive differentiation protocols are yet to be defined. Here, we aimed to achieve human (h)ESC differentiation into mature hepatocytes using defined recombinant differentiation factors and metabolites. Embryonic stem cell H1 line was sub-cultured on feeder layer. We induced hESCs into endodermal differentiation succeeded by early/late hepatic specification and finally into hepatocyte maturation using step combinations of Activin A and fibroblast growth factor (FGF)-2 for 7 days; followed by FGF-4 and bone morphogenic protein 2 (BMP2) for 7 days, succeeded by FGF-10 + hepatocyte growth factor 4 + epidermal growth factor for 14 days. Specific inhibitors/stimulators were added sequentially throughout differentiation. Cells were analysed by PCR, flow cytometry, microscopy or functional assays. Our hESC differentiation protocol resulted in viable cells with hepatocyte shape and morphology. We observed gradual changes in cell transcriptome, including up-regulation of differentiation-promoting GATA4, GATA6, POU5F1 and HNF4 transcription factors, steady levels of stemness-promoting SOX-2 and low levels of Nanog, as defined by PCR. The hESC-derived hepatocytes expressed alpha-antitrypsin, CD81, cytokeratin 8 and low density lipoprotein (LDL) receptor. The levels of alpha-fetoprotein and proliferation marker Ki-67 in hESC-derived hepatocytes remained elevated. Unlike stem cells, the hESC-derived hepatocytes performed LDL uptake, produced albumin and alanine aminotransferase and had functional alcohol dehydrogenase. We report a novel protocol for hESC differentiation into morphological and functional yet immature hepatocytes as an alternative method for hepatocyte generation. © 2012 John Wiley & Sons A/S.
Tzatzalos, Evangeline; Abilez, Oscar J; Shukla, Praveen; Wu, Joseph C
2016-01-15
Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing. Copyright © 2015 Elsevier B.V. All rights reserved.
Rattanakorn, Kirk; Gadi, Abhilash; Verma, Narendra; Maurizi, Giulia; Gunaratne, Preethi H.; Coarfa, Cristian; Kennedy, Oran D.; Garabedian, Michael J.; Basilico, Claudio; Mansukhani, Alka
2016-01-01
Osteosarcoma (OS) is a highly aggressive pediatric bone cancer in which most tumor cells remain immature and fail to differentiate into bone-forming osteoblasts. However, OS cells readily respond to adipogenic stimuli suggesting they retain mesenchymal stem cell-like properties. Here we demonstrate that nuclear receptor PPARγ agonists such as the anti-diabetic, thiazolidinedione (TZD) drugs induce growth arrest and cause adipogenic differentiation in human, mouse and canine OS cells as well as in tumors in mice. Gene expression analysis reveals that TZDs induce lipid metabolism pathways while suppressing targets of the Hippo-YAP pathway, Wnt signaling and cancer-related proliferation pathways. Significantly, TZD action appears to be restricted to the high Sox2 expressing cancer stem cell population and is dependent on PPARγ expression. TZDs also affect growth and cell fate by causing the cytoplasmic sequestration of the transcription factors SOX2 and YAP that are required for tumorigenicity. Finally, we identify a TZD-regulated gene signature based on Wnt/Hippo target genes and PPARγ that predicts patient outcomes. Together, this work highlights a novel connection between PPARγ agonist in inducing adipogenesis and mimicking the tumor suppressive hippo pathway. It also illustrates the potential of drug repurposing for TZD-based differentiation therapy for osteosarcoma. PMID:27528232
Barth, Andreas S; Kizana, Eddy; Smith, Rachel R; Terrovitis, John; Dong, Peihong; Leppo, Michelle K; Zhang, Yiqiang; Miake, Junichiro; Olson, Eric N; Schneider, Jay W; Abraham, M Roselle; Marbán, Eduardo
2009-01-01
Cardiosphere-derived resident cardiac stem cells (CDCs) are readily isolated from adult hearts and confer functional benefit in animal models of heart failure. To study cardiogenic differentiation in CDCs, we developed a method to genetically label and selectively enrich for cells that have acquired a cardiac phenotype. Lentiviral vectors achieved significantly higher transduction efficiencies in CDCs than any of the nine adeno-associated viral (AAV) serotypes tested. To define the most suitable vector system for reporting cardiogenic differentiation, we compared the cell specificity of five commonly-used cardiac-specific promoters in the context of lentiviral vectors. The promoter of the cardiac sodium-calcium exchanger (NCX1) conveyed the highest degree of cardiac specificity, as assessed by transducing seven cell types with each vector and measuring fluorescence intensity by flow cytometry. NCX1-GFP-positive CDC subpopulations, demonstrating prolonged expression of a variety of cardiac markers, could be isolated and expanded in vitro. Finally, we used chemical biology to validate that lentiviral vectors bearing the cardiac NCX1-promoter can serve as a highly accurate biosensor of cardiogenic small molecules in stem cells. The ability to accurately report cardiac fate and selectively enrich for cardiomyocytes and their precursors has important implications for drug discovery and the development of cell-based therapies. PMID:18388932
Slack, Jonathan M W
2018-05-15
The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.
Antonucci, Ivana; Di Pietro, Roberta; Alfonsi, Melissa; Centurione, Maria Antonietta; Centurione, Lucia; Sancilio, Silvia; Pelagatti, Francesca; D'Amico, Maria Angela; Di Baldassarre, Angela; Piattelli, Adriano; Tetè, Stefano; Palka, Giandomenico; Borlongan, Cesar V; Stuppia, Liborio
2014-01-01
Human amniotic fluid-derived stem cells (AFSCs) represent a novel class of broadly multipotent stem cells sharing characteristics of both embryonic and adult stem cells. However, both the origin of these cells and their actual properties in terms of pluripotent differentiation potential are still debated. In order to verify the presence of features of pluripotency in human second trimester AFSCs, we have investigated the ability of these cells to form in vitro three-dimensional aggregates, known as embryoid bodies (EBs), and to express specific genes of embryonic stem cells (ESCs) and primordial germ cells (PGCs). EBs were obtained after 5 days of AFSC culture in suspension and showed positivity for alkaline phosphatase (AP) staining and for specific markers of pluripotency (OCT4 and SOX2). Moreover, EB-derived cells showed the expression of specific transcripts of the three germ layers. RT-PCR analysis, carried out at different culture times (second, third, fourth, fifth, and eighth passages), revealed the presence of specific markers of ESCs (such as FGF4 and DAPPA4), as well as of markers typical of PGCs and, in particular, genes involved in early stages of germ cell development (Fragilis, Stella, Vasa, c-Kit, Rnf17). Finally, the expression of genes related to the control of DNA methylation (DNMT3A, DNMT3b1, DNMT1, DNMT3L, MBD1, MBD2, MBD3, MDB4, MeCP2), as well as the lack of inactivation of the X-chromosome in female samples, was also demonstrated. Taken together, these data provide further evidence for the presence of common features among human AFSCs, PGCs, and ESCs.
De Filippis, Lidia; Lamorte, Giuseppe; Snyder, Evan Y; Malgaroli, Antonio; Vescovi, Angelo L
2007-09-01
The discovery and study of neural stem cells have revolutionized our understanding of the neurogenetic process, and their inherent ability to adopt expansive growth behavior in vitro is of paramount importance for the development of novel therapeutics based on neural cell replacement. Recent advances in high-throughput assays for drug development and gene discovery dictate the need for rapid, reproducible, long-term expansion of human neural stem cells (hNSCs). In this view, the complement of wild-type cell lines currently available is insufficient. Here we report the establishment of a stable human neural stem cell line (immortalized human NSCs [IhNSCs]) by v-myc-mediated immortalization of previously derived wild-type hNSCs. These cells demonstrate three- to fourfold faster proliferation than wild-type cells in response to growth factors but retain rather similar properties, including multipotentiality. By molecular biology, biochemistry, immunocytochemistry, fluorescence microscopy, and electrophysiology, we show that upon growth factor removal, IhNSCs completely downregulate v-myc expression, cease proliferation, and differentiate terminally into three major neural lineages: astrocytes, oligodendrocytes, and neurons. The latter are functional, mature cells displaying clear-cut morphological and physiological features of terminally differentiated neurons, encompassing mostly the GABAergic, glutamatergic, and cholinergic phenotypes. Finally, IhNSCs produce bona fide oligodendrocytes in fractions up to 20% of total cell number. This is in contrast to the negligible propensity of hNSCs to generate oligodendroglia reported so far. Thus, we describe an immortalized hNSC line endowed with the properties of normal hNSCs and suitable for developing the novel, reliable assays and reproducible high-throughput gene and drug screening that are essential in both diagnostics and cell therapy studies.
Siegel, Ashley L; Gurevich, David B; Currie, Peter D
2013-09-01
The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type. © 2013 FEBS.
Eikenes, Åsmund H.; Malerød, Lene; Christensen, Anette Lie; Steen, Chloé B.; Mathieu, Juliette; Nezis, Ioannis P.; Liestøl, Knut; Huynh, Jean-René; Stenmark, Harald; Haglund, Kaisa
2015-01-01
Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC) division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo. PMID:25635693
A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation.
Du, Vicard; Luciani, Nathalie; Richard, Sophie; Mary, Gaëtan; Gay, Cyprien; Mazuel, François; Reffay, Myriam; Menasché, Philippe; Agbulut, Onnik; Wilhelm, Claire
2017-09-12
The ability to create a 3D tissue structure from individual cells and then to stimulate it at will is a major goal for both the biophysics and regenerative medicine communities. Here we show an integrated set of magnetic techniques that meet this challenge using embryonic stem cells (ESCs). We assessed the impact of magnetic nanoparticles internalization on ESCs viability, proliferation, pluripotency and differentiation profiles. We developed magnetic attractors capable of aggregating the cells remotely into a 3D embryoid body. This magnetic approach to embryoid body formation has no discernible impact on ESC differentiation pathways, as compared to the hanging drop method. It is also the base of the final magnetic device, composed of opposing magnetic attractors in order to form embryoid bodies in situ, then stretch them, and mechanically stimulate them at will. These stretched and cyclic purely mechanical stimulations were sufficient to drive ESCs differentiation towards the mesodermal cardiac pathway.The development of embryoid bodies that are responsive to external stimuli is of great interest in tissue engineering. Here, the authors culture embryonic stem cells with magnetic nanoparticles and show that the presence of magnetic fields could affect their aggregation and differentiation.
Labi, Verena; Bertele, Daniela; Woess, Claudia; Tischner, Denise; Bock, Florian J; Schwemmers, Sven; Pahl, Heike L; Geley, Stephan; Kunze, Mirjam; Niemeyer, Charlotte M; Villunger, Andreas; Erlacher, Miriam
2013-01-01
Anti-apoptotic Bcl-2 family members are critical for the regulation of haematopoietic stem and progenitor cell (HSPC) survival. Little is known about the role of their pro-apoptotic antagonists, i.e. ‘BH3-only’ proteins, in this cell compartment. Based on the analysis of cytokine deprivation-induced changes in mRNA expression levels of Bcl-2 family proteins, we determined the consequences of BH3-only protein depletion on HSPC survival in culture and, for selected candidates, on engraftment in vivo. Thereby, we revealed a critical role for Bim and Bmf as regulators of HSPC dynamics both during early engraftment and long-term reconstitution. HSPCs derived from wild-type donors were readily displaced by Bim- or Bmf-deficient or Bcl-2-overexpressing HSPCs as early as 10 days after engraftment. Moreover, in the absence of Bim, significantly lower numbers of transplanted HSPCs were able to fully engraft radio-depleted recipients. Finally, we provide proof of principle that RNAi-based reduction of BIM or BMF, or overexpression of BCL-2 in human CD34+ cord blood cells may be an attractive therapeutic option to increase stem cell survival and transplantation efficacy. PMID:23180554
Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease
Shroff, Geeta
2016-01-01
Case series Patient: Male, 42 • Female, 30 Final Diagnosis: Human embryonic stem cells showed good therapeutic potential for treatment of multiple sclerosis with lyme disease Symptoms: Fatigue • weakness in limbs Medication: — Clinical Procedure: Human embryonic stem cells transplantation Specialty: Transplantology Objective: Rare disease Background: Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause delayed neurologic symptoms similar to those seen in Lyme disease (LD) patients. Thymus derived T-cells (myelin reactive) migrate to the blood brain barrier and stimulate an inflammatory cascade in the central nervous system. Cell based therapies play an important role in treating neurological diseases such as MS and LD. Case Report: Human embryonic stem cell (hESC) therapy was used to treat two patients with both MS and LD. The hESCs were administered via different routes including intramuscular, intravenous, and supplemental routes (e.g., deep spinal, caudal, intercostal through eye drops) to regenerate the injured cells. Both the patients showed remarkable improvement in their functional skills, overall stamina, cognitive abilities, and muscle strength. Furthermore, the improvement in the patients’ conditions were assessed by magnetic resonance tractography and single photon emission computed tomography (SPECT). Conclusions: Therapy with hESCs might emerge as an effective and safe treatment for patients with both MS and LD. Well-designed clinical trials and follow-up studies are needed to prove the long-term efficacy and safety of hESC therapy in the treatment of patients with MS and LD. PMID:27956736
Hill, Eric M.; Petersen, Christian P.
2015-01-01
Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production. PMID:26525673
Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons
Bradford, Aaron B; McNutt, Patrick M
2015-01-01
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments. PMID:26240679
Generation of functional podocytes from human induced pluripotent stem cells.
Ciampi, Osele; Iacone, Roberto; Longaretti, Lorena; Benedetti, Valentina; Graf, Martin; Magnone, Maria Chiara; Patsch, Christoph; Xinaris, Christodoulos; Remuzzi, Giuseppe; Benigni, Ariela; Tomasoni, Susanna
2016-07-01
Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro. Copyright © 2016. Published by Elsevier B.V.
The promise of human embryonic stem cells in aging-associated diseases
Yabut, Odessa; Bernstein, Harold S.
2011-01-01
Aging-associated diseases are often caused by progressive loss or dysfunction of cells that ultimately affect the overall function of tissues and organs. Successful treatment of these diseases could benefit from cell-based therapy that would regenerate lost cells or otherwise restore tissue function. Human embryonic stem cells (hESCs) promise to be an important therapeutic candidate in treating aging-associated diseases due to their unique capacity for self-renewal and pluripotency. To date, there are numerous hESC lines that have been developed and characterized. We will discuss how hESC lines are derived, their molecular and cellular properties, and how their ability to differentiate into all three embryonic germ layers is determined. We will also outline the methods currently employed to direct their differentiation into populations of tissue-specific, functional cells. Finally, we will highlight the general challenges that must be overcome and the strategies being developed to generate highly-purified hESC-derived cell populations that can safely be used for clinical applications. PMID:21566262
NASA Astrophysics Data System (ADS)
Gershovich, P. M.; Gershovich, J. G.; Zhambalova, A. P.; Romanov, Yu. A.; Buravkova, L. B.
2012-01-01
Mesenchymal stem (stromal) cells (MSCs) are present in a variety of tissues during prenatal and postnatal human development. In adult organism, they are prevalent in bone marrow and supposed to be involved in space-flight induced osteopenia. We studied expression of various genes in human bone marrow MSCs after different terms of simulated microgravity (SMG) provided by Random Positioning Machine. Simulated microgravity induced transient changes in expression level of genes associated with actin cytoskeleton, especially after 48 h of SMG. However, after 120 h exposure in SMG partial restoration of gene expression levels (relative to the control) was found. Similar results were obtained with bmMSCs subjected to 24 h readaptation in static state after 24 h in SMG. Analysis of 84 genes related to identification, growth and differentiation of stem cells revealed that expression of nine genes was changed slightly after 48 h in SMG. More pronounced changes in gene expression of "stem cells markers" were observed after 120 h of simulated microgravity. Among 84 investigated genes, 30 were up-regulated and 24 were down-regulated. Finally, MSCs osteogenesis induced by long-term (10-20 days) simulation of microgravity was accompanied by down-regulation of gene expression of the main osteogenic differentiation markers ( ALPL, OMD) and master transcription osteogenic factor of MSCs ( Runx2). Thus, our study demonstrated that changes in expression level of some genes associated with actin cytoskeleton and stem cell markers are supposed to be one of the mechanisms, which contribute to precursor's cellular adaptation to the microgravity conditions. These results can clarify genomic mechanisms through which SMG reduces osteogenic differentiation of bmMSCs.
Lung cancer stem cells and implications for future therapeutics.
Wang, Jing; Li, Ze-hong; White, James; Zhang, Lin-bo
2014-07-01
Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.
Xue, Xiaolei; Han, Xiaodan; Li, Yuan; Lu, Lu; Li, Deguan
2017-01-01
We examined whether consumption of hydrogen-rich water (HW) could ameliorate hematopoietic stem cell (HSC) injury in mice with total body irradiation (TBI). The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical (∙OH) levels in the c-kit+ cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs) increased and apoptotic c-kit+ cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI) of γ-H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit+ cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit+ cells. Finally, the cell cycle (P21), cell apoptosis (BCL-XL and BAK), and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1) proteins were significantly altered by HW in irradiated mouse c-kit+ cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury. PMID:28243358
Zhang, Junling; Xue, Xiaolei; Han, Xiaodan; Li, Yuan; Lu, Lu; Li, Deguan; Fan, Saijun
2017-01-01
We examined whether consumption of hydrogen-rich water (HW) could ameliorate hematopoietic stem cell (HSC) injury in mice with total body irradiation (TBI). The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical ( ∙ OH) levels in the c-kit + cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs) increased and apoptotic c-kit + cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI) of γ -H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit + cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit + cells. Finally, the cell cycle (P21), cell apoptosis (BCL-XL and BAK), and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1) proteins were significantly altered by HW in irradiated mouse c-kit + cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury.
The stem cell division theory of cancer.
López-Lázaro, Miguel
2018-03-01
All cancer registries constantly show striking differences in cancer incidence by age and among tissues. For example, lung cancer is diagnosed hundreds of times more often at age 70 than at age 20, and lung cancer in nonsmokers occurs thousands of times more frequently than heart cancer in smokers. An analysis of these differences using basic concepts in cell biology indicates that cancer is the end-result of the accumulation of cell divisions in stem cells. In other words, the main determinant of carcinogenesis is the number of cell divisions that the DNA of a stem cell has accumulated in any type of cell from the zygote. Cell division, process by which a cell copies and separates its cellular components to finally split into two cells, is necessary to produce the large number of cells required for living. However, cell division can lead to a variety of cancer-promoting errors, such as mutations and epigenetic mistakes occurring during DNA replication, chromosome aberrations arising during mitosis, errors in the distribution of cell-fate determinants between the daughter cells, and failures to restore physical interactions with other tissue components. Some of these errors are spontaneous, others are promoted by endogenous DNA damage occurring during quiescence, and others are influenced by pathological and environmental factors. The cell divisions required for carcinogenesis are primarily caused by multiple local and systemic physiological signals rather than by errors in the DNA of the cells. As carcinogenesis progresses, the accumulation of DNA errors promotes cell division and eventually triggers cell division under permissive extracellular environments. The accumulation of cell divisions in stem cells drives not only the accumulation of the DNA alterations required for carcinogenesis, but also the formation and growth of the abnormal cell populations that characterize the disease. This model of carcinogenesis provides a new framework for understanding the disease and has important implications for cancer prevention and therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
In silico modelling of radiation effects towards personalised treatment in radiotherapy
NASA Astrophysics Data System (ADS)
Marcu, Loredana G.; Marcu, David
2017-12-01
In silico models applied in medical physics are valuable tools to assist in treatment optimization and personalization, which represent the ultimate goal of today's radiotherapy. Next to several biological and biophysical factors that influence tumour response to ionizing radiation, hypoxia and cancer stem cells are critical parameters that dictate the final outcome. The current work presents the results of an in silico model of tumour growth and response to radiation developed using Monte Carlo techniques. We are presenting the impact of partial oxygen tension and repopulation via cancer stem cells on tumour control after photon irradiation, highlighting some of the gaps that clinical research needs to fill for better customized treatment.
Prabhu, Varun V; Lulla, Amriti R; Madhukar, Neel S; Ralff, Marie D; Zhao, Dan; Kline, Christina Leah B; Van den Heuvel, A Pieter J; Lev, Avital; Garnett, Mathew J; McDermott, Ultan; Benes, Cyril H; Batchelor, Tracy T; Chi, Andrew S; Elemento, Olivier; Allen, Joshua E; El-Deiry, Wafik S
2017-01-01
Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies.
Zhao, Dan; Kline, Christina Leah B.; Van den Heuvel, A. Pieter J.; Lev, Avital; Garnett, Mathew J.; McDermott, Ultan; Benes, Cyril H.; Batchelor, Tracy T.; Chi, Andrew S.; Elemento, Olivier; Allen, Joshua E.
2017-01-01
Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies. PMID:28767654
Lowdell, Mark W; Thomas, Amy
2017-01-01
Advanced therapy medicinal products (ATMPs) represent the current pinnacle of 'patient-specific medicines' and will change the nature of medicine in the near future. They fall into three categories; somatic cell-therapy products, gene therapy products and cells or tissues for regenerative medicine, which are termed 'tissue engineered' products. The term also incorporates 'combination products' where a human cell or tissue is combined with a medical device. Plainly, many of these new medicines share similarities with conventional haematological stem cell transplant products and donor lymphocyte infusions as well as solid organ grafts and yet ATMPs are regulated as medicines and their development has remained predominantly in academic settings and within specialist centres. However, with the advent of commercialisation of dendritic cell vaccines, chimeric antigen receptor (CAR)-T cells and genetically modified autologous haematopoietic stem cells to cure single gene-defects in β-thalassaemia and haemophilia, the widespread availability of these therapies needs to be accommodated. Uniquely to ATMPs, the patient or an allogeneic donor is regularly part of the manufacturing process. All of the examples given above require procurement of blood, bone marrow or an apheresate from a patient as a starting material for manufacture. This can only occur in a clinical facility licensed for the procurement of human cells for therapeutic use and this is likely to fall to haematology departments, either as stem cell transplant programmes or as blood transfusion departments, to provide under a contract with the company that will manufacture and supply the final medicine. The resource implications associated with this can impact on all haematology departments, not just stem cell transplant units, and should not be under-estimated. © 2016 John Wiley & Sons Ltd.
Ortiz, Rafael Carneiro; Lopes, Nathália Martins; Amôr, Nadia Ghinelli; Ponce, José Burgos; Schmerling, Cláudia Kliemann; Lara, Vanessa Soares; Moyses, Raquel Ajub; Rodini, Camila Oliveira
2018-05-23
Tumour metastasis has been associated with cancer stem cells, a small population with stem-like cells properties, higher rate of migration and metastatic potential compared to cells from the tumour bulk. Our aim was to evaluate the immunoexpression of the putative cancer stem cell biomarkers ALDH1 and CD44 in primary tumour and corresponding metastatic lymph nodes. Tumour tissue specimens (n=50) and corresponding metastatic lymph nodes (n=25) were surgically obtained from 50 patients with oral squamous cell carcinoma and submitted to immunohistochemistry. CD44 and ALDH1 were semi-quantitatively scored according to the proportion and intensity of positive cells within the invasive front and metastatic lymph nodes as a whole. A combined score was obtained by multiplying both parameters and later dichotomized into a final score classified as low (≤ 2) or high (> 2) immunoexpression. ALDH1 and CD44 immunoexpression was detected in both tumour sites, although the means of ALDH1 (P = 0.0985) and CD44 (P = 0.4220) cells were higher in metastasis compared to primary tumours. ALDH1 high was positively associated (P = 0.0184) with angiolymphatic invasion, while CD44 high was positively associated (P = 0.0181) with metastasis (N+). At multivariate analysis, CD44 significantly increased the odds of lymph node metastasis, regardless of T stage (OR=8,24; 1,64-65,64, p=0,0088). CD44 immunoexpression was a significant predictor of lymph node metastasis, while ALDH1 high immunostaining was associated with angiolymphatic invasion. Altogether, it suggests that immunoexpression of CD44 and ALDH1 links the cancer stem cell phenotype with oral squamous cell carcinoma invasion and metastasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Kim, Dong Geon; Cho, Hee Jin; Kim, Yeonghwan; Rheey, Jinguen; Shin, Kayoung; Seo, Yun Jee; Choi, Yeon-Sook; Lee, Jung-Il; Lee, Jeongwu; Joo, Kyeung Min; Nam, Do-Hyun
2015-01-01
Glioblastoma (GBM) is the most aggressive and most lethal brain tumor. As current standard therapy consisting of surgery and chemo-irradiation provides limited benefit for GBM patients, novel therapeutic options are urgently required. Forkhead box M1 (FoxM1) transcription factor is an oncogenic regulator that promotes the proliferation, survival, and treatment resistance of various human cancers. The roles of FoxM1 in GBM remain incompletely understood, due in part to pleotropic nature of the FoxM1 pathway. Here, we show the roles of FoxM1 in GBM stem cell maintenance and radioresistance. ShRNA-mediated FoxM1 inhibition significantly impeded clonogenic growth and survival of patient-derived primary GBM cells with marked downregulation of Sox2, a master regulator of stem cell phenotype. Ectopic expression of Sox2 partially rescued FoxM1 inhibition-mediated effects. Conversely, FoxM1 overexpression upregulated Sox2 expression and promoted clonogenic growth of GBM cells. These data, with a direct binding of FoxM1 in the Sox2 promoter region in GBM cells, suggest that FoxM1 regulates stemness of primary GBM cells via Sox2. We also found significant increases in FoxM1 and Sox2 expression in GBM cells after irradiation both in vitro and in vivo orthotopic tumor models. Notably, genetic or a small-molecule FoxM1 inhibitor-mediated FoxM1 targeting significantly sensitized GBM cells to irradiation, accompanying with Sox2 downregulation. Finally, FoxM1 inhibition combined with irradiation in a patient GBM-derived orthotopic model significantly impeded tumor growth and prolonged the survival of tumor bearing mice. Taken together, these results indicate that the FoxM1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM. PMID:26444992
Lee, Yeri; Kim, Kang Ho; Kim, Dong Geon; Cho, Hee Jin; Kim, Yeonghwan; Rheey, Jinguen; Shin, Kayoung; Seo, Yun Jee; Choi, Yeon-Sook; Lee, Jung-Il; Lee, Jeongwu; Joo, Kyeung Min; Nam, Do-Hyun
2015-01-01
Glioblastoma (GBM) is the most aggressive and most lethal brain tumor. As current standard therapy consisting of surgery and chemo-irradiation provides limited benefit for GBM patients, novel therapeutic options are urgently required. Forkhead box M1 (FoxM1) transcription factor is an oncogenic regulator that promotes the proliferation, survival, and treatment resistance of various human cancers. The roles of FoxM1 in GBM remain incompletely understood, due in part to pleotropic nature of the FoxM1 pathway. Here, we show the roles of FoxM1 in GBM stem cell maintenance and radioresistance. ShRNA-mediated FoxM1 inhibition significantly impeded clonogenic growth and survival of patient-derived primary GBM cells with marked downregulation of Sox2, a master regulator of stem cell phenotype. Ectopic expression of Sox2 partially rescued FoxM1 inhibition-mediated effects. Conversely, FoxM1 overexpression upregulated Sox2 expression and promoted clonogenic growth of GBM cells. These data, with a direct binding of FoxM1 in the Sox2 promoter region in GBM cells, suggest that FoxM1 regulates stemness of primary GBM cells via Sox2. We also found significant increases in FoxM1 and Sox2 expression in GBM cells after irradiation both in vitro and in vivo orthotopic tumor models. Notably, genetic or a small-molecule FoxM1 inhibitor-mediated FoxM1 targeting significantly sensitized GBM cells to irradiation, accompanying with Sox2 downregulation. Finally, FoxM1 inhibition combined with irradiation in a patient GBM-derived orthotopic model significantly impeded tumor growth and prolonged the survival of tumor bearing mice. Taken together, these results indicate that the FoxM1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM.
Sun, Zongyang; Tee, Boon Ching; Kennedy, Kelly S.; Kennedy, Patrick M.; Kim, Do-Gyoon; Mallery, Susan R.; Fields, Henry W.
2013-01-01
Purpose Bone regeneration through distraction osteogenesis (DO) is promising but remarkably slow. To accelerate it, autologous mesenchymal stem cells have been directly injected to the distraction site in a few recent studies. Compared to direct injection, a scaffold-based method can provide earlier cell delivery with potentially better controlled cell distribution and retention. This pilot project investigated a scaffold-based cell-delivery approach in a porcine mandibular DO model. Materials and Methods Eleven adolescent domestic pigs were used for two major sets of studies. The in-vitro set established methodologies to: aspirate bone marrow from the tibia; isolate, characterize and expand bone marrow-derived mesenchymal stem cells (BM-MSCs); enhance BM-MSC osteogenic differentiation using FGF-2; and confirm cell integration with a gelatin-based Gelfoam scaffold. The in-vivo set transplanted autologous stem cells into the mandibular distraction sites using Gelfoam scaffolds; completed a standard DO-course and assessed bone regeneration by macroscopic, radiographic and histological methods. Repeated-measure ANOVAs and t-tests were used for statistical analyses. Results From aspirated bone marrow, multi-potent, heterogeneous BM-MSCs purified from hematopoietic stem cell contamination were obtained. FGF-2 significantly enhanced pig BM-MSC osteogenic differentiation and proliferation, with 5 ng/ml determined as the optimal dosage. Pig BM-MSCs integrated readily with Gelfoam and maintained viability and proliferative ability. After integration with Gelfoam scaffolds, 2.4–5.8×107 autologous BM-MSCs (undifferentiated or differentiated) were transplanted to each experimental DO site. Among 8 evaluable DO sites included in the final analyses, the experimental DO sites demonstrated less interfragmentary mobility, more advanced gap obliteration, higher mineral content and faster mineral apposition than the control sites, and all transplanted scaffolds were completely degraded. Conclusion It is technically feasible and biologically sound to deliver autologous BM-MSCs to the distraction site immediately after osteotomy using a Gelfoam scaffold to enhance mandibular DO. PMID:24040314
Urbinati, Fabrizia; Wherley, Jennifer; Geiger, Sabine; Fernandez, Beatriz Campo; Kaufman, Michael L; Cooper, Aaron; Romero, Zulema; Marchioni, Filippo; Reeves, Lilith; Read, Elizabeth; Nowicki, Barbara; Grassman, Elke; Viswanathan, Shivkumar; Wang, Xiaoyan; Hollis, Roger P; Kohn, Donald B
2017-09-01
Gene therapy by autologous hematopoietic stem cell transplantation (HSCT) represents a new approach to treat sickle cell disease (SCD). Optimization of the manufacture, characterization and testing of the transduced hematopoietic stem cell final cell product (FCP), as well as an in depth in vivo toxicology study, are critical for advancing this approach to clinical trials. Data are shown to evaluate and establish the feasibility of isolating, transducing with the Lenti/β AS3 -FB vector and cryopreserving CD34 + cells from human bone marrow (BM) at clinical scale. In vitro and in vivo characterization of the FCP was performed, showing that all the release criteria were successfully met. In vivo toxicology studies were conducted to evaluate potential toxicity of the Lenti/β AS3 -FB LV in the context of a murine BM transplant. Primary and secondary transplantation did not reveal any toxicity from the lentiviral vector. Additionally, vector integration site analysis of murine and human BM cells did not show any clonal skewing caused by insertion of the Lenti/β AS3 -FB vector in cells from primary and secondary transplanted mice. We present here a complete protocol, thoroughly optimized to manufacture, characterize and establish safety of a FCP for gene therapy of SCD. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Kim, Eun-Kyung; Cho, Jae Hee; Kim, EuiJoo; Kim, Yoon Jae
2017-01-01
The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells.
Kim, EuiJoo
2017-01-01
Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871
Differential marker expression by cultures rich in mesenchymal stem cells
2013-01-01
Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471
Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J
2017-08-01
Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
... Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... Home > Learn About Stem Cells > Stem Cell Basics Cells in the human body The human body comprises ...
Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm
2015-01-01
Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.
Bartesaghi, Stefano; Graziano, Vincenzo; Galavotti, Sara; Henriquez, Nick V.; Betts, Joanne; Saxena, Jayeta; Minieri, Valentina; A, Deli; Karlsson, Anna; Martins, L. Miguel; Capasso, Melania; Nicotera, Pierluigi; Brandner, Sebastian; De Laurenzi, Vincenzo; Salomoni, Paolo
2015-01-01
Alterations of mitochondrial metabolism and genomic instability have been implicated in tumorigenesis in multiple tissues. High-grade glioma (HGG), one of the most lethal human neoplasms, displays genetic modifications of Krebs cycle components as well as electron transport chain (ETC) alterations. Furthermore, the p53 tumor suppressor, which has emerged as a key regulator of mitochondrial respiration at the expense of glycolysis, is genetically inactivated in a large proportion of HGG cases. Therefore, it is becoming evident that genetic modifications can affect cell metabolism in HGG; however, it is currently unclear whether mitochondrial metabolism alterations could vice versa promote genomic instability as a mechanism for neoplastic transformation. Here, we show that, in neural progenitor/stem cells (NPCs), which can act as HGG cell of origin, inhibition of mitochondrial metabolism leads to p53 genetic inactivation. Impairment of respiration via inhibition of complex I or decreased mitochondrial DNA copy number leads to p53 genetic loss and a glycolytic switch. p53 genetic inactivation in ETC-impaired neural stem cells is caused by increased reactive oxygen species and associated oxidative DNA damage. ETC-impaired cells display a marked growth advantage in the presence or absence of oncogenic RAS, and form undifferentiated tumors when transplanted into the mouse brain. Finally, p53 mutations correlated with alterations in ETC subunit composition and activity in primary glioma-initiating neural stem cells. Together, these findings provide previously unidentified insights into the relationship between mitochondria, genomic stability, and tumor suppressive control, with implications for our understanding of brain cancer pathogenesis. PMID:25583481
Aligholi, Hadi; Hassanzadeh, Gholamreza; Gorji, Ali; Azari, Hassan
2016-01-01
Despite all attempts the problem of regeneration in damaged central nervous system (CNS) has remained challenging due to its cellular complexity and highly organized and sophisticated connections. In this regard, stem cell therapy might serve as a viable therapeutic approach aiming either to support the damaged tissue and hence to reduce the subsequent neurological dysfunctions and impairments or to replace the lost cells and re-establish damaged circuitries. Adult neural stem/progenitor cells (NS/PCs) are one of the outstanding cell sources that can be isolated from the subventricular zone (SVZ) of the lateral ventricles. These cells can differentiate into neurons, astrocytes, and oligodendrocytes. Implanting autologous NS/PCs will greatly benefit the patients by avoiding immune rejection after implantation, better survival, and integration with the host tissue. Developing safe and efficient methods in small animal models will provide us with the opportunity to optimize procedures required to achieve successful human autologous NS/PC transplantation in near future. In this chapter, a highly controlled and safe biopsy method for harvesting stem cell containing tissue from the SVZ of adult rat brain is introduced. Then, isolation and expansion of NS/PCs from harvested specimen as well as the techniques to verify proliferation and differentiation capacity of the resulting NS/PCs are discussed. Finally, a method for assessing the biopsy lesion volume in the brain is described. This safe biopsy method in rat provides a unique tool to study autologous NS/PC transplantation in different CNS injury models.
Molecular and cell-based therapies for muscle degenerations: a road under construction.
Berardi, Emanuele; Annibali, Daniela; Cassano, Marco; Crippa, Stefania; Sampaolesi, Maurilio
2014-01-01
Despite the advances achieved in understanding the molecular biology of muscle cells in the past decades, there is still need for effective treatments of muscular degeneration caused by muscular dystrophies and for counteracting the muscle wasting caused by cachexia or sarcopenia. The corticosteroid medications currently in use for dystrophic patients merely help to control the inflammatory state and only slightly delay the progression of the disease. Unfortunately, walkers and wheel chairs are the only options for such patients to maintain independence and walking capabilities until the respiratory muscles become weak and the mechanical ventilation is needed. On the other hand, myostatin inhibition, IL-6 antagonism and synthetic ghrelin administration are examples of promising treatments in cachexia animal models. In both dystrophies and cachectic syndrome the muscular degeneration is extremely relevant and the translational therapeutic attempts to find a possible cure are well defined. In particular, molecular-based therapies are common options to be explored in order to exploit beneficial treatments for cachexia, while gene/cell therapies are mostly used in the attempt to induce a substantial improvement of the dystrophic muscular phenotype. This review focuses on the description of the use of molecular administrations and gene/stem cell therapy to treat muscular degenerations. It reviews previous trials using cell delivery protocols in mice and patients starting with the use of donor myoblasts, outlining the likely causes for their poor results and briefly focusing on satellite cell studies that raise new hope. Then it proceeds to describe recently identified stem/progenitor cells, including pluripotent stem cells and in relationship to their ability to home within a dystrophic muscle and to differentiate into skeletal muscle cells. Different known features of various stem cells are compared in this perspective, and the few available examples of their use in animal models of muscular degeneration are reported. Since non coding RNAs, including microRNAs (miRNAs), are emerging as prominent players in the regulation of stem cell fates we also provides an outline of the role of microRNAs in the control of myogenic commitment. Finally, based on our current knowledge and the rapid advance in stem cell biology, a prediction of clinical translation for cell therapy protocols combined with molecular treatments is discussed.
Heery, Richard; Finn, Stephen P.; Cuffe, Sinead; Gray, Steven G.
2017-01-01
Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype. PMID:28430163
[Progress in stem cells and regenerative medicine].
Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi
2015-06-01
Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.
Application of Graphene Based Nanotechnology in Stem Cells Research.
Hu, Shanshan; Zeng, Yongxiang; Yang, Shuying; Qin, Han; Cai, He; Wang, Jian
2015-09-01
The past several years have witnessed significant advances in stem cell therapy, tissue engineering and regenerative medicine. Graphene, with its unique properties such as high electrical conductivity, elasticity and good molecule absorption, have potential for creating the next generation of biomaterials. This review summarizes the interrelationship between graphene and stem cells. The analysis of graphene when applied on mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, embryonic stem cells, periodontal ligament stem cells, human adipose-derived stem cells and cancer stem cells, and how graphene influences cell behavior and differentiation are discussed in details.
Quiescent gastric stem cells maintain the adult Drosophila stomach.
Strand, Marie; Micchelli, Craig A
2011-10-25
The adult Drosophila copper cell region or "stomach" is a highly acidic compartment of the midgut with pH < 3. In this region, a specialized group of acid-secreting cells similar to mammalian gastric parietal cells has been identified by a unique ultrastructure and by copper-metallothionein fluorescence. However, the homeostatic mechanism maintaining the acid-secreting "copper cells" of the adult midgut has not been examined. Here, we combine cell lineage tracing and genetic analysis to investigate the mechanism by which the gastric epithelium is maintained. Our investigation shows that a molecularly identifiable population of multipotent, self-renewing gastric stem cells (GSSCs) produces the acid-secreting copper cells, interstitial cells, and enteroendocrine cells of the stomach. Our assays demonstrate that GSSCs are largely quiescent but can be induced to regenerate the gastric epithelium in response to environmental challenge. Finally, genetic analysis reveals that adult GSSC maintenance depends on Wnt signaling. Characterization of the GSSC lineage in Drosophila, with striking similarities to mammals, will advance the study of both homeostatic and pathogenic processes in the stomach.
Nanotechnology-based approaches for regenerative medicine and biosensing
NASA Astrophysics Data System (ADS)
Solanki, Aniruddh P.
The recent emergence of nanotechnology has set high expectations in many fields of science, especially in biology and medicine. Nanotechnology-based approaches are expected to solve key questions in the emerging field of regenerative medicine. Regenerative medicine essentially deals with regeneration of cells, ultimately leading to the formation of tissues and organs. For this purpose, stem cells, embryonic stem cells or adult stem cells, are thought to be ideal resources. However, many challenges need to be addressed before the full therapeutic potential of stem cells can be harnessed. Controlling the differentiation of stem cells into cells of a specific lineage is extremely vital and challenging. Addressing this challenge, in this work, novel nanotechnology-based approaches for controlling the differentiation of neural stem cells (NSCs) into neurons has been presented. Regeneration of damaged neurons, due to traumatic injuries or degenerative diseases, is extremely challenging. For this purpose, NSCs can be used as resources that can differentiate into neurons, thus having great potential in solving needs of many patients suffering from such conditions. For controlling the differentiation of stem cells, soluble cues (comprising of small molecules and biomolecules) and insoluble cues (cell-cell interactions and cell-microenvironment interactions) play a very important role. The delivery of soluble cues, such as genetic material, into stem cells is extremely challenging. The initial part of this work presents the use of nanomaterials for efficiently delivering soluble cues such as small molecules and small interfering RNA (siRNA) into NSCs for controlling their differentiation into neurons. However, for regenerative purposes, it is preferred that least amounts of the delivery vehicle be used. Thus, the following part of the thesis presents the development and applications of nanotechnology-based approaches for enhancing the differentiation of NSCs into neurons using insoluble cues. The cellular microenvironment, consisting for the extracellular matrix (ECM) was modified by the use of nanostructures, to deliver siRNA into NSCs to enhance neuronal differentiation. Nanotopography-mediated reverse uptake of only the siRNA molecules from the ECM was achieved by the NSCs. NSC differentiation was also controlled by the use of protein micropatterns, wherein the pattern geometry and size defined the fate of the NSCs. Lastly, graphene, in combination with nanoparticles was used as component of the ECM to not only enhance the differentiation of NSCs into neurons, but also align the axons of the differentiated NSCs, having significant implications for its use in regenerating injured spinal cords. The final portion of the thesis presents the applications of nanotechnology for developing highly sensitive and selective biosensors, for detecting biomarkers implicated in various diseases such as cancer and acute pancreatitis.
Drosophila male and female germline stem cell niches require the nuclear lamina protein Otefin.
Barton, Lacy J; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K
2016-07-01
The nuclear lamina is an extensive protein network that underlies the inner nuclear envelope. This network includes the LAP2-emerin-MAN1-domain (LEM-D) protein family, proteins that share an association with the chromatin binding protein Barrier-to-autointegration factor (BAF). Loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Mechanisms associated with laminopathies are not yet understood. Here we present our studies of one of the Drosophila nuclear lamina LEM-D proteins, Otefin (Ote), a homologue of emerin. Previous studies have shown that Ote is autonomously required for the survival of female germline stem cells (GSCs). We demonstrate that Ote is also required for survival of somatic cells in the ovarian niche, with loss of Ote causing a decrease in cap cell number and altered signal transduction. We show germ cell-restricted expression of Ote rescues these defects, revealing a non-autonomous function for Ote in niche maintenance and emphasizing that GSCs contribute to the maintenance of their own niches. Further, we investigate the requirement of Ote in the male fertility. We show that ote mutant males become prematurely sterile as they age. Parallel to observations in females, this sterility is associated with GSC loss and changes in somatic cells of the niche, phenotypes that are largely rescued by germ cell-restricted Ote expression. Taken together, our studies demonstrate that Ote is required autonomously for survival of two stem cell populations, as well as non-autonomously for maintenance of two somatic niches. Finally, our data add to growing evidence that LEM-D proteins have critical roles in stem cell survival and tissue homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Sebastian, Nadia T; Zaikos, Thomas D; Terry, Valeri; Taschuk, Frances; McNamara, Lucy A; Onafuwa-Nuga, Adewunmi; Yucha, Ryan; Signer, Robert A J; Riddell, James; Bixby, Dale; Markowitz, Norman; Morrison, Sean J; Collins, Kathleen L
2017-07-01
Latent HIV infection of long-lived cells is a barrier to viral clearance. Hematopoietic stem and progenitor cells are a heterogeneous population of cells, some of which are long-lived. CXCR4-tropic HIVs infect a broad range of HSPC subtypes, including hematopoietic stem cells, which are multi-potent and long-lived. However, CCR5-tropic HIV infection is limited to more differentiated progenitor cells with life spans that are less well understood. Consistent with emerging data that restricted progenitor cells can be long-lived, we detected persistent HIV in restricted HSPC populations from optimally treated people. Further, genotypic and phenotypic analysis of amplified env alleles from donor samples indicated that both CXCR4- and CCR5-tropic viruses persisted in HSPCs. RNA profiling confirmed expression of HIV receptor RNA in a pattern that was consistent with in vitro and in vivo results. In addition, we characterized a CD4high HSPC sub-population that was preferentially targeted by a variety of CXCR4- and CCR5-tropic HIVs in vitro. Finally, we present strong evidence that HIV proviral genomes of both tropisms can be transmitted to CD4-negative daughter cells of multiple lineages in vivo. In some cases, the transmitted proviral genomes contained signature deletions that inactivated the virus, eliminating the possibility that coincidental infection explains the results. These data support a model in which both stem and non-stem cell progenitors serve as persistent reservoirs for CXCR4- and CCR5-tropic HIV proviral genomes that can be passed to daughter cells.
[Mesenchymal stem cells: definitions, culture and potential applications].
Ceron, Willy; Lozada-Requena, Iván; Ventocilla, Kiomi; Jara, Sandra; Pinto, Milagros; Cabello, Marco; Aguilar, José L
2016-01-01
In recent years, mesenchymal stem cells (MSC) have become very important due to their high plasticity and their ability to release paracrine factors able to interact with various cell types, tissues and organs. The use of MSC in regenerative medicine became of vital importance, since they do not express histocompatibility MHC molecules class II nor costimulant molecules, and low expression of MHC class I, will not be rejected by individuals of same species, they could be used in an autologous, and eventually, allogeneic manner. However, it is important to scientifically demonstrate many properties, including immunomodulatory ones. Having several sources of obtaining, it should be standardized the best one to ensure the purity and quality of these cells. Finally, it is important when working with these cells, that characteristics of cell culture, immunophenotyping and differentiation capacity are fully demonstrated. MSC have been applied in several clinical uses. Among them, their ability to improve, and even heal chronic ulcers, as diabetic, has attracted attention for its potential therapeutic impact.
PITX2 Enhances the Regenerative Potential of Dystrophic Skeletal Muscle Stem Cells.
Vallejo, Daniel; Hernández-Torres, Francisco; Lozano-Velasco, Estefanía; Rodriguez-Outeiriño, Lara; Carvajal, Alejandra; Creus, Carlota; Franco, Diego; Aránega, Amelia Eva
2018-04-10
Duchenne muscular dystrophy (DMD), one of the most lethal genetic disorders, involves progressive muscle degeneration resulting from the absence of DYSTROPHIN. Lack of DYSTROPHIN expression in DMD has critical consequences in muscle satellite stem cells including a reduced capacity to generate myogenic precursors. Here, we demonstrate that the c-isoform of PITX2 transcription factor modifies the myogenic potential of dystrophic-deficient satellite cells. We further show that PITX2c enhances the regenerative capability of mouse DYSTROPHIN-deficient satellite cells by increasing cell proliferation and the number of myogenic committed cells, but importantly also increasing dystrophin-positive (revertant) myofibers by regulating miR-31. These PITX2-mediated effects finally lead to improved muscle function in dystrophic (DMD/mdx) mice. Our studies reveal a critical role for PITX2 in skeletal muscle repair and may help to develop therapeutic strategies for muscular disorders. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.
Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho
2017-07-22
Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.
Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong
2012-01-01
Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.
Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...
Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min
2016-01-01
Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration. PMID:27324079
Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers.
Onoyovwe, Akpevwe; Hagel, Jillian M; Chen, Xue; Khan, Morgan F; Schriemer, David C; Facchini, Peter J
2013-10-01
Immunofluorescence labeling and shotgun proteomics were used to establish the cell type-specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy.
The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker.
Krebsbach, Paul H; Villa-Diaz, Luis G
2017-08-01
Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.
Fuseler, John W.; Potts, Jay D.; Davis, Jeffrey M.; Price, Robert L.
2018-01-01
The influence of somatic stem cells in the stimulation of mammalian cardiac muscle regeneration is still in its early stages, and so far, it has been difficult to determine the efficacy of the procedures that have been employed. The outstanding question remains whether stem cells derived from the bone marrow or some other location within or outside of the heart can populate a region of myocardial damage and transform into tissue-specific differentiated progenies, and also exhibit functional synchronization. Consequently, this necessitates the development of an appropriate in vitro three-dimensional (3D) model of cardiomyogenesis and prompts the development of a 3D cardiac muscle construct for tissue engineering purposes, especially using the somatic stem cell, human mesenchymal stem cells (hMSCs). To this end, we have created an in vitro 3D functional prevascularized cardiac muscle construct using embryonic cardiac myocytes (eCMs) and hMSCs. First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were cocultured onto a 3D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions; hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed dense vascular networks. Next, the eCMs and hMSCs were cocultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were characterized at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated progenies revealed neo-cardiomyogenesis and neo-vasculogenesis. In this milieu, for instance, not only were hMSCs able to couple electromechanically with developing eCMs but were also able to contribute to the developing vasculature as mural cells, respectively. Hence, our unique 3D coculture system provides us a reproducible and quintessential in vitro 3D model of cardiomyogenesis and a functioning prevascularized 3D cardiac graft that can be utilized for personalized medicine. PMID:28457188
Hegemony in the marketplace of biomedical innovation: consumer demand and stem cell science.
Salter, Brian; Zhou, Yinhua; Datta, Saheli
2015-04-01
The global political economy of stem cell therapies is characterised by an established biomedical hegemony of expertise, governance and values in collision with an increasingly informed health consumer demand able to define and pursue its own interest. How does the hegemony then deal with the challenge from the consumer market and what does this tell us about its modus operandi? In developing a theoretical framework to answer these questions, the paper begins with an analysis of the nature of the hegemony of biomedical innovation in general, its close relationship with the research funding market, the current political modes of consumer incorporation, and the ideological role performed by bioethics as legitimating agency. Secondly, taking the case of stem cell innovation, it explores the hegemonic challenge posed by consumer demand working through the global practice based market of medical innovation, the response of the national and international institutions of science and their reassertion of the values of the orthodox model, and the supporting contribution of bioethics. Finally, the paper addresses the tensions within the hegemonic model of stem cell innovation between the key roles and values of scientist and clinician, the exacerbation of these tensions by the increasingly visible demands of health consumers, and the emergence of political compromise. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Keeney, J G; Davis, J M; Siegenthaler, J; Post, M D; Nielsen, B S; Hopkins, W D; Sikela, J M
2015-09-01
Genome sequences encoding DUF1220 protein domains show a burst in copy number among anthropoid species and especially humans, where they have undergone the greatest human lineage-specific copy number expansion of any protein coding sequence in the genome. While DUF1220 copy number shows a dosage-related association with brain size in both normal populations and in 1q21.1-associated microcephaly and macrocephaly, a function for these domains has not yet been described. Here we provide multiple lines of evidence supporting the view that DUF1220 domains function as drivers of neural stem cell proliferation among anthropoid species including humans. First, we show that brain MRI data from 131 individuals across 7 anthropoid species shows a strong correlation between DUF1220 copy number and multiple brain size-related measures. Using in situ hybridization analyses of human fetal brain, we also show that DUF1220 domains are expressed in the ventricular zone and primarily during human cortical neurogenesis, and are therefore expressed at the right time and place to be affecting cortical brain development. Finally, we demonstrate that in vitro expression of DUF1220 sequences in neural stem cells strongly promotes proliferation. Taken together, these data provide the strongest evidence so far reported implicating DUF1220 dosage in anthropoid and human brain expansion through mechanisms involving increasing neural stem cell proliferation.
Protein Kinase-A Inhibition Is Sufficient to Support Human Neural Stem Cells Self-Renewal.
Georges, Pauline; Boissart, Claire; Poulet, Aurélie; Peschanski, Marc; Benchoua, Alexandra
2015-12-01
Human pluripotent stem cell-derived neural stem cells offer unprecedented opportunities for producing specific types of neurons for several biomedical applications. However, to achieve it, protocols of production and amplification of human neural stem cells need to be standardized, cost effective, and safe. This means that small molecules should progressively replace the use of media containing cocktails of protein-based growth factors. Here we have conducted a phenotypical screening to identify pathways involved in the regulation of hNSC self-renewal. We analyzed 80 small molecules acting as kinase inhibitors and identified compounds of the 5-isoquinolinesulfonamide family, described as protein kinase A (PKA) and protein kinase G inhibitors, as candidates to support hNSC self-renewal. Investigating the mode of action of these compounds, we found that modulation of PKA activity was central in controlling the choice between self-renewal or terminal neuronal differentiation of hNSC. We finally demonstrated that the pharmacological inhibition of PKA using the small molecule HA1004 was sufficient to support the full derivation, propagation, and long-term maintenance of stable hNSC in absence of any other extrinsic signals. Our results indicated that tuning of PKA activity is a core mechanism regulating hNSC self-renewal and differentiation and delineate the minimal culture media requirement to maintain undifferentiated hNSC in vitro. © 2015 AlphaMed Press.
Tichy, Elisia D.; Stephan, Zachary A.; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J.
2013-01-01
Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term Charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. PMID:23500643
Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary
2016-01-01
Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180
Drosophila's contribution to stem cell research.
Singh, Gyanesh
2015-01-01
The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.
Drosophila's contribution to stem cell research
Singh, Gyanesh
2016-01-01
The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila. PMID:26180635
Renoud, Marie‐Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe
2016-01-01
Abstract Adipose‐derived stem cells (ADSCs) have led to growing interest in cell‐based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA‐seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress‐associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68–76 PMID:28170194
Estrada, J C; Torres, Y; Benguría, A; Dopazo, A; Roche, E; Carrera-Quintanar, L; Pérez, R A; Enríquez, J A; Torres, R; Ramírez, J C; Samper, E; Bernad, A
2013-06-27
In most clinical trials, human mesenchymal stem cells (hMSCs) are expanded in vitro before implantation. The genetic stability of human stem cells is critical for their clinical use. However, the relationship between stem-cell expansion and genetic stability is poorly understood. Here, we demonstrate that within the normal expansion period, hMSC cultures show a high percentage of aneuploid cells that progressively increases until senescence. Despite this accumulation, we show that in a heterogeneous culture the senescence-prone hMSC subpopulation has a lower proliferation potential and a higher incidence of aneuploidy than the non-senescent subpopulation. We further show that senescence is linked to a novel transcriptional signature that includes a set of genes implicated in ploidy control. Overexpression of the telomerase catalytic subunit (human telomerase reverse transcriptase, hTERT) inhibited senescence, markedly reducing the levels of aneuploidy and preventing the dysregulation of ploidy-controlling genes. hMSC-replicative senescence was accompanied by an increase in oxygen consumption rate (OCR) and oxidative stress, but in long-term cultures that overexpress hTERT, these parameters were maintained at basal levels, comparable to unmodified hMSCs at initial passages. We therefore propose that hTERT contributes to genetic stability through its classical telomere maintenance function and also by reducing the levels of oxidative stress, possibly, by controlling mitochondrial physiology. Finally, we propose that aneuploidy is a relevant factor in the induction of senescence and should be assessed in hMSCs before their clinical use.
März, Martin; Seebeck, Florian; Bartscherer, Kerstin
2013-11-01
In contrast to adult vertebrates, which have limited capacities for neurogenesis, adult planarians undergo constitutive cellular turnover during homeostasis and are even able to regenerate a whole brain after decapitation. This enormous plasticity derives from pluripotent stem cells residing in the planarian body in large numbers. It is still obscure how these stem cells are programmed for differentiation into specific cell lineages and how lineage identity is maintained. Here we identify a Pitx transcription factor of crucial importance for planarian regeneration. In addition to patterning defects that are co-dependent on the LIM homeobox transcription factor gene islet1, which is expressed with pitx at anterior and posterior regeneration poles, RNAi against pitx results in islet1-independent specific loss of serotonergic (SN) neurons during regeneration. Besides its expression in terminally differentiated SN neurons we found pitx in stem cell progeny committed to the SN fate. Also, intact pitx RNAi animals gradually lose SN markers, a phenotype that depends neither on increased apoptosis nor on stem cell-based turnover or transdifferentiation into other neurons. We propose that pitx is a terminal selector gene for SN neurons in planarians that controls not only their maturation but also their identity by regulating the expression of the Serotonin production and transport machinery. Finally, we made use of this function of pitx and compared the transcriptomes of regenerating planarians with and without functional SN neurons, identifying at least three new neuronal targets of Pitx.
Current overview on dental stem cells applications in regenerative dentistry.
Bansal, Ramta; Jain, Aditya
2015-01-01
Teeth are the most natural, noninvasive source of stem cells. Dental stem cells, which are easy, convenient, and affordable to collect, hold promise for a range of very potential therapeutic applications. We have reviewed the ever-growing literature on dental stem cells archived in Medline using the following key words: Regenerative dentistry, dental stem cells, dental stem cells banking, and stem cells from human exfoliated deciduous teeth. Relevant articles covering topics related to dental stem cells were shortlisted and the facts are compiled. The objective of this review article is to discuss the history of stem cells, different stem cells relevant for dentistry, their isolation approaches, collection, and preservation of dental stem cells along with the current status of dental and medical applications.
Bar-Or, David; Thomas, Gregory W; Rael, Leonard T; Gersch, Elizabeth D; Rubinstein, Pablo; Brody, Edward
2015-08-01
Osteoarthritis (OA) is the most common chronic disease of the joint; however, the therapeutic options for severe OA are limited. The low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) has been shown to have anti-inflammatory properties that are mediated, in part, by a diketopiperazine that is present in the albumin preparation and that was demonstrated to be safe and effective in reducing pain and improving function when administered intra-articularly in a phase III clinical trial. In the present study, bone marrow-derived mesenchymal stem cells (BMMSCs) exposed to LMWF5A exhibited an elongated phenotype with diffuse intracellular F-actin, pronounced migratory leading edges, and filopodia-like projections. In addition, LMWF5A promoted chondrogenic condensation in "micromass" culture, concurrent with the upregulation of collagen 2α1 mRNA. Furthermore, the transcription of the CXCR4-CXCL12 axis was significantly regulated in a manner conducive to migration and homing. Several transcription factors involved in stem cell differentiation were also found to bind oligonucleotide response element probes following exposure to LMWF5A. Finally, a rapid increase in PRAS40 phosphorylation was observed following treatment, potentially resulting in the activation mTORC1. Proteomic analysis of synovial fluid taken from a preliminary set of patients indicated that at 12 weeks following administration of LMWF5A, a microenvironment exists in the knee conducive to stem cell infiltration, self-renewal, and differentiation, in addition to indications of remodeling with a reduction in inflammation. Taken together, these findings imply that LMWF5A treatment may prime stem cells for both mobilization and chondrogenic differentiation, potentially explaining some of the beneficial effects achieved in clinical trials. ©AlphaMed Press.
Castro-Garcia, Paola; Díaz-Moreno, María; Gil-Gas, Carmen; Fernández-Gómez, Francisco J; Honrubia-Gómez, Paloma; Álvarez-Simón, Carmen Belén; Sánchez-Sánchez, Francisco; Cano, Juan Carlos Castillo; Almeida, Francisco; Blanco, Vicente; Jordán, Joaquín; Mira, Helena; Ramírez-Castillejo, Carmen
2015-04-01
We studied potential changes in the subventricular zone (SVZ) stem cell niche of the senescence-accelerated mouse prone-8 (SAM-P8) aging model. Bromodeoxyuridine (BrdU) assays with longtime survival revealed a lower number of label-retaining stem cells in the SAM-P8 SVZ compared with the SAM-Resistant 1 (SAM-R1) control strain. We also found that in SAM-P8 niche signaling is attenuated and the stem cell pool is less responsive to the self-renewal niche factor pigmented epithelium-derived factor (PEDF). Protein analysis demonstrated stable amounts of the PEDF ligand in the SAM-P8 SVZ niche; however, SAM-P8 stem cells present a significant expression decrease of patatin-like phospholipase domain containing 2, a receptor for PEDF (PNPLA2-PEDF) receptor, but not of laminin receptor (LR), a receptor for PEDF (LR-PEDF) receptor. We observed changes in self-renewal related genes (hairy and enhancer of split 1 (Hes1), hairy and enhancer of split 1 (Hes5), Sox2] and report that although these genes are down-regulated in SAM-P8, differentiation genes (Pax6) are up-regulated and neurogenesis is increased. Finally, sheltering mammalian telomere complexes might be also involved given a down-regulation of telomeric repeat binding factor 1 (Terf1) expression was observed in SAM-P8 at young age periods. Differences between these 2 models, SAM-P8 and SAM-R1 controls, have been previously detected at more advanced ages. We now describe alterations in the PEDF signaling pathway and stem cell self-renewal at a very young age, which could be involved in the premature senescence observed in the SAM-P8 model. © FASEB.
Stem cells and combination therapy for the treatment of traumatic brain injury.
Dekmak, AmiraSan; Mantash, Sarah; Shaito, Abdullah; Toutonji, Amer; Ramadan, Naify; Ghazale, Hussein; Kassem, Nouhad; Darwish, Hala; Zibara, Kazem
2018-03-15
TBI is a nondegenerative, noncongenital insult to the brain from an external mechanical force; for instance a violent blow in a car accident. It is a complex injury with a broad spectrum of symptoms and has become a major cause of death and disability in addition to being a burden on public health and societies worldwide. As such, finding a therapy for TBI has become a major health concern for many countries, which has led to the emergence of many monotherapies that have shown promising effects in animal models of TBI, but have not yet proven any significant efficacy in clinical trials. In this paper, we will review existing and novel TBI treatment options. We will first shed light on the complex pathophysiology and molecular mechanisms of this disorder, understanding of which is a necessity for launching any treatment option. We will then review most of the currently available treatments for TBI including the recent approaches in the field of stem cell therapy as an optimal solution to treat TBI. Therapy using endogenous stem cells will be reviewed, followed by therapies utilizing exogenous stem cells from embryonic, induced pluripotent, mesenchymal, and neural origin. Combination therapy is also discussed as an emergent novel approach to treat TBI. Two approaches are highlighted, an approach concerning growth factors and another using ROCK inhibitors. These approaches are highlighted with regard to their benefits in minimizing the outcomes of TBI. Finally, we focus on the consequent improvements in motor and cognitive functions after stem cell therapy. Overall, this review will cover existing treatment options and recent advancements in TBI therapy, with a focus on the potential application of these strategies as a solution to improve the functional outcomes of TBI. Copyright © 2017 Elsevier B.V. All rights reserved.
Osteoarthritis and stem cell therapy in humans: a systematic review.
Jevotovsky, D S; Alfonso, A R; Einhorn, T A; Chiu, E S
2018-06-01
Osteoarthritis (OA) is a leading cause of disability in the world. Mesenchymal stem cells (MSCs) have been studied to treat OA. This review was performed to systematically assess the quality of literature and compare the procedural specifics surrounding MSC therapy for osteoarthritis. PubMed, CINAHL, EMBASE and Cochrane Central Register of Controlled Trials were searched for studies using MSCs for OA treatment (final search December 2017). Outcomes of interest included study evidence level, patient demographics, MSC protocol, treatment results and adverse events. Level I and II evidence articles were further analyzed. Sixty-one of 3,172 articles were identified. These studies treated 2,390 patients with osteoarthritis. Most used adipose-derived stem cells (ADSCs) (n = 29) or bone marrow-derived stem cells (BMSCs) (n = 30) though the preparation varied within group. 57% of the sixty-one studies were level IV evidence, leaving five level I and nine level II studies containing 288 patients to be further analyzed. Eight studies used BMSCs, five ADSCs and one peripheral blood stem cells (PBSCs). The risk of bias in these studies showed five level I studies at low risk with seven level II at moderate and two at high risk. While studies support the notion that MSC therapy has a positive effect on OA patients, there is limited high quality evidence and long-term follow-up. The present study summarizes the specifics of high level evidence studies and identifies a lack of consistency, including a diversity of MSC preparations, and thus a lack of reproducibility amongst these articles' methods. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
CRISPR Genome Engineering for Human Pluripotent Stem Cell Research
Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho
2017-01-01
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic. PMID:29158838
The Roles of Mesenchymal Stromal/Stem Cells in Tumor Microenvironment Associated with Inflammation
Krstić, Jelena; Djordjević, Ivana Okić; Jauković, Aleksandra
2016-01-01
State of tumor microenvironment (TME) is closely linked to regulation of tumor growth and progression affecting the final outcome, refractoriness, and relapse of disease. Interactions of tumor, immune, and mesenchymal stromal/stem cells (MSCs) have been recognized as crucial for understanding tumorigenesis. Due to their outstanding features, stem cell-like properties, capacity to regulate immune response, and dynamic functional phenotype dependent on microenvironmental stimuli, MSCs have been perceived as important players in TME. Signals provided by tumor-associated chronic inflammation educate MSCs to alter their phenotype and immunomodulatory potential in favor of tumor-biased state of MSCs. Adjustment of phenotype to TME and acquisition of tumor-promoting ability by MSCs help tumor cells in maintenance of permissive TME and suppression of antitumor immune response. Potential utilization of MSCs in treatment of tumor is based on their inherent ability to home tumor tissue that makes them suitable delivery vehicles for immune-stimulating factors and vectors for targeted antitumor therapy. Here, we review data regarding intrusive effects of inflammatory TME on MSCs capacity to affect tumor development through modification of their phenotype and interactions with immune system. PMID:27630452
Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines.
Almanaa, Taghreed N; Geusz, Michael E; Jamasbi, Roudabeh J
2012-10-24
Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20-80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity to curcumin when compared with the original lines. Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence.
Protection of intestinal damage by pretreatment with cytarabine (cytosine arabinoside)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, T.A.; Blackett, N.M.
The circumstances in which cytarabine (cytosine arabinoside) ''protects'' intestinal epithelial stem cells against radiation have been investigated. Special attention has been given to this protective effect with radiation doses in the clinically used range in order to determine whether the protective effect might be of use in radiotherapy. It has been shown that 12 hours after cytarabine the D/sub 0/ and extrapolation number are increased when large single doses of radiation are used. To determine the effect of cytarabine at lower doses, it is necessary to use a second irradiation as an ''assay'' dose. By this means it is shownmore » that there is more protection than can be accounted for by the change in D/sub 0/ and extrapolation number at the time of the first dose. Evidence is presented indicating that the rate of stem cell regeneration is not increased by cytarabine pretreatment. Finally, the relation between intestinal protection, bone marrow stem cell enhanced recovery and improved animal survival as a result of cytarabine pretreatment is discussed.« less
Chen, Chen; Jiang, Peng; Xue, Haipeng; Peterson, Suzanne E.; Tran, Ha T.; McCann, Anna E.; Parast, Mana M.; Li, Shenglan; Pleasure, David E.; Laurent, Louise C.; Loring, Jeanne F.; Liu, Ying; Deng, Wenbin
2014-01-01
Down’s syndrome (DS), caused by trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. Here we use induced pluripotent stem cells (iPSCs) derived from DS patients to identify a role for astrocytes in DS pathogenesis. DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules. Astrocyte-conditioned medium collected from DS astroglia causes toxicity to neurons, and fails to promote neuronal ion channel maturation and synapse formation. Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo. We also observed abnormal gene expression profiles from DS astroglia. Finally, we show that the FDA-approved antibiotic drug, minocycline, partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B, GFAP, inducible nitric oxide synthase, and thrombospondins 1 and 2 in DS astroglia. Our studies shed light on the pathogenesis and possible treatment of DS by targeting astrocytes with a clinically available drug. PMID:25034944
Context clues: the importance of stem cell-material interactions
Murphy, William L.
2014-01-01
Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691
Cancer stem cells and differentiation therapy.
Jin, Xiong; Jin, Xun; Kim, Hyunggee
2017-10-01
Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."
Clinical trials for stem cell transplantation: when are they needed?
Van Pham, Phuc
2016-04-27
In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.
Stem cells - biological update and cell therapy progress
GIRLOVANU, MIHAI; SUSMAN, SERGIU; SORITAU, OLGA; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; MIHU, CARMEN MIHAELA
2015-01-01
In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine. PMID:26609255
The Role of SIRT1 In Breast Cancer Stem Cells
2016-09-01
CONTRACTING ORGANIZATION: UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER HOUSTON, TX 77030-5400 REPORT DATE: September 2016 TYPE OF REPORT: Final...AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER University of Texas Health Science center 7000 Fannin St FL2 Houston, TX...collaboration with Dr. Eva Sevick at the image core center, Institution of Molecular Medicine at UTHSC at Houston. A mammary fat pad cell injection was
Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture.
Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia
2017-05-25
The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes.
Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture
Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia
2017-01-01
The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes. PMID:28952530
Andersen, Morten; Sajid, Zamra; Pedersen, Rasmus K; Gudmand-Hoeyer, Johanne; Ellervik, Christina; Skov, Vibe; Kjær, Lasse; Pallisgaard, Niels; Kruse, Torben A; Thomassen, Mads; Troelsen, Jesper; Hasselbalch, Hans Carl; Ottesen, Johnny T
2017-01-01
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Blondel, Sophie; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Le Corf, Amelie; Navarro, Claire; Cordette, Véronique; Martinat, Cécile; Laabi, Yacine; Djabali, Karima; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Peschanski, Marc; Nissan, Xavier
2014-04-01
Hutchinson-Gilford progeria syndrome is a rare congenital disease characterized by premature aging in children. Identification of the mutation and related molecular mechanisms has rapidly led to independent clinical trials testing different marketed drugs with a preclinically documented impact on those mechanisms. However, the extensive functional effects of those drugs remain essentially unexplored. We have undertaken a systematic comparative study of the three main treatments currently administered or proposed to progeria-affected children, namely, a farnesyltransferase inhibitor, the combination of an aminobisphosphonate and a statin (zoledronate and pravastatin), and the macrolide antibiotic rapamycin. This work was based on the assumption that mesodermal stem cells, which are derived from Hutchinson-Gilford progeria syndrome-induced pluripotent stem cells expressing major defects associated with the disease, may be instrumental to revealing such effects. Whereas all three treatments significantly improved misshapen cell nuclei typically associated with progeria, differences were observed in terms of functional improvement in prelamin A farnesylation, progerin expression, defective cell proliferation, premature osteogenic differentiation, and ATP production. Finally, we have evaluated the effect of the different drug combinations on this cellular model. This study revealed no additional benefit compared with single-drug treatments, whereas a cytostatic effect equivalent to that of a farnesyltransferase inhibitor alone was systematically observed. Altogether, these results reveal the complexity of the modes of action of different drugs, even when they have been selected on the basis of a similar mechanistic hypothesis, and underscore the use of induced pluripotent stem cell derivatives as a critical and powerful tool for standardized, comparative pharmacological studies.
Blondel, Sophie; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Le Corf, Amelie; Navarro, Claire; Cordette, Véronique; Martinat, Cécile; Laabi, Yacine; Djabali, Karima; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Peschanski, Marc
2014-01-01
Hutchinson-Gilford progeria syndrome is a rare congenital disease characterized by premature aging in children. Identification of the mutation and related molecular mechanisms has rapidly led to independent clinical trials testing different marketed drugs with a preclinically documented impact on those mechanisms. However, the extensive functional effects of those drugs remain essentially unexplored. We have undertaken a systematic comparative study of the three main treatments currently administered or proposed to progeria-affected children, namely, a farnesyltransferase inhibitor, the combination of an aminobisphosphonate and a statin (zoledronate and pravastatin), and the macrolide antibiotic rapamycin. This work was based on the assumption that mesodermal stem cells, which are derived from Hutchinson-Gilford progeria syndrome-induced pluripotent stem cells expressing major defects associated with the disease, may be instrumental to revealing such effects. Whereas all three treatments significantly improved misshapen cell nuclei typically associated with progeria, differences were observed in terms of functional improvement in prelamin A farnesylation, progerin expression, defective cell proliferation, premature osteogenic differentiation, and ATP production. Finally, we have evaluated the effect of the different drug combinations on this cellular model. This study revealed no additional benefit compared with single-drug treatments, whereas a cytostatic effect equivalent to that of a farnesyltransferase inhibitor alone was systematically observed. Altogether, these results reveal the complexity of the modes of action of different drugs, even when they have been selected on the basis of a similar mechanistic hypothesis, and underscore the use of induced pluripotent stem cell derivatives as a critical and powerful tool for standardized, comparative pharmacological studies. PMID:24598781
Establishment of mouse expanded potential stem cells
Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao
2018-01-01
Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987
Control of adult neurogenesis by programmed cell death in the mammalian brain.
Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon
2016-04-21
The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.
Competitive Stem Cell Recruitment by Multiple Cytotactic Cues
Mendelson, Avital; Cheung, Yukkee; Paluch, Kamila; Chen, Mo; Kong, Kimi; Tan, Jiali; Dong, Ziming; Sia, Samuel K.; Mao, Jeremy J.
2014-01-01
A multitude of cytotactic cues direct cell migration in development, cancer metastasis and wound healing. However, our understanding of cell motility remains fragmented partially because current migration devices only allow the study of independent factors. We developed a cell motility assay that allows competitive recruitment of a given cell population simultaneously by gradients of multiple cytotactic cues, observable under real-time imaging. Well-defined uniform gradients of cytotactic cues can be independently generated and sustained in each channel. As a case study, bone marrow mesenchymal stem/stromal cells (MSCs) were exposed to 15 cytokines that are commonly present in arthritis. Cytokines that induced robust recruitment of MSCs in multiple groups were selected to ‘compete’ in a final round to yield the most chemotactic factor(s) based on cell migration numbers, distances, migration indices and motility over time. The potency of a given cytokine in competition frequently differed from its individual action, substantiating the need to test multiple cytokines concurrently due to synergistic or antagonistic effects. This new device has the rare capacity to screen molecules that induce cell migration in cancer therapy, drug development and tissue regeneration. PMID:23364311
MLL-ENL cooperates with SCF to transform primary avian multipotent cells.
Schulte, Cathleen E; von Lindern, Marieke; Steinlein, Peter; Beug, Hartmut; Wiedemann, Leanne M
2002-08-15
The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.
CrxOS maintains the self-renewal capacity of murine embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Ryota; Yamasaki, Tokiwa; Nagai, Yoko
2009-12-25
Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiatedmore » morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.« less
Adult Stem Cell Therapy for Stroke: Challenges and Progress
Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon
2016-01-01
Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032
Li, Na; Zhang, Min; Drummen, Gregor P. C.; Zhao, Yu; Tan, Yin Fen; Luo, Su; Qu, Xiao Bo
2016-01-01
Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone injury and/or in scaffolds for bone replacement strategies. Finally, isolation of SDA-Col I from deer antler represents a renewable, green, and uncomplicated way to obtain a biomedically valuable therapeutic. PMID:27066099
Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo Mario; Cuda, Giovanni
2017-11-28
Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm -1 , which is enriched in human induced pluripotent stem cells. Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.
Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes
Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise
2009-01-01
Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885
Propagation of senescent mice using nuclear transfer embryonic stem cell lines.
Mizutani, Eiji; Ono, Tetsuo; Li, Chong; Maki-Suetsugu, Rinako; Wakayama, Teruhiko
2008-09-01
Senescent mice are often infertile, and the cloning success rate decreases with age, making it almost impossible to produce cloned progeny directly from such animals. In this study, we tried to produce offspring from such "unclonable" senescent mice using nuclear transfer techniques. Donor fibroblasts were obtained from the tail tips of mice aged up to 2 years and 9 months. Although most attempts failed to produce cloned mice by direct somatic cell nuclear transfer, we managed to establish nuclear transfer embryonic stem (ntES) cell lines from all aged mice with an establishment rate of 10-25%, irrespective of sex or strain. Finally, cloned mice were obtained from these ntES cells by a second round of nuclear transfer. In addition, healthy offspring was obtained from all aged donors via germline transmission of ntES cells in chimeric mice. This technique is thus applicable to the propagation of a variety of animals, irrespective of age or fertile potential.
Baxter, Melissa A; Wynn, Robert F; Deakin, Jonathan A; Bellantuono, Ilaria; Edington, Kirsten G; Cooper, Alan; Besley, Guy T N; Church, Heather J; Wraith, J Ed; Carr, Trevor F; Fairbairn, Leslie J
2002-03-01
We have investigated the utility of bone marrow-derived mesenchymal stem cells (MSCs) as targets for gene therapy of the autosomal recessive disorder mucopolysaccharidosis type IH (MPS-IH, Hurler syndrome). Cultures of MSCs were initially exposed to a green fluorescent protein-expressing retrovirus. Green fluorescent protein-positive cells maintained their proliferative and differentiation capacity. Next we used a vector encoding alpha-L-iduronidase (IDUA), the enzyme that is defective in MPS-IH. Following transduction, MPS-IH MSCs expressed high levels of IDUA and secreted supernormal levels of this enzyme into the extracellular medium. Exogenous IDUA expression led to a normalization of glycosaminoglycan storage in MPS-IH cells, as evidenced by a dramatic decrease in the amount of (35)SO(4) sequestered within the heparan sulfate and dermatan sulfate compartments of these cells. Finally, gene-modified MSCs were able to cross-correct the enzyme defect in untransduced MPS-IH fibroblasts via protein transfer.
Toscano, Miguel G; Navarro-Montero, Oscar; Ayllon, Veronica; Ramos-Mejia, Veronica; Guerrero-Carreno, Xiomara; Bueno, Clara; Romero, Tamara; Lamolda, Mar; Cobo, Marien; Martin, Francisco; Menendez, Pablo; Real, Pedro J
2015-01-01
Human embryonic stem cells (hESCs) are a unique in vitro model for studying human developmental biology and represent a potential source for cell replacement strategies. Platelets can be generated from cord blood progenitors and hESCs; however, the molecular mechanisms and determinants controlling the in vitro megakaryocytic specification of hESCs remain elusive. We have recently shown that stem cell leukemia (SCL) overexpression accelerates the emergence of hemato-endothelial progenitors from hESCs and promotes their subsequent differentiation into blood cells with higher clonogenic potential. Given that SCL participates in megakaryocytic commitment, we hypothesized that it may potentiate megakaryopoiesis from hESCs. We show that ectopic SCL expression enhances the emergence of megakaryocytic precursors, mature megakaryocytes (MKs), and platelets in vitro. SCL-overexpressing MKs and platelets respond to different activating stimuli similar to their control counterparts. Gene expression profiling of megakaryocytic precursors shows that SCL overexpression renders a megakaryopoietic molecular signature. Connectivity Map analysis reveals that trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), both histone deacetylase (HDAC) inhibitors, functionally mimic SCL-induced effects. Finally, we confirm that both TSA and SAHA treatment promote the emergence of CD34(+) progenitors, whereas valproic acid, another HDAC inhibitor, potentiates MK and platelet production. We demonstrate that SCL and HDAC inhibitors are megakaryopoiesis regulators in hESCs.
The natural compound sanguinarine perturbs the regenerative capabilities of planarians.
Balestrini, Linda; Di Donfrancesco, Alessia; Rossi, Leonardo; Marracci, Silvia; Isolani, Maria E; Bianucci, Anna M; Batistoni, Renata
2017-01-01
The natural alkaloid sanguinarine has remarkable therapeutic properties and has been used for centuries as a folk remedy. This compound exhibits interesting anticancer properties and is currently receiving attention as a potential chemotherapeutic agent. Nevertheless, limited information exists regarding its safety for developing organisms. Planarians are an animal model known for their extraordinary stem cell-based regenerative capabilities and are increasingly used for toxicological and pharmacological studies. Here, we report that sanguinarine, at micromolar concentrations, perturbs the regeneration process in the planarian Dugesia japonica. We show that sanguinarine exposure causes defects during anterior regeneration and visual system recovery, as well as anomalous remodelling of pre-existing structures. Investigating the effects of sanguinarine on stem cells, we found that sanguinarine perturbs the transcriptional profile of early and late stem cell progeny markers. Our results indicate that sanguinarine exposure alters cell dynamics and induces apoptosis without affecting cell proliferation. Finally, sanguinarine exposure influences the expression level of H + , K + -ATPase α subunit, a gene of the P-type-ATPase pump family which plays a crucial role during anterior regeneration in planaria. On the whole, our data reveal that sanguinarine perturbs multiple mechanisms which regulate regeneration dynamics and contribute to a better understanding of the safety profile of this alkaloid in developing organisms.
Genetic profiling of putative breast cancer stem cells from malignant pleural effusions.
Tiran, Verena; Stanzer, Stefanie; Heitzer, Ellen; Meilinger, Michael; Rossmann, Christopher; Lax, Sigurd; Tsybrovskyy, Oleksiy; Dandachi, Nadia; Balic, Marija
2017-01-01
A common symptom during late stage breast cancer disease is pleural effusion, which is related to poor prognosis. Malignant cells can be detected in pleural effusions indicating metastatic spread from the primary tumor site. Pleural effusions have been shown to be a useful source for studying metastasis and for isolating cells with putative cancer stem cell (CSC) properties. For the present study, pleural effusion aspirates from 17 metastatic breast cancer patients were processed to propagate CSCs in vitro. Patient-derived aspirates were cultured under sphere forming conditions and isolated primary cultures were further sorted for cancer stem cell subpopulations ALDH1+ and CD44+CD24-/low. Additionally, sphere forming efficiency of CSC and non-CSC subpopulations was determined. In order to genetically characterize the different tumor subpopulations, DNA was isolated from pleural effusions before and after cell sorting, and compared with corresponding DNA copy number profiles from primary tumors or bone metastasis using low-coverage whole genome sequencing (SCNA-seq). In general, unsorted cells had a higher potential to form spheres when compared to CSC subpopulations. In most cases, cell sorting did not yield sufficient cells for copy number analysis. A total of five from nine analyzed unsorted pleura samples (55%) showed aberrant copy number profiles similar to the respective primary tumor. However, most sorted subpopulations showed a balanced profile indicating an insufficient amount of tumor cells and low sensitivity of the sequencing method. Finally, we were able to establish a long term cell culture from one pleural effusion sample, which was characterized in detail. In conclusion, we confirm that pleural effusions are a suitable source for enrichment of putative CSC. However, sequencing based molecular characterization is impeded due to insufficient sensitivity along with a high number of normal contaminating cells, which are masking genetic alterations of rare cancer (stem) cells.
A family business: stem cell progeny join the niche to regulate homeostasis.
Hsu, Ya-Chieh; Fuchs, Elaine
2012-01-23
Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems.
A family business: stem cell progeny join the niche to regulate homeostasis
Hsu, Ya-Chieh; Fuchs, Elaine
2012-01-01
Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems. PMID:22266760
Psychosocial Pathways to STEM Engagement among Graduate Students in the Life Sciences.
Clark, Sheri L; Dyar, Christina; Maung, Nina; London, Bonita
2016-01-01
Despite growing diversity among life sciences professionals, members of historically underrepresented groups (e.g., women) continue to encounter barriers to academic and career advancement, such as subtle messages and stereotypes that signal low value for women, and fewer opportunities for quality mentoring relationships. These barriers reinforce the stereotype that women's gender is incompatible with their science, technology, engineering, and mathematics (STEM) field, and can interfere with their sense of belonging and self-efficacy within STEM. The present work expands this literature in two ways, by 1) focusing on a distinct period in women's careers that has been relatively understudied, but represents a critical period when career decisions are made, that is, graduate school; and 2) highlighting the buffering effect of one critical mechanism against barriers to STEM persistence, that is, perceived support from advisors. Results of the present study show that perceived support from one's advisor may promote STEM engagement among women by predicting greater gender-STEM identity compatibility, which in turn predicts greater STEM importance among women (but not men). STEM importance further predicts higher sense of belonging in STEM for both men and women and increased STEM self-efficacy for women. Finally, we describe the implications of this work for educational policy. © 2016 S. L. Clark et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Stem Cell Therapy for Erectile Dysfunction.
Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony
2018-04-06
The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.
Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min
2012-12-01
According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.
Adult bone marrow-derived stem cells for organ regeneration and repair.
Tögel, Florian; Westenfelder, Christof
2007-12-01
Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine. 2007 Wiley-Liss, Inc
Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T
2010-10-01
Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.
Some Ethical Concerns About Human Induced Pluripotent Stem Cells.
Zheng, Yue Liang
2016-10-01
Human induced pluripotent stem cells can be obtained from somatic cells, and their derivation does not require destruction of embryos, thus avoiding ethical problems arising from the destruction of human embryos. This type of stem cell may provide an important tool for stem cell therapy, but it also results in some ethical concerns. It is likely that abnormal reprogramming occurs in the induction of human induced pluripotent stem cells, and that the stem cells generate tumors in the process of stem cell therapy. Human induced pluripotent stem cells should not be used to clone human beings, to produce human germ cells, nor to make human embryos. Informed consent should be obtained from patients in stem cell therapy.
Laser biomodulation on stem cells
NASA Astrophysics Data System (ADS)
Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao
2001-08-01
Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.
Sorkio, Anni; Koch, Lothar; Koivusalo, Laura; Deiwick, Andrea; Miettinen, Susanna; Chichkov, Boris; Skottman, Heli
2018-07-01
There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted stromal structures attached to the host tissue with signs of hASCs migration from the printed structure. This is the first study to demonstrate the feasibility of 3D LaBP for corneal applications using human stem cells and successful fabrication of layered 3D bioprinted tissues mimicking the structure of the native corneal tissue. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C
2012-08-01
As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.
In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.
Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V
2018-02-01
Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.
Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia.
Wang, Wenwen; Stiehl, Thomas; Raffel, Simon; Hoang, Van T; Hoffmann, Isabel; Poisa-Beiro, Laura; Saeed, Borhan R; Blume, Rachel; Manta, Linda; Eckstein, Volker; Bochtler, Tilmann; Wuchter, Patrick; Essers, Marieke; Jauch, Anna; Trumpp, Andreas; Marciniak-Czochra, Anna; Ho, Anthony D; Lutz, Christoph
2017-09-01
In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse. Copyright© 2017 Ferrata Storti Foundation.
Lee, Hyunjin; Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom
2018-05-18
Co-culture has been applied in cell therapy, including stem cells, and has been reported to give enhanced functionality. In this study, stem-cell spheroids were formed in concave micromolds at different ratios of stem cells to osteoprecursor cells, and the amount of secretion of vascular endothelial growth factor (VEGF) was evaluated. Gingiva-derived stem cells and osteoprecursor cells in the amount of 6 × 105 were seeded on a 24-well culture plate or concave micromolds. The ratios of stem cells to osteoprecursor cells included: 0:4 (group 1), 1:3 (group 2), 2:2 (group 3), 3:1 (group 4), and 4:0 (group 5). The morphology of cells in a 2-dimensional culture (groups 1-5) showed a fibroblast-like appearance. The secretion of VEGF increased with the increase in stem cells, and a statistically significant increase was noted in groups 3, 4 and 5 when compared with the media-only group (p < 0.05). Osteoprecursor cells formed spheroids in concave microwells, and no noticeable change in the morphology was noted with the increase in stem cells. Spheroids containing stem cells were positive for the stem-cell markers SSEA-4. The secretion of VEGF from cell spheroids increased with the increase in stem cells. This study showed that cell spheroids formed with stem cells and osteoprecursor cells with different ratios, using microwells, had paracrine effects on the stem cells. The secretion of VEGF increased with the increase in stem cells. This stem-cell spheroid may be applied for tissue-engineering purposes.
Deletion of Pten Expands Lung Epithelial Progenitor Pools and Confers Resistance to Airway Injury
Tiozzo, Caterina; De Langhe, Stijn; Yu, Mingke; Londhe, Vedang A.; Carraro, Gianni; Li, Min; Li, Changgong; Xing, Yiming; Anderson, Stewart; Borok, Zea; Bellusci, Saverio; Minoo, Parviz
2009-01-01
Rationale: Pten is a tumor-suppressor gene involved in stem cell homeostasis and tumorigenesis. In mouse, Pten expression is ubiquitous and begins as early as 7 days of gestation. Pten−/− mouse embryos die early during gestation indicating a critical role for Pten in embryonic development. Objectives: To test the role of Pten in lung development and injury. Methods: We conditionally deleted Pten throughout the lung epithelium by crossing Ptenflox/flox with Nkx2.1-cre driver mice. The resulting PtenNkx2.1-cre mutants were analyzed for lung defects and response to injury. Measurements and Main Results: PtenNkx2.1-cre embryonic lungs showed airway epithelial hyperplasia with no branching abnormalities. In adult mice, PtenNkx2.1-cre lungs exhibit increased progenitor cell pools composed of basal cells in the trachea, CGRP/CC10 double-positive neuroendocrine cells in the bronchi, and CC10/SPC double-positive cells at the bronchioalveolar duct junctions. Pten deletion affected differentiation of various lung epithelial cell lineages, with a decreased number of terminally differentiated cells. Over time, PtenNxk2.1-cre epithelial cells residing in the bronchioalveolar duct junctions underwent proliferation and formed uniform masses, supporting the concept that the cells residing in this distal niche may also be the source of procarcinogenic stem cells. Finally, increased progenitor cells in all the lung compartments conferred an overall selective advantage to naphthalene injury compared with wild-type control mice. Conclusions: Pten has a pivotal role in lung stem cell homeostasis, cell differentiation, and consequently resistance to lung injury. PMID:19574443
The Role of Stem Cells in Aesthetic Surgery: Fact or Fiction?
McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G.; Hu, Michael; Atashroo, David A.; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C.; Wan, Derrick C.; Longaker, Michael T.
2014-01-01
Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. We review the potential, as well as drawbacks, for incorporation of stem cells in cosmetic procedures. A review of FDA-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a “snapshot” analysis of websites using the search terms “stem cell therapy” or “stem cell treatment” or “stem cell facelift” was performed. Despite the protective net cast by regulatory agencies such as the FDA and professional societies such as the American Society of Plastic Surgeons, we are witnessing worrying advertisements for procedures such as stem cell facelifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that we provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies. PMID:24732654
Lee, Chunghee; Clark, Steven E
2015-01-01
The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified.
Lee, Chunghee; Clark, Steven E.
2015-01-01
The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified. PMID:26011610
Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping
2013-02-01
Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.
Human Cytomegalovirus-Infected Glioblastoma Cells Display Stem Cell-Like Phenotypes
Liu, Che; Clark, Paul A.; Kuo, John S.
2017-01-01
ABSTRACT Glioblastoma multiforme (GBM) is the most common brain tumor in adults. Human cytomegalovirus (HCMV) genomes are present in GBM tumors, yielding hope that antiviral treatments could prove therapeutic and improve the poor prognosis of GBM patients. We discovered that GBM cells infected in vitro with HCMV display properties of cancer stem cells. HCMV-infected GBM cells grow more slowly than mock-infected controls, demonstrate a higher capacity for self-renewal determined by a sphere formation assay, and display resistance to the chemotherapeutic drug temozolomide. Our data suggest that HCMV, while present in only a minority of the cells within a tumor, could contribute to the pathogenesis of GBMs by promoting or prolonging stem cell-like phenotypes, thereby perpetuating tumors in the face of chemotherapy. Importantly, we show that temozolomide sensitivity is restored by the antiviral drug ganciclovir, indicating a potential mechanism underlying the positive effects observed in GBM patients treated with antiviral therapy. IMPORTANCE A role for HCMV in GBMs remains controversial for several reasons. Some studies find HCMV in GBM tumors, while others do not. Few cells within a GBM may harbor HCMV, making it unclear how the virus could be contributing to the tumor phenotype without infecting every cell. Finally, HCMV does not overtly transform cells in vitro. However, tumors induced by other viruses can be treated with antiviral remedies, and initial results indicate that this may be true for anti-HCMV therapies and GBMs. With such a poor prognosis for GBM patients, any potential new intervention deserves exploration. Our work here describes an evidence-based model for how HCMV could contribute to GBM biology while infecting very few cells and without transforming them. It also illuminates why anti-HCMV treatments may be beneficial to GBM patients. Our observations provide blueprints for future in vitro studies examining how HCMV manipulates stem cell-specific pathways and future clinical studies of anti-HCMV measures as GBM therapeutics. PMID:28656174
Avnet, Sofia; Di Pompo, Gemma; Chano, Tokuhiro; Errani, Costantino; Ibrahim-Hashim, Arig; Gillies, Robert J; Donati, Davide Maria; Baldini, Nicola
2017-03-15
The role of mesenchymal stem cells (MSC) in osteosarcoma (OS), the most common primary tumor of bone, has not been extensively elucidated. We have recently shown that OS is characterized by interstitial acidosis, a microenvironmental condition that is similar to a wound setting, in which mesenchymal reactive cells are activated to release mitogenic and chemotactic factors. We therefore intended to test the hypothesis that, in OS, acid-activated MSC influence tumor cell behavior. Conditioned media or co-culture with normal MSC previously incubated with short-term acidosis (pH 6.8 for 10 hr, H + -MSC) enhanced OS clonogenicity and invasion. This effect was mediated by NF-κB pathway activation. In fact, deep-sequencing analysis, confirmed by Real-Time PCR and ELISA, demonstrated that H + -MSC differentially induced a tissue remodeling phenotype with increased expression of RelA, RelB and NF-κB1, and downstream, of CSF2/GM-CSF, CSF3/G-CSF and BMP2 colony-promoting factors, and of chemokines (CCL5, CXCL5 and CXCL1), and cytokines (IL6 and IL8), with an increased expression of CXCR4. An increased expression of IL6 and IL8 were found only in normal stromal cells, but not in OS cells, and this was confirmed in tumor-associated stromal cells isolated from OS tissue. Finally, H + -MSC conditioned medium differentially promoted OS stemness (sarcosphere number, stem-associated gene expression), and chemoresistance also via IL6 secretion. Our data support the hypothesis that the acidic OS microenvironment is a key factor for MSC activation, in turn promoting the secretion of paracrine factors that influence tumor behavior, a mechanism that holds the potential for future therapeutic interventions aimed to target OS. © 2016 UICC.
Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A.; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N.
2015-01-01
Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. Significance This study demonstrated that immortalized dental pulp stem cells (DPSCs) do not form tumors in animals and that immortalized DPSCs can be differentiated into neurons in culture. These results lend support to the use of primary and immortalized DPSCs for future therapeutic approaches to treatment of neurobiological diseases. PMID:26032749
NASA Astrophysics Data System (ADS)
Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.
2012-04-01
Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications. Electronic supplementary information (ESI) available: Supporting methods and data about CD spectral analysis of SAPeptide solutions (Fig. S1), neural differentiation of murine and human NSCs (Fig. S2) on SAPeptide scaffolds, and their statistical analysis (Table S1). See DOI: 10.1039/c2nr30220a
Stem cells in dentistry--part I: stem cell sources.
Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro
2012-07-01
Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Stahl, Yvonne; Simon, Rüdiger
2005-01-01
Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.
Stem cells in the Drosophila digestive system.
Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X
2013-01-01
Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.
Induced cancer stem cells generated by radiochemotherapy and their therapeutic implications.
Chen, Xiewan; Liao, Rongxia; Li, Dezhi; Sun, Jianguo
2017-03-07
Local and distant recurrence of malignant tumors following radio- and/or chemotherapy correlates with poor prognosis of patients. Among the reasons for cancer recurrence, preexisting cancer stem cells (CSCs) are considered the most likely cause due to their properties of self-renewal, pluripotency, plasticity and tumorigenicity. It has been demonstrated that preexisting cancer stem cells derive from normal stem cells and differentiated somatic cells that undergo transformation and dedifferentiation respectively under certain conditions. However, recent studies have revealed that cancer stem cells can also be induced from non-stem cancer cells by radiochemotherapy, constituting the subpopulation of induced cancer stem cells (iCSCs). These findings suggest that radiochemotherapy has the side effect of directly transforming non-stem cancer cells into induced cancer stem cells, possibly contributing to tumor recurrence and metastasis. Therefore, drugs targeting cancer stem cells or preventing dedifferentiation of non-stem cancer cells can be combined with radiochemotherapy to improve its antitumor efficacy. The current review is to investigate the mechanisms by which induced cancer stem cells are generated by radiochemotherapy and hence provide new strategies for cancer treatment.
Stem cells in gastroenterology and hepatology
Quante, Michael; Wang, Timothy C.
2010-01-01
Cellular and tissue regeneration in the gastrointestinal tract and liver depends on stem cells with properties of longevity, self-renewal and multipotency. Progress in stem cell research and the identification of potential esophageal, gastric, intestinal, colonic, hepatic and pancreatic stem cells provides hope for the use of stem cells in regenerative medicine and treatments for disease. Embryonic stem cells and induced pluripotent stem cells have the potential to give rise to any cell type in the human body, but their therapeutic application remains challenging. The use of adult or tissue-restricted stem cells is emerging as another possible approach for the treatment of gastrointestinal diseases. The same self-renewal properties that allow stem cells to remain immortal and generate any tissue can occasionally make their proliferation difficult to control and make them susceptible to malignant transformation. This Review provides an overview of the different types of stem cell, focusing on tissue-restricted adult stem cells in the fields of gastroenterology and hepatology and summarizing the potential benefits and risks of using stems cells to treat gastroenterological and liver disorders. PMID:19884893
Foroutan, T.; Najmi, M.; Kazemi, N.; Hasanlou, M.; Pedram, A.
2015-01-01
Background: In regenerative medicine, use of each of the mesenchymal stem cells derived from bone marrow, cord blood, and adipose tissue, has several cons and pros. Mesenchymal stem cells derived from cord blood have been considered the best source for precursor transplantation. Direct reprogramming of a somatic cell into induced pluripotent stem cells by over-expression of 6 transcription factors Oct4, Sox2, Klf4, lin28, Nanog, and c-Myc has great potential for regenerative medicine, eliminating the ethical issues of embryonic stem cells and the rejection problems of using non-autologous cells. Objective: To compare reprogramming and pluripotent markers OCT4, Sox-2, c-Myc, Klf4, Nanog, and lin28 in mesenchymal stem cells derived from cord blood and induced pluripotent stem cells. Methods: We analyzed the expression level of OCT4, Sox-2, c-Myc, Klf4, Nanog and lin28 genes in human mesenchymal stem cells derived from cord blood and induced pluripotent stem cells by cell culture and RT-PCR. Results: The expression level of pluripotent genes OCT4 and Sox-2, Nanog and lin28 in mesenchymal stem cells derived from cord blood were significantly higher than those in induced pluripotent stem cells. In contrast to OCT-4A and Sox-2, Nanog and lin28, the expression level of oncogenic factors c-Myc and Klf4 were significantly higher in induced pluripotent stem cells than in mesenchymal stem cells derived from cord blood. Conclusion: It could be concluded that mesenchymal stem cells derived from human cord blood have lower oncogenic potential compared to induced pluripotent stem cells. PMID:26306155
Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon
A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less
Linard, Christine; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Benderitter, Marc
2016-09-01
The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin-preconditioned mesenchymal stem cells improved colonic immune capacity and enhanced tissue remodeling. © Society for Leukocyte Biology.
Epidermal stem cells: location, potential and contribution to cancer.
Ambler, C A; Määttä, A
2009-01-01
Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.
Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N; Reiter, Lawrence T
2015-08-01
Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. ©AlphaMed Press.
Multidrug Resistance and Cancer Stem Cells in Neuroblastoma and Hepatoblastoma
Alisi, Anna; Cho, William C.; Locatelli, Franco; Fruci, Doriana
2013-01-01
Chemotherapy is one of the major modalities in treating cancers. However, its effectiveness is limited by the acquisition of multidrug resistance (MDR). Several mechanisms could explain the up-regulation of MDR genes/proteins in cancer after chemotherapy. It is known that cancer stem cells (CSCs) play a role as master regulators. Therefore, understanding the mechanisms that regulate some traits of CSCs may help design efficient strategies to overcome chemoresistance. Different CSC phenotypes have been identified, including those found in some pediatric malignancies. As solid tumors in children significantly differ from those observed in adults, this review aims at providing an overview of the mechanistic relationship between MDR and CSCs in common solid tumors, and, in particular, focuses on clinical as well as experimental evidence of the relations between CSCs and MDR in neuroblastoma and hepatoblastoma. Finally, some novel approaches, such as concomitant targeting of multiple key transcription factors governing the stemness of CSCs, as well as nanoparticle-based approaches will also be briefly addressed. PMID:24351843
MicroRNAs: key regulators of stem cells.
Gangaraju, Vamsi K; Lin, Haifan
2009-02-01
The hallmark of a stem cell is its ability to self-renew and to produce numerous differentiated cells. This unique property is controlled by dynamic interplays between extrinsic signalling, epigenetic, transcriptional and post-transcriptional regulations. Recent research indicates that microRNAs (miRNAs) have an important role in regulating stem cell self-renewal and differentiation by repressing the translation of selected mRNAs in stem cells and differentiating daughter cells. Such a role has been shown in embryonic stem cells, germline stem cells and various somatic tissue stem cells. These findings reveal a new dimension of gene regulation in controlling stem cell fate and behaviour.
[Progress in epidermal stem cells].
Wang, Li-Juan; Wang, You-Liang; Yang, Xiao
2010-03-01
Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.
Liang, Hang; Deng, Xiangyu; Shao, Zengwu
2017-10-01
To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.
Amnion-derived stem cells: in quest of clinical applications
2011-01-01
In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research. PMID:21596003
The role of stem cells in aesthetic surgery: fact or fiction?
McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G; Hu, Michael; Atashroo, David A; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C; Wan, Derrick C; Longaker, Michael T
2014-08-01
Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. The authors review the potential and the drawbacks of incorporation of stem cells in cosmetic procedures. A review of U.S. Food and Drug Administration-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of Web sites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed. Despite the protective net cast by regulatory agencies such as the U.S. Food and Drug Administration and professional societies such as the American Society of Plastic Surgeons, the authors are witnessing worrying advertisements for procedures such as stem cell face lifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that they provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.
Polymer microarray technology for stem cell engineering
Coyle, Robert; Jia, Jia; Mei, Ying
2015-01-01
Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624
Pancreatic cancer stem cell markers and exosomes - the incentive push
Heiler, Sarah; Wang, Zhe; Zöller, Margot
2016-01-01
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191
Stem cells in kidney regeneration.
Yokote, Shinya; Yokoo, Takashi
2012-01-01
Currently many efforts are being made to apply regenerative medicine to kidney diseases using several types of stem/progenitor cells, such as mesenchymal stem cells, renal stem/progenitor cells, embryonic stem cells and induced pluripotent stem cells. Stem cells have the ability to repair injured organs and ameliorate damaged function. The strategy for kidney tissue repair is the recruitment of stem cells and soluble reparative factors to the kidney to elicit tissue repair and the induction of dedifferentiation of resident renal cells. On the other hand, where renal structure is totally disrupted, absolute kidney organ regeneration is needed to rebuild a whole functional kidney. In this review, we describe current advances in stem cell research for kidney tissue repair and de novo organ regeneration.
Daniels, Sebnem
2006-09-01
Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.
Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A; Lo, Chung Mau; Man, Kwan; Sun, Dong
2016-02-04
Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR, flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.
USDA-ARS?s Scientific Manuscript database
Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...
Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells
2013-01-01
Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405
... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...
TOPICAL REVIEW: Stem cells engineering for cell-based therapy
NASA Astrophysics Data System (ADS)
Taupin, Philippe
2007-09-01
Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.
How to make spinal motor neurons.
Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin
2014-02-01
All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.
Receptor control in mesenchymal stem cell engineering
NASA Astrophysics Data System (ADS)
Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel
2018-03-01
Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.
Lactate dehydrogenase activity drives hair follicle stem cell activation
Aimee, Flores; John, Schell; Abby, Krall; David, Jelinek; Matilde, Miranda; Melina, Grigorian; Daniel, Braas; White Andrew, C; Jessica, Zhou; Nick, Graham; Thomas, Graeber; Pankaj, Seth; Denis, Evseenko; Hilary, Coller; Jared, Rutter; Heather, Christofk; Lowry William, E
2017-01-01
Summary While normally dormant, Hair Follicle Stem Cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allow them to remain dormant and yet quickly respond to appropriate proliferative stimuli. PMID:28812580
From Banking to International Governance: Fostering Innovation in Stem Cell Research
Isasi, Rosario; Knoppers, Bartha M.
2011-01-01
Stem cell banks are increasingly recognized as an essential resource of biological materials for both basic and translational stem cell research. By providing transnational access to quality controlled and ethically sourced stem cell lines, stem cell banks seek to foster international collaboration and innovation. However, given that national stem cell banks operate under different policy, regulatory and commercial frameworks, the transnational sharing of stem cell materials and data can be complicating. This paper will provide an overview of the most pressing challenges regarding the governance of stem cell banks, and the difficulties in designing regulatory and commercial frameworks that foster stem cell research. Moreover, the paper will shed light on the numerous international initiatives that have arisen to help harmonize and standardize stem cell banking and research processes to overcome such challenges. PMID:21904557
Stem Cells Transplantation in the Treatment of Patients with Liver Failure.
Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong
2018-02-23
Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Recent Progress in Stem Cell Modification for Cardiac Regeneration
Voronina, Natalia; Steinhoff, Gustav
2018-01-01
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity. PMID:29535769
Rebuilding the injured brain: use of MRS in clinical regenerative medicine
NASA Astrophysics Data System (ADS)
Zare, Alina; Weiss, Michael; Gader, Paul
2011-03-01
Hypoxic-Ischemic Encephalopathy (HIE) is the brain manifestation of systemic asphyxia that occurs in 20 out of 1000 births. HIE triggers an immediate neuronal and glial injury leading to necrosis secondary to cellular edema and lysis. Because of this destructive neuronal injury, up to 25% of neonates exhibit severe permanent neuropsychological handicaps in the form of cerebral palsy, with or without associated mental retardation, learning disabilities, or epilepsy. Due to the devastating consequences of HIE, much research has focused on interrupting the cascade of events triggered by HIE. To date, none of these therapies, with the exception of hypothermia, have been successful in the clinical environment. Even in the case of hypothermia, only neonates with mild to moderate HIE respond to therapy. Stem cell therapy offers an attractive potential treatment for HIE. The ability to replace necrotic cells with functional cells could limit the degree of long-term neurological deficits. The neonatal brain offers a unique milieu for stem cell therapy due to its overall plasticity and the continued division of cells in the sub-ventricular zones. New powerful imaging tools allow researchers to track stem cells in vivo post-transplant, as shown in Figure 1. However, neuroimaging still leaves numerous questions unresolved: How can we identify stem cells without using tracking agents, what cells types are destroyed in the brain post injury? What is the final phenotypic fate of transplanted cells? Are the transplanted cells still viable? Do the transplanted cells spare endogenous neuronal tissue? We hypothesize that magnetic resonance spectroscopy (MRS), a broadly used clinical technique that can be performed at the time of a standard MRI scan, can provide answers to these questions when coupled with advanced computational approaches. MRS is widely available clinically, and is a relative measure of different metabolites within the sampled area. These measures are presented as a series of peaks at a particular bandwidth that corresponds to an individual metabolite, such as lactate or creatine, as shown in Figure 2. Currently, the data are only subjectively interpreted by a neuro-radiologist, but hold great potential if they were analyzed in a more objective manner. The overall purpose of the research described here is to develop pattern recognition algorithms for MRS data as a means to detect novel biomarkers or fingerprints of stem cells. Once identified, this technique will be used to identify in vivo transplanted stem cells within the brain.
Eat, breathe, ROS: controlling stem cell fate through metabolism.
Kubli, Dieter A; Sussman, Mark A
2017-05-01
Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered: Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary: The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes.
Eat, breathe, ROS: controlling stem cell fate through metabolism
Kubli, Dieter A.; Sussman, Mark A.
2017-01-01
Introduction Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes. PMID:28406333
The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.
Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe
2015-12-15
Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.
The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells
Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe
2015-01-01
Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080
Brenner, Annette K; Andersson Tvedt, Tor Henrik; Bruserud, Øystein
2016-11-11
Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.
The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile?
Brown, Geoffrey; Hughes, Philip J; Ceredig, Rhodri
2012-01-01
Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.
Gene screening of Wharton's jelly derived stem cells.
Mechiche Alami, S; Velard, F; Draux, F; Siu Paredes, F; Josse, J; Lemaire, F; Gangloff, S C; Graesslin, O; Laurent-Maquin, D; Kerdjoudj, H
2014-01-01
Stem cells are the most powerful candidate for the treatment of various diseases. Suitable stem cell source should be harvested with minimal invasive procedure, found in great quantity, and transplanted with no risk of immune response and tumor formation. Fetal derived stem cells have been introduced as an excellent alternative to adult and embryonic stem cells use, but unfortunately, their degree of "stemness" and molecular characterization is still unclear. Several studies have been performed deciphering whether fetal stem cells meet the needs of regenerative medicine. We believe that a transcriptomic screening of Wharton's jelly stem cells will bring insights on cell population features.
Mechanical Modulation of Nascent Stem Cell Lineage Commitment in Tissue Engineering Scaffolds
Song, Min Jae; Dean, David; Tate, Melissa L. Knothe
2013-01-01
Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to “map the mechanome”, defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. PMID:23660249
Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.
Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam
2014-05-01
The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.
Hellingman, Catharine A; Koevoet, Wendy; van Osch, Gerjo J V M
2012-11-01
Chondrogenically differentiating bone marrow-derived mesenchymal stem cells (BMSCs) display signs of chondrocyte hypertrophy, such as production of collagen type X, MMP13 and alkaline phosphatase (ALPL). For cartilage reconstructions this is undesirable, as terminally differentiated cartilage produced by BMSCs mineralizes when implanted in vivo. Terminal differentiation is not restricted to BMSCs but is also encountered in chondrogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) as well as embryonic stem cells, which by definition should be able to generate all types of tissues, including stable cartilage. Therefore, we propose that the currently used culture conditions may drive the cells towards terminal differentiation. In this manuscript we aim to review the literature, supplemented by our own data to answer the question, is it possible to generate stable hyaline cartilage from adult MSCs? We demonstrate that recently published methods for inhibiting terminal differentiation (through PTHrP, MMP13 or blocking phosphorylation of Smad1/5/8) result in cartilage formation with reduction of hypertrophic markers, although this does not reach the low level of stable chondrocytes. A set of hypertrophy markers should be included in future studies to characterize the phenotype more precisely. Finally, we used what is currently known in developmental biology about the differential development of hyaline and terminally differentiated cartilage to provide thought and insights to change current culture models for creating hyaline cartilage. Inhibiting terminal differentiation may not result in stable hyaline cartilage if the right balance of signals has not been created from the start of culture onwards. Copyright © 2011 John Wiley & Sons, Ltd.
Antioxidants Maintain E-Cadherin Levels to Limit Drosophila Prohemocyte Differentiation
Gao, Hongjuan; Wu, Xiaorong; Simon, LaTonya; Fossett, Nancy
2014-01-01
Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation. PMID:25226030
Nine Things to Know About Stem Cell Treatments
... Toggle Nav Nine Things To Know About Stem Cell Treatments Home > Stem Cells and Medicine > Nine Things ... About Stem Cell Treatments Many clinics offering stem cell treatments make claims that are not supported by ...
Cancer (stem) cell differentiation: An inherent or acquired property?
Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas
2015-12-01
There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials.
Glass, Jonathan D; Hertzberg, Vicki S; Boulis, Nicholas M; Riley, Jonathan; Federici, Thais; Polak, Meraida; Bordeau, Jane; Fournier, Christina; Johe, Karl; Hazel, Tom; Cudkowicz, Merit; Atassi, Nazem; Borges, Lawrence F; Rutkove, Seward B; Duell, Jayna; Patil, Parag G; Goutman, Stephen A; Feldman, Eva L
2016-07-26
To test the safety of spinal cord transplantation of human stem cells in patients with amyotrophic lateral sclerosis (ALS) with escalating doses and expansion of the trial to multiple clinical centers. This open-label trial included 15 participants at 3 academic centers divided into 5 treatment groups receiving increasing doses of stem cells by increasing numbers of cells/injection and increasing numbers of injections. All participants received bilateral injections into the cervical spinal cord (C3-C5). The final group received injections into both the lumbar (L2-L4) and cervical cord through 2 separate surgical procedures. Participants were assessed for adverse events and progression of disease, as measured by the ALS Functional Rating Scale-Revised, forced vital capacity, and quantitative measures of strength. Statistical analysis focused on the slopes of decline of these phase 2 trial participants alone or in combination with the phase 1 participants (previously reported), comparing these groups to 3 separate historical control groups. Adverse events were mostly related to transient pain associated with surgery and to side effects of immunosuppressant medications. There was one incident of acute postoperative deterioration in neurologic function and another incident of a central pain syndrome. We could not discern differences in surgical outcomes between surgeons. Comparisons of the slopes of decline with the 3 separate historical control groups showed no differences in mean rates of progression. Intraspinal transplantation of human spinal cord-derived neural stem cells can be safely accomplished at high doses, including successive lumbar and cervical procedures. The procedure can be expanded safely to multiple surgical centers. This study provides Class IV evidence that for patients with ALS, spinal cord transplantation of human stem cells can be safely accomplished and does not accelerate the progression of the disease. This study lacks the precision to exclude important benefit or safety issues. © 2016 American Academy of Neurology.
Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization
Wang, Dong; Wang, Aijun; Wu, Fan; Qiu, Xuefeng; Li, Ye; Chu, Julia; Huang, Wen-Chin; Xu, Kang; Gong, Xiaohua; Li, Song
2017-01-01
Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10+ adult stem cells contribute to both encapsulation and microvessel formation. Sox10+ adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues. Upon subcutaneous biomaterial implantation, Sox10+ stem cells were activated and recruited to the biomaterial scaffold, and differentiated into fibroblasts and then myofibroblasts. This differentiation process from Sox10+ stem cells to myofibroblasts could be recapitulated in vitro. On the other hand, Sox10+ stem cells could differentiate into perivascular cells to stabilize newly formed microvessels. Sox10+ stem cells and endothelial cells in three-dimensional co-culture self-assembled into microvessels, and platelet-derived growth factor had chemotactic effect on Sox10+ stem cells. Transplanted Sox10+ stem cells differentiated into smooth muscle cells to stabilize functional microvessels. These findings demonstrate the critical role of adult stem cells in tissue remodeling and unravel the complexity of stem cell fate determination. PMID:28071739
Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.
2012-01-01
An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470
Ichim, Thomas; Riordan, Neil H; Stroncek, David F
2011-12-20
In mid November the biopharma industry was shocked by the announcement from Geron that they were ending work on embryonic stem cell research and therapy. For more than 10 years the public image of all stem cell research has been equated with embryonic stem cells. Unfortunately, a fundamentally important medical and financial fact was being ignored: embryonic stem cell therapy is extremely immature. In parallel to efforts in embryonic stem cell research and development, scientists and physicians in the field of adult stem cells realized that the natural role of adult stem cells in the body is to promote healing and to act like endogenous "repair cells" and, as a result, numerous companies have entered the field of adult stem cell therapy with the goal of expanding numbers of adult stem cells for administration to patients with various conditions. In contrast to embryonic stem cells, which are extremely expensive and potentially dangerous, adult cell cells are inexpensive and have an excellent safety record when used in humans. Many studies are now showing that adult stem cells are practical, patient-applicable, therapeutics that are very close to being available for incorporation into the practice of medicine. These events signal the entrance of the field of stem cells into a new era: an era where hype and misinformation no longer triumph over economic and medical realities.
Control of stem cell fate by engineering their micro and nanoenvironment
Griffin, Michelle F; Butler, Peter E; Seifalian, Alexander M; Kalaskar, Deepak M
2015-01-01
Stem cells are capable of long-term self-renewal and differentiation into specialised cell types, making them an ideal candidate for a cell source for regenerative medicine. The control of stem cell fate has become a major area of interest in the field of regenerative medicine and therapeutic intervention. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, with evidence highlighting that material properties are capable of driving stem cell fate. Materials are being designed to mimic the clues stem cells receive in their in vivo stem cell niche including topographical and chemical instructions. Nanotopographical clues that mimic the extracellular matrix (ECM) in vivo have shown to regulate stem cell differentiation. The delivery of ECM components on biomaterials in the form of short peptides sequences has also proved successful in directing stem cell lineage. Growth factors responsible for controlling stem cell fate in vivo have also been delivered via biomaterials to provide clues to determine stem cell differentiation. An alternative approach to guide stem cells fate is to provide genetic clues including delivering DNA plasmids and small interfering RNAs via scaffolds. This review, aims to provide an overview of the topographical, chemical and molecular clues that biomaterials can provide to guide stem cell fate. The promising features and challenges of such approaches will be highlighted, to provide directions for future advancements in this exciting area of stem cell translation for regenerative medicine. PMID:25621104
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering
Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo
2016-01-01
Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777
Multipotent Stem Cell and Reproduction.
Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi
Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.
Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.
Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh
2015-01-01
Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.
College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning
ERIC Educational Resources Information Center
Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn
2010-01-01
In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…
Bardelli, Silvana
2010-04-01
Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment.
Muscle Stem Cells: A Model System for Adult Stem Cell Biology.
Cornelison, Ddw; Perdiguero, Eusebio
2017-01-01
Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.
Redox regulation of plant stem cell fate.
Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong
2017-10-02
Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.
Ouyang, Hong; Goldberg, Jeffrey L.; Chen, Shuyi; Li, Wei; Xu, Guo-Tong; Li, Wei; Zhang, Kang; Nussenblatt, Robert B.; Liu, Yizhi; Xie, Ting; Chan, Chi-Chao; Zack, Donald J.
2016-01-01
Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases. PMID:27102165
Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish.
Moore, Finola E; Garcia, Elaine G; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C; Garcia, Amaris J; Mylvaganam, Ravi; Yoder, Jeffrey A; Blackburn, Jessica S; Sadreyev, Ruslan I; Ceol, Craig J; North, Trista E; Langenau, David M
2016-05-30
Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4(+) cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2(E450fs) mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4(+) cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2(E450fs) mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4(+)/CD8(+) cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. © 2016 Moore et al.