Sample records for stem cells impact

  1. Impact of genomic damage and ageing on stem cell function

    PubMed Central

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  2. Socializing with the neighbors: stem cells and their niche.

    PubMed

    Fuchs, Elaine; Tumbar, Tudorita; Guasch, Geraldine

    2004-03-19

    The potential of stem cells in regenerative medicine relies upon removing them from their natural habitat, propagating them in culture, and placing them into a foreign tissue environment. To do so, it is essential to understand how stem cells interact with their microenvironment, the so-called stem cell niche, to establish and maintain their properties. In this review, we examine adult stem cell niches and their impact on stem cell biology.

  3. Making stem cells count for global health.

    PubMed

    McMahon, Dominique S; Thorsteinsdóttir, Halla

    2011-11-01

    Developing countries such as China, India and Brazil are making large investments in the stem cell field. Here we argue that hands-on involvement in the field by these countries is essential if the products developed are going to be locally relevant, affordable and appropriate. However, stem cells are a high-risk investment and any global health impacts are still likely to be far off. Even if they are eventually successful, better clinical oversight and measures to ensure access are required for stem cells to have a substantial and equitable impact.

  4. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    PubMed

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  5. Epigenetic Control of Stem Cell Potential During Homeostasis, Aging, and Disease

    PubMed Central

    Beerman, Isabel; Rossi, Derrick J.

    2015-01-01

    Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease. PMID:26046761

  6. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.

    PubMed

    Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash

    2018-01-01

    Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Environmental Impact on Intestinal Stem Cell Functions in Mucosal Homeostasis and Tumorigenesis.

    PubMed

    Augenlicht, Leonard H

    2017-05-01

    Multiple cell compartments at or near the base of the intestinal crypt have been identified as contributing intestinal stem cells for homeostasis of the rapidly turning over intestinal mucosa and cells that can initiate tumor development upon appropriate genetic changes. There is a strong literature establishing the importance of the frequently dividing Lgr5+ crypt base columnar cells as the fundamental cell in providing these stem cell-associated functions, but there are also clear data that more quiescent cells from other compartments can be mobilized to provide these stem cell functions upon compromise of Lgr5+ cells. We review the data that vitamin D, a pleiotropic hormone, is essential for Lgr5 stem cell functions by signaling through the vitamin D receptor. Moreover, we discuss the implications of this role of vitamin D and its impact on relatively long-lived stem cells in regards to the fact that virtually all the data on normal functioning of mouse Lgr5 stem cells is derived from mice exposed to vitamin D levels well above those that characterize the human population. Thus, there are still many questions regarding how dietary and environmental factors influence the complement of cells providing stem cell functions and the mechanisms by which this is determined, and the importance of this in human colorectal tumor development. J. Cell. Biochem. 118: 943-952, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. How electromagnetic fields can influence adult stem cells: positive and negative impacts.

    PubMed

    Maziarz, Aleksandra; Kocan, Beata; Bester, Mariusz; Budzik, Sylwia; Cholewa, Marian; Ochiya, Takahiro; Banas, Agnieszka

    2016-04-18

    The electromagnetic field (EMF) has a great impact on our body. It has been successfully used in physiotherapy for the treatment of bone disorders and osteoarthritis, as well as for cartilage regeneration or pain reduction. Recently, EMFs have also been applied in in vitro experiments on cell/stem cell cultures. Stem cells reside in almost all tissues within the human body, where they exhibit various potential. These cells are of great importance because they control homeostasis, regeneration, and healing. Nevertheless, stem cells when become cancer stem cells, may influence the pathological condition. In this article we review the current knowledge on the effects of EMFs on human adult stem cell biology, such as proliferation, the cell cycle, or differentiation. We present the characteristics of the EMFs used in miscellaneous assays. Most research has so far been performed during osteogenic and chondrogenic differentiation of mesenchymal stem cells. It has been demonstrated that the effects of EMF stimulation depend on the intensity and frequency of the EMF and the time of exposure to it. However, other factors may affect these processes, such as growth factors, reactive oxygen species, and so forth. Exploration of this research area may enhance the development of EMF-based technologies used in medical applications and thereby improve stem cell-based therapy and tissue engineering.

  9. Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano

    PubMed Central

    Zhou, Xin; Battistoni, Giorgia; El Demerdash, Osama; Gurtowski, James; Wunderer, Julia; Falciatori, Ilaria; Ladurner, Peter; Schatz, Michael C.; Hannon, Gregory J.; Wasik, Kaja A.

    2015-01-01

    PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations. PMID:26323280

  10. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.

    PubMed

    Tan, Darren Q; Suda, Toshio

    2018-07-10

    The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.

  11. Sino-Canadian collaborations in stem cell research: a scientometric analysis.

    PubMed

    Ali-Khan, Sarah E; Ray, Monali; McMahon, Dominique S; Thorsteinsdóttir, Halla

    2013-01-01

    International collaboration (IC) is essential for the advance of stem cell research, a field characterized by marked asymmetries in knowledge and capacity between nations. China is emerging as a global leader in the stem cell field. However, knowledge on the extent and characteristics of IC in stem cell science, particularly China's collaboration with developed economies, is lacking. We provide a scientometric analysis of the China-Canada collaboration in stem cell research, placing this in the context of other leading producers in the field. We analyze stem cell research published from 2006 to 2010 from the Scopus database, using co-authored papers as a proxy for collaboration. We examine IC levels, collaboration preferences, scientific impact, the collaborating institutions in China and Canada, areas of mutual interest, and funding sources. Our analysis shows rapid global expansion of the field with 48% increase in papers from 2006 to 2010. China now ranks second globally after the United States. China has the lowest IC rate of countries examined, while Canada has one of the highest. China-Canada collaboration is rising steadily, more than doubling during 2006-2010. China-Canada collaboration enhances impact compared to papers authored solely by China-based researchers This difference remained significant even when comparing only papers published in English. While China is increasingly courted in IC by developed countries as a partner in stem cell research, it is clear that it has reached its status in the field largely through domestic publications. Nevertheless, IC enhances the impact of stem cell research in China, and in the field in general. This study establishes an objective baseline for comparison with future studies, setting the stage for in-depth exploration of the dynamics and genesis of IC in stem cell research.

  12. Sino-Canadian Collaborations in Stem Cell Research: A Scientometric Analysis

    PubMed Central

    Ali-Khan, Sarah E.; Ray, Monali; McMahon, Dominique S.; Thorsteinsdóttir, Halla

    2013-01-01

    Background International collaboration (IC) is essential for the advance of stem cell research, a field characterized by marked asymmetries in knowledge and capacity between nations. China is emerging as a global leader in the stem cell field. However, knowledge on the extent and characteristics of IC in stem cell science, particularly China’s collaboration with developed economies, is lacking. Methods and Findings We provide a scientometric analysis of the China–Canada collaboration in stem cell research, placing this in the context of other leading producers in the field. We analyze stem cell research published from 2006 to 2010 from the Scopus database, using co-authored papers as a proxy for collaboration. We examine IC levels, collaboration preferences, scientific impact, the collaborating institutions in China and Canada, areas of mutual interest, and funding sources. Our analysis shows rapid global expansion of the field with 48% increase in papers from 2006 to 2010. China now ranks second globally after the United States. China has the lowest IC rate of countries examined, while Canada has one of the highest. China–Canada collaboration is rising steadily, more than doubling during 2006–2010. China–Canada collaboration enhances impact compared to papers authored solely by China-based researchers This difference remained significant even when comparing only papers published in English. Conclusions While China is increasingly courted in IC by developed countries as a partner in stem cell research, it is clear that it has reached its status in the field largely through domestic publications. Nevertheless, IC enhances the impact of stem cell research in China, and in the field in general. This study establishes an objective baseline for comparison with future studies, setting the stage for in-depth exploration of the dynamics and genesis of IC in stem cell research. PMID:23468927

  13. Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age.

    PubMed

    Devitt, Sean M; Carter, Cynthia M; Dierov, Raia; Weiss, Scott; Gersch, Robert P; Percec, Ivona

    2015-01-01

    We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2-1159 days) from patients of varying ages (26-62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.

  14. Lgr proteins in epithelial stem cell biology.

    PubMed

    Barker, Nick; Tan, Shawna; Clevers, Hans

    2013-06-01

    The ultimate success of global efforts to exploit adult stem cells for regenerative medicine will depend heavily on the availability of robust, highly selective stem cell surface markers that facilitate the isolation of stem cells from human tissues. Any subsequent expansion or manipulation of isolated stem cells will also require an intimate knowledge of the mechanisms that regulate these cells, to ensure maintenance of their regenerative capacities and to minimize the risk of introducing undesirable growth traits that could pose health risks for patients. A subclass of leucine-rich repeat-containing G-protein-coupled receptor (Lgr) proteins has recently gained prominence as adult stem cell markers with crucial roles in maintaining stem cell functions. Here, we discuss the major impact that their discovery has had on our understanding of adult stem cell biology in various self-renewing tissues and in accelerating progress towards the development of effective stem cell therapies.

  15. Anti-thymocyte globulin as graft-versus-host disease prevention in the setting of allogeneic peripheral blood stem cell transplantation: a review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation

    PubMed Central

    Baron, Frédéric; Mohty, Mohamad; Blaise, Didier; Socié, Gérard; Labopin, Myriam; Esteve, Jordi; Ciceri, Fabio; Giebel, Sebastian; Gorin, Norbert Claude; Savani, Bipin N; Schmid, Christoph; Nagler, Arnon

    2017-01-01

    Allogeneic hematopoietic stem cell transplantation is increasingly used as treatment for patients with life-threatening blood diseases. Its curative potential is largely based on immune-mediated graft-versus-leukemia effects caused by donor T cells contained in the graft. Unfortunately, donor T cells are also the cause of graft-versus-host disease. The vast majority of human leukocyte antigen-matched allogeneic hematopoietic stem cell transplants are nowadays carried out with peripheral blood stem cells as the stem cell source. In comparison with bone marrows, peripheral blood stem cells contain more hematopoietic stem/progenitor cells but also one log more T cells. Consequently, the use of peripheral blood stem cells instead of bone marrow has been associated with faster hematologic recovery and a lower risk of relapse in patients with advanced disease, but also with a higher incidence of chronic graft-versus-host disease. These observations have been the basis for several studies aimed at assessing the impact of immunoregulation with anti-thymocyte globulin on transplantation outcomes in patients given human leukocyte antigen-matched peripheral blood stem cells from related or unrelated donors. After a brief introduction on anti-thymocyte globulin, this article reviews recent studies assessing the impact of anti-thymocyte globulin on transplantation outcomes in patients given peripheral blood stem cells from human leukocyte antigen-matched related or unrelated donors as well as in recipients of grafts from human leukocyte antigen haploidentical donors. PMID:27927772

  16. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche

    PubMed Central

    Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R.; Weisgerber, Daniel W.

    2015-01-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche. PMID:26246398

  17. Ambivalent journeys of hope: embryonic stem cell therapy in a clinic in India.

    PubMed

    Prasad, Amit

    2015-03-01

    Stem cell therapy in non-Western countries such as India has received a lot of attention. Apart from media reports, there are a number of social science analyses of stem cell policy, therapy, and research, their ethical implications, and impact of advertising on patients. Nevertheless, in the media reports as well as in academic studies, experiences of patients, who undertake overseas journeys for stem cell therapy, have largely been either ignored or presented reductively, often as a "false hope." In this article, I analyze the experiences of patients and their "journeys of hope" to NuTech Mediworld, an embryonic stem cell therapy clinic in New Delhi, India. My analysis, which draws on my observations in the clinic and patients' experiences, instead of seeking to adjudicate whether embryonic stem cell therapy in clinics such as NuTech is right or wrong, true or false, focuses on how patients navigate and contest these concerns. I utilize Gilles Deleuze and Felix Guattari's "concepts," lines of flight and deterritorialization, to highlight how embryonic stem cell therapy's "political economy of hope" embodies deterritorialization of several "regimes of truth" and how these deterritorializations impact patients' experiences. © The Author(s) 2014.

  18. Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano.

    PubMed

    Zhou, Xin; Battistoni, Giorgia; El Demerdash, Osama; Gurtowski, James; Wunderer, Julia; Falciatori, Ilaria; Ladurner, Peter; Schatz, Michael C; Hannon, Gregory J; Wasik, Kaja A

    2015-11-01

    PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations. © 2015 Zhou et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Globalization of Stem Cell Science: An Examination of Current and Past Collaborative Research Networks

    PubMed Central

    Luo, Jingyuan; Matthews, Kirstin R. W.

    2013-01-01

    Science and engineering research has becoming an increasingly international phenomenon. Traditional bibliometric studies have not captured the evolution of collaborative partnerships between countries, particularly in emerging technologies such as stem cell science, in which an immense amount of investment has been made in the past decade. Analyzing over 2,800 articles from the top journals that include stem cell research in their publications, this study demonstrates the globalization of stem cell science. From 2000 to 2010, international collaborations increased from 20.9% to 36% of all stem cell publications analyzed. The United States remains the most prolific and the most dominant country in the field in terms of publications in high impact journals. But Asian countries, particularly China are steadily gaining ground. Exhibiting the largest relative growth, the percent of Chinese-authored stem cell papers grew more than ten-fold, while the percent of Chinese-authored international papers increased over seven times from 2000 to 2010. And while the percent of total stem cell publications exhibited modest growth for European countries, the percent of international publications increased more substantially, particularly in the United Kingdom. Overall, the data indicated that traditional networks of collaboration extant in 2000 still predominate in stem cell science. Although more nations are becoming involved in international collaborations and undertaking stem cell research, many of these efforts, with the exception of those in certain Asian countries, have yet to translate into publications in high impact journals. PMID:24069210

  20. Globalization of stem cell science: an examination of current and past collaborative research networks.

    PubMed

    Luo, Jingyuan; Matthews, Kirstin R W

    2013-01-01

    Science and engineering research has becoming an increasingly international phenomenon. Traditional bibliometric studies have not captured the evolution of collaborative partnerships between countries, particularly in emerging technologies such as stem cell science, in which an immense amount of investment has been made in the past decade. Analyzing over 2,800 articles from the top journals that include stem cell research in their publications, this study demonstrates the globalization of stem cell science. From 2000 to 2010, international collaborations increased from 20.9% to 36% of all stem cell publications analyzed. The United States remains the most prolific and the most dominant country in the field in terms of publications in high impact journals. But Asian countries, particularly China are steadily gaining ground. Exhibiting the largest relative growth, the percent of Chinese-authored stem cell papers grew more than ten-fold, while the percent of Chinese-authored international papers increased over seven times from 2000 to 2010. And while the percent of total stem cell publications exhibited modest growth for European countries, the percent of international publications increased more substantially, particularly in the United Kingdom. Overall, the data indicated that traditional networks of collaboration extant in 2000 still predominate in stem cell science. Although more nations are becoming involved in international collaborations and undertaking stem cell research, many of these efforts, with the exception of those in certain Asian countries, have yet to translate into publications in high impact journals.

  1. When stem cells grow old: phenotypes and mechanisms of stem cell aging.

    PubMed

    Schultz, Michael B; Sinclair, David A

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. © 2016. Published by The Company of Biologists Ltd.

  2. When stem cells grow old: phenotypes and mechanisms of stem cell aging

    PubMed Central

    Schultz, Michael B.; Sinclair, David A.

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  3. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells.

    PubMed

    Bie, Qingli; Zhang, Bin; Sun, Caixia; Ji, Xiaoyun; Barnie, Prince Amoah; Qi, Chen; Peng, Jingjing; Zhang, Danyi; Zheng, Dong; Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi

    2017-03-21

    Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.

  4. Impact of retrotransposons in pluripotent stem cells.

    PubMed

    Tanaka, Yoshiaki; Chung, Leeyup; Park, In-Hyun

    2012-12-01

    Retrotransposons, which constitute approximately 40% of the human genome, have the capacity to 'jump' across the genome. Their mobility contributes to oncogenesis, evolution, and genomic plasticity of the host genome. Induced pluripotent stem cells as well as embryonic stem cells are more susceptible than differentiated cells to genomic aberrations including insertion, deletion and duplication. Recent studies have revealed specific behaviors of retrotransposons in pluripotent cells. Here, we review recent progress in understanding retrotransposons and provide a perspective on the relationship between retrotransposons and genomic variation in pluripotent stem cells.

  5. Stem cells--clinical application and perspectives.

    PubMed

    Brehm, Michael; Zeus, Tobias; Strauer, Bodo Eckehard

    2002-11-01

    Augmentation of myocardial performance in experimental models of therapeutic infarction and heart failure has been achieved by transplantation of exogenous cells into damaged myocardium. The quest for suitable donor cells has prompted research into the use of both embryonic stem cells and adult somatic stem cells. Recently, there has been a growing body of evidence that multipotent somatic stem cells in adult bone marrow exhibit tremendous functional plasticity and can reprogram in a new environmental tissue niche to give rise to cell lineages specific for new organ site. This phenomenon has made huge impact on myocardial biology, while multipotent adult bone marrow hematopoeitic stem cells and mesechymal stem cells can repopulate infarcted rodent myocardium and differentiate into both cardiomyocytes and new blood vessels. These data, coupled with the identification of a putative primitive cardiac stem cell population in the adult human heart, may open the way for novel therapeutic modalities for enhancing myocardial performance and treating heart failure.

  6. Potential Use of Human Periapical Cyst-Mesenchymal Stem Cells (hPCy-MSCs) as a Novel Stem Cell Source for Regenerative Medicine Applications

    PubMed Central

    Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco

    2017-01-01

    Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications. PMID:29259970

  7. Potential Use of Human Periapical Cyst-Mesenchymal Stem Cells (hPCy-MSCs) as a Novel Stem Cell Source for Regenerative Medicine Applications.

    PubMed

    Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco

    2017-01-01

    Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications.

  8. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  9. Growing Stem Cells: The Impact of Federal Funding Policy on the U.S. Scientific Frontier

    ERIC Educational Resources Information Center

    Furman, Jeffrey L.; Murray, Fiona; Stern, Scott

    2012-01-01

    This paper articulates a citation-based approach to science policy evaluation and employs that approach to investigate the impact of the United States' 2001 policy regarding the federal funding of human embryonic stem cell (hESC) research. We evaluate the impact of the policy on the level of U.S. hESC research, the U.S. position at the knowledge…

  10. TGFβ lengthens the G1 phase of stem cells in aged mouse brain.

    PubMed

    Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André

    2014-12-01

    Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.

  11. Constitutive Proteasomal Degradation of TWIST-1 in Epithelial Ovarian Cancer Stem Cells Impacts Differentiation and Metastatic Potential

    PubMed Central

    Yin, Gang; Alvero, Ayesha B.; Craveiro, Vinicius; Holmberg, Jennie C.; Fu, Han-Hsuan; Montagna, Michele K.; Yang, Yang; Chefetz-Menaker, Ilana; Nuti, Sudhakar; Rossi, Michael; Silasi, Dan-Arin; Rutherford, Thomas; Mor, Gil

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is a critical process for embryogenesis but is abnormally activated during cancer metastasis and recurrence. This process enables epithelial cancer cells to acquire mobility and traits associated with stemness. It is unknown whether epithelial stem cells or epithelial cancer stem cells are able to undergo EMT, and what molecular mechanism regulates this process in these specific cell types. We found that Epithelial Ovarian Cancer Stem cells (EOC stem cells) are the source of metastatic progenitor cells through a differentiation process involving EMT and Mesenchymal-Epithelial Transition (MET). We demonstrate both in vivo and in vitro the differentiation of EOC stem cells into mesenchymal spheroid-forming cells (MSFCs) and their capacity to initiate an active carcinomatosis. Furthermore, we demonstrate that human EOC stem cells injected i.p in mice are able to form ovarian tumors, suggesting that the EOC stem cells have the ability to “home” to the ovaries and establish tumors. Most interestingly, we found that TWIST1 is constitutively degraded in EOC stem cells, and that the acquisition of TWIST1 requires additional signals that will trigger the differentiation process. These findings are relevant for understanding the differentiation and metastasis process in EOC stem cells. PMID:22349827

  12. Cancer stem cells: impact, heterogeneity, and uncertainty

    PubMed Central

    Magee, Jeffrey A.; Piskounova, Elena; Morrison, Sean J.

    2015-01-01

    The differentiation of tumorigenic cancer stem cells into non-tumorigenic cancer cells confers heterogeneity to some cancers beyond that explained by clonal evolution or environmental differences. In such cancers, functional differences between tumorigenic and non-tumorigenic cells influence response to therapy and prognosis. However, it remains uncertain whether the model applies to many, or few, cancers due to questions about the robustness of cancer stem cell markers and the extent to which existing assays underestimate the frequency of tumorigenic cells. In cancers with rapid genetic change, reversible changes in cell states, or biological variability among patients the stem cell model may not be readily testable. PMID:22439924

  13. Control of stem cell fate and function by engineering physical microenvironments

    PubMed Central

    Kshitiz; Park, Jinseok; Kim, Peter; Helen, Wilda; Engler, Adam J; Levchenko, Andre; Kim, Deok-Ho

    2012-01-01

    The phenotypic expression and function of stem cells are regulated by their integrated response to variable microenvironmental cues, including growth factors and cytokines, matrix-mediated signals, and cell-cell interactions. Recently, growing evidence suggests that matrix-mediated signals include mechanical stimuli such as strain, shear stress, substrate rigidity and topography, and these stimuli have a more profound impact on stem cell phenotypes than had previously been recognized, e.g. self-renewal and differentiation through the control of gene transcription and signaling pathways. Using a variety of cell culture models enabled by micro and nanoscale technologies, we are beginning to systematically and quantitatively investigate the integrated response of cells to combinations of relevant mechanobiological stimuli. This paper reviews recent advances in engineering physical stimuli for stem cell mechanobiology and discusses how micro- and nanoscale engineered platforms can be used to control stem cell niches environment and regulate stem cell fate and function. PMID:23077731

  14. The states "race" with the federal government for stem cell research.

    PubMed

    Sax, Joanna K

    2006-01-01

    This article presents an innovative study of the effect of individual states and private institutes in pushing forward stem cell research despite a federal ban on creating new stem cell lines. The author analyzes the impact of state legislation, proposing that states are reacting to federal policy by serving as laboratories for what is traditionally federally funded biomedical research.

  15. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  16. The business of human embryonic stem cell research and an international analysis of relevant laws.

    PubMed

    De Trizio, Ella; Brennan, Christopher S

    2004-01-01

    Few sciences have held out such therapeutic promise and correspondingly stirred so much controversy in countries throughout the world as the developing science surrounding human embryonic stem cells. Since the first reported development of several lines of human embryonic stem cells in 1988, many governments around the world have attempted to address the thorny ethical issues raised by human embryonic stem cell research by the passage of laws. In some cases these laws have directly regulated governmental funding of the science; in other cases they have created a legal environment that has either encouraged or discouraged both governmental and private funding of the science. This article first differentiates human embryonic stem cells from other types of stem cells and frames the ethical controversy surrounding human embryonic stem cell research, then surveys laws governing human embryonic stem cell research in various scientifically advanced countries located throughout the Pacific Rim, Europe and North America and explains the impact these laws have had on governmental and private funding of human embryonic stem cell research.

  17. Therapeutic application of stem cells in gastroenterology: an up-date.

    PubMed

    Burra, Patrizia; Bizzaro, Debora; Ciccocioppo, Rachele; Marra, Fabio; Piscaglia, Anna Chiara; Porretti, Laura; Gasbarrini, Antonio; Russo, Francesco Paolo

    2011-09-14

    Adult stem cells represent the self-renewing progenitors of numerous body tissues, and they are currently classified according to their origin and differentiation ability. In recent years, the research on stem cells has expanded enormously and holds therapeutic promises for many patients suffering from currently disabling diseases. This paper focuses on the possible use of stem cells in the two main clinical settings in gastroenterology, i.e., hepatic and intestinal diseases, which have a strong impact on public health worldwide. Despite encouraging results obtained in both regenerative medicine and immune-mediated conditions, further studies are needed to fully understand the biology of stem cells and carefully assess their putative oncogenic properties. Moreover, the research on stem cells arouses fervent ethical, social and political debate. The Italian Society of Gastroenterology sponsored a workshop on stem cells held in Verona during the XVI Congress of the Federation of Italian Societies of Digestive Diseases (March 6-9, 2010). Here, we report on the issues discussed, including liver and intestinal diseases that may benefit from stem cell therapy, the biology of hepatic and intestinal tissue repair, and stem cell usage in clinical trials.

  18. Ethics and Policy Issues for Stem Cell Research and Pulmonary Medicine

    PubMed Central

    Lowenthal, Justin

    2015-01-01

    Stem cell research and related initiatives in regenerative medicine, cell-based therapy, and tissue engineering have generated considerable scientific and public interest. Researchers are applying stem cell technologies to chest medicine in a variety of ways: using stem cells as models for drug discovery, testing stem cell-based therapies for conditions as diverse as COPD and cystic fibrosis, and producing functional lung and tracheal tissue for physiologic modeling and potential transplantation. Although significant scientific obstacles remain, it is likely that stem cell-based regenerative medicine will have a significant clinical impact in chest medicine. However, stem cell research has also generated substantial controversy, posing a variety of ethical and regulatory challenges for research and clinical practice. Some of the most prominent ethical questions related to the use of stem cell technologies in chest medicine include (1) implications for donors, (2) scientific prerequisites for clinical testing and use, (3) stem cell tourism, (4) innovation and clinical use of emerging stem cell-based interventions, (5) responsible translation of stem cell-based therapies to clinical use, and (6) appropriate and equitable access to emerging therapies. Having a sense of these issues should help to put emerging scientific advances into appropriate context and to ensure the responsible clinical translation of promising therapeutics. PMID:25732448

  19. Ethics and policy issues for stem cell research and pulmonary medicine.

    PubMed

    Lowenthal, Justin; Sugarman, Jeremy

    2015-03-01

    Stem cell research and related initiatives in regenerative medicine, cell-based therapy, and tissue engineering have generated considerable scientific and public interest. Researchers are applying stem cell technologies to chest medicine in a variety of ways: using stem cells as models for drug discovery, testing stem cell-based therapies for conditions as diverse as COPD and cystic fibrosis, and producing functional lung and tracheal tissue for physiologic modeling and potential transplantation. Although significant scientific obstacles remain, it is likely that stem cell-based regenerative medicine will have a significant clinical impact in chest medicine. However, stem cell research has also generated substantial controversy, posing a variety of ethical and regulatory challenges for research and clinical practice. Some of the most prominent ethical questions related to the use of stem cell technologies in chest medicine include (1) implications for donors, (2) scientific prerequisites for clinical testing and use, (3) stem cell tourism, (4) innovation and clinical use of emerging stem cell-based interventions, (5) responsible translation of stem cell-based therapies to clinical use, and (6) appropriate and equitable access to emerging therapies. Having a sense of these issues should help to put emerging scientific advances into appropriate context and to ensure the responsible clinical translation of promising therapeutics.

  20. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    PubMed Central

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  1. Neuro-immune interactions of neural stem cell transplants: From animal disease models to human trials

    PubMed Central

    Cossetti, Chiara; Pluchino, Stefano

    2014-01-01

    Stem cell technology is a promising branch of regenerative medicine that is aimed at developing new approaches for the treatment of severely debilitating human diseases, including those affecting the central nervous system (CNS). Despite the increasing understanding of the mechanisms governing their biology, the application of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in vivo via the replacement of endogenous cells lost or damaged owing to disease has been challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the level of the neural microenvironment to promote tissue healing via combination of immune modulatory and tissue protective actions, while retaining predominantly undifferentiated features. Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are under extensive investigation with regard to their therapeutic plasticity after transplantation. The significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms behind their therapeutic impact, could soon be translated to human studies. This review aims to provide an update on the most recent evidence of therapeutically-relevant neuroimmune interactions following NPC transplants in animal models of multiple sclerosis, cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges related to the early translation of some of these exciting experimental outcomes into clinical medicines. PMID:23507035

  2. Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials.

    PubMed

    Giusto, Elena; Donegà, Matteo; Cossetti, Chiara; Pluchino, Stefano

    2014-10-01

    Stem cell technology is a promising branch of regenerative medicine that is aimed at developing new approaches for the treatment of severely debilitating human diseases, including those affecting the central nervous system (CNS). Despite the increasing understanding of the mechanisms governing their biology, the application of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in vivo via the replacement of endogenous cells lost or damaged owing to disease has been challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the level of the neural microenvironment to promote tissue healing via combination of immune modulatory and tissue protective actions, while retaining predominantly undifferentiated features. Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are under extensive investigation with regard to their therapeutic plasticity after transplantation. The significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms behind their therapeutic impact, could soon be translated to human studies. This review aims to provide an update on the most recent evidence of therapeutically-relevant neuro-immune interactions following NPC transplants in animal models of multiple sclerosis, cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges related to the early translation of some of these exciting experimental outcomes into clinical medicines. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Mathematical modelling of phenotypic plasticity and conversion to a stem-cell state under hypoxia

    NASA Astrophysics Data System (ADS)

    Dhawan, Andrew; Madani Tonekaboni, Seyed Ali; Taube, Joseph H.; Hu, Stephen; Sphyris, Nathalie; Mani, Sendurai A.; Kohandel, Mohammad

    2016-02-01

    Hypoxia, or oxygen deficiency, is known to be associated with breast tumour progression, resistance to conventional therapies and poor clinical prognosis. The epithelial-mesenchymal transition (EMT) is a process that confers invasive and migratory capabilities as well as stem cell properties to carcinoma cells thus promoting metastatic progression. In this work, we examined the impact of hypoxia on EMT-associated cancer stem cell (CSC) properties, by culturing transformed human mammary epithelial cells under normoxic and hypoxic conditions, and applying in silico mathematical modelling to simulate the impact of hypoxia on the acquisition of CSC attributes and the transitions between differentiated and stem-like states. Our results indicate that both the heterogeneity and the plasticity of the transformed cell population are enhanced by exposure to hypoxia, resulting in a shift towards a more stem-like population with increased EMT features. Our findings are further reinforced by gene expression analyses demonstrating the upregulation of EMT-related genes, as well as genes associated with therapy resistance, in hypoxic cells compared to normoxic counterparts. In conclusion, we demonstrate that mathematical modelling can be used to simulate the role of hypoxia as a key contributor to the plasticity and heterogeneity of transformed human mammary epithelial cells.

  4. Stem cell-biomaterial interactions for regenerative medicine.

    PubMed

    Martino, Sabata; D'Angelo, Francesco; Armentano, Ilaria; Kenny, Josè Maria; Orlacchio, Aldo

    2012-01-01

    The synergism of stem cell biology and biomaterial technology promises to have a profound impact on stem-cell-based clinical applications for tissue regeneration. Biomaterials development is rapidly advancing to display properties that, in a precise and physiological fashion, could drive stem-cell fate both in vitro and in vivo. Thus, the design of novel materials is trying to recapitulate the molecular events involved in the production, clearance and interaction of molecules within tissue in pathologic conditions and regeneration of tissue/organs. In this review we will report on the challenges behind translating stem cell biology and biomaterial innovations into novel clinical therapeutic applications for tissue and organ replacements (graphical abstract). Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Stem cells to gametes: how far should we go?

    PubMed

    Whittaker, Peter

    2007-03-01

    Murine embryonic stem cells have recently been shown to be capable of differentiating in vitro into oocytes or sperm. Should these findings be duplicated using human embryonic stem cells, this would raise a number of social and ethical concerns, some specific to these particular developments, others shared with other aspects of stem cell research. This review outlines the properties of stem cells and their conversion to gametes. Concerns raised include embryo destruction, quality of gametes derived in this way, possibility for children with two male biological parents, movement towards germ line gene therapy and 'designer babies', and the future impacts on health service provisions. It is important that public discussion of some of these issues should take place.

  6. The promises of stem cells: stem cell therapy for movement disorders.

    PubMed

    Mochizuki, Hideki; Choong, Chi-Jing; Yasuda, Toru

    2014-01-01

    Despite the multitude of intensive research, the exact pathophysiological mechanisms underlying movement disorders including Parkinson's disease, multiple system atrophy and Huntington's disease remain more or less elusive. Treatments to halt these disease progressions are currently unavailable. With the recent induced pluripotent stem cells breakthrough and accomplishment, stem cell research, as the vast majority of scientists agree, holds great promise for relieving and treating debilitating movement disorders. As stem cells are the precursors of all cells in the human body, an understanding of the molecular mechanisms that govern how they develop and work would provide us many fundamental insights into human biology of health and disease. Moreover, stem-cell-derived neurons may be a renewable source of replacement cells for damaged neurons in movement disorders. While stem cells show potential for regenerative medicine, their use as tools for research and drug testing is thought to have more immediate impact. The use of stem-cell-based drug screening technology could be a big boost in drug discovery for these movement disorders. Particular attention should also be given to the involvement of neural stem cells in adult neurogenesis so as to encourage its development as a therapeutic option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. When nano meets stem: the impact of nanotechnology in stem cell biology.

    PubMed

    Kaur, Savneet; Singhal, Barkha

    2012-01-01

    Nanotechnology and biomedical treatments using stem cells are among the latest conduits of biotechnological research. Even more recently, scientists have begun finding ways to mate these two specialties of science. The advent of nanotechnology has paved the way for an explicit understanding of stem cell therapy in vivo and by recapitulation of such in vivo environments in the culture, this technology seems to accommodate a great potential in providing new vistas to stem cell research. Nanotechnology carries in its wake, the development of highly stable, efficient and specific gene delivery systems for both in vitro and in vivo genetic engineering of stem cells, use of nanoscale systems (such as microarrays) for investigation of gene expression in stem cells, creation of dynamic three-dimensional nano-environments for in vitro and in vivo maintenance and differentiation of stem cells and development of extremely sensitive in vivo detection systems to gain insights into the mechanisms of stem cell differentiation and apoptosis in different disease models. The present review presents an overview of the current applications and future prospects for the use of nanotechnology in stem cell biology. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Assessing state stem cell programs in the United States: how has state funding affected publication trends?

    PubMed

    Alberta, Hillary B; Cheng, Albert; Jackson, Emily L; Pjecha, Matthew; Levine, Aaron D

    2015-02-05

    Several states responded to federal funding limitations placed on human embryonic stem cell research and the potential of the field by creating state stem cell funding programs, yet little is known about the impact of these programs. Here we examine how state programs have affected publication trends in four states. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation

    PubMed Central

    Babarit, Candice; Larcher, Thibaut; Dubreil, Laurence; Leroux, Isabelle; Zuber, Céline; Ledevin, Mireille; Deschamps, Jack-Yves; Fromes, Yves; Cherel, Yan; Guevel, Laetitia; Rouger, Karl

    2015-01-01

    Background Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. Results In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Conclusions Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular/cellular effects associated with muscle repair and the clinical efficacy of MuStem cell-based therapy. PMID:25955839

  10. Recent Advances in Lgr5+ Stem Cell Research.

    PubMed

    Leung, Carly; Tan, Si Hui; Barker, Nick

    2018-05-01

    The discovery of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) as both a marker of adult stem cells and a critical modulator of their activity via its role as an effector of Wnt/R-spondin (Rspo) signaling has driven major advances in our understanding of stem cell biology during homeostasis, regeneration, and disease. Exciting new mouse and organoid culture models developed to study the endogenous behavior of Lgr5-expressing cells in health and disease settings have revealed the existence of facultative stem cell populations responsible for tissue regeneration, cancer stem cells (CSCs) driving metastasis in the gut, and Lgr5 + niche cells in the lung. Here we review these recent advances and discuss their impact on efforts to harness the therapeutic potential of adult stem cells and their cancer counterparts in the clinic. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering

    PubMed Central

    Zhang, Fugui; Song, Jinglin; Zhang, Hongmei; Huang, Enyi; Song, Dongzhe; Tollemar, Viktor; Wang, Jing; Wang, Jinhua; Mohammed, Maryam; Wei, Qiang; Fan, Jiaming; Liao, Junyi; Zou, Yulong; Liu, Feng; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Yu, Xinyi; Luu, Hue H.; Lee, Michael J.; He, Tong-Chuan; Ji, Ping

    2016-01-01

    Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs), and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP) and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade. PMID:28491933

  12. Stem Cells and Healing: Impact on Inflammation

    PubMed Central

    Ennis, William J.; Sui, Audrey; Bartholomew, Amelia

    2013-01-01

    Significance The number of patients with nonhealing wounds has rapidly accelerated over the past 10 years in both the United States and worldwide. Some causative factors at the macro level include an aging population, epidemic numbers of obese and diabetic patients, and an increasing number of surgical procedures. At the micro level, chronic inflammation is a consistent finding. Recent Advances A number of treatment modalities are currently used to accelerate wound healing, including energy-based modalities, scaffoldings, the use of mechano-transduction, cytokines/growth factors, and cell-based therapies. The use of stem cell therapy has been hypothesized as a potentially useful adjunct for nonhealing wounds. Specifically, mesenchymal stem cells (MSCs) have been shown to improve wound healing in several studies. Immune modulating properties of MSCs have made them attractive treatment options. Critical Issues Current limitations of stem cell therapy include the potentially large number of cells required for an effect, complex preparation and delivery methods, and poor cell retention in targeted tissues. Comparisons of published in-vitro and clinical trials are difficult due to cell preparation techniques, passage number, and the impact of the micro-environment on cell behavior. Future Directions MSCs may be more useful if they are preactivated with inflammatory cytokines such as tumor necrosis factor alpha or interferon gamma. This article will review the current literature with regard to the use of stem cells for wound healing. In addition the anti-inflammatory effects of MSCs will be discussed along with the potential benefits of stem cell preactivation. PMID:24587974

  13. Translating Stem Cell Research to Cardiac Disease Therapies: Pitfalls and Prospects for Improvement

    PubMed Central

    Rosen, Michael R.; Myerburg, Robert J.; Francis, Darrel P.; Cole, Graham D.; Marbán, Eduardo

    2014-01-01

    Over the past 2 decades, there have been numerous stem cell studies focused on cardiac diseases, ranging from proof-of-concept to phase 2 trials. This series of articles focuses on the legacy of these studies and the outlook for future treatment of cardiac diseases with stem cell therapies. The first section by Rosen and Myerburg is an independent review that analyzes the basic science and translational strategies supporting the rapid advance of stem cell technology to the clinic, the philosophies behind them, trial designs, and means for going forward that may impact favorably on progress. The second and third sections were collected in response to the initial section of this review. The commentary by Francis and Cole discusses the Rosen and Myerburg review and details how trial outcomes can be affected by noise, poor trial design (particularly the absence of blinding), and normal human tendencies toward optimism and denial. The final, independent article by Marbán takes a different perspective concerning the potential for positive impact of stem cell research applied to heart disease and future prospects for its clinical application. PMID:25169179

  14. Key action items for the stem cell field: looking ahead to 2014.

    PubMed

    Knoepfler, Paul S

    2013-12-01

    The stem cell field is at a critical juncture in late 2013. We find ourselves buoyed by building momentum for both transformative basic science discoveries and clinical translation of stem cells. Cellular reprogramming has given the field exciting new avenues as well. The overall prospect of novel stem cell-based therapies becoming a reality for patients in the coming years has never seemed higher. At the same time, we face serious challenges. Some of these challenges, such as stem cell tourism, are familiar to us, although even those are evolving in ways that require adaptability and action by the stem cell field. Other new challenges are also emerging, including an urgent need for formal physician training in stem cells, regulatory compliance balanced with innovation and U.S. Food and Drug Administration reform, and savvy educational outreach. Looking ahead to 2014, both the challenges and opportunities for the stem cell field require a proactive, thoughtful approach to maximize the potential for a positive impact from stem cell advances. In this study, I discuss the key action items for the field as we look ahead to the coming year and beyond.

  15. Therapeutic application of stem cells in gastroenterology: An up-date

    PubMed Central

    Burra, Patrizia; Bizzaro, Debora; Ciccocioppo, Rachele; Marra, Fabio; Piscaglia, Anna Chiara; Porretti, Laura; Gasbarrini, Antonio; Russo, Francesco Paolo

    2011-01-01

    Adult stem cells represent the self-renewing progenitors of numerous body tissues, and they are currently classified according to their origin and differentiation ability. In recent years, the research on stem cells has expanded enormously and holds therapeutic promises for many patients suffering from currently disabling diseases. This paper focuses on the possible use of stem cells in the two main clinical settings in gastroenterology, i.e., hepatic and intestinal diseases, which have a strong impact on public health worldwide. Despite encouraging results obtained in both regenerative medicine and immune-mediated conditions, further studies are needed to fully understand the biology of stem cells and carefully assess their putative oncogenic properties. Moreover, the research on stem cells arouses fervent ethical, social and political debate. The Italian Society of Gastroenterology sponsored a workshop on stem cells held in Verona during the XVI Congress of the Federation of Italian Societies of Digestive Diseases (March 6-9, 2010). Here, we report on the issues discussed, including liver and intestinal diseases that may benefit from stem cell therapy, the biology of hepatic and intestinal tissue repair, and stem cell usage in clinical trials. PMID:22025875

  16. Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program.

    PubMed

    Khacho, Mireille; Clark, Alysen; Svoboda, Devon S; Azzi, Joelle; MacLaurin, Jason G; Meghaizel, Cynthia; Sesaki, Hiromi; Lagace, Diane C; Germain, Marc; Harper, Mary-Ellen; Park, David S; Slack, Ruth S

    2016-08-04

    Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Regulated and Unregulated Clinical Trials of Stem Cell Therapies for Stroke

    PubMed Central

    Liska, Michael G.; Crowley, Marci G.; Borlongan, Cesar V.

    2017-01-01

    Several lines of laboratory investigations reporting solid safety profiles and robust efficacy readouts of stem cells in clinically relevant animal models have advanced stem cell transplantation as an experimental therapy for stroke. Unfortunately, translating laboratory findings into effective clinical trials entails rigorous regulatory examinations, which posed a major challenge in the application of stem cells to patients. As a consequence of this slow pace of clinical entry, and a media-propagated hype narrating stem cells as a “magic bullet”, a dangerous market has been created for unregulated stem cell clinics. These clinics are often guilty of misleading patients and delivering low-quality, even harmful, treatments. Additionally, these medical tourism-purported clinical procedures, which have been performed even in the US, are likely to negatively impact on the true science and clinical value of stem cells. For the full potential of stem cell therapies to be realized, these pressing public misconceptions and regulatory clinical concerns must be addressed. Here, we provide the scientific evidence supporting the safe and effective conduct of stem cells. Arguably, relying on such evidence-based science to dictate the translation of stem cells from the laboratory to the clinic should allow an objective assessment of the risks and the rewards, and the delineation of the hype from hope of this experimental stroke therapy. PMID:28127687

  18. Where will the stem cells lead us? Prospects for dentistry in the 21st century

    PubMed Central

    Sreenivas, S. Durga; Rao, Akula Sreenivasa; Satyavani, S. Sri; Reddy, Bavigadda Harish; Vasudevan, Sanjay

    2011-01-01

    It is dentists’ dream to achieve bone repair with predictability, but without donor site morbidity as well as reconstruction of injured or pathologically damaged complex dental structures, however, this will no longer be a dream as these are being made into a reality using stem cell science. Stem cell science is clearly an intriguing and promising area of science. Stem cells have been isolated from a variety of embryonic and adult tissues. Dental stem cells are multipotent mesenchymal stem cells (MSCs) brought new enthusiasm among the researchers because of their easy accessibility, high quality and they don’t pose the same ethical concerns and controversy in comparison with embryonic stem cells. This review article provides brief insights about stem cell basics, the state of art in human dental stem cell research and its possible impact on future dentistry. Even though most of these modalities are still in infancy, it is evident that the 21st century dentist is going to play a critical role in the field of medicine. The aim of this article is to bring awareness among the dentists about the huge potential associated with the use of stem cells in a clinical setting, as well as proper understanding of related problems. PMID:22028504

  19. Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body.

    PubMed

    Annese, Valentina; Navarro-Guerrero, Elena; Rodríguez-Prieto, Ismael; Pardal, Ricardo

    2017-04-18

    Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Early Prognostic Value of Monitoring Serum Free Light Chain in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation.

    PubMed

    Özkurt, Zübeyde Nur; Sucak, Gülsan Türköz; Akı, Şahika Zeynep; Yağcı, Münci; Haznedar, Rauf

    2017-03-16

    We hypothesized the levels of free light chains obtained before and after autologous stem cell transplantation can be useful in predicting transplantation outcome. We analyzed 70 multiple myeloma patients. Abnormal free light chain ratios before stem cell transplantation were found to be associated early progression, although without any impact on overall survival. At day +30, the normalization of levels of involved free light chain related with early progression. According to these results almost one-third reduction of free light chain levels can predict favorable prognosis after autologous stem cell transplantation.

  1. Therapeutic targeting of the p53 pathway in cancer stem cells

    PubMed Central

    Prabhu, Varun V.; Allen, Joshua E.; Hong, Bo; Zhang, Shengliang; Cheng, Hairong; El-Deiry, Wafik S.

    2013-01-01

    Introduction Cancer stem cells are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance, and therapeutic resistance. Restoring wild-type p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target cancer stem cells. Areas covered Therapeutic approaches to restore the function of wild-type p53, cancer and normal stem cell biology in relation to p53, and the downstream effects of p53 on cancer stem cells. Expert opinion The restoration of wild-type p53 function by targeting p53 directly, its interacting proteins, or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and cancer stem cells based on the current evidence linking p53 signaling with these populations. PMID:22998602

  2. An Intelligent Neural Stem Cell Delivery System for Neurodegenerative Diseases Treatment.

    PubMed

    Qiao, Shupei; Liu, Yi; Han, Fengtong; Guo, Mian; Hou, Xiaolu; Ye, Kangruo; Deng, Shuai; Shen, Yijun; Zhao, Yufang; Wei, Haiying; Song, Bing; Yao, Lifen; Tian, Weiming

    2018-05-02

    Transplanted stem cells constitute a new therapeutic strategy for the treatment of neurological disorders. Emerging evidence indicates that a negative microenvironment, particularly one characterized by the acute inflammation/immune response caused by physical injuries or transplanted stem cells, severely impacts the survival of transplanted stem cells. In this study, to avoid the influence of the increased inflammation following physical injuries, an intelligent, double-layer, alginate hydrogel system is designed. This system fosters the matrix metalloproeinases (MMP) secreted by transplanted stem cell reactions with MMP peptide grafted on the inner layer and destroys the structure of the inner hydrogel layer during the inflammatory storm. Meanwhile, the optimum concentration of the arginine-glycine-aspartate (RGD) peptide is also immobilized to the inner hydrogels to obtain more stem cells before arriving to the outer hydrogel layer. It is found that blocking Cripto-1, which promotes embryonic stem cell differentiation to dopamine neurons, also accelerates this process in neural stem cells. More interesting is the fact that neural stem cell differentiation can be conducted in astrocyte-differentiation medium without other treatments. In addition, the system can be adjusted according to the different parameters of transplanted stem cells and can expand on the clinical application of stem cells in the treatment of this neurological disorder. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Computational Tools for Stem Cell Biology

    PubMed Central

    Bian, Qin; Cahan, Patrick

    2016-01-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the last several years, a new sub-discipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single-cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. PMID:27318512

  4. Computational Tools for Stem Cell Biology.

    PubMed

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Blastocyst-Derived Stem Cell Populations under Stress: Impact of Nutrition and Metabolism on Stem Cell Potency Loss and Miscarriage.

    PubMed

    Yang, Yu; Bolnick, Alan; Shamir, Alexandra; Abdulhasan, Mohammed; Li, Quanwen; Parker, G C; Puscheck, Elizabeth E; Rappolee, D A

    2017-08-01

    Data from in vitro and in vivo models suggest that malnutrition and stress trigger adaptive responses, leading to small for gestational age (SGA) blastocysts with fewer cell numbers. These stress responses are initially adaptive, but become maladaptive with increasing stress exposures. The common stress responses of the blastocyst-derived stem cells, pluripotent embryonic and multipotent placental trophoblast stem cells (ESCs and TSCs), are decreased growth and potency, and increased, imbalanced and irreversible differentiation. SGA embryos may fail to produce sufficient antiluteolytic placental hormone to maintain corpus luteum progesterone secretion that provides nutrition at the implantation site. Myriad stress inputs for the stem cells in the embryo can occur in vitro during in vitro fertilization/assisted reproductive technology (IVF/ART) or in vivo. Paradoxically, stresses that diminish stem cell growth lead to a higher level of differentiation simultaneously which further decreases ESC or TSC numbers in an attempt to functionally compensate for fewer cells. In addition, prolonged or strong stress can cause irreversible differentiation. Resultant stem cell depletion is proposed as a cause of miscarriage via a "quiet" death of an ostensibly adaptive response of stem cells instead of a reactive, violent loss of stem cells or their differentiated progenies.

  6. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    PubMed

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88. © 2016 AlphaMed Press.

  7. Key Action Items for the Stem Cell Field: Looking Ahead to 2014

    PubMed Central

    Knoepfler, Paul S.

    2013-01-01

    Abstract The stem cell field is at a critical juncture in late 2013. We find ourselves buoyed by building momentum for both transformative basic science discoveries and clinical translation of stem cells. Cellular reprogramming has given the field exciting new avenues as well. The overall prospect of novel stem cell–based therapies becoming a reality for patients in the coming years has never seemed higher. At the same time, we face serious challenges. Some of these challenges, such as stem cell tourism, are familiar to us, although even those are evolving in ways that require adaptability and action by the stem cell field. Other new challenges are also emerging, including an urgent need for formal physician training in stem cells, regulatory compliance balanced with innovation and U.S. Food and Drug Administration reform, and savvy educational outreach. Looking ahead to 2014, both the challenges and opportunities for the stem cell field require a proactive, thoughtful approach to maximize the potential for a positive impact from stem cell advances. In this study, I discuss the key action items for the field as we look ahead to the coming year and beyond. PMID:24147571

  8. Reassessing direct-to-consumer portrayals of unproven stem cell therapies: is it getting better?

    PubMed

    Ogbogu, Ubaka; Rachul, Christen; Caulfield, Timothy

    2013-05-01

    To determine whether increased scrutiny of 'stem cell tourism' has resulted in changes to online claims by clinics that provide putative unproven stem cell treatments. We analyzed historical and current versions of clinics' websites. The study sample consisted of 18 websites included in a 2008 peer-reviewed study and an additional 12 clinics identified through the Google™ search engine. Our analysis revealed similarities between historical and current stem cell treatment offerings, claims, representations of risk, benefit and efficacy and attention to social, ethical and regulatory concerns. Claims and representations remain overly optimistic. Current websites provide more detailed descriptions of treatment procedures and outcomes and are more aesthetically appealing. Noteworthy trends in the movements and locations of clinics was observed. Increased scrutiny of stem cell tourism has not had much impact on the online claims of clinics that provide putative unproven stem cell treatments.

  9. Identification and Single-Cell Functional Characterization of an Endodermally Biased Pluripotent Substate in Human Embryonic Stem Cells.

    PubMed

    Allison, Thomas F; Smith, Andrew J H; Anastassiadis, Konstantinos; Sloane-Stanley, Jackie; Biga, Veronica; Stavish, Dylan; Hackland, James; Sabri, Shan; Langerman, Justin; Jones, Mark; Plath, Kathrin; Coca, Daniel; Barbaric, Ivana; Gokhale, Paul; Andrews, Peter W

    2018-05-09

    Human embryonic stem cells (hESCs) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESCs we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single-cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long-term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single-cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm-biased stem cell state. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Regenerative Endodontics in light of the stem cell paradigm

    PubMed Central

    Rosa, Vinicius; Botero, Tatiana M.; Nör, Jacques E.

    2013-01-01

    Stem cells play a critical role in development and in tissue regeneration. The dental pulp contains a small sub-population of stem cells that are involved in the response of the pulp to caries progression. Specifically, stem cells replace odontoblasts that have undergone cell death as a consequence of the cariogenic challenge. Stem cells also secrete factors that have the potential to enhance pulp vascularization and provide the oxygen and nutrients required for the dentinogenic response that is typically observed in teeth with deep caries. However, the same angiogenic factors that are required for dentin regeneration may ultimately contribute to the demise of the pulp by enhancing vascular permeability and interstitial pressure. Recent studies focused on the biology of dental pulp stem cells revealed that the multipotency and angiogenic capacity of these cells could be exploited therapeutically in dental pulp tissue engineering. Collectively, these findings suggest new treatment paradigms in the field of Endodontics. The goal of this review is to discuss the potential impact of dental pulp stem cells to Regenerative Endodontics. PMID:21726222

  11. Stem cells and their potential clinical applications in psychiatric disorders.

    PubMed

    Ratajczak, Mariusz Z; Ciechanowicz, Andrzej K; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy

    2018-01-03

    The robustness of stem cells is one of the major factors that directly impacts life quality and life span. Evidence has accumulated that changes in the stem cell compartment affect human mental health and serve as an indicator of psychiatric problems. It is well known that stem cells continuously replace differentiated cells and tissues that are used up during life, although this replacement occurs at a different pace in the various organs. However, the participation of local neural stem cells in regeneration of the central nervous system is controversial. It is known that low numbers of stem cells circulate continuously in peripheral blood (PB) and lymph and undergo a circadian rhythm in their PB level, with the peak occurring early in the morning and the nadir at night, and recent evidence suggests that the number and pattern of circulating stem cells in PB changes in psychotic disorders. On the other hand, progress in the creation of induced pluripotent stem cells (iPSCs) from patient somatic cells provides valuable tools with which to study changes in gene expression in psychotic patients. We will discuss the various potential sources of stem cells that are currently employed in regenerative medicine and the mechanisms that explain some of their beneficial effects as well as the emerging problems with stem cell therapies. However, the main question remains: Will it be possible in the future to modulate the stem cell compartment to reverse psychiatric problems? Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Temporal Impact of Substrate Mechanics on Differentiation of Human Embryonic Stem Cells to Cardiomyocytes

    PubMed Central

    Hazeltine, Laurie B.; Badur, Mehmet G.; Lian, Xiaojun; Das, Amritava; Han, Wenqing; Palecek, Sean P.

    2014-01-01

    A significant clinical need exists to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, enabling tissue modeling for in vitro discovery of new drugs or cell-based therapies for heart repair in vivo. Chemical and mechanical microenvironmental factors are known to impact efficiency of stem cell differentiation, but cardiac differentiation protocols in hPSCs are typically performed on rigid tissue culture polystyrene (TCPS) surfaces which do not present a physiological mechanical setting. To investigate the temporal effects of mechanics on cardiac differentiation, we cultured human embryonic stem cells (hESCs) and their derivatives on polyacrylamide hydrogel substrates with a physiologically relevant range of stiffnesses. In directed differentiation and embryoid body culture systems, differentiation of hESCs to cardiac Troponin T-expressing (cTnT+) cardiomyocytes peaked on hydrogels of intermediate stiffness. Brachyury expression also peaked on intermediate stiffness hydrogels at day 1 of directed differentiation, suggesting that stiffness impacted the initial differentiation trajectory of hESCs to mesendoderm. To investigate the impact of substrate mechanics during cardiac specification of mesodermal progenitors, we initiated directed cardiomyocyte differentiation on TCPS and transferred cells to hydrogels at the Nkx2.5/Isl1+ cardiac progenitor cell stage. No differences in cardiomyocyte purity with stiffness were observed on day 15. These experiments indicate that differentiation of hESCs is sensitive to substrate mechanics at early stages of mesodermal induction, and proper application of substrate mechanics can increase the propensity of hESCs to differentiate to cardiomyocytes. PMID:24200714

  13. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. PMID:22001354

  14. Extinction models for cancer stem cell therapy.

    PubMed

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S; Lange, Kenneth L

    2011-12-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth-death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The top cited articles on glioma stem cells in Web of Science.

    PubMed

    Yi, Fuxin; Ma, Jun; Ni, Weimin; Chang, Rui; Liu, Wenda; Han, Xiubin; Pan, Dongxiao; Liu, Xingbo; Qiu, Jianwu

    2013-05-25

    Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treatment of glioma. To use bibliometric indexes to track study focuses on glioma stem cell, and to investigate the relationships among geographic origin, impact factors, and highly cited articles indexed in Web of Science. A list of citation classics for glioma stem cells was generated by searching the database of Web of Science-Expanded using the terms "glioma stem cell" or "glioma, stem cell" or "brain tumor stem cell". The top 63 cited research articles which were cited more than 100 times were retrieved by reading the abstract or full text if needed. Each eligible article was reviewed for basic information on subject categories, country of origin, journals, authors, and source of journals. Inclusive criteria: (1) articles in the field of glioma stem cells which was cited more than 100 times; (2) fundamental research on humans or animals, clinical trials and case reports; (3) research article; (4) year of publication: 1899-2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles needing to be manually searched or accessed only by telephone; (2) unpublished articles; and (3) reviews, conference proceedings, as well as corrected papers. Of 2 040 articles published, the 63 top-cited articles were published between 1992 and 2010. The number of citations ranged from 100 to 1 754, with a mean of 280 citations per article. These citation classics came from nineteen countries, of which 46 articles came from the United States. Duke University and University of California, San Francisco led the list of classics with seven papers each. The 63 top-cited articles were published in 28 journals, predominantly Cancer Research and Cancer Cell, followed by Cell Stem Cell and Nature. Our bibliometric analysis provides a historical perspective on the progress of glioma stem cell research. Articles originating from outstanding institutions of the United States and published in high-impact journals are most likely to be cited.

  16. Adipose-Derived Stem Cells Enhance Cancer Stem Cell Property and Tumor Formation Capacity in Lewis Lung Carcinoma Cells Through an Interleukin-6 Paracrine Circuit.

    PubMed

    Lu, Jui-Hua; Wei, Hong-Jian; Peng, Bou-Yue; Chou, Hsin-Hua; Chen, Wei-Hong; Liu, Hen-Yu; Deng, Win-Ping

    2016-12-01

    Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention and emerged as therapeutic approaches in several medical fields. Although current knowledge of the biological impacts of ADSCs in cancer research is greatly improved, the underlying effects of ADSCs in tumor development remain controversial and cause the safety concerns in clinical utilization. Hence, we isolated primary ADSCs from the abdominal fat of mice and conducted interaction of ADSCs with Lewis lung carcinoma cells in culture and in mice to investigate the impacts of ADSCs on tumor development. Cytokine array and neutralizing antibody were further utilized to identify the key regulator and downstream signaling pathway. In this study, we demonstrated that ADSCs enhance the malignant characteristics of LLC1 cells, including cell growth ability and especially cancer stem cell property. ADSCs were then identified to promote tumor formation and growth in mice. We further determined that ADSC interaction with LLC1 cells stimulates increased secretion of interleukin-6 mainly from ADSCs, which then act in a paracrine manner on LLC1 cells to enhance their malignant characteristics. Interleukin-6 was also identified to regulate genes related to cell proliferation and cancer stem cell, as well as to activate JAK2/STAT3, a predominant interleukin-6-activated pathway, in LLC1 cells. Collectively, we demonstrated that ADSCs play a pro-malignant role in tumor development of Lewis lung carcinoma cells by particularly promoting cancer stem cell property through interleukin-6 paracrine circuit, which is important for safety considerations regarding the clinical application of ADSCs.

  17. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  18. Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition

    PubMed Central

    Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.

    2009-01-01

    Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038

  19. Stem cell transplantation as rescue therapy for refractory Crohn's disease: a sytematic review.

    PubMed

    Labidi, Asma; Serghini, Meriem; Ben Mustapha, Nadia; Fekih, Monia; Boubaker, Jalel; Filali, Azza

    2014-11-01

    Crohn's disease is a chronic relapsing- remitting affection. It has a strong immunologic component which represent the target of standard therapies including immunosppressants and biological therapies. However, many patients remain refracory or intolerant to these therapies. The aim of this review is to determine the effects of stem cell transplantation in patients with refractory Crohn's disease. Systematic review of observational studies, clinical trials and case reports that focused on the effectiveness and safety of stem cell transplantation in patients with refractory Crohn's disease. Hematopoietic stem cell transplantation seems to be efficient in maintaining clinical and endoscopic remission in patients with Crohn's disease refractory or intolerant to current therapies. However, it has been associated to high morbidity and mortality due to chemotherapy. Mesenchymal stem cell transplantation could induce remission in patients with fistulising refractory Crohns disease with no severe side effects. Its impact on luminal Crohns disease is still controversial. Stem cell transplantation seems to hold promising in patients with refractory Crohn's disease. However, because of the high morbidity and mortality related to chemotherapy, hematopoietic stem cell transplantation should be used as last resort to control this disease. Effectiveness of mesenchymal stem cell transplantation in luminal Crohn's disease has yet to be proven.

  20. Comprehensive analysis of miRNAs expression profiles revealed potential key miRNA/mRNAs regulating colorectal cancer stem cell self-renewal.

    PubMed

    Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang

    2018-05-20

    Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood. Recently, miRNAs are reported to be relevant to the self-renewal ability of cancer stem cells. In this study, we first isolated colorectal cancer stem cell from colorectal cancer cell line HCT-116 by 1% low serum culture. Then we conducted a comprehensive analysis based on the miRNAs profiles data of both colorectal cancer stem cells and normal cultured colorectal cancer cells. Pathway analysis revealed multiple pathways including Jak-STAT, TGF-beta, PI3K-Akt and MAPK signaling pathway that are correlated to colorectal cancer. Further, we constructed a miRNA-mRNA network, based on which, several miRNA/mRNA pairs were ranked according to their impact index to the self-renewal of colorectal cancer stem cells. Further biological experiment showed that up-regulation of miR-92a-3p led to cell cycle arrest and reduced colony formation. This work provides clues to find the new potential biomarkers for colorectal cancer stem cell diagnosis and select effective miRNAs for targeted therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Steady advance of stem cell therapies: report from the 2011 World Stem Cell Summit, Pasadena, California, October 3-5.

    PubMed

    Swan, Melanie

    2011-12-01

    Stem cell research and related therapies (including regenerative medicine and cellular therapies) could have a significant near-term impact on worldwide public health and aging. One reason is the industry's strong linkage between policy, science, industry, and patient advocacy, as was clear in the attendance and programming at the 7(th) annual World Stem Cell Summit held in Pasadena, California, October 3-5, 2011. A special conference session sponsored by the SENS Foundation discussed how stem cell therapies are being used to extend healthy life span. Stem cells are useful not only in cell-replacement therapies, but also in disease modeling, drug discovery, and drug toxicity screening. Stem cell therapies are currently being applied to over 50 diseases, including heart, lung, neurodegenerative, and eye disease, cancer, and human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). Dozens of companies are developing therapeutic solutions that are in different stages of clinical use and clinical trials. Some high-profile therapies include Dendreon's Provenge for prostate cancer, Geron's first-ever embryonic stem cell trials for spinal cord injury, Fibrocell's laViv cellular therapy for wrinkles, and well-established commercial skin substitutes (Organogenesis' Apligraf and Advanced BioHealing's Dermagraft). Stem cell policy issues under consideration include medical tourism, standards for large-scale stem cell manufacturing, and lingering ethical debates over the use of embryonic stem cells. Contemporary stem cell science advances include a focus on techniques for the direct reprogramming of cells from one lineage to another without returning to pluripotency as an intermediary step, improved means of generating and characterizing induced pluripotent cells, and progress in approaches to neurodegenerative disease.

  2. Reconciling the effects of inflammatory cytokines on mesenchymal cell osteogenic differentiation

    PubMed Central

    Deshpande, Sagar; James, Aaron W.; Blough, Jordan; Donneys, Alexis; Wang, Stewart C.; Cederna, Paul S.; Buchman, Steven R.; Levi, Benjamin

    2015-01-01

    Therapies using mesenchymal stem cells are a popular current avenue for development and utilization, especially in the fields of de novo tissue engineering (Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000;164:247.) or tissue regeneration after physical injury (Kitoh H, Kitakoji T, Tsuchiya H, et al. Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis—a preliminary result of three cases. Bone 2004;35:892; Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med 2003;136:192; Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994;56:283.). The osteogenic potential of these cells is of particular interest, given their recent usage for the closure of critical-sized bone defects and other nonhealing bone scenarios such as a nonunion. Recent literature suggests that inflammatory cytokines can significantly impact the osteogenic potential of these cells. A review of relevant, recent literature is presented regarding the impact of the inflammatory cascade on the osteogenic differentiation of these cells and how this varies across species. Finally, we identify areas of conflicting or absent evidence regarding the behavior of mesenchymal stem cells in response to inflammatory cytokines. PMID:23972621

  3. α6-Integrin alternative splicing: distinct cytoplasmic variants in stem cell fate specification and niche interaction.

    PubMed

    Zhou, Zijing; Qu, Jing; He, Li; Peng, Hong; Chen, Ping; Zhou, Yong

    2018-05-02

    α6-Integrin subunit (also known as CD49f) is a stemness signature that has been found on the plasma membrane of more than 30 stem cell populations. A growing body of studies have focused on the critical role of α6-containing integrins (α6β1 and α6β4) in the regulation of stem cell properties, lineage-specific differentiation, and niche interaction. α6-Integrin subunit can be alternatively spliced at the post-transcriptional level, giving rise to divergent isoforms which differ in the cytoplasmic and/or extracellular domains. The cytoplasmic domain of integrins is an important functional part of integrin-mediated signals. Structural changes in the cytoplasmic domain of α6 provide an efficient means for the regulation of stem cell responses to biochemical stimuli and/or biophysical cues in the stem cell niche, thus impacting stem cell fate determination. In this review, we summarize the current knowledge on the structural variants of the α6-integrin subunit and spatiotemporal expression of α6 cytoplasmic variants in embryonic and adult stem/progenitor cells. We highlight the roles of α6 cytoplasmic variants in stem cell fate decision and niche interaction, and discuss the potential mechanisms involved. Understanding of the distinct functions of α6 splicing variants in stem cell biology may inform the rational design of novel stem cell-based therapies for a range of human diseases.

  4. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect

    PubMed Central

    Cruz, C. Russell; Bollard, Catherine M.

    2015-01-01

    Hematopoietic stem cell transplantation has revolutionized the treatment of hematologic malignancies, but infection, graft-versus-host disease and relapse are still important problems. Calcineurin inhibitors, T-cell depletion strategies, and immunomodulators have helped to prevent graft-versus-host disease, but have a negative impact on the graft-versus-leukemia effect. T cells and natural killer cells are both thought to be important in the graft-versus-leukemia effect, and both cell types are amenable to ex vivo manipulation and clinical manufacture, making them versatile immunotherapeutics. We provide an overview of these immunotherapeutic strategies following hematopoietic stem cell transplantation, with discussions centered on natural killer and T-cell biology. We discuss the contributions of each cell type to graft-versus-leukemia effects, as well as the current research directions in the field as related to adoptive cell therapy after hematopoietic stem cell transplantation. PMID:26034113

  5. Hyperbaric Oxygen, Vasculogenic Stem Cells, and Wound Healing

    PubMed Central

    Fosen, Katina M.

    2014-01-01

    Abstract Significance: Oxidative stress is recognized as playing a role in stem cell mobilization from peripheral sites and also cell function. Recent Advances: This review focuses on the impact of hyperoxia on vasculogenic stem cells and elements of wound healing. Critical Issues: Components of the wound-healing process in which oxidative stress has a positive impact on the various cells involved in wound healing are highlighted. A slightly different view of wound-healing physiology is adopted by departing from the often used notion of sequential stages: hemostatic, inflammatory, proliferative, and remodeling and instead organizes the cascade of wound healing as overlapping events or waves pertaining to reactive oxygen species, lactate, and nitric oxide. This was done because hyperoxia has effects of a number of cell signaling events that converge to influence cell recruitment/chemotaxis and gene regulation/protein synthesis responses which mediate wound healing. Future Directions: Our alternative perspective of the stages of wound healing eases recognition of the multiple sites where oxidative stress has an impact on wound healing. This aids the focus on mechanistic events and the interplay among various cell types and biochemical processes. It also highlights the areas where additional research is needed. Antioxid. Redox Signal. 21, 1634–1647. PMID:24730726

  6. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  7. Understanding the application of stem cell therapy in cardiovascular diseases.

    PubMed

    Sharma, Rakesh K; Voelker, Donald J; Sharma, Roma; Reddy, Hanumanth K

    2012-10-30

    Throughout their lifetime, an individual may sustain many injuries and recover spontaneously over a period of time, without even realizing the injury in the first place. Wound healing occurs due to a proliferation of stem cells capable of restoring the injured tissue. The ability of adult stem cells to repair tissue is dependent upon the intrinsic ability of tissues to proliferate. The amazing capacity of embryonic stem cells to give rise to virtually any type of tissue has intensified the search for similar cell lineage in adults to treat various diseases including cardiovascular diseases. The ability to convert adult stem cells into pluripotent cells that resemble embryonic cells, and to transplant those in the desired organ for regenerative therapy is very attractive, and may offer the possibility of treating harmful disease-causing mutations. The race is on to find the best cells for treatment of cardiovascular disease. There is a need for the ideal stem cell, delivery strategies, myocardial retention, and time of administration in the ideal patient population. There are multiple modes of stem cell delivery to the heart with different cell retention rates that vary depending upon method and site of injection, such as intra coronary, intramyocardial or via coronary sinus. While there are crucial issues such as retention of stem cells, microvascular plugging, biodistribution, homing to myocardium, and various proapoptotic factors in the ischemic myocardium, the regenerative potential of stem cells offers an enormous impact on clinical applications in the management of cardiovascular diseases.

  8. Implications of Cancer Stem Cell Theory for Cancer Chemoprevention by Natural Dietary Compounds

    PubMed Central

    Li, Yanyan; Wicha, Max S.; Schwartz, Steven J.; Sun, Duxin

    2011-01-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anti-cancer drugs targeting cancer stem cells. Naturally-occurring dietary compounds have received increasing attention in cancer chemoprevention. The anti-cancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog, and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine, and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. PMID:21295962

  9. Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential

    PubMed Central

    Pieber, Thomas Rudolf

    2017-01-01

    It has always been an ambitious goal in medicine to repair or replace morbid tissues for regaining the organ functionality. This challenge has recently gained momentum through considerable progress in understanding the biological concept of the regenerative potential of stem cells. Routine therapeutic procedures are about to shift towards the use of biological and molecular armamentarium. The potential use of embryonic stem cells and invention of induced pluripotent stem cells raised hope for clinical regenerative purposes; however, the use of these interventions for regenerative therapy showed its dark side, as many health concerns and ethical issues arose in terms of using these cells in clinical applications. In this regard, adult stem cells climbed up to the top list of regenerative tools and mesenchymal stem cells (MSC) showed promise for regenerative cell therapy with a rather limited level of risk. MSC have been successfully isolated from various human tissues and they have been shown to offer the possibility to establish novel therapeutic interventions for a variety of hard-to-noncurable diseases. There have been many elegant studies investigating the impact of MSC in regenerative medicine. This review provides compact information on the role of stem cells, in particular, MSC in regeneration. PMID:28286525

  10. Temporal impact of substrate mechanics on differentiation of human embryonic stem cells to cardiomyocytes.

    PubMed

    Hazeltine, Laurie B; Badur, Mehmet G; Lian, Xiaojun; Das, Amritava; Han, Wenqing; Palecek, Sean P

    2014-02-01

    A significant clinical need exists to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, enabling tissue modeling for in vitro discovery of new drugs or cell-based therapies for heart repair in vivo. Chemical and mechanical microenvironmental factors are known to impact the efficiency of stem cell differentiation, but cardiac differentiation protocols in hPSCs are typically performed on rigid tissue culture polystyrene (TCPS) surfaces, which do not present a physiological mechanical setting. To investigate the temporal effects of mechanics on cardiac differentiation, we cultured human embryonic stem cells (hESCs) and their derivatives on polyacrylamide hydrogel substrates with a physiologically relevant range of stiffnesses. In directed differentiation and embryoid body culture systems, differentiation of hESCs to cardiac troponin T-expressing (cTnT+) cardiomyocytes peaked on hydrogels of intermediate stiffness. Brachyury expression also peaked on intermediate stiffness hydrogels at day 1 of directed differentiation, suggesting that stiffness impacted the initial differentiation trajectory of hESCs to mesendoderm. To investigate the impact of substrate mechanics during cardiac specification of mesodermal progenitors, we initiated directed cardiomyocyte differentiation on TCPS and transferred cells to hydrogels at the Nkx2.5/Isl1+ cardiac progenitor cell stage. No differences in cardiomyocyte purity with stiffness were observed on day 15. These experiments indicate that differentiation of hESCs is sensitive to substrate mechanics at early stages of mesodermal induction, and proper application of substrate mechanics can increase the propensity of hESCs to differentiate to cardiomyocytes. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Data on the potential impact of food supplements on the growth of mouse embryonic stem cells.

    PubMed

    Correia, Marcelo; Sousa, Maria I; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Ramalho-Santos, João

    2016-06-01

    The use of new compounds as dietary supplements is increasing, but little is known in terms of possible consequences of their use. Pluripotent stem cells are a promising research tool for citotoxicological research for evaluation of proliferation, cell death, pluripotency and differentiation. Using the mouse embryonic stem cell (mESC) model, we present data on three different compounds that have been proposed as new potential supplements for co-adjuvant disease treatments: kaempferol, berberine and Tauroursodeoxycholic acid (TUDCA). Cell number and viability were monitored following treatment with increased concentrations of each drug in pluripotent culture conditions.

  12. Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation.

    PubMed

    Dontu, Gabriela; Ince, Tan A

    2015-06-01

    Tissue based research requires a background in human and veterinary pathology, developmental biology, anatomy, as well as molecular and cellular biology. This type of comparative tissue biology (CTB) expertise is necessary to tackle some of the conceptual challenges in human breast stem cell research. It is our opinion that the scarcity of CTB expertise contributed to some erroneous interpretations in tissue based research, some of which are reviewed here in the context of breast stem cells. In this article we examine the dissimilarities between mouse and human mammary tissue and suggest how these may impact stem cell studies. In addition, we consider the differences between breast ducts vs. lobules and clarify how these affect the interpretation of results in stem cell research. Lastly, we introduce a new elaboration of normal epithelial cell types in human breast and discuss how this provides a clinically useful basis for breast cancer classification.

  13. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells

    PubMed Central

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon

    2016-01-01

    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs. PMID:27376325

  14. Comparison of Preterm and Term Wharton's Jelly-Derived Mesenchymal Stem Cell Properties in Different Oxygen Tensions.

    PubMed

    Balgi-Agarwal, Saloni; Winter, Caitlyn; Corral, Alexis; Mustafa, Shamimunisa B; Hornsby, Peter; Moreira, Alvaro

    2018-06-27

    Mesenchymal stem cells (MSCs) have shown promise as therapeutic agents in treating morbidities associated with premature birth. MSCs derived from the human umbilical cord are easy to isolate and have low immunogenicity and a robust ability to secrete paracrine factors. To date, there are no studies evaluating preterm versus term umbilical cord tissue-derived MSCs. Therefore, our aim was twofold: (1) to compare stem cell properties in preterm versus term MSCs and (2) to examine the impact of oxygen tension on stem cell behavior. Umbilical cord tissue was obtained from 5 preterm and 5 term neonates. The cells were isolated and characterized as MSCs in accordance with the International Society for Cellular Therapy. We exposed MSCs to different oxygen tensions to examine the impact of environmental factors on cell performance. We studied the following stem cell properties: (i) motility, (ii) proliferation, (iii) senescence, (iv) cell viability, (v) colony-forming unit efficiency, and (vi) inflammatory cytokine expression. Under normoxia (21% O2), cells from preterm and term infants had similar properties. Under hypoxic conditions (1% O2), term MSCs had better cell proliferation; however, cells exposed to hyperoxia (90% O2) had the slowest motility and lowest cell viability (p < 0.05). There was no difference in the expression of senescence or cytokine expression between the groups. The term cells demonstrated more colony-forming efficiency than the preterm cells. In sum, our preliminary findings suggest that MSCs derived from term and preterm umbilical cords have similar characteristics, offering the potential of future autologous/allogeneic MSC transplants in neonates. © 2018 S. Karger AG, Basel.

  15. Impact of electromagnetic fields on stem cells: common mechanisms at the crossroad between adult neurogenesis and osteogenesis

    PubMed Central

    Leone, Lucia; Podda, Maria Vittoria; Grassi, Claudio

    2015-01-01

    In the recent years adult neural and mesenchymal stem cells have been intensively investigated as effective resources for repair therapies. In vivo and in vitro studies have provided insights on the molecular mechanisms underlying the neurogenic and osteogenic processes in adulthood. This knowledge appears fundamental for the development of targeted strategies to manipulate stem cells. Here we review recent literature dealing with the effects of electromagnetic fields on stem cell biology that lends support to their use as a promising tool to positively influence the different steps of neurogenic and osteogenic processes. We will focus on recent studies revealing that extremely-low frequency electromagnetic fields enhance adult hippocampal neurogenesis by inducing epigenetic modifications on the regulatory sequences of genes responsible for neural stem cell proliferation and neuronal differentiation. In light of the emerging critical role played by chromatin modifications in maintaining the stemness as well as in regulating stem cell differentiation, we will also attempt to exploit epigenetic changes that can represent common targets for electromagnetic field effects on neurogenic and osteogenic processes. PMID:26124705

  16. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.

    PubMed

    Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D

    2016-02-01

    During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Mobilization of peripheral blood stem cells in CLL patients after front-line fludarabine treatment.

    PubMed

    Lysak, D; Koza, V; Steinerova, K; Jindra, P; Vozobulova, V; Schutzova, M

    2005-07-01

    Autologous peripheral blood stem cell transplantation is performed in an increasing number of chronic lymphocytic leukaemia (CLL) patients who are in the first remission following fludarabine treatment. There are contradictory data about the adverse impact of fludarabine on stem cell harvest. We analysed retrospectively mobilization results in 56 poor-risk CLL patients (median age: 56 years) who underwent first-line treatment with fludarabine and cyclophosphamide. The mobilization, consisting of cyclophosphamide 3 g/m(2) and granulocyte colony-stimulating factor (G-CSF) 10 microg/kg per day, was performed with a median of 77 days following the last fludarabine course. The target yield was >or=2.0x10(6) CD34+ cells/kg. The procedure was successful in 23 (41%) patients. A median of 3.3x10(6) CD34+ cells/kg was collected per patient. The successful mobilization was associated with a longer interval from the last chemotherapy (>2 months). The mobilization result was not influenced by the number of fludarabine cycles. No correlation was found in other parameters such as disease stage at diagnosis, disease status at stimulation or age. The poorly mobilized patients had significantly lower prestimulation blood counts (platelets, WBC and haemoglobin). Our data show that fludarabine does not generally prevent the stem cell mobilization; nevertheless, mechanisms related to the impact of fludarabine on stem cell harvest must be further investigated.

  18. Prolonged Growth Hormone/Insulin/Insulin-like Growth Factor Nutrient Response Signaling Pathway as a Silent Killer of Stem Cells and a Culprit in Aging.

    PubMed

    Ratajczak, Mariusz Z; Bartke, Andrzej; Darzynkiewicz, Zbigniew

    2017-08-01

    The dream of slowing down the aging process has always inspired mankind. Since stem cells are responsible for tissue and organ rejuvenation, it is logical that we should search for encoded mechanisms affecting life span in these cells. However, in adult life the hierarchy within the stem cell compartment is still not very well defined, and evidence has accumulated that adult tissues contain rare stem cells that possess a broad trans-germ layer differentiation potential. These most-primitive stem cells-those endowed with pluripotent or multipotent differentiation ability and that give rise to other cells more restricted in differentiation, known as tissue-committed stem cells (TCSCs) - are of particular interest. In this review we present the concept supported by accumulating evidence that a population of so-called very small embryonic-like stem cells (VSELs) residing in adult tissues positively impacts the overall survival of mammals, including humans. These unique cells are prevented in vertebrates from premature depletion by decreased sensitivity to growth hormone (GH), insulin (INS), and insulin-like growth factor (IGF) signaling, due to epigenetic changes in paternally imprinted genes that regulate their resistance to these factors. In this context, we can envision nutrient response GH/INS/IGF signaling pathway as a lethal factor for these most primitive stem cells and an important culprit in aging.

  19. Long term cryopreservation in 5% DMSO maintains unchanged CD34(+) cells viability and allows satisfactory hematological engraftment after peripheral blood stem cell transplantation.

    PubMed

    Abbruzzese, L; Agostini, F; Durante, C; Toffola, R T; Rupolo, M; Rossi, F M; Lleshi, A; Zanolin, S; Michieli, M; Mazzucato, M

    2013-07-01

    Peripheral blood stem cell cryopreservation is associated with cell damage and decreased viability. We evaluated the impact of up to 10 years of cryopreservation (5% DMSO) on viability of CD34(+) cells utilizing graft samples of consecutive patients (2002-2012) with different malignancies who underwent stem cell collection and transplantation. Viability of CD34(+) cells from oncohaematological patients measured after 5 weeks (97·2 ± 0·6%) or after 9-10 years of cryopreservation (95·9 ± 0·5%) was unaffected. Haemoglobin, granulocyte and platelet recovery after transplantation of long-term cryopreserved grafts occurred within 8-13 days. CD34(+) stem cells can be safely stored up to 9-10 years, without affecting cell viability and clinical effectiveness. © 2013 International Society of Blood Transfusion.

  20. A Bibliometric Analysis of Publications on Pluripotent Stem Cell Research

    PubMed Central

    Lin, Changshuan L.; Ho, Yuh-Shan

    2015-01-01

    Objective Human pluripotent stem cells are self-renewing cells with the ability to differentiate into a variety of cells and are viewed to have great potential in the field of regenerative medicine. Research in pluripotent stem cells holds great promise for patient specific therapy in various diseases. In this study, pluripotent stem cell articles published from 1991 to 2012 were screened and retrieved from Science Citation Index Expanded (SCI-EXPANDED). Materials and Methods In this retrospective study, the publication trend, citation trends for top articles, distributions of journals and Web of Science categories were analyzed. Five bibliometric indicators including total articles, independent articles, collaborative articles, first author articles, and corresponding author articles were applied to compare publications between countries and institutions. Results The impact of top articles changed from year to year. Top cited articles in previous publication years were not the same as recent years. "Induced pluripotent stem cell (s)" and "embryonic stem cell (s)" were the most used author keywords in pluripotent stem cell research. In addition, the winner of the Nobel Prize in physiology or medicine in 2012, Prof. Shinya Yamanaka, published four of the top ten most frequently cited articles. Conclusion The comprehensive analysis of highly cited articles in the stem cell field could identify milestones and important contributors, giving a historic perspective on scientific progress. PMID:25870835

  1. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds.

    PubMed

    Li, Yanyan; Wicha, Max S; Schwartz, Steven J; Sun, Duxin

    2011-09-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Increased circulating stem cells and better cognitive performance in traumatic brain injury subjects following hyperbaric oxygen therapy.

    PubMed

    Shandley, Sabrina; Wolf, E George; Schubert-Kappan, Christine M; Baugh, Laura M; Richards, Michael F; Prye, Jennifer; Arizpe, Helen M; Kalns, John

    2017-01-01

    Traumatic brain injury (TBI) may cause persistent cognitive dysfunction. A pilot clinical study was performed to determine if hyperbaric oxygen (HBO₂) treatment improves cognitive performance. It was hypothesized that stem cells, mobilized by HBO₂ treatment, are recruited to repair damaged neuronal tissue. This hypothesis was tested by measuring the relative abundance of stem cells in peripheral blood and cognitive performance during this clinical trial. The subject population consisted of 28 subjects with persistent cognitive impairment caused by mild to moderate TBI suffered during military deployment to Iraq or Afghanistan. Fluorescence-activated cell sorting (FACS) analysis was performed for stem cell markers in peripheral blood and correlated with variables resulting from standard tests of cognitive performance and post-traumatic stress disorder: ImPACT, BrainCheckers and PCL-M test results. HBO₂ treatment correlated with stem cell mobilization as well as increased cognitive performance. Together these results support the hypothesis that stem cell mobilization may be required for cognitive improvement in this population. Copyright© Undersea and Hyperbaric Medical Society.

  3. Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.

    PubMed

    Mukherjee, Subhas; Brat, Daniel J

    2017-01-01

    Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.

  4. Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels

    PubMed Central

    Sridharan, BanuPriya; Lin, Staphany M.; Hwu, Alexander T.; Laflin, Amy D.; Detamore, Michael S.

    2015-01-01

    There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance. PMID:26719986

  5. Protein content and methyl donors in maternal diet interact to influence the proliferation rate and cell fate of neural stem cells in rat hippocampus.

    PubMed

    Amarger, Valérie; Lecouillard, Angèle; Ancellet, Laure; Grit, Isabelle; Castellano, Blandine; Hulin, Philippe; Parnet, Patricia

    2014-10-14

    Maternal diet during pregnancy and early postnatal life influences the setting up of normal physiological functions in the offspring. Epigenetic mechanisms regulate cell differentiation during embryonic development and may mediate gene/environment interactions. We showed here that high methyl donors associated with normal protein content in maternal diet increased the in vitro proliferation rate of neural stem/progenitor cells isolated from rat E19 fetuses. Gene expression on whole hippocampi at weaning confirmed this effect as evidenced by the higher expression of the Nestin and Igf2 genes, suggesting a higher amount of undifferentiated precursor cells. Additionally, protein restriction reduced the expression of the insulin receptor gene, which is essential to the action of IGFII. Inhibition of DNA methylation in neural stem/progenitor cells in vitro increased the expression of the astrocyte-specific Gfap gene and decreased the expression of the neuron-specific Dcx gene, suggesting an impact on cell differentiation. Our data suggest a complex interaction between methyl donors and protein content in maternal diet that influence the expression of major growth factors and their receptors and therefore impact the proliferation and differentiation capacities of neural stem cells, either through external hormone signals or internal genomic regulation.

  6. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine.

    PubMed

    Cosson, Steffen; Otte, Ellen A; Hezaveh, Hadi; Cooper-White, Justin J

    2015-02-01

    The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug Administration-approved biomedical polymers from fixation devices to porous scaffolds have been shown to lack the complexity required for in vitro stem cell culture models or translation to in vivo applications with high efficacy. This realization has spurred the development of advanced mimetic biomaterials and scaffolds to increasingly enhance our ability to control the cellular microenvironment and, consequently, stem cell fate. New insights into the biology of stem cells are expected to eventuate from these advances in material science, in particular, from synthetic hydrogels that display physicochemical properties reminiscent of the natural cell microenvironment and that can be engineered to display or encode essential biological cues. Merging these advanced biomaterials with high-throughput methods to systematically, and in an unbiased manner, probe the role of scaffold biophysical and biochemical elements on stem cell fate will permit the identification of novel key stem cell behavioral effectors, allow improved in vitro replication of requisite in vivo niche functions, and, ultimately, have a profound impact on our understanding of stem cell biology and unlock their clinical potential in tissue engineering and regenerative medicine. ©AlphaMed Press.

  7. Femtosecond laser pulses for chemical-free embryonic and mesenchymal stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; Dholakia, Kishan; Gunn-Moore, Frank

    2011-10-01

    Owing to their self renewal and pluripotency properties, stem cells can efficiently advance current therapies in tissue regeneration and/or engineering. Under appropriate culture conditions in vitro, pluripotent stem cells can be primed to differentiate into any cell type some examples including neural, cardiac and blood cells. However, there still remains a pressing necessity to answer the biological questions concerning how stem cell renewal and how differentiation programs are operated and regulated at the genetic level. In stem cell research, an urgent requirement on experimental procedures allowing non-invasive, marker-free observation of growth, proliferation and stability of living stem cells under physiological conditions exists. Femtosecond (fs) laser pulses have been reported to non-invasively deliver exogenous materials, including foreign genetic species into both multipotent and pluripotent stem cells successfully. Through this multi-photon facilitated technique, directly administering fs laser pulses onto the cell plasma membrane induces transient submicrometer holes, thereby promoting cytosolic uptake of the surrounding extracellular matter. To display a chemical-free cell transfection procedure that utilises micro-litre scale volumes of reagents, we report for the first time on 70 % transfection efficiency in ES-E14TG2a cells using the enhanced green fluorescing protein (EGFP) DNA plasmid. We also show how varying the average power output during optical transfection influences cell viability, proliferation and cytotoxicity in embryonic stem cells. The impact of utilizing objective lenses of different numerical aperture (NA) on the optical transfection efficiency in ES-E14TG2a cells is presented. Finally, we report on embryonic and mesenchymal stem cell differentiation. The produced specialized cell types could thereafter be characterized and used for cell based therapies.

  8. Clinical potentials of human pluripotent stem cells in lung diseases

    PubMed Central

    2014-01-01

    Lung possesses very limited regenerative capacity. Failure to maintain homeostasis of lung epithelial cell populations has been implicated in the development of many life-threatening pulmonary diseases leading to substantial morbidity and mortality worldwide, and currently there is no known cure for these end-stage pulmonary diseases. Embryonic stem cells (ESCs) and somatic cell-derived induced pluripotent stem cells (iPSCs) possess unlimited self-renewal capacity and great potential to differentiate to various cell types of three embryonic germ layers (ectodermal, mesodermal, and endodermal). Therapeutic use of human ESC/iPSC-derived lung progenitor cells for regeneration of injured or diseased lungs will have an enormous clinical impact. This article provides an overview of recent advances in research on pluripotent stem cells in lung tissue regeneration and discusses technical challenges that must be overcome for their clinical applications in the future. PMID:24995122

  9. To CRISPR and beyond: the evolution of genome editing in stem cells

    PubMed Central

    Chen, Kuang-Yui; Knoepfler, Paul S

    2016-01-01

    The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR–Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field. PMID:27905217

  10. To CRISPR and beyond: the evolution of genome editing in stem cells.

    PubMed

    Chen, Kuang-Yui; Knoepfler, Paul S

    2016-12-01

    The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR-Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field.

  11. Optical quantification of forces at play during stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Ritter, Christine M.; Brickman, Joshua M.; Oddershede, Lene B.

    2016-03-01

    A cell is in constant interaction with its environment, it responds to external mechanical, chemical and biological signals. The response to these signals can be of various nature, for instance intra-cellular mechanical re-arrangements, cell-cell interactions, or cellular reinforcements. Optical methods are quite attractive for investigating the mechanics inside living cells as, e.g., optical traps are amongst the only nanotools that can reach and manipulate, measure forces, inside a living cell. In the recent years it has become increasingly evident that not only biochemical and biomolecular cues, but also that mechanical ones, play an important roles in stem cell differentiation. The first evidence for the importance of mechanical cues emerged from studies showing that substrate stiffness had an impact on stem cell differentiation. Recently, techniques such as optical tweezers and stretchers have been applied to stem cells, producing new insights into the role of mechanics in regulating renewal and differentiation. Here, we describe how optical tweezers and optical stretchers can be applied as a tool to investigate stem cell mechanics and some of the recent results to come out of this work.

  12. Why the impact of mechanical stimuli on stem cells remains a challenge.

    PubMed

    Goetzke, Roman; Sechi, Antonio; De Laporte, Laura; Neuss, Sabine; Wagner, Wolfgang

    2018-05-04

    Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance-and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.

  13. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    PubMed

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation. Copyright © 2017 American Society for Microbiology.

  14. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia

    PubMed Central

    Peterson, Christopher W.; Kiem, Hans-Peter

    2017-01-01

    ABSTRACT Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the “Berlin patient” remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation. PMID:28404854

  15. An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia.

    PubMed

    Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D Wade; Yang, Feng-Chun

    2017-06-01

    Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. Copyright© Ferrata Storti Foundation.

  16. An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia

    PubMed Central

    Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D.; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A.; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D. Wade; Yang, Feng-Chun

    2017-01-01

    Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. PMID:28341737

  17. Environmental enrichment increases the GFAP+ stem cell pool and reverses hypoxia-induced cognitive deficits in juvenile mice.

    PubMed

    Salmaso, Natalina; Silbereis, John; Komitova, Mila; Mitchell, Patrick; Chapman, Katherine; Ment, Laura R; Schwartz, Michael L; Vaccarino, Flora M

    2012-06-27

    Premature children born with very low birth weight (VLBW) can suffer chronic hypoxic injury as a consequence of abnormal lung development and cardiovascular abnormalities, often leading to grave neurological and behavioral consequences. Emerging evidence suggests that environmental enrichment improves outcome in animal models of adult brain injury and disease; however, little is known about the impact of environmental enrichment following developmental brain injury. Intriguingly, data on socio-demographic factors from longitudinal studies that examined a number of VLBW cohorts suggest that early environment has a substantial impact on neurological and behavioral outcomes. In the current study, we demonstrate that environmental enrichment significantly enhances behavioral and neurobiological recovery from perinatal hypoxic injury. Using a genetic fate-mapping model that allows us to trace the progeny of GFAP+ astroglial cells, we show that hypoxic injury increases the proportion of astroglial cells that attain a neuronal fate. In contrast, environmental enrichment increases the stem cell pool, both through increased stem cell proliferation and stem cell survival. In mice subjected to hypoxia and subsequent enrichment there is an additive effect of both conditions on hippocampal neurogenesis from astroglia, resulting in a robust increase in the number of neurons arising from GFAP+ cells by the time these mice reach full adulthood.

  18. A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology.

    PubMed

    De Rosa, Alfredo; De Francesco, Francesco; Tirino, Virginia; Ferraro, Giuseppe A; Desiderio, Vincenzo; Paino, Francesca; Pirozzi, Giuseppe; D'Andrea, Francesco; Papaccio, Gianpaolo

    2009-12-01

    Recent studies have shown potential ways for improving stem cell cryopreservation. The major need for autologous stem cell use is a long-term storage: this arises from the humans' hope of future use of their own cells. Therefore, it is important to evaluate the cell potential of vitality and differentiation before and after cryopreservation. Although several studies have shown a long-term preservation of adipose tissue, a few of them focused their attention to stem cells. The aim of this study was to evaluate the fate of cryopreserved stem cells collected from adipose tissue and stored at low a temperature in liquid nitrogen through an optimal cryopreservation solution (using slowly cooling in 6% threalose, 4% dimethyl sulfoxide, and 10% fetal bovine serum) and to develop a novel approach to efficiently preserve adipose-derived stem cells (ASCs) for future clinical applications. Results showed that stem cells, after being thawed, are still capable of differentiation and express all surface antigens detected before storage, confirming the integrity of their biology. In particular, ASCs differentiated into adipocytes, showed diffuse positivity for PPARgamma and adiponectin, and were also able to differentiate into endothelial cells without addition of angiogenic factors. Therefore, ASCs can be long-term cryopreserved, and this, due to their great numbers, is an attractive tool for clinical applications as well as of impact for the derived market.

  19. [Impact of cryopreservation duration of 605 units umbilical cord blood on quality of hematopoietic stem cell and outcome of clinical transplantation].

    PubMed

    Zhang, Yi; Zhu, Hua; Jin, Huanying; Wang, Yinting; Shao, Xiayan; Kong, Jingsi; Huang, Wenhao; Hong, Yan; Li, Chunli; Gao, Feng; Chen, Liang; Wang, Feng; Lu, Yao

    2015-01-01

    To investigate the impact of cryopreservation duration of umbilical cord blood (UCB) on quality of hematopoietic stem cell and outcome of clinical transplantation. 605 units of UCB which had been used in clinical transplantation were previously cryopreserved for 820 (88-2651) days in average. UCB was detected for total nucleated cell count, CD34+ cells count, cell recovery rate, cell viability and CFU-GM after thawing. No statistical correlation was found between cryopreservation duration and cell recovery rate, cell viability. CFU-GM decreased along with the extension of cryopreservation duration (P=0.011), ranging between 109.6 and 105.7/1 × 10⁵. There was no significant difference on hematopoietic reconstitution time, graft failure, acute GVHD and overall survival among groups with different cryopreservation duration. Cryopreservation duration has no significant effect on cell recovery rate, cell viability and clinical transplantation outcome. Extension of cryopreservation duration may reduce CFU-GM of stem cells with fluctaion still in normal range. UCB could maintain cell viability and function to achieve satisfactory clinical transplantation outcome even when thawed after 3 to 7 years' cryopreservation.

  20. Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases

    PubMed Central

    Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus

    2014-01-01

    Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432

  1. International stem cell collaboration: how disparate policies between the United States and the United Kingdom impact research.

    PubMed

    Luo, Jingyuan; Flynn, Jesse M; Solnick, Rachel E; Ecklund, Elaine Howard; Matthews, Kirstin R W

    2011-03-08

    As the scientific community globalizes, it is increasingly important to understand the effects of international collaboration on the quality and quantity of research produced. While it is generally assumed that international collaboration enhances the quality of research, this phenomenon is not well examined. Stem cell research is unique in that it is both politically charged and a research area that often generates international collaborations, making it an ideal case through which to examine international collaborations. Furthermore, with promising medical applications, the research area is dynamic and responsive to a globalizing science environment. Thus, studying international collaborations in stem cell research elucidates the role of existing international networks in promoting quality research, as well as the effects that disparate national policies might have on research. This study examined the impact of collaboration on publication significance in the United States and the United Kingdom, world leaders in stem cell research with disparate policies. We reviewed publications by US and UK authors from 2008, along with their citation rates and the political factors that may have contributed to the number of international collaborations. The data demonstrated that international collaborations significantly increased an article's impact for UK and US investigators. While this applied to UK authors whether they were corresponding or secondary, this effect was most significant for US authors who were corresponding authors. While the UK exhibited a higher proportion of international publications than the US, this difference was consistent with overall trends in international scientific collaboration. The findings suggested that national stem cell policy differences and regulatory mechanisms driving international stem cell research in the US and UK did not affect the frequency of international collaborations, or even the countries with which the US and UK most often collaborated. Geographical and traditional collaborative relationships were the predominate considerations in establishing international collaborations.

  2. International Stem Cell Collaboration: How Disparate Policies between the United States and the United Kingdom Impact Research

    PubMed Central

    Solnick, Rachel E.; Ecklund, Elaine Howard; Matthews, Kirstin R. W.

    2011-01-01

    As the scientific community globalizes, it is increasingly important to understand the effects of international collaboration on the quality and quantity of research produced. While it is generally assumed that international collaboration enhances the quality of research, this phenomenon is not well examined. Stem cell research is unique in that it is both politically charged and a research area that often generates international collaborations, making it an ideal case through which to examine international collaborations. Furthermore, with promising medical applications, the research area is dynamic and responsive to a globalizing science environment. Thus, studying international collaborations in stem cell research elucidates the role of existing international networks in promoting quality research, as well as the effects that disparate national policies might have on research. This study examined the impact of collaboration on publication significance in the United States and the United Kingdom, world leaders in stem cell research with disparate policies. We reviewed publications by US and UK authors from 2008, along with their citation rates and the political factors that may have contributed to the number of international collaborations. The data demonstrated that international collaborations significantly increased an article's impact for UK and US investigators. While this applied to UK authors whether they were corresponding or secondary, this effect was most significant for US authors who were corresponding authors. While the UK exhibited a higher proportion of international publications than the US, this difference was consistent with overall trends in international scientific collaboration. The findings suggested that national stem cell policy differences and regulatory mechanisms driving international stem cell research in the US and UK did not affect the frequency of international collaborations, or even the countries with which the US and UK most often collaborated. Geographical and traditional collaborative relationships were the predominate considerations in establishing international collaborations. PMID:21408134

  3. Angiogenic and Restorative Abilities of Human Mesenchymal Stem Cells Were Reduced Following Treatment With Serum From Diabetes Mellitus Type 2 Patients.

    PubMed

    Rezaie, Jafar; Mehranjani, Malek S; Rahbarghazi, Reza; Shariatzadeh, Mohammad A

    2018-01-01

    This experiment investigated the impact of serum from patients with type 2 diabetes mellitus on the angiogenic behavior of human mesenchymal stem cells in vitro. Changes in the level of Ang-1, Ang-2, cell migration, and trans-differentiation into pericytes and endothelial lineage were monitored after 7 days. The interaction of mesenchymal stem cells with endothelial cells were evaluated using surface plasmon resonance technique. Paracrine restorative effect of diabetic stem cells was tested on pancreatic β cells. Compared to data from FBS and normal serum, diabetic serum reduced the stem cell survival and chemotaxis toward VEGF and SDF-1α (P < 0.05). Diabetic condition were found to decline cell migration rate and the activity of MMP-2 and -9 (P < 0.05). The down-regulation of VEGFR-2 and CXCR-4 was observed with an increase in the level of miR-1-3p and miR-15b-5p at the same time. The paracrine angiogenic potential of diabetic stem cells was disturbed via the changes in the dynamic of Ang-1, Ang-2, and VEGF. Surface plasmon resonance analysis showed that diabetes could induce an aberrant increase in the interaction of stem cells with endothelial cells. After treatment with diabetic serum, the expression of VE-cadherin and NG2 and ability for uptake of Dil-Ac-LDL were reduced (P < 0.01). Conditioned media prepared from diabetic stem cells were unable to decrease fatty acid accumulation in β-cells (P < 0.05). The level of insulin secreted by β-cells was not affected after exposure to supernatant from diabetic or non-diabetic mesenchymal stem cells. Data suggest diabetes could decrease angiogenic and restorative effect of stem cells in vitro. J. Cell. Biochem. 119: 524-535, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Understanding the role of growth factors in modulating stem cell tenogenesis.

    PubMed

    Gonçalves, Ana I; Rodrigues, Márcia T; Lee, Sang-Jin; Atala, Anthony; Yoo, James J; Reis, Rui L; Gomes, Manuela E

    2013-01-01

    Current treatments for tendon injuries often fail to fully restore joint biomechanics leading to the recurrence of symptoms, and thus resulting in a significant health problem with a relevant social impact worldwide. Cell-based approaches involving the use of stem cells might enable tailoring a successful tendon regeneration outcome. As growth factors (GFs) powerfully regulate the cell biological response, their exogenous addition can further stimulate stem cells into the tenogenic lineage, which might eventually depend on stem cells source. In the present study we investigate the tenogenic differentiation potential of human- amniotic fluid stem cells (hAFSCs) and adipose-derived stem cells (hASCs) with several GFs associated to tendon development and healing; namely, EGF, bFGF, PDGF-BB and TGF-β1. Stem cells response to biochemical stimuli was studied by screening of tendon-related genes (collagen type I, III, decorin, tenascin C and scleraxis) and proteins found in tendon extracellular matrix (ECM) (Collagen I, III, and Tenascin C). Despite the fact that GFs did not seem to influence the synthesis of tendon ECM proteins, EGF and bFGF influenced the expression of tendon-related genes in hAFSCs, while EGF and PDGF-BB stimulated the genetic expression in hASCs. Overall results on cellular alignment morphology, immunolocalization and PCR analysis indicated that both stem cell source can be biochemically induced towards tenogenic commitment, validating the potential of hASCs and hAFSCs for tendon regeneration strategies.

  5. Stem cell research and policy in India: current scenario and future perspective.

    PubMed

    Sharma, Alka

    2009-01-01

    Stem cell research is an exciting area of biomedical research, with potential to advance cell biology, and other new modalities of treatment for many untreatable diseases. The potential resides in the ability of these cells to develop into many different cell types in the body. In India, efforts are being made on several fronts to promote this area in an integrated way. The main features of the strategy are: explore the full potential of adult and embryonic stem cells (ESCs) through basic and translational research; generate patient specific human ESC lines; enhance creation of animal models for pre-clinical studies; virtual network of Centres; creation institutions; generation of well trained manpower; build partnership with large companies in path-breaking areas; promote closer interactions amongst basic scientists, clinical researchers and the industry. Newer initiatives include: establishment of a dedicated institute for stem cell science and regenerative medicine with its translational units; GMP and clean room facilities in medical schools; creation of a system for multi-centric clinical studies using autologous adult stem cells; national and international training courses for providing training to the students and the young scientists in the both embryonic and adult stem cells; and formulation of guidelines to conduct stem cell research in a responsible and ethically sensitive manner in the country. The core capacity must be nurtured and built to create the required critical mass to have impact.

  6. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells

    PubMed Central

    Bayarsaihan, Dashzeveg

    2016-01-01

    A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors. PMID:28018144

  7. Mitochondrial DNA polymerase editing mutation, PolgD257A, disturbs stem-progenitor cell cycling in the small intestine and restricts excess fat absorption.

    PubMed

    Fox, Raymond G; Magness, Scott; Kujoth, Gregory C; Prolla, Tomas A; Maeda, Nobuyo

    2012-05-01

    Changes in intestinal absorption of nutrients are important aspects of the aging process. To address this issue, we investigated the impact of accelerated mitochondrial DNA mutations on the stem/progenitor cells in the crypts of Lieberkühn in mice homozygous for a mitochondrial DNA polymerase gamma mutation, Polg(D257A), that exhibit accelerated aging phenotype. As early as 3-7 mo of age, the small intestine was significantly enlarged in the PolgD257A mice. The crypts of the PolgD257A mice contained 20% more cells than those of their wild-type littermates and exhibited a 10-fold increase in cellular apoptosis primarily in the stem/progenitor cell zones. Actively dividing cells were proportionally increased, yet a significantly smaller proportion of cells was in the S phase of the cell cycle. Stem cell-derived organoids from PolgD257A mice failed to develop fully in culture and exhibited fewer crypt units, indicating an impact of the mutation on the intestinal epithelial stem/progenitor cell maintenance. In addition, epithelial cell migration along the crypt-villus axis was slowed and less organized, and the ATP content in the villi was significantly reduced. On a high-fat, high-carbohydrate diet, PolgD257A mice showed significantly restricted absorption of excess lipids accompanied by an increase in fecal steatocrits. We conclude that the PolgD257A mutation causes cell cycle dysregulation in the crypts leading to the age-associated changes in the morphology of the small intestine and contributes to the restricted absorption of dietary lipids.

  8. Cell volume change through water efflux impacts cell stiffness and stem cell fate

    PubMed Central

    Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.

    2017-01-01

    Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology. PMID:28973866

  9. Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model.

    PubMed

    Steves, Alyse N; Turry, Adam; Gill, Brittany; Clarkson-Townsend, Danielle; Bradner, Joshua M; Bachli, Ian; Caudle, W Michael; Miller, Gary W; Chan, Anthony W S; Easley, Charles A

    2018-06-18

    Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis in vitro under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease in vitro germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids in vitro under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes. CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell.

  10. Recent developments of the in situ wet cell technology for transmission electron microscopies.

    PubMed

    Chen, Xin; Li, Chang; Cao, Hongling

    2015-03-21

    In situ wet cells for transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) allow studying structures and processes in a liquid environment with high temporal and spatial resolutions, and have been attracting increasing research interests in many fields. In this review, we highlight the structural and functional developments of the wet cells for TEM and STEM. One of the key features of the wet cells is the sealing technique used to isolate the liquid sample from the TEM/STEM vacuum environments, thus the existing in situ wet cells are grouped by different sealing methods. In this study, the advantages and shortcomings of each type of in situ wet cells are discussed, the functional developments of different wet cells are presented, and the future trends of the wet cell technology are addressed. It is suggested that in the future the in situ wet cell TEM/STEM technology will have an increasing impact on frontier nanoscale research.

  11. Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro

    PubMed Central

    Massee, Michelle; Chinn, Kathryn; Lei, Jennifer; Lim, Jeremy J.; Young, Conan S.

    2015-01-01

    Abstract Human‐derived placental tissues have been shown in randomized clinical trials to be effective for healing chronic wounds, and have also demonstrated the ability to recruit stem cells to the wound site in vitro and in vivo. In this study, PURION® Processed dehydrated human amnion/chorion membrane allografts (dHACM, EpiFix®, MiMedx Group, Marietta, GA) were evaluated for their ability to alter stem cell activity in vitro. Human bone marrow mesenchymal stem cells (BM‐MSCs), adipose derived stem cells (ADSCs), and hematopoietic stem cells (HSCs) were treated with soluble extracts of dHACM tissue, and were evaluated for cellular proliferation, migration, and cytokine secretion. Stem cells were analyzed for cell number by DNA assay after 24 h, closure of an acellular zone using microscopy over 3 days, and soluble cytokine production in the medium of treated stem cells was analyzed after 3 days using a multiplex ELISA array. Treatment with soluble extracts of dHACM tissue stimulated BM‐MSCs, ADSCs, and HSCs to proliferate with a significant increase in cell number after 24 h. dHACM treatment accelerated closure of an acellular zone by ADSCs and BM‐MSCs after 3 days, compared to basal medium. BM‐MSCs, ADSCs, and HSCs also modulated endogenous production of a number of various soluble signals, including regulators of inflammation, mitogenesis, and wound healing. dHACM treatment promoted increased proliferation and migration of ADSCs, BM‐MSCs, and HSCs, along with modulation of secreted proteins from those cells. Therefore, dHACM may impact wound healing by amplifying host stem cell populations and modulating their responses in treated wound tissues. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1495–1503, 2016. PMID:26175122

  12. Optimized Delivery System Achieves Enhanced Endomyocardial Stem Cell Retention

    PubMed Central

    Behfar, Atta; Latere, Jean-Pierre; Bartunek, Jozef; Homsy, Christian; Daro, Dorothee; Crespo-Diaz, Ruben J.; Stalboerger, Paul G.; Steenwinckel, Valerie; Seron, Aymeric; Redfield, Margaret M.; Terzic, Andre

    2014-01-01

    Background Regenerative cell-based therapies are associated with limited myocardial retention of delivered stem cells. The objective of this study is to develop an endocardial delivery system for enhanced cell retention. Methods and Results Stem cell retention was simulated in silico using one and three-dimensional models of tissue distortion and compliance associated with delivery. Needle designs, predicted to be optimal, were accordingly engineered using nitinol – a nickel and titanium alloy displaying shape memory and super-elasticity. Biocompatibility was tested with human mesenchymal stem cells. Experimental validation was performed with species-matched cells directly delivered into Langendorff-perfused porcine hearts or administered percutaneously into the endocardium of infarcted pigs. Cell retention was quantified by flow cytometry and real time quantitative polymerase chain reaction methodology. Models, computing optimal distribution of distortion calibrated to favor tissue compliance, predicted that a 75°-curved needle featuring small-to-large graded side holes would ensure the highest cell retention profile. In isolated hearts, the nitinol curved needle catheter (C-Cath) design ensured 3-fold superior stem cell retention compared to a standard needle. In the setting of chronic infarction, percutaneous delivery of stem cells with C-Cath yielded a 37.7±7.1% versus 10.0±2.8% retention achieved with a traditional needle, without impact on biocompatibility or safety. Conclusions Modeling guided development of a nitinol-based curved needle delivery system with incremental side holes achieved enhanced myocardial stem cell retention. PMID:24326777

  13. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy.

    PubMed

    Vicente-Dueñas, Carolina; Hauer, Julia; Ruiz-Roca, Lucía; Ingenhag, Deborah; Rodríguez-Meira, Alba; Auer, Franziska; Borkhardt, Arndt; Sánchez-García, Isidro

    2015-06-01

    Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain.

    PubMed

    Wu, Yen-Chi; Lee, Kyu-Sun; Song, Yan; Gehrke, Stephan; Lu, Bingwei

    2017-05-01

    Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.

  15. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease.

    PubMed

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan

    2014-04-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.

  16. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease

    PubMed Central

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M.; Liddicoat, Brian; Russell, Megan R.; Walkley, Carl R.; Karlsson, Stefan

    2014-01-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease. PMID:24415629

  17. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.

    PubMed

    García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura

    2013-09-01

    Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.

  18. Impact of the International Prognostic Scoring System cytogenetic risk groups on the outcome of patients with primary myelodysplastic syndromes undergoing allogeneic stem cell transplantation from human leukocyte antigen-identical siblings: a retrospective analysis of the European Society for Blood and Marrow Transplantation-Chronic Malignancies Working Party.

    PubMed

    Onida, Francesco; Brand, Ronald; van Biezen, Anja; Schaap, Michel; von dem Borne, Peter A; Maertens, Johan; Beelen, Dietrich W; Carreras, Enric; Alessandrino, Emilio P; Volin, Liisa; Kuball, Jürgen H E; Figuera, Angela; Sierra, Jorge; Finke, Jürgen; Kröger, Nicolaus; de Witte, Theo

    2014-10-01

    Acquired chromosomal abnormalities are important prognostic factors in patients with myelodysplastic syndromes treated with supportive care and with disease-modifying therapeutic interventions, including allogeneic hematopoietic stem cell transplantation. To assess the prognostic impact of cytogenetic characteristics after hematopoietic stem cell transplantation accurately, we investigated a homogeneous group of 523 patients with primary myelodysplastic syndromes who have received stem cells from human leukocyte antigen-identical siblings. Overall survival at five years from transplantation in good, intermediate, and poor cytogenetic risk groups according to the International Prognostic Scoring System was 48%, 45% and 30%, respectively (P<0.01). Both the disease status (complete remission vs. not in complete remission) and the morphological classification at transplant in the untreated patients were significantly associated with probability of overall survival and relapse-free survival (P<0.01). The cytogenetic risk groups have no prognostic impact in untreated patients with refractory anemia ± ringed sideroblasts (P=0.90). However, combining the good and intermediate cytogenetic risk groups and comparing them to the poor-risk group showed within the other three disease-status-at-transplant groups a hazard ratio of 1.86 (95%CI: 1.41-2.45). In conclusion, this study shows that, in a large series of patients with primary myelodysplastic syndromes, poor-risk cytogenetics as defined by the standard International Prognostic Scoring System is associated with a relatively poor survival after allogeneic stem cell transplantation from human leukocyte antigen-identical siblings except in patients who are transplanted in refractory anemia/refractory anemia with ringed sideroblasts stage before progression to higher myelodysplastic syndrome stages. Copyright© Ferrata Storti Foundation.

  19. Induced pluripotent stem cells as custom therapeutics for retinal repair: progress and rationale.

    PubMed

    Wright, Lynda S; Phillips, M Joseph; Pinilla, Isabel; Hei, Derek; Gamm, David M

    2014-06-01

    Human pluripotent stem cells have made a remarkable impact on science, technology and medicine by providing a potentially unlimited source of human cells for basic research and clinical applications. In recent years, knowledge gained from the study of human embryonic stem cells and mammalian somatic cell reprogramming has led to the routine production of human induced pluripotent stem cells (hiPSCs) in laboratories worldwide. hiPSCs show promise for use in transplantation, high throughput drug screening, "disease-in-a-dish" modeling, disease gene discovery, and gene therapy testing. This review will focus on the first application, beginning with a discussion of methods for producing retinal lineage cells that are lost in inherited and acquired forms of retinal degenerative disease. The selection of appropriate hiPSC-derived donor cell type(s) for transplantation will be discussed, as will the caveats and prerequisite steps to formulating a clinical Good Manufacturing Practice (cGMP) product for clinical trials. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Induced pluripotent stem cells as custom therapeutics for retinal repair: Progress and rationale

    PubMed Central

    Wright, Lynda S.; Phillips, M. Joseph; Pinilla, Isabel; Hei, Derek; Gamm, David M.

    2014-01-01

    Human pluripotent stem cells have made a remarkable impact on science, technology and medicine by providing a potentially unlimited source of human cells for basic research and clinical applications. In recent years, knowledge gained from the study of human embryonic stem cells and mammalian somatic cell reprogramming has led to the routine production of human induced pluripotent stem cells (hiPSCs) in laboratories worldwide. hiPSCs show promise for use in transplantation, high throughput drug screening, “disease-in-a-dish” modeling, disease gene discovery, and gene therapy testing. This review will focus on the first application, beginning with a discussion of methods for producing retinal lineage cells that are lost in inherited and acquired forms of retinal degenerative disease. The selection of appropriate hiPSC-derived donor cell type(s) for transplantation will be discussed, as will the caveats and prerequisite steps to formulating a clinical Good Manufacturing Practice (cGMP) product for clinical trials. PMID:24534198

  1. Geminin Participates in Differentiation Decisions of Adult Neural Stem Cells Transplanted in the Hemiparkinsonian Mouse Brain.

    PubMed

    Taouki, Ioanna; Tasiudi, Eve; Lalioti, Maria-Eleni; Kyrousi, Christina; Skavatsou, Eleni; Kaplani, Konstantina; Lygerou, Zoi; Kouvelas, Elias D; Mitsacos, Adamantia; Giompres, Panagiotis; Taraviras, Stavros

    2017-08-15

    Neural stem cells have been considered as a source of stem cells that can be used for cell replacement therapies in neurodegenerative diseases, as they can be isolated and expanded in vitro and can be used for autologous grafting. However, due to low percentages of survival and varying patterns of differentiation, strategies that will enhance the efficacy of transplantation are under scrutiny. In this article, we have examined whether alterations in Geminin's expression, a protein that coordinates the balance between self-renewal and differentiation, can improve the properties of stem cells transplanted in 6-OHDA hemiparkinsonian mouse model. Our results indicate that, in the absence of Geminin, grafted cells differentiating into dopaminergic neurons were decreased, while an increased number of oligodendrocytes were detected. The number of proliferating multipotent cells was not modified by the absence of Geminin. These findings encourage research related to the impact of Geminin on transplantations for neurodegenerative disorders, as an important molecule in influencing differentiation decisions of the cells composing the graft.

  2. Real‐time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device

    PubMed Central

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh

    2016-01-01

    Abstract Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies. PMID:27214658

  3. Accelerating glioblastoma drug discovery: Convergence of patient-derived models, genome editing and phenotypic screening.

    PubMed

    O'Duibhir, Eoghan; Carragher, Neil O; Pollard, Steven M

    2017-04-01

    Patients diagnosed with glioblastoma (GBM) continue to face a bleak prognosis. It is critical that new effective therapeutic strategies are developed. GBM stem cells have molecular hallmarks of neural stem and progenitor cells and it is possible to propagate both non-transformed normal neural stem cells and GBM stem cells, in defined, feeder-free, adherent culture. These primary stem cell lines provide an experimental model that is ideally suited to cell-based drug discovery or genetic screens in order to identify tumour-specific vulnerabilities. For many solid tumours, including GBM, the genetic disruptions that drive tumour initiation and growth have now been catalogued. CRISPR/Cas-based genome editing technologies have recently emerged, transforming our ability to functionally annotate the human genome. Genome editing opens prospects for engineering precise genetic changes in normal and GBM-derived neural stem cells, which will provide more defined and reliable genetic models, with critical matched pairs of isogenic cell lines. Generation of more complex alleles such as knock in tags or fluorescent reporters is also now possible. These new cellular models can be deployed in cell-based phenotypic drug discovery (PDD). Here we discuss the convergence of these advanced technologies (iPS cells, neural stem cell culture, genome editing and high content phenotypic screening) and how they herald a new era in human cellular genetics that should have a major impact in accelerating glioblastoma drug discovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells.

    PubMed

    Klose, Johannes; Kattner, Sarah; Borgström, Björn; Volz, Claudia; Schmidt, Thomas; Schneider, Martin; Oredsson, Stina; Strand, Daniel; Ulrich, Alexis

    2018-01-01

    Salinomycin, a polyether antibiotic, is a well-known inhibitor of human cancer stem cells. Chemical modification of the allylic C20 hydroxyl of salinomycin has enabled access to synthetic analogs that display increased cytotoxic activity compared to the native structure. The aim of this study was to investigate the activity of a cohort of C20-O-acyl analogs of salinomycin on human colorectal cancer cell lines in vitro. Two human colorectal cancer cell lines (SW480 and SW620) were exposed to three C20-O-acylated analogs and salinomycin. The impact of salinomycin and its analogs on tumor cell number, migration, cell death, and cancer stem cell specifity was analyzed. Exposure of human colorectal cancer cells to the C20-O-acylated analogs of salinomycin resulted in reduced tumor cell number and impaired tumor cell migration at lower concentrations than salinomycin. When used at higher (micromolar) concentrations, these effects were accompanied by induction of apoptotic cell death. Salinomycin analogs further expose improved activity against cancer stem cells compared to salinomycin. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    PubMed

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-04-01

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    PubMed

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine.

    PubMed

    Bianco, Paolo; Cao, Xu; Frenette, Paul S; Mao, Jeremy J; Robey, Pamela G; Simmons, Paul J; Wang, Cun-Yu

    2013-01-01

    Mesenchymal stem cells (MSCs) are the focus of intensive efforts worldwide directed not only at elucidating their nature and unique properties but also developing cell-based therapies for a diverse range of diseases. More than three decades have passed since the original formulation of the concept, revolutionary at the time, that multiple connective tissues could emanate from a common progenitor or stem cell retained in the postnatal bone marrow. Despite the many important advances made since that time, substantial ambiguities still plague the field regarding the nature, identity, function, mode of isolation and experimental handling of MSCs. These uncertainties have a major impact on their envisioned therapeutic use.

  8. Impact of autologous and allogeneic stem cell transplantation in peripheral T-cell lymphomas.

    PubMed

    Reimer, Peter

    2010-01-01

    Peripheral T/NK-cell lymphomas (PTCLs) are rare malignancies characterized by poor prognosis. So far, no standard therapy has been established, due to the lack of randomised studies. High-dose therapy and autologous stem cell transplantation (HDT-autoSCT) have shown good feasibility with low toxicity in retrospective studies. In relapsing and refractory PTCL several comparison analyses suggest similar efficacy for PTCL when compared with aggressive B-cell lymphoma. In the upfront setting, prospective data show promising results with a long-lasting overall survival in a relevant subset of patients. Achieving a complete remission at transplantation seems to be the most important prognostic factor. Allogeneic stem cell transplantation (alloSCT) has been investigated only as salvage treatment. Especially when using reduced intensity conditioning regimen, eligible patients seem to benefit from this approach. To define the role for upfront stem cell transplantation a randomised trial by the German High-Grade Non-Hodgkin Lymphoma Study Group comparing HDT-autoSCT and alloSCT will be initiated this year.

  9. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells

    PubMed Central

    Munoz, Javier; Low, Teck Y; Kok, Yee J; Chin, Angela; Frese, Christian K; Ding, Vanessa; Choo, Andre; Heck, Albert J R

    2011-01-01

    Assessing relevant molecular differences between human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) is important, given that such differences may impact their potential therapeutic use. Controversy surrounds recent gene expression studies comparing hiPSCs and hESCs. Here, we present an in-depth quantitative mass spectrometry-based analysis of hESCs, two different hiPSCs and their precursor fibroblast cell lines. Our comparisons confirmed the high similarity of hESCs and hiPSCS at the proteome level as 97.8% of the proteins were found unchanged. Nevertheless, a small group of 58 proteins, mainly related to metabolism, antigen processing and cell adhesion, was found significantly differentially expressed between hiPSCs and hESCs. A comparison of the regulated proteins with previously published transcriptomic studies showed a low overlap, highlighting the emerging notion that differences between both pluripotent cell lines rather reflect experimental conditions than a recurrent molecular signature. PMID:22108792

  10. Combined Gemcitabine and Metronidazole Is a Promising Therapeutic Strategy for Cancer Stem-like Cholangiocarcinoma.

    PubMed

    Kawamoto, Makoto; Umebayashi, Masayo; Tanaka, Hiroto; Koya, Norihiro; Nakagawa, Sinichiro; Kawabe, Ken; Onishi, Hideya; Nakamura, Masafumi; Morisaki, Takashi

    2018-05-01

    Metronidazole (MNZ) is a common antibiotic that exerts disulfiram-like effects when taken together with alcohol. However, the relationship between MNZ and aldehyde dehydrogenase (ALDH) activity remains unclear. This study investigated whether MNZ reduces cancer stemness by suppressing ALDH activity and accordingly reducing the malignancy of cholangiocarcinoma (CCA). We developed gemcitabine (GEM)-resistant TFK-1 cells and originally established CCA cell line from a patient with GEM-resistant CCA. Using these cell lines, we analyzed the impacts of MNZ for cancer stem cell markers, invasiveness, and chemosensitivity. MNZ reduced ALDH activity in GEM-resistant CCA cells, leading to decreased invasiveness and enhanced chemosensitivity. MNZ diminished the invasiveness by inducing mesenchymal-epithelial transition and enhancing chemosensitivity by increasing ENT1 (equilibrative nucleoside transporter 1) and reducing RRM1 (ribonucleotide reductase M1). MNZ reduced cancer stemness in GEM-resistant CCA cells. Combined GEM and MNZ would be a promising therapeutic strategy for cancer stem-like CAA. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field.

    PubMed

    Nishiyama, Yuichiro; Iwanami, Akio; Kohyama, Jun; Itakura, Go; Kawabata, Soya; Sugai, Keiko; Nishimura, Soraya; Kashiwagi, Rei; Yasutake, Kaori; Isoda, Miho; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2016-06-01

    Stem cells represent a potential cellular resource in the development of regenerative medicine approaches to the treatment of pathologies in which specific cells are degenerated or damaged by genetic abnormality, disease, or injury. Securing sufficient supplies of cells suited to the demands of cell transplantation, however, remains challenging, and the establishment of safe and efficient cell banking procedures is an important goal. Cryopreservation allows the storage of stem cells for prolonged time periods while maintaining them in adequate condition for use in clinical settings. Conventional cryopreservation systems include slow-freezing and vitrification both have advantages and disadvantages in terms of cell viability and/or scalability. In the present study, we developed an advanced slow-freezing technique using a programmed freezer with a magnetic field called Cells Alive System (CAS) and examined its effectiveness on human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). This system significantly increased cell viability after thawing and had less impact on cellular proliferation and differentiation. We further found that frozen-thawed hiPSC-NS/PCs were comparable with non-frozen ones at the transcriptome level. Given these findings, we suggest that the CAS is useful for hiPSC-NS/PCs banking for clinical uses involving neural disorders and may open new avenues for future regenerative medicine. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Impact of the use of autologous stem cell transplantation at first relapse both in naïve and previously rituximab exposed follicular lymphoma patients treated in the GELA/GOELAMS FL2000 study

    PubMed Central

    Le Gouill, Steven; De Guibert, Sophie; Planche, Lucie; Brice, Pauline; Dupuis, Jehan; Cartron, Guillaume; Van Hoof, Achiel; Casasnovas, Olivier; Gyan, Emmanuel; Tilly, Hervé; Fruchart, Christophe; Deconinck, Eric; Fitoussi, Olivier; Gastaud, Lauris; Delwail, Vincent; Gabarre, Jean; Gressin, Rémy; Blanc, Michel; Foussard, Charles; Salles, Gilles

    2011-01-01

    Background We analyzed detailed characteristics and salvage treatment in 175 follicular lymphoma patients from the FL2000 study who were in progression after first-line therapy with or without addition of rituximab to chemotherapy and interferon. Design and Methods The impact of using autologous stem cell transplantation and/or rituximab administration at first progression was investigated, taking into account initial therapy. With a median follow up of 31 months, 3-year event free and overall survival rates after progression were 50% (95%CI 42–58%) and 72% (95%CI 64–78%), respectively. Results The 3-year event free rate of rituximab re-treated patients (n=112) was 52% (95%CI 41–62%) versus 40% (95%CI 24–55%) for those not receiving rituximab second line (n=53) (P=0.075). There was a significant difference in 3-year overall survival between patients receiving autologous stem cell transplantation and those not: 92% (95%CI 78–97%) versus 63% (95%CI 51–72%) (P=0.0003), respectively. In multivariate analysis, both autologous stem cell transplantation and period of progression/relapse affected event free and overall survival. Conclusions Regardless of front-line rituximab exposure, this study supports incorporating autologous stem cell transplantation in the therapeutic approach at first relapse for follicular lymphoma patients. PMID:21486862

  13. Induced pluripotent stem cells meet genome editing

    PubMed Central

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-01-01

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments --the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-- have fundamentally reshaped our approach to biomedical research, stem cell biology and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided, and have set the stage for their success. PMID:27152442

  14. Induced Pluripotent Stem Cells Meet Genome Editing.

    PubMed

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-05-05

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Surface presentation of biochemical cues for stem cell expansion - Spatial distribution of growth factors and self-assembly of extracellular matrix

    NASA Astrophysics Data System (ADS)

    Liu, Xingyu

    Despite its great potential applications to stem cell technology and tissue engineering, matrix presentation of biochemical cues such as growth factors and extracellular matrix (ECM) components remains undefined. This is largely due to the difficulty in preserving the bioactivities of signaling molecules and in controlling the spatial distribution, cellular accessibility, molecular orientation and intermolecular assembly of the biochemical cues. This dissertation comprises of two parts that focuses on understanding surface presentation of a growth factor and ECM components, respectively. This dissertation addresses two fundamental questions in stem cell biology using two biomaterials platforms. How does nanoscale distribution of growth factor impact signaling activation and cellular behaviors of adult neural stem cells? How does ECM self-assembly impact human embryonic stem cell survival and proliferation? The first question was addressed by the design of a novel quantitative platform that allows the control of FGF-2 molecular presentation locally as either monomers or clusters when tethered to a polymeric substrate. This substrate-tethered FGF-2 enables a switch-like signaling activation in response to dose titration of FGF-2. This is in contrast to a continuous MAPK activation pattern elicited by soluble FGF-2. Consequently, cell proliferation, and spreading were also consistent with this FGF-2 does-response pattern. We demonstrated that the combination of FGF-2 concentration and its cluster size, rather than concentration alone, serves as the determinants to govern its biological effect on neural stem cells. The second part of this dissertation was inspired by the challenge that hESCs have extremely low clonal efficiency and hESC survival is critically dependent on cell substrate adhesion. We postulated that ECM integrity is a critical factor in preventing hESC anchorage-dependent apoptosis, and that the matrix for feeder-free culture need to be properly assembled in order to mimic the stem cell niche in vivo. First, we established assays that allow high-throughput quantification of hESC proliferation and ECM deposition. Human ESC survival was found to be highly sensitive to ECM assembly, and was improved by at least 20 times on substrates with well-assembled ECM. ECM polymerization alone improves clonal efficiency by at least 20 fold, from less than 0.1% to be 3-5%. This ratio is further improved to greater than 35% when combined with ROCK inhibitor, suggesting ECM polymerization underlines another critical factor in dictating hESC survival and growth. Given that many important signaling molecules including growth factors and extracellular matrix are highly enriched and restricted at the stem cell niche, we anticipate that our investigation into these questions provides better insight into the physiological roles of the stem cell niche components, and helps us to rationally direct stem cell fates in future stem cell-based therapeutic interventions.

  16. Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes.

    PubMed

    Espinoza, J Luis; Kotecha, Ritesh; Nakao, Shinji

    2017-01-01

    Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure.

  17. Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes

    PubMed Central

    Espinoza, J. Luis; Kotecha, Ritesh; Nakao, Shinji

    2017-01-01

    Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure. PMID:28286502

  18. Studying Cancer Stem Cell Dynamics on PDMS Surfaces for Microfluidics Device Design

    PubMed Central

    Zhang, Weijia; Choi, Dong Soon; Nguyen, Yen H.; Chang, Jenny; Qin, Lidong

    2013-01-01

    This systematic study clarified a few interfacial aspects of cancer cell phenotypes on polydimethylsiloxane (PDMS) substrates and indicated that the cell phenotypic equilibrium greatly responds to cell-to-surface interactions. We demonstrated that coatings of fibronectin, bovine serum albumin (BSA), or collagen with or without oxygen-plasma treatments of the PDMS surfaces dramatically impacted the phenotypic equilibrium of breast cancer stem cells, while the variations of the PDMS elastic stiffness had much less such effects. Our results showed that the surface coatings of collagen and fibronectin on PDMS maintained breast cancer cell phenotypes to be nearly identical to the cultures on commercial polystyrene Petri dishes. The surface coating of BSA provided a weak cell-substrate adhesion that stimulated the increase in stem-cell-like subpopulation. Our observations may potentially guide surface modification approaches to obtain specific cell phenotypes. PMID:23900274

  19. Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway.

    PubMed

    He, Y; Jian, C X; Zhang, H Y; Zhou, Y; Wu, X; Zhang, G; Tan, Y H

    2016-11-21

    There is high incidence of periodontal disease in high-altitude environments; hypoxia may influence the proliferation and clone-forming ability of periodontal ligament stem cells (PDLSCs). The MAPK signaling pathway is closely correlated with cell proliferation, differentiation, and apoptosis. Thus, we isolated and cultured PDLSCs under hypoxic conditions to clarify the impact of hypoxia on PDLSC proliferation and the underlying mechanism. PDLSCs were separated and purified by the limiting dilution method and identified by flow cytometry. PDLSCs were cultured under hypoxic or normoxic conditions to observe their cloning efficiency. PDLSC proliferation at different oxygen concentrations was evaluated by MTT assay. Expression of p38/MAPK and MAPK/ERK signaling pathway members was detected by western blotting. Inhibitors for p38/MAPK or ERK were applied to PDLSCs to observe their impacts on clone formation and proliferation. Isolated PDLSCs exhibited typical stem cell morphological characteristics, strong abilities of globular clone formation and proliferation, and upregulated expression of mesenchymal stem cell markers. Stem cell marker expression was not statistically different between PDLSCs cultured under hypoxia and normoxia (P > 0.05). The clone number in the hypoxia group was significantly higher than that in the control (P < 0.05). PDLSC proliferation under hypoxia was higher than that of the control (P < 0.001). p38 and ERK1/2 phosphorylation in hypoxic PDLSCs was markedly enhanced compared to that in the control (P < 0.05). Either P38/MAPK inhibitor or ERK inhibitor treatment reduced clone formation and proliferation. Therefore, hypoxia enhanced PDLSC clone formation and proliferation by activating the p38/MAPK and ERK/MAPK signaling pathways.

  20. The promising potential of menstrual stem cells for antenatal diagnosis and cell therapy.

    PubMed

    Khoury, Maroun; Alcayaga-Miranda, Francisca; Illanes, Sebastián E; Figueroa, Fernando E

    2014-01-01

    Menstrual-derived stem cells (MenSCs) are a new source of mesenchymal stem cells isolated from the menstrual fluid. Currently, there is a growing interest in their clinical potential due to fact that they are multipotent, highly proliferative, and easy to obtain in a non-invasive manner. Sampling can be repeated periodically in a simplified and reproducible manner devoid of complications that no existing cell source can match. MenSCs are also free of ethical dilemmas, and display novel properties with regard to presently known adult derived stem cells. This review details their distinctive biological properties regarding immunophenotype and function, proliferation rate, differentiation potential, and paracrine effects mediated by secreted factors. Their possible role in antenatal diagnosis is also discussed. While more insight on their immunomodulatory and diagnostic properties is needed, the impact of clinical and epidemiological factors, such as age, use of contraceptives, or hormonal status still requires further investigations to properly assess their current and future use in clinical application and diagnosis.

  1. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways.

    PubMed

    Ni, Su-Jie; Zhao, Li-Qin; Wang, Xiao-Feng; Wu, Zhen-Hua; Hua, Rui-Xi; Wan, Chun-Hua; Zhang, Jie-Yun; Zhang, Xiao-Wei; Huang, Ming-Zhu; Gan, Lu; Sun, Hua-Lin; Dimri, Goberdhan P; Guo, Wei-Jian

    2018-02-08

    Chromobox protein homolog 7 (CBX7), a member of the polycomb group (PcG) family of proteins, is involved in the regulation of cell proliferation and cancer progression. PcG family members, such as BMI, Mel-18, and EZH2, are integral constituents of the polycomb repressive complexes (PRCs) and have been known to regulate cancer stem cell (CSC) phenotype. However, the role of other PRCs' constituents such as CBX7 in the regulation of CSC phenotype remains largely elusive. This study was to investigate the role of CBX7 in regulating stem cell-like properties of gastric cancer and the underlying mechanisms. Firstly, the role of CBX7 in regulating stem cell-like properties of gastric cancer was investigated using sphere formation, Western blot, and xenograft tumor assays. Next, RNA interference and ectopic CBX7 expression were employed to determine the impact of CBX7 on the expression of CSC marker proteins and CSC characteristics. The expression of CBX7, its downstream targets, and stem cell markers were analyzed in gastric stem cell spheres, common cancer cells, and gastric cancer tissues. Finally, the pathways by which CBX7 regulates stem cell-like properties of gastric cancer were explored. We found that CBX7, a constituent of the polycomb repressive complex 1 (PRC1), plays an important role in maintaining stem cell-like characteristics of gastric cancer cells via the activation of AKT pathway and the downregulation of p16. Spearman rank correlation analysis showed positive correlations among the expression of CBX7 and phospho-AKT (pAKT), stem cell markers OCT-4, and CD133 in gastric cancer tissues. In addition, CBX7 was found to upregulate microRNA-21 (miR-21) via the activation of AKT-NF-κB pathway, and miR-21 contributes to CBX7-mediated CSC characteristics. CBX7 positively regulates stem cell-like characteristics of gastric cancer cells by inhibiting p16 and activating AKT-NF-κB-miR-21 pathway.

  2. Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro.

    PubMed

    Massee, Michelle; Chinn, Kathryn; Lei, Jennifer; Lim, Jeremy J; Young, Conan S; Koob, Thomas J

    2016-10-01

    Human-derived placental tissues have been shown in randomized clinical trials to be effective for healing chronic wounds, and have also demonstrated the ability to recruit stem cells to the wound site in vitro and in vivo. In this study, PURION(®) Processed dehydrated human amnion/chorion membrane allografts (dHACM, EpiFix(®) , MiMedx Group, Marietta, GA) were evaluated for their ability to alter stem cell activity in vitro. Human bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ADSCs), and hematopoietic stem cells (HSCs) were treated with soluble extracts of dHACM tissue, and were evaluated for cellular proliferation, migration, and cytokine secretion. Stem cells were analyzed for cell number by DNA assay after 24 h, closure of an acellular zone using microscopy over 3 days, and soluble cytokine production in the medium of treated stem cells was analyzed after 3 days using a multiplex ELISA array. Treatment with soluble extracts of dHACM tissue stimulated BM-MSCs, ADSCs, and HSCs to proliferate with a significant increase in cell number after 24 h. dHACM treatment accelerated closure of an acellular zone by ADSCs and BM-MSCs after 3 days, compared to basal medium. BM-MSCs, ADSCs, and HSCs also modulated endogenous production of a number of various soluble signals, including regulators of inflammation, mitogenesis, and wound healing. dHACM treatment promoted increased proliferation and migration of ADSCs, BM-MSCs, and HSCs, along with modulation of secreted proteins from those cells. Therefore, dHACM may impact wound healing by amplifying host stem cell populations and modulating their responses in treated wound tissues. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1495-1503, 2016. © 2015 The Authors. Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  3. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells.

    PubMed

    Klawitter, Sabine; Fuchs, Nina V; Upton, Kyle R; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L; Faulkner, Geoffrey J; Schumann, Gerald G

    2016-01-08

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs.

  4. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells

    PubMed Central

    Klawitter, Sabine; Fuchs, Nina V.; Upton, Kyle R.; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J.; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J. Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J.; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L.; Faulkner, Geoffrey J.; Schumann, Gerald G.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs. PMID:26743714

  5. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate.

    PubMed

    Baptista, Sofia; Lasgi, Charlène; Benstaali, Caroline; Milhazes, Nuno; Borges, Fernanda; Fontes-Ribeiro, Carlos; Agasse, Fabienne; Silva, Ana Paula

    2014-09-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG). Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10nM) decreased DG stem cell self-renewal, while 1nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase), which correlated with a decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 or 10nM) did not induce cell death. In accordance with the impairment of self-renewal capacity, METH (10nM) decreased Sox2(+)/Sox2(+) while increased Sox2(-)/Sox2(-) pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA) signaling, which was prevented by the NMDA receptor antagonist, MK-801 (10μM). Moreover, METH (10nM) increased doublecortin (DCX) protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers. Copyright © 2014. Published by Elsevier B.V.

  6. Nanotechnology for mesenchymal stem cell therapies.

    PubMed

    Corradetti, Bruna; Ferrari, Mauro

    2016-10-28

    Mesenchymal stem cells (MSC) display great proliferative, differentiative, chemotactic, and immune-modulatory properties required to promote tissue repair. Several clinical trials based on the use of MSC are currently underway for therapeutic purposes. The aim of this article is to examine the current trends and potential impact of nanotechnology in MSC-driven regenerative medicine. Nanoparticle-based approaches are used as powerful carrier systems for the targeted delivery of bioactive molecules to ensure MSC long-term maintenance in vitro and to enhance their regenerative potential. Nanostructured materials have been developed to recapitulate the stem cell niche within a tissue and to instruct MSC toward the creation of regeneration-permissive environment. Finally, the capability of MSC to migrate toward the site of injury/inflammation has allowed for the development of diagnostic imaging systems able to monitor transplanted stem cell bio-distribution, toxicity, and therapeutic effectiveness. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587.

    PubMed

    Figueroa, Javier; Phillips, Lynette M; Shahar, Tal; Hossain, Anwar; Gumin, Joy; Kim, Hoon; Bean, Andrew J; Calin, George A; Fueyo, Juan; Walters, Edgar T; Kalluri, Raghu; Verhaak, Roel G; Lang, Frederick F

    2017-11-01

    Tumor-stromal communications impact tumorigenesis in ways that are incompletely understood. Here, we show that glioma-associated human mesenchymal stem cells (GA-hMSC), a newly identified stromal component of glioblastoma, release exosomes that increase the proliferation and clonogenicity of tumor-initiating glioma stem-like cells (GSC). This event leads to a significantly greater tumor burden and decreased host survival compared with untreated GSCs in orthotopic xenografts. Analysis of the exosomal content identified miR-1587 as a mediator of the exosomal effects on GSCs, in part via downregulation of the tumor-suppressive nuclear receptor corepressor NCOR1. Our results illuminate the tumor-supporting role for GA-hMSCs by identifying GA-hMSC-derived exosomes in the intercellular transfer of specific miRNA that enhance the aggressiveness of glioblastoma. Cancer Res; 77(21); 5808-19. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Stem cell research and regenerative medicine in 2014: first year of regenerative medicine in Japan.

    PubMed

    Okano, Hideyuki

    2014-09-15

    It is my great pleasure to announce that we were able to publish the Japan Issue in Stem Cells and Development, especially in this year 2014. This year, 2014, is said to be the First Year of Regenerative Medicine in Japan. This movement is likely to be based on the establishment of a new law system regarding regenerative medicine (an Act for Ensuring the Safety of Regenerative Medicine or the so-called Regenerative Medicine Law) and the partial revision of the Pharmaceutical Affairs Law (PAL). Both laws will come into effect in 2014 in this country. These new law systems are expected to have a great impact on the facilitation of R&D related to regenerative medicine and stem cell biology. In the present Japan Issue, some excellent stem cell research in this country will be introduced to celebrate the First Year of Regenerative Medicine in Japan.

  9. The Role of Stem Cell Therapeutics in Wound Healing: Current Understanding and Future Directions.

    PubMed

    Sorice, Sarah; Rustad, Kristine C; Li, Alexander Y; Gurtner, Geoffrey C

    2016-09-01

    Chronic wounds present unique challenges for healthcare providers as they place patients at increased risk for various morbidities and mortality. Advances in wound care technology have expanded the treatment options available for wound management, but few products fully address the underlying core deficiencies responsible for the development of poorly healing wounds. In the future, addressing these derangements will undoubtedly play a key role in the treatment of these patients. Broad enthusiasm has surrounded the field of stem cell biology, which has shown great promise in repairing damaged tissues across numerous disease phenotypes. In this review, we provide a comprehensive review of the literature and evaluate the present landscape of wound therapeutics while discussing the rationales and allure behind stem cell-based products. We further propose 2 challenges that remain as new stem cell-based therapies are being developed and as this technology moves toward clinical translation. Given the relatively young age of this newer technology in wound healing, numerous challenges continue to surround its effective use including identifying the ideal population of stem cells to use and determining the optimal cell delivery method. However, significant forward progress has been made, with several clinical trials beginning to demonstrate reliable clinical benefit. The upward trajectory of stem cell technologies provides an exciting opportunity to positively impact patient outcomes through the controlled application of regenerative cell-based therapy.

  10. Isogenic blood-brain barrier models based on patient-derived stem cells display inter-individual differences in cell maturation and functionality.

    PubMed

    Patel, Ronak; Page, Shyanne; Al-Ahmad, Abraham Jacob

    2017-07-01

    The blood-brain barrier (BBB) constitutes an important component of the neurovascular unit formed by specialized brain microvascular endothelial cells (BMECs) surrounded by astrocytes, pericytes, and neurons. Recently, isogenic in vitro models of the BBB based on human pluripotent stem cells have been documented, yet the impact of inter-individual variability on the yield and phenotype of such models remains to be documented. In this study, we investigated the impact of inter-individual variability on the yield and phenotype of isogenic models of the BBB, using patient-derived induced pluripotent stem cells (iPSCs). Astrocytes, BMECs, and neurons were differentiated from four asymptomatic patient-derived iPSCs (two males, two females). We differentiated such cells using existing differentiation protocols and quantified expression of cell lineage markers, as well as BBB phenotype, barrier induction, and formation of neurite processes. iPSC-derived BMECs showed barrier properties better than hCMEC/D3 monolayers; however, we noted differences in the expression and activity among iPSC lines. In addition, we noted differences in the differentiation efficiency of these cells into neural stem cells and progenitor cells (as noted by differences in expression of cell lineage markers). Such differences were reflected later in the terminal differentiation, as seen as ability to induce barrier function and to form neurite processes. Although we demonstrated our ability to obtain an isogenic model of the BBB with different patients' iPSCs, we also noted subtle differences in the expression of cell lineage markers and cell maturation processes, suggesting the presence of inter-individual polymorphisms. © 2017 International Society for Neurochemistry.

  11. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism.

    PubMed

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-02-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  12. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism

    PubMed Central

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-01-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. PMID:26865661

  13. Image Guidance in Stem Cell Therapeutics: Unfolding the Blindfold.

    PubMed

    Bukhari, Amirali B; Dutta, Shruti; De, Abhijit

    2015-01-01

    Stem cell therapeutics is the future of regenerative medicine in the modern world. Many studies have been instigated with the hope of translating the outcome for the treatment of several disease conditions ranging from heart and neuronal disease to malignancies as grave as cancers. Stem cell therapeutics undoubtedly holds great promise on the front of regenerative medicine, however, the correct distribution and homing of these stem cells to the host site remained blinded until the recent advances in the discipline of molecular imaging. Herein, we discuss the various imaging guidance applied for determination of the proper delivery of various types of stem cell used as therapeutics for various maladies. Additionally, we scrutinize the use of several indirect labeling mechanisms for efficient tagging of the reporter entity for image guidance. Further, the promise of improving patient healthcare has led to the initiation of several clinical trials worldwide. However, in number of the cases, the benefits arrive with a price heavy enough to pose a serious health risk, one such being formation of teratomas. Thus numerous challenges and methodological obstacles must be overcome before their eloquent clinical impact can be realized. Therefore, we also discuss several clinical trials that have taken into consideration the various imaging guided protocols to monitor correct delivery and understand the distribution of therapeutic stem cells in real time.

  14. Automated mitosis detection of stem cell populations in phase-contrast microscopy images.

    PubMed

    Huh, Seungil; Ker, Dai Fei Elmer; Bise, Ryoma; Chen, Mei; Kanade, Takeo

    2011-03-01

    Due to the enormous potential and impact that stem cells may have on regenerative medicine, there has been a rapidly growing interest for tools to analyze and characterize the behaviors of these cells in vitro in an automated and high throughput fashion. Among these behaviors, mitosis, or cell division, is important since stem cells proliferate and renew themselves through mitosis. However, current automated systems for measuring cell proliferation often require destructive or sacrificial methods of cell manipulation such as cell lysis or in vitro staining. In this paper, we propose an effective approach for automated mitosis detection using phase-contrast time-lapse microscopy, which is a nondestructive imaging modality, thereby allowing continuous monitoring of cells in culture. In our approach, we present a probabilistic model for event detection, which can simultaneously 1) identify spatio-temporal patch sequences that contain a mitotic event and 2) localize a birth event, defined as the time and location at which cell division is completed and two daughter cells are born. Our approach significantly outperforms previous approaches in terms of both detection accuracy and computational efficiency, when applied to multipotent C3H10T1/2 mesenchymal and C2C12 myoblastic stem cell populations.

  15. Changing Paradigms in Cranio-Facial Regeneration: Current and New Strategies for the Activation of Endogenous Stem Cells

    PubMed Central

    Mele, Luigi; Vitiello, Pietro Paolo; Tirino, Virginia; Paino, Francesca; De Rosa, Alfredo; Liccardo, Davide; Papaccio, Gianpaolo; Desiderio, Vincenzo

    2016-01-01

    Craniofacial area represent a unique district of human body characterized by a very high complexity of tissues, innervation and vascularization, and being deputed to many fundamental function such as eating, speech, expression of emotions, delivery of sensations such as taste, sight, and earing. For this reasons, tissue loss in this area following trauma or for example oncologic resection, have a tremendous impact on patients' quality of life. In the last 20 years regenerative medicine has emerged as one of the most promising approach to solve problem related to trauma, tissue loss, organ failure etc. One of the most powerful tools to be used for tissue regeneration is represented by stem cells, which have been successfully implanted in different tissue/organs with exciting results. Nevertheless, both autologous and allogeneic stem cell transplantation raise many practical and ethical concerns that make this approach very difficult to apply in clinical practice. For this reason different cell free approaches have been developed aiming to the mobilization, recruitment, and activation of endogenous stem cells into the injury site avoiding exogenous cells implant but instead stimulating patients' own stem cells to repair the lesion. To this aim many strategies have been used including functionalized bioscaffold, controlled release of stem cell chemoattractants, growth factors, BMPs, Platelet–Rich-Plasma, and other new strategies such as ultrasound wave and laser are just being proposed. Here we review all the current and new strategies used for activation and mobilization of endogenous stem cells in the regeneration of craniofacial tissue. PMID:26941656

  16. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  17. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics?

    PubMed

    de Lázaro, Irene; Yilmazer, Açelya; Kostarelos, Kostas

    2014-07-10

    The generation of induced pluripotent stem (iPS) cells from somatic cells by the ectopic expression of defined transcription factors has provided the regenerative medicine field with a new tool for cell replacement strategies. The advantages that these pluripotent cells can offer in comparison to other sources of stem cells include the generation of patient-derived cells and the lack of embryonic tissue while maintaining a versatile differentiation potential. The promise of iPS cell derivatives for therapeutic applications is encouraging albeit very early in development, with the first clinical study currently ongoing in Japan. Many challenges are yet to be circumvented before this technology can be clinically translated widely though. The delivery and expression of the reprogramming factors, the genomic instability, epigenetic memory and impact of cell propagation in culture are only some of the concerns. This article aims to critically discuss the potential of iPS cells as a new source of cell therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. [Autologous mesenchymal stem cells and cutaneus autograft as a treatment for chronic ulcer secondary to diabetes mellitus 2].

    PubMed

    Benítez-Arvízu, Gamaliel; Palma-Lara, Ícela; Vazquez-Campos, René; Sesma-Villalpando, Raimundo Alfonso; Parra-Barrera, Alberto; Gutiérrez-Iglesias, Gisela

    2015-01-01

    Diabetes mellitus 2 has become a global problem. It is estimated that 15% to 25% of patients could develop a chronic ulcer in their life, and nearly 33% of direct care costs of the diabetes mellitus 2 is spent on treating these ulcers. Mesenchymal stem cells have emerged as a promising cell source for the treatment of these ulcers. The case is presented of a 67 year-old male with a history of diabetes mellitus, acute myocardial infarction, and food ulcer chronic involving right foot and part of his leg. He was treated with mesenchymal stem cell management, resulting in skin graft integration and full coverage of the lesion. The implementation of mesenchymal stem cell techniques for treatment of chronic ulcer is feasible. The impact on the population would lead to a significant improvement in their quality of life and reduce healthcare spending. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  19. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de; Navarrete Santos, Anne; Navarrete Santos, Alexander

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study,more » we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.« less

  20. Stem Cell Trials for Cardiovascular Medicine: Ethical Rationale

    PubMed Central

    Teraa, Martin; Hesam, Husna; van Delden, Johannes J.M.; Verhaar, Marianne C.; Bredenoord, Annelien L.

    2014-01-01

    Stem cell-based interventions provide new treatment prospects for many disease conditions, including cardiovascular disorders. Clinical trials are necessary to collect adequate evidence on (long-term) safety and efficacy of novel interventions such as stem cells, but the design and launch of clinical trials, from first-in-human studies to larger randomized controlled trials (RCTs), is scientifically and ethically challenging. Stem cells are different from traditional pharmaceuticals, surgical procedures, and medical devices in the following ways: the novelty and complexity of stem cells, the invasiveness of the procedures, and the novel aim of regeneration. These specifics, combined with the characteristics of the study population, will have an impact on the design and ethics of RCTs. The recently closed JUVENTAS trial will serve as an example to identify the (interwoven) scientific and ethical challenges in the design and launch of stem cell RCTs. The JUVENTAS trial has investigated the efficacy of autologous bone marrow cells in end-stage vascular patients, in a double-blind sham-controlled design. We first describe the choices, considerations, and experiences of the JUVENTAS team. Subsequently, we identify the main ethical and scientific challenges and discuss what is important to consider in the design of future stem cell RCTs: assessment of risks and benefits, the choice for outcome measures, the choice for the comparator, the appropriate selection of participants, and adequate informed consent. Additionally, the stem cell field is highly in the spotlight due to the (commercial) interests and expectations. This warrants a cautious pace of translation and scrupulous set up of clinical trials, as failures could put the field in a negative light. At the same time, knowledge from clinical trials is necessary for the field to progress. We conclude that in the scientifically and ethically challenging field of stem cell RCTs, researchers and clinicians have to maneuver between the Skylla of hyper accelerated translation without rigorously conducted RCTs and the Charybdis of the missed opportunity of valuable knowledge. PMID:24164351

  1. The Impact of GFP Reporter Gene Transduction and Expression on Metabolomics of Placental Mesenchymal Stem Cells Determined by UHPLC-Q/TOF-MS.

    PubMed

    Yang, Jinfeng; Wang, Nan; Chen, Deying; Yu, Jiong; Pan, Qiaoling; Wang, Dan; Liu, Jingqi; Shi, Xiaowei; Dong, Xiaotian; Cao, Hongcui; Li, Liang; Li, Lanjuan

    2017-01-01

    Green fluorescent protein (GFP) is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs). The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP + hPMSCs. A sensitive 13 C/ 12 C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.

  2. Impact of fluidic agitation on human pluripotent stem cells in stirred suspension culture.

    PubMed

    Nampe, Daniel; Joshi, Ronak; Keller, Kevin; Zur Nieden, Nicole I; Tsutsui, Hideaki

    2017-09-01

    The success of human pluripotent stem cells (hPSCs) as a source of future cell therapies hinges, in part, on the availability of a robust and scalable culture system that can readily produce a clinically relevant number of cells and their derivatives. Stirred suspension culture has been identified as one such promising platform due to its ease of use, scalability, and widespread use in the pharmaceutical industry (e.g., CHO cell-based production of therapeutic proteins) among others. However, culture of undifferentiated hPSCs in stirred suspension is a relatively new development within the past several years, and little is known beyond empirically optimized culture parameters. In particular, detailed characterizations of different agitation rates and their influence on the propagation of hPSCs are often not reported in the literature. In the current study, we systematically investigated various agitation rates to characterize their impact on cell yield, viability, and the maintenance of pluripotency. Additionally, we closely examined the distribution of cell aggregates and how the observed culture outcomes are attributed to their size distribution. Overall, our results showed that moderate agitation maximized the propagation of hPSCs to approximately 38-fold over 7 days by keeping the cell aggregates below the critical size, beyond which the cells are impacted by the diffusion limit, while limiting cell death caused by excessive fluidic forces. Furthermore, we observed that fluidic agitation could regulate not only cell aggregation, but also expression of some key signaling proteins in hPSCs. This indicates a new possibility to guide stem cell fate determination by fluidic agitation in stirred suspension cultures. Biotechnol. Bioeng. 2017;114: 2109-2120. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Chemotherapy curable malignancies and cancer stem cells: a biological review and hypothesis.

    PubMed

    Savage, Philip

    2016-11-21

    Cytotoxic chemotherapy brings routine cures to only a small select group of metastatic malignancies comprising gestational trophoblast tumours, germ cell tumours, acute leukemia, Hodgkin's disease, high grade lymphomas and some of the rare childhood malignancies. We have previously postulated that the extreme sensitivity to chemotherapy for these malignancies is linked to the on-going high levels of apoptotic sensitivity that is naturally linked with the unique genetic events of nuclear fusion, meiosis, VDJ recombination, somatic hypermutation, and gastrulation that have occurred within the cells of origin of these malignancies. In this review we will examine the cancer stem cell/cancer cell relationship of each of the chemotherapy curable malignancies and how this relationship impacts on the resultant biology and pro-apoptotic sensitivity of the varying cancer cell types. In contrast to the common epithelial cancers, in each of the chemotherapy curable malignancies there are no conventional hierarchical cancer stem cells. However cells with cancer stem like qualities can arise stochastically from within the general tumour cell population. These stochastic stem cells acquire a degree of resistance to DNA damaging agents but also retain much of the key characteristics of the cancer cells from which they develop. We would argue that the balance between the acquired resistance of the stochastic cancer stem cell and the inherent chemotherapy sensitivity of parent tumour cell determines the overall chemotherapy curability of each diagnosis. The cancer stem cells in the chemotherapy curable malignancies appear to have two key biological differences from those of the more common chemotherapy incurable malignancies. The first difference is that the conventional hierarchical pattern of cancer stem cells is absent in each of the chemotherapy curable malignancies. The other key difference, we suggest, is that the stochastic stem cells in the chemotherapy curable malignancies take on a significant aspect of the biological characteristics of their parent cancer cells. This action includes for the chemotherapy curable malignancies the heightened pro-apoptotic sensitivity linked to their respective associated unique genetic events. For the chemotherapy curable malignancies the combination of the relationship of their cancer stem cells combined with the extreme inherent sensitivity to induction of apoptosis from DNA damaging agents plays a key role in determining their overall curability with chemotherapy.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factorsmore » was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the significant functional impact of Mesenchymal Stem Cell-secreted PAI-1 on colon cancer cells.« less

  5. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed by the LESC hypothesis. PMID:25815115

  6. Behavior of Xeno-Transplanted Undifferentiated Human Induced Pluripotent Stem Cells Is Impacted by Microenvironment Without Evidence of Tumors.

    PubMed

    Martínez-Cerdeño, Veronica; Barrilleaux, Bonnie L; McDonough, Ashley; Ariza, Jeanelle; Yuen, Benjamin T K; Somanath, Priyanka; Le, Catherine T; Steward, Craig; Horton-Sparks, Kayla; Knoepfler, Paul S

    2017-10-01

    Human pluripotent stem cells (hPSC) have great clinical potential through the use of their differentiated progeny, a population in which there is some concern over risks of tumorigenicity or other unwanted cellular behavior due to residual hPSC. Preclinical studies using human stem cells are most often performed within a xenotransplant context. In this study, we sought to measure how undifferentiated hPSC behave following xenotransplant. We directly transplanted undifferentiated human induced pluripotent stem cells (hIPSC) and human embryonic stem cells (hESC) into the adult mouse brain ventricle and analyzed their fates. No tumors or precancerous lesions were present at more than one year after transplantation. This result differed with the tumorigenic capacity we observed after allotransplantation of mouse ESC into the mouse brain. A substantial population of cellular derivatives of undifferentiated hESC and hIPSC engrafted, survived, and migrated within the mouse brain parenchyma. Within brain structures, transplanted cell distribution followed a very specific pattern, suggesting the existence of distinct microenvironments that offer different degrees of permissibility for engraftment. Most of the transplanted hESC and hIPSC that developed into brain cells were NeuN+ neuronal cells, and no astrocytes were detected. Substantial cell and nuclear fusion occurred between host and transplanted cells, a phenomenon influenced by microenvironment. Overall, hIPSC appear to be largely functionally equivalent to hESC in vivo. Altogether, these data bring new insights into the behavior of stem cells without prior differentiation following xenotransplantation into the adult brain.

  7. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation.

    PubMed

    Du, Vicard; Luciani, Nathalie; Richard, Sophie; Mary, Gaëtan; Gay, Cyprien; Mazuel, François; Reffay, Myriam; Menasché, Philippe; Agbulut, Onnik; Wilhelm, Claire

    2017-09-12

    The ability to create a 3D tissue structure from individual cells and then to stimulate it at will is a major goal for both the biophysics and regenerative medicine communities. Here we show an integrated set of magnetic techniques that meet this challenge using embryonic stem cells (ESCs). We assessed the impact of magnetic nanoparticles internalization on ESCs viability, proliferation, pluripotency and differentiation profiles. We developed magnetic attractors capable of aggregating the cells remotely into a 3D embryoid body. This magnetic approach to embryoid body formation has no discernible impact on ESC differentiation pathways, as compared to the hanging drop method. It is also the base of the final magnetic device, composed of opposing magnetic attractors in order to form embryoid bodies in situ, then stretch them, and mechanically stimulate them at will. These stretched and cyclic purely mechanical stimulations were sufficient to drive ESCs differentiation towards the mesodermal cardiac pathway.The development of embryoid bodies that are responsive to external stimuli is of great interest in tissue engineering. Here, the authors culture embryonic stem cells with magnetic nanoparticles and show that the presence of magnetic fields could affect their aggregation and differentiation.

  8. Natural Killer Cell Immunotherapy Targeting Cancer Stem Cells

    PubMed Central

    Luna, Jesus I; Grossenbacher, Steven K.; Murphy, William J; Canter, Robert J

    2017-01-01

    Introduction Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with “stem-cell” like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. In this report, we review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert Opinion Unlike cytotoxic cancer treatments, NK cells are able to target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells. PMID:27960589

  9. Regulation of Hematopoietic Stem Cell Behavior by the Nanostructured Presentation of Extracellular Matrix Components

    PubMed Central

    Muth, Christine Anna; Steinl, Carolin; Klein, Gerd; Lee-Thedieck, Cornelia

    2013-01-01

    Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)–derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7–10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors. PMID:23405094

  10. In vitro bioactivity of Bioroot™ RCS, via A4 mouse pulpal stem cells.

    PubMed

    Dimitrova-Nakov, Sasha; Uzunoglu, Emel; Ardila-Osorio, Hector; Baudry, Anne; Richard, Gilles; Kellermann, Odile; Goldberg, Michel

    2015-11-01

    To evaluate the biocompatibility and osteoinductive properties of Bioroot™ RCS (BR, Septodont, France) compared to Kerr's Pulp Canal Sealer™ (PCS, Kerr, Italy) using the mouse pulp-derived stem cell line A4, which have an osteo/odontogenic potential in vitro and contribute to efficient bone repair in vivo. A4 cells were cultured at the stem cell stage in the presence of solid disks of BR or PCS, whereas untreated A4 cells were used as control. After 3, 7, 10 days of direct contact with the sealers, cell viability was quantified using Trypan Blue exclusion assay. Immunolabelings were performed to assess the expression of odontoblast markers i.e. type 1 collagen, DMP1 or BSP. Finally, sealer-treated cells were induced toward osteo/odontogenic differentiation to assess the impact of the sealers on mineralization by Von Kossa staining. Statistical significance was evaluated by one-way analysis of variance and t-test (p<0.05). BR did not alter the viability and morphology of A4 pulpal cells compared to control group (p>0.05); however, living cell percentage of PCS was significantly lower compared to control and BR groups (p<0.05). BR preserved the intrinsic ability of A4 cells to express type 1 collagen, DMP1 or BSP at the stem cell stage. It did not alter the integrity of collagen fibers surrounding the cells and promoted overexpression of BSP and DMP1 at the cell surface. In contrast to PCS, BR did not compromise the mineralization potential of pulpal A4 stem cells. Bioroot™ RCS was not as cytotoxic as PCS. It did not recruit the pulpal stem cells toward differentiation but preserve their osteo-odontogenic intrinsic properties. Bioroot™ RCS might provide more suitable environment to induce stem cells for hard tissue deposition. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Cancer stem cells in head and neck squamous cell carcinoma: a review.

    PubMed

    Satpute, Pranali Shirish; Hazarey, Vinay; Ahmed, Riyaz; Yadav, Lalita

    2013-01-01

    Research indicates that a small population of cancer cells is highly tumorigenic, endowed with the capacity for self-renewal, and has the ability to differentiate into cells that constitute the bulk of tumors. These cells are considered the "drivers" of the tumorigenic process in some tumor types, and have been named cancer stem cells (CSC). Epithelial-mesenchymal transition (EMT) appears to be involved in the process leading to the acquisition of stemness by epithelial tumor cells. Through this process, cells acquire an invasive phenotype that may contribute to tumor recurrence and metastasis. CSC have been identified in human head and neck squamous cell carcinomas (HNSCC) using markers such as CD133 and CD44 expression, and aldehyde dehydrogenase (ALDH) activity. Head and neck cancer stem cells reside primarily in perivascular niches in the invasive fronts where endothelial-cell initiated events contribute to their survival and function. Clinically, CSC enrichment has been shown to be enhanced in recurrent disease, treatment failure and metastasis. CSC represent a novel target of study given their slow growth and innate mechanisms conferring treatment resistance. Further understanding of their unique phenotype may reveal potential molecular targets to improve therapeutic and survival outcomes in patients with HNSCC. Here, we discuss the state-of-the-knowledge on the pathobiology of cancer stem cells, with a focus on the impact of these cells on head and neck tumor progression, metastasis and recurrence due to treatment failure.

  12. Advances in cell culture: anchorage dependence

    PubMed Central

    Merten, Otto-Wilhelm

    2015-01-01

    Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097

  13. Update on mesenchymal stem cell therapies for cartilage disorders

    PubMed Central

    Paschos, Nikolaos K; Sennett, Mackenzie L

    2017-01-01

    Cartilage disorders, including focal cartilage lesions, are among the most common clinical problems in orthopedic practice. Left untreated, large focal lesions may result in progression to osteoarthritis, with tremendous impact on the quality of life of affected individuals. Current management strategies have shown only a modest degree of success, while several upcoming interventions signify better outcomes in the future. Among these, stem cell therapies have been suggested as a promising new era for cartilage disorders. Certain characteristics of the stem cells, such as their potential to differentiate but also to support healing made them a fruitful candidate for lesions in cartilage, a tissue with poor healing capacity. The aim of this editorial is to provide an update on the recent advancements in the field of stem cell therapy for the management of focal cartilage defects. Our goal is to present recent basic science advances and to present the potential of the use of stem cells in novel clinical interventions towards enhancement of the treatment armamentarium for cartilage lesions. Furthermore, we highlight some thoughts for the future of cartilage regeneration and repair and to explore future perspectives for the next steps in the field. PMID:29312843

  14. Comparison of osteo/odontogenic differentiation of human adult dental pulp stem cells and stem cells from apical papilla in the presence of platelet lysate.

    PubMed

    Abuarqoub, Duaa; Awidi, Abdalla; Abuharfeil, Nizar

    2015-10-01

    Human dental pulp cells (DPSCs) and stem cells from apical papilla have been used for the repair of damaged tooth tissues. Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) for large scale expansion of dental stem cells. However, biological effects and optimal concentrations of PL for proliferation and differentiation of human dental stem cells remain to be elucidated. DPSCs and SCAP cells were isolated from impacted third molars of young healthy donors, at the stage of root development and identified by markers using flow cytometry. For comparison the cells were cultured in media containing PL (1%, 5% and 10%) and FBS, with subsequent induction for osteogenic/odontogenic differentiation. The cultures were analyzed for; morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers using ELISA and real time -polymerase chain reaction (qPCR). The proliferation rates of DPSCs and SCAP significantly increased when cells were treated with 5% PL (7X doubling time) as compared to FBS. 5% PL also enhanced mineralized differentiation of DPSCs and SCAP, as indicated by the measurement of alkaline phosphatase activity, osteocalcin and osteopontin, calcium deposition and q-PCR. Our findings suggest that using 5% platelet lysate, proliferation and osteo/odontogenesis of DPSCs and SCAP for a short period of time (15 days), was significantly improved. This may imply its use as an optimum concentration for expansion of dental stem cells in bone regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome?

    PubMed

    Teixeira, Fábio G; Panchalingam, Krishna M; Anjo, Sandra Isabel; Manadas, Bruno; Pereira, Ricardo; Sousa, Nuno; Salgado, António J; Behie, Leo A

    2015-07-24

    The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications.

  16. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report.

    PubMed

    Rahyussalim, Ahmad Jabir; Saleh, Ifran; Kurniawati, Tri; Lutfi, Andi Praja Wira Yudha

    2017-11-30

    Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Thoracic spinal cord entrapment induced by a metabolic yield deposit in patients with renal failure results in intrusion of nervous tissue and consequently loss of motor and sensory function. Human umbilical cord mesenchymal stem cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cell studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. We report a case of a 62-year-old ethnic Indonesian woman previously diagnosed as having thoracic spinal cord entrapment with paraplegic condition and chronic renal failure on hemodialysis. She had diabetes mellitus that affected her kidneys and had chronic renal failure for 2 years, with creatinine level of 11 mg/dl, and no urinating since then. She was treated with human umbilical cord mesenchymal stem cell implantation protocol. This protocol consists of implantation of 16 million human umbilical cord mesenchymal stem cells intrathecally and 16 million human umbilical cord mesenchymal stem cells intravenously. Three weeks after first intrathecal and intravenous implantation she could move her toes and her kidney improved. Her creatinine level decreased to 9 mg/dl. Now after 8 months she can raise her legs and her creatinine level is 2 mg/dl with normal urinating. Human umbilical cord mesenchymal stem cell implantations led to significant improvement for spinal cord entrapment and kidney failure. The major histocompatibility in allogeneic implantation is an important issue to be addressed in the future.

  17. Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in medicago sativa stems.

    PubMed

    Gutsch, Annelie; Keunen, Els; Guerriero, Gea; Renaut, Jenny; Cuypers, Ann; Hausman, Jean-François; Sergeant, Kjell

    2018-06-15

    Cadmium (Cd) is a non-essential, toxic heavy metal that poses serious threats to both the ecosystem and the health of humans. Plants employ various cellular and molecular mechanisms to minimize the impact of Cd toxicity and the cell walls function as defensive barrier during Cd exposure. In this study, we adopted a quantitative gel-based proteomic approach (two-dimensional difference gel electrophoresis) to investigate changes in the abundance of cell wall- and soluble proteins in stems of Medicago sativa L. upon long-term exposure to Cd (at 10 mg Cd per kg soil as CdSO 4 ). Obtained protein data were complemented with targeted gene expression analyses. Plants were affected by Cd exposure at an early growth stage but seemed to recover at a more mature plant stage as no difference in biomass was observed. The accumulation of Cd was highest in the roots followed by stems and leaves. Quantitative proteomics revealed a changed abundance for 179 cell wall proteins and 30 proteins in the soluble fraction upon long-term Cd exposure. These proteins are involved in cell wall remodeling, defense response, carbohydrate metabolism and promotion of the lignification process. The data indicate that Cd exposure alters the cell wall proteome and underline the role of cell wall proteins in defense against Cd stress. The identified proteins are linked to alterations in the cell wall structure and lignification process in stems of M. sativa, underpinning the function of the cell wall as an effective barrier against Cd stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells.

    PubMed

    Alasmari, Abeer; Lin, Shih-Chun; Dibart, Serge; Salih, Erdjan

    2016-08-01

    Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is "uncharted territory". This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be "independent of bone remodeling stages". In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a "live or in vivo" bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.

  19. Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators.

    PubMed

    Bulstrode, Harry; Johnstone, Ewan; Marques-Torrejon, Maria Angeles; Ferguson, Kirsty M; Bressan, Raul Bardini; Blin, Carla; Grant, Vivien; Gogolok, Sabine; Gangoso, Ester; Gagrica, Sladjana; Ender, Christine; Fotaki, Vassiliki; Sproul, Duncan; Bertone, Paul; Pollard, Steven M

    2017-04-15

    Glioblastoma multiforme (GBM) is an aggressive brain tumor driven by cells with hallmarks of neural stem (NS) cells. GBM stem cells frequently express high levels of the transcription factors FOXG1 and SOX2. Here we show that increased expression of these factors restricts astrocyte differentiation and can trigger dedifferentiation to a proliferative NS cell state. Transcriptional targets include cell cycle and epigenetic regulators (e.g., Foxo3 , Plk1 , Mycn , Dnmt1 , Dnmt3b , and Tet3 ). Foxo3 is a critical repressed downstream effector that is controlled via a conserved FOXG1/SOX2-bound cis -regulatory element. Foxo3 loss, combined with exposure to the DNA methylation inhibitor 5-azacytidine, enforces astrocyte dedifferentiation. DNA methylation profiling in differentiating astrocytes identifies changes at multiple polycomb targets, including the promoter of Foxo3 In patient-derived GBM stem cells, CRISPR/Cas9 deletion of FOXG1 does not impact proliferation in vitro; however, upon transplantation in vivo, FOXG1 -null cells display increased astrocyte differentiation and up-regulate FOXO3. In contrast, SOX2 ablation attenuates proliferation, and mutant cells cannot be expanded in vitro. Thus, FOXG1 and SOX2 operate in complementary but distinct roles to fuel unconstrained self-renewal in GBM stem cells via transcriptional control of core cell cycle and epigenetic regulators. © 2017 Bulstrode et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Effects of the Endocrine-Disrupting Chemical DDT on Self-Renewal and Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Strong, Amy L.; Shi, Zhenzhen; Strong, Michael J.; Miller, David F.B.; Rusch, Douglas B.; Buechlein, Aaron M.; Flemington, Erik K.; McLachlan, John A.; Nephew, Kenneth P.

    2014-01-01

    Background: Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear. Objectives: Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology. Methods: We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs. Results: MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells. Conclusion: Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs. Citation: Strong AL, Shi Z, Strong MJ, Miller DF, Rusch DB, Buechlein AM, Flemington EK, McLachlan JA, Nephew KP, Burow ME, Bunnell BA. 2015. Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells. Environ Health Perspect 123:42–48; http://dx.doi.org/10.1289/ehp.1408188 PMID:25014179

  1. Stem Cell Research: A Novel Boulevard towards Improved Bovine Mastitis Management

    PubMed Central

    Sharma, Neelesh; Jeong, Dong Kee

    2013-01-01

    The dairy industry is a multi-billion dollar industry catering the nutritional needs of all age groups globally through the supply of milk. Clinical mastitis has a severe impact on udder tissue and is also an animal welfare issue. Moreover, it significantly reduces animal value and milk production. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. The high incidence, low cure rate of this highly economic and sometimes deadly disease is an alarming for dairy sector as well as policy makers. Bovine mammary epithelial cells (MECs) and their stem cells are very important in milk production and bioengineering. The adult mammary epithelium consists of two main cell types; an inner layer of luminal epithelial cells, which produce the milk during lactation, and an outer layer of myoepithelial cells resting on a basement membrane, which are responsible for pushing the milk through the ductal network to the teat cistern. Inner layer of columner/luminal cells of bovine MECs, is characterized by cytokeratin18, 19 (CK18, CK19) and outer layer such as myoepithelial cells which are characterized by CK14, α-smooth muscle actin (α-SMA) and p63. Much work has been done in mouse and human, on mammary gland stem cell research, particularly in cancer therapy, but stem cell research in bovine is still in its infancy. Such stem/progenitor cell discoveries in human and mouse mammary gland bring some hope for application in bovines. These progenitors may be therapeutically adopted to correct the structural/cytological defects in the bovine udder due to mastitis. In the present review we focused on various kinds of stem/progenitor cells which can have therapeutic utility and their possibilities to use as a potential stem cell therapy in the management of bovine post-mastitis damage in orders to restore milk production. The possibilities of bovine mammary stem cell therapy offers significant potential for regeneration of tissues that can potentially replace/repair diseased and damaged tissue through differentiation into epithelial, myoepithelial and/or cuboidal/columnar cells in the udder with minimal risk of rejection and side effects. PMID:23983615

  2. Stem cell research: a novel boulevard towards improved bovine mastitis management.

    PubMed

    Sharma, Neelesh; Jeong, Dong Kee

    2013-01-01

    The dairy industry is a multi-billion dollar industry catering the nutritional needs of all age groups globally through the supply of milk. Clinical mastitis has a severe impact on udder tissue and is also an animal welfare issue. Moreover, it significantly reduces animal value and milk production. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. The high incidence, low cure rate of this highly economic and sometimes deadly disease is an alarming for dairy sector as well as policy makers. Bovine mammary epithelial cells (MECs) and their stem cells are very important in milk production and bioengineering. The adult mammary epithelium consists of two main cell types; an inner layer of luminal epithelial cells, which produce the milk during lactation, and an outer layer of myoepithelial cells resting on a basement membrane, which are responsible for pushing the milk through the ductal network to the teat cistern. Inner layer of columner/luminal cells of bovine MECs, is characterized by cytokeratin18, 19 (CK18, CK19) and outer layer such as myoepithelial cells which are characterized by CK14, α-smooth muscle actin (α-SMA) and p63. Much work has been done in mouse and human, on mammary gland stem cell research, particularly in cancer therapy, but stem cell research in bovine is still in its infancy. Such stem/progenitor cell discoveries in human and mouse mammary gland bring some hope for application in bovines. These progenitors may be therapeutically adopted to correct the structural/cytological defects in the bovine udder due to mastitis. In the present review we focused on various kinds of stem/progenitor cells which can have therapeutic utility and their possibilities to use as a potential stem cell therapy in the management of bovine post-mastitis damage in orders to restore milk production. The possibilities of bovine mammary stem cell therapy offers significant potential for regeneration of tissues that can potentially replace/repair diseased and damaged tissue through differentiation into epithelial, myoepithelial and/or cuboidal/columnar cells in the udder with minimal risk of rejection and side effects.

  3. Role of environmental chemicals, processed food derivatives, and nutrients in the induction of carcinogenesis.

    PubMed

    Persano, Luca; Zagoura, Dimitra; Louisse, Jochem; Pistollato, Francesca

    2015-10-15

    In recent years it has been hypothesized that cancer stem cells (CSCs) are the actual driving force of tumor formation, highlighting the need to specifically target CSCs to successfully eradicate cancer growth and recurrence. Particularly, the deregulation of physiological signaling pathways controlling stem cell proliferation, self-renewal, differentiation, and metabolism is currently considered as one of the leading determinants of cancer formation. Given their peculiar, slow-dividing phenotype and their ability to respond to multiple microenvironmental stimuli, stem cells appear to be more susceptible to genetic and epigenetic carcinogens, possibly undergoing mutations resulting in tumor formation. In particular, some animal-derived bioactive nutrients and metabolites known to affect the hormonal milieu, and also chemicals derived from food processing and cooking, have been described as possible carcinogenic factors. Here, we review most recent literature in this field, highlighting how some environmental toxicants, some specific nutrients and their secondary products can induce carcinogenesis, possibly impacting stem cells and their niches, thus causing tumor growth.

  4. [Isolation and identification of human periodontal ligament stem cells in vitro].

    PubMed

    Shen, Tao; Chang, Hui-jun; Jian, Cong-xiang; Yang, Yan-chun; Zhou, Ji-xiang

    2011-02-01

    To isolate and identify human periodontal ligament stem cells (PDLSC) by improved methods and assess the characteristics of PDLSC ex vivo. The periodontal ligament cells were obtained from the healthy impacted third molars and teeth extracted for orthodontic purposes and used to isolate PDLSC by limiting dilution assay. PDLSC were cultured and expanded in alpha-MEM supplemented with 10% FBS. Colony-forming assay, immunohistochemistry, flow cytometry, osteogenic and adipogenic induction were used to identify PDLSC. The obtained cells had high colony-forming efficiency and were positive staining for vimentin and negative for pancytokeratin. Flow cytometry revealed that the isolated cells were positive for STRO-1 and CD146 antibodies and most were in the G0/G1 phase of cell cycle. Under specific conditions, they could differentiate to the osteoblast and adipocyte lineages in vitro. Limiting dilution assay is an effective method to isolate PDLSC and the single-cell-derived colonies demonstrate the properties of stem cells in vitro.

  5. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer

    PubMed Central

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.

    2016-01-01

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072

  6. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.

    PubMed

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G

    2016-02-29

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.

  7. Effect of Environmental Chemical Exposures on Adult Human Cardiac Progenitor Cell Viability and Differentiation

    EPA Science Inventory

    Cell biology has revealed that the adult heart is not a terminally differentiated organ but is capable of generating new cardiomyocytes (CMs) from cardiac stem cells (CSC) and/or progenitor cells (CPC) throughout life. The impact that environmental chemical exposures have on adul...

  8. The Alliance of Mesenchymal Stem Cells, Bone, and Diabetes

    PubMed Central

    Napoli, Nicola; Paladini, Angela; Briganti, Silvia I.; Pozzilli, Paolo; Epstein, Sol

    2014-01-01

    Bone fragility has emerged as a new complication of diabetes. Several mechanisms in diabetes may influence bone homeostasis by impairing the action between osteoblasts, osteoclasts, and osteocytes and/or changing the structural properties of the bone tissue. Some of these mechanisms can potentially alter the fate of mesenchymal stem cells, the initial precursor of the osteoblast. In this review, we describe the main factors that impair bone health in diabetic patients and their clinical impact. PMID:25140176

  9. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    EPA Science Inventory

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  10. From Flavr Savr Tomatoes to Stem Cell Therapy: Young People's Understandings of Gene Technology, 15 Years on

    NASA Astrophysics Data System (ADS)

    Lewis, Jenny

    2014-02-01

    This paper explores knowledge and understanding of basic genetics and gene technologies in school students who have been taught to a `science for all' National Curriculum and compares 482 students in 1995 (gene technology was a new and rapidly developing area of science with potential to impact on everyday life; the first cohort of students had been taught to the National Curriculum for Science) with 154 students in 2011 (genomics had replaced gene technology as a rapidly developing area of science with potential to impact on everyday life; science as a core subject within the National Curriculum was well established). These studies used the same questions, with the same age group (14-16) across the same (full) ability range; in addition the 2011 sample were asked about stem cells, stem cell technology and epigenetics. Students in 2011 showed: better knowledge of basic genetics but continuing difficulty in developing coherent explanatory frameworks; a good understanding of the nature of stem cells but no understanding of the process by which such cells become specialised; better understanding of different genetic technologies but also a wider range of misunderstandings and confusions (both between different genetic technologies and with other biological processes); continuing difficulty in evaluating potential veracity of short `news' items but greater awareness of ethical issues and the range of factors (including knowledge of genetics) which could be drawn on when justifying a view or coming to a decision. Implications for a `science for all' curriculum are considered.

  11. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    PubMed

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or pharmacological screening. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Efficient generation of dopaminergic-like neurons by overexpression of Nurr1 and Pitx3 in mouse induced Pluripotent Stem Cells.

    PubMed

    Salemi, Salemeh; Baktash, Parvaneh; Rajaei, Bahareh; Noori, Mehri; Amini, Hossein; Shamsara, Mehdi; Massumi, Mohammad

    2016-07-28

    Parkinson's disease (PD) is a neurodegenerative disorder, in which the nigro-striatal Dopaminergic (DAergic) neurons are selectively lost. Treatment of neurodegenerative diseases with Pluripotent Stem Cells (PSCs) is a big interest in cell therapy. Here, we used induced Pluripotent Stem Cells (iPSCs) expressing two master Dopaminergic (DAergic) transcription factors, i.e. Nurr1 and Pitx3, to generate functional in vitro DAergic-like neurons. After establishment and characterization of Doxycycline-inducible iPSCs from mouse fibroblasts, the cells were transduced by NURR1- and PITX3-harboring lentiviruses. The Nurr1/Pitx3 -iPSCs were differentiated through a five-stage protocol to generate DAergic-like neurons. The results confirmed the efficient expression of DAergic neuron markers in the end of protocol. Beside, the generated cells could exclusively synthesize and secrete Dopamine in response to secretagogues. In conclusion, overexpression of Nurr1 and Pitx3 in iPSCs could efficiently program iPSCs into functional DAergic-like neurons. This finding may have an impact on future stem cell therapy of PD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.

    PubMed

    Iyer, Sonia; Brooks, Robert; Gumbleton, Matthew; Kerr, William G

    2015-05-01

    Hematopoietic stem cell (HSC) self-renewal and lineage choice are subject to intrinsic control. However, this intrinsic regulation is also impacted by external cues provided by niche cells. There are multiple cellular components that participate in HSC support with the mesenchymal stem cell (MSC) playing a pivotal role. We had previously identified a role for SH2 domain-containing inositol 5'-phosphatase-1 (SHIP1) in HSC niche function through analysis of mice with germline or induced SHIP1 deficiency. In this study, we show that the HSC compartment expands significantly when aged in a niche that contains SHIP1-deficient MSC; however, this expanded HSC compartment exhibits a strong bias toward myeloid differentiation. In addition, we show that SHIP1 prevents chronic G-CSF production by the aging MSC compartment. These findings demonstrate that intracellular signaling by SHIP1 in MSC is critical for the control of HSC output and lineage commitment during aging. These studies increase our understanding of how myeloid bias occurs in aging and thus could have implications for the development of myeloproliferative disease in aging.

  14. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment

    PubMed Central

    Greim, Helmut; Kaden, Debra A.; Larson, Richard A.; Palermo, Christine M.; Rice, Jerry M.; Ross, David; Snyder, Robert

    2014-01-01

    Hematopoietic stem cells (HSCs) are a unique population of somatic stem cells that can both self-renew for long-term reconstitution of HSCs and differentiate into hematopoietic progenitor cells, which in turn give rise, in a hierarchical manner, to the entire myeloid and lymphoid lineages. The differentiation and maturation of these lineages occurs in the bone marrow niche, a microenvironment that regulates self-renewal, survival, differentiation, and proliferation, with interactions among signaling pathways in the HSCs and the niche required to establish and maintain homeostasis. The accumulation of genetic mutations and cytogenetic abnormalities within cells of the partially differentiated myeloid lineage, particularly as a result of exposure to benzene or cytotoxic anticancer drugs, can give rise to malignancies like acute myeloid leukemia and myelodysplastic syndrome. Better understanding of the mechanisms driving these malignancies and susceptibility factors, both within hematopoietic progenitor cells and cells within the bone marrow niche, may lead to the development of strategies for prevention of occupational and cancer therapy–induced disease. PMID:24495159

  15. LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1-Rac1 pathway.

    PubMed

    Carmon, Kendra S; Gong, Xing; Yi, Jing; Wu, Ling; Thomas, Anthony; Moore, Catherine M; Masuho, Ikuo; Timson, David J; Martemyanov, Kirill A; Liu, Qingyun J

    2017-09-08

    Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a bona fide marker of adult stem cells in several epithelial tissues, most notably in the intestinal crypts, and is highly up-regulated in many colorectal, hepatocellular, and ovarian cancers. LGR5 activation by R-spondin (RSPO) ligands potentiates Wnt/β-catenin signaling in vitro ; however, deletion of LGR5 in stem cells has little or no effect on Wnt/β-catenin signaling or cell proliferation in vivo Remarkably, modulation of LGR5 expression has a major impact on the actin cytoskeletal structure and cell adhesion in the absence of RSPO stimulation, but the molecular mechanism is unclear. Here, we show that LGR5 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1), an effector of Rac1/CDC42 GTPases, in the regulation of actin cytoskeleton dynamics and cell-cell adhesion. Specifically, LGR5 decreased levels of IQGAP1 phosphorylation at Ser-1441/1443, leading to increased binding of Rac1 to IQGAP1 and thus higher levels of cortical F-actin and enhanced cell-cell adhesion. LGR5 ablation in colon cancer cells and crypt stem cells resulted in loss of cortical F-actin, reduced cell-cell adhesion, and disrupted localization of adhesion-associated proteins. No evidence of LGR5 coupling to any of the four major subtypes of heterotrimeric G proteins was found. These findings suggest that LGR5 primarily functions via the IQGAP1-Rac1 pathway to strengthen cell-cell adhesion in normal adult crypt stem cells and colon cancer cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    PubMed

    Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M

    2010-12-22

    A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  17. Tauroursodeoxycholic acid increases neural stem cell pool and neuronal conversion by regulating mitochondria-cell cycle retrograde signaling

    PubMed Central

    Xavier, Joana M; Morgado, Ana L; Rodrigues, Cecília MP; Solá, Susana

    2014-01-01

    The low survival and differentiation rates of stem cells after either transplantation or neural injury have been a major concern of stem cell-based therapy. Thus, further understanding long-term survival and differentiation of stem cells may uncover new targets for discovery and development of novel therapeutic approaches. We have previously described the impact of mitochondrial apoptosis-related events in modulating neural stem cell (NSC) fate. In addition, the endogenous bile acid, tauroursodeoxycholic acid (TUDCA) was shown to be neuroprotective in several animal models of neurodegenerative disorders by acting as an anti-apoptotic and anti-oxidant molecule at the mitochondrial level. Here, we hypothesize that TUDCA might also play a role on NSC fate decision. We found that TUDCA prevents mitochondrial apoptotic events typical of early-stage mouse NSC differentiation, preserves mitochondrial integrity and function, while enhancing self-renewal potential and accelerating cell cycle exit of NSCs. Interestingly, TUDCA prevention of mitochondrial alterations interfered with NSC differentiation potential by favoring neuronal rather than astroglial conversion. Finally, inhibition of mitochondrial reactive oxygen species (mtROS) scavenger and adenosine triphosphate (ATP) synthase revealed that the effect of TUDCA is dependent on mtROS and ATP regulation levels. Collectively, these data underline the importance of mitochondrial stress control of NSC fate decision and support a new role for TUDCA in this process. PMID:25483094

  18. Influence of aging on the activity of mice Sca-1+CD31- cardiac stem cells.

    PubMed

    Wu, Qiong; Zhan, Jinxi; Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-03

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31- subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31- subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending.

  19. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{submore » 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.« less

  20. Distinct Effects of Adipose-Derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy.

    PubMed

    Anjanappa, Manjushree; Burnett, Riesa; Zieger, Michael A; Merfeld-Clauss, Stephanie; Wooden, William; March, Keith; Tholpady, Sunil; Nakshatri, Harikrishna

    2016-07-01

    Adipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49f(high)/EpCAM(low) basal/stem-like and CD49f(medium)/EpCAM(medium) luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression. Mol Cancer Res; 14(7); 660-71. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Advanced Good Cell Culture Practice for human primary, stem cell-derived and organoid models as well as microphysiological systems.

    PubMed

    Pamies, David; Bal-Price, Anna; Chesné, Christophe; Coecke, Sandra; Dinnyes, Andras; Eskes, Chantra; Grillari, Regina; Gstraunthaler, Gerhard; Hartung, Thomas; Jennings, Paul; Leist, Marcel; Martin, Ulrich; Passier, Robert; Schwamborn, Jens C; Stacey, Glyn N; Ellinger-Ziegelbauer, Heidrun; Daneshian, Mardas

    2018-04-13

    A major reason for the current reproducibility crisis in the life sciences is the poor implementation of quality control measures and reporting standards. Improvement is needed, especially regarding increasingly complex in vitro methods. Good Cell Culture Practice (GCCP) was an effort from 1996 to 2005 to develop such minimum quality standards also applicable in academia. This paper summarizes recent key developments in in vitro cell culture and addresses the issues resulting for GCCP, e.g. the development of induced pluripotent stem cells (iPSCs) and gene-edited cells. It further deals with human stem-cell-derived models and bioengineering of organo-typic cell cultures, including organoids, organ-on-chip and human-on-chip approaches. Commercial vendors and cell banks have made human primary cells more widely available over the last decade, increasing their use, but also requiring specific guidance as to GCCP. The characterization of cell culture systems including high-content imaging and high-throughput measurement technologies increasingly combined with more complex cell and tissue cultures represent a further challenge for GCCP. The increasing use of gene editing techniques to generate and modify in vitro culture models also requires discussion of its impact on GCCP. International (often varying) legislations and market forces originating from the commercialization of cell and tissue products and technologies are further impacting on the need for the use of GCCP. This report summarizes the recommendations of the second of two workshops, held in Germany in December 2015, aiming map the challenge and organize the process or developing a revised GCCP 2.0.

  2. The Impact of Aerobic Exercise on the Muscle Stem Cell Response.

    PubMed

    Joanisse, Sophie; Snijders, Tim; Nederveen, Joshua P; Parise, Gianni

    2018-04-16

    Satellite cells are indispensable for skeletal muscle repair and regeneration and are associated with muscle growth in humans. Aerobic exercise training results in improved skeletal muscle health also translating to an increase in satellite cell pool activation. We postulate that aerobic exercise improves satellite cell function in skeletal muscle.

  3. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    PubMed

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  4. Impact of Thymoglobulin by Stem Cell Source (Peripheral Blood Stem Cell or Bone Marrow) After Myeloablative Stem Cell Transplantation From HLA 10/10-Matched Unrelated Donors: A Report From the Société Française de Greffe de Moelle et de Thérapie Cellulaire.

    PubMed

    Ravinet, Aurelie; Cabrespine, Aurelie; Socié, Gerard; Milpied, Noël; Yakoub Agha, Ibrahim; Nguyen, Stephanie; Michallet, Mauricette; Menard, Anne Lise; Maillard, Natacha; Mohty, Mohamad; Suarez, Felipe; Huynh, Anne; Marchand, Tony; Deteix, Clémence; Cassuto, Jill Patrice; Maury, Sebastien; Chevallier, Patrice; Reman, Oumedaly; Peffault de Latour, Régis; Bay, Jacques Olivier

    2016-08-01

    The impact of antithymocyte globulin (ATG) in the setting of a myeloablative conditioning transplantation remains controversial, especially when using bone marrow (BM) as the stem cell source. We therefore conducted a retrospective analysis to investigate the impact of ATG in patients with acute myeloid leukemia or myelodysplastic syndrome receiving myeloablative conditioning followed by a matched 10 of 10 unrelated donor transplant from BM or peripheral blood stem cells (PBSCs). Our study included 356 patients conditioned with cyclophosphamide associated with fractionated total body irradiation or busulfan. Median follow-up was 17.6 months (range, 0-156). The ATG and PBSCs were the only variables that independently decreased the cumulative incidence (CI) of chronic graft-versus-host disease (GvHD) (hazards ratio [HR], 0.4; 95% CI, 0.21-0.73; P < 0.01; and HR, 0.53; 95% CI, 0.30-0.90; P = 0.02, respectively). The ATG had no impact on overall survival, disease-free survival, relapse, and nonrelapse mortality. In the PBSC group (n = 139), ATG was associated with a lower CI of both grades III to IV acute GvHD (HR, 0.17; 95% CI, 0.03-0.91; P = 0.04), chronic GvHD (HR, 0.31; 95% CI, 0.11-0.87; P = 0.03), and GvHD-free/relapse-free survival (HR, 0.48; 95% CI, 0.29-0.80; P < 0.01), whereas these correlations were not significant in the group of patients (n = 217) receiving BM (HR, 0.36; 95% CI, 0.11-1.93; P = 0.06 for grade III-IV acute GvHD; HR, 0.49; 95% CI, 0.22-1.06; P = 0.08 for chronic GvHD; and HR, 0.69; 95% CI, 0.46-1.01; P = 0.06 for GvHD-free/relapse-free survival). Although our results confirm the recommendation for ATG to be added after PBSC transplantation, no obvious benefit was identified using this approach in the setting of BM transplantation. Only prospective studies may yield definitive answers to this question.

  5. The lived experience of autologous stem cell-transplanted patients: Post-transplantation and before discharge.

    PubMed

    Alnasser, Qasem; Abu Kharmah, Salahel Deen; Attia, Manal; Aljafari, Akram; Agyekum, Felicia; Ahmed, Falak Aftab

    2018-04-01

    To explore the lived experience of the patients post-haematopoietic stem cell transplantation and specifically after engraftment and before discharge. Patients post-stem cell transplantation experience significant changes in all life aspects. Previous studies carried out by other researchers focused mainly on the postdischarge experience, where patients reported their perceptions that have always been affected by the life post-transplantation and influenced by their surroundings. The lived experience of patients, specifically after engraftment and prior to discharge (the "transition" phase), has not been adequately explored in the literature. Doing so might provide greater insight into the cause of change post-haematopoietic stem cell transplantation. This study is a phenomenological description of the participants' perception about their lived experience post-haematopoietic stem cell transplantation. The study used Giorgi's method of analysis. Through purposive sampling, 15 post-haematopoietic stem cell transplantation patients were recruited. Data were collected by individual interviews. Data were then analysed based on Giorgi's method of analysis to reveal the meaning of a phenomenon as experienced through the identification of essential themes. The analysis process revealed 12 core themes covered by four categories that detailed patients lived experience post-haematopoietic stem cell transplantation. The four categories were general transplant experience, effects of transplantation, factors of stress alleviation and finally life post-transplantation. This study showed how the haematopoietic stem cell transplantation affected the patients' physical, psychological and spiritual well-being. Transplantation also impacted on the patients' way of thinking and perception of life. Attending to patients' needs during transplantation might help to alleviate the severity of the effects and therefore improve experience. Comprehensive information about transplantation needs to be provided over different intervals and at different occasions. The role of the haematopoietic stem cell transplantation coordinators is important, and their communication skills and knowledge were found to be significant in patients' preparation and decision-making. As healthcare providers usually attend to only the patients' physical and psychological needs, spirituality was found to play an important role in maintaining morale and making sense of the meaning of life. © 2018 John Wiley & Sons Ltd.

  6. Treating Diet-Induced Diabetes and Obesity with Human Embryonic Stem Cell-Derived Pancreatic Progenitor Cells and Antidiabetic Drugs

    PubMed Central

    Bruin, Jennifer E.; Saber, Nelly; Braun, Natalie; Fox, Jessica K.; Mojibian, Majid; Asadi, Ali; Drohan, Campbell; O’Dwyer, Shannon; Rosman-Balzer, Diana S.; Swiss, Victoria A.; Rezania, Alireza; Kieffer, Timothy J.

    2015-01-01

    Summary Human embryonic stem cell (hESC)-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD) feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs. PMID:25801507

  7. CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo

    PubMed Central

    Mende, Nicole; Kuchen, Erika E.; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D.; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico

    2015-01-01

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. PMID:26150472

  8. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo.

    PubMed

    Mende, Nicole; Kuchen, Erika E; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico; Waskow, Claudia

    2015-07-27

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. © 2015 Mende et al.

  9. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    PubMed

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  10. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Yijing; Tang, Huijuan; Guo, Yan

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOCmore » cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.« less

  11. Application of biomaterials to advance induced pluripotent stem cell research and therapy

    PubMed Central

    Tong, Zhixiang; Solanki, Aniruddh; Hamilos, Allison; Levy, Oren; Wen, Kendall; Yin, Xiaolei; Karp, Jeffrey M

    2015-01-01

    Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation. PMID:25766254

  12. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    PubMed

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. © The Author(s) 2015.

  13. Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    PubMed Central

    Pan, Xuan; Jones, Morgan; Jiang, Jie; Zaprazna, Kristina; Yu, Duonan; Pear, Warren; Maillard, Ivan; Atchison, Michael L.

    2012-01-01

    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs. PMID:22292011

  14. Impact of genetic abnormalities after allogeneic stem cell transplantation in multiple myeloma: a report of the Société Française de Greffe de Moelle et de Thérapie Cellulaire.

    PubMed

    Roos-Weil, Damien; Moreau, Philippe; Avet-Loiseau, Hervé; Golmard, Jean-Louis; Kuentz, Mathieu; Vigouroux, Stéphane; Socié, Gérard; Furst, Sabine; Soulier, Jean; Le Gouill, Steven; François, Sylvie; Thiebaut, Anne; Buzyn, Agnès; Maillard, Natacha; Yakoub-Agha, Ibrahim; Raus, Nicole; Fermand, Jean-Paul; Michallet, Mauricette; Blaise, Didier; Dhédin, Nathalie

    2011-10-01

    The impact of cytogenetic abnormalities in multiple myeloma after allogeneic stem cell transplantation has not been clearly defined. This study examines whether allogeneic stem cell transplantation could be of benefit for myeloma patients with high-risk cytogenetic abnormalities. This is a retrospective multicenter analysis of the registry of the Société Française de Greffe de Moelle et de Thérapie Cellulaire, including 143 myeloma patients transplanted between 1999 and 2008. The incidences of cytogenetic abnormalities were 59% for del(13q), 25% for t(4;14), 25% for del(17p) and 4% for t(14;16). When comparing the population carrying an abnormality to that without the same abnormality, no significant difference was found in progression-free survival, overall survival or progression rate. Patients were grouped according to the presence of any of the poor prognosis cytogenetic abnormalities t(4;14), del(17p) or t(14;16) (n=53) or their absence (n=32). No difference in outcomes was observed between these two groups: the 3-year progression-free survival, overall survival and progression rates were 30% versus 17% (P=0.9), 45% versus 39% (P=0.8) and 53% versus 75% (P=0.9), respectively. These data indicate that allogeneic stem cell transplantation could potentially be of benefit to high-risk myeloma patients.

  15. Bone density loss after allogeneic hematopoietic stem cell transplantation: a prospective study.

    PubMed

    Stern, J M; Sullivan, K M; Ott, S M; Seidel, K; Fink, J C; Longton, G; Sherrard, D J

    2001-01-01

    The incidence and course of bone density abnormalities following hematopoietic stem cell transplantation are poorly understood and complicated by the impact of multiple factors. Hip, spine, and wrist bone mineral densities (BMDs) were measured in 104 adults (54 women, 54 men; mean age, 40 years [range, 18-64 years]) at 3 and 12 months after allogeneic transplantation. Clinical and laboratory variables were evaluated using univariate and multivariate analyses to determine risk factors for osteoporosis, fracture, and avascular necrosis. At 3 months posttransplantation, combined (male and female) hip, spine, and wrist z scores were -0.35, -0.42, and +0.04 standard deviations, respectively. At 12 months both men and women experienced significant loss of hip BMD (4.2%, P < .0001); changes in the spine and wrist were minimal. The cumulative dose and number of days of glucocorticoid therapy and the number of days of cyclosporine or tacrolimus therapy showed significant associations with loss of BMD; age, total body irradiation, diagnosis, and donor type did not. Nontraumatic fractures occurred in 10.6% of patients and avascular necrosis in 9.6% within 3 years posttransplantation. The decrease in height between pretransplantation and 12 months posttransplantation was significant (P = .0001). Results indicate that loss of BMD after allogeneic stem cell transplantation is common and accelerated by the length of immunosuppressive therapy and cumulative dose of glucocorticoid. An increased incidence of fracture and avascular necrosis may adversely impact long-term quality of life. Prevention of bone demineralization appears warranted after stem cell transplantation.

  16. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing.

    PubMed

    Chantreau, Maxime; Chabbert, Brigitte; Billiard, Sylvain; Hawkins, Simon; Neutelings, Godfrey

    2015-12-01

    Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Developmental effects of tobacco smoke exposure during human embryonic stem cell differentiation are mediated through the transforming growth factor-β superfamily member, Nodal

    PubMed Central

    Liszewski, Walter; Ritner, Carissa; Aurigui, Julian; Wong, Sharon S. Y.; Hussain, Naveed; Krueger, Winfried; Oncken, Cheryl; Bernstein, Harold S.

    2012-01-01

    While the pathologies associated with in utero smoke exposure are well established, their underlying molecular mechanisms are incompletely understood. We differentiated human embryonic stem cells in the presence of physiological concentrations of tobacco smoke and nicotine. Using post hoc microarray analysis, quantitative PCR, and immunoblot analysis, we demonstrated that tobacco smoke has lineage- and stage-specific effects on human embryonic stem cell differentiation, through both nicotine-dependent and -independent pathways. We show that three major stem cell pluripotency/differentiation pathways, Notch, canonical Wnt, and transforming growth factor-β, are affected by smoke exposure, and that Nodal signaling through SMAD2 is specifically impacted by effects on Lefty1, Nodal, and FoxH1. These events are associated with upregulation of microRNA-302a, a post-transcriptional silencer of Lefty1. The described studies provide insight into the mechanisms by which tobacco smoke influences fetal development at the cellular level, and identify specific transcriptional, post-transcriptional, and signaling pathways by which this likely occurs. PMID:22381624

  18. Germline stem cells: Towards the regeneration of spermatogenesis

    PubMed Central

    Valli, Hanna; Phillips, Bart T.; Shetty, Gunapala; Byrne, James A.; Clark, Amander T.; Meistrich, Marvin L.; Orwig, Kyle E.

    2013-01-01

    Improved therapies for cancer and other conditions have resulted in a growing population of long-term survivors. Infertility is an unfortunate side effect of some cancer therapies that impacts the quality of life of survivors who are in their reproductive or pre-reproductive years. Some of these patients have the opportunity to preserve their fertility using standard technologies that include sperm, egg or embryo banking, followed by in vitro fertilization and/or embryo transfer. However, these options are not available to all patients, especially the prepubertal patients who are not yet producing mature gametes. For these patients, there are several stem cell technologies in the research pipeline that may give rise to new fertility options and allow infertile patients to have their own biological children. We will review the role of stem cells in normal spermatogenesis as well as experimental stem cell based techniques that may have potential to generate or regenerate spermatogenesis and sperm. We will present these technologies in the context of the fertility preservation paradigm, but we anticipate that they will have broad implications for the assisted reproduction field. PMID:24314923

  19. Mesenchymal Stem Cells as Therapeutics Agents: Quality and Environmental Regulatory Aspects

    PubMed Central

    Sabata, Roger; Verges, Josep; Zugaza, José L.; Ruiz, Adolfina; Clares, Beatriz

    2016-01-01

    Mesenchymal stem cells (MSCs) are one of the main stem cells that have been used for advanced therapies and regenerative medicine. To carry out the translational clinical application of MSCs, their manufacturing and administration in human must be controlled; therefore they should be considered as medicine: stem cell-based medicinal products (SCMPs). The development of MSCs as SCMPs represents complicated therapeutics due to their extreme complex nature and rigorous regulatory oversights. The manufacturing process of MSCs needs to be addressed in clean environments in compliance with requirements of Good Manufacturing Practice (GMP). Facilities should maintain these GMP conditions according to international and national medicinal regulatory frameworks that introduce a number of specifications in order to produce MSCs as safe SCMPs. One of these important and complex requirements is the environmental monitoring. Although a number of environmental requirements are clearly defined, some others are provided as recommendations. In this review we aim to outline the current issues with regard to international guidelines which impact environmental monitoring in cleanrooms and clean areas for the manufacturing of MSCs. PMID:27999600

  20. A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells.

    PubMed

    Kulkarni, Shreya; Goel-Bhattacharya, Surbhi; Sengupta, Sejuti; Cochran, Brent H

    2018-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary malignant brain cancer and has a very poor prognosis. A subpopulation of cells known as GBM stem-like cells (GBM-SC) have the capacity to initiate and sustain tumor growth and possess molecular characteristics similar to the parental tumor. GBM-SCs are known to be enriched in hypoxic niches and may contribute to therapeutic resistance. Therefore, to identify genetic determinants important for the proliferation and survival of GBM stem cells, an unbiased pooled shRNA screen of 10,000 genes was conducted under normoxic as well as hypoxic conditions. A number of essential genes were identified that are required for GBM-SC growth, under either or both oxygen conditions, in two different GBM-SC lines. Interestingly, only about a third of the essential genes were common to both cell lines. The oxygen environment significantly impacts the cellular genetic dependencies as 30% of the genes required under hypoxia were not required under normoxic conditions. In addition to identifying essential genes already implicated in GBM such as CDK4, KIF11 , and RAN , the screen also identified new genes that have not been previously implicated in GBM stem cell biology. The importance of the serum and glucocorticoid-regulated kinase 1 (SGK1) for cellular survival was validated in multiple patient-derived GBM stem cell lines using shRNA, CRISPR, and pharmacologic inhibitors. However, SGK1 depletion and inhibition has little effect on traditional serum grown glioma lines and on differentiated GBM-SCs indicating its specific importance in GBM stem cell survival. Implications: This study identifies genes required for the growth and survival of GBM stem cells under both normoxic and hypoxic conditions and finds SGK1 as a novel potential drug target for GBM. Mol Cancer Res; 16(1); 103-14. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Stem Cell Therapy with Overexpressed VEGF and PDGF Genes Improves Cardiac Function in a Rat Infarct Model

    PubMed Central

    Das, Hiranmoy; George, Jon C.; Joseph, Matthew; Das, Manjusri; Abdulhameed, Nasreen; Blitz, Anna; Khan, Mahmood; Sakthivel, Ramasamy; Mao, Hai-Quan; Hoit, Brian D.; Kuppusamy, Periannan; Pompili, Vincent J.

    2009-01-01

    Background Therapeutic potential was evaluated in a rat model of myocardial infarction using nanofiber-expanded human cord blood derived hematopoietic stem cells (CD133+/CD34+) genetically modified with VEGF plus PDGF genes (VIP). Methods and Findings Myocardial function was monitored every two weeks up to six weeks after therapy. Echocardiography revealed time dependent improvement of left ventricular function evaluated by M-mode, fractional shortening, anterior wall tissue velocity, wall motion score index, strain and strain rate in animals treated with VEGF plus PDGF overexpressed stem cells (VIP) compared to nanofiber expanded cells (Exp), freshly isolated cells (FCB) or media control (Media). Improvement observed was as follows: VIP>Exp> FCB>media. Similar trend was noticed in the exercise capacity of rats on a treadmill. These findings correlated with significantly increased neovascularization in ischemic tissue and markedly reduced infarct area in animals in the VIP group. Stem cells in addition to their usual homing sites such as lung, spleen, bone marrow and liver, also migrated to sites of myocardial ischemia. The improvement of cardiac function correlated with expression of heart tissue connexin 43, a gap junctional protein, and heart tissue angiogenesis related protein molecules like VEGF, pNOS3, NOS2 and GSK3. There was no evidence of upregulation in the molecules of oncogenic potential in genetically modified or other stem cell therapy groups. Conclusion Regenerative therapy using nanofiber-expanded hematopoietic stem cells with overexpression of VEGF and PDGF has a favorable impact on the improvement of rat myocardial function accompanied by upregulation of tissue connexin 43 and pro-angiogenic molecules after infarction. PMID:19809493

  2. Differential impact of science policy on subfields of human embryonic stem cell research.

    PubMed

    Moon, Seongwuk; Cho, Seong Beom

    2014-01-01

    In this research, we examine how restrictive policy influenced performance in human embryonic stem cell research (hESC) between 1998 and 2008. In previous research, researchers argued whether restrictive policy decreased the performance of stem cell research in some nations, especially in the US. Here, we hypothesize that this policy influenced specific subfields of the hESC research. To investigate the selective policy effects, we categorize hESC research publications into three subfields-derivation, differentiation, and medical application research. Our analysis shows that restrictive policy had different effects on different subfields. In general, the US outperformed in overall hESC research throughout these periods. In the derivation of hESC, however, the US almost lost its competence under restrictive policy. Interestingly, the US scientific community showed prominent resilience in hESC research through international collaboration. We concluded that the US resilience and performance stemmed from the wide breadth of research portfolio of US scientists across the hESC subfields, combined with their strategic efforts to collaborate internationally on derivation research.

  3. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS.

    PubMed

    Folmes, Clifford D L; Martinez-Fernandez, Almudena; Perales-Clemente, Ester; Li, Xing; McDonald, Amber; Oglesbee, Devin; Hrstka, Sybil C; Perez-Terzic, Carmen; Terzic, Andre; Nelson, Timothy J

    2013-07-01

    Mitochondrial diseases display pathological phenotypes according to the mixture of mutant versus wild-type mitochondrial DNA (mtDNA), known as heteroplasmy. We herein examined the impact of nuclear reprogramming and clonal isolation of induced pluripotent stem cells (iPSC) on mitochondrial heteroplasmy. Patient-derived dermal fibroblasts with a prototypical mitochondrial deficiency diagnosed as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) demonstrated mitochondrial dysfunction with reduced oxidative reserve due to heteroplasmy at position G13513A in the ND5 subunit of complex I. Bioengineered iPSC clones acquired pluripotency with multilineage differentiation capacity and demonstrated reduction in mitochondrial density and oxygen consumption distinguishing them from the somatic source. Consistent with the cellular mosaicism of the original patient-derived fibroblasts, the MELAS-iPSC clones contained a similar range of mtDNA heteroplasmy of the disease-causing mutation with identical profiles in the remaining mtDNA. High-heteroplasmy iPSC clones were used to demonstrate that extended stem cell passaging was sufficient to purge mutant mtDNA, resulting in isogenic iPSC subclones with various degrees of disease-causing genotypes. On comparative differentiation of iPSC clones, improved cardiogenic yield was associated with iPSC clones containing lower heteroplasmy compared with isogenic clones with high heteroplasmy. Thus, mtDNA heteroplasmic segregation within patient-derived stem cell lines enables direct comparison of genotype/phenotype relationships in progenitor cells and lineage-restricted progeny, and indicates that cell fate decisions are regulated as a function of mtDNA mutation load. The novel nuclear reprogramming-based model system introduces a disease-in-a-dish tool to examine the impact of mutant genotypes for MELAS patients in bioengineered tissues and a cellular probe for molecular features of individual mitochondrial diseases. Copyright © 2013 AlphaMed Press.

  4. Blood use in patients receiving intensive chemotherapy for acute leukemia or hematopoietic stem cell transplantation: the impact of a health system-wide patient blood management program.

    PubMed

    Leahy, Michael F; Trentino, Kevin M; May, Colleen; Swain, Stuart G; Chuah, Hun; Farmer, Shannon L

    2017-09-01

    Little is published on patient blood management (PBM) programs in hematology. In 2008 Western Australia announced a health system-wide PBM program with PBM staff appointments commencing in November 2009. Our aim was to assess the impact this program had on blood utilization and patient outcomes in intensive chemotherapy for acute leukemia or hematopoietic stem cell transplantation. A retrospective study of 695 admissions at two tertiary hospitals receiving intensive chemotherapy for acute leukemia or undergoing hematopoietic stem cell transplantation between July 2010 and December 2014 was conducted. Main outcomes included pre-red blood cell (RBC) transfusion hemoglobin (Hb) levels, single-unit RBC transfusions, number of RBC and platelet (PLT) units transfused per admission, subsequent day case transfusions, length of stay, serious bleeding, and in-hospital mortality. Over the study period, the mean RBC units transfused per admission decreased 39% from 6.1 to 3.7 (p < 0.001), and the mean PLT units transfused decreased 35% from 6.3 to 4.1 (p < 0.001), with mean RBC and PLT units transfused for follow-up day cases decreasing from 0.6 to 0.4 units (p < 0.001). Mean pre-RBC transfusion Hb level decreased from 8.0 to 6.8 g/dL (p < 0.001), and single-unit RBC transfusions increased 39% to 67% (p < 0.001). This reduction represents blood product cost savings of AU$694,886 (US$654,007). There were no significant changes in unadjusted or adjusted length of stay, serious bleeding events, or in-hospital mortality over the study. The health system-wide PBM program had a significant impact, reducing blood product use and costs without increased morbidity or mortality in patients receiving intensive chemotherapy for acute leukemia or hematopoietic stem cell transplantation. © 2017 AABB.

  5. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    PubMed

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1 overexpression in Nurr1/GPX-1-ES cells increases the viability of differentiated CNS stem-like cells. The result of this study may have impact on future stem cell therapy of PD. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. I Want More and Better Cells! - An Outreach Project about Stem Cells and Its Impact on the General Population.

    PubMed

    Varela Amaral, Sara; Forte, Teresa; Ramalho-Santos, João; Girão da Cruz, M Teresa

    2015-01-01

    Although science and technology impact every aspect of modern societies, there is still an extensive gap between science and society, which impairs the full exercise of citizenship. In the particular case of biomedical research increased investment should be accompanied by parallel efforts in terms of public information and engagement. We have carried out a project involving the production and evaluation of educational contents focused on stem cells - illustrated newspaper chronicles, radio interviews, a comic book, and animated videos - and monitored their impact on the Portuguese population. The study of the outreach materials in a heterogeneous sample of the population suggests that they are valuable tools to disseminate scientific messages, and that this is especially true for the comic-book format. Furthermore, the data showed that clear and stimulating outreach materials, that are able to teach new concepts and to promote critical thinking, increase engagement in science at different levels, depending on the depth of the concepts involved. Additionally, these materials can influence political, social and personal attitudes toward science. These results, together with the importance attributed to scientific research in stem cells by the population sampled, validates the diffusion of such materials as a significant contribution towards an overall public understanding and engagement in contemporary science, and this strategy should thus be considered in future projects. Regardless, stringent quality control must be implemented in order to efficiently communicate accurate scientific developments, and the public stimulated in terms of finding additional sources of reliable information.

  7. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells

    PubMed Central

    Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  8. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

    PubMed

    Salmasi, Shima; Kalaskar, Deepak M; Yoon, Wai-Weng; Blunn, Gordon W; Seifalian, Alexander M

    2015-03-26

    Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.

  9. Scripts for TRUMP data analyses. Part II (HLA-related data): statistical analyses specific for hematopoietic stem cell transplantation.

    PubMed

    Kanda, Junya

    2016-01-01

    The Transplant Registry Unified Management Program (TRUMP) made it possible for members of the Japan Society for Hematopoietic Cell Transplantation (JSHCT) to analyze large sets of national registry data on autologous and allogeneic hematopoietic stem cell transplantation. However, as the processes used to collect transplantation information are complex and differed over time, the background of these processes should be understood when using TRUMP data. Previously, information on the HLA locus of patients and donors had been collected using a questionnaire-based free-description method, resulting in some input errors. To correct minor but significant errors and provide accurate HLA matching data, the use of a Stata or EZR/R script offered by the JSHCT is strongly recommended when analyzing HLA data in the TRUMP dataset. The HLA mismatch direction, mismatch counting method, and different impacts of HLA mismatches by stem cell source are other important factors in the analysis of HLA data. Additionally, researchers should understand the statistical analyses specific for hematopoietic stem cell transplantation, such as competing risk, landmark analysis, and time-dependent analysis, to correctly analyze transplant data. The data center of the JSHCT can be contacted if statistical assistance is required.

  10. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates.

    PubMed

    Shahrousvand, Mohsen; Sadeghi, Gity Mir Mohamad; Shahrousvand, Ehsan; Ghollasi, Marzieh; Salimi, Ali

    2017-08-01

    All of the cells' interactions are done through their surfaces. Evaluation of surface physicochemical scaffolds along with other factors is important and determines the fate of stem cells. In this work, biodegradable and biocompatible polyester/polyether based polyurethanes (PUs) were synthesized by polycaprolactone diol (PCL) and poly (tetra methylene ether) glycol (PTMEG) as the soft segment. To assess better the impact of surface parameters such as stiffness and roughness effects on osteogenic differentiation of the human mesenchymal stem cell (hMSC), the dimension effect of substrates was eliminated and two-dimensional membranes were produced by synthesized polyurethane. Surface and bulk properties of prepared 2D membranes such as surface chemistry, roughness, stiffness and tensile behavior were evaluated by Attenuated total reflectance Fourier transform infrared (ATR-FTIR), atomic force microscopy (AFM) and tensile behavior. The prepared 2D PU films had suitable hydrophilicity, biodegradability, water absorption, surface roughness and bulk strength. The hMSCs showed greater osteogenesis expression in PU substrates with more roughness and stiffness than others. The results demonstrated that surface parameters along with other differentiation cues have a synergistic effect on stem cells fates. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Beyond the permissibility of embryonic and stem cell research: substantive requirements and procedural safeguards.

    PubMed

    Isasi, Rosario M; Knoppers, Bartha M

    2006-10-01

    This report provides a comparative analysis of the regulation of embryonic stem cells and cloning research in 50 countries. The development of international stem cell consortia involving the exchange of materials, data and knowledge presumes 'policy know-how' on the varying positions and governing regulations of the various partners; knowledge is essential for the feasibility of such international collaborative projects. Across the spectrum of restrictive-to-liberal policies, requirements regarding the justification for or the setting of substantive limits on (i) embryo use and/or (ii) destruction in research are often present. These goals justify the regulation, the control and even the prohibition of embryonic stem cell and cloning research. Moreover, irrespective of whether a country adopts a restrictive or a liberal approach, there is significant symmetry in both the substantive and the procedural requirements. Procedural safeguards provide another layer of protection and control over the research. In reality, such safeguards may have a greater systemic impact than the substantive requirements. They can be subdivided into three broad categories: (i) safeguards relating to the stage of embryonic development, (ii) safeguards relating to the donors of blastocysts, gametes, embryos and somatic cells and (iii) requirements for research governance.

  12. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    NASA Astrophysics Data System (ADS)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  13. Risk of Low Dose/Low Dose Rate Ionizing Radiation to Humans Symposium Annual Meeting of the Environmental Mutagen Society: Agenda and Abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veigl, Martina L.; Morgan, William F.; Schwartz, Jeffrey L.

    The low dose symposium thoughtfully addressed controversy of risk from low dose radiation exposure, hormesis and radon therapy. The stem cell symposium cogently considered the role of DNA damage and repair in hematopoietic stem cells underlying aging and malignancy and provocatively presented evidence that stem cells may have distinct morphologies and replicative properties, as well as special roles in cancer initiation. In the epigenetics symposium, studies illustrated the long range interaction of epigenetic mechanisms, the roles of CTCF and BORIS in region/specific regulation of epigenetic processes, the impact of DNA damage on epigenetic processes as well as links between epigeneticmore » mechanisms and early nutrition and bystander effects. This report shows the agenda and abstracts for this symposium.« less

  14. Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells

    PubMed Central

    Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.

    2013-01-01

    Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development. PMID:23451281

  15. Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL+ leukemia stem cells.

    PubMed

    Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L

    2010-04-01

    The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.

  16. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells

    PubMed Central

    Ferrell, Patrick I; Xi, Jiafei; Ma, Chao; Adlakha, Mitali; Kaufman, Dan S.

    2016-01-01

    Derivation of hematopoietic stem cells from human pluripotent stem cells remains a key goal for the fields of developmental biology and regenerative medicine. Here, we use a novel genetic reporter system to prospectively identify and isolate early hematopoietic cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (iPSCs). Cloning the human RUNX1c P1 promoter and +24 enhancer to drive expression of tdTomato (tdTom) in hESCs and iPSCs, we demonstrate that tdTom expression faithfully enriches for RUNX1c-expressing hematopoietic progenitor cells. Time-lapse microscopy demonstrated the tdTom+ hematopoietic cells to emerge from adherent cells. Furthermore, inhibition of primitive hematopoiesis by blocking Activin/Nodal signaling promoted the expansion and/or survival of tdTom+ population. Notably, RUNX1c/tdTom+ cells represent only a limited subpopuation of CD34+CD45+ and CD34+CD43+ cells with a unique genetic signature. Using gene array analysis, we find significantly lower expression of Let-7 and mir181a microRNAs in the RUNX1c/tdTom+ cell population. These phenotypic and genetic analyses comparing the RUNX1c/tdTom+ population to CD34+CD45+ umbilical cord blood and fetal liver demonstrate several key differences that likely impact the development of HSCs capable of long-term multilineage engraftment from hESCs and iPSCs. PMID:25546363

  17. The healthy donor profile of immunoregulatory soluble mediators is altered by stem cell mobilization and apheresis.

    PubMed

    Melve, Guro Kristin; Ersvaer, Elisabeth; Paulsen Rye, Kristin; Bushra Ahmed, Aymen; Kristoffersen, Einar K; Hervig, Tor; Reikvam, Håkon; Hatfield, Kimberley Joanne; Bruserud, Øystein

    2018-05-01

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis. Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment. Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen, including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed correlations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used. Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. G-CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a prognostic impact. Copyright © 2018. Published by Elsevier Inc.

  18. Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design.

    PubMed

    Bartunek, Jozef; Davison, Beth; Sherman, Warren; Povsic, Thomas; Henry, Timothy D; Gersh, Bernard; Metra, Marco; Filippatos, Gerasimos; Hajjar, Roger; Behfar, Atta; Homsy, Christian; Cotter, Gad; Wijns, William; Tendera, Michal; Terzic, Andre

    2016-02-01

    Cardiopoiesis is a conditioning programme that aims to upgrade the cardioregenerative aptitude of patient-derived stem cells through lineage specification. Cardiopoietic stem cells tested initially for feasibility and safety exhibited signs of clinical benefit in patients with ischaemic heart failure (HF) warranting definitive evaluation. Accordingly, CHART-1 is designed as a large randomized, sham-controlled multicentre study aimed to validate cardiopoietic stem cell therapy. Patients (n = 240) with chronic HF secondary to ischaemic heart disease, reduced LVEF (<35%), and at high risk for recurrent HF-related events, despite optimal medical therapy, will be randomized 1:1 to receive 600 × 10(6) bone marrow-derived and lineage-directed autologous cardiopoietic stem cells administered via a retention-enhanced intramyocardial injection catheter or a sham procedure. The primary efficacy endpoint is a hierarchical composite of mortality, worsening HF, Minnesota Living with Heart Failure Questionnaire score, 6 min walk test, LV end-systolic volume, and LVEF at 9 months. The secondary efficacy endpoint is the time to cardiovascular death or worsening HF at 12 months. Safety endpoints include mortality, readmissions, aborted sudden deaths, and serious adverse events at 12 and 24 months. The CHART-1 clinical trial is powered to examine the therapeutic impact of lineage-directed stem cells as a strategy to achieve cardiac regeneration in HF populations. On completion, CHART-1 will offer a definitive evaluation of the efficacy and safety of cardiopoietic stem cells in the treatment of chronic ischaemic HF. NCT01768702. © 2015 The Authors European Journal of Heart Failure © 2015 European Society of Cardiology.

  19. Ethnicity-Dependent and -Independent Heterogeneity in Healthy Normal Breast Hierarchy Impacts Tumor Characterization

    PubMed Central

    Nakshatri, Harikrishna; Anjanappa, Manjushree; Bhat-Nakshatri, Poornima

    2015-01-01

    Recent reports of widespread genetic variation affecting regulation of gene expression raise the possibility of significant inter-individual differences in stem-progenitor-mature cell hierarchy in adult organs. This has not been explored because of paucity of methods to quantitatively assess subpopulation of normal epithelial cells on individual basis. We report the remarkable inter-individual differences in differentiation capabilities as documented by phenotypic heterogeneity in stem-progenitor-mature cell hierarchy of the normal breast. Ethnicity and genetic predisposition are partly responsible for this heterogeneity, evidenced by the finding that CD44+/CD24- and PROCR+/EpCAM- multi-potent stem cells were elevated significantly in African American women compared with Caucasians. ALDEFLUOR+ luminal stem/progenitor cells were lower in BRCA1-mutation carriers compared with cells from healthy donors (p = 0.0014). Moreover, tumor and adjoining-normal breast cells of the same patients showed distinct CD49f+/EpCAM+ progenitor, CD271+/EpCAM- basal, and ALDEFLUOR+ cell profiles. These inter-individual differences in the rate of differentiation in the normal breast may contribute to a substantial proportion of transcriptome, epigenome, and signaling pathway alterations and consequently has the potential to spuriously magnify the extent of documented tumor-specific gene expression. Therefore, comparative analysis of phenotypically defined subpopulations of normal and tumor cells on an individual basis may be required to identify cancer-specific aberrations. PMID:26311223

  20. Ethnicity-Dependent and -Independent Heterogeneity in Healthy Normal Breast Hierarchy Impacts Tumor Characterization.

    PubMed

    Nakshatri, Harikrishna; Anjanappa, Manjushree; Bhat-Nakshatri, Poornima

    2015-08-27

    Recent reports of widespread genetic variation affecting regulation of gene expression raise the possibility of significant inter-individual differences in stem-progenitor-mature cell hierarchy in adult organs. This has not been explored because of paucity of methods to quantitatively assess subpopulation of normal epithelial cells on individual basis. We report the remarkable inter-individual differences in differentiation capabilities as documented by phenotypic heterogeneity in stem-progenitor-mature cell hierarchy of the normal breast. Ethnicity and genetic predisposition are partly responsible for this heterogeneity, evidenced by the finding that CD44+/CD24- and PROCR+/EpCAM- multi-potent stem cells were elevated significantly in African American women compared with Caucasians. ALDEFLUOR+ luminal stem/progenitor cells were lower in BRCA1-mutation carriers compared with cells from healthy donors (p = 0.0014). Moreover, tumor and adjoining-normal breast cells of the same patients showed distinct CD49f+/EpCAM+ progenitor, CD271+/EpCAM- basal, and ALDEFLUOR+ cell profiles. These inter-individual differences in the rate of differentiation in the normal breast may contribute to a substantial proportion of transcriptome, epigenome, and signaling pathway alterations and consequently has the potential to spuriously magnify the extent of documented tumor-specific gene expression. Therefore, comparative analysis of phenotypically defined subpopulations of normal and tumor cells on an individual basis may be required to identify cancer-specific aberrations.

  1. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less

  2. Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro.

    PubMed

    Warzecha, Jörg; Göttig, Stephan; Brüning, Christian; Lindhorst, Elmar; Arabmothlagh, Mohammad; Kurth, Andreas

    2006-10-01

    Sonic hedgehog (Shh) protein is known to be an important signaling protein in early embryonic development. Also, Shh is involved in the induction of early cartilaginous differentiation of mesenchymal cells in the limb and in the spine. The impact of Shh on adult stem cells, human bone marrow-derived mesenchymal stem cells (MSCs), was tested. The MSCs were treated either with recombinant Sonic hedgehog protein (r-Shh) or with transforming growth factor-beta 1 (TGF-beta(1)) as a positive control in vitro for 3 weeks. The effects on cartilaginous differentiation and proliferation were assayed. MSCs when treated with either Shh or TGF-beta(1) showed expression of cartilage markers aggrecan, Sox9, CEP-68, and collagen type II and X within 3 weeks. Only r-Shh-treated cells showed a very strong cell proliferation and much higher BrdU incorporation in cell assay systems. These are the first data that indicate an important role of Shh for the induction of cartilage production by MSCs in vitro.

  3. Adipose tissue-derived stem cell secreted IGF-1 protects myoblasts from the negative effect of myostatin.

    PubMed

    Gehmert, Sebastian; Wenzel, Carina; Loibl, Markus; Brockhoff, Gero; Huber, Michaela; Krutsch, Werner; Nerlich, Michael; Gosau, Martin; Klein, Silvan; Schreml, Stephan; Prantl, Lukas; Gehmert, Sanga

    2014-01-01

    Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs), these cells (ASCs) provide a therapeutic option for Duchenne Muscular Dystrophy (DMD). But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases.

  4. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.

    PubMed

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A

    2015-10-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use. ©AlphaMed Press.

  5. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C.; Nolta, Jan A.

    2015-01-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Significance Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use. PMID:26253713

  6. Industry Responsibilities in Tackling Direct-to-Consumer Marketing of Unproven Stem Cell Treatments.

    PubMed

    Master, Z; Fu, W; Paciulli, D; Sipp, D

    2017-08-01

    The direct-to-consumer marketing of unproven stem cell interventions (SCIs) is a serious public health concern. Regulations and education have had modest impact, indicating that different actors must play a role to stop this unfettered market. We consider the role of the biotech industry in tackling unproven SCIs. Grounded in the concept of corporate social responsibility, we argue that biotech companies should screen consumers to ensure that products and services are being used appropriately and educate employees about unproven SCIs. © 2017 ASCPT.

  7. An Overview of Alopecias

    PubMed Central

    Qi, Ji; Garza, Luis A.

    2014-01-01

    Hair loss is a topic of enormous public interest and understanding the pathophysiology and treatment of various alopecias will likely make a large impact on patients’ lives. The investigation of alopecias also provides important insight in the basic sciences; for instance, the abundance of stem cell populations and regenerative cycles that characterize a hair follicle render it an excellent model for the study of stem cell biology. This review seeks to provide a concise summary of the major alopecias with regard to presentation and management, and correlate these to recent advances in relevant research on pathogenesis. PMID:24591533

  8. Fas-L promotes the stem cell potency of adipose-derived mesenchymal cells.

    PubMed

    Solodeev, Inna; Meilik, Benjamin; Volovitz, Ilan; Sela, Meirav; Manheim, Sharon; Yarkoni, Shai; Zipori, Dov; Gur, Eyal; Shani, Nir

    2018-06-11

    Fas-L is a TNF family member known to trigger cell death. It has recently become evident that Fas-L can transduce also non-apoptotic signals. Mesenchymal stem cells (MSCs) are multipotent cells that are derived from various adult tissues. Although MSCs from different tissues display common properties they also display tissue-specific characteristics. Previous works have demonstrated massive apoptosis following Fas-L treatment of bone marrow-derived MSCs both in vitro and following their administration in vivo. We therefore set to examine Fas-L-induced responses in adipose-derived stem cells (ASCs). Human ASCs were isolated from lipoaspirates and their reactivity to Fas-L treatment was examined. ASCs responded to Fas-L by simultaneous apoptosis and proliferation, which yielded a net doubling of cell quantities and a phenotypic shift, including reduced expression of CD105 and increased expression of CD73, in association with increased bone differentiation potential. Treatment of freshly isolated ASCs led to an increase in large colony forming unit fibroblasts, likely produced by early stem cell progenitor cells. Fas-L-induced apoptosis and proliferation signaling were found to be independent as caspase inhibition attenuated Fas-L-induced apoptosis without impacting proliferation, whereas inhibition of PI3K and MEK, but not of JNK, attenuated Fas-L-dependent proliferation, but not apoptosis. Thus, Fas-L signaling in ASCs leads to their expansion and phenotypic shift toward a more potent stem cell state. We speculate that these reactions ensure the survival of ASC progenitor cells encountering Fas-L-enriched environments during tissue damage and inflammation and may also enhance ASC survival following their administration in vivo.

  9. Substance P enhances proliferation and paracrine potential of adipose-derived stem cells in vitro.

    PubMed

    Kim, Suna; Piao, Jiyuan; Son, Youngsook; Hong, Hyun Sook

    2017-03-25

    Stem cells have tremendous promise to treat intractable diseases. Notably, adipose-derived stem cells (ADSCs) are actively being investigated because of ease of sampling and high repopulation capacity in vitro. ADSCs can exert a therapeutic effect through differentiation and paracrine potential, and these actions have been proven in many diseases, including cutaneous and inflammatory diseases. Transplantation of ADSCs necessitates therapeutic quantities and thus, long term ex vivo culture of ADSCs. However, this procedure can impair the activity of ADSCs and provoke cellular senescence, leading to low efficacy in vivo. Accordingly, strategies to restore cellular activity and inhibit senescence of stem cells during ex vivo culture are needed for stem cell-based therapies. This study evaluated a potential supplementary role of Substance P (SP) in ADSC ex vivo culture. After confirming that the ADSC cell cycle was damaged by passage 6 (p6), ADSCs at p6 were cultured with SP, and their proliferation rates, cumulative cell numbers, cytokine profiles, and impact on T/endothelial cells were assessed. Long-term culture weakened proliferation ability and secretion of the cytokines, transforming growth factor-beta 1 (TGF-beta1), vascular endothelial growth factor (VEGF), and stromal cell derived factor-1 alpha (SDF-1alpha) in ADSCs. However, SP treatment reduced the population doubling time (PDT), enabling gain of a sufficient number of ADSCs at early passages. In addition, SP restored cytokine secretion, enhancing the ADSC-mediated paracrine effect on T cell and human umbilical vein endothelial cells (HUVECs). Taken together, these results suggest that SP can retain the therapeutic effect of ADSCs by elevating their proliferative and paracrine potential in ex vivo culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Peptide modified nanofibrous scaffold promotes human mesenchymal stem cell proliferation and long-term passaging.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2018-03-01

    Long-term culture, passage and proliferation of human mesenchymal stem cells (hMSCs) cause loss of their stemness properties including self-renewal and multipotency. By optimizing the MSCs environment in vitro, maintaining the stemness state and better controlling the cell fate might be possible. We have recently reported the significant effects of bioactive Tat protein-derived peptide named R-peptide on hMSC adhesion, morphology and proliferation, which has demonstrated R-peptide enhanced MSC early adhesion and proliferation in comparison to other bioactive molecules including RGD peptide, fibronectin and collagen. In this study, R-peptide was used to evaluate stemness properties of MSCs after long-term passaging. R-peptide conjugated poly caprolactone (PCL) nanofibrous scaffold and unmodified nanofibrous scaffold were used to study the impact of R-peptide modified PCL nanofibers and PCL nanofibers on cell behavior. The results showed early formation of focal adhesion (FA) complex on R-peptide modified scaffolds at 30min after cell seeding. The rate of cell proliferation was significantly increased due to presence of R-peptide, and the MSCs marker analyses using flow cytometry and immunocytochemistry staining proved the ability of R-peptide to maintain mesenchymal stem cell properties (high proliferation, expression of multipotent markers and differentiation capacity) even after long-term passage culturing. Accordingly, our (The) results concluded that bioactive R-peptide in combination with nanofibrous scaffold can mimic the native ECM comprising micro/nano architecture and biochemical molecules in a best way. The designed scaffold can link extracellular matrix (ECM) to nucleus via formation of FA and organization of cytoskeleton, causing fast and strong attachment of MSCs and allowing integrin-mediated signaling to start. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    PubMed

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Epigenome analysis of pluripotent stem cells

    PubMed Central

    Ricupero, Christopher L.; Swerdel, Mavis R.; Hart, Ronald P.

    2015-01-01

    Summary Mis-regulation of gene expression due to epigenetic abnormalities has been linked with complex genetic disorders, psychiatric illness and cancer. In addition, the dynamic epigenetic changes that occur in pluripotent stem cells are believed to impact regulatory networks essential for proper lineage development. Chromatin immunoprecipitation (ChIP) is a technique used to isolate and enrich chromatin fragments using antibodies against specific chromatin modifications, such as DNA binding proteins or covalent histone modifications. Until recently, many ChIP protocols required millions of cells for each immunoprecipitation. This severely limited analysis of rare cell populations or post-mitotic, differentiated cell lines. Here, we describe a low cell number ChIP protocol with next generation sequencing and analysis, that has the potential to uncover novel epigenetic regulatory pathways that were previously difficult or impossible to obtain. PMID:23546758

  13. Sinusitis in patients undergoing allogeneic bone marrow transplantation - a review.

    PubMed

    Drozd-Sokolowska, Joanna Ewa; Sokolowski, Jacek; Wiktor-Jedrzejczak, Wieslaw; Niemczyk, Kazimierz

    Sinusitis is a common morbidity in general population, however little is known about its occurrence in severely immunocompromised patients undergoing allogeneic hematopoietic stem cell transplantation. The aim of the study was to analyze the literature concerning sinusitis in patients undergoing allogeneic bone marrow transplantation. An electronic database search was performed with the objective of identifying all original trials examining sinusitis in allogeneic hematopoietic stem cell transplant recipients. The search was limited to English-language publications. Twenty five studies, published between 1985 and 2015 were identified, none of them being a randomized clinical trial. They reported on 31-955 patients, discussing different issues i.e. value of pretransplant sinonasal evaluation and its impact on post-transplant morbidity and mortality, treatment, risk factors analysis. Results from analyzed studies yielded inconsistent results. Nevertheless, some recommendations for good practice could be made. First, it seems advisable to screen all patients undergoing allogeneic hematopoietic stem cell transplantation with Computed Tomography (CT) prior to procedure. Second, patients with symptoms of sinusitis should be treated before hematopoietic stem cell transplantation (HSCT), preferably with conservative medical approach. Third, patients who have undergone hematopoietic stem cell transplantation should be monitored closely for sinusitis, especially in the early period after transplantation. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  14. Types of Stem Cells

    MedlinePlus

    ... Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  15. In vitro expansion of Lin+ and Lin- mononuclear cells from human peripheral blood

    NASA Astrophysics Data System (ADS)

    Norhaiza, H. Siti; Rohaya, M. A. W.; Zarina, Z. A. Intan; Hisham, Z. A. Shahrul

    2013-11-01

    Haematopoietic stem cells (HSCs) are used in the therapy of blood disorders due to the ability of these cells to reconstitute haematopoietic lineage cells when transplanted into myeloablative recipients. However, substantial number of cells is required in order for the reconstitution to take place. Since HSCs present in low frequency, larger number of donor is required to accommodate the demand of transplantable HSCs. Therefore, in vitro expansion of HSCs will have profound impact on clinical purposes. The aim of this study was to expand lineage negative (Lin-) stem cells from human peripheral blood. Total peripheral blood mononuclear cells (PBMNCs) were fractionated from human blood by density gradient centrifugation. Subsequently, PBMNCs were subjected to magnetic assisted cell sorter (MACS) which depletes lineage positive (Lin+) mononuclear cells expressing lineage positive markers such as CD2, CD3, CD11b, CD14, CD15, CD16, CD19, CD56, CD123, and CD235a to obtained Lin- cell population. The ability of Lin+ and Lin- to survive in vitro was explored by culturing both cell populations in complete medium consisting of Alpha-Minimal Essential Medium (AMEM) +10% (v/v) Newborn Calf Serum (NBCS)+ 2% (v/v) pen/strep. In another experiment, Lin+ and Lin- were cultured with complete medium supplemented with 10ng/mL of the following growth factors: stem cell factor (SCF), interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF), 2IU/mL of Erythropoietin (Epo) and 20ng/mL of IL-6. Three samples were monitored in static culture for 22 days. The expansion potential was assessed by the number of total viable cells, counted by trypan blue exclusion assay. It was found that Lin+ mononuclear cells were not able to survive either in normal proliferation medium or proliferation medium supplemented with cytokines. Similarly, Lin- stem cells were not able to survive in proliferation medium however, addition of cytokines into the proliferation medium support Lin- stem cells for at least 18 days. The Lin- stem cells started to response to the cytokines added as early as Day 2 of culture. It is concluded that Lin- stem cells can be expanded in vitro by culturing in proliferation medium supplemented with cytokines.

  16. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes.

    PubMed

    Shafa, Mehdi; Krawetz, Roman; Zhang, Yuan; Rattner, Jerome B; Godollei, Anna; Duff, Henry J; Rancourt, Derrick E

    2011-12-14

    Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Murine D3-MHC-neo(r) ESCs formed embyroid bodies (EBs) and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin) was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC differentiation protocols within suspension bioreactors demands a more complete understanding of the impacts of shear forces on the regulation of pluripotency and differentiation in pluripotent stem cells.

  17. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes

    PubMed Central

    2011-01-01

    Background Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs) and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin) was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC differentiation protocols within suspension bioreactors demands a more complete understanding of the impacts of shear forces on the regulation of pluripotency and differentiation in pluripotent stem cells. PMID:22168552

  18. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    PubMed

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  19. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties

    PubMed Central

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues. PMID:25970790

  20. HPV Infection of the Head and Neck Region and Its Stem Cells.

    PubMed

    Pullos, A N; Castilho, R M; Squarize, C H

    2015-11-01

    The human papillomavirus (HPV) is an etiologic agent associated with the development of head and neck squamous carcinoma (HNSCC)-in particular, oropharyngeal squamous cell carcinoma. The HPV-positive HNSCC is characterized by genetic alterations, clinical progression, and therapeutic response, which are distinct from HPV-negative head and neck cancers, suggesting that virus-associated tumors constitute a unique entity among head and neck cancers. Malignant stem cells, or cancer stem cells, are a subpopulation of tumor cells that self-renew, initiate new tumors upon transplantation, and are resistant to therapy, and their discovery has revealed novel effects of oncovirus infection in cancer. In this review, we provide a virus-centric view and novel insights into HPV-positive head and neck pathogenesis. We discuss the influence of cancer stem cells, HPV oncoproteins, altered molecular pathways, and mutations in cancer initiation and cancer progression. We compiled a catalogue of the mutations associated with HPV-positive HNSCC, which may be a useful resource for genomic-based studies aiming to develop personalized therapies. We also explain recent changes in mass vaccination campaigns against HPV and the potential long-term impact of vaccinations on the prevention and treatment of HPV-positive head and neck cancers. © International & American Associations for Dental Research 2015.

  1. Stem cells as anticancer drug carrier to reduce the chemotherapy side effect

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic

    2017-02-01

    Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.

  2. miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis.

    PubMed

    Chakraborty, Chiranjib; Chin, Kok-Yong; Das, Srijit

    2016-10-01

    Over the last few years, microRNAs (miRNA)-controlled cancer stem cells have drawn enormous attention. Cancer stem cells are a small population of tumor cells that possess the stem cell property of self-renewal. Recent data shows that miRNA regulates this small population of stem cells. In the present review, we explained different characteristics of cancer stem cells as well as miRNA regulation of self-renewal and differentiation in cancer stem cells. We also described the migration and tumor formation. Finally, we described the different miRNAs that regulate various types of cancer stem cells, such as prostate cancer stem cells, head and neck cancer stem cells, breast cancer stem cells, colorectal cancer stem cells, lung cancer stem cells, gastric cancer stem cells, pancreatic cancer stem cells, etc. Extensive research is needed in order to employ miRNA-based therapeutics to control cancer stem cell population in various cancers in the future.

  3. Restoring In Vivo-Like Membrane Lipidomics Promotes Exosome Trophic Behavior from Human Placental Mesenchymal Stromal/Stem Cells.

    PubMed

    Cavallini, Claudia; Zannini, Chiara; Olivi, Elena; Tassinari, Riccardo; Taglioli, Valentina; Rossi, Martina; Poggi, Paola; Chatgilialoglu, Alexandros; Simonazzi, Giuliana; Alviano, Francesco; Bonsi, Laura; Ventura, Carlo

    2018-01-01

    Human mesenchymal stem cells (hMSCs) are an effective tool in regenerative medicine notably for their intrinsic plentiful paracrine activity rather than differentiating properties. The hMSC secretome includes a wide spectrum of regulatory and trophic factors, encompassing several naked molecules as well as different kinds of extracellular vesicles (EVs). Among EVs, exosomes represent an intriguing population, able to shuttle proteins, transcription factors, and genetic materials, with a relevant role in cell-to-cell communication, modulating biological responses in recipient cells. In this context, the extracellular milieu can greatly impact the paracrine activity of stem cells, modifying their metabolism, and the dynamics of vesicle secretion. In the present study, we investigated the effects elicited on exosome patterning by tailored, ad hoc formulated lipid supplementation (Refeed ® ) in MSCs derived from human fetal membranes (hFM-MSCs). Wound healing experiments revealed that stem cell exposure to exosomes obtained from Refeed ® -supplemented hFM-MSCs increased their migratory capability, although the amount of exosomes released after Refeed ® supplementation was lower than that yielded from non-supplemented cells. We found that such a decrease was mainly due to a different rate of exosomal exocytosis rather than to an effect of the lipid supplement on the endocytic pathway. Endoplasmic reticulum homeostasis was modified by supplementation, through the upregulation of PKR-like ER kinase (PERK) and inositol-requiring enzyme 1α (IRE1α). Increased expression of these proteins did not lead to stress-induced, unfolded protein response (UPR)-mediated apoptosis, nor did it affect phosphorylation of p38 kinase, suggesting that PERK and IRE1α overexpression was due to augmented metabolic activities mediated by optimization of a cellular feeding network afforded through lipid supplementation. In summary, these results demonstrate how tailored lipid supplementation can successfully modify the paracrine features in hFM-MSCs, impacting both intracellular vesicle trafficking and secreted exosome number and function.

  4. What is a stem cell?

    PubMed

    Slack, Jonathan M W

    2018-05-15

    The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.

  5. Hair regrowth in alopecia areata patients following Stem Cell Educator therapy.

    PubMed

    Li, Yanjia; Yan, Baoyong; Wang, Hepeng; Li, Heng; Li, Quanhai; Zhao, Dong; Chen, Yana; Zhang, Ye; Li, Wenxia; Zhang, Jun; Wang, Shanfeng; Shen, Jie; Li, Yunxiang; Guindi, Edward; Zhao, Yong

    2015-04-20

    Alopecia areata (AA) is one of the most common autoimmune diseases and targets the hair follicles, with high impact on the quality of life and self-esteem of patients due to hair loss. Clinical management and outcomes are challenged by current limited immunosuppressive and immunomodulating regimens. We have developed a Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, allows the cells to briefly interact with adherent human cord blood-derived multipotent stem cells (CB-SC), and returns the "educated" autologous cells to the patient's circulation. In an open-label, phase 1/phase 2 study, patients (N = 9) with severe AA received one treatment with the Stem Cell Educator therapy. The median age was 20 years (median alopecic duration, 5 years). Clinical data demonstrated that patients with severe AA achieved improved hair regrowth and quality of life after receiving Stem Cell Educator therapy. Flow cytometry revealed the up-regulation of Th2 cytokines and restoration of balancing Th1/Th2/Th3 cytokine production in the peripheral blood of AA subjects. Immunohistochemistry indicated the formation of a "ring of transforming growth factor beta 1 (TGF-β1)" around the hair follicles, leading to the restoration of immune privilege of hair follicles and the protection of newly generated hair follicles against autoimmune destruction. Mechanistic studies revealed that co-culture with CB-SC may up-regulate the expression of coinhibitory molecules B and T lymphocyte attenuator (BTLA) and programmed death-1 receptor (PD-1) on CD8β(+)NKG2D(+) effector T cells and suppress their proliferation via herpesvirus entry mediator (HVEM) ligands and programmed death-1 ligand (PD-L1) on CB-SCs. Current clinical data demonstrated the safety and efficacy of the Stem Cell Educator therapy for the treatment of AA. This innovative approach produced lasting improvement in hair regrowth in subjects with moderate or severe AA. ClinicalTrials.gov, NCT01673789, 21 August 2012.

  6. Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells.

    PubMed

    Appelt-Menzel, Antje; Cubukova, Alevtina; Günther, Katharina; Edenhofer, Frank; Piontek, Jörg; Krause, Gerd; Stüber, Tanja; Walles, Heike; Neuhaus, Winfried; Metzger, Marco

    2017-04-11

    In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm 2 and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs) to Identify Osteoclast Defects in Rare Genetic Bone Disorders

    PubMed Central

    Chen, I-Ping

    2014-01-01

    More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts. PMID:25621177

  8. Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy.

    PubMed

    Cabezas-Wallscheid, Nina; Buettner, Florian; Sommerkamp, Pia; Klimmeck, Daniel; Ladel, Luisa; Thalheimer, Frederic B; Pastor-Flores, Daniel; Roma, Leticia P; Renders, Simon; Zeisberger, Petra; Przybylla, Adriana; Schönberger, Katharina; Scognamiglio, Roberta; Altamura, Sandro; Florian, Carolina M; Fawaz, Malak; Vonficht, Dominik; Tesio, Melania; Collier, Paul; Pavlinic, Dinko; Geiger, Hartmut; Schroeder, Timm; Benes, Vladimir; Dick, Tobias P; Rieger, Michael A; Stegle, Oliver; Trumpp, Andreas

    2017-05-18

    Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT. Copyright © 2017. Published by Elsevier Inc.

  9. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells

    PubMed Central

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N.; Luan, Anna; Brett, Elizabeth A.; Barrera, Janos; Khong, Sacha M.; Zielins, Elizabeth R.; Whittam, Alexander J.; Hu, Michael S.; Walmsley, Graham G.; Pollhammer, Michael S.; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther; Huemer, Georg M.; Wan, Derrick C.; Longaker, Michael T.

    2016-01-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31−/CD45−), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy. PMID:26702129

  10. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    PubMed

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy. ©AlphaMed Press.

  11. Melanoma induced immunosuppression is mediated by hematopoietic dysregulation.

    PubMed

    Kamran, Neha; Li, Youping; Sierra, Maria; Alghamri, Mahmoud S; Kadiyala, Padma; Appelman, Henry D; Edwards, Marta; Lowenstein, Pedro R; Castro, Maria G

    2018-01-01

    Tumors are associated with expansion of immunosuppressive cells such as tumor associated macrophages (TAMs), regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs). These cells promote tumor growth, angiogenesis, metastasis and immune escape. Cancer patients frequently present symptoms such as anemia, leukocytosis and/or cytopenia; associated with poor prognosis. To uncover tumor-mediated hematopoietic abnormalities and identify novel targets that can be harnessed to improve tumor-specific immune responses, we investigated the hematopoietic stem and progenitor cell compartment in melanoma bearing mice. We show that melanoma growth results in expansion of myeloid lineages such as MDSCs, macrophages and DCs along with a reduction in mature RBCs and platelets. Mature B lymphocytes in the blood and BM of melanoma mice were also reduced. Mice bearing melanoma showed extramedullary hematopoiesis in the spleen. Increased expansion of myeloid lineages occurred directly at the level of stem and progenitor cells. The reduction in mature B lymphocytes resulted from a block at the Pro-B cell stage in the bone marrow. Addition of recombinant IL-3 to bone marrow cells resulted in the expansion of committed myeloid progenitors including common myeloid precursors, granulocyte-monocyte precursors and megakaryocyte-erythrocyte precursors. In vivo , IL-3 receptor stimulation in melanoma bearing mice using an IL-3 antibody also resulted in a robust expansion of committed myeloid progenitors and hematopoietic stem cells. Collectively our findings demonstrate that tumor growth plays a pivotal role in reprogramming the host immune system by impacting hematopoiesis directly at the level of stem cell compartment.

  12. Human Periodontal Stem Cells Release Specialized Proresolving Mediators and Carry Immunomodulatory and Prohealing Properties Regulated by Lipoxins

    PubMed Central

    Cianci, Eleonora; Recchiuti, Antonio; Trubiani, Oriana; Diomede, Francesca; Marchisio, Marco; Miscia, Sebastiano; Colas, Romain A.; Dalli, Jesmond; Serhan, Charles N.

    2016-01-01

    Unresolved inflammation and tissue destruction are underlying mechanisms of periodontitis, which is linked to dysregulated polymorphonuclear neutrophil (PMN) functions. Lipoxin A4 (LXA4) is a specialized proresolving lipid mediator (SPM) that dampens excessive inflammation, promotes resolution, and protects from leukocyte-mediated tissue damage. Human periodontal ligament stem cells (hPDLSCs) represent key players during tissue regeneration and may contribute to resolution of inflammation; thus, they may represent a promising tool in regenerative dentistry. In the present study, we investigated the actions of hPDLSCs on PMN apoptosis and antimicrobial functions, and determined the impact of LXA4 on hPDLSCs. hPDLSCs significantly reduced apoptosis and stimulated microbicidal activity of human PMNs, via both cell-cell interactions and paracrine mechanisms. Lipid mediator metabololipidomics analysis demonstrated that hPDLSCs biosynthesize SPMs, including resolvin D1, D2, D5, and D6; protectin D1; maresins; and LXB4; as well as prostaglandins D2, E2, and F2α. LXA4 significantly enhanced proliferation, migration, and wound healing capacity of hPDLSCs through the activation of its cognate receptor ALX/FPR2, expressed on hPDLSCs. Together, these results demonstrate that hPDLSCs modulate PMN functions, and provide the first evidence that stem cells generate SPM and that the LXA4-ALX/FPR2 axis regulates regenerative functions of hPDLSCs by a novel receptor-mediated mechanism. Significance These findings uncovered unappreciated features of stem cells from the periodontal ligament, supporting the notion that these cells may act as master regulators of pathophysiological events through the release of mediators that promote the resolution of inflammation and bacterial killing. The study also demonstrated that it is possible to modulate important functions of periodontal stem cells using lipoxin A4, a potent endogenous stop signal of inflammation. Thus, this study revealed an unappreciated anti-inflammatory proregenerative circuit that may be exploited to combat periodontal pathologies using resident stem cells. Moreover, the data may represent a more general template to explain the immunomodulatory functions of stem cells. PMID:26607175

  13. Overexpression of CYP3A4 in a COLO 205 Colon Cancer Stem Cell Model in vitro

    PubMed Central

    Olszewski, Ulrike; Liedauer, Richard; Ausch, Christoph; Thalhammer, Theresia; Hamilton, Gerhard

    2011-01-01

    Cancer stem cells (CSCs) seem to constitute a subpopulation of tumor cells that escape from chemotherapy and cause recurrent disease. Low proliferation rates, protection in a stem cell niche and overexpression of drug resistance proteins are considered to confer chemoresistance. We established an in vitro colon CSC-like model using the COLO 205 cell line, which revealed transiently increased expression of CD133 when transferred to serum-free stem cell culture medium. Assessment of global gene expression of COLO 205 cells under these conditions identified a set of upregulated genes including cytochrome P450 3A4 (CYP3A4) and aldehyde dehydrogenase 1A1 (ALDH1A1), as confirmed by real-time qPCR. ALDH1A1 is a CSC marker for certain tumor entities and confers resistance to cyclophosphamide. CYP3A4 is expressed in liver and colon and its overexpression seems particularly relevant in colon cancer, since it inactivates irinotecan and other xenobiotics, such as taxols and vinca alkaloids. In conclusion, this COLO 205 model provides evidence for CD133 induction concomitant with overexpression of CYP3A4, which, together with ATP-binding cassette, subfamily G, member 2 (ABCG2) and others, may have a role in chemoresistant colon CSCs and a negative impact on disease-free survival in colon cancer patients. PMID:24212669

  14. Adult Neurogenesis and Neurodegenerative Diseases: A Systems Biology Perspective

    PubMed Central

    Horgusluoglu, Emrin; Nudelman, Kelly; Nho, Kwangsik; Saykin, Andrew J.

    2016-01-01

    New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. PMID:26879907

  15. Comparison of transplantation of bone marrow stromal cells (BMSC) and stem cell mobilization by granulocyte colony stimulating factor after traumatic brain injury in rat.

    PubMed

    Bakhtiary, Mehrdad; Marzban, Mohsen; Mehdizadeh, Mehdi; Joghataei, Mohammad Taghi; Khoei, Samideh; Pirhajati Mahabadi, Vahid; Laribi, Bahareh; Tondar, Mahdi; Moshkforoush, Arash

    2010-10-01

    Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Forty adult male Wistar rats were injured with controlled cortical impact device and divided randomly into four groups. The treatment groups were injected with 2 × 106 intravenous bone marrow stromal stem cell (n = 10) and also with subcutaneous G-CSF (n = 10) and sham-operation group (n = 10) received PBS and "bromodeoxyuridine (Brdu)" alone, i.p. All injections were performed 1 day after injury into the tail veins of rats. All cells were labeled with Brdu before injection into the tail veins of rats. Functional neurological evaluation of animals was performed before and after injury using modified neurological severity scores (mNSS). Animals were sacrificed 42 days after TBI and brain sections were stained by Brdu immunohistochemistry. Statistically, significant improvement in functional outcome was observed in treatment groups compared with control group (P<0.01). mNSS showed no significant difference between the BMSC and G-CSF-treated groups during the study period (end of the trial). Histological analyses showed that Brdu-labeled (MSC) were present in the lesion boundary zone at 42nd day in all injected animals. In our study, we found that administration of a bone marrow-stimulating factor (G-CSF) and BMSC in a TBI model provides functional benefits.

  16. Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior

    PubMed Central

    Bellayr, Ian; Holden, Kyle; Mu, Xiaodong; Pan, Haiying; Li, Yong

    2013-01-01

    Skeletal muscle is a large and complex system that is crucial for structural support, movement and function. When injured, the repair of skeletal muscle undergoes three phases: inflammation and degeneration, regeneration and fibrosis formation in severe injuries. During fibrosis formation, muscle healing is impaired because of the accumulation of excess collagen. A group of zinc-dependent endopeptidases that have been found to aid in the repair of skeletal muscle are matrix metalloproteinases (MMPs). MMPs are able to assist in tissue remodeling through the regulation of extracellular matrix (ECM) components, as well as contributing to cell migration, proliferation, differentiation and angiogenesis. In the present study, the effect of GM6001, a broad-spectrum MMP inhibitor, on muscle-derived stem cells (MDSCs) is investigated. We find that MMP inhibition negatively impacts skeletal muscle healing by impairing MDSCs in migratory and multiple differentiation abilities. These results indicate that MMP signaling plays an essential role in the wound healing of muscle tissue because their inhibition is detrimental to stem cells residing in skeletal muscle. PMID:23329998

  17. Differential marker expression by cultures rich in mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  18. mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.

    PubMed

    Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk

    2015-06-01

    The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme.

  19. Directing Adipose-Derived Stem Cells into Keratinocyte-Like Cells: Impact of Medium Composition and Culture Condition.

    PubMed

    Petry, L; Kippenberger, S; Meissner, M; Kleemann, J; Kaufmann, R; Rieger, U M; Wellenbrock, S; Reichenbach, G; Zöller, N; Valesky, E

    2018-04-28

    Adipose-derived stem cells (ASC) are known to transdifferentiate into a wide range of different cell species in vitro including along the epidermal lineage. This property makes them a promising tool for regenerative medicine in order to restore the epidermal barrier. The present study is dedicated to identify in vitro conditions enabling transdifferentiation to a keratinocyte-like phenotype. Especially, the impact of different culture conditions (media compositions, 2D-, 3D-cultures) and extracellular matrix (ECM) molecules was evaluated. ASC derived from subcutaneous abdominal fat were characterized by stemness associated markers and subjected to different media. Epithelial differentiation in 2D cultures was monitored by pan-cytokeratin expression using flow cytometry and immunocytochemistry. In order to evaluate the impact of different ECM molecules on epidermal stratification, 3D cultures were produced, lifted to the air-liquid-interface (ALI) and examined by histological analysis and quantitative real-time RT-PCR. We identified a medium composition containing retinoic acid, hydrocortisone, ascorbic acid and BMP-4 enabling maximum pan-cytokeratin expression in 2D cultures. Moreover, adhesion to type IV collagen further promotes the pan-cytokeratin expression. When cultures were lifted to the ALI, significant stratification was observed, particularly in supports coated with type IV collagen or fibronectin. Moreover, epidermal differentiation markers (involucrin, cytokeratin 1 and 14) become induced. Conditions with hampered wound healing such as non-healing ulcers demand new treatment regimes. The here introduced optimized protocols for transdifferentiation of ASC into keratinocyte-like cells may help to establish more effective treatment procedures. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Laser bioprinting of human induced pluripotent stem cells-the effect of printing and biomaterials on cell survival, pluripotency, and differentiation.

    PubMed

    Koch, Lothar; Deiwick, Andrea; Franke, Annika; Schwanke, Kristin; Haverich, Axel; Zweigerdt, Robert; Chichkov, Boris

    2018-04-25

    Research on human induced pluripotent stem cells (hiPSCs) is one of the fastest growing fields in biomedicine. Generated from patient's own somatic cells, hiPSCs can be differentiated towards all functional cell types and returned to the patient without immunological concerns. 3D printing of hiPSCs could enable the generation of functional organs for replacement therapies or realization of organ-on-chip systems for individualized medicine. Printing of living cells was demonstrated with immortalized cell lines, primary cells, and adult stem cells with different printing technologies and biomaterials. However, hiPSCs are more sensitive to handling procedures, in particular, when dissociated into single cells. Both pluripotency and directed differentiation are influenced by numerous environmental factors including culture media, biomaterials, and cell density. Notably, existing literature on the effect of applied biomaterials on pluripotency is rather ambiguous. In this study, laser bioprinting of undifferentiated hiPSCs in combination with different biomaterials was performed and the impact on cells' behavior, pluripotency, and differentiation was investigated. Our findings suggest that hiPSCs are indeed more sensitive to the applied biomaterials, but not to laser printing itself. With appropriate biomaterials, such as the hyaluronic acid based solutions applied in this study, hiPSCs can be successfully laser printed without losing their pluripotency.

  1. Stem Cell Research and Clinical Translation: A Roadmap about Good Clinical Practice and Patient Care

    PubMed Central

    Scopetti, Matteo; Gatto, Vittorio

    2017-01-01

    The latest research achievements in the field of stem cells led in 2016 to the publication of “Guidelines for Stem Cell Research and Clinical Translation” by the International Society for Stem Cell Research (ISSCR). Updating the topics covered in previous publications, the new recommendations offer interesting ethical and scientific insights. Under the common principles of research integrity, protection of patient's welfare, respect for the research subjects, transparency and social justice, the centrality of good clinical practice, and informed consent in research and translational medicine is supported. The guidelines implement the abovementioned publications, requiring rigor in all areas of research, promoting the validity of the scientific activity results and emphasizing the need for an accurate and efficient public communication. This paper aims to analyze the aforementioned guidelines in order to provide a valid interpretive tool for experts. In particular, a research activity focused on the bioethical, scientific, and social implications of the new recommendations is carried out in order to provide food for thought. Finally, as an emerging issue of potential impact of current guidelines, an overview on implications of compensation for egg donation is offered. PMID:29090010

  2. A mathematical model for IL-6-mediated, stem cell driven tumor growth and targeted treatment

    PubMed Central

    Nör, Jacques Eduardo

    2018-01-01

    Targeting key regulators of the cancer stem cell phenotype to overcome their critical influence on tumor growth is a promising new strategy for cancer treatment. Here we present a modeling framework that operates at both the cellular and molecular levels, for investigating IL-6 mediated, cancer stem cell driven tumor growth and targeted treatment with anti-IL6 antibodies. Our immediate goal is to quantify the influence of IL-6 on cancer stem cell self-renewal and survival, and to characterize the subsequent impact on tumor growth dynamics. By including the molecular details of IL-6 binding, we are able to quantify the temporal changes in fractional occupancies of bound receptors and their influence on tumor volume. There is a strong correlation between the model output and experimental data for primary tumor xenografts. We also used the model to predict tumor response to administration of the humanized IL-6R monoclonal antibody, tocilizumab (TCZ), and we found that as little as 1mg/kg of TCZ administered weekly for 7 weeks is sufficient to result in tumor reduction and a sustained deceleration of tumor growth. PMID:29351275

  3. Stem Cell Research and Clinical Translation: A Roadmap about Good Clinical Practice and Patient Care.

    PubMed

    Frati, Paola; Scopetti, Matteo; Santurro, Alessandro; Gatto, Vittorio; Fineschi, Vittorio

    2017-01-01

    The latest research achievements in the field of stem cells led in 2016 to the publication of "Guidelines for Stem Cell Research and Clinical Translation" by the International Society for Stem Cell Research (ISSCR). Updating the topics covered in previous publications, the new recommendations offer interesting ethical and scientific insights. Under the common principles of research integrity, protection of patient's welfare, respect for the research subjects, transparency and social justice, the centrality of good clinical practice, and informed consent in research and translational medicine is supported. The guidelines implement the abovementioned publications, requiring rigor in all areas of research, promoting the validity of the scientific activity results and emphasizing the need for an accurate and efficient public communication. This paper aims to analyze the aforementioned guidelines in order to provide a valid interpretive tool for experts. In particular, a research activity focused on the bioethical, scientific, and social implications of the new recommendations is carried out in order to provide food for thought. Finally, as an emerging issue of potential impact of current guidelines, an overview on implications of compensation for egg donation is offered.

  4. Therapy with stem cells in inflammatory bowel disease

    PubMed Central

    Martínez-Montiel, María del Pilar; Gómez-Gómez, Gonzalo Jesús; Flores, Ana Isabel

    2014-01-01

    Inflammatory bowel disease (IBD) affects a part of the young population and has a strong impact upon quality of life. The underlying etiology is not known, and the existing treatments are not curative. Furthermore, a significant percentage of patients are refractory to therapy. In recent years there have been great advances in our knowledge of stem cells and their therapeutic applications. In this context, autologous hematopoietic stem cell transplantation (HSCT) has been used in application to severe refractory Crohn’s disease (CD), with encouraging results. Allogenic HSCT would correct the genetic defects of the immune system, but is currently not accepted for the treatment of IBD because of its considerable risks. Mesenchymal stem cells (MSCs) have immune regulatory and regenerative properties, and low immunogenicity (both autologous and allogenic MSCs). Based on these properties, MSCs have been used via the systemic route in IBD with promising results, though it is still too soon to draw firm conclusions. Their local administration in perianal CD is the field where most progress has been made in recent years, with encouraging results. The next few years will be decisive for defining the role of such therapy in the management of IBD. PMID:24574796

  5. Sex Differences in Maturation of Human Embryonic Stem Cell-Derived β Cells in Mice.

    PubMed

    Saber, Nelly; Bruin, Jennifer E; O'Dwyer, Shannon; Schuster, Hellen; Rezania, Alireza; Kieffer, Timothy J

    2018-04-01

    Pancreatic progenitors derived from human embryonic stem cells (hESCs) are now in clinical trials for insulin replacement in patients with type 1 diabetes. Animal studies indicate that pancreatic progenitor cells can mature into a mixed population of endocrine cells, including glucose-responsive β cells several months after implantion. However, it remains unclear how conditions in the recipient may influence the maturation and ultimately the function of these hESC-derived cells. Here, we investigated the effects of (1) pregnancy on the maturation of human stage 4 (S4) pancreatic progenitor cells and (2) the impact of host sex on both S4 cells and more mature stage 7 (S7) pancreatic endocrine cells implanted under the kidney capsule of immunodeficient SCID-beige mice. Pregnancy led to increased proliferation of endogenous pancreatic β cells, but did not appear to affect proliferation or maturation of S4 cells at midgestation. Interestingly, S4 and S7 cells both acquired glucose-stimulated C-peptide secretion in females before males. Moreover, S4 cells lowered fasting blood glucose levels in females sooner than in males, whereas the responses with S7 cells were similar. These data indicate that the host sex may impact the maturation of hESC-derived cells in vivo and that this effect can be minimized by more advanced differentiation of the cells before implantation.

  6. Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells.

    PubMed

    Babenko, Valentina A; Silachev, Denis N; Zorova, Ljubava D; Pevzner, Irina B; Khutornenko, Anastasia A; Plotnikov, Egor Y; Sukhikh, Gennady T; Zorov, Dmitry B

    2015-09-01

    The goal of the present study was to maximally alleviate the negative impact of stroke by increasing the therapeutic potency of injected mesenchymal multipotent stromal cells (MMSCs). To pursue this goal, the intercellular communications of MMSCs and neuronal cells were studied in vitro. As a result of cocultivation of MMSCs and rat cortical neurons, we proved the existence of intercellular contacts providing transfer of cellular contents from one cell to another. We present evidence of intercellular exchange with fluorescent probes specifically occupied by cytosol with preferential transfer from neurons toward MMSCs. In contrast, we observed a reversed transfer of mitochondria (from MMSCs to neural cells). Intravenous injection of MMSCs in a postischemic period alleviated the pathological indexes of a stroke, expressed as a lower infarct volume in the brain and partial restoration of neurological status. Also, MMSCs after cocultivation with neurons demonstrated more profound neuroprotective effects than did unprimed MMSCs. The production of the brain-derived neurotrophic factor was slightly increased in MMSCs, and the factor itself was redistributed in these cells after cocultivation. The level of Miro1 responsible for intercellular traffic of mitochondria was increased in MMSCs after cocultivation. We conclude that the exchange by cellular compartments between neural and stem cells improves MMSCs' protective abilities for better rehabilitation after stroke. This could be used as an approach to enhance the therapeutic benefits of stem cell therapy to the damaged brain. The idea of priming stem cells before practical use for clinical purposes was applied. Thus, cells were preconditioned by coculturing them with the targeted cells (i.e., neurons for the treatment of brain pathological features) before the transfusion of stem cells to the organism. Such priming improved the capacity of stem cells to treat stroke. Some additional minimal study will be required to develop a detailed protocol for coculturing followed by cell separation. ©AlphaMed Press.

  7. Impact of Cryopreservation on Caprine Fetal Adnexa Derived Stem Cells and Its Evaluation for Growth Kinetics, Phenotypic Characterization, and Wound Healing Potential in Xenogenic Rat Model.

    PubMed

    Somal, Anjali; Bhat, Irfan A; B, Indu; Singh, Anuj P; Panda, Bibhudatta S K; Desingu, Perumal A; Pandey, Sriti; Bharti, Mukesh K; Pal, Amar; Saikumar, Guttula; Chandra, Vikash; Sharma, Guttula Taru

    2017-08-01

    This study was conducted to know the impact of cryopreservation on caprine fetal adnexa derived mesenchymal stem cells (MSCs) on the basic stem cell characteristics. Gravid caprine uteri (2-3 months) were collected from local abattoir to derive (amniotic fluid [cAF], amniotic sac [cAS], Wharton's jelly [cWJ], and cord blood [cCB]) MSCs and expanded in vitro. Cells were cryopreserved at 3rd passage (P3) using 10% DMSO. Post-thaw viability and cellular properties were assessed. Cells were expanded to determine growth kinetics, tri-lineage differentiation, localization, and molecular expression of MSCs and pluripotency markers; thereafter, these cells were transplanted in the full-thickness (2 × 2cm 2 ) rat skin wound to determine their wound healing potential. The post-thaw (pt) growth kinetics study suggested that cWJ MSCs expanded more rapidly with faster population doubling time (PDT) than that of other fetal adnexa MSCs. The relative mRNA expression of surface antigens (CD73, CD90, and CD 105) and pluripotency markers (Oct4, KLF, and cMyc) was higher in cWJ MSCs in comparison to cAS, cAF, and cCB MSCs post-thaw. The percent wound contraction on 7th day was more than 50% for all the MSC-treated groups (pre and post-thaw), against 39.55% in the control group. On day 28th, 99% and more wound contraction was observed in cAF, cAF-pt, cAS-pt, cWJ, cWJ-pt, and cCB, MSCs with better scores for epithelization, neovascularization, and collagen characteristics at a non-significant level. It is concluded that these MSCs could be successfully cryopreserved without altering their stemness and wound healing properties. J. Cell. Physiol. 232: 2186-2200, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. I Want More and Better Cells! – An Outreach Project about Stem Cells and Its Impact on the General Population

    PubMed Central

    Varela Amaral, Sara; Forte, Teresa; Ramalho-Santos, João; Girão da Cruz, M. Teresa

    2015-01-01

    Although science and technology impact every aspect of modern societies, there is still an extensive gap between science and society, which impairs the full exercise of citizenship. In the particular case of biomedical research increased investment should be accompanied by parallel efforts in terms of public information and engagement. We have carried out a project involving the production and evaluation of educational contents focused on stem cells - illustrated newspaper chronicles, radio interviews, a comic book, and animated videos - and monitored their impact on the Portuguese population. The study of the outreach materials in a heterogeneous sample of the population suggests that they are valuable tools to disseminate scientific messages, and that this is especially true for the comic-book format. Furthermore, the data showed that clear and stimulating outreach materials, that are able to teach new concepts and to promote critical thinking, increase engagement in science at different levels, depending on the depth of the concepts involved. Additionally, these materials can influence political, social and personal attitudes toward science. These results, together with the importance attributed to scientific research in stem cells by the population sampled, validates the diffusion of such materials as a significant contribution towards an overall public understanding and engagement in contemporary science, and this strategy should thus be considered in future projects. Regardless, stringent quality control must be implemented in order to efficiently communicate accurate scientific developments, and the public stimulated in terms of finding additional sources of reliable information. PMID:26222053

  9. Realising new health technologies: problems of regulating human stem cells in the USA.

    PubMed

    Warren-Jones, Amanda

    2012-01-01

    Stem cell technology holds the promise of radically changing medicine through the provision of better disease models; the creation of tissue, cells, and organs for therapeutic uses; and the increased personalisation of healthcare. However, the degree to which any of these developments can be realised in the USA rests upon how effective the regulatory environment is in nurturing the technology to market. This article assesses the regulation in terms of its ability to minimise factors which erode the public interest in developing medical innovations (abuse) and promoting them to the market. This requires an overarching review of patent law (and how it fits with anti-trust and contract law); as well as the general regulation of innovation through ethical review, clinical trials, market authorisation, post-market oversight; government lead regulation of stem cells; and finally incorporating the impact of self-regulation by industry. From this assessment, it becomes possible to appreciate that the optimal system of regulation is reliant upon the gentle tweaking of many factors, rather than the wholesale revision of only a few. It also becomes possible to identify that individual tools of regulation have varying impacts. For example, the patent system may be the most open to abuse by individual companies, but as a regulatory framework it has the most mechanisms for dealing with such abuses. However, the biggest impact upon curtailing abuse derives from the self-regulation of the industry. Conversely, government led regulation is open to abuse from political agendas, but it has the greatest capacity to nurture innovation productively.

  10. Learn About Stem Cells

    MedlinePlus

    ... Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... Home > Learn About Stem Cells > Stem Cell Basics Cells in the human body The human body comprises ...

  11. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    PubMed

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  12. [Progress in stem cells and regenerative medicine].

    PubMed

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  13. Application of Graphene Based Nanotechnology in Stem Cells Research.

    PubMed

    Hu, Shanshan; Zeng, Yongxiang; Yang, Shuying; Qin, Han; Cai, He; Wang, Jian

    2015-09-01

    The past several years have witnessed significant advances in stem cell therapy, tissue engineering and regenerative medicine. Graphene, with its unique properties such as high electrical conductivity, elasticity and good molecule absorption, have potential for creating the next generation of biomaterials. This review summarizes the interrelationship between graphene and stem cells. The analysis of graphene when applied on mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, embryonic stem cells, periodontal ligament stem cells, human adipose-derived stem cells and cancer stem cells, and how graphene influences cell behavior and differentiation are discussed in details.

  14. A revisionist history of adult marrow stem cell biology or 'they forgot about the discard'.

    PubMed

    Quesenberry, P; Goldberg, L

    2017-08-01

    The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.

  15. In vivo evaluation of adipose- and muscle-derived stem cells as a treatment for nonhealing diabetic wounds using multimodal microscopy

    NASA Astrophysics Data System (ADS)

    Li, Joanne; Pincu, Yair; Marjanovic, Marina; Bower, Andrew J.; Chaney, Eric J.; Jensen, Tor; Boppart, Marni D.; Boppart, Stephen A.

    2016-08-01

    Impaired skin wound healing is a significant comorbid condition of diabetes, which often results in nonhealing diabetic ulcers due to poor peripheral microcirculation, among other factors. The effectiveness of the regeneration of adipose-derived stem cells (ADSCs) and muscle-derived stem cells (MDSCs) was assessed using an integrated multimodal microscopy system equipped with two-photon fluorescence and second-harmonic generation imaging. These imaging modalities, integrated in a single platform for spatial and temporal coregistration, allowed us to monitor in vivo changes in the collagen network and cell dynamics in a skin wound. Fluorescently labeled ADSCs and MDSCs were applied topically to the wound bed of wild-type and diabetic (db/db) mice following punch biopsy. Longitudinal imaging demonstrated that ADSCs and MDSCs provided remarkable capacity for improved diabetic wound healing, and integrated microscopy revealed a more organized collagen remodeling in the wound bed of treated mice. The results from this study verify the regenerative capacity of stem cells toward healing and, with multimodal microscopy, provide insight regarding their impact on the skin microenvironment. The optical method outlined in this study, which has the potential for in vivo human use, may optimize the care and treatment of diabetic nonhealing wounds.

  16. Stem cell collection in unmanipulated HLA-haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised blood and bone marrow for patients with haematologic malignancies: the impact of donor characteristics and procedural settings.

    PubMed

    Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y

    2010-06-01

    Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.

  17. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    PubMed

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  18. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  19. Immune reconstitution after allogeneic hematopoietic stem cell transplantation in children: a single institution study of 59 patients.

    PubMed

    Kim, Hyun O; Oh, Hyun Jin; Lee, Jae Wook; Jang, Pil-Sang; Chung, Nack-Gyun; Cho, Bin; Kim, Hack-Ki

    2013-01-01

    Lymphocyte subset recovery is an important factor that determines the success of hematopoietic stem cell transplantation (HSCT). Temporal differences in the recovery of lymphocyte subsets and the factors influencing this recovery are important variables that affect a patient's post-transplant immune reconstitution, and therefore require investigation. The time taken to achieve lymphocyte subset recovery and the factors influencing this recovery were investigated in 59 children who had undergone HSCT at the Department of Pediatrics, The Catholic University of Korea Seoul St. Mary's Hospital, and who had an uneventful follow-up period of at least 1 year. Analyses were carried out at 3 and 12 months post-transplant. An additional study was performed 1 month post-transplant to evaluate natural killer (NK) cell recovery. The impact of pre- and post-transplant variables, including diagnosis of Epstein-Barr virus (EBV) DNAemia posttransplant, on lymphocyte recovery was evaluated. THE LYMPHOCYTE SUBSETS RECOVERED IN THE FOLLOWING ORDER: NK cells, cytotoxic T cells, B cells, and helper T cells. At 1 month post-transplant, acute graft-versus-host disease was found to contribute significantly to the delay of CD16(+)/56(+) cell recovery. Younger patients showed delayed recovery of both CD3(+)/CD8(+) and CD19(+) cells. EBV DNAemia had a deleterious impact on the recovery of both CD3(+) and CD3(+)/CD4(+) lymphocytes at 1 year post-transplant. In our pediatric allogeneic HSCT cohort, helper T cells were the last subset to recover. Younger age and EBV DNAemia had a negative impact on the post-transplant recovery of T cells and B cells.

  20. The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker.

    PubMed

    Krebsbach, Paul H; Villa-Diaz, Luis G

    2017-08-01

    Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.

  1. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes.

    PubMed

    Squillaro, Tiziana; Antonucci, Ivana; Alessio, Nicola; Esposito, Anna; Cipollaro, Marilena; Melone, Mariarosa Anna Beatrice; Peluso, Gianfranco; Stuppia, Liborio; Galderisi, Umberto

    2017-12-01

    Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity. © 2017 Wiley Periodicals, Inc.

  2. Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to Mesenchymal Stem Cells

    PubMed Central

    Rekittke, Nadine E.; Ang, Meidjie; Rawat, Divya; Khatri, Rahul

    2016-01-01

    Type 1 diabetes is an autoimmune disease resulting in the permanent destruction of pancreatic islets. Islet transplantation to portal vein provides an approach to compensate for loss of insulin producing cells. Clinical trials demonstrated that even partial islet graft function reduces severe hypoglycemic events in patients. However, therapeutic impact is restrained due to shortage of pancreas organ donors and instant inflammation occurring in the hepatic environment of the graft. We summarize on what is known about regenerative therapy in type 1 diabetes focusing on pancreatic islet transplantation and new avenues of cell substitution. Metabolic pathways and energy production of transplanted cells are required to be balanced and protection from inflammation in their intravascular bed is desired. Mesenchymal stem cells (MSCs) have anti-inflammatory features, and so they are interesting as a therapy for type 1 diabetes. Recently, they were reported to reduce hyperglycemia in diabetic rodents, and they were even discussed as being turned into endodermal or pancreatic progenitor cells. MSCs are recognized to meet the demand of an individual therapy not raising the concerns of embryonic or induced pluripotent stem cells for therapy. PMID:27047547

  3. EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling

    PubMed Central

    Arasada, Rajeswara Rao; Amann, Joseph M.; Rahman, Mohammad A; Huppert, Stacey S.; Carbone, David P.

    2014-01-01

    Mutations in the epidermal growth factor receptor (EGFR) are the most common actionable genetic abnormalities yet discovered in lung cancer. However, targeting these mutations with kinase inhibitors is not curative in advanced disease and has yet to demonstrate an impact on potentially curable, early-stage disease, with some data suggesting adverse outcomes. Here, we report that treatment of EGFR-mutated lung cancer cell lines with erlotinib, while showing robust cell death, enriches the ALDH+ stem-like cells through EGFR-dependent activation of Notch3. Additionally, we demonstrate that erlotinib treatment increases the clonogenicity of lung cancer cells in a sphere-forming assay, suggesting increased stem-like cell potential. We demonstrate that inhibition of EGFR kinase activity leads to activation of Notch transcriptional targets in a gamma secretase inhibitor sensitive manner and causes Notch activation. leading to an increase in ALDH high+ cells. We also find a kinase-dependent physical association between the Notch3 and EGFR receptors and tyrosine phosphorylation of Notch3. This could explain the worsened survival observed in some studies of erlotinib treatment at early-stage disease, and suggests that specific dual targeting might overcome this adverse effect. PMID:25125655

  4. Validation of high-throughput single cell analysis methodology.

    PubMed

    Devonshire, Alison S; Baradez, Marc-Olivier; Morley, Gary; Marshall, Damian; Foy, Carole A

    2014-05-01

    High-throughput quantitative polymerase chain reaction (qPCR) approaches enable profiling of multiple genes in single cells, bringing new insights to complex biological processes and offering opportunities for single cell-based monitoring of cancer cells and stem cell-based therapies. However, workflows with well-defined sources of variation are required for clinical diagnostics and testing of tissue-engineered products. In a study of neural stem cell lines, we investigated the performance of lysis, reverse transcription (RT), preamplification (PA), and nanofluidic qPCR steps at the single cell level in terms of efficiency, precision, and limit of detection. We compared protocols using a separate lysis buffer with cell capture directly in RT-PA reagent. The two methods were found to have similar lysis efficiencies, whereas the direct RT-PA approach showed improved precision. Digital PCR was used to relate preamplified template copy numbers to Cq values and reveal where low-quality signals may affect the analysis. We investigated the impact of calibration and data normalization strategies as a means of minimizing the impact of inter-experimental variation on gene expression values and found that both approaches can improve data comparability. This study provides validation and guidance for the application of high-throughput qPCR workflows for gene expression profiling of single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement

    DTIC Science & Technology

    2013-10-01

    the brightest GFP+ cells by flow cytometry and compared these with GFP- cells (Figure 1A-C). The transfected cells showed robust GFP expression even...al., 2011), but no normative data were provided on SGN loss by cochlear turn and, in contrast to our results, those authors reported no impact on...A) Flow cytometry analysis to identify GFP+ and GFP- cells. The large cluster of cells on the left represent the GFP- cells and exhibited similar

  6. Reprogramming of non-genomic estrogen signaling by the stemness factor SOX2 enhances the tumor-initiating capacity of breast cancer cells.

    PubMed

    Vazquez-Martin, Alejandro; Cufí, Sílvia; López-Bonet, Eugeni; Corominas-Faja, Bruna; Cuyàs, Elisabet; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Angel G; Menendez, Javier A

    2013-11-15

    The restoration of pluripotency circuits by the reactivation of endogenous stemness factors, such as SOX2, may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis, i.e., the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state, adds new layers of complexity to cancer biology, because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis, we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka's nuclear reprogramming technology in the estrogen receptor α (ERα)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state, such as strong aldehyde dehydrogenase activity, as detected by ALDEFLUOR, and overexpression of the SSEA-4 and CD44 breast CSC markers, the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor α (ERα), which is a pivotal integrator of the genomic and nongenomic E 2/ERα signaling pathways, drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover, SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells, and the highest levels of phospho-Ser118-ERα occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E 2/ERα signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression, i.e., SOX2 can promote non-genomic E 2 signaling that leads to nuclear phospho-Ser118-ERα, which ultimately exacerbates genomic ER signaling in response to E 2. Because E 2 stimulation has been recently shown to enhance breast tumor-initiating cell survival by downregulating miR-140, which targets SOX2, the establishment of a bidirectional cross-talk interaction between the stem cell self-renewal regulator, SOX2, and the local and systemic ability of E 2 to increase breast CSC activity may have profound implications for the development of new CSC-directed strategies for breast cancer prevention and therapy.

  7. Drosophila's contribution to stem cell research.

    PubMed

    Singh, Gyanesh

    2015-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  8. Drosophila's contribution to stem cell research

    PubMed Central

    Singh, Gyanesh

    2016-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila. PMID:26180635

  9. Current overview on dental stem cells applications in regenerative dentistry.

    PubMed

    Bansal, Ramta; Jain, Aditya

    2015-01-01

    Teeth are the most natural, noninvasive source of stem cells. Dental stem cells, which are easy, convenient, and affordable to collect, hold promise for a range of very potential therapeutic applications. We have reviewed the ever-growing literature on dental stem cells archived in Medline using the following key words: Regenerative dentistry, dental stem cells, dental stem cells banking, and stem cells from human exfoliated deciduous teeth. Relevant articles covering topics related to dental stem cells were shortlisted and the facts are compiled. The objective of this review article is to discuss the history of stem cells, different stem cells relevant for dentistry, their isolation approaches, collection, and preservation of dental stem cells along with the current status of dental and medical applications.

  10. Bone Marrow Mesenchymal Stem Cells Enhance the Differentiation of Human Switched Memory B Lymphocytes into Plasma Cells in Serum-Free Medium

    PubMed Central

    Gervais-St-Amour, Catherine

    2016-01-01

    The differentiation of human B lymphocytes into plasma cells is one of the most stirring questions with regard to adaptive immunity. However, the terminal differentiation and survival of plasma cells are still topics with much to be discovered, especially when targeting switched memory B lymphocytes. Plasma cells can migrate to the bone marrow in response to a CXCL12 gradient and survive for several years while secreting antibodies. In this study, we aimed to get closer to niches favoring plasma cell survival. We tested low oxygen concentrations and coculture with mesenchymal stem cells (MSC) from human bone marrow. Besides, all cultures were performed using an animal protein-free medium. Overall, our model enables the generation of high proportions of CD38+CD138+CD31+ plasma cells (≥50%) when CD40-activated switched memory B lymphocytes were cultured in direct contact with mesenchymal stem cells. In these cultures, the secretion of CXCL12 and TGF-β, usually found in the bone marrow, was linked to the presence of MSC. The level of oxygen appeared less impactful than the contact with MSC. This study shows for the first time that expanded switched memory B lymphocytes can be differentiated into plasma cells using exclusively a serum-free medium. PMID:27872867

  11. A Citrus bergamia Extract Decreases Adipogenesis and Increases Lipolysis by Modulating PPAR Levels in Mesenchymal Stem Cells from Human Adipose Tissue

    PubMed Central

    Lo Furno, Debora; Avola, Rosanna; Bonina, Francesco; Mannino, Giuliana

    2016-01-01

    The aim of this research was to assess the impact of a well-characterized extract from Citrus bergamia juice on adipogenesis and/or lipolysis using mesenchymal stem cells from human adipose tissue as a cell model. To evaluate the effects on adipogenesis, some cell cultures were treated with adipogenic medium plus 10 or 100 μg/mL of extract. To determine the properties on lipolysis, additional mesenchymal stem cells were cultured with adipogenic medium for 14 days and after this time added with Citrus bergamia for further 14 days. To verify adipogenic differentiation, oil red O staining at 7, 14, 21, and 28 days was performed. Moreover, the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), adipocytes fatty acid-binding protein (A-FABP), adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), monoglyceride lipase (MGL), 5′-adenosine monophosphate-activated protein kinase (AMPK)α1/2, and pAMPKα1/2 was evaluated by Western blot analysis and the release of glycerol by colorimetric assay. Citrus bergamia extract suppressed the accumulation of intracellular lipids in mesenchymal stem cells during adipogenic differentiation and promoted lipolysis by repressing the expression of adipogenic genes and activating lipolytic genes. Citrus bergamia extract could be a useful natural product for improving adipose mobilization in obesity-related disorders. PMID:27403151

  12. The longest telomeres: a general signature of adult stem cell compartments

    PubMed Central

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  13. Defining "research" in the US and EU: contrast of Sherley v. Sebelius and Brüstle v. Greenpeace rulings.

    PubMed

    Cuchiara, Maude L; Lawford Davies, James; Matthews, Kirstin R W

    2013-12-01

    In 2011, courts in both the United States and European Union handed down decisions related to human embryonic stem cell (hESC) research. In both cases, the definition of research was challenged - but the two courts reached different opinions. In the US case, Sherley v. Sebelius, research was defined as a specific project. The US District Court of Appeals did not link research utilizing existing hESC lines to the act of destroying a human embryo in order to create the line, which is not eligible for federal funding. In contrast, the Court of Justice of the European Union in the Brüstle v. Greenpeace case determined inventions related to hESCs were unpatentable since they resulted from research that involved the destruction of human embryos. In this article, we will compare and contrast these two court cases, the politics related to the rulings, and their impacts. We find that these cases significantly impacted current research and have the potential to negatively impact future stem cell research and development. However, the long-term effects of the cases remain to be seen, and there is a chance that these cases could actually strengthen this area of science. Ultimately, we feel that stem cell polices must be straightforward and supported by the public to prevent courts and judges from making decisions on science, which are disruptive to the progression of research.

  14. Efficacy of stem cell in improvement of left ventricular function in acute myocardial infarction - MI3 Trial

    PubMed Central

    Nair, Velu; Madan, Hemant; Sofat, Sunil; Ganguli, Prosenjit; Jacob, M.J.; Datta, Rajat; Bharadwaj, Prashant; Sarkar, R.S.; Pandit, A.J.; Nityanand, Soniya; Goel, Pravin K.; Garg, Naveen; Gambhir, Sanjay; George, Paul V.; Chandy, Sunil; Mathews, Vikram; George, Oomen K.; Talwar, K.K.; Bahl, Ajay; Marwah, Neelam; Bhatacharya, Anish; Bhargava, Balram; Airan, Balram; Mohanty, Sujata; Patel, Chetan D.; Sharma, Alka; Bhatnagar, Shinjini; Mondal, A.; Jose, Jacob; Srivastava, A.

    2015-01-01

    Background & objectives: Acute myocardial infarction (AMI) is characterized by irreparable and irreversible loss of cardiac myocytes. Despite major advances in the management of AMI, a large number of patients are left with reduced left ventricular ejection fraction (LVEF), which is a major determinant of short and long term morbidity and mortality. A review of 33 randomized control trials has shown varying improvement in left ventricular (LV) function in patients receiving stem cells compared to standard medical therapy. Most trials had small sample size and were underpowered. This phase III prospective, open labelled, randomized multicenteric trial was undertaken to evaluate the efficacy in improving the LVEF over a period of six months, after injecting a predefined dose of 5-10 × 108 autologous mononuclear cells (MNC) by intra-coronary route, in patients, one to three weeks post ST elevation AMI, in addition to the standard medical therapy. Methods: In this phase III prospective, multicentric trial 250 patients with AMI were included and randomized into stem cell therapy (SCT) and non SCT groups. All patients were followed up for six months. Patients with AMI having left ventricular ejection fraction (LVEF) of 20-50 per cent were included and were randomized to receive intracoronary stem cell infusion after successfully completing percutaneous coronary intervention (PCI). Results: On intention-to-treat analysis the infusion of MNCs had no positive impact on LVEF improvement of ≥ 5 per cent. The improvement in LVEF after six months was 5.17 ± 8.90 per cent in non SCT group and 4.82 ± 10.32 per cent in SCT group. The adverse effects were comparable in both the groups. On post hoc analysis it was noted that the cell dose had a positive impact when infused in the dose of ≥ 5 × 108(n=71). This benefit was noted upto three weeks post AMI. There were 38 trial deviates in the SCT group which was a limitation of the study. Interpretation & conclusions: Infusion of stem cells was found to have no benefit in ST elevation AMI. However, the procedure was safe. A possible benefit was seen when the predefined cell dose was administered which was noted upto three weeks post AMI, but this was not significant and needs confirmation by larger trials. PMID:26354213

  15. In vitro expansion of Lin{sup +} and Lin{sup −} mononuclear cells from human peripheral blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norhaiza, H. Siti; Zarina, Z. A. Intan; Hisham, Z. A. Shahrul

    2013-11-27

    Haematopoietic stem cells (HSCs) are used in the therapy of blood disorders due to the ability of these cells to reconstitute haematopoietic lineage cells when transplanted into myeloablative recipients. However, substantial number of cells is required in order for the reconstitution to take place. Since HSCs present in low frequency, larger number of donor is required to accommodate the demand of transplantable HSCs. Therefore, in vitro expansion of HSCs will have profound impact on clinical purposes. The aim of this study was to expand lineage negative (Lin{sup −}) stem cells from human peripheral blood. Total peripheral blood mononuclear cells (PBMNCs)more » were fractionated from human blood by density gradient centrifugation. Subsequently, PBMNCs were subjected to magnetic assisted cell sorter (MACS) which depletes lineage positive (Lin{sup +}) mononuclear cells expressing lineage positive markers such as CD2, CD3, CD11b, CD14, CD15, CD16, CD19, CD56, CD123, and CD235a to obtained Lin{sup −} cell population. The ability of Lin{sup +} and Lin{sup −} to survive in vitro was explored by culturing both cell populations in complete medium consisting of Alpha-Minimal Essential Medium (AMEM) +10% (v/v) Newborn Calf Serum (NBCS)+ 2% (v/v) pen/strep. In another experiment, Lin{sup +} and Lin{sup −} were cultured with complete medium supplemented with 10ng/mL of the following growth factors: stem cell factor (SCF), interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF), 2IU/mL of Erythropoietin (Epo) and 20ng/mL of IL-6. Three samples were monitored in static culture for 22 days. The expansion potential was assessed by the number of total viable cells, counted by trypan blue exclusion assay. It was found that Lin{sup +} mononuclear cells were not able to survive either in normal proliferation medium or proliferation medium supplemented with cytokines. Similarly, Lin{sup −} stem cells were not able to survive in proliferation medium however, addition of cytokines into the proliferation medium support Lin{sup −} stem cells for at least 18 days. The Lin{sup −} stem cells started to response to the cytokines added as early as Day 2 of culture. It is concluded that Lin{sup −} stem cells can be expanded in vitro by culturing in proliferation medium supplemented with cytokines.« less

  16. Context clues: the importance of stem cell-material interactions

    PubMed Central

    Murphy, William L.

    2014-01-01

    Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691

  17. Cancer stem cells and differentiation therapy.

    PubMed

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  18. Clinical trials for stem cell transplantation: when are they needed?

    PubMed

    Van Pham, Phuc

    2016-04-27

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.

  19. Impact of the Affordable Care Act on stem cell transplantation.

    PubMed

    Farnia, Stephanie; Gedan, Alicia; Boo, Michael

    2014-03-01

    The Patient Protection and Affordable Care Act, signed into law in 2010, will have a wide-reaching impact on the health care system in the United States when it is fully implemented in 2014. Patients will see increased access to care coupled with new insurance coverage protections as well as a minimum set of benefits mandated in each state known as essential health benefits. Providers are likely to see new forms of payment reform, particularly in the Medicare program, and narrower commercial provider networks. In addition, the composition of the health insurance market will broaden with the introduction of health insurance exchanges and expanded Medicaid populations in many states. Furthermore, the Patient Protection and Affordable Care Act calls for quality initiatives such as comparative effectiveness research to increase effective, appropriate and high-value care. This paper will review the main provisions of the Patient Protection and Affordable Care Act with specific attention to their impact on the field of Stem Cell Transplantation.

  20. Stem cells - biological update and cell therapy progress

    PubMed Central

    GIRLOVANU, MIHAI; SUSMAN, SERGIU; SORITAU, OLGA; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; MIHU, CARMEN MIHAELA

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine. PMID:26609255

  1. Substance P enhances proliferation and paracrine potential of adipose-derived stem cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Suna; Piao, Jiyuan; Son, Youngsook

    Stem cells have tremendous promise to treat intractable diseases. Notably, adipose-derived stem cells (ADSCs) are actively being investigated because of ease of sampling and high repopulation capacity in vitro. ADSCs can exert a therapeutic effect through differentiation and paracrine potential, and these actions have been proven in many diseases, including cutaneous and inflammatory diseases. Transplantation of ADSCs necessitates therapeutic quantities and thus, long term ex vivo culture of ADSCs. However, this procedure can impair the activity of ADSCs and provoke cellular senescence, leading to low efficacy in vivo. Accordingly, strategies to restore cellular activity and inhibit senescence of stem cells during ex vivo culturemore » are needed for stem cell-based therapies. This study evaluated a potential supplementary role of Substance P (SP) in ADSC ex vivo culture. After confirming that the ADSC cell cycle was damaged by passage 6 (p6), ADSCs at p6 were cultured with SP, and their proliferation rates, cumulative cell numbers, cytokine profiles, and impact on T/endothelial cells were assessed. Long-term culture weakened proliferation ability and secretion of the cytokines, transforming growth factor-beta 1 (TGF-beta1), vascular endothelial growth factor (VEGF), and stromal cell derived factor-1 alpha (SDF-1alpha) in ADSCs. However, SP treatment reduced the population doubling time (PDT), enabling gain of a sufficient number of ADSCs at early passages. In addition, SP restored cytokine secretion, enhancing the ADSC-mediated paracrine effect on T cell and human umbilical vein endothelial cells (HUVECs). Taken together, these results suggest that SP can retain the therapeutic effect of ADSCs by elevating their proliferative and paracrine potential in ex vivo culture. - Highlights: • Long-term culture of ADSCs leads to cell senescence. • Paracrine potential of ADSC decreases as passage number increases. • SP enhances the weakened proliferation capacity of ADSCs. • SP stimulates cytokine secretion from ADSC with impaired paracrine potential.« less

  2. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals

    PubMed Central

    Kumar, Dharmendra; Talluri, Thirumala R; Anand, Taruna; Kues, Wilfried A

    2015-01-01

    Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals. PMID:25815117

  3. Impact of human cytomegalovirus infection UL55-nested polymerase chain reaction method in hematopoietic stem cell transplant donors and recipients.

    PubMed

    Banan, A A; Yaghobi, R; Ramzi, M; Mehrabani, D

    2009-09-01

    Human cytomegalovirus (HCMV) is one of the most important and critical viral causes of graft rejection among hematopoietic stem cell transplant (HSCT) recipients. Monitoring of this viral infection has a critical role in the management of HSCT clinical complications. In this retrospective cohort, blood (plasma and buffy coat) and urine samples were collected from 110 HSCT patients and 95 donors pretransplantation and weekly for 100 days posttransplantation. An HCMV-optimized UL55-nested polymerase chain reaction (PCR) method was used to detect HCMV infection. Genotyping of the HCMV UL55 gene was performed for all UL55-nested, PCR-positive samples. HSCT donor and recipient laboratory and clinical data were statistically analyzed using SPSS version 15 software. UL55-nested, PCR-positive results were obtained in 3540/4950 (71.5%), 3634/4950 (73.4%), and 3292/4950 (66.5%) of these plasma, buffy coat, and urine samples, respectively. Twenty-five percent of transplant donors were infected with HCMV. An increase in HCMV infection was observed from pre- to post-HSCT conditions. Detection of the gB2 UL55 genotype in most transplant patient samples suggested the need to examine the possible impact of HCMV UL55 genotypes and HCMV infections among stem cell transplant recipients.

  4. A novel Fizzy/Cdc20-dependent mechanism suppresses necrosis in neural stem cells

    PubMed Central

    Kuang, Chaoyuan; Golden, Krista L.; Simon, Claudio R.; Damrath, John; Buttitta, Laura; Gamble, Caitlin E.; Lee, Cheng-Yu

    2014-01-01

    Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed. From a screen, we identified two novel loss-of-function alleles of the Cdc20/fizzy (fzy) gene that lead to premature brain neuroblast loss without perturbing cell proliferation in other diploid cell types. Fzy is an evolutionarily conserved regulator of anaphase promoting complex/cyclosome (APC/C). Neuroblasts carrying the novel fzy allele or exhibiting reduced APC/C function display hallmarks of necrosis. By contrast, neuroblasts overexpressing the non-degradable form of canonical APC/C substrates required for cell cycle progression undergo mitotic catastrophe. These data strongly suggest that Fzy can elicit a novel pro-survival function of APC/C by suppressing necrosis. Neuroblasts experiencing catastrophic cellular stress, or overexpressing p53, lose Fzy expression and undergo necrosis. Co-expression of fzy suppresses the death of these neuroblasts. Consequently, attenuation of the Fzy-dependent survival mechanism functions downstream of catastrophic cellular stress and p53 to eliminate neuroblasts by necrosis. Strategies that target the Fzy-dependent survival mechanism might lead to the discovery of new treatments or complement the pre-existing therapies to eliminate apoptosis-resistant cancer stem cells by necrosis. PMID:24598157

  5. Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement.

    PubMed

    Kellner, Manuela; Steindorff, Marina M; Strempel, Jürgen F; Winkel, Andreas; Kühnel, Mark P; Stiesch, Meike

    2014-06-01

    Autologous therapy via stem cell-based tissue regeneration is an aim to rebuild natural teeth. One option is the use of adult stem cells from the dental pulp (DPSCs), which have been shown to differentiate into several types of tissue in vitro and in vivo, especially into tooth-like structures. DPSCs are mainly isolated from the dental pulp of third molars routinely extracted for orthodontic reasons. Due to the extraction of third molars at various phases of life, DPSCs are isolated at different developmental stages of the tooth. The present study addressed the question whether DPSCs from patients of different ages were similar in their growth characteristics with respect to the stage of tooth development. Therefore DPSCs from third molars of 12-30 year-old patients were extracted, and growth characteristics, e.g. doubling time and maximal cell division potential were analysed. In addition, pulp and hard dental material weight were recorded. Irrespective of the age of patients almost all isolated cells reached 40-60 generations with no correlation between maximal cell division potential and patient age. Cells from patients <22 years showed a significantly faster doubling time than the cells from patients ≥22 years. The age of patients at the time of stem cell isolation is not a crucial factor concerning maximal cell division potential, but does have an impact on the doubling time. However, differences in individuals regarding growth characteristics were more pronounced than age-dependent differences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Establishment of mouse expanded potential stem cells

    PubMed Central

    Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao

    2018-01-01

    Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987

  7. The Methods and Mechanisms to Differentiate Endothelial-Like Cells and Smooth Muscle Cells from Mesenchymal Stem Cells for Vascularization in Vaginal Reconstruction.

    PubMed

    Zhang, Hua; Zhang, Jingkun; Huang, Xianghua; Li, Yanan

    2018-06-01

    Endothelial cells and smooth muscle cells (SMCs) are important aspects of vascularization in vaginal reconstruction. Research has confirmed that mesenchymal stem cells could differentiate into endothelial-like cells and SMCs. But the methods were more complicated and the mechanism was unknown. In the current study, we induced the bone mesenchymal stem cells (BMSCs) to differentiate into endothelial-like cells and SMCs in vitro by differentiation medium and investigated the effect of Wnt/β-catenin signaling on the differentiation process of BMSCs. Results showed that the hypoxic environment combined with VEGF and bFGF could induce increased expression of endothelial-like cells markers VEGFR1, VEGFR2, and vWF. The SMCs derived from BMSCs induced by TGF-β1 and PDGF-AB significantly expressed SMC markers SMMHC11 and α-SMA. The data also showed that activation of Wnt/β-catenin signaling could promote the differentiation of BMSCs into endothelial-like cells and SMCs. Thus, we established endothelial-like cells and SMCs in vitro by more simple methods, presented the important role of hypoxic environment on the differentiation of BMSCs into endothelial-like cells, and confirmed that the Wnt/β-catenin signaling pathway has a positive impact on the differentiation of BMSCs into endothelial-like cells and SMCs. This is important for vascular reconstruction.

  8. New insights into transfusion-related iron toxicity: Implications for the oncologist.

    PubMed

    Porter, John B; de Witte, Theo; Cappellini, M Domenica; Gattermann, Norbert

    2016-03-01

    Iron overload is a potentially life-threatening consequence of multiple red-blood-cell transfusions. Here, we review factors affecting excess iron distribution and its damage to specific tissues, as well as mechanisms of oncogenesis by iron. Although consequences of transfusional iron overload are best described in thalassemia major and related inherited anemias, they are increasingly recognized in acquired conditions, such as myelodysplastic syndromes (MDS). Iron overload in MDS not only impacts on certain tissues, but may affect the clonal evolution of MDS through generation of reactive oxygen species. Iron overload may also influence hematopoietic-stem-cell-transplantation outcomes. Novel MRI methods for assessing body iron have impacted significantly on outcome in inherited anemias by allowing monitoring of iron burden and iron chelation therapy. This approach is increasingly being used in MDS and stem-cell-transplant procedures. Knowledge gained from managing transfusional iron overload in inherited anemias may be translated to general oncology, with potential for improved patient outcomes. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells.

    PubMed

    Ulbrich, Claudia; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Magnusson, Nils; Infanger, Manfred; Grosse, Jirka; Eilles, Christoph; Sundaresan, Alamelu; Grimm, Daniela

    2014-01-01

    How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.

  10. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts

    PubMed Central

    Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.

    2015-01-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715

  11. The Impact of Simulated and Real Microgravity on Bone Cells and Mesenchymal Stem Cells

    PubMed Central

    Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Magnusson, Nils; Infanger, Manfred; Grosse, Jirka; Eilles, Christoph

    2014-01-01

    How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering. PMID:25110709

  12. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    PubMed Central

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032

  13. Galunisertib suppresses the staminal phenotype in hepatocellular carcinoma by modulating CD44 expression.

    PubMed

    Rani, Bhavna; Malfettone, Andrea; Dituri, Francesco; Soukupova, Jitka; Lupo, Luigi; Mancarella, Serena; Fabregat, Isabel; Giannelli, Gianluigi

    2018-03-07

    Cancer stem cells (CSCs) niche in the tumor microenvironment is responsible for cancer recurrence and therapy failure. To better understand its molecular and biological involvement in hepatocellular carcinoma (HCC) progression, one can design more effective therapies and tailored then to individual patients. While sorafenib is currently the only approved drug for first-line treatment of advanced stage HCC, its role in modulating the CSC niche is estimated to be small. By contrast, transforming growth factor (TGF)-β pathway seems to influence the CSC and thus may impact hallmarks of HCC, such as liver fibrosis, cirrhosis, and tumor progression. Therefore, blocking this pathway may offer an appealing and druggable target. In our study, we have used galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGFβI/ALK5) activation, currently under clinical investigation in HCC patients. Because the drug resistance is mainly mediated by CSCs, we tested the effects of galunisertib on stemness phenotype in HCC cells to determine whether TGF-β signaling modulates CSC niche and drug resistance. Galunisertib modulated the expression of stemness-related genes only in the invasive (HLE and HLF) HCC cells inducing a decreased expression of CD44 and THY1. Furthermore, galunisertib also reduced the stemness-related functions of invasive HCC cells decreasing the formation of colonies, liver spheroids and invasive growth ability. Interestingly, CD44 loss of function mimicked the galunisertib effects on HCC stemness-related functions. Galunisertib treatment also reduced the expression of stemness-related genes in ex vivo human HCC specimens. Our observations are the first evidence that galunisertib effectiveness overcomes stemness-derived aggressiveness via decreased expression CD44 and THY1.

  14. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy.

    PubMed

    Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo Mario; Cuda, Giovanni

    2017-11-28

    Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm -1 , which is enriched in human induced pluripotent stem cells. Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  15. Impact of the revised International Prognostic Scoring System, cytogenetics and monosomal karyotype on outcome after allogeneic stem cell transplantation for myelodysplastic syndromes and secondary acute myeloid leukemia evolving from myelodysplastic syndromes: a retrospective multicenter study of the European Society of Blood and Marrow Transplantation

    PubMed Central

    Koenecke, Christian; Göhring, Gudrun; de Wreede, Liesbeth C.; van Biezen, Anja; Scheid, Christof; Volin, Liisa; Maertens, Johan; Finke, Jürgen; Schaap, Nicolaas; Robin, Marie; Passweg, Jakob; Cornelissen, Jan; Beelen, Dietrich; Heuser, Michael; de Witte, Theo; Kröger, Nicolaus

    2015-01-01

    The aim of this study was to determine the impact of the revised 5-group International Prognostic Scoring System cytogenetic classification on outcome after allogeneic stem cell transplantation in patients with myelodysplastic syndromes or secondary acute myeloid leukemia who were reported to the European Society for Blood and Marrow Transplantation database. A total of 903 patients had sufficient cytogenetic information available at stem cell transplantation to be classified according to the 5-group classification. Poor and very poor risk according to this classification was an independent predictor of shorter relapse-free survival (hazard ratio 1.40 and 2.14), overall survival (hazard ratio 1.38 and 2.14), and significantly higher cumulative incidence of relapse (hazard ratio 1.64 and 2.76), compared to patients with very good, good or intermediate risk. When comparing the predictive performance of a series of Cox models both for relapse-free survival and for overall survival, a model with simplified 5-group cytogenetics (merging very good, good and intermediate cytogenetics) performed best. Furthermore, monosomal karyotype is an additional negative predictor for outcome within patients of the poor, but not the very poor risk group of the 5-group classification. The revised International Prognostic Scoring System cytogenetic classification allows patients with myelodysplastic syndromes to be separated into three groups with clearly different outcomes after stem cell transplantation. Poor and very poor risk cytogenetics were strong predictors of poor patient outcome. The new cytogenetic classification added value to prediction of patient outcome compared to prediction models using only traditional risk factors or the 3-group International Prognostic Scoring System cytogenetic classification. PMID:25552702

  16. A simple and efficient method for generating Nurr1-positive neuronal stem cells from human wisdom teeth (tNSC) and the potential of tNSC for stroke therapy.

    PubMed

    Yang, Kuo-Liang; Chen, Mei-Fang; Liao, Chia-Hsin; Pang, Cheng-Yoong; Lin, Py-Yu

    2009-01-01

    We have isolated human neuronal stem cells from exfoliated third molars (wisdom teeth) using a simple and efficient method. The cultured neuronal stem cells (designated tNSC) expressed embryonic and adult stem cell markers, markers for chemotatic factor and its corresponding ligand, as well as neuron proteins. The tNSC expressed genes of Nurr1, NF-M and nestin. They were used to treat middle cerebral artery occlusion (MCAO) surgery-inflicted Sprague-Dawley (SD) rats to assess their therapeutic potential for stroke therapy. For each tNSC cell line, a normal human impacted wisdom tooth was collected from a donor with consent. The tooth was cleaned thoroughly with normal saline. The molar was vigorously shaken or vortexed for 30 min in a 50-mL conical tube with 15-20mL normal saline. The mixture of dental pulp was collected by centrifugation and cultured in a 25-cm(2) tissue culture flask with 4-5mL Medium 199 supplemented with 5-10% fetal calf serum. The tNSC harvested from tissue culture, at a concentration of 1-2x10(5), were suspended in 3 microL saline solution and injected into the right dorsolateral striatum of experimental animals inflicted with MCAO. Behavioral measurements of the tNSC-treated SD rats showed a significant recovery from neurologic dysfunction after MCAO treatment. In contrast, a sham group of SD rats failed to recover from the surgery. Immunohistochemistry analysis of brain sections of the tNSC-treated SD rats showed survival of the transplanted cells. These results suggest that adult neuronal stem cells may be procured from third molars, and tNSC thus cultivated have potential for treatment of stroke-inflicted rats.

  17. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors.

    PubMed

    Kim, Eunhye; Hwang, Seon-Ung; Yoo, Hyunju; Yoon, Junchul David; Jeon, Yubyeol; Kim, Hyunggee; Jeung, Eui-Bae; Lee, Chang-Kyu; Hyun, Sang-Hwan

    2016-03-01

    The establishment of porcine embryonic stem cells (ESCs) would have great impact in biomedical studies and preclinical trials through their use in genetic engineering. However, authentic porcine ESCs have not been established until now. In this study, a total of seven putative ESC lines were derived from porcine embryos of various origins, including in vitro fertilization, parthenogenetic activation, and, in particular, induced pluripotent stem (iPS) nuclear transfer (NT) from a donor cell with induced pluripotent stem cells (iPSCs). To characterize these cell lines, several assays including an assessment of intensive alkaline phosphatase activity, karyotyping, embryoid body formation, expression analysis of the pluripotency-associated markers, and the three germ layerassociated markers were performed. Based on quantitative polymerase chain reaction, the expression levels of REX1 and FGFR2 in iPS-NT lines were higher than those of cells of other origins. Additionally, only iPS-NT lines showed multiple aberrant patterns of nuclear foci elucidated by immunofluorescence staining of H3K27me3 as a marker of the state of X chromosome inactivation and a less mature form of mitochondria like naive ESCs, by transmission electron microscopy. Together, these data suggested that established putative porcine ESC lines generally exhibited a primed pluripotent state, like human ESCs. However, iPS-NT lines have especially unique characteristics distinct from other origins because they have more epigenetic instability and naive-like mitochondrial morphology than other putative ESC lines. This is the first study to establish and characterize the iPSC-derived putative ESC lines and compare them with other lines derived from different origins in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.

    PubMed

    Menaa, Farid; Abdelghani, Adnane; Menaa, Bouzid

    2015-12-01

    The discovery of the interesting intrinsic properties of graphene, a two-dimensional nanomaterial, has boosted further research and development for various types of applications from electronics to biomedicine. During the last decade, graphene and several graphene-derived materials, such as graphene oxide, carbon nanotubes, activated charcoal composite, fluorinated graphenes and three-dimensional graphene foams, have been extensively explored as components of biosensors or theranostics, or to remotely control cell-substrate interfaces, because of their remarkable electro-conductivity. To date, despite the intensive progress in human stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. Interestingly, most of the recent in vitro studies indicate that graphene-based nanomaterials (i.e. mainly graphene, graphene oxide and carbon nanotubes) promote stem cell adhesion, growth, expansion and differentiation. Although cell viability in vitro is not affected, their potential nanocytoxicity (i.e. nanocompatibility and consequences of uncontrolled nanobiodegradability) in a clinical setting using humans remains unknown. Therefore, rigorous internationally standardized clinical studies in humans that would aim to assess their nanotoxicology are requested. In this paper we report and discuss the recent and pertinent findings about graphene and derivatives as valuable nanomaterials for stem cell research (i.e. culture, maintenance and differentiation) and tissue engineering, as well as for regenerative, translational and personalized medicine (e.g. bone reconstruction, neural regeneration). Also, from scarce nanotoxicological data, we also highlight the importance of functionalizing graphene-based nanomaterials to minimize the cytotoxic effects, as well as other critical safety parameters that remain important to take into consideration when developing nanobionanomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  19. A family business: stem cell progeny join the niche to regulate homeostasis.

    PubMed

    Hsu, Ya-Chieh; Fuchs, Elaine

    2012-01-23

    Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems.

  20. A family business: stem cell progeny join the niche to regulate homeostasis

    PubMed Central

    Hsu, Ya-Chieh; Fuchs, Elaine

    2012-01-01

    Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems. PMID:22266760

  1. Mesenchymal stem cells inhibit RANK-RANKL interactions between osteoclasts and Th17 cells via osteoprotegerin activity

    PubMed Central

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Ryu, Kyung-Ha; Woo, So-Youn

    2017-01-01

    Th17 cells play a critical role in several autoimmune diseases, including psoriasis and psoriatic arthritis (PsA). Psoriasis is a chronic inflammatory skin disease associated with systemic inflammation and comorbidities, such as PsA. PsA develops in nearly 70% of patients with psoriasis, and osteoclasts associated bone erosion is a hallmark of the disease. Thus far, the effect of Th17 cells on osteoclastogenesis via direct cell-to-cell interactions is less understood. In this study, we observed that Th17 cells directly promote osteoclast differentiation and maturation via expression of receptor activator of nuclear factor-κ β ligand (RANKL) in vitro. We investigated the impact of conditioned medium obtained from human palatine tonsil-derived mesenchymal stem cells (T-CM) on the interactions between osteoclasts and Th17 cells. T-CM effectively blunted the RANK-RANKL interaction between the osteoclast precursor cell line RAW 264.7 and Th17 cells via osteoprotegerin (OPG) activity. The frequency of tartrate-resistant acid phosphatase (TRAP)-positive cells in the bone marrow of an imiquimod (IMQ)-induced psoriasis mouse model was decreased following T-CM injection. Therefore, our data provide novel insight into the therapeutic potential of tonsil-derived mesenchymal stem cell-mediated therapy (via OPG production) for the treatment of pathophysiologic processes induced by osteoclasts under chronic inflammatory conditions such as psoriasis. PMID:29137353

  2. Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL?

    PubMed

    Morris, Edward S; MacDonald, Kelli P A; Hill, Geoffrey R

    2006-05-01

    The separation of graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) remains the "holy grail" of allogeneic stem cell transplantation, and improvements are urgently needed to allow more effective therapy of malignant disease. The use of G-CSF-mobilized peripheral blood as a clinical stem cell source is associated with enhanced GVL effects without amplification of significant acute GVHD. Preclinical studies have demonstrated that G-CSF modulates donor T cell function before transplantation, promoting T(H)2 differentiation and regulatory T cell function. In addition, the expansion of immature antigen-presenting cells (APCs) and plasmacytoid dendritic cells (DCs) favors the maintenance of this pattern of T cell differentiation after transplantation. Although these patterns of T cell differentiation attenuate acute GVHD, they do not have an impact on the cytolytic pathways of the CD8(+) T cells that are critical for effective GVL. Recently, it has been demonstrated that modification of G-CSF, either by pegylation of the native cytokine or conjugation to Flt-3L, results in the expansion and activation of donor iNKT cells, which significantly augment CD8(+) T cell-mediated cytotoxicity and GVL effects after transplantation. Given that these cytokines also enhance the expansion of regulatory T cells and APCs, they further separate GVHD and GVL, offering potential clinical advantages for the transplant recipient.

  3. Stem Cell Therapy for Erectile Dysfunction.

    PubMed

    Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony

    2018-04-06

    The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  4. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    PubMed

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  5. Adult bone marrow-derived stem cells for organ regeneration and repair.

    PubMed

    Tögel, Florian; Westenfelder, Christof

    2007-12-01

    Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine. 2007 Wiley-Liss, Inc

  6. Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry.

    PubMed

    Demange, Elise; Kassim, Yusra; Petit, Cyrille; Buquet, Catherine; Dulong, Virginie; Cerf, Didier Le; Buchonnet, Gérard; Vannier, Jean-Pierre

    2013-11-01

    Haematopoietic stem cells (HSCs) and haematopoietic progenitor cells (HPCs) grow in a specified niche in close association with the microenvironment, the so-called 'haematopoietic niche'. Scaffolds have been introduced to overcome the liquid culture limitations, mimicking the presence of the extracellular matrix (ECM). In the present study the hyaluronic acid scaffold, already developed in the laboratory, has been used for the first time to maintain long-term cultures of CD34⁺ haematopoietic cells obtained from human cord blood. One parameter investigated was the impact on ex vivo survival of CD34⁺ cord blood cells (CBCs) on the hyaluronic acid surface, immobilized with peptides containing the RGD motif. This peptide was conjugated by coating the hyaluronan hydrogel and cultured in serum-free liquid phase complemented with stem cell factor (SCF), a commonly indispensable cytokine for haematopoiesis. Our work demonstrated that these hyaluronan hydrogels were superior to traditional liquid cultures by maintaining and expanding the HPCs without the need for additional cytokines, and a colonization of 280-fold increment in the hydrogel compared with liquid culture after 28 days of ex vivo expansion. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Stem cells.

    PubMed

    Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T

    2010-10-01

    Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.

  8. Some Ethical Concerns About Human Induced Pluripotent Stem Cells.

    PubMed

    Zheng, Yue Liang

    2016-10-01

    Human induced pluripotent stem cells can be obtained from somatic cells, and their derivation does not require destruction of embryos, thus avoiding ethical problems arising from the destruction of human embryos. This type of stem cell may provide an important tool for stem cell therapy, but it also results in some ethical concerns. It is likely that abnormal reprogramming occurs in the induction of human induced pluripotent stem cells, and that the stem cells generate tumors in the process of stem cell therapy. Human induced pluripotent stem cells should not be used to clone human beings, to produce human germ cells, nor to make human embryos. Informed consent should be obtained from patients in stem cell therapy.

  9. Impact of Early Cytomegalovirus Reactivation in Cord Blood Stem Cell Recipients in the Current Era

    PubMed Central

    Ramanathan, Muthalagu; Teira, Pierre; Battiwalla, Minoo; Barrett, John; Ahn, Kwang Woo; Chen, Min; Green, Jamie; Laughlin, Mary; Lazarus, Hillard M.; Marks, David; Saad, Ayman; Seftel, Matthew; Saber, Wael; Savani, Bipin; Waller, Edmund; Wingard, John; Auletta, Jeffery J.; Lindemans, Caroline A.; Boeckh, Michael; Riches, Marcie L.

    2016-01-01

    Several studies have reported an association between cytomegalovirus (CMV) reactivation and a decreased incidence of relapse for acute myeloid leukemia (AML) after adult donor allogeneic hematopoietic cell transplantation (HCT). Limited data, however, are available on the impact of CMV reactivation on relapse after cord blood stem cell (CB) transplantation. The unique combination of higher incidence of CMV reactivation in the seropositive recipient and lower incidence of graft versus host disease (GvHD) in CB HCT allows for a valuable design to analyze the impact of CMV reactivation. Data from 1684 patients transplanted with cord blood (CB) between 2003 and 2010 for AML and acute lymphoblastic leukemia (ALL) were analyzed. The median time to CMV reactivation was 34 days (range: 2 – 287). CMV reactivation and positive CMV serology were associated with increased non-relapse mortality (NRM) amongst both AML and ALL CB recipients [Reactivation, AML: RR 1.41 (1.07–1.85); ALL: 1.60 (1.14 – 2.23); Serology, AML: RR 1.39 (1.05 – 1.85), ALL: RR 1.61 (1.18 – 2.19)]. For patients with ALL, but not those with AML, this yielded inferior overall survival (p<0.005). Risk of relapse was not impacted by CMV reactivation or positive CMV serostatus for either disease. PMID:27042847

  10. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  11. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    PubMed

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  12. In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.

    PubMed

    Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V

    2018-02-01

    Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.

  13. Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia.

    PubMed

    Wang, Wenwen; Stiehl, Thomas; Raffel, Simon; Hoang, Van T; Hoffmann, Isabel; Poisa-Beiro, Laura; Saeed, Borhan R; Blume, Rachel; Manta, Linda; Eckstein, Volker; Bochtler, Tilmann; Wuchter, Patrick; Essers, Marieke; Jauch, Anna; Trumpp, Andreas; Marciniak-Czochra, Anna; Ho, Anthony D; Lutz, Christoph

    2017-09-01

    In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse. Copyright© 2017 Ferrata Storti Foundation.

  14. Cell Wall-Degrading Enzymes Enlarge the Pore Size of Intervessel Pit Membranes in Healthy and Xylella fastidiosa-Infected Grapevines1[C][W][OA

    PubMed Central

    Pérez-Donoso, Alonso G.; Sun, Qiang; Roper, M. Caroline; Greve, L. Carl; Kirkpatrick, Bruce; Labavitch, John M.

    2010-01-01

    The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- β -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease. PMID:20107028

  15. Evaluation of the secretion and release of vascular endothelial growth factor from two-dimensional culture and three-dimensional cell spheroids formed with stem cells and osteoprecursor cells.

    PubMed

    Lee, Hyunjin; Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2018-05-18

    Co-culture has been applied in cell therapy, including stem cells, and has been reported to give enhanced functionality. In this study, stem-cell spheroids were formed in concave micromolds at different ratios of stem cells to osteoprecursor cells, and the amount of secretion of vascular endothelial growth factor (VEGF) was evaluated. Gingiva-derived stem cells and osteoprecursor cells in the amount of 6 × 105 were seeded on a 24-well culture plate or concave micromolds. The ratios of stem cells to osteoprecursor cells included: 0:4 (group 1), 1:3 (group 2), 2:2 (group 3), 3:1 (group 4), and 4:0 (group 5). The morphology of cells in a 2-dimensional culture (groups 1-5) showed a fibroblast-like appearance. The secretion of VEGF increased with the increase in stem cells, and a statistically significant increase was noted in groups 3, 4 and 5 when compared with the media-only group (p < 0.05). Osteoprecursor cells formed spheroids in concave microwells, and no noticeable change in the morphology was noted with the increase in stem cells. Spheroids containing stem cells were positive for the stem-cell markers SSEA-4. The secretion of VEGF from cell spheroids increased with the increase in stem cells. This study showed that cell spheroids formed with stem cells and osteoprecursor cells with different ratios, using microwells, had paracrine effects on the stem cells. The secretion of VEGF increased with the increase in stem cells. This stem-cell spheroid may be applied for tissue-engineering purposes.

  16. The Role of Stem Cells in Aesthetic Surgery: Fact or Fiction?

    PubMed Central

    McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G.; Hu, Michael; Atashroo, David A.; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C.; Wan, Derrick C.; Longaker, Michael T.

    2014-01-01

    Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. We review the potential, as well as drawbacks, for incorporation of stem cells in cosmetic procedures. A review of FDA-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a “snapshot” analysis of websites using the search terms “stem cell therapy” or “stem cell treatment” or “stem cell facelift” was performed. Despite the protective net cast by regulatory agencies such as the FDA and professional societies such as the American Society of Plastic Surgeons, we are witnessing worrying advertisements for procedures such as stem cell facelifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that we provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies. PMID:24732654

  17. A WUSCHEL-Independent Stem Cell Specification Pathway Is Repressed by PHB, PHV and CNA in Arabidopsis.

    PubMed

    Lee, Chunghee; Clark, Steven E

    2015-01-01

    The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified.

  18. A WUSCHEL-Independent Stem Cell Specification Pathway Is Repressed by PHB, PHV and CNA in Arabidopsis

    PubMed Central

    Lee, Chunghee; Clark, Steven E.

    2015-01-01

    The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified. PMID:26011610

  19. Generation, characterization and potential therapeutic applications of mature and functional hepatocytes from stem cells.

    PubMed

    Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2013-02-01

    Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.

  20. Involvement of WNT Signaling in the Regulation of Gestational Age-Dependent Umbilical Cord-Derived Mesenchymal Stem Cell Proliferation

    PubMed Central

    Shono, Akemi; Yoshida, Makiko; Yamana, Keiji; Thwin, Khin Kyae Mon; Kuroda, Jumpei; Kurokawa, Daisuke; Koda, Tsubasa; Nishida, Kosuke; Ikuta, Toshihiko; Mizobuchi, Masami; Taniguchi-Ikeda, Mariko

    2017-01-01

    Mesenchymal stem cells (MSCs) are a heterogeneous cell population that is isolated initially from the bone marrow (BM) and subsequently almost all tissues including umbilical cord (UC). UC-derived MSCs (UC-MSCs) have attracted an increasing attention as a source for cell therapy against various degenerative diseases due to their vigorous proliferation and differentiation. Although the cell proliferation and differentiation of BM-derived MSCs is known to decline with age, the functional difference between preterm and term UC-MSCs is poorly characterized. In the present study, we isolated UC-MSCs from 23 infants delivered at 22–40 weeks of gestation and analyzed their gene expression and cell proliferation. Microarray analysis revealed that global gene expression in preterm UC-MSCs was distinct from term UC-MSCs. WNT signaling impacts on a variety of tissue stem cell proliferation and differentiation, and its pathway genes were enriched in differentially expressed genes between preterm and term UC-MSCs. Cell proliferation of preterm UC-MSCs was significantly enhanced compared to term UC-MSCs and counteracted by WNT signaling inhibitor XAV939. Furthermore, WNT2B expression in UC-MSCs showed a significant negative correlation with gestational age (GA). These results suggest that WNT signaling is involved in the regulation of GA-dependent UC-MSC proliferation. PMID:29138639

  1. Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.

    PubMed

    Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels

    2011-09-01

    Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.

  2. ET-33PLACENTA-DERIVED MESENCHYMAL STEM CELLS AND THEIR SECRETED EXOSOMES INHIBIT THE SELF-RENEWAL AND STEMNESS OF GLIOMA STEM CELLS IN VITRO AND IN VIVO

    PubMed Central

    Lee, Hae Kyung; Buchris, Efrat; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila; Brodie, Chaya

    2014-01-01

    Mesenchymal stromal cells (MSCs) are multipotent stem cells that can be obtained from bone marrow and adipose tissues or from other sources such as placenta and umbilical cord. The latter allow the potential use of universal, allogeneic cell therapy because to reduced antigenicity due to low expression of MHC class II molecules. MSCs can be easily expanded in vitro for therapeutic applications and their safety and therapeutic impact have been demonstrated in various pre-clinical and clinical studies. MSCs have been shown to cross the blood brain barrier and migrate to sites of experimental GBM and can deliver cytotoxic compounds that exert anti-tumor effects. In this study we examined the effects of placenta-derived MSCs and their secreted exosomes on GSCs in vitro and in vivo. Conditioned medium of placenta MSCs or their derived exosomes decreased the self-renewal, stemness markers, Sox2 and Oct4 and the migration of these cells. Similarly, intracranial administration of the MSCs decreased the tumor volume of GSC-derived xenografts and prolonged animal survival. miRNA sequencing analysis of placenta MSC-derived exosomes revealed a set of specific miRNAs that were downregulated in GSCs and that acted as tumor suppressor in these cells. We demonstrated delivery of some of these miRNAs to GSCs following treatments with MSC-derived exosomes. We further demonstrated that MSCs or exosomes that were loaded with exogenous miR-124 delivered high levels of this miRNA into glioma cells as detected by a novel quantitative miRNA reporter. Moreover, administration of placenta MSCs loaded with exogenous miR-124 exerted a strong inhibitory effect on GSC-derived xenograft growth. These results demonstrate that placenta-derived MSCs may have important clinical applications in stem cell-based glioma therapeutics. Moreover, these studies provide a novel approach for the targeted delivery of endogenous and exogenous anti-tumor miRNAs to glioma cells as a miRNA replacement therapy for GBM.

  3. Stem cells in dentistry--part I: stem cell sources.

    PubMed

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Plant stem cell niches.

    PubMed

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  5. Cellular characterization of compression induced-damage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William G.

    2011-06-01

    Understanding the dysfunctions that high-intensity compression waves induce in human tissues is critical to impact on acute-phase treatments and requires the development of experimental models of traumatic damage in biological samples. In this study we have developed an experimental system to directly assess the impact of dynamic loading conditions on cellular function at the molecular level. Here we present a confinement chamber designed to subject live cell cultures in liquid environment to compression waves in the range of tens of MPa using a split Hopkinson pressure bars system. Recording the loading history and collecting the samples post-impact without external contamination allow the definition of parameters such as pressure and duration of the stimulus that can be related to the cellular damage. The compression experiments are conducted on Mesenchymal Stem Cells from BALB/c mice and the damage analysis are compared to two control groups. Changes in Stem cell viability, phenotype and function are assessed flow cytometry and with in vitro bioassays at two different time points. Identifying the cellular and molecular mechanisms underlying the damage caused by dynamic loading in live biological samples could enable the development of new treatments for traumatic injuries.

  6. The Effect of Low-Dose Ionizing Radiation on Stem Cell Biology: A Contribution to Radiation Risk.

    PubMed

    Squillaro, Tiziana; Galano, Giovanni; De Rosa, Roberto; Peluso, Gianfranco; Galderisi, Umberto

    2018-04-17

    Exposure to high levels of ionizing radiation (IR) (>0.5Gy), negatively affect health. but, less is known about the effects of low dose IR (LDIR) but recent, evidence suggests that it may have profound effects on cellular functions. We are commonly exposed to LDIR over natural background levels from numerous sources: people may be exposed to low dose IR for medical diagnosis and therapy, air travel, illegal IR waste dumpsites or by occupational exposures in the nuclear and medical sectors. Stem cells reside for long periods of time in our bodies, and this increases the possibility that they may be accumulate genotoxic damage derived from extrinsic LDIR or intrinsic sources (such as DNA replication). In this review we provide an overview of LDIR effects on biology of stem cell compartments. The principal findings and issues reported in the scientific literature are discussed in order to present the current understanding of the LDIR exposure risk, and assess whether it may impact human health. We first consider the general biological consequences of LDIR exposure. Following this, we discuss the effects of LDIR on stem cells as discovered through in vitro and in vivo studies. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  7. Impact of HLA diversity on donor selection in organ and stem cell transplantation.

    PubMed

    Tiercy, Jean-Marie; Claas, Frans

    2013-01-01

    The human major histocompatibility complex is a multigene system encoding polymorphic human leucocyte antigens (HLA) that present peptides derived from pathogens to the immune system. The high diversity of HLA alleles and haplotypes in the worldwide populations represents a major barrier to organ and allogeneic hematopoietic stem cell transplantation, because HLA incompatibilities are efficiently recognized by T and B lymphocytes. In organ transplantation, pre-transplant anti-HLA antibodies need to be taken into account for organ allocation. Although HLA-incompatible transplants can be performed thanks to immunosuppressive drugs, the de novo production of anti-HLA antibodies still represents a major cause of graft failure. The HLAMatchmaker computer algorithm determines the immunogenicity of HLA mismatches and allows to define HLA antigens that will not induce an antibody response. Because of the much higher stringency of HLA compatibility criteria in stem cell transplantation, the best donor is a HLA genotypically identical sibling. However, more than 50% of the transplants are now performed with hematopoietic stem cells from volunteer donors selected from the international registry. The development of European national registries covering populations with different HLA haplotype frequencies is essential for optimizing donor search algorithms and providing the best chance for European patients to find a fully compatible donor.

  8. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis

    PubMed Central

    Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode

    2016-01-01

    ABSTRACT Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy. PMID:26743180

  9. Statins impact primary embryonic mouse neural stem cell survival, cell death, and fate through distinct mechanisms.

    PubMed

    Carson, Ross A; Rudine, Anthony C; Tally, Serena J; Franks, Alexis L; Frahm, Krystle A; Waldman, Jacob K; Silswal, Neerupma; Burale, Suban; Phan, James V; Chandran, Uma R; Monaghan, A Paula; DeFranco, Donald B

    2018-01-01

    Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in the cholesterol biosynthesis pathway (CBP), and are used for the prevention of cardiovascular disease. The anti-inflammatory effects of statins may also provide therapeutic benefits and have led to their use in clinical trials for preeclampsia, a pregnancy-associated inflammatory condition, despite their current classification as category X (i.e. contraindicated during pregnancy). In the developing neocortex, products of the CBP play essential roles in proliferation and differentiation of neural stem-progenitor cells (NSPCs). To understand how statins could impact the developing brain, we studied effects of pravastatin and simvastatin on primary embryonic NSPC survival, proliferation, global transcription, and cell fate in vitro. We found that statins dose dependently decrease NSPC expansion by promoting cell death and autophagy of NSPCs progressing through the G1 phase of the cell cycle. Genome-wide transcriptome analysis demonstrates an increase in expression of CBP genes following pravastatin treatment, through activation of the SREBP2 transcription factor. Co-treatment with farnesyl pyrophosphate (FPP), a CBP metabolite downstream of HMG-CoA reductase, reduces SREBP2 activation and pravastatin-induced PARP cleavage. Finally, pravastatin and simvastatin differentially alter NSPC cell fate and mRNA expression during differentiation, through a non-CBP dependent pathway.

  10. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    PubMed

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  11. Stem cells in the Drosophila digestive system.

    PubMed

    Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X

    2013-01-01

    Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.

  12. Induced cancer stem cells generated by radiochemotherapy and their therapeutic implications.

    PubMed

    Chen, Xiewan; Liao, Rongxia; Li, Dezhi; Sun, Jianguo

    2017-03-07

    Local and distant recurrence of malignant tumors following radio- and/or chemotherapy correlates with poor prognosis of patients. Among the reasons for cancer recurrence, preexisting cancer stem cells (CSCs) are considered the most likely cause due to their properties of self-renewal, pluripotency, plasticity and tumorigenicity. It has been demonstrated that preexisting cancer stem cells derive from normal stem cells and differentiated somatic cells that undergo transformation and dedifferentiation respectively under certain conditions. However, recent studies have revealed that cancer stem cells can also be induced from non-stem cancer cells by radiochemotherapy, constituting the subpopulation of induced cancer stem cells (iCSCs). These findings suggest that radiochemotherapy has the side effect of directly transforming non-stem cancer cells into induced cancer stem cells, possibly contributing to tumor recurrence and metastasis. Therefore, drugs targeting cancer stem cells or preventing dedifferentiation of non-stem cancer cells can be combined with radiochemotherapy to improve its antitumor efficacy. The current review is to investigate the mechanisms by which induced cancer stem cells are generated by radiochemotherapy and hence provide new strategies for cancer treatment.

  13. Stem cells in gastroenterology and hepatology

    PubMed Central

    Quante, Michael; Wang, Timothy C.

    2010-01-01

    Cellular and tissue regeneration in the gastrointestinal tract and liver depends on stem cells with properties of longevity, self-renewal and multipotency. Progress in stem cell research and the identification of potential esophageal, gastric, intestinal, colonic, hepatic and pancreatic stem cells provides hope for the use of stem cells in regenerative medicine and treatments for disease. Embryonic stem cells and induced pluripotent stem cells have the potential to give rise to any cell type in the human body, but their therapeutic application remains challenging. The use of adult or tissue-restricted stem cells is emerging as another possible approach for the treatment of gastrointestinal diseases. The same self-renewal properties that allow stem cells to remain immortal and generate any tissue can occasionally make their proliferation difficult to control and make them susceptible to malignant transformation. This Review provides an overview of the different types of stem cell, focusing on tissue-restricted adult stem cells in the fields of gastroenterology and hepatology and summarizing the potential benefits and risks of using stems cells to treat gastroenterological and liver disorders. PMID:19884893

  14. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions?

    PubMed

    Buschmann, Johanna; Gao, Shuping; Härter, Luc; Hemmi, Sonja; Welti, Manfred; Werner, Clement M L; Calcagni, Maurizio; Cinelli, Paolo; Wanner, Guido A

    2013-09-01

    Adipose-derived stem cells are easily accessed and have a relatively high density compared with other mesenchymal stromal cells. Isolation protocols of adipose-derived stem cells (ASC) rely on the cell's ability to adhere to tissue culture plastic overnight. It was evaluated whether the floating ASC fractions are also of interest for cell-based therapies. In addition, the impact of age, body mass index (BMI) and harvest site was assessed. The surface protein profile with the use of flow cytometry, the cell yield and the doubling time of passages 4, 5 and 6 of ASC from 30 donors were determined. Adherent and supernatant fractions were compared. The impact of age, BMI and harvest site on cell yield and doubling times was determined. Both adherent and supernatant fractions showed high mean fluorescence intensities for CD13, CD29, CD44, CD73, CD90 and CD105 and comparatively low mean fluorescence intensities for CD11b, CD62L, intracellular adhesion molecule-1 and CD34. Doubling times of adherent and supernatant fractions did not differ significantly. Whereas the old age group had a significantly lower cell yield compared with the middle aged group, BMI and harvest site had no impact on cell yield. Finally, doubling times for passages 4, 5 and 6 were not influenced by the age and BMI of the donors, nor the tissue-harvesting site. The floating ASC fraction is an equivalent second cell source just like the adherent ASC fraction. Donor age, BMI and harvest site do not influence cell yield and proliferation rate. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Lower Oncogenic Potential of Human Mesenchymal Stem Cells Derived from Cord Blood Compared to Induced Pluripotent Stem Cells

    PubMed Central

    Foroutan, T.; Najmi, M.; Kazemi, N.; Hasanlou, M.; Pedram, A.

    2015-01-01

    Background: In regenerative medicine, use of each of the mesenchymal stem cells derived from bone marrow, cord blood, and adipose tissue, has several cons and pros. Mesenchymal stem cells derived from cord blood have been considered the best source for precursor transplantation. Direct reprogramming of a somatic cell into induced pluripotent stem cells by over-expression of 6 transcription factors Oct4, Sox2, Klf4, lin28, Nanog, and c-Myc has great potential for regenerative medicine, eliminating the ethical issues of embryonic stem cells and the rejection problems of using non-autologous cells. Objective: To compare reprogramming and pluripotent markers OCT4, Sox-2, c-Myc, Klf4, Nanog, and lin28 in mesenchymal stem cells derived from cord blood and induced pluripotent stem cells. Methods: We analyzed the expression level of OCT4, Sox-2, c-Myc, Klf4, Nanog and lin28 genes in human mesenchymal stem cells derived from cord blood and induced pluripotent stem cells by cell culture and RT-PCR. Results: The expression level of pluripotent genes OCT4 and Sox-2, Nanog and lin28 in mesenchymal stem cells derived from cord blood were significantly higher than those in induced pluripotent stem cells. In contrast to OCT-4A and Sox-2, Nanog and lin28, the expression level of oncogenic factors c-Myc and Klf4 were significantly higher in induced pluripotent stem cells than in mesenchymal stem cells derived from cord blood. Conclusion: It could be concluded that mesenchymal stem cells derived from human cord blood have lower oncogenic potential compared to induced pluripotent stem cells. PMID:26306155

  16. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less

  17. Flagellin preconditioning enhances the efficacy of mesenchymal stem cells in an irradiation-induced proctitis model.

    PubMed

    Linard, Christine; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Benderitter, Marc

    2016-09-01

    The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin-preconditioned mesenchymal stem cells improved colonic immune capacity and enhanced tissue remodeling. © Society for Leukocyte Biology.

  18. Effects of Inflorescence Stem Structure and Cell Wall Components on the Mechanical Strength of Inflorescence Stem in Herbaceous Peony

    PubMed Central

    Zhao, Daqiu; Han, Chenxia; Tao, Jun; Wang, Jing; Hao, Zhaojun; Geng, Qingping; Du, Bei

    2012-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering. PMID:22606025

  19. Effects of inflorescence stem structure and cell wall components on the mechanical strength of inflorescence stem in herbaceous peony.

    PubMed

    Zhao, Daqiu; Han, Chenxia; Tao, Jun; Wang, Jing; Hao, Zhaojun; Geng, Qingping; Du, Bei

    2012-01-01

    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering.

  20. Epidermal stem cells: location, potential and contribution to cancer.

    PubMed

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  1. Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields

    PubMed Central

    Lucas, Daniel; Bruns, Ingmar; Battista, Michela; Mendez-Ferrer, Simon; Magnon, Claire; Kunisaki, Yuya

    2012-01-01

    The mechanisms mediating hematopoietic stem and progenitor cell (HSPC) mobilization by G-CSF are complex. We have found previously that G-CSF–enforced mobilization is controlled by peripheral sympathetic nerves via norepinephrine (NE) signaling. In the present study, we show that G-CSF likely alters sympathetic tone directly and that methods to increase adrenergic activity in the BM microenvironment enhance progenitor mobilization. Peripheral sympathetic nerve neurons express the G-CSF receptor and ex vivo stimulation of peripheral sympathetic nerve neurons with G-CSF reduced NE reuptake significantly, suggesting that G-CSF potentiates the sympathetic tone by increasing NE availability. Based on these data, we investigated the NE reuptake inhibitor desipramine in HSPC mobilization. Whereas desipramine did not by itself elicit circulating HSPCs, it increased G-CSF–triggered mobilization efficiency significantly and rescued mobilization in a model mimicking “poor mobilizers.” Therefore, these data suggest that blockade of NE reuptake may be a novel therapeutic target to increase stem cell yield in patients. PMID:22422821

  2. Age, Sex, and Religious Beliefs Impact the Attitude towards Cord Blood Banking.

    PubMed

    Sundell, Inger Birgitta; Setzer, Teddi J

    2015-01-01

    In this study, a self-administered questionnaire was used to assess opinions about stem cell research and cord blood banking. Three attitudes were examined: willingness to accept cord blood banking, willingness to accept embryonic stem cell research, and religious belief system. A total of 90 Wayne State University students enrolled in the study in response to an invitation posted on a web page for the university. Sex distribution among study participants was 79 females and eight males; three declined to state their sex. Support for cord blood banking was high (> 70%) among students. Students over the age of 25 years of age were more (85%) positive than students 18 to 24 years old (57%). They prefered a public cord blood bank over a private cord blood bank. Atheist/agnostic or spiritual/not religious students (> 90%), Catholic students (78%) and Christian students (58%) support cord blood banking. Age, sex and religion seems influence the student's attitude towards stem cell research and cord blood banking.

  3. MicroRNAs: key regulators of stem cells.

    PubMed

    Gangaraju, Vamsi K; Lin, Haifan

    2009-02-01

    The hallmark of a stem cell is its ability to self-renew and to produce numerous differentiated cells. This unique property is controlled by dynamic interplays between extrinsic signalling, epigenetic, transcriptional and post-transcriptional regulations. Recent research indicates that microRNAs (miRNAs) have an important role in regulating stem cell self-renewal and differentiation by repressing the translation of selected mRNAs in stem cells and differentiating daughter cells. Such a role has been shown in embryonic stem cells, germline stem cells and various somatic tissue stem cells. These findings reveal a new dimension of gene regulation in controlling stem cell fate and behaviour.

  4. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells

    PubMed Central

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118

  5. Rehabilitative intervention during and after pediatric hematopoietic stem cell transplantation: An analysis of the existing literature.

    PubMed

    Rossi, Francesca; Coppo, Monica; Zucchetti, Giulia; Bazzano, Daniela; Ricci, Federica; Vassallo, Elena; Nesi, Francesca; Fagioli, Franca

    2016-11-01

    Hematopoietic stem cell transplantation is a therapeutic strategy for several oncohematological diseases. It increases survival rates but leads to a high incidence of related effects. The objective of this paper was to examine the existing literature on physical exercise interventions among pediatric HSCT recipients to explore the most often utilized rehabilitative assessment and treatment tools. Studies published from 2002 to April 1, 2015 were selected: 10 studies were included. A previous literary review has shown that rehabilitation programs have a positive impact on quality of life. Our analysis identified some significant outcome variables and shared intervention areas. © 2016 Wiley Periodicals, Inc.

  6. Vancomycin-resistant enterococcus infection in the hematopoietic stem cell transplant recipient: an overview of epidemiology, management, and prevention

    PubMed Central

    Benamu, Esther; Deresinski, Stanley

    2018-01-01

    Vancomycin-resistant enterococcus (VRE) is now one of the leading causes of nosocomial infections in the United States. Hematopoietic stem cell transplantation (HSCT) recipients are at increased risk of VRE colonization and infection. VRE has emerged as a major cause of bacteremia in this population, raising important clinical questions regarding the role and impact of VRE colonization and infection in HSCT outcomes as well as the optimal means of prevention and treatment. We review here the published literature and scientific advances addressing these thorny issues and provide a rational framework for their approach. PMID:29333263

  7. [Progress in epidermal stem cells].

    PubMed

    Wang, Li-Juan; Wang, You-Liang; Yang, Xiao

    2010-03-01

    Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.

  8. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    PubMed

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  9. Amnion-derived stem cells: in quest of clinical applications

    PubMed Central

    2011-01-01

    In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research. PMID:21596003

  10. Molecular Determinants and Clinical Implications of Breast Cancer Dormancy

    DTIC Science & Technology

    2014-12-01

    repair mediates resistance of hair follicle bulge stem cells to DNA-damage- induced cell death. Nat Cell Biol 2010; 12: 572–582. 7. Chiruvella KK1...on the role of cellular dormancy in promoting cancer aggressiveness and drug resistance in recurred breast cancer. We aimed to determine the impact...period, we have successfully established a reliable in vitro breast cancer dormancy cell model. Using this model, we tested and confirmed the

  11. The role of stem cells in aesthetic surgery: fact or fiction?

    PubMed

    McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G; Hu, Michael; Atashroo, David A; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C; Wan, Derrick C; Longaker, Michael T

    2014-08-01

    Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. The authors review the potential and the drawbacks of incorporation of stem cells in cosmetic procedures. A review of U.S. Food and Drug Administration-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of Web sites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed. Despite the protective net cast by regulatory agencies such as the U.S. Food and Drug Administration and professional societies such as the American Society of Plastic Surgeons, the authors are witnessing worrying advertisements for procedures such as stem cell face lifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that they provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.

  12. Polymer microarray technology for stem cell engineering

    PubMed Central

    Coyle, Robert; Jia, Jia; Mei, Ying

    2015-01-01

    Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624

  13. Stem cells in kidney regeneration.

    PubMed

    Yokote, Shinya; Yokoo, Takashi

    2012-01-01

    Currently many efforts are being made to apply regenerative medicine to kidney diseases using several types of stem/progenitor cells, such as mesenchymal stem cells, renal stem/progenitor cells, embryonic stem cells and induced pluripotent stem cells. Stem cells have the ability to repair injured organs and ameliorate damaged function. The strategy for kidney tissue repair is the recruitment of stem cells and soluble reparative factors to the kidney to elicit tissue repair and the induction of dedifferentiation of resident renal cells. On the other hand, where renal structure is totally disrupted, absolute kidney organ regeneration is needed to rebuild a whole functional kidney. In this review, we describe current advances in stem cell research for kidney tissue repair and de novo organ regeneration.

  14. Stem Cell Sciences plc.

    PubMed

    Daniels, Sebnem

    2006-09-01

    Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.

  15. Stem cell tourism and future stem cell tourists: policy and ethical implications.

    PubMed

    Einsiedel, Edna F; Adamson, Hannah

    2012-04-01

    Stem cell tourism is a small but growing part of the thriving global medical tourism marketplace. Much stem cell research remains at the experimental stage, with clinical trials still uncommon. However, there are over 700 clinics estimated to be operating in mostly developing countries--from Costa Rica and Argentina to China, India and Russia--that have lured many patients, mostly from industrialized countries, driven by desperation and hope, which in turn continue to fuel the growth of such tourism. While much research has focused on such dimensions as the promotions that allow such businesses to make their services known, media coverage, some patient research, and regulatory conditions for developing country clinics, little attention has been paid to the non-affected members of the general population, the future potential users of such services. This empirical study based on five focus group discussions with a diverse group of healthy adults in a Canadian city, explored participant views of patients who use stem cell tourism services, the likelihood they would avail themselves of such services if they were to suffer similar illnesses, and the conditions under which they might do so, and the impact that admonitions and advice from international expert bodies might have on their decisions. Our findings suggest that these healthy adults are sympathetic to the drivers of hope and desperation, and, despite cautions about research limitations, may seek such treatments themselves under similar conditions. These findings are discussed in the context of the policy and ethical issues raised by this form of medical tourism. © 2012 Blackwell Publishing Ltd.

  16. Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells.

    PubMed

    Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A; Lo, Chung Mau; Man, Kwan; Sun, Dong

    2016-02-04

    Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR, flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.

  17. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    USDA-ARS?s Scientific Manuscript database

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  18. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    PubMed Central

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  19. Stem Cell Basics

    MedlinePlus

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  20. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    NASA Astrophysics Data System (ADS)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  1. From Banking to International Governance: Fostering Innovation in Stem Cell Research

    PubMed Central

    Isasi, Rosario; Knoppers, Bartha M.

    2011-01-01

    Stem cell banks are increasingly recognized as an essential resource of biological materials for both basic and translational stem cell research. By providing transnational access to quality controlled and ethically sourced stem cell lines, stem cell banks seek to foster international collaboration and innovation. However, given that national stem cell banks operate under different policy, regulatory and commercial frameworks, the transnational sharing of stem cell materials and data can be complicating. This paper will provide an overview of the most pressing challenges regarding the governance of stem cell banks, and the difficulties in designing regulatory and commercial frameworks that foster stem cell research. Moreover, the paper will shed light on the numerous international initiatives that have arisen to help harmonize and standardize stem cell banking and research processes to overcome such challenges. PMID:21904557

  2. Stem Cells Transplantation in the Treatment of Patients with Liver Failure.

    PubMed

    Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong

    2018-02-23

    Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Recent Progress in Stem Cell Modification for Cardiac Regeneration

    PubMed Central

    Voronina, Natalia; Steinhoff, Gustav

    2018-01-01

    During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity. PMID:29535769

  4. Eat, breathe, ROS: controlling stem cell fate through metabolism.

    PubMed

    Kubli, Dieter A; Sussman, Mark A

    2017-05-01

    Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered: Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary: The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes.

  5. Eat, breathe, ROS: controlling stem cell fate through metabolism

    PubMed Central

    Kubli, Dieter A.; Sussman, Mark A.

    2017-01-01

    Introduction Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes. PMID:28406333

  6. Therapeutic strategies involving uterine stem cells in reproductive medicine.

    PubMed

    Simoni, Michael; Taylor, Hugh S

    2018-06-01

    The current review provides an update on recent advances in stem cell biology relevant to female reproduction. Stem cells are undifferentiated cells that often serve as a reservoir of cells to regenerate tissue in settings or injury or cell loss. The endometrium has progenitor stem cells that can replace all of the endometrium during each menstrual cycle. In addition, multipotent endometrial cells replace these progenitor cells when depleted. Recruitment of stem cells from outside of the uterus occurs in setting of increased demand such as ischemia or injury. Bone marrow-derived multipotent stem cells are recruited to the uterus by estrogen or injury-induced expression of the chemokine CXCL12. In the setting of overwhelming injury, especially in the setting of low estrogen levels, there may be insufficient stem cell recruitment to adequately repair the uterus resulting in conditions such as Asherman syndrome or other endometrial defects. In contrast, excessive recruitment of stem cells underlies endometriosis. Enhanced understanding of stem-cell mobilization, recruitment, and engraftment has created the possibility of improved therapy for endometrial defects and endometriosis through enhanced manipulation of stem-cell trafficking. Further, the normal endometrium is a rich source of multipotent stem cells that can be used for numerous applications in regenerative medicine beyond reproduction. A better understanding of reproductive stem-cell biology may allow improved treatment of endometrial disease such as Asherman syndrome and other endometrial receptivity defects. Inhibiting stem-cell mobilization may also be helpful in endometriosis therapy. Finally, endometrial derived multipotent stem cells may play a crucial role in cell therapy for regenerative medicine.

  7. Gene screening of Wharton's jelly derived stem cells.

    PubMed

    Mechiche Alami, S; Velard, F; Draux, F; Siu Paredes, F; Josse, J; Lemaire, F; Gangloff, S C; Graesslin, O; Laurent-Maquin, D; Kerdjoudj, H

    2014-01-01

    Stem cells are the most powerful candidate for the treatment of various diseases. Suitable stem cell source should be harvested with minimal invasive procedure, found in great quantity, and transplanted with no risk of immune response and tumor formation. Fetal derived stem cells have been introduced as an excellent alternative to adult and embryonic stem cells use, but unfortunately, their degree of "stemness" and molecular characterization is still unclear. Several studies have been performed deciphering whether fetal stem cells meet the needs of regenerative medicine. We believe that a transcriptomic screening of Wharton's jelly stem cells will bring insights on cell population features.

  8. Stem Cell Banking for Regenerative and Personalized Medicine

    PubMed Central

    Harris, David T.

    2014-01-01

    Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source. PMID:28548060

  9. Nine Things to Know About Stem Cell Treatments

    MedlinePlus

    ... Toggle Nav Nine Things To Know About Stem Cell Treatments Home > Stem Cells and Medicine > Nine Things ... About Stem Cell Treatments Many clinics offering stem cell treatments make claims that are not supported by ...

  10. Cancer (stem) cell differentiation: An inherent or acquired property?

    PubMed

    Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas

    2015-12-01

    There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization

    PubMed Central

    Wang, Dong; Wang, Aijun; Wu, Fan; Qiu, Xuefeng; Li, Ye; Chu, Julia; Huang, Wen-Chin; Xu, Kang; Gong, Xiaohua; Li, Song

    2017-01-01

    Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10+ adult stem cells contribute to both encapsulation and microvessel formation. Sox10+ adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues. Upon subcutaneous biomaterial implantation, Sox10+ stem cells were activated and recruited to the biomaterial scaffold, and differentiated into fibroblasts and then myofibroblasts. This differentiation process from Sox10+ stem cells to myofibroblasts could be recapitulated in vitro. On the other hand, Sox10+ stem cells could differentiate into perivascular cells to stabilize newly formed microvessels. Sox10+ stem cells and endothelial cells in three-dimensional co-culture self-assembled into microvessels, and platelet-derived growth factor had chemotactic effect on Sox10+ stem cells. Transplanted Sox10+ stem cells differentiated into smooth muscle cells to stabilize functional microvessels. These findings demonstrate the critical role of adult stem cells in tissue remodeling and unravel the complexity of stem cell fate determination. PMID:28071739

  12. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    PubMed Central

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.

    2012-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470

  13. The king is dead, long live the king: entering a new era of stem cell research and clinical development.

    PubMed

    Ichim, Thomas; Riordan, Neil H; Stroncek, David F

    2011-12-20

    In mid November the biopharma industry was shocked by the announcement from Geron that they were ending work on embryonic stem cell research and therapy. For more than 10 years the public image of all stem cell research has been equated with embryonic stem cells. Unfortunately, a fundamentally important medical and financial fact was being ignored: embryonic stem cell therapy is extremely immature. In parallel to efforts in embryonic stem cell research and development, scientists and physicians in the field of adult stem cells realized that the natural role of adult stem cells in the body is to promote healing and to act like endogenous "repair cells" and, as a result, numerous companies have entered the field of adult stem cell therapy with the goal of expanding numbers of adult stem cells for administration to patients with various conditions. In contrast to embryonic stem cells, which are extremely expensive and potentially dangerous, adult cell cells are inexpensive and have an excellent safety record when used in humans. Many studies are now showing that adult stem cells are practical, patient-applicable, therapeutics that are very close to being available for incorporation into the practice of medicine. These events signal the entrance of the field of stem cells into a new era: an era where hype and misinformation no longer triumph over economic and medical realities.

  14. Role of mesenchymal stem cells versus angiotensin converting enzyme inhibitor in kidney repair.

    PubMed

    Ahmed, Hanaa H; Toson, Elshahat A; El-Mezayen, Hatem A; Rashed, Laila A; Elsherbiny, Eslam S

    2017-07-01

    The current study sought to clarify the role of bone marrow derived mesenchymal stem cells (BM-MSCs) and adipose tissue derived mesenchymal stem cells (AD-MSCs) in repressing nephropathy in the experimental model. Moreover, the aim of this work was extended to compare between stem cells role and angiotensin converting enzyme inhibitor in kidney repair. Isolation and preparation of MSCs culture, flow cytometry using CD34, CD44 and CD105 cell surface markers, biochemical analyses for determination of serum creatinine, urea, transforming growth factor β (TGF-β), cystatin C (CYS-C) and urinary N-Acetyl-ß-D-Glucosaminidase (UNAG), and histopathological investigation of kidney tissue sections were performed. The results of the present study revealed that single intravenous infusion of MSCs either derived from bone marrow or adipose tissue was able to enhance renal reparative processes through significantly decreased serum creatinine, urea, TGF-β and CYS-C levels as well as UNAG level and significantly increase glomerular filtration rate. Additionally, the histopathological investigations of kidney tissues showed that MSCs have significant regenerative effects as evidenced by the decrease in focal inflammatory cells infiltration, focal interstitial nephritis and congested glomeruli as well as degenerated tubules. The current data provided distinct evidence about the favourable impact of AD-MSCs and BM-MSCs in attenuation of cyclosporine-induced nephropathy in rats through their ability to promote functional and structural kidney repair via transdifferentiation. © 2016 Asian Pacific Society of Nephrology.

  15. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media.

    PubMed

    Le Pape, Fiona; Cosnuau-Kemmat, Lucie; Richard, Gaëlle; Dubrana, Frédéric; Férec, Claude; Zal, Franck; Leize, Elisabeth; Delépine, Pascal

    2017-04-01

    Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three-dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)-supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%-increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two-fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and "stemness." These features will be further tested within three-dimensional scaffolds. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. The impact of HLA matching on long-term transplant outcome after allogeneic hematopoietic stem cell transplantation for CLL: a retrospective study from the EBMT registry.

    PubMed

    Michallet, M; Sobh, M; Milligan, D; Morisset, S; Niederwieser, D; Koza, V; Ruutu, T; Russell, N H; Verdonck, L; Dhedin, N; Vitek, A; Boogaerts, M; Vindelov, L; Finke, J; Dubois, V; van Biezen, A; Brand, R; de Witte, T; Dreger, P

    2010-10-01

    We analyzed 368 chronic lymphocytic leukemia patients who underwent allogeneic hematopoietic stem cell transplantation reported to the EBMT registry between 1995 and 2007. There were 198 human leukocyte antigen (HLA)-identical siblings; among unrelated transplants, 31 were well matched in high resolution ('well matched' unrelated donor, WMUD), and 139 were mismatched (MM), including 30 matched in low resolution; 266 patients (72%) received reduced-intensity conditioning and 102 (28%) received standard. According to the EBMT risk score, 11% were in scores 1-3, 23% in score 4, 40% in score 5, 22% in score 6 and 4% in score 7. There was no difference in overall survival (OS) at 5 years between HLA-identical siblings (55% (48-64)) and WMUD (59% (41-84)), P=0.82. In contrast, OS was significantly worse for MM (37% (29-48) P=0.005) due to a significant excess of transplant-related mortality. Also OS worsened significantly when EBMT risk score increased. HLA matching had no significant impact on relapse (siblings: 24% (21-27); WMUD: 35% (26-44), P=0.11 and MM: 21% (18-24), P=0.81); alemtuzumab T-cell depletion and stem cell source (peripheral blood) were associated with an increased risk. Our findings support the use of WMUD as equivalent alternative to HLA-matched sibling donors for allogeneic HSCT in CLL, and justify the application of EBMT risk score in this disease.

  17. Control of stem cell fate by engineering their micro and nanoenvironment

    PubMed Central

    Griffin, Michelle F; Butler, Peter E; Seifalian, Alexander M; Kalaskar, Deepak M

    2015-01-01

    Stem cells are capable of long-term self-renewal and differentiation into specialised cell types, making them an ideal candidate for a cell source for regenerative medicine. The control of stem cell fate has become a major area of interest in the field of regenerative medicine and therapeutic intervention. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, with evidence highlighting that material properties are capable of driving stem cell fate. Materials are being designed to mimic the clues stem cells receive in their in vivo stem cell niche including topographical and chemical instructions. Nanotopographical clues that mimic the extracellular matrix (ECM) in vivo have shown to regulate stem cell differentiation. The delivery of ECM components on biomaterials in the form of short peptides sequences has also proved successful in directing stem cell lineage. Growth factors responsible for controlling stem cell fate in vivo have also been delivered via biomaterials to provide clues to determine stem cell differentiation. An alternative approach to guide stem cells fate is to provide genetic clues including delivering DNA plasmids and small interfering RNAs via scaffolds. This review, aims to provide an overview of the topographical, chemical and molecular clues that biomaterials can provide to guide stem cell fate. The promising features and challenges of such approaches will be highlighted, to provide directions for future advancements in this exciting area of stem cell translation for regenerative medicine. PMID:25621104

  18. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    PubMed Central

    Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo

    2016-01-01

    Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777

  19. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  20. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    PubMed

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.

  1. [Effect of different cryopreservation time on quality of umbilical cord blood cells].

    PubMed

    Huang, Lu; Song, Gui-Qi; Wu, Yun; Wang, Jian

    2013-02-01

    This study was aimed to explore the effect of different cryopreservation time on recovery rate of cord blood stem cells, and analyze the influence of cord blood cells after thawing on the engraftment speed of cord blood cells in patients. 20 cord blood units were stored at -196°C for 1 - 10 years. The cell viability, content of total nucleated cell (TNC), CD34(+) cells and the colony forming units of granulocyte/macrophage (CFU-GM) were assessed after thawing, the impact of cell recovery on engraftment speed in patients was analyzed. The results showed that as compared with data provided by Umbilical Cord Blood Bark, the different cryopreservation time had no effect on yield of cord blood stem cells after thawing. The cell viability was (92.75 ± 2.55)% after thawing, the yields of TNC, CD34(+) cells and CFU-GM were 89.9%, 84.8% and 84.3%, compared with that of pre-freezing, their differences were statistically significant (P = 0.000), however, loss of cells had no effect on the time of neutrophils and platelets engraftment. The TNC and CD34(+)cell count after thawing correlated closely with that of pre-freezing (r = 0.954 and r = 0.931, P = 0.000), but CFU-GM content poorly correlated with that (r = 0.285, P = 0.223). It is concluded that cryopreservation and thawing process can damage the cord blood stem cells, leading to cell loss, but not affect transplant results.

  2. Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings

    PubMed Central

    Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.

    2009-01-01

    Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of flight samples than those found in the ground-based samples. Carbon dioxide levels were 50% greater and oxygen marginally lower in the flight plants, whereas ethylene levels were similar and averaged less than 10 nL·L −1. Despite the greater accumulation of carbohydrates in the stems, and greater root growth in the flight cuttings, overall results showed minimal differences in cell development between space flight and ground-based tissues. This suggests that the space flight environment did not adversely impact sweetpotato metabolism and that vegetative cuttings should be an acceptable approach for propagating sweetpotato plants for space applications. PMID:20186286

  3. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    ERIC Educational Resources Information Center

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  4. Stem cell biobanks.

    PubMed

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment.

  5. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    PubMed

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  6. Redox regulation of plant stem cell fate.

    PubMed

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  7. Comparison of the therapeutic effectiveness of human CD34+ and rat bone marrow mesenchymal stem cells on improvement of experimental liver fibrosis in Wistar rats

    PubMed Central

    Sayyed, Hayam G; Osama, Amany; Idriss, Naglaa K; Sabry, Dina; Abdelrhim, Azza S; Bakry, Rania

    2016-01-01

    Background and objective: Human umbilical cord blood (UCB) cells and bone marrow mesenchymal stem cells (BM-MSCs) have numerous advantages as grafts for cell transplantation. We hypothesized differing impacts of human UCB cells and rat BM-MSCs on reversal of hepatic injury and revival of liver function in carbon tetrachloride (CCl4)-induced liver fibrosis. Methods: Forty rats were divided into 4 groups; control group, CCl4 group, CCl4/CD34+ group and CCl4/BM-MSCs group. Blood samples were driven from rats at 4, 8 and 12 weeks to measure serum concentration of albumin and alanine aminotransferase (ALT). Quantitative expression of collagen Iα, TGF-β, α-SMA, albumin, MMP-2, MMP-9 and TNF-α were assessed by polymerase chain reaction. Histopathological examination of the liver tissue was performed. GFP labeled cells were detected in groups injected with stem cells. Results: Regarding liver function, CD34+ were more efficient than BM-MSCs in elevating albumin (P<0.05) and reducing ALT (P<0.05) concentrations. Concerning gene expression, CD34+ were more effective than BM-MSCs in reducing gene expressions of collagen Iα (P<0.01), TGF-β1 (P<0.01) and α-SMA (P<0.01). Both CD34+ and BM-MSCs have the same efficacy in reducing TNF-α (P<0.001 and P<0.01, respectively). Furthermore, CD34+ were more valuable than BM-MSCs in increasing gene expression of albumin (P<0.05) and MMP-9 (P<0.01). Conclusion: Taken together; human UCB CD34+ stem cells were more efficient in improvement of experimental liver injury than BM-MSCs. This study highlighted an important role of human UCB CD34+ stem cells in liver fibrosis therapy. PMID:27785340

  8. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium

    PubMed Central

    Ouyang, Hong; Goldberg, Jeffrey L.; Chen, Shuyi; Li, Wei; Xu, Guo-Tong; Li, Wei; Zhang, Kang; Nussenblatt, Robert B.; Liu, Yizhi; Xie, Ting; Chan, Chi-Chao; Zack, Donald J.

    2016-01-01

    Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases. PMID:27102165

  9. The Impact of Phosphorus Supply on Selenium Uptake During Hydroponics Experiment of Winter Wheat (Triticum aestivum) in China.

    PubMed

    Liu, Hongen; Shi, Zhiwei; Li, Jinfeng; Zhao, Peng; Qin, Shiyu; Nie, Zhaojun

    2018-01-01

    Selenium (Se) is a necessary trace element for humans and animals, and Se fertilization is an efficient way to increase Se concentration in the edible parts of crops, thus enhance the beneficiary effects of Se in human and animal health. Due to the similarity of physical and chemical properties between phosphate () and selenite (), phosphorus (P) supply often significantly impacts the absorption of Se in plants, but little is known about how P supply influences the subcellular distribution and chemical forms of Se. In this study, the effects of P supply on subcellular distribution and chemical forms of Se in winter wheat were investigated in a hydroponic trial with medium Se level (0.1 mg Se L -1 ). P was applied with three concentrations (0.31, 3.1, and 31 mg P L -1 ) in the experiment. The results showed that increasing P supply significantly decreased the concentration and accumulation of Se in the roots, stems, and leaves of winter wheat. An increase in P supply significantly inhibited Se accumulation in the root cell wall, but enhanced Se distribution in the organelles and soluble fraction of root cells. These findings suggest that increased P supply inhibited the root-to-shoot transport of Se. An increase in P supply enhanced Se accumulation in the cell wall of plant stems (both apical and axillary stem) and cell organelles of plants leaves, but inhibited Se distribution in the soluble fraction of stems and leaves. This suggests that P supply enhances Se transportation across the cell membrane in shoots of winter wheat. In addition, increased P supply also altered the chemical forms of Se in tissues of winter wheat. These findings will help in understanding of the regulation grain Se accumulation and provide a practical way to enhance Se intake for humans inform Se-enriched grains.

  10. The expanding role of the clinical haematologist in the new world of advanced therapy medicinal products.

    PubMed

    Lowdell, Mark W; Thomas, Amy

    2017-01-01

    Advanced therapy medicinal products (ATMPs) represent the current pinnacle of 'patient-specific medicines' and will change the nature of medicine in the near future. They fall into three categories; somatic cell-therapy products, gene therapy products and cells or tissues for regenerative medicine, which are termed 'tissue engineered' products. The term also incorporates 'combination products' where a human cell or tissue is combined with a medical device. Plainly, many of these new medicines share similarities with conventional haematological stem cell transplant products and donor lymphocyte infusions as well as solid organ grafts and yet ATMPs are regulated as medicines and their development has remained predominantly in academic settings and within specialist centres. However, with the advent of commercialisation of dendritic cell vaccines, chimeric antigen receptor (CAR)-T cells and genetically modified autologous haematopoietic stem cells to cure single gene-defects in β-thalassaemia and haemophilia, the widespread availability of these therapies needs to be accommodated. Uniquely to ATMPs, the patient or an allogeneic donor is regularly part of the manufacturing process. All of the examples given above require procurement of blood, bone marrow or an apheresate from a patient as a starting material for manufacture. This can only occur in a clinical facility licensed for the procurement of human cells for therapeutic use and this is likely to fall to haematology departments, either as stem cell transplant programmes or as blood transfusion departments, to provide under a contract with the company that will manufacture and supply the final medicine. The resource implications associated with this can impact on all haematology departments, not just stem cell transplant units, and should not be under-estimated. © 2016 John Wiley & Sons Ltd.

  11. StemTextSearch: Stem cell gene database with evidence from abstracts.

    PubMed

    Chen, Chou-Cheng; Ho, Chung-Liang

    2017-05-01

    Previous studies have used many methods to find biomarkers in stem cells, including text mining, experimental data and image storage. However, no text-mining methods have yet been developed which can identify whether a gene plays a positive or negative role in stem cells. StemTextSearch identifies the role of a gene in stem cells by using a text-mining method to find combinations of gene regulation, stem-cell regulation and cell processes in the same sentences of biomedical abstracts. The dataset includes 5797 genes, with 1534 genes having positive roles in stem cells, 1335 genes having negative roles, 1654 genes with both positive and negative roles, and 1274 with an uncertain role. The precision of gene role in StemTextSearch is 0.66, and the recall is 0.78. StemTextSearch is a web-based engine with queries that specify (i) gene, (ii) category of stem cell, (iii) gene role, (iv) gene regulation, (v) cell process, (vi) stem-cell regulation, and (vii) species. StemTextSearch is available through http://bio.yungyun.com.tw/StemTextSearch.aspx. Copyright © 2017. Published by Elsevier Inc.

  12. Application of Stem Cell Technology in Dental Regenerative Medicine.

    PubMed

    Feng, Ruoxue; Lengner, Chistopher

    2013-07-01

    In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.

  13. The UK Stem Cell Bank: a UK government-funded, international resource center for stem cell research.

    PubMed

    Stacey, Glyn; Hunt, Charles J

    2006-01-01

    The UK Stem Cell Bank is a UK Research Council-funded initiative that aims to provide ethically sourced and quality controlled stocks of cells for researchers and also establish seed stocks of cell lines for clinical trials. Whilst the Bank is prohibited from carrying out basic stem cell research (to avoid conflicts of interest) it is working to improve stem cell banking procedures including cryopreservation, characterization and quality control. The Bank also supports training activities and has provided the hub for the International Stem Cell Initiative, which includes 17 expert stem cell centers aiming to characterize a large number of human embryonic stem cell lines in a standardized way to improve our understanding of the characteristics of these cells.

  14. Methods for Stem Cell Production and Therapy

    NASA Technical Reports Server (NTRS)

    Valluri, Jagan V. (Inventor); Claudio, Pier Paolo (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  15. Dental pulp stem cells in regenerative dentistry.

    PubMed

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  16. Translating stem cell therapies: the role of companion animals in regenerative medicine

    PubMed Central

    Volk, Susan W.; Theoret, Christine

    2013-01-01

    Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell research in veterinary medicine has facilitated the development and in some instances clinical translation of a variety of cell-based therapies involving hematopoietic (HSC) and mesenchymal stem cells (MSC) as well as other adult regenerative cells and recently embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC). In fact, many of the pioneering developments in these fields of stem cell research have been achieved through collaborations of veterinary and human scientists. This review aims to provide an overview of the contribution of large animal veterinary models in advancing stem cell therapies for both human and clinical veterinary applications. Moreover, in the context of the “One Health Initiative”, the role veterinary patients may play in the future evolution of stem cell therapies for both human and animal patients will be explored. PMID:23627495

  17. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    PubMed

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in leukemia patients, such down-regulating changes in c-Rel levels could be counter-productive.

  18. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche

    PubMed Central

    2018-01-01

    ABSTRACT Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. PMID:29361569

  19. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.

    PubMed

    Wang, Xiaoxi; Page-McCaw, Andrea

    2018-02-07

    Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.

  20. 21st Nantes Actualités Transplantation: "When Stem Cells Meet Immunology".

    PubMed

    Anegon, Ignacio; Nguyen, Tuan Huy

    2017-01-01

    "When Stem Cells Meet Immunology" has been the topic of the 21st annual "Nantes Actualités en Transplantation" meeting (June 9-10, 2016, Nantes, France). This meeting brought together pioneers and leading experts in the fields of stem cells, biomaterials and immunoregulation. Presentations covered multipotent (mesenchymal and hematopoietic) and pluripotent stem cells (embryonic and induced) for regenerative medicine of incurable diseases, immunotherapy and blood transfusions. An additional focus had been immune rejections and responses of allogeneic or autologous stem cells. Conversely, stem cells are also able to directly modulate the immune response through the production of immunoregulatory molecules. Moreover, stem cells may also provide an unlimited source of immune cells (DCs, NK cells, B cells, and T cells) that can operate as "super" immune cells, for example, through genetic engineering with chimeric antigen receptors.This meeting report puts presentations into an overall context highlighting new potential biomarkers for potency prediction of mesenchymal stem cell-derived and pluripotent stem cell-derived multicellular organoids. Finally, we propose future directions arising from the flourishing encounter of stem cell and immune biology.

  1. Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics.

    PubMed

    Mannino, Mariella; Gomez-Roman, Natividad; Hochegger, Helfrid; Chalmers, Anthony J

    2014-07-01

    Glioma stem-cell-like cells are considered to be responsible for treatment resistance and tumour recurrence following chemo-radiation in glioblastoma patients, but specific targets by which to kill the cancer stem cell population remain elusive. A characteristic feature of stem cells is their ability to undergo both symmetric and asymmetric cell divisions. In this study we have analysed specific features of glioma stem cell mitosis. We found that glioma stem cells appear to be highly prone to undergo aberrant cell division and polyploidization. Moreover, we discovered a pronounced change in the dynamic of mitotic centrosome maturation in these cells. Accordingly, glioma stem cell survival appeared to be strongly dependent on Aurora A activity. Unlike differentiated cells, glioma stem cells responded to moderate Aurora A inhibition with spindle defects, polyploidization and a dramatic increase in cellular senescence, and were selectively sensitive to Aurora A and Plk1 inhibitor treatment. Our study proposes inhibition of centrosomal kinases as a novel strategy to selectively target glioma stem cells. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Effect of aging on stem cells

    PubMed Central

    Ahmed, Abu Shufian Ishtiaq; Sheng, Matilda HC; Wasnik, Samiksha; Baylink, David J; Lau, Kin-Hing William

    2017-01-01

    Pluripotent stem cells have the remarkable self-renewal ability and are capable of differentiating into multiple diverse cells. There is increasing evidence that the aging process can have adverse effects on stem cells. As stem cells age, their renewal ability deteriorates and their ability to differentiate into the various cell types is altered. Accordingly, it is suggested aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Understanding the role of the aging process in deterioration of stem cell function is crucial, not only in understanding the pathophysiology of aging-associated disorders, but also in future development of novel effective stem cell-based therapies to treat aging-associated diseases. This review article first focuses on the basis of the various aging disease-related stem cell dysfunction. It then addresses the several concepts on the potential mechanism that causes aging-related stem cell dysfunction. It also briefly discusses the current potential therapies under development for aging-associated stem cell defects. PMID:28261550

  3. Engineering Stem Cells for Biomedical Applications

    PubMed Central

    Yin, Perry T.; Han, Edward

    2018-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  4. Therapeutic potential of dental stem cells

    PubMed Central

    Chalisserry, Elna Paul; Nam, Seung Yun; Park, Sang Hyug; Anil, Sukumaran

    2017-01-01

    Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run. PMID:28616151

  5. Single-cell sequencing in stem cell biology.

    PubMed

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  6. The Implications of the Cancer Stem Cell Hypothesis for Neuro-Oncology and Neurology.

    PubMed

    Rich, Jeremy N

    2008-05-01

    The cancer stem cell hypothesis posits that cancers contain a subset of neoplastic cells that propagate and maintain tumors through sustained self-renewal and potent tumorigenecity. Recent excitement has been generated by a number of reports that have demonstrated the existence of cancer stem cells in several types of brain tumors. Brain cancer stem cells - also called tumor initiating cells or tumor propagating cells - share features with normal neural stem cells but do not necessarily originate from stem cells. Although most cancers have only a small fraction of cancer stem cells, these tumor cells have been shown in laboratory studies to contribute to therapeutic resistance, formation of new blood vessels to supply the tumor, and tumor spread. As malignant brain tumors rank among the deadliest of all neurologic diseases, the identification of new cellular targets may have profound implications in neuro-oncology. Novel drugs that target stem cell pathways active in brain tumors have been efficacious against cancer stem cells suggesting that anti-cancer stem cell therapies may advance brain tumor therapy. The cancer stem cell hypothesis may have several implications for other neurologic diseases as caution must be exercised in activating stem cell maintenance pathways in cellular therapies for neurodegenerative diseases. The ability for a small fraction of cells to determine the overall course of a disease may also inform new paradigms of disease that may translate into improved patient outcomes.

  7. Can bone marrow differentiate into renal cells?

    PubMed

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  8. [The emerging technology of tissue engineering : Focus on stem cell niche].

    PubMed

    Schlötzer-Schrehardt, U; Freudenberg, U; Kruse, F E

    2017-04-01

    Limbal stem cells reside in a highly specialized complex microenvironment that is known as the stem cell niche, an anatomically protected region at the bottom of the Palisades of Vogt, where the stem cells are located and where their quiescence, proliferation and differentiation are maintained in balance. Besides the epithelial stem and progenitor cell clusters, the limbal niche comprises several types of supporting niche cells and a specific extracellular matrix mediating biochemical and biophysical signals. Stem cell-based tissue engineering aims to mimic the native stem cell niche and to present appropriate microenvironmental cues in a controlled and reproducible fashion in order to maintain stem cell function within the graft. Current therapeutic approaches for ex vivo expansion of limbal stem cells only take advantage of surrogate niches. However, new insights into the molecular composition of the limbal niche and innovative biosynthetic scaffolds have stimulated novel strategies for niche-driven stem cell cultivation. Promising experimental approaches include collagen-based organotypic coculture systems of limbal epithelial stem cells with their niche cells and biomimetic hydrogel platforms prefunctionalized with appropriate biomolecular and biophysical signals. Future translation of these novel regenerative strategies into clinical application is expected to improve long-term outcomes of limbal stem cell transplantation for ocular surface reconstruction.

  9. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    PubMed

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  10. Impaired redox environment modulates cardiogenic and ion-channel gene expression in cardiac-resident and non-resident mesenchymal stem cells.

    PubMed

    Subramani, Baskar; Subbannagounder, Sellamuthu; Ramanathanpullai, Chithra; Palanivel, Sekar; Ramasamy, Rajesh

    2017-03-01

    Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H 2 O 2 ) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H 2 O 2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H 2 O 2 . The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( I KDR , I KCa , I to and I Na.TTX ) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H 2 O 2 . Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H 2 O 2 . Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.

  11. Application of Stem Cells in Oral Disease Therapy: Progresses and Perspectives

    PubMed Central

    Yang, Bo; Qiu, Yi; Zhou, Niu; Ouyang, Hong; Ding, Junjun; Cheng, Bin; Sun, Jianbo

    2017-01-01

    Stem cells are undifferentiated and pluripotent cells that can differentiate into specialized cells with a more specific function. Stem cell therapies become preferred methods for the treatment of multiple diseases. Oral and maxillofacial defect is one kind of the diseases that could be most possibly cured by stem cell therapies. Here we discussed oral diseases, oral adult stem cells, iPS cells, and the progresses/challenges/perspectives of application of stem cells for oral disease treatment. PMID:28421002

  12. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes

    PubMed Central

    Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie

    2013-01-01

    Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130

  13. Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells

    PubMed Central

    2016-01-01

    Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory–motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra, we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors (Dlx, Dlx1, DMBX1/Manacle, Ets1, Gli3, KLF11, LMX1A, ZNF436, Shox1), epitheliopeptides (Arminins, PW peptide), neurosignalling components (CAMK1D, DDCl2, Inx1), ligand-ion channel receptors (CHRNA1, NaC7), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution. PMID:26598723

  14. Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells.

    PubMed

    Wenger, Y; Buzgariu, W; Galliot, B

    2016-01-05

    Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory-motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra, we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors (Dlx, Dlx1, DMBX1/Manacle, Ets1, Gli3, KLF11, LMX1A, ZNF436, Shox1), epitheliopeptides (Arminins, PW peptide), neurosignalling components (CAMK1D, DDCl2, Inx1), ligand-ion channel receptors (CHRNA1, NaC7), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution. © 2015 The Authors.

  15. Nano scaffolds and stem cell therapy in liver tissue engineering

    NASA Astrophysics Data System (ADS)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  16. Stem-Cell-Based Tumorigenesis in Adult Drosophila.

    PubMed

    Hou, S X; Singh, S R

    2017-01-01

    Recent studies suggest that a small subset of cells within a tumor, the so-called cancer stem cells (CSCs), are responsible for tumor propagation, relapse, and the eventual death of most cancer patients. CSCs may derive from a few tumor-initiating cells, which are either transformed normal stem cells or reprogrammed differentiated cells after acquiring initial cancer-causing mutations. CSCs and normal stem cells share some properties, but CSCs differ from normal stem cells in their tumorigenic ability. Notably, CSCs are usually resistant to chemo- and radiation therapies. Despite the apparent roles of CSCs in human cancers, the biology underlying their behaviors remains poorly understood. Over the past few years, studies in Drosophila have significantly contributed to this new frontier of cancer research. Here, we first review how stem-cell tumors are initiated and propagated in Drosophila, through niche appropriation in the posterior midgut and through stem-cell competition for niche occupancy in the testis. We then discuss the differences between normal and tumorigenic stem cells, revealed by studying Ras V12 -transformed stem-cell tumors in the Drosophila kidney. Finally, we review the biology behind therapy resistance, which has been elucidated through studies of stem-cell resistance and sensitivity to death inducers using female germline stem cells and intestinal stem cells of the posterior midgut. We expect that screens using adult Drosophila neoplastic stem-cell tumor models will be valuable for identifying novel and effective compounds for treating human cancers. © 2017 Elsevier Inc. All rights reserved.

  17. Stem cells with potential to generate insulin producing cells in man.

    PubMed

    Zulewski, Henryk

    2006-10-14

    Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.

  18. Stem cells with potential to generate insulin-producing cells in man.

    PubMed

    Zulewski, Henryk

    2007-03-02

    Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.

  19. Mechanical forces direct stem cell behaviour in development and regeneration

    PubMed Central

    Vining, Kyle H.; Mooney, David J.

    2018-01-01

    Stem cells and their local microenvironment, or niche, communicate through mechanical, cues to regulate cell fate and cell behaviour, and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their differentiation and self-renewal. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights on the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies. PMID:29115301

  20. Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration

    PubMed Central

    Becker, Silke; Jayaram, Hari; Limb, G. Astrid

    2012-01-01

    Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice. PMID:24710533

  1. Stem-Cell Therapy Advances in China.

    PubMed

    Hu, Lei; Zhao, Bin; Wang, Songlin

    2018-02-01

    Stem-cell therapy is a promising method for treating patients with a wide range of diseases and injuries. Increasing government funding of scientific research has promoted rapid developments in stem-cell research in China, as evidenced by the substantial increase in the number and quality of publications in the past 5 years. Multiple high-quality studies have been performed in China that concern cell reprogramming, stem-cell homeostasis, gene modifications, and immunomodulation. The number of translation studies, including basic and preclinical investigations, has also increased. Around 100 stem-cell banks have been established in China, 10 stem-cell drugs are currently in the approval process, and >400 stem cell-based clinical trials are currently registered in China. With continued state funding, advanced biotechnical support, and the development of regulatory standards for the clinical application of stem cells, further innovations are expected that will lead to a boom in stem-cell therapies. This review highlights recent achievements in stem-cell research in China and discusses future prospects.

  2. New insights into mechanisms of stem cell daughter fate determination in regenerative tissues.

    PubMed

    Sada, Aiko; Tumbar, Tudorita

    2013-01-01

    Stem cells can self-renew and differentiate over extended periods of time. Understanding how stem cells acquire their fates is a central question in stem cell biology. Early work in Drosophila germ line and neuroblast showed that fate choice is achieved by strict asymmetric divisions that can generate each time one stem and one differentiated cell. More recent work suggests that during homeostasis, some stem cells can divide symmetrically to generate two differentiated cells or two identical stem cells to compensate for stem cell loss that occurred by direct differentiation or apoptosis. The interplay of all these factors ensures constant tissue regeneration and the maintenance of stem cell pool size. This interplay can be modeled as a population-deterministic dynamics that, at least in some systems, may be described as stochastic behavior. Here, we overview recent progress made on the characterization of stem cell dynamics in regenerative tissues. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Bi-directional activation between mesenchymal stem cells and CLL B-cells: implication for CLL disease progression.

    PubMed

    Ding, Wei; Nowakowski, Grzegorz S; Knox, Traci R; Boysen, Justin C; Maas, Mary L; Schwager, Susan M; Wu, Wenting; Wellik, Linda E; Dietz, Allan B; Ghosh, Asish K; Secreto, Charla R; Medina, Kay L; Shanafelt, Tait D; Zent, Clive S; Call, Timothy G; Kay, Neil E

    2009-11-01

    It was hypothesized that contact between chronic lymphocytic leukaemia (CLL) B-cells and marrow stromal cells impact both cell types. To test this hypothesis, we utilized a long-term primary culture system from bone biopsies that reliably generates a mesenchymal stem cell (MSC). Co-culture of MSC with CLL B-cells protected the latter from both spontaneous apoptosis and drug-induced apoptosis. The CD38 expression in previously CD38 positive CLL B-cells was up-regulated with MSC co-culture. Upregulation of CD71, CD25, CD69 and CD70 in CLL B-cells was found in the co-culture. CD71 upregulation was more significantly associated with high-risk CLL, implicating CD71 regulation in the microenvironment predicting disease progression. In MSC, rapid ERK and AKT phosphorylation (within 30 min) were detected when CLL B-cells and MSC were separated by transwell; indicating that activation of MSC was mediated by soluble factors. These findings support a bi-directional activation between bone marrow stromal cells and CLL B-cells.

  4. GE132+Natural: Novel promising dietetic supplement with antiproliferative influence on prostate, colon, and breast cancer cells.

    PubMed

    Okic-Djordjevic, I; Trivanovic, D; Krstic, J; Jaukovic, A; Mojsilovic, S; Santibanez, J F; Terzic, M; Vesovic, D; Bugarski, D

    2013-01-01

    Natural products have been investigated for promising new leads in pharmaceutical development. The purpose of this study was to analyze the biological effect of GE132+Natural, a novel supplement consisting of 5 compounds: Resveratrol, Ganoderma lucidum, Sulforaphane, Lycopene and Royal jelly. The antiproliferative activity of GE132+Natural was tested on 3 different human cancer cell lines: MCF7 (breast cancer cells), PC3 (prostate cancer cells), and SW480 (colon cancer cells), as well as on EA.hy 926 (normal human endothelial cell line). In addition, the cytotoxicity of GE132+- Natural on the proliferation of primary human mesenchymal stem cells isolated from dental pulp (DP=MSC), along with its in vitro impact on different peripheral blood parameters, was determined. The results revealed high antiproliferative activity of GE132+Natural on all tested cancer cell lines (PC3, MCF7 and SW480), as well as on the EA.hy 926 endothelial cell line in a dose-dependent manner. However, applied in a wide range of concentrations GE132+Natural did not affect both the proliferation of primary mesenchymal stem cells and the peripheral blood cells counts. The data obtained demonstrated that GE132+Natural is effective in inhibiting cancer cell proliferation, indicating its potential beneficial health effects. In addition, the results pointed that adult mesenchymal stem cells might be valuable as a test system for evaluating the toxicity and efficacy of new medicines or chemicals.

  5. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.

  6. The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields.

    PubMed

    Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2015-06-01

    Following in utero exposure to low dose radiation (10-200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No significant induction of DSB or apoptosis was observed following exposure to magnetic fields (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. 53BP1 foci were quantified following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 μT for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. We conclude that in this sensitive system MF do not exert any significant level of DNA damage and do not impede the repair of X-ray induced damage.

  7. Risk of Exposure to Zika Virus and Impact on Cord Blood Banking and Adult Unrelated Donors in Hematopoietic Cell Transplantation: The Canadian Blood Services Experience.

    PubMed

    Adams, Zachary; Morris, Gail; Campbell, Todd; Mostert, Karen; Dibdin, Nicholas; Fearon, Margaret; Elmoazzen, Heidi; Mercer, Dena; Young, Kimberly; Allan, David

    2018-04-01

    Zika virus has emerged as a potential threat to the Canadian blood supply system. Stem cell donors within Canadian Blood Services' Cord Blood Bank (CBB) and OneMatch Stem Cell and Marrow Network (OM) now undergo screening measures designed to reduce the risk of Zika virus transmission. The impact these screening measures have on cord blood and unrelated adult stem cell donations is currently unknown. Among 146 donor workups initiated by OM between July 2016 and May 2017, 102 were completed and 44 workups were canceled. There were 17 potential donors (11.6%) with a risk of Zika virus exposure identified by the donor questionnaire (13 completed, 4 canceled workups). None of the workups involved a donor diagnosed with confirmed Zika virus within the past 6 months. Only 1 of the 44 canceled workups (and only 1 of 4 cases with a risk of Zika transmission) was canceled because of the risk of Zika transmission, and a backup donor was selected. Canadian Blood Services' CBB identified 25 of 875 cord blood units (2.9%) from women who donated their infants' cord blood and underwent screening that otherwise met the initial cell number thresholds for banking and had at least 1 risk factor for exposure to Zika virus. No women were diagnosed with Zika virus at any point of their pregnancy. All 25 units were discarded. Unrelated donors at OM have a higher incidence of a risk of exposure to Zika virus compared with cord blood donors. Only rarely did transplant centers cancel donor workups due to potential Zika virus exposure. The impact of screening for Zika virus exposure risk on cord blood banking was minor. Continued vigilance and surveillance is recommended. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Impact of morphine on the expression of insulin receptor and protein levels of insulin/IGFs in rat neural stem cells.

    PubMed

    Salarinasab, Sadegh; Nourazarian, AliReza; Nikanfar, Masoud; Abdyazdani, Nima; Kazemi, Masoumeh; Feizy, Navid; Rahbarghazi, Reza

    2017-11-01

    Alzheimer's disease is correlated with neuronal degeneration and loss of neuronal precursors in different parts of the brain. It has been found disturbance in the homeostasis neural stem cells (NSCs) can cause neurodegeneration. Morphine, an analgesic agent, can disrupt the dynamic and normal state of NSCs. However, more investigations are required to clearly address underlying mechanisms. The current experiment aimed to investigate the effects of morphine on the cell distribution of insulin factor and receptor and insulin-like growth factors (IGF1, IGF2) in NSCs. NSCs were isolated from rats and stemness feature confirmed by antibodies against nestin and Sox2. The cells were exposed to 100μM morphine, 50μM naloxone and combination of these two drugs for 72h. The neural cell growth, changes in levels of insulin and insulin-like growth factors secreted by NSCs as well as the insulin-receptor-gene expression were assessed by flow cytometry, ELlSA, and real-time PCR, respectively. Cell cycle assay revealed the exposure of cells to morphine for 72h increased cell apoptosis and decreased neural stem cell growth. The biosynthesis of insulin, insulin-like growth factors, and insulin receptor were reduced (p<0.05) after NSCs exposure to morphine at the concentration of 100μM for 24, 48 and 72h. Naloxone is a competitive antagonist which binds MOR where morphine (and endogenous opioids) bind, and reversed the detrimental effects of morphine. It can be concluded that morphine initiated irregularity in NSCs kinetics and activity by reducing the secretion of insulin and insulin-like growth factors and down-regulation of insulin receptor. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Aging and stem cell therapy: AMPK as an applicable pharmacological target for rejuvenation of aged stem cells and achieving higher efficacy in stem cell therapy.

    PubMed

    Khorraminejad-Shirazi, Mohammadhossein; Farahmandnia, Mohammad; Kardeh, Bahareh; Estedlal, Alireza; Kardeh, Sina; Monabati, Ahmad

    2017-10-19

    In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD + ) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  10. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.

    PubMed

    Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M

    2017-06-01

    This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.

  11. Normal and cancer mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR Axis

    PubMed Central

    Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin

    2017-01-01

    Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657

  12. The Role of Epithelial-Mesenchymal Transition in the Formation of Normal and Neoplastic Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2011-09-01

    separating stem cell and non- stem cell populations of normal and breast cancer cells and identified EMT transcription factors most likely involved in... stem cell biology. Preliminary results directly demonstrate that transient induction of EMT increases the number of mammary epithelial stem cells...EMT and entrance into a stem - cell state. The outcome of these experiments holds important implications for the mechanisms controlling the formation of

  13. Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    DTIC Science & Technology

    2005-08-01

    responsive, self renewing and pluripotent. A structure specialized to contain and regulate stem cell activity has been structurally and molecularly...described in Drosophila and some mammalian tissues. The structure, the stem cell niche, functions to 1) shield the stem cell from the burden of incoming...directing stem cell renewal and maturation, 3) prevent stem cells from wandering through the tissue and producing new cells inappropriately, 4) prevent

  14. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  15. Alpha-fetoprotein, stem cells and cancer: how study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer.

    PubMed

    Sell, Stewart

    2008-01-01

    Identification of the cells in the liver that produce alpha-fetoprotein during development, in response to liver injury and during the early stages of chemical hepatocarcinogenesis led to the conclusion that maturation arrest of liver-determined tissue stem cells was the cellular process that gives rise to hepatocellular carcinomas. When the cellular changes in these processes were compared to that of the formation of teratocarcinomas, the hypothesis arose that all cancers arise from maturation arrest of tissue-determined stem cells. This was essentially a reinterpretation of the embryonal rest theory of cancer whereby tissue stem cells take the role of embryonal rests. A corollary of the stem cell theory of the origin of cancer is that cancers contain the same functional cell populations as normal tissues: stem cells, transit-amplifying cells and mature cells. Cancer stem cells retain the essential feature of normal stem cells: the ability to self-renew. Growth of cancers is due to continued proliferation of cancer transit-amplifying cells that do not differentiate to mature cells (maturation arrest). On the other hand, cancer stem cells generally divide very rarely and contribute little to tumor growth. However, the presence of cancer stem cells in tumors is believed to be responsible for the properties of immortalization, transplantability and resistance to therapy characteristic of cancers. Current therapies for cancer (chemotherapy, radiotherapy, antiangiogenesis and differentiation therapy) are directed against the cancer transit-amplifying cells. When these therapies are discontinued, the cancer reforms from the cancer stem cells. Therapy directed toward interruption of the cell signaling pathways that maintain cancer stem cells could lead to new modalities to the prevention of regrowth of the cancer. Copyright 2008 S. Karger AG, Basel.

  16. ALPHA-FETOPROTEIN (AFP), STEM CELLS, AND CANCER: HOW STUDY OF THE PRODUCTION OF AFP DURING CHEMICAL HEPATOCARCINOGENESIS LED TO REAFFIRMATION OF THE STEM CELL THEORY OF CANCER

    PubMed Central

    Sell, Stewart

    2008-01-01

    Identification of the cells in the liver that produce alpha-fetoprotein (AFP) during development, in response to liver injury, and during the early stages of chemical hepatocarcinogenesis led to the conclusion that maturation arrest of liver-determined tissue stem cells was the cellular process that gives rise to hepatocellular carcinomas (HCC). When the cellular changes in these processes were compared that of the formation of teratocarcinomas, the hypothesis arose that all cancers arise from maturation arrest of tissue determined stem cells. This was essentially a reinterpretation of the embryonal rest theory of cancer whereby tissue stem cells take the role of embryonal rests. A corollary of the stem cell theory of the origin of cancer is that cancers contain the same functional cell populations as do normal tissues: stem cells, transit-amplifying cells, and mature cells. Cancer stem cells retain the essential feature of normal stem cells: the ability to self-renew. Growth of cancers is due to continued proliferation of cancer transit-amplifying cells that do not differentiate to mature cells (maturation arrest). On the other hand, cancer stem cells generally divide very rarely and contribute little to tumor growth. However, the presence of cancer stem cells in tumors is believed to be responsible for the properties of immortalization, transplantability and resistance to therapy characteristic of cancers. Current therapies for cancer (chemotherapy, radiotherapy, anti-angiogenesis and differentiation therapy) are directed against the cancer transit amplifying cells. When these therapies are discontinued, the cancer re-forms from the cancer stem cells. Therapy directed toward interruption of the cell-signaling pathways that maintain cancer stem cells could lead to new modalities to the prevention of re-growth of the cancer. PMID:18612221

  17. A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals

    PubMed Central

    Labbé, Roselyne M.; Irimia, Manuel; Currie, Ko W.; Lin, Alexander; Zhu, Shu Jun; Brown, David D.R.; Ross, Eric J.; Voisin, Veronique; Bader, Gary D.; Blencowe, Benjamin J.; Pearson, Bret J.

    2014-01-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency. PMID:22696458

  18. Investigating the mincing method for isolation of adipose-derived stem cells from pregnant women fat.

    PubMed

    Li, Yuan-Sheng; Chen, Pao-Jen; Wu, Li-Wei; Chou, Pei-Wen; Sun, Li-Yi; Chiou, Tzyy-Wen

    2018-02-01

    The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.

  19. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

    PubMed Central

    Worthley, Daniel L.; Churchill, Michael; Compton, Jocelyn T.; Tailor, Yagnesh; Rao, Meenakshi; Si, Yiling; Levin, Daniel; Schwartz, Matthew G.; Uygur, Aysu; Hayakawa, Yoku; Gross, Stefanie; Renz, Bernhard W.; Setlik, Wanda; Martinez, Ashley N.; Chen, Xiaowei; Nizami, Saqib; Lee, Heon Goo; Kang, H. Paco; Caldwell, Jon-Michael; Asfaha, Samuel; Westphalen, C. Benedikt; Graham, Trevor; Jin, Guangchun; Nagar, Karan; Wang, Hongshan; Kheirbek, Mazen A.; Kolhe, Alka; Carpenter, Jared; Glaire, Mark; Nair, Abhinav; Renders, Simon; Manieri, Nicholas; Muthupalani, Sureshkumar; Fox, James G.; Reichert, Maximilian; Giraud, Andrew S.; Schwabe, Robert F.; Pradere, Jean-Phillipe; Walton, Katherine; Prakash, Ajay; Gumucio, Deborah; Rustgi, Anil K.; Stappenbeck, Thaddeus S.; Friedman, Richard A.; Gershon, Michael D.; Sims, Peter; Grikscheit, Tracy; Lee, Francis Y.; Karsenty, Gerard; Mukherjee, Siddhartha; Wang, Timothy C.

    2014-01-01

    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs). PMID:25594183

  20. Biochemistry of epidermal stem cells.

    PubMed

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

Top