Sample records for stem cells npc

  1. Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related protein 1

    PubMed Central

    Zhou, Teng-Jian; Zhang, Shi-Li; He, Cheng-Yong; Zhuang, Qun-Ying; Han, Pei-Yu; Jiang, Sheng-Wei; Yao, Huan; Huang, Yi-Jun; Ling, Wen-Hua; Lin, Yu-Chun; Lin, Zhong-Ning

    2017-01-01

    Cancer stem cells (CSCs) are a small subset of malignant cells, possessing stemness, with strong tumorigenic capability, conferring resistance to therapy and leading to the relapse of nasopharyngeal carcinoma (NPC). Our previous study suggested that cyclooxygenase-2 (COX-2) would be a novel target for the CSCs-like side population (SP) cells in NPC. In the present study, we further found that COX-2 maintained the stemness of NPC by enhancing the activity of mitochondrial dynamin-related protein 1 (Drp1), a mitochondrial fission mediator, by studying both sorted SP cells from NPC cell lines and gene expression analyses in NPC tissues. Using both overexpression and knockdown of COX-2, we demonstrated that the localization of COX-2 at mitochondria promotes the stemness of NPC by recruiting the mitochondrial translocation of p53, increasing the activity of Drp1 and inducing mitochondrial fisson. Inhibition of the expression or the activity of Drp1 by siRNA or Mdivi-1 downregulates the stemness of NPC. The present study also found that inhibition of mitochondrial COX-2 with resveratrol (RSV), a natural phytochemical, increased the sensitivity of NPC to 5-fluorouracil (5-FU), a classical chemotherapy drug for NPC. The underlying mechanism is that RSV suppresses mitochondrial COX-2, thereby reducing NPC stemness by inhibiting Drp1 activity as demonstrated in both the in vitro and the in vivo studies. Taken together, the results of this study suggest that mitochondrial COX-2 is a potential theranostic target for the CSCs in NPC. Inhibition of mitochondrial COX-2 could be an attractive therapeutic option for the effective clinical treatment of therapy-resistant NPC. PMID:28435473

  2. Are there endogenous stem cells in the spinal cord?

    PubMed

    Ferrucci, Michela; Ryskalin, Larisa; Busceti, Carla L; Gaglione, Anderson; Biagioni, Francesca; Fornai, Francesco

    2017-12-01

    Neural progenitor cells (NPC) represent the stem-like niche of the central nervous system that maintains a regenerative potential also in the adult life. Despite NPC in the brain are well documented, the presence of NPC in the spinal cord has been controversial for a long time. This is due to a scarce activity of NPC within spinal cord, which also makes difficult their identification. The present review recapitulates the main experimental studies, which provided evidence for the occurrence of NPC within spinal cord, with a special emphasis on spinal cord injury and amyotrophic lateral sclerosis. By using experimental models, here we analyse the site-specificity, the phenotype and the main triggers of spinal cord NPC. Moreover, data are reported on the effect of specific neurogenic stimuli on these spinal cord NPC in an effort to comprehend the endogenous neurogenic potential of this stem cell niche.

  3. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling

    NASA Astrophysics Data System (ADS)

    Madl, Christopher M.; Lesavage, Bauer L.; Dewi, Ruby E.; Dinh, Cong B.; Stowers, Ryan S.; Khariton, Margarita; Lampe, Kyle J.; Nguyen, Duong; Chaudhuri, Ovijit; Enejder, Annika; Heilshorn, Sarah C.

    2017-12-01

    Neural progenitor cell (NPC) culture within three-dimensional (3D) hydrogels is an attractive strategy for expanding a therapeutically relevant number of stem cells. However, relatively little is known about how 3D material properties such as stiffness and degradability affect the maintenance of NPC stemness in the absence of differentiation factors. Over a physiologically relevant range of stiffness from ~0.5 to 50 kPa, stemness maintenance did not correlate with initial hydrogel stiffness. In contrast, hydrogel degradation was both correlated with, and necessary for, maintenance of NPC stemness. This requirement for degradation was independent of cytoskeletal tension generation and presentation of engineered adhesive ligands, instead relying on matrix remodelling to facilitate cadherin-mediated cell-cell contact and promote β-catenin signalling. In two additional hydrogel systems, permitting NPC-mediated matrix remodelling proved to be a generalizable strategy for stemness maintenance in 3D. Our findings have identified matrix remodelling, in the absence of cytoskeletal tension generation, as a previously unknown strategy to maintain stemness in 3D.

  4. Maintenance of Neural Progenitor Cell Stemness in 3D Hydrogels Requires Matrix Remodeling

    PubMed Central

    Madl, Christopher M.; LeSavage, Bauer L.; Dewi, Ruby E.; Dinh, Cong B.; Stowers, Ryan S.; Khariton, Margarita; Lampe, Kyle J.; Nguyen, Duong; Chaudhuri, Ovijit; Enejder, Annika; Heilshorn, Sarah C.

    2017-01-01

    Neural progenitor cell (NPC) culture within 3D hydrogels is an attractive strategy for expanding a therapeutically-relevant number of stem cells. However, relatively little is known about how 3D material properties such as stiffness and degradability affect the maintenance of NPC stemness in the absence of differentiation factors. Over a physiologically-relevant range of stiffness from ~0.5–50 kPa, stemness maintenance did not correlate with initial hydrogel stiffness. In contrast, hydrogel degradation was both correlated with, and necessary for, maintenance of NPC stemness. This requirement for degradation was independent of cytoskeletal tension generation and presentation of engineered adhesive ligands, instead relying on matrix remodeling to facilitate cadherin-mediated cell-cell contact and promote β-catenin signaling. In two additional hydrogel systems, permitting NPC-mediated matrix remodeling proved to be a generalizable strategy for stemness maintenance in 3D. Our findings have identified matrix remodeling, in the absence of cytoskeletal tension generation, as a previously unknown strategy to maintain stemness in 3D. PMID:29115291

  5. CCL2 induces neural stem cell proliferation and neuronal differentiation in Niemann-Pick type C mice.

    PubMed

    Hong, Yu Ri; Lee, Hyun; Park, Min Hee; Lee, Jong Kil; Lee, Ju Youn; Suh, Hwa Deok; Jeong, Min Seock; Bae, Jae-Sung; Jin, Hee Kyung

    2015-06-01

    Niemann-Pick type C disease (NP-C) is a rare and ultimately fatal lysosomal storage disorder with variable neurologic symptoms. Loss of neuronal function and neuronal cell death occur in the NP-C brain, similar to the findings for other neurodegenerative diseases. Targeting of neuronal cells in the brain therefore represents a potential clinical intervention strategy to reduce the rate of disease progression and improve the quality of life. We previously reported that bone marrow stem cells show a neurogenic effect through CCL2 (also known as monocyte chemoattractant protein-1, MCP-1) secretion in the brains of NP-C mice. However, the direct effect of CCL2 on neurogenesis has not been ascertained. Here, to define neurogenic effects of CCL2 in NP-C, we applied human recombinant CCL2 to neural stem cells (NSCs) derived from NP-C mice. CCL2-treated NSCs showed significantly increased capacity for self-renewal, proliferation and neuronal differentiation. Similar results were observed in the subventricular zone of NP-C mice after CCL2 treatment. Furthermore, infusion of CCL2 into the NP-C mouse brain resulted in reduction of neuroinflammation. Taken together, our results demonstrate that CCL2 is a potential new therapeutic agent for NP-C.

  6. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, Celine; Fouchet, Pierre; Gauthier, Laurent R.

    2006-04-01

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelialmore » cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.« less

  7. XIAP Limits Autophagic Degradation of Sox2 and Is A Therapeutic Target in Nasopharyngeal Carcinoma Stem Cells

    PubMed Central

    Ji, Jiao; Yu, Yan; Li, Zhi-Ling; Chen, Ming-Yuan; Deng, Rong; Huang, Xiang; Wang, Guang-Feng; Zhang, Meng-Xia; Yang, Qi; Ravichandran, Senthilkumar; Feng, Gong-Kan; Xu, Xue-Lian; Yang, Chen-Lu; Qiu, Miao-Zhen; Jiao, Lin; Yang, Dajun; Zhu, Xiao-Feng

    2018-01-01

    Rationale: Nasopharyngeal carcinoma (NPC) is the most frequent head and neck tumor in South China. The presence of cancer stem cells (CSCs) in NPC contributes to tumor maintenance and therapeutic resistance, while the ability of CSCs to escape from the apoptosis pathway may render them the resistant property to the therapies. Inhibitor of apoptosis proteins family proteins (IAPs), which are overexpressed in nasopharyngeal carcinoma stem cells, may play an important role in maintaining nasopharyngeal cancer stem cell properties. Here, we develop a novel CSC-targeting strategy to treat NPC through inhibiting IAPs. Methods: Human NPC S-18 and S-26 cell lines were used as the model system in vitro and in vivo. Fluorescence activated cell sorting (FACS) assay was used to detect nasopharyngeal SP cells and CD44+ cells. The characteristics of CSCs were defined by sphere suspension culture, colony formation assay and cell migration. The role of XIAP on the regulation of Sox2 protein stability and ERK1-mediated phosphorylation of Sox2 signaling pathway were analyzed using immunoblotting, immunoprecipitation, immunofluorescence, phosphorylation mass spectrometry, siRNA silencing and plasmid overexpression. The correlation between XIAP and Sox2 in NPC biopsies and their role in prognosis was performed by immunohistochemistry. APG-1387 or chemotherapies-induced cell death and apoptosis in S-18 and S-26 were determined by WST, immunoblotting and flow cytometry assay. Results: IAPs, especially X chromosome-linked IAP (XIAP), were elevated in CSCs of NPC, and these proteins were critically involved in the maintenance of CSCs properties by enhancing the stability of Sox2. Mechanistically, ERK1 kinase promoted autophagic degradation of Sox2 via phosphorylation of Sox2 at Ser251 and further SUMOylation of Sox2 at Lys245 in non-CSCs. However, XIAP blocked autophagic degradation of Sox2 by inhibiting ERK1 activation in CSCs. Additionally, XIAP was positively correlated with Sox2 expression in NPC tissues, which were associated with NPC progression. Finally, we discovered that a novel antagonist of IAPs, APG-1387, exerted antitumor effect on CSCs. Also, the combination of APG-1387 with CDDP /5-FU has a synergistic effect on NPC. Conclusion: Our study highlights the importance of IAPs in the maintenance of CSCs in NPC. Thus, XIAP is a promising therapeutic target in CSCs and suggests that NPC patients may benefit from a combination treatment of APG-1387 with conventional chemotherapy. PMID:29556337

  8. Modeling Niemann Pick type C1 using human embryonic and induced pluripotent stem cells.

    PubMed

    Ordoñez, M Paulina; Steele, John W

    2017-02-01

    Data generated in Niemann Pick type C1 (NPC1) human embryonic and human induced pluripotent stem cell derived neurons complement on-going studies in animal models and provide the first example, in disease-relevant human cells, of processes that underlie preferential neuronal defects in a NPC1. Our work and that of other investigators in human neurons derived from stem cells highlight the importance of performing rigorous mechanistic studies in relevant cell types to guide drug discovery and therapeutic development, alongside of existing animal models. Through the use of human stem cell-derived models of disease, we can identify and discover or repurpose drugs that revert early events that lead to neuronal failure in NPC1. Together with the study of disease pathogenesis and efficacy of therapies in animal models, these strategies will fulfill the promise of stem cell technology in the development of new treatments for human diseases. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Implantation of Neuronal Stem Cells Enhances Object Recognition without Increasing Neurogenesis after Lateral Fluid Percussion Injury in Mice

    PubMed Central

    Ngwenya, Laura B.; Mazumder, Sarmistha; Porter, Zachary R.; Oswald, Duane J.

    2018-01-01

    Cognitive deficits after traumatic brain injury (TBI) are debilitating and contribute to the morbidity and loss of productivity of over 10 million people worldwide. Cell transplantation has been linked to enhanced cognitive function after experimental traumatic brain injury, yet the mechanism of recovery is poorly understood. Since the hippocampus is a critical structure for learning and memory, supports adult neurogenesis, and is particularly vulnerable after TBI, we hypothesized that stem cell transplantation after TBI enhances cognitive recovery by modulation of endogenous hippocampal neurogenesis. We performed lateral fluid percussion injury (LFPI) in adult mice and transplanted embryonic stem cell-derived neural progenitor cells (NPC). Our data confirm an injury-induced cognitive deficit in novel object recognition, a hippocampal-dependent learning task, which is reversed one week after NPC transplantation. While LFPI alone promotes hippocampal neurogenesis, as revealed by doublecortin immunolabeling of immature neurons, subsequent NPC transplantation prevents increased neurogenesis and is not associated with morphological maturation of endogenous injury-induced immature neurons. Thus, NPC transplantation enhances cognitive recovery early after LFPI without a concomitant increase in neuron numbers or maturation. PMID:29531536

  10. CD44+ Cancer Stem-Like Cells in EBV-Associated Nasopharyngeal Carcinoma

    PubMed Central

    Lun, Samantha Wei-Man; Cheung, Siu Tim; Cheung, Phyllis Fung Yi; To, Ka-Fai; Woo, John Kong-Sang; Choy, Kwong-Wai; Chow, Chit; Cheung, Chartia Ching-Mei; Chung, Grace Tin-Yun; Cheng, Alice Suk-Hang; Ko, Chun-Wai; Tsao, Sai-Wah; Busson, Pierre; Ng, Margaret Heung-Ling; Lo, Kwok-Wai

    2012-01-01

    Nasopharyngeal carcinoma (NPC) is a unique EBV-associated epithelial malignancy, showing highly invasive and metastatic phenotype. Despite increasing evidence demonstrating the critical role of cancer stem-like cells (CSCs) in the maintenance and progression of tumors in a variety of malignancies, the existence and properties of CSC in EBV-associated NPC are largely unknown. Our study aims to elucidate the presence and role of CSCs in the pathogenesis of this malignant disease. Sphere-forming cells were isolated from an EBV-positive NPC cell line C666-1 and its tumor-initiating properties were confirmed by in vitro and in vivo assays. In these spheroids, up-regulation of multiple stem cell markers were found. By flow cytometry, we demonstrated that both CD44 and SOX2 were overexpressed in a majority of sphere-forming C666-1 cells. The CD44+SOX2+ cells was detected in a minor population in EBV-positive xenografts and primary tumors and considered as potential CSC in NPC. Notably, the isolated CD44+ NPC cells were resistant to chemotherapeutic agents and with higher spheroid formation efficiency, showing CSC properties. On the other hand, microarray analysis has revealed a number of differentially expressed genes involved in transcription regulation (e.g. FOXN4, GLI1), immune response (CCR7, IL8) and transmembrane transport (e.g. ABCC3, ABCC11) in the spheroids. Among these genes, increased expression of CCR7 in CD44+ CSCs was confirmed in NPC xenografts and primary tumors. Importantly, blocking of CCR7 abolished the sphere-forming ability of C666-1 in vitro. Expression of CCR7 was associated with recurrent disease and distant metastasis. The current study defined the specific properties of a CSC subpopulation in EBV-associated NPC. Our findings provided new insights into developing effective therapies targeting on CSCs, thereby potentiating treatment efficacy for NPC patients. PMID:23285037

  11. Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma.

    PubMed

    Yoshizaki, Tomokazu; Kondo, Satoru; Endo, Kazuhira; Nakanishi, Yosuke; Aga, Mitsuharu; Kobayashi, Eiji; Hirai, Nobuyuki; Sugimoto, Hisashi; Hatano, Miyako; Ueno, Takayoshi; Ishikawa, Kazuya; Wakisaka, Naohiro

    2018-02-01

    Latent membrane protein 1 (LMP1) is a primary oncogene encoded by the Epstein-Barr virus, and various portions of LMP1 are detected in nasopharyngeal carcinoma (NPC) tumor cells. LMP1 has been extensively studied since the discovery of its transforming property in 1985. LMP1 promotes cancer cell growth during NPC development and facilitates the interaction of cancer cells with surrounding stromal cells for invasion, angiogenesis, and immune modulation. LMP1 is detected in 100% of pre-invasive NPC tumors and in approximately 50% of advanced NPC tumors. Moreover, a small population of LMP1-expressing cells in advanced NPC tumor tissue is proposed to orchestrate NPC tumor tissue maintenance and development through cancer stem cells and progenitor cells. Recent studies suggest that LMP1 activity shifts according to tumor development stage, but it still has a pivotal role during all stages of NPC development. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Neural stem cell implantation extends life in Niemann-Pick C1 mice.

    PubMed

    Ahmad, Iram; Hunter, Robert E; Flax, Jonathan D; Snyder, Evan Y; Erickson, Robert P

    2007-01-01

    In order to evaluate the phenotypic effects of implanted neural stem cells (NSCs) in the mouse model of Niemann-Pick C (NPC) disease, we injected a well-characterized clone of murine NSCs into the cerebella of neonatal Npc1(-/-) and control mice. The implanted cells survived and were abundant in some regions of the cerebellum. Life span was lengthened in NPC mice with the implanted NSCs. However, the rate of weight gain and subsequent weight loss, resulting from neurodegeneration, was not significantly different from un-injected controls. Ataxia was measured by Rota-Rod performance. The overall rate of decline in time on the Rota-Rod was not significantly slowed down. Thus, in this small group of NPC mice, a single administration in the neonatal period of the NSCs (which were not engineered to over-express the missing gene and not directed into the parenchyma) was only partially therapeutic.

  13. Co-culture of Adult Mesenchymal Stem Cells and Nucleus Pulposus Cells in Bilaminar Pellets for Intervertebral Disc Regeneration.

    PubMed

    Allon, Aliza A; Schneider, Richard A; Lotz, Jeffrey C

    2009-01-01

    Our goal is to optimize stem cell-based tissue engineering strategies in the context of the intervertebral disc environment. We explored the benefits of co-culturing nucleus pulposus cells (NPC) and adult mesenchymal stem cells (MSC) using a novel spherical bilaminar pellet culture system where one cell type is enclosed in a sphere of the other cell type. Our 3D system provides a structure that exploits embryonic processes such as tissue induction and condensation. We observed a unique phenomenon: the budding of co-culture pellets and the formation of satellite pellets that separate from the main pellet. MSC and NPC co-culture pellets were formed with three different structural organizations. The first had random organization. The other two had bilaminar organization with either MSC inside and NPC outside or NPC inside and MSC outside. By 14 days, all co-culture pellets exhibited budding and spontaneously generated satellite pellets. The satellite pellets were composed of both cell types and, surprisingly, all had the same bilaminar organization with MSC on the inside and NPC on the outside. This organization was independent of the structure of the main pellet that the satellites stemmed from. The main pellets generated satellite pellets that spontaneously organized into a bilaminar structure. This implies that structural organization occurs naturally in this cell culture system and may be inherently favorable for cell-based tissue engineering strategies. The occurrence of budding and the organization of satellite pellets may have important implications for the use of co-culture pellets in cell-based therapies for disc regeneration. From a therapeutic point of view, the generation of satellite pellets may be a beneficial feature that would serve to spread donor cells throughout the host matrix and restore normal matrix composition in a sustainable way, ultimately renewing tissue function.

  14. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells.

    PubMed

    Lu, Kang; Li, Hai-Yin; Yang, Kuang; Wu, Jun-Long; Cai, Xiao-Wei; Zhou, Yue; Li, Chang-Qing

    2017-05-10

    The stem cell-based therapies for intervertebral disc degeneration have been widely studied. However, the mechanisms of mesenchymal stem cells interacting with intervertebral disc cells, such as nucleus pulposus cells (NPCs), remain unknown. Exosomes as a vital paracrine mechanism in cell-cell communication have been highly focused on. The purpose of this study was to detect the role of exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) and NPCs in their interaction with corresponding cells. The exosomes secreted by BM-MSCs and NPCs were purified by differential centrifugation and identified by transmission electron microscope and immunoblot analysis of exosomal marker proteins. Fluorescence confocal microscopy was used to examine the uptake of exosomes by recipient cells. The effects of NPC exosomes on the migration and differentiation of BM-MSCs were determined by transwell migration assays and quantitative RT-PCR analysis of NPC phenotypic genes. Western blot analysis was performed to examine proteins such as aggrecan, sox-9, collagen II and hif-1α in the induced BM-MSCs. Proliferation and the gene expression profile of NPCs induced by BM-MSC exosomes were measured by Cell Counting Kit-8 and qRT-PCR analysis, respectively. Both the NPCs and BM-MSCs secreted exosomes, and these exosomes underwent uptake by the corresponding cells. NPC-derived exosomes promoted BM-MSC migration and induced BM-MSC differentiation to a nucleus pulposus-like phenotype. BM-MSC-derived exosomes promoted NPC proliferation and healthier extracellular matrix production in the degenerate NPCs. Our study indicates that the exosomes act as an important vehicle in information exchange between BM-MSCs and NPCs. Given a variety of functions and multiple advantages, exosomes alone or loaded with specific genes and drugs would be an appropriate option in a cell-free therapy strategy for intervertebral disc degeneration.

  15. Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma

    PubMed Central

    Wei-Man Lun, Samantha; Cheung, Siu-Tim; Lo, Kwok-Wai

    2014-01-01

    Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cells. These cancer stem-like cells (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed. PMID:25223912

  16. 52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1)

    DOE PAGES

    Lewis, Christina M.; Graves, Stephen A.; Hernandez, Reinier; ...

    2015-01-01

    There is a growing demand for long-term in vivo stem cell imaging for assessing cell therapy techniques and guiding therapeutic decisions. This work develops the production of 52Mn and establishes proof of concept for the use of divalent metal transporter 1 (DMT1) as a positron emission tomography (PET) and magnetic resonance imaging (MRI) reporter gene for stem cell tracking in the rat brain. 52Mn was produced via proton irradiation of a natural chromium target. In a comparison of two 52Mn separation methods, solvent-solvent extraction was preferred over ion exchange chromatography because of reduced chromium impurities and higher 52Mn recovery. Inmore » vitro uptake of Mn-based PET and MRI contrast agents ( 52Mn 2+ and Mn 2+, respectively) was enhanced in DMT1 over-expressing human neural progenitor cells (hNPC-DMT1) compared to wild-type control cells (hNPC-WT). After cell transplantation in the rat striatum, increased uptake of Mn-based contrast agents in grafted hNPC-DMT1 was detected in in vivo manganese-enhanced MRI (MEMRI) and ex vivo PET and autoradiography. These initial studies indicate that this approach holds promise for dual-modality PET/MR tracking of transplanted stem cells in the central nervous system and prompt further investigation into the clinical applicability of this technique.« less

  17. Highly Expandable Human iPS Cell-Derived Neural Progenitor Cells (NPC) and Neurons for Central Nervous System Disease Modeling and High-Throughput Screening.

    PubMed

    Cheng, Chialin; Fass, Daniel M; Folz-Donahue, Kat; MacDonald, Marcy E; Haggarty, Stephen J

    2017-01-11

    Reprogramming of human somatic cells into induced pluripotent stem (iPS) cells has greatly expanded the set of research tools available to investigate the molecular and cellular mechanisms underlying central nervous system (CNS) disorders. Realizing the promise of iPS cell technology for the identification of novel therapeutic targets and for high-throughput drug screening requires implementation of methods for the large-scale production of defined CNS cell types. Here we describe a protocol for generating stable, highly expandable, iPS cell-derived CNS neural progenitor cells (NPC) using multi-dimensional fluorescence activated cell sorting (FACS) to purify NPC defined by cell surface markers. In addition, we describe a rapid, efficient, and reproducible method for generating excitatory cortical-like neurons from these NPC through inducible expression of the pro-neural transcription factor Neurogenin 2 (iNgn2-NPC). Finally, we describe methodology for the use of iNgn2-NPC for probing human neuroplasticity and mechanisms underlying CNS disorders using high-content, single-cell-level automated microscopy assays. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Effect of cryopreservation on the appearance and liver function of hepatocyte-like cells in cultures of cirrhotic liver of biliary atresia.

    PubMed

    Yamazaki, Taisuke; Enosawa, Shin; Tokiwa, Takayoshi

    2018-06-01

    Previously, we reported that non-parenchymal cell (NPC) fractions from cirrhotic liver of biliary atresia (BA) may contain stem/progenitor cells, and clusters of hepatocyte-like cells appear via hepatocyte growth factor/c-Met signaling in primary cultures of NPCs. BA is a rare and serious liver disease, and procurement of BA cells is difficult. Therefore, cryopreservation of BA liver cells is an unavoidable challenge. In this study, we examined the appearance and liver function of hepatocyte-like cells in cultures of BA liver-derived NPC fractions after cryopreservation for 1 or 6 mo using a chemically defined cryopreservation solution, STEM-CELLBANKER. Although a decrease in cell viability was observed in recovered cells after 1 mo of cryopreservation, clusters of hepatocyte-like cells appeared in the culture of cells that had been cryopreserved for 1 or 6 mo, similar to non-cryopreserved cells. In addition, these hepatocyte-like cells expressed hepatocyte-related mRNAs and demonstrated albumin production and glycogen storage. The present results suggest that hepatic stem/progenitor cells in NPC fractions may be efficiently cryopreserved, as demonstrated by the appearance of hepatocyte-like cells that show various hepatic functions even after cryopreservation. This study may lead to future BA cell therapy using the patient's own cells.

  19. Effects of cell type and configuration on anabolic and catabolic activity in 3D co-culture of mesenchymal stem cells and nucleus pulposus cells.

    PubMed

    Ouyang, Ann; Cerchiari, Alec E; Tang, Xinyan; Liebenberg, Ellen; Alliston, Tamara; Gartner, Zev J; Lotz, Jeffrey C

    2017-01-01

    Tissue engineering constructs to treat intervertebral disc degeneration must adapt to the hypoxic and inflammatory degenerative disc microenvironment. The objective of this study was to determine the effects of two key design factors, cell type and cell configuration, on the regenerative potential of nucleus pulposus cell (NPC) and mesenchymal stem cell (MSC) constructs. Anabolic and catabolic activity was quantified in constructs of varying cell type (NPCs, MSCs, and a 50:50 co-culture) and varying configuration (individual cells and micropellets). Anabolic and catabolic outcomes were both dependent on cell type. Gene expression of Agg and Col2A1, glycosaminoglycan (GAG) content, and aggrecan immunohistochemistry (IHC), were significantly higher in NPC-only and co-culture groups than in MSC-only groups, with NPC-only groups exhibiting the highest anabolic gene expression levels. However, NPC-only constructs also responded to inflammation and hypoxia with significant upregulation of catabolic genes (MMP-1, MMP-9, MMP-13, and ADAMTS-5). MSC-only groups were unaffected by degenerative media conditions, and co-culture with MSCs modulated catabolic induction of the NPCs. Culturing cells in a micropellet configuration dramatically reduced catabolic induction in co-culture and NPC-only groups. Co-culture micropellets, which take advantage of both cell type and configuration effects, had the most immunomodulatory response, with a significant decrease in MMP-13 and ADAMTS-5 expression in hypoxic and inflammatory media conditions. Co-culture micropellets were also found to self-organize into bilaminar formations with an MSC core and NPC outer layer. Further understanding of these cell type and configuration effects can improve tissue engineering designs. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:61-73, 2017. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.

  20. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

    PubMed

    Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan

    2015-01-01

    Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers.

  1. Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE

    PubMed Central

    Donegà, Matteo; Giusto, Elena; Cossetti, Chiara; Schaeffer, Julia; Pluchino, Stefano

    2014-01-01

    Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology. PMID:24798882

  2. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration.

    PubMed

    Hackelberg, Sandra; Tuck, Samuel J; He, Long; Rastogi, Arjun; White, Christina; Liu, Liqian; Prieskorn, Diane M; Miller, Ryan J; Chan, Che; Loomis, Benjamin R; Corey, Joseph M; Miller, Josef M; Duncan, R Keith

    2017-01-01

    Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.

  3. Analysis of soluble factors in conditioned media derived from primary cultures of cirrhotic liver of biliary atresia.

    PubMed

    Yamazaki, Taisuke; Wakai, Mariko; Enosawa, Shin; Tokiwa, Takayoshi

    2017-06-01

    Biliary atresia (BA) is a rare and serious liver disease in newborn infants. Previously, we reported that non-parenchymal cell (NPC) fractions from cirrhotic liver of BA may contain hepatic stem/progenitor cells in primary culture of NPC fractions. In this study, NPC fractions were subjected to primary or passage culture and found that clusters of hepatocyte-like cells appear even without adding hepatocyte growth factor (HGF) to the culture medium, but not in their passage culture used as a control. Based on these findings, conditioned media (CMs) were collected and soluble factors in the CMs were analyzed in order to elucidate the mechanism of the appearance of hepatocyte-like cells or their clusters. A large amount of active HGF consisting of α and β chains was detected in CMs derived from primary culture, but not in CMs from passage culture, as determined by western blot analysis, bone morphogenetic protein (BMP)-4, oncostatin M (OSM), and transforming growth factor (TGF)-β1 were not detected in any of the CMs. The number of hepatocyte-like cells in primary culture tended to decrease following treatment with the HGF receptor c-Met inhibitor, SU11274 in a dose-dependent manner. Furthermore, the clusters of hepatocyte-like cells tended to increase in size and number when freshly isolated NPC fractions were cultured in the presence of 10% of CMs collected after 3-4 wk of primary culture. In conclusion, these findings indicate that CMs derived from primary culture of NPC fractions of BA liver contain a large amount of active HGF, which may activate hepatic stem/progenitor cells and promote the appearance of hepatocyte-like cells or their clusters through HGF/c-Met signaling. The present study would lead to cell therapy using the patient's own cells for the treatment of BA.

  4. Neuro-immune interactions of neural stem cell transplants: From animal disease models to human trials

    PubMed Central

    Cossetti, Chiara; Pluchino, Stefano

    2014-01-01

    Stem cell technology is a promising branch of regenerative medicine that is aimed at developing new approaches for the treatment of severely debilitating human diseases, including those affecting the central nervous system (CNS). Despite the increasing understanding of the mechanisms governing their biology, the application of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in vivo via the replacement of endogenous cells lost or damaged owing to disease has been challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the level of the neural microenvironment to promote tissue healing via combination of immune modulatory and tissue protective actions, while retaining predominantly undifferentiated features. Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are under extensive investigation with regard to their therapeutic plasticity after transplantation. The significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms behind their therapeutic impact, could soon be translated to human studies. This review aims to provide an update on the most recent evidence of therapeutically-relevant neuroimmune interactions following NPC transplants in animal models of multiple sclerosis, cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges related to the early translation of some of these exciting experimental outcomes into clinical medicines. PMID:23507035

  5. Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials.

    PubMed

    Giusto, Elena; Donegà, Matteo; Cossetti, Chiara; Pluchino, Stefano

    2014-10-01

    Stem cell technology is a promising branch of regenerative medicine that is aimed at developing new approaches for the treatment of severely debilitating human diseases, including those affecting the central nervous system (CNS). Despite the increasing understanding of the mechanisms governing their biology, the application of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in vivo via the replacement of endogenous cells lost or damaged owing to disease has been challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the level of the neural microenvironment to promote tissue healing via combination of immune modulatory and tissue protective actions, while retaining predominantly undifferentiated features. Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are under extensive investigation with regard to their therapeutic plasticity after transplantation. The significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms behind their therapeutic impact, could soon be translated to human studies. This review aims to provide an update on the most recent evidence of therapeutically-relevant neuro-immune interactions following NPC transplants in animal models of multiple sclerosis, cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges related to the early translation of some of these exciting experimental outcomes into clinical medicines. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana.

    PubMed

    Wimalasekera, Rinukshi; Pejchar, Premysl; Holk, André; Martinec, Jan; Scherer, Günther F E

    2010-05-01

    Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated P(NPC3):GUS and P(NPC4):GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. P(NPC4):GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 μM BL. BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 μM BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.

  7. Nup133 Is Required for Proper Nuclear Pore Basket Assembly and Dynamics in Embryonic Stem Cells.

    PubMed

    Souquet, Benoit; Freed, Ellen; Berto, Alessandro; Andric, Vedrana; Audugé, Nicolas; Reina-San-Martin, Bernardo; Lacy, Elizabeth; Doye, Valérie

    2018-05-22

    Nup133 belongs to the Y-complex, a key component of the nuclear pore complex (NPC) scaffold. Studies on a null mutation in mice previously revealed that Nup133 is essential for embryonic development but not for mouse embryonic stem cell (mESC) proliferation. Using single-pore detection and average NE-fluorescence intensity, we find that Nup133 is dispensable for interphase and postmitotic NPC scaffold assembly in pluripotent mESCs. However, loss of Nup133 specifically perturbs the formation of the nuclear basket as manifested by the absence of Tpr in about half of the NPCs combined with altered dynamics of Nup153. We further demonstrate that its central domain mediates Nup133's role in assembling Tpr and Nup153 into a properly configured nuclear basket. Our findings thus revisit the role of the Y-complex in pore biogenesis and provide insights into the interplay between NPC scaffold architecture, nuclear basket assembly, and the generation of heterogeneity among NPCs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination.

    PubMed

    Vidal, Marie; Maniglier, Madlyne; Deboux, Cyrille; Bachelin, Corinne; Zujovic, Violetta; Baron-Van Evercooren, Anne

    2015-06-01

    It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine. © 2015 AlphaMed Press.

  9. The Effect of Agmatine on Expression of IL-1β and TLX Which Promotes Neuronal Differentiation in Lipopolysaccharide-Treated Neural Progenitors.

    PubMed

    Song, Juhyun; Kumar, Bokara Kiran; Kang, Somang; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2013-12-01

    Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.

  10. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    PubMed

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  11. A human Fab exclusively binding to the extracellular domain of LMP2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qing; Zhang, Dawei; Mao, Yuan

    In the areas of North Africa, Southeast Asia as well as South China, Nasopharyngeal carcinoma (NPC) is among the most widespread cancers. Plenty of research findings confirmed that Epstein-Barr virus (EBV) played a crucial role in NPC. EBV-encoded Latent membrane protein 2A (LMP2A) which continuously expressed in cell membrane protein induced an epithelial-mesenchymal transition and increased the number of side population stem-like cancer cells in NPC. This reveals that LMP2A could contribute to the development and recurrence in NPC. Above evidences suggest that LMP2A could be the potential target molecule in the treatment of NPC. In the current study, amore » novel human antibody Fab (Fab29) against the extracellular domain of LMP2A was produced with success. Through immunofluorescence experiment it was proved that human antibody Fab29 exclusively combined the surface of SUNE cells (LMP2A-positive). Then flow cytometry result exhibited that the fluorescent intensities of SUNE cells and CNE cells were distinct (96.89% and 0.02% respectively). After that, it was shown by affinity test that the Fab29 fragment had high affinity (KD (M) 1.79E-09) with LMP2A. It was also revealed by immunohistochemical analysis that the Fab29 fragment could combine with LMP2A-positive human NPC tissues in comparison with the control group. Finally, the MTT result indicated that the Fab29 fragment could inhibit the proliferation of LMP2A-positive NPC cells. The inhibiting rate to SUNE cell proliferation reached a peak by Fab29 (19.67%) compared with unrelated Fab and CNE with Fab29 at a concentration of 500 μg/L in first 24 h and in the next 24 h the inhibition rate grew to 22.54%. In brief, it was shown that Fab29, a characteristic human antibody, could recognize LMP2A protein and inhibit the proliferation of LMP2A-expressing NPC cells in vitro.« less

  12. Smad7 Regulates the Adult Neural Stem/Progenitor Cell Pool in a Transforming Growth Factor β- and Bone Morphogenetic Protein-Independent Manner▿

    PubMed Central

    Krampert, Monika; Chirasani, Sridhar Reddy; Wachs, Frank-Peter; Aigner, Robert; Bogdahn, Ulrich; Yingling, Jonathan M.; Heldin, Carl-Henrik; Aigner, Ludwig; Heuchel, Rainer

    2010-01-01

    Members of the transforming growth factor β (TGF-β) family of proteins modulate the proliferation, differentiation, and survival of many different cell types. Neural stem and progenitor cells (NPCs) in the adult brain are inhibited in their proliferation by TGF-β and by bone morphogenetic proteins (BMPs). Here, we investigated neurogenesis in a hypomorphic mouse model for the TGF-β and BMP inhibitor Smad7, with the hypothesis that NPC proliferation might be reduced due to increased TGF-β and BMP signaling. Unexpectedly, we found enhanced NPC proliferation as well as an increased number of label-retaining cells in vivo. The enhanced proliferation potential of mutant cells was retained in vitro in neurosphere cultures. We observed a higher sphere-forming capacity as well as faster growth and cell cycle progression. Use of specific inhibitors revealed that these effects were independent of TGF-β and BMP signaling. The enhanced proliferation might be at least partially mediated by elevated signaling via epidermal growth factor (EGF) receptor, as mutant cells showed higher expression and activation levels of the EGF receptor. Conversely, an EGF receptor inhibitor reduced the proliferation of these cells. Our data indicate that endogenous Smad7 regulates neural stem/progenitor cell proliferation in a TGF-β- and BMP-independent manner. PMID:20479122

  13. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.

    PubMed

    Tcw, Julia; Wang, Minghui; Pimenova, Anna A; Bowles, Kathryn R; Hartley, Brigham J; Lacin, Emre; Machlovi, Saima I; Abdelaal, Rawan; Karch, Celeste M; Phatnani, Hemali; Slesinger, Paul A; Zhang, Bin; Goate, Alison M; Brennand, Kristen J

    2017-08-08

    Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals). Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium), and rapid (<30 days) method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection.

    PubMed

    De Feo, Donatella; Merlini, Arianna; Laterza, Cecilia; Martino, Gianvito

    2012-06-01

    Transplantation of neural stem/precursor cells (NPCs) has been proposed as a promising therapeutic strategy in almost all neurological disorders characterized by the failure of central nervous system (CNS) endogenous repair mechanisms in restoring the tissue damage and rescuing the lost function. Nevertheless, recent evidence consistently challenges the limited view that transplantation of these cells is solely aimed at protecting the CNS from inflammatory and neurodegenerative damage through cell replacement. Recent preclinical data confirmed that transplanted NPCs may also exert a 'bystander' neuroprotective effect and identified a series of molecules - for example, immunomodulatory substances, neurotrophic growth factors, stem cell regulators as well as guidance molecules - whose in-situ secretion by NPCs is temporally and spatially orchestrated by environmental needs. A better understanding of the molecular and cellular mechanisms sustaining this 'therapeutic plasticity' is of pivotal importance for defining crucial aspects of the bench-to-beside translation of neural stem cell therapy, that is route and timing of administration as well as the best cellular source. Further insight into those latter issues is eagerly expected from the ongoing phase I/II clinical trials, while, on the other hand, new cellular sources are being developed, mainly by exploiting the new possibilities offered by cellular reprogramming. Nowadays, the research on NPC transplantation in neurological disorders is advancing on two different fronts: on one hand, recent preclinical data are uncovering the molecular basis of NPC therapeutic plasticity, offering a more solid rational framework for the design of clinical studies. On the other hand, pilot trials are highlighting the safety and feasibility issues of neural stem cell transplantation that need to be addressed before efficacy could be properly evaluated.

  15. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    PubMed Central

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  16. MicroRNA-195 targets ADP-ribosylation factor-like protein 2 to induce apoptosis in human embryonic stem cell-derived neural progenitor cells

    PubMed Central

    Zhou, Y; Jiang, H; Gu, J; Tang, Y; Shen, N; Jin, Y

    2013-01-01

    Neural progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) have great potential in cell therapy, drug screening and toxicity testing of neural degenerative diseases. However, the molecular regulation of their proliferation and apoptosis, which needs to be revealed before clinical application, is largely unknown. MicroRNA miR-195 is known to be expressed in the brain and is involved in a variety of proapoptosis or antiapoptosis processes in cancer cells. Here, we defined the proapoptotic role of miR-195 in NPCs derived from two independent hESC lines (human embryonic stem cell-derived neural progenitor cells, hESC-NPCs). Overexpression of miR-195 in hESC-NPCs induced extensive apoptotic cell death. Consistently, global transcriptional microarray analyses indicated that miR-195 primarily regulated genes associated with apoptosis in hESC-NPCs. Mechanistically, a small GTP-binding protein ADP-ribosylation factor-like protein 2 (ARL2) was identified as a direct target of miR-195. Silencing ARL2 in hESC-NPCs provoked an apoptotic phenotype resembling that of miR-195 overexpression, revealing for the first time an essential role of ARL2 for the survival of human NPCs. Moreover, forced expression of ALR2 could abolish the cell number reduction caused by miR-195 overexpression. Interestingly, we found that paraquat, a neurotoxin, not only induced apoptosis but also increased miR-195 and reduced ARL2 expression in hESC-NPCs, indicating the possible involvement of miR-195 and ARL2 in neurotoxin-induced NPC apoptosis. Notably, inhibition of miR-195 family members could block neurotoxin-induced NPC apoptosis. Collectively, miR-195 regulates cell apoptosis in a context-dependent manner through directly targeting ARL2. The finding of the critical role of ARL2 for the survival of human NPCs and association of miR-195 and ARL2 with neurotoxin-induced apoptosis have important implications for understanding molecular mechanisms that control NPC survival and would facilitate our manipulation of the neurological pathogenesis. PMID:23807224

  17. Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology

    PubMed Central

    Fai, Stephen; Bennett, Steffany A.L.

    2010-01-01

    The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This methodology enables visualization and analysis of the cellular position of target proteins and cells throughout the entire 3D culture topography and will facilitate a more detailed analysis of the spatial relationships between cells over the course of neurogenesis and gliogenesis in vitro. Both Imbeault and Valenzuela contributed equally and should be considered joint first authors. PMID:21258319

  18. The role of neural precursor cells and self assembling peptides in nerve regeneration

    PubMed Central

    2013-01-01

    Objective Cranial nerve injury involves loss of central neural cells in the brain stem and surrounding support matrix, leading to severe functional impairment. Therapeutically targeting cellular replacement and enhancing structural support may promote neural regeneration. We examined the combinatorial effect of neural precursor cells (NPC) and self assembling peptide (SAP) administration on nerve regeneration. Methods Nerve injury was induced by clip compression of the rodent spinal cord. SAPs were injected immediately into the injured cord and NPCs at 2 weeks post-injury. Behavioral analysis was done weekly and rats were sacrificed at 11 weeks post injury. LFB-H&E staining was done on cord tissue to assess cavitation volume. Motor evoked potentials (MEP) were measured at week 11 to assess nerve conduction and Kaplan meier curves were created to compare survival estimates. Results NPCs and SAPs were distributed both caudal and rostral to the injury site. Behavioral analysis showed that SAP + NPC transplantation significantly improved locomotor score p <0.03) and enhanced survival (log rank test, p = 0.008) compared to control. SAP + NPC treatment also improved nerve conduction velocity (p = 0.008) but did not affect cavitation volume (p = 0.73). Conclusion Combinatorial NPC and SAP injection into injured nerve tissue may enhance neural repair and regeneration. PMID:24351041

  19. The role of neural precursor cells and self assembling peptides in nerve regeneration.

    PubMed

    Zhao, Xiao; Yao, Gordon S; Liu, Yang; Wang, Jian; Satkunendrarajah, Kajana; Fehlings, Michael

    2013-12-19

    Cranial nerve injury involves loss of central neural cells in the brain stem and surrounding support matrix, leading to severe functional impairment. Therapeutically targeting cellular replacement and enhancing structural support may promote neural regeneration. We examined the combinatorial effect of neural precursor cells (NPC) and self assembling peptide (SAP) administration on nerve regeneration. Nerve injury was induced by clip compression of the rodent spinal cord. SAPs were injected immediately into the injured cord and NPCs at 2 weeks post-injury. Behavioral analysis was done weekly and rats were sacrificed at 11 weeks post injury. LFB-H&E staining was done on cord tissue to assess cavitation volume. Motor evoked potentials (MEP) were measured at week 11 to assess nerve conduction and Kaplan Meier curves were created to compare survival estimates. NPCs and SAPs were distributed both caudal and rostral to the injury site. Behavioral analysis showed that SAP + NPC transplantation significantly improved locomotor score p <0.03) and enhanced survival (log rank test, p = 0.008) compared to control. SAP + NPC treatment also improved nerve conduction velocity (p = 0.008) but did not affect cavitation volume (p = 0.73). Combinatorial NPC and SAP injection into injured nerve tissue may enhance neural repair and regeneration.

  20. Direct exposure to mild heat promotes proliferation and neuronal differentiation of neural stem/progenitor cells in vitro

    PubMed Central

    Hossain, Md Emon; Katakura, Masanori; Sugimoto, Naotoshi; Mamun, Abdullah Al; Islam, Rafiad; Hashimoto, Michio; Shido, Osamu

    2017-01-01

    Heat acclimation in rats is associated with enhanced neurogenesis in thermoregulatory centers of the hypothalamus. To elucidate the mechanisms for heat acclimation, we investigated the effects of direct mild heat exposure on the proliferation and differentiation of neural stem/progenitor cells (NSCs/NPCs). The NSCs/NPCs isolated from forebrain cortices of 14.5-day-old rat fetuses were propagated as neurospheres at either 37.0°C (control) or 38.5°C (mild heat exposure) for four days, and the effects on proliferation were investigated by MTS cell viability assay, measurement of neurosphere diameter, and counting the total number of cells. The mRNA expressions of heat shock proteins (HSPs) and brain-derived neurotrophic factor (BDNF), cAMP response element-binding (CREB) protein and Akt phosphorylation levels, and intracellular reactive oxygen species (ROS) levels were analyzed using real time PCR, Western blotting and CM-H2DCFDA assay respectively. Heat exposure under proliferation condition increased NSC/NPC viability, neurosphere diameter, and cell count. BDNF mRNA expression, CREB phosphorylation, and ROS level were also increased by heat exposure. Heat exposure increased HSP27 mRNA expression concomitant with enhanced p-Akt level. Moreover, treatment with LY294002 (a PI3K inhibitor) abolished the effects of heat exposure on NSC/NPC proliferation. Furthermore, heat exposure under differentiation conditions increased the proportion of cells positive for Tuj1 (a neuronal marker). These findings suggest that mild heat exposure increases NSC/NPC proliferation, possibly through activation of the Akt pathway, and also enhances neuronal differentiation. Direct effects of temperature on NSCs/NPCs may be one of the mechanisms involved in hypothalamic neurogenesis in heat-acclimated rats. Such heat-induced neurogenesis could also be an effective therapeutic strategy for neurodegenerative diseases. PMID:29287093

  1. Hair growth-promoting effect of Aconiti Ciliare Tuber extract mediated by the activation of Wnt/β-catenin signaling.

    PubMed

    Park, Phil-June; Moon, Byoung-San; Lee, Soung-Hoon; Kim, Su-Na; Kim, Ah-Reum; Kim, Hyung-Jun; Park, Won-Seok; Choi, Kang-Yell; Cho, Eun-Gyung; Lee, Tae Ryong

    2012-11-02

    The activation of Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis by stimulating bulge stem cells. This study was to obtain the activator of Wnt/β-catenin signaling pathway from natural products and to determine whether this activator can induce anagen hair growth in mice. To identify materials that activate Wnt/β-catenin signaling pathway, 800 natural product extracts were screened using pTOPFlash assay and neural progenitor cell (NPC) differentiation assay. A selected extract was further tested for its effects on alkaline phosphatase (ALP) activity in human immortalized dermal papilla cell (iDPC) and the proliferation in iDPC and immortalized rat vibrissa DPC (RvDP). Finally, hair growth-promoting effects were evaluated in the dorsal skin of C57BL/6 mice. Aconiti Ciliare Tuber (ACT) extract was one of the most active materials in both pTOPFlash and NPC differentiation assays. It promoted the differentiation of NPC cells even under proliferation-stimulating conditions (basic fibroblast growth factor: bFGF). It also increased ALP activity and proliferation of iDPC in dose-dependent manners, and it stimulated the induction of the anagen hair growth in C57BL/6 mice. These results suggest that ACT extract activates the Wnt/β-catenin signaling pathway by enhancing β-catenin transcription and has the potential to promote the induction of hair growth via activation of the stem cell activity of the dermal papilla cells. This is the first report indicating benefits of ACT extract in hair loss prevention by triggering the activation of Wnt/β-catenin signaling pathway and induction of the anagen hair growth in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Macías, David; Gálvez, Victoria; Pastor, Angel M

    2014-04-01

    Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants. Copyright © 2014 Wiley Periodicals, Inc.

  3. Regulation of Nephron Progenitor Cell Self-Renewal by Intermediary Metabolism.

    PubMed

    Liu, Jiao; Edgington-Giordano, Francesca; Dugas, Courtney; Abrams, Anna; Katakam, Prasad; Satou, Ryousuke; Saifudeen, Zubaida

    2017-11-01

    Nephron progenitor cells (NPCs) show an age-dependent capacity to balance self-renewal with differentiation. Older NPCs (postnatal day 0) exit the progenitor niche at a higher rate than younger (embryonic day 13.5) NPCs do. This behavior is reflected in the transcript profiles of young and old NPCs. Bioenergetic pathways have emerged as important regulators of stem cell fate. Here, we investigated the mechanisms underlying this regulation in murine NPCs. Upon isolation and culture in NPC renewal medium, younger NPCs displayed a higher glycolysis rate than older NPCs. Inhibition of glycolysis enhanced nephrogenesis in cultured embryonic kidneys, without increasing ureteric tree branching, and promoted mesenchymal-to-epithelial transition in cultured isolated metanephric mesenchyme. Cotreatment with a canonical Wnt signaling inhibitor attenuated but did not entirely block the increase in nephrogenesis observed after glycolysis inhibition. Furthermore, inhibition of the phosphatidylinositol 3-kinase/Akt self-renewal signaling pathway or stimulation of differentiation pathways in the NPC decreased glycolytic flux. Our findings suggest that glycolysis is a pivotal, cell-intrinsic determinant of NPC fate, with a high glycolytic flux supporting self-renewal and inhibition of glycolysis stimulating differentiation. Copyright © 2017 by the American Society of Nephrology.

  4. p63 and p73 coordinate p53 function to determine the balance between survival, cell death, and senescence in adult neural precursor cells

    PubMed Central

    Fatt, M P; Cancino, G I; Miller, F D; Kaplan, D R

    2014-01-01

    The p53 family members p73 and p63 have been implicated in various aspects of stem cell regulation. Here, we have asked whether they work together to regulate stem cell biology, focusing upon neural precursor cells (NPCs) in the adult murine brain. By studying mice that are haploinsufficient for p63 and/or p73, we show that these two proteins cooperate to ensure appropriate NPC self-renewal and long-term maintenance in the hippocampus and forebrain, and that when both are haploinsufficient, the NPC deficits are significantly greater than haploinsufficiency for either alone. We show that, in the case of p63+/− mice, this decrease in adult NPCs is caused by enhanced apoptosis. However, when p73 is coincidently haploinsufficient, this rescues the enhanced apoptosis of p63+/− NPCs under both basal conditions and following genotoxic stress, instead causing increased cellular senescence. This increase in cellular senescence is likely due, at least in part, to increased levels of basal DNA damage and p53 activation, as genetic ablation of p53 completely rescues the senescence phenotype observed in p63+/−; p73+/− mice. Thus, the presence of p73 determines whether p63+/− NPCs exhibit increased p53-dependent apoptosis or senescence. Together, these studies demonstrate that p63 and p73 cooperate to maintain adult NPC pools through regulation of p53 function; p63 antagonizes p53 to promote cellular survival, whereas p73 regulates self-renewal and p53-mediated apoptosis versus senescence. PMID:24809925

  5. New agents and approaches to treatment in Niemann-Pick type C disease.

    PubMed

    Pérez-Poyato, María S; Pineda, Mercé

    2011-06-01

    Niemann-Pick disease type C is an autosomal recessive disorder caused by mutations in either one of the two genes, NPC1 or NPC2, which encode proteins involved in the regulation of normal transport and/or processing of free cholesterol. Several types of lipids including free cholesterol (unesterified), sphingosine, sphingomyelin, phospholipids and glycosphingolipids (glucosylceramide and gangliosides GM2 and GM3) are accumulated in lysosomes and late endosomes of cells, with pronounced concentrations in the liver and the spleen. The key laboratory diagnostic test for NP-C is filliping staining of cultured skin fibroblasts from the patient, to demonstrate free cholesterol accumulation in lysosomes secondary to impaired intracellular cholesterol transport. The symptomatology and rate of disease progression are strongly influenced by age at disease onset and different clinical forms have been described on this basis: Perinatal, Early-infantile (EI), late-infantile (LI), juvenile and adult forms. Clinical symptoms include progressive neurological deterioration and visceral organomegaly. Nowadays there is no fully effective treatment, only supportive measures for relief of specific manifestations of the disease. The intervention to slow disease progression is the most promising therapy. A number of experimental disease - specific therapies, based on the molecular pathology of NP-C, have been tested in cell culture and animal models including neurosteroids, cholesterol - binding agents, curcumin and Miglustat. This paper summarizes the recent developments that have been investigated for the treatment in patients and animal models with NPC. Current therapeutic approaches have been classified based on the targeting of cellular function, the anti - apoptotic cellular mechanisms and the stem cells therapy.

  6. Ferritin nanoparticles for improved self-renewal and differentiation of human neural stem cells.

    PubMed

    Lee, Jung Seung; Yang, Kisuk; Cho, Ann-Na; Cho, Seung-Woo

    2018-01-01

    Biomaterials that promote the self-renewal ability and differentiation capacity of neural stem cells (NSCs) are desirable for improving stem cell therapy to treat neurodegenerative diseases. Incorporation of micro- and nanoparticles into stem cell culture has gained great attention for the control of stem cell behaviors, including proliferation and differentiation. In this study, ferritin, an iron-containing natural protein nanoparticle, was applied as a biomaterial to improve the self-renewal and differentiation of NSCs and neural progenitor cells (NPCs). Ferritin nanoparticles were added to NSC or NPC culture during cell growth, allowing for incorporation of ferritin nanoparticles during neurosphere formation. Compared to neurospheres without ferritin treatment, neurospheres with ferritin nanoparticles showed significantly promoted self-renewal and cell-cell interactions. When spontaneous differentiation of neurospheres was induced during culture without mitogenic factors, neuronal differentiation was enhanced in the ferritin-treated neurospheres. In conclusion, we found that natural nanoparticles can be used to improve the self-renewal ability and differentiation potential of NSCs and NPCs, which can be applied in neural tissue engineering and cell therapy for neurodegenerative diseases.

  7. Testing Brain Overgrowth and Synaptic Models of Autism Using NPC’s and Neurons from Patient-Derived IPS Cells

    DTIC Science & Technology

    2014-10-01

    Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autism and autism spectrum disorders (ASD) are complex neurodevelopmental ...1. INTRODUCTION: Autism and autism spectrum disorders (ASD) are complex neurodevelopmental diseases that affect about 1% of children in the...and neurons. 2. KEYWORDS: Autism spectrum disorder, ASD, neurodevelopmental disease, disease modeling, induced pluripotent stem cell, iPS

  8. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    PubMed Central

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; DuRoss, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-01-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders. PMID:27572704

  9. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    NASA Astrophysics Data System (ADS)

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; Duross, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-08-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1-/-) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1-/- cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.

  10. Niemann-Pick C1 Functions Independently of Niemann-Pick C2 in the Initial Stage of Retrograde Transport of Membrane-impermeable Lysosomal Cargo*

    PubMed Central

    Goldman, Stephen D. B.; Krise, Jeffrey P.

    2010-01-01

    The rare neurodegenerative disease Niemann-Pick Type C (NPC) results from mutations in either NPC1 or NPC2, which are membrane-bound and soluble lysosomal proteins, respectively. Previous studies have shown that mutations in either protein result in biochemically indistinguishable phenotypes, most notably the hyper-accumulation of cholesterol and other cargo in lysosomes. We comparatively evaluated the kinetics of [3H]dextran release from lysosomes of wild type, NPC1, NPC2, and NPC1/NPC2 pseudo-double mutant cells and found significant differences between all cell types examined. Specifically, NPC1 or NPC2 mutant fibroblasts treated with NPC1 or NPC2 siRNA (to create NPC1/NPC2 pseudo-double mutants) secreted dextran less efficiently than did either NPC1 or NPC2 single mutant cell lines, suggesting that the two proteins may work independently of one another in the egress of membrane-impermeable lysosomal cargo. To investigate the basis for these differences, we examined the role of NPC1 and NPC2 in the retrograde fusion of lysosomes with late endosomes to create so-called hybrid organelles, which is believed to be the initial step in the egress of cargo from lysosomes. We show here that cells with mutated NPC1 have significantly reduced rates of late endosome/lysosome fusion relative to wild type cells, whereas cells with mutations in NPC2 have rates that are similar to those observed in wild type cells. Instead of being involved in hybrid organelle formation, we show that NPC2 is required for efficient membrane fission events from nascent hybrid organelles, which is thought to be required for the reformation of lysosomes and the release of lysosomal cargo-containing membrane vesicles. Collectively, these results suggest that NPC1 and NPC2 can function independently of one another in the egress of certain membrane-impermeable lysosomal cargo. PMID:20007703

  11. The stem cell secretome and its role in brain repair

    PubMed Central

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2014-01-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. PMID:23827856

  12. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators.

    PubMed

    Desai, Mina; Ferrini, Monica G; Han, Guang; Jellyman, Juanita K; Ross, Michael G

    2018-07-01

    In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As food intake/appetite is one of the critical elements contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn hypothalamic stem cells which form the arcuate nucleus appetite center. For in vivo studies, female rats received BPA prior to and during pregnancy via drinking water, and newborn offspring primary hypothalamic neuroprogenitor (NPCs) were obtained and cultured. For in vitro BPA exposure, primary hypothalamic NPCs from healthy newborns were utilized. In both cases, we studied the effects of BPA on NPC proliferation and differentiation, including putative signal and appetite factors. Maternal BPA increased hypothalamic NPC proliferation and differentiation in newborns, in conjunction with increased neuroproliferative (Hes1) and proneurogenic (Ngn3) protein expression. With NPC differentiation, BPA exposure increased appetite peptide and reduced satiety peptide expression. In vitro BPA-treated control NPCs showed results that were consistent with in vivo data (increase appetite vs satiety peptide expression) and further showed a shift towards neuronal versus glial fate as well as an increase in the epigenetic regulator lysine-specific histone demethylase1 (LSD1). These findings emphasize the vulnerability of stem-cell populations that are involved in life-long regulation of metabolic homeostasis to epigenetically-mediated endocrine disruption by BPA during early life. Copyright © 2018. Published by Elsevier Inc.

  13. Caffeic Acid Phenethyl Ester Induces N-myc Downstream Regulated Gene 1 to Inhibit Cell Proliferation and Invasion of Human Nasopharyngeal Cancer Cells

    PubMed Central

    Chiang, Kun-Chun; Yang, Shih-Wei; Chang, Kai-Ping; Feng, Tsui-Hsia; Chang, Kang-Shuo; Tsui, Ke-Hung; Shin, Yi-Syuan; Chen, Chiu-Chun; Chao, Mei

    2018-01-01

    Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis, is widely studied due to its anti-cancer effect. Nasopharyngeal carcinoma (NPC) is distinct from other head and neck carcinomas and has a high risk of distant metastases. N-myc downstream regulated gene 1 (NDRG1) is demonstrated as a tumor suppressor gene in several cancers. Our result showed that CAPE treatment could repress NPC cell growth, through induction of S phase cell cycle arrest, and invasion. CAPE treatment stimulated NDRG1 expression in NPC cells. NDRG1 knockdown increased NPC cell proliferation and invasion and rendered NPC cells less responsive to CAPE growth-inhibiting effect, indicating CAPE repressed NPC cell growth partly through NDRG1indcution. CAPE treatment increased phosphorylation of ERK, JNK, and p38 in a dose- and time-dependent manner. Pre-treatments by inhibitors of ERK (PD0325901), JNK (SP600125), or p38 (SB201290), respectively, all could partly inhibit the CAPE effect on NDRG1 induction in NPC cells. Further, STAT3 activity was also repressed by CAPE in NPC cells. In summary, CAPE attenuates NPC cell proliferation and invasion by upregulating NDRG1 expression via MAPK pathway and by inhibiting phosphorylation of STAT3. Considering the poor prognosis of NPC patients with metastasis, CAPE could be a promising agent against NPC. PMID:29738439

  14. The stem cell secretome and its role in brain repair.

    PubMed

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2013-12-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  15. Intermittent Hypoxia and Stem Cell Implants Preserve Breathing Capacity in a Rodent Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Nichols, Nicole L.; Gowing, Genevieve; Satriotomo, Irawan; Nashold, Lisa J.; Dale, Erica A.; Suzuki, Masatoshi; Avalos, Pablo; Mulcrone, Patrick L.; McHugh, Jacalyn

    2013-01-01

    Rationale: Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease causing paralysis and death from respiratory failure. Strategies to preserve and/or restore respiratory function are critical for successful treatment. Although breathing capacity is maintained until late in disease progression in rodent models of familial ALS (SOD1G93A rats and mice), reduced numbers of phrenic motor neurons and decreased phrenic nerve activity are observed. Decreased phrenic motor output suggests imminent respiratory failure. Objectives: To preserve or restore phrenic nerve activity in SOD1G93A rats at disease end stage. Methods: SOD1G93A rats were injected with human neural progenitor cells (hNPCs) bracketing the phrenic motor nucleus before disease onset, or exposed to acute intermittent hypoxia (AIH) at disease end stage. Measurements and Main Results: The capacity to generate phrenic motor output in anesthetized rats at disease end stage was: (1) transiently restored by a single presentation of AIH; and (2) preserved ipsilateral to hNPC transplants made before disease onset. hNPC transplants improved ipsilateral phrenic motor neuron survival. Conclusions: AIH-induced respiratory plasticity and stem cell therapy have complementary translational potential to treat breathing deficits in patients with ALS. PMID:23220913

  16. Gonadotropin-releasing hormone inhibits the proliferation and motility of nasopharyngeal carcinoma cells

    PubMed Central

    TENG, LOONG HUNG; AHMAD, MUNIRAH; NG, WAYNE TIONG WENG; SABARATNAM, SUBATHRA; RASAN, MARIA ITHAYA; PARHAR, ISHWAR; KHOO, ALAN SOO BENG

    2015-01-01

    Gonadotropin-releasing hormone (GnRH), or its analogues have been demonstrated to exhibit anti-proliferative effects on tumour cells in ovarian, endometrial and breast cancer through GnRH-receptors (GnRH-R). However, the role of GnRH in nasopharyngeal carcinoma (NPC) remains to be elucidated. In order to investigate the effects of GnRH in NPC, the present study examined the expression of the GnRH-R transcript in NPC and investigated the phenotypic changes in HK1 cells, a recurrent NPC-derived cell line, upon receiving GnRH treatment. Firstly, the GnRH-R transcript was demonstrated in the NPC cell lines and four snap frozen biopsies using reverse transcription-quantitative polymerase chain reaction. In addition, immunohistochemistry revealed the expression of GnRH-R in two of the eight (25%) NPC specimens. Treatment with GnRH induced a rapid increase in intracellular ionised calcium concentration in the NPC cells. GnRH and its agonists, triptorelin and leuprolide, exerted anti-proliferative effects on the NPC cells, as determined using an MTS assay. GnRH did not induce any cell cycle arrest in the HK1 cells under the conditions assessed in the present study. Time-lapse imaging demonstrated a reduction in cell motility in the GnRH-treated cells. In conclusion, GnRH, or its analogues may have antitumour effects on NPC cells. The consequences of alterations in the levels of GnRH on the progression of NPC require further examination. PMID:26151677

  17. [The comparative pathomorphological evaluation of the mice-recipient's brain cell-tissue reactions by the intracerebral imlantation of syngeneic and allogeneic neural cells].

    PubMed

    Liubych, L D; Semenova, V M; Lisianyĭ, M I

    2013-01-01

    The aim of the study was to compare the mice-recipient's brain tissue cell-structural reactions in response to intracerebral implantation of syngeneic and allogeneic cell suspensions of neural progenitor cells (NPC) (E13-15). The NPC suspensions from mice-donors of C57BL/6 and CBA containing 72.7 +/- 9.9% Vimentin+ and 81, 812, 5% GFAP+ cells were inoculated by standard procedure in right temporal segment of cerebral hemisphere of mice-recipients C57BL/6 (1 x 10(6) cells per animal). The certain part of mice-recipients of allogeneic NPC were immunosupressed by Sandimmune (100 mkg per animal) on day 0, 3, 6 after neurotransplantation. The standard histological preparations of mice brains were performed after 24 hours, 6, 12, 18 and 37 days after NPC neurotransplantation, which were investigated by cytoanalyzer "IBAS" (Germany). After intracerebral inoculation of allogeneic foetal NPC the signs of the pericellular edema and lymphocyte infiltration were detected in adjacent brain sections on day 12-18 and decreased on day 37. Allogeneic foetal NPC were reserved till day 18 and revealed the signs of primary differentiation. After immunosupression by "Sandimmune" the foetal NPC underwent the phoenotypic differentiation and infiltration in related brain sections. On the day 37 the implanted NPC were not detected. Focal reaction of the brain glial component to implanted NPC declined faster after syngeneic NPC neuroimplantation (up to day 18) than after allogeneic NPC neuroimplantation (up to day 37). After the syngeneic NPC inoculation on the 37th day at the site of implantation the formation of a small fragment of immature bone was fixed, which may indicate the possibility of NPC transdifferentiation in other cell types.

  18. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1

    PubMed Central

    Speak, Anneliese O.; te Vruchte, Danielle; Davis, Lianne C.; Morgan, Anthony J.; Smith, David A.; Yanjanin, Nicole M.; Simmons, Louise; Hartung, Ralf; Runz, Heiko; Mengel, Eugen; Beck, Michael; Imrie, Jackie; Jacklin, Elizabeth; Wraith, James E.; Hendriksz, Christian; Lachmann, Robin; Cognet, Celine; Sidhu, Rohini; Fujiwara, Hideji; Ory, Daniel S.; Galione, Antony; Porter, Forbes D.; Vivier, Eric

    2014-01-01

    Niemann-Pick type C (NPC) is a neurodegenerative lysosomal storage disorder caused by defects in the lysosomal proteins NPC1 or NPC2. NPC cells are characterized by reduced lysosomal calcium levels and impaired sphingosine transport from lysosomes. Natural killer (NK) cells kill virally infected/transformed cells via degranulation of lysosome-related organelles. Their trafficking from lymphoid tissues into the circulation is dependent on sphingosine-1-phosphate (S1P) gradients, sensed by S1P receptor 5 (S1P5). We hypothesized that NK-cell function and trafficking could be affected in NPC disease due to the combined effects of the lysosomal calcium defect and sphingosine storage. In an NPC1 mouse model, we found the frequency of NK cells was altered and phenocopied S1P5-deficient mice, consistent with defects in S1P levels. NK cells from NPC1 mice also had a defect in cytotoxicity due to a failure in degranulation of cytotoxic granules, which was associated with reduced lysosomal calcium levels. Affected NPC1 patients and NPC1 heterozygote carriers had reduced NK-cell numbers in their blood and showed similar phenotypic and developmental changes to those observed in the NPC1 mouse. These findings highlight the effects of lysosomal storage on the peripheral immune system. PMID:24235134

  19. The mitochondrion interfering compound NPC-26 exerts potent anti-pancreatic cancer cell activity in vitro and in vivo.

    PubMed

    Dong, Yang-Yang; Zhuang, Yi-Huang; Cai, Wen-Jie; Liu, Yan; Zou, Wen-Bing

    2016-11-01

    The development of novel anti-pancreatic cancer agents is extremely important. Here, we investigated the anti-pancreatic cancer activity by NPC-26, a novel mitochondrion interfering compound. We showed that NPC-26 was anti-proliferative and cytotoxic to human pancreatic cancer cells, possibly via inducing caspase-9-dependent cell apoptosis. Pharmacological inhibition or shRNA-mediated silence of caspase-9 attenuated NPC-26-induced pancreatic cancer cell death and apoptosis. Further, NPC-26 treatment led to mitochondrial permeability transition pore (mPTP) opening in the cancer cells, which was evidenced by mitochondrial depolarization, ANT-1(adenine nucleotide translocator-1)-Cyp-D (cyclophilin-D) association and oxidative phosphorylation disturbance. mPTP blockers (cyclosporin and sanglifehrin A) or shRNA-mediated knockdown of key mPTP components (Cyp-D and ANT-1) dramatically attenuated NPC-26-induced pancreatic cancer cell apoptosis. Importantly, we showed that NPC-26, at a low concentration, potentiated gemcitabine-induced mPTP opening and subsequent pancreatic cancer cell apoptosis. In vivo, NPC-26 intraperitoneal injection significantly suppressed the growth of PANC-1 xenograft tumors in nude mice. Meanwhile, NPC-26 sensitized gemcitabine-mediated anti-pancreatic cancer activity in vivo. In summary, the results of this study suggest that NPC-26, alone or together with gemcitabine, potently inhibits pancreatic cancer cells possibly via disrupting mitochondrion.

  20. Long non-coding RNA ZNF674-1 acts as a cancer suppressor in nasopharyngeal carcinoma.

    PubMed

    Nie, Guo-Hui; Li, Zhao; Duan, Hong-Fang; Luo, Liang; Hu, Hong-Yi; Chen, Xiao-Fan; Zhang, Wei

    2018-06-01

    Nasopharyngeal carcinoma (NPC) is the most frequently occurring carcinoma of the head and neck. The complexity of NPC makes it difficult for it to be diagnosed and treated at an early stage. Certain long non-coding RNAs (lncRNAs) are closely associated with the carcinogenesis of NPC. In the present study, the expression of lncRNA ZNF674-1 in NPC tissues and an NPC cell line was analyzed and was revealed to be downregulated compared with normal tissues and cells. When the expression of lncRNA ZNF674-1 was reduced in NPC cells, the proliferation, migration and invasion of these cells was promoted, whereas the apoptosis of these cells was decreased. On the contrary, when overexpressed, the expression of lncRNA ZNF674-1 inhibited the proliferation, invasion and migration of cells, but promoted cell apoptosis. The results of the present study reveal that the lncRNA ZNF67-1 may restrain the carcinogenesis of NPC, and may also serve as a potential biomarker for the early diagnosis and treatment of NPC.

  1. Monoacylglycerol lipase promotes metastases in nasopharyngeal carcinoma.

    PubMed

    Hu, Wen-Rong; Lian, Yi-Fan; Peng, Li-Xia; Lei, Jin-Ju; Deng, Cheng-Cheng; Xu, Miao; Feng, Qi-Sheng; Chen, Li-Zhen; Bei, Jin-Xin; Zeng, Yi-Xin

    2014-01-01

    Monoacylglycerol lipase (MAGL) is a serine hydrolase that hydrolyzes monoacylglycerides into free fatty acids and glycerol. It has recently been found to be involved in cancer progression through the free fatty acid or endocannabinoid network after studies on its function in the endocannabinoid system. Here, we determined a role for MAGL in nasopharyngeal carcinoma (NPC), which is known for its high metastatic potential. Among the different NPC cells we tested, MAGL was highly expressed in high metastatic NPC cells, whereas low metastatic potential NPC cells exhibited lower expression of MAGL. Overexpression of MAGL in low metastatic NPC cells enhanced their motile behavior and metastatic capacity in vivo. Conversely, knockdown of MAGL reduced the motility of highly metastatic cells, reducing their metastatic capacity in vivo. Growth rate was not influenced by MAGL in either high or low metastatic cells. MAGL expression was associated with the epithelial-mesenchymal transition (EMT) proteins, such as E-cadherin, vimentin and Snail. It was also related to the sidepopulation (SP) of NPC cells. Our findings establish that MAGL promotes metastases in NPC through EMT, and it may serve as a target for the prevention of NPC metastases.

  2. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    PubMed Central

    Wagner, Jennifer L.; Shandas, Robin; Bjugstad, Kimberly B.

    2014-01-01

    Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA) and poly(ethylene glycol) (PEG). Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC) and adult-derived (aNPC) neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation. PMID:24141109

  3. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons.

    PubMed

    Karten, Barbara; Vance, Dennis E; Campenot, Robert B; Vance, Jean E

    2003-02-07

    Niemann Pick type C (NPC) disease is a progressive neurodegenerative disorder. In cells lacking functional NPC1 protein, endocytosed cholesterol accumulates in late endosomes/lysosomes. We utilized primary neuronal cultures in which cell bodies and distal axons reside in separate compartments to investigate the requirement of NPC1 protein for transport of cholesterol from cell bodies to distal axons. We have recently observed that in NPC1-deficient neurons compared with wild-type neurons, cholesterol accumulates in cell bodies but is reduced in distal axons (Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E. (2002) J. Neurochem. 83, 1154-1163). We now show that NPC1 protein is expressed in both cell bodies and distal axons. In NPC1-deficient neurons, cholesterol delivered to cell bodies from low density lipoproteins (LDLs), high density lipoproteins, or cyclodextrin complexes was transported into axons in normal amounts, whereas transport of endogenously synthesized cholesterol was impaired. Inhibition of cholesterol synthesis with pravastatin in wild-type and NPC1-deficient neurons reduced axonal growth. However, LDLs restored a normal rate of growth to wild-type but not NPC1-deficient neurons treated with pravastatin. Thus, although LDL cholesterol is transported into axons of NPC1-deficient neurons, this source of cholesterol does not sustain normal axonal growth. Over the lifespan of NPC1-deficient neurons, these defects in cholesterol transport might be responsible for the observed altered distribution of cholesterol between cell bodies and axons and, consequently, might contribute to the neurological dysfunction in NPC disease.

  4. Concise Review: Kidney Generation with Human Pluripotent Stem Cells.

    PubMed

    Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V

    2017-11-01

    Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.

  5. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts.

    PubMed

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-12-31

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC.

  6. Endosomal accumulation of Toll-like receptor 4 causes constitutive secretion of cytokines and activation of signal transducers and activators of transcription in Niemann-Pick disease type C (NPC) fibroblasts: a potential basis for glial cell activation in the NPC brain.

    PubMed

    Suzuki, Michitaka; Sugimoto, Yuko; Ohsaki, Yuki; Ueno, Makoto; Kato, Shinsuke; Kitamura, Yukisato; Hosokawa, Hiroshi; Davies, Joanna P; Ioannou, Yiannis A; Vanier, Marie T; Ohno, Kousaku; Ninomiya, Haruaki

    2007-02-21

    Niemann-Pick disease type C (NPC) is an inherited lipid storage disorder caused by mutations in NPC1 or NPC2 genes. Loss of function of either protein results in the endosomal accumulation of cholesterol and other lipids, progressive neurodegeneration, and robust glial cell activation. Here, we report that cultured human NPC fibroblasts secrete interferon-beta, interleukin-6 (IL-6), and IL-8, and contain increased levels of signal transducers and activators of transcription (STATs). These cells also contained increased levels of Toll-like receptor 4 (TLR4) that accumulated in cholesterol-enriched endosomes/lysosomes, and small interfering RNA knockdown of this receptor reduced cytokine secretion. In the NPC1-/- mouse brain, glial cells expressed TLR4 and IL-6, whereas both glial and neuronal cells expressed STATs. Genetic deletion of TLR4 in NPC1-/- mice reduced IL-6 secretion by cultured fibroblasts but failed to alter STAT levels or glial cell activation in the brain. In contrast, genetic deletion of IL-6 normalized STAT levels and suppressed glial cell activation. These findings indicate that constitutive cytokine secretion leads to activation of STATs in NPC fibroblasts and that this secretion is partly caused by an endosomal accumulation of TLR4. These results also suggest that similar signaling events may underlie glial cell activation in the NPC1-/- mouse brain.

  7. Scavenger Receptor B1 is a Potential Biomarker of Human Nasopharyngeal Carcinoma and Its Growth is Inhibited by HDL-mimetic Nanoparticles

    PubMed Central

    Zheng, Ying; Liu, Yanyan; Jin, Honglin; Pan, Shaotao; Qian, Yuan; Huang, Chuan; Zeng, Yixin; Luo, Qingming; Zeng, Musheng; Zhang, Zhihong

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is a very regional malignant head and neck cancer that has attracted widespread attention for its unique etiology, epidemiology and therapeutic options. To achieve high cure rates in NPC patients, theranostic approaches are actively being pursued and improved efforts remain desirable in identifying novel biomarkers and establishing effective therapeutic approaches with low long-term toxicities. Here, we discovered that the scavenger receptor class B type I (SR-B1) was overexpressed in all investigated NPC cell lines and 75% of NPC biopsies, demonstrating that SR-B1 is a potential biomarker of NPC. Additional functional analysis showed that SR-B1 has great effect on cell motility while showing no significant impact on cell proliferation. As high-density lipoproteins (HDL) exhibit strong binding affinities to SR-B1 and HDL mimetic peptides are reportedly capable of inhibiting tumor growth, we further examined the SR-B1 targeting ability of a highly biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier and investigated its therapeutic effect on NPC. Results show that NPC cells with higher SR-B1 expression have superior ability in taking up the core constituents of HPPS. Moreover, HPPS inhibited the motility and colony formation of 5-8F cells, and significantly suppressed the NPC cell growth in nude mice without inducing tumor cell necrosis or apoptosis. These results indicate that HPPS is not only a NPC-targeting nanocarrier but also an effective anti-NPC drug. Together, the identification of SR-B1 as a potential biomarker and the use of HPPS as an effective anti-NPC agent may shed new light on the diagnosis and therapeutics of NPC. PMID:23843895

  8. RERG suppresses cell proliferation, migration and angiogenesis through ERK/NF-κB signaling pathway in nasopharyngeal carcinoma.

    PubMed

    Zhao, Weilin; Ma, Ning; Wang, Shumin; Mo, Yingxi; Zhang, Zhe; Huang, Guangwu; Midorikawa, Kaoru; Hiraku, Yusuke; Oikawa, Shinji; Murata, Mariko; Takeuchi, Kazuhiko

    2017-06-28

    Nasopharyngeal carcinoma (NPC) is a malignancy of the head and neck that is prevalent in Southeast Asia and southern China. Recent studies in epigenetics suggest that DNA methylation plays a pivotal role in the onset and progression of cancer. Combining the methyl-DNA binding domain capture technique and cDNA microarray analysis, we identified a unique hypermethylated gene, RERG (Ras-like estrogen-regulated growth inhibitor), that was down-regulated in NPC tissues. RERG is a tumor suppressor gene that was first reported in breast cancer. However, the functions of RERG are largely unknown in other tumor types. RERG expression was assessed in human subjects (NPC primary tissues and non-cancer tissues) and cell lines (NPC cell lines and an immortalized epithelial cell line NP460). Further, we investigated the methylation rate of RERG in both human subject and cell lines. 5-Aza-2'-deoxycytidine (Aza) or combined with trichostatin A (TSA) were treated to three NPC cell lines (HK1, C666-1 and HK1_EBV). In addition, the role of RERG in NPC cells and its underlying mechanisms were explored by overexpression of RERG in NPC cell lines. RERG was significantly down-regulated in NPC cancer nests compared to normal nasopharyngeal epithelium cells. Furthermore, the RERG promoter was frequently methylated in NPC tissues and cell lines. The RERG methylation rate yielded an area under the curve (AUC) of receiver operating characteristic (ROC) curve was 0.897 (95%CI: 0.818-0.976). The down-regulation of RERG was restored in NPC cells treated with Aza and TSA. In addition, ectopic expression of RERG in NPC cell lines resulted in a significant suppression of cell proliferation, clonogenicity, migration and invasion. RERG-overexpressing cells showed significantly slower growth and less angiogenesis in tumor xenografts in nude mice. RERG suppressed the ERK/NF-κB signaling pathway and inhibited tumor growth and angiogenesis with down-regulation of MMPs and IL8 in tumors of nude mouse xenografts. Our results suggest that RERG is frequently silenced by promoter CpG methylation in NPC, and acts as a functional tumor suppressor by suppressing the ERK/NF-κB signaling pathway. These findings support the potential use of RERG as a novel molecular target in NPC therapy.

  9. A novel Smac mimetic APG-1387 demonstrates potent antitumor activity in nasopharyngeal carcinoma cells by inducing apoptosis.

    PubMed

    Li, Ning; Feng, Lin; Han, Hui-Qiong; Yuan, Jing; Qi, Xue-Kang; Lian, Yi-Fan; Kuang, Bo-Hua; Zhang, Yu-Chen; Deng, Cheng-Cheng; Zhang, Hao-Jiong; Yao, You-Yuan; Xu, Miao; He, Gui-Ping; Zhao, Bing-Chun; Gao, Ling; Feng, Qi-Sheng; Chen, Li-Zhen; Yang, Lu; Yang, Dajun; Zeng, Yi-Xin

    2016-10-10

    Despite advances in the development of radiation against nasopharyngeal carcinoma (NPC), the management of advanced NPC remains a challenge. Smac mimetics are designed to neutralize inhibitor of apoptosis (IAP) proteins, thus reactivating the apoptotic program in cancer cells. In this study, we investigated the effect of a novel bivalent Smac mimetic APG-1387 in NPC. In vitro, APG-1387 in combination with TNF-α potently decreased NPC cell viability by inducing apoptosis in majority of NPC cell lines. The in vitro antitumor effect was RIPK1-dependent, whereas it was independent on IAPs, USP11, or EBV. Of note, the inhibition of NF-κB or AKT pathway rendered resistant NPC cells responsive to the treatment of APG-1387/TNF-α. In vivo, APG-1387 displayed antitumor activity as a single agent at well-tolerated doses, even in an in vitro resistant cell line. In summary, our results demonstrate that APG-1387 exerts a potent antitumor effect on NPC. These findings support clinical evaluation of APG-1387 as a potential treatment for advanced NPC. Copyright © 2016. Published by Elsevier Ireland Ltd.

  10. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma.

    PubMed

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-07-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10(-9) ), but was less obvious in other types of solid tumors except for prostate and Epstein-Barr virus (EBV)-positive gastric cancer (FDR<10(-3) ). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Activating Endogenous Neural Precursor Cells Using Metformin Leads to Neural Repair and Functional Recovery in a Model of Childhood Brain Injury.

    PubMed

    Dadwal, Parvati; Mahmud, Neemat; Sinai, Laleh; Azimi, Ashkan; Fatt, Michael; Wondisford, Fredric E; Miller, Freda D; Morshead, Cindi M

    2015-08-11

    The development of cell replacement strategies to repair the injured brain has gained considerable attention, with a particular interest in mobilizing endogenous neural stem and progenitor cells (known as neural precursor cells [NPCs]) to promote brain repair. Recent work demonstrated metformin, a drug used to manage type II diabetes, promotes neurogenesis. We sought to determine its role in neural repair following brain injury. We find that metformin administration activates endogenous NPCs, expanding the size of the NPC pool and promoting NPC migration and differentiation in the injured neonatal brain in a hypoxia-ischemia (H/I) injury model. Importantly, metformin treatment following H/I restores sensory-motor function. Lineage tracking reveals that metformin treatment following H/I causes an increase in the absolute number of subependyma-derived NPCs relative to untreated H/I controls in areas associated with sensory-motor function. Hence, activation of endogenous NPCs is a promising target for therapeutic intervention in childhood brain injury models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogg, Mark; Murphy, John R.; Lorch, Jochen

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, asmore » well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.« less

  13. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    PubMed

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  14. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    PubMed Central

    2013-01-01

    Background Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. Methods In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Results Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Conclusions Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC. PMID:24380387

  15. Generation of H1 PAX6WT/EGFP reporter cells to purify PAX6 positive neural stem/progenitor cells.

    PubMed

    Wu, Wei; Liu, Juli; Su, Zhenghui; Li, Zhonghao; Ma, Ning; Huang, Ke; Zhou, Tiancheng; Wang, Linli

    2018-08-25

    Neural conversion from human pluripotent cells (hPSCs) is a potential therapy to neurological disease in the future. However, this is still limited by efficiency and stability of existed protocols used for neural induction from hPSCs. To overcome this obstacle, we developed a reporter system to screen PAX6 + neural progenitor/stem cells using transcription activator like effector nuclease (TALEN). We found that knock-in 2 A-EGFP cassette into PAX6 exon of human embryonic stem cells H1 with TALEN-based homology recombination could establish PAX6 WT/EGFP H1 reporter cell line fast and efficiently. This reporter cell line could differentiate into PAX6 and EGFP double positive neural progenitor/stem cells (NPCs/NSCs) after neural induction. Those PAX6 WT/EGFP NPCs could be purified, expanded and specified to post-mitotic neurons in vitro efficiently. With this reporter cell line, we also screened out 1 NPC-specific microRNA, hsa-miR-99a-5p, and 3 ESCs-enriched miRNAs, hsa-miR-302c-5p, hsa-miR-512-3p and hsa-miR-518 b. In conclusion, the TALEN-based neural stem cell screening system is safe and efficient and could help researcher to acquire adequate and pure neural progenitor cells for further application. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    PubMed

    Fang, Chih-Yeu; Huang, Sheng-Yen; Wu, Chung-Chun; Hsu, Hui-Yu; Chou, Sheng-Ping; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2012-01-01

    Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can enhance the reactivation of EBV and, over recurrent reactivations, lead to alteration of cancer hallmark gene expression with resultant enhancement of tumorigenesis in NPC.

  17. The Synergistic Effect of Chemical Carcinogens Enhances Epstein-Barr Virus Reactivation and Tumor Progression of Nasopharyngeal Carcinoma Cells

    PubMed Central

    Fang, Chih-Yeu; Huang, Sheng-Yen; Wu, Chung-Chun; Hsu, Hui-Yu; Chou, Sheng-Ping; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2012-01-01

    Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N’-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can enhance the reactivation of EBV and, over recurrent reactivations, lead to alteration of cancer hallmark gene expression with resultant enhancement of tumorigenesis in NPC. PMID:23024765

  18. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    PubMed Central

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  19. Epstein-Barr virus infection and nasopharyngeal carcinoma.

    PubMed

    Tsao, Sai Wah; Tsang, Chi Man; Lo, Kwok Wai

    2017-10-19

    Epstein-Barr virus (EBV) is associated with multiple types of human cancer, including lymphoid and epithelial cancers. The closest association with EBV infection is seen in undifferentiated nasopharyngeal carcinoma (NPC), which is endemic in the southern Chinese population. A strong association between NPC risk and the HLA locus at chromosome 6p has been identified, indicating a link between the presentation of EBV antigens to host immune cells and NPC risk. EBV infection in NPC is clonal in origin, strongly suggesting that NPC develops from the clonal expansion of a single EBV-infected cell. In epithelial cells, the default program of EBV infection is lytic replication. However, latent infection is the predominant mode of EBV infection in NPC. The establishment of latent EBV infection in pre-invasive nasopharyngeal epithelium is believed to be an early stage of NPC pathogenesis. Recent genomic study of NPC has identified multiple somatic mutations in the upstream negative regulators of NF-κB signalling. Dysregulated NF-κB signalling may contribute to the establishment of latent EBV infection in NPC. Stable EBV infection and the expression of latent EBV genes are postulated to drive the transformation of pre-invasive nasopharyngeal epithelial cells to cancer cells through multiple pathways.This article is part of the themed issue 'Human oncogenic viruses'. © 2017 The Author(s).

  20. Widespread expression of prostate apoptosis response-4 in nasopharyngeal carcinoma.

    PubMed

    Lee, Jeng-Woei; Hsiao, Wei-Ting; Lee, Kuei-Fang; Sheu, Lai-Fa; Hsu, Hsue-Yin; Hsu, Lee-Ping; Su, Borcherng; Lee, Moon-Sing; Hsu, Yih-Chih; Chang, Chung-Hsing

    2010-07-01

    Prostate apoptosis response-4 (Par-4) augments apoptosis in various tumors, either during apoptotic insult or by ectopic overexpression. However, investigation of Par-4 expression in nasopharyngeal carcinoma (NPC) is lacking. Specimens from patients with NPC, hypopharyngeal carcinoma (HPC), or oral cavity cancer were examined for Par-4 expression using immunohistochemistry. NPC cell proliferation and apoptosis were analyzed using immunohistochemical staining for Ki67, B-cell lymphoma 2 (Bcl-2), and in situ terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick end-labeling (TUNEL) assay, respectively. Par-4 was ubiquitously expressed in NPC biopsies (96.2%, 25/26) and was significantly higher than in HPC (47.6%, 50/105, p < .0001) and oral cavity cancers (38.7%, 12/31, p < .0001). Remarkably, apoptosis of NPC cells was absent and Par-4 expression was associated with obvious expression of Bcl-2 and Ki67 in all patients tested with NPC. Immunohistochemistry results showed widespread expression of Par-4 in NPC and revealed sustainable proliferation of NPC cells regardless of Par-4 expression. .(c) 2009 Wiley Periodicals, Inc.

  1. Pharmacological activation of LXRs decreases amyloid-β levels in Niemann-Pick type C model cells.

    PubMed

    Stefulj, Jasminka; Peric, Maja; Malnar, Martina; Kosicek, Marko; Schweinzer, Cornelia; Zivkovic, Jelena; Scholler, Monika; Panzenboeck, Ute; Hecimovic, Silva

    2013-01-01

    Niemann-Pick type C disease (NPC) is an inherited disorder mainly caused by loss-of-function mutations in the NPC1 gene, that lead to intracellular cholesterol accumulation and disturbed cholesterol homeostasis. Similarly to Alzheimer's disease (AD), NPC is associated with progressive neurodegeneration and altered metabolism of amyloid precursor protein (APP). Liver X receptors (LXRs), the key transcriptional regulators of cholesterol homeostasis, were reported to play neuroprotective roles in NPC mice. We investigated the impacts of LXRs on APP metabolism in mutant CHO cells lacking the NPC1 gene (-NPC1 cells). Pharmacological activation of LXRs in -NPC1 cells tended to reduce the ratio of total secreted APP (sAPP) to full length APP (flAPP) levels and sAPPβ levels as well as to increase the ratio of APP Cterminal fragments to flAPP levels, resulting in decreased levels of amyloid β (Aβ) peptides. -NPC1 cells treated with LXR agonist TO901317 (TO90) displayed a modest increase in cholesterol efflux to apolipoprotein A-I (apoA-I) but not to HDL3, or in the absence of extracellular cholesterol acceptors. The observed similar reduction of Aβ levels upon TO90 treatment in the presence or in the absence of extracellular apoA-I indicated a cholesterol-efflux independent effect of TO90 on Aβ levels. Furthermore, TO90 had no effect on the cholesterol synthesis rate in -NPC1 cells, while it reduced the rate of cholesterol esterification. The obtained results indicate that LXR activation may decrease Aβ levels in NPC1- deficient conditions. The underlying mechanism of this action does not appear to be related to effects on cholesterol efflux or synthesis rates.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosicek, Marko, E-mail: marko.kosicek@irb.hr; Malnar, Martina, E-mail: martina.malnar@irb.hr; Goate, Alison, E-mail: goate@icarus.wustl.edu

    It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradientmore » centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.« less

  3. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway.

    PubMed

    Fineran, Paul; Lloyd-Evans, Emyr; Lack, Nathan A; Platt, Nick; Davis, Lianne C; Morgan, Anthony J; Höglinger, Doris; Tatituri, Raju Venkata V; Clark, Simon; Williams, Ian M; Tynan, Patricia; Al Eisa, Nada; Nazarova, Evgeniya; Williams, Ann; Galione, Antony; Ory, Daniel S; Besra, Gurdyal S; Russell, David G; Brenner, Michael B; Sim, Edith; Platt, Frances M

    2016-11-18

    Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis , achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.

  4. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway

    PubMed Central

    Fineran, Paul; Lloyd-Evans, Emyr; Lack, Nathan A.; Platt, Nick; Davis, Lianne C.; Morgan, Anthony J.; Höglinger, Doris; Tatituri, Raju Venkata V.; Clark, Simon; Williams, Ian M.; Tynan, Patricia; Al Eisa, Nada; Nazarova, Evgeniya; Williams, Ann; Galione, Antony; Ory, Daniel S.; Besra, Gurdyal S.; Russell, David G.; Brenner, Michael B.; Sim, Edith; Platt, Frances M.

    2017-01-01

    Background. Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with intracellular mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC.  Methods. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed.  Results. Macrophages infected with intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells.  Conclusion. These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies. PMID:28008422

  5. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.

    PubMed

    Yan, Yuanwei; Song, Liqing; Tsai, Ang-Chen; Ma, Teng; Li, Yan

    2016-01-01

    Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Shu-Cheng; Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071; Guo, Wei

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumormore » activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.« less

  7. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    PubMed

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis.

    PubMed

    Johnson, Tory A; Pfeffer, Suzanne R

    2016-06-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1's N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [(3)H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1's cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. © 2016 Johnson and Pfeffer. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Mcl1 regulates the terminal mitosis of neural precursor cells in the mammalian brain through p27Kip1.

    PubMed

    Hasan, S M Mahmudul; Sheen, Ashley D; Power, Angela M; Langevin, Lisa Marie; Xiong, Jieying; Furlong, Michael; Day, Kristine; Schuurmans, Carol; Opferman, Joseph T; Vanderluit, Jacqueline L

    2013-08-01

    Cortical development requires the precise timing of neural precursor cell (NPC) terminal mitosis. Although cell cycle proteins regulate terminal mitosis, the factors that influence the cell cycle machinery are incompletely understood. Here we show in mice that myeloid cell leukemia 1 (Mcl1), an anti-apoptotic Bcl-2 protein required for the survival of NPCs, also regulates their terminal differentiation through the cell cycle regulator p27(Kip1). A BrdU-Ki67 cell profiling assay revealed that in utero electroporation of Mcl1 into NPCs in the embryonic neocortex increased NPC cell cycle exit (the leaving fraction). This was further supported by a decrease in proliferating NPCs (Pax6(+) radial glial cells and Tbr2(+) neural progenitors) and an increase in differentiating cells (Dcx(+) neuroblasts and Tbr1(+) neurons). Similarly, BrdU birth dating demonstrated that Mcl1 promotes premature NPC terminal mitosis giving rise to neurons of the deeper cortical layers, confirming their earlier birthdate. Changes in Mcl1 expression within NPCs caused concomitant changes in the levels of p27(Kip1) protein, a key regulator of NPC differentiation. Furthermore, in the absence of p27(Kip1), Mcl1 failed to induce NPC cell cycle exit, demonstrating that p27(Kip1) is required for Mcl1-mediated NPC terminal mitosis. In summary, we have identified a novel physiological role for anti-apoptotic Mcl1 in regulating NPC terminal differentiation.

  10. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis

    PubMed Central

    Johnson, Tory A.; Pfeffer, Suzanne R.

    2016-01-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1’s N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [3H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1’s cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173

  11. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    PubMed Central

    Fang, Chih-Yeu; Wu, Chung-Chun; Hsu, Hui-Yu; Chuang, Hsin-Ying; Huang, Sheng-Yen; Tsai, Ching-Hwa; Chang, Yao; Tsao, George Sai-Wah; Chen, Chi-Long; Chen, Jen-Yang

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC), yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP)-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK) phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC. PMID:25625511

  12. Low BRMS1 expression promotes nasopharyngeal carcinoma metastasis in vitro and in vivo and is associated with poor patient survival

    PubMed Central

    2012-01-01

    Background Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene. This study aimed to investigate the impact of BRMS1 on metastasis in nasopharyngeal carcinoma (NPC) and to evaluate the prognostic significance of BRMS1 in NPC patients. Methods BRMS1 expression was examined in NPC cell lines using quantitative reverse transcription-polymerase chain reaction and Western blotting. NPC cells stably expressing BRMS1 were used to perform wound healing and invasion assays in vitro and a murine xenograft assay in vivo. Immunohistochemical staining was performed in 274 paraffin-embedded NPC specimens divided into a training set (n = 120) and a testing set (n = 154). Results BRMS1 expression was down-regulated in NPC cell lines. Overexpression of BRMS1 significantly reversed the metastatic phenotype of NPC cells in vitro and in vivo. Importantly, low BRMS1 expression was associated with poor distant metastasis-free survival (DMFS, P < 0.001) and poor overall survival (OS, P < 0.001) in the training set; these results were validated in the testing set and overall patient population. Cox regression analysis demonstrated that low BRMS1 expression was an independent prognostic factor for DMFS and OS in NPC. Conclusions Low expression of the metastasis suppressor BRMS1 may be an independent prognostic factor for poor prognosis in NPC patients. PMID:22931099

  13. Elevated small GTPase activation influences the cell proliferation signaling control in Niemann-Pick type C fibroblasts.

    PubMed

    Corey, Deborah A; Kelley, Thomas J

    2007-07-01

    Niemann-Pick type C (NPC) disease is characterized at the cellular level by the intracellular accumulation of free cholesterol. We have previously identified a similar phenotype in cystic fibrosis (CF) cell models that results in the activation of the small GTPase RhoA. The hypothesis of this study was that NPC cells would also exhibit an increase in small GTPase activation. An examination of the active, GTP-bound form of GTPases revealed a basal increase in the content of the active-form Ras and RhoA small GTPases in NPC fibroblasts compared to wt controls. To assess whether this increase in GTP-bound Ras and RhoA manifests a functional outcome, the expression of the proliferation control proteins p21/waf1 and cyclin D were examined. Consistent with increased GTPase signaling, p21/waf1 expression is reduced and cyclin D expression is elevated in NPC fibroblasts. Interestingly, cell growth rate is not altered in NPC fibroblasts compared to wt cells. However, NPC sensitivity to statin treatment is reversed by addition of the isoprenoid geranylgeranyl pyrophosphate (GGPP), a modifier of RhoA. It is concluded that Ras and RhoA basal activation is elevated in NPC fibroblasts and has an impact on cell survival pathways.

  14. Niemann-Pick Type C1 deficiency in microglia does not cause neuron death in vitro.

    PubMed

    Peake, Kyle B; Campenot, Robert B; Vance, Dennis E; Vance, Jean E

    2011-09-01

    Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder that results in accumulation of cholesterol and other lipids in late endosomes/lysosomes and leads to progressive neurodegeneration and premature death. The mechanism by which lipid accumulation causes neurodegeneration remains unclear. Inappropriate activation of microglia, the resident immune cells of the central nervous system, has been implicated in several neurodegenerative disorders including NPC disease. Immunohistochemical analysis demonstrates that NPC1 deficiency in mouse brains alters microglial morphology and increases the number of microglia. In primary cultures of microglia from Npc1(-/-) mice cholesterol is sequestered intracellularly, as occurs in other NPC-deficient cells. Activated microglia secrete potentially neurotoxic molecules such as tumor necrosis factor-α (TNFα). However, NPC1 deficiency in isolated microglia did not increase TNFα mRNA or TNFα secretion in vitro. In addition, qPCR analysis shows that expression of pro-inflammatory and oxidative stress genes is the same in Npc1(+/+) and Npc1(-/-) microglia, whereas the mRNA encoding the anti-inflammatory cytokine, interleukin-10 in Npc1(-/-) microglia is ~60% lower than in Npc1(+/+) microglia. The survival of cultured neurons was not impaired by NPC1 deficiency, nor was death of Npc1(-/-) and Npc1(+/+) neurons in microglia-neuron co-cultures increased by NPC1 deficiency in microglia. However, a high concentration of Npc1(-/-) microglia appeared to promote neuron survival. Thus, although microglia exhibit an active morphology in NPC1-deficient brains, lack of NPC1 in microglia does not promote neuron death in vitro in microglia-neuron co-cultures, supporting the view that microglial NPC1 deficiency is not the primary cause of neuron death in NPC disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Abnormal accumulation and recycling of glycoproteins visualized in Niemann–Pick type C cells using the chemical reporter strategy

    PubMed Central

    Mbua, Ngalle Eric; Flanagan-Steet, Heather; Johnson, Steven; Wolfert, Margreet A.; Boons, Geert-Jan; Steet, Richard

    2013-01-01

    Niemann–Pick type C (NPC) disease is characterized by impaired cholesterol efflux from late endosomes and lysosomes and secondary accumulation of lipids. Although impaired trafficking of individual glycoproteins and glycolipids has been noted in NPC cells and other storage disorders, there is currently no effective way to monitor their localization and movement en masse. Using a chemical reporter strategy in combination with pharmacologic treatments, we demonstrate a disease-specific and previously unrecognized accumulation of a diverse set of glycoconjugates in NPC1-null and NPC2-deficient fibroblasts within endocytic compartments. These labeled vesicles do not colocalize with the cholesterol-laden compartments of NPC cells. Experiments using the endocytic uptake marker dextran show that the endosomal accumulation of sialylated molecules can be largely attributed to impaired recycling as opposed to altered fusion of vesicles. Treatment of either NPC1-null or NPC2-deficient cells with cyclodextrin was effective in reducing cholesterol storage as well as the endocytic accumulation of sialoglycoproteins, demonstrating a direct link between cholesterol storage and abnormal recycling. Our data further demonstrate that this accumulation is largely glycoproteins, given that inhibitors of O-glycan initiation or N-glycan processing led to a significant reduction in staining intensity. Taken together, our results provide a unique perspective on the trafficking defects in NPC cells, and highlight the utility of this methodology in analyzing cells with altered recycling and turnover of glycoproteins. PMID:23733943

  16. Niemann-Pick type C2 protein regulates liver cancer progression via modulating ERK1/2 pathway: Clinicopathological correlations and therapeutical implications.

    PubMed

    Liao, Yi-Jen; Fang, Cheng-Chieh; Yen, Chia-Hung; Hsu, Shih-Ming; Wang, Chung-Kwe; Huang, Shiu-Feng; Liang, Yu-Chih; Lin, Ying-Yu; Chu, Yu-Tseng; Arthur Chen, Yi-Ming

    2015-09-15

    Primary hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third leading cause of cancer-related death. It is important to identify new targets for early diagnosis and treatment of HCC. Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular cholesterol homeostasis via direct binding with free cholesterol. However, little is known about the significance of NPC2 in HCC tumorigenesis. In this study, we showed that NPC2 is abundantly expressed in normal liver, but is downregulated in human HCC tissues. The patients with NPC2 downregulation expressed much higher α-fetoprotein, multiple tumor type, vascular invasion, later pathological stage and shorter survival rate. Knockdown NPC2 in liver cancer cell lines promote cell proliferation, migration and xenograft tumorigenesis. In contrast, NPC2 overexpression inhibits HuH7 promoted tumor growth. Furthermore, administration of hepatotropic adeno-associated virus 8 (AAV8) delivered NPC2 decreased the inflammatory infiltration, the expression of two early HCC markers-glypican 3 and survivin and suppressed the spontaneous HCC development in mice. To identify the NPC2-dependent mechanism, we emphasized on the status of MAPK/ERK signaling. MEK1/2 inhibitor treatment demonstrated that the expression of NPC2 affected the activation of ERK1/2 but not MEK1/2. In addition, cholesterol trafficking inhibitor treatment did not alter the cell proliferation and the activation of MEK/ERK. In conclusion, our study demonstrates that NPC2 may play an important role in negatively regulate cell proliferation and ERK1/2 activation that were independent of cholesterol accumulation. AAV-NPC2 may thus represent a new treatment strategy for liver cancer. © 2015 UICC.

  17. Niemann-Pick Type C2 Protein Regulates Free Cholesterol Accumulation and Influences Hepatic Stellate Cell Proliferation and Mitochondrial Respiration Function.

    PubMed

    Wang, Yuan-Hsi; Twu, Yuh-Ching; Wang, Chung-Kwe; Lin, Fu-Zhen; Lee, Chun-Ya; Liao, Yi-Jen

    2018-06-05

    Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-β1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3β (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.

  18. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    PubMed

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  19. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically significant differences in the variation of PAX6 and SOX1-positive NPCs between the two human pluripotent cell-derived methods; therefore, both methods are suitable for producing stable dorsal NPCs. When further differentiated into mature neurons, NPCs gave rise to a population of almost exclusively forebrain cortical neurons, confirming the dorsal fate commitment of the progenitors. The methods described in this study show improvements over previously published studies and are highly efficient at differentiating human and mouse pluripotent cell types into dorsal PAX6-positive NPCs and eventually into forebrain cortical neurons.

  20. Excavation of attractor modules for nasopharyngeal carcinoma via integrating systemic module inference with attract method.

    PubMed

    Jiang, T; Jiang, C-Y; Shu, J-H; Xu, Y-J

    2017-07-10

    The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38 modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way. Further research is needed to explore the correlations between cell division and NPC.

  1. Rubus idaeus Inhibits Migration and Invasion of Human Nasopharyngeal Carcinoma Cells by Suppression of MMP-2 through Modulation of the ERK1/2 Pathway.

    PubMed

    Hsin, Chung-Han; Huang, Cheng-Chen; Chen, Pei-Ni; Hsieh, Yih-Shou; Yang, Shun-Fa; Ho, Yu-Ting; Lin, Chiao-Wen

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is characterized by a high incidence of metastasis in the neck lymph nodes, resulting in a poor prognosis and posing challenges for treatment. In this study, we investigated the in vitro antimetastatic properties of Rubus idaeus extract (RIE) on human nasopharyngeal carcinoma cells. HONE-1, NPC-39 and NPC-BM cells were subjected to RIE treatment, and effects on the migration and invasion of tumor cells were analyzed. The results showed that RIE suppressed the migration and invasion of NPC cells. Gelatin zymography assay, Western blotting and real-time PCR showed that matrix metalloproteinases-2 (MMP-2) enzyme activity, protein expression and mRNA levels were down-regulated by RIE treatment. To identify the signaling pathway, mitogen-activated protein kinase proteins were examined, which showed that phosphorylation of ERK1/2 was inhibited after the treatment of RIE. In summary, our data showed that RIE inhibited the migration and invasion of NPC cells by suppressing the expression of MMP-2 by down-regulating the ERK1/2 signaling pathway, suggesting that Rubus idaeus may serve as chemotherapeutic and chemopreventive agent for NPC.

  2. EphA2 silencing in nasopharyngeal carcinoma leads to decreased proliferation, invasion and increased sensitization to paclitaxel

    PubMed Central

    TAN, PINGQING; LIU, YONG; YU, CHANGYUN; SU, ZHONGWU; LI, GUO; ZHOU, XIAOJUAN; HUANG, DONGHAI; ZHANG, XIN; QIU, YUANZHENG; TIAN, YONGQUAN

    2012-01-01

    EphA2 is frequently overexpressed and functionally altered in a variety of human cancers. However, its roles in human nasopharyngeal carcinoma (NPC) remain unclear. To investigate the roles of EphA2 in the development and progression of NPC, we initially evaluated the expression pattern of EphA2 protein in NPC tissues using western blotting and CCK-8 assay. Fluorescence-activated cell sorting analysis and invasion assay were conducted to observe the effects of EphA2 inhibition in vivo. Our results demonstrated that EphA2 was overexpressed in NPC specimens and the expression of EphA2 was significantly associated with T classification, advanced clinical stage and lymph node metastasis. Moreover, human NPC 5-8F cells were infected with lentiviral vector-mediated EphA2-specific shRNA, which resulted in the significant inhibition of cell growth, invasion of 5-8F cells and markedly enhanced the sensitivity of 5-8F cells to the chemotherapeutic agent paclitaxel in vitro. Collectively, our results demonstrate that EphA2 is involved in malignant cell behavior and is a potential therapeutic target in human NPC. PMID:23741245

  3. Bisphenol A promotes cholesterol absorption in Caco-2 cells by up-regulation of NPC1L1 expression.

    PubMed

    Feng, Dan; Zou, Jun; Zhang, Shanshan; Li, Xuechun; Li, Peiyang; Lu, Minqi

    2017-01-06

    Bisphenol A (BPA), an commonly exposed environmental chemicals in humans, has been shown to have a hypercholesterolemic effect with molecular mechanism not clear. Since intestinal cholesterol absorption plays a major role in maintaining total body cholesterol homeostasis, the present study is to investigate whether BPA affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with BPA at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and sterol regulatory element binding protein-2 (SREBP-2) was analyzed by Western blot and qPCR. We found that confluent Caco-2 cells expressed NPC1L1, and the absorption of cholesterol in the cells was inhibited by ezetimibe, a specific inhibitor of NPC1L1. We then pretreated the cells with 0.1-10 nM BPA for 24 h and found that BPA at 1 and 10 nM doses promoted cholesterol absorption. In addition, we found that the BPA-induced promotion of cholesterol absorption was associated with significant increase in the levels of NPC1L1 protein and NPC1L1 mRNA. Moreover, the stimulatory effects of BPA on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the SREBP-2 pathway. This study provides the first evidence that BPA promotes cholesterol absorption in the intestinal cells and the stimulatory effect of BPA is mediated, at least in part, by SREBP-2-NPC1L1 signaling pathway.

  4. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    PubMed Central

    Fogg, Mark; Murphy, John R.; Lorch, Jochen; Posner, Marshall; Wang, Fred

    2013-01-01

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. PMID:23601786

  5. Astrocyte-Only Npc1 Reduces Neuronal Cholesterol and Triples Life Span of Npc1−/− Mice

    PubMed Central

    Zhang, Min; Strnatka, Diana; Donohue, Carolyn; Hallows, Jan; Vincent, Inez; Erickson, Robert P.

    2009-01-01

    Niemann-Pick type C (NPC) disease is an autosomal recessive, lethal neurodegenerative disorder. Although neurodegeneration of Purkinje cells in the mouse model (Npc1−/−) is thought to be autonomous, the basis of neuronal death in other regions of the brain remains elusive. We addressed this issue in vivo by using the glial fibrillary acidic protein (GFAP) promoter to direct astrocyte-specific, replacement expression of Npc1 in Npc1−/− mice. These mice showed enhanced survival, decreased neuronal storage of cholesterol associated with less accumulation of axonal spheroids, lower numbers of degenerated neurons and reactive astrocytes and restoration of myelin tracts. Their death was not associated with the usual terminal decline in weight, but instead with a loss of Purkinje cells and motor coordination. We conclude that neurodegeneration of Npc1−/− mice is greatly affected by the loss of fibrillary astrocyte function. PMID:18500759

  6. Selective Neurodegeneration, Without Neurofibrillary Tangles, in a Mouse Model of Niemann-Pick C Disease

    PubMed Central

    German, Dwight C.; Quintero, E. Matthew; Liang, Chang-Lin; Ng, Benton; Punia, Surender; Xie, Chonglun; Dietschy, John M.

    2012-01-01

    The BALB/c mouse model of Niemann-Pick type C (NPC) disease exhibits neuropathological similarities to the human condition. There is an age-related cerebral atrophy, demyelination of the corpus callosum, and degeneration of cerebellar Purkinje cells in the NPC mouse. In human NPC, many cortical and subcortical neurons contain neurofibrillary tangles, which are thought by some investigators to play an important role in the neurodegenerative process. The purpose of the present study was to determine whether neurodegeneration occurs in the NPC mouse, in brain regions other than the cerebellum and whether the degeneration is related to the presence of neurofibrillary tangles. Using light microscopic methods with immunohistochemistry, electron microscopy, and cell counting methods, 11-week-old NPC+/+ and NPC−/− animals were examined. In the NPC−/− mice, there were 96% fewer Purkinje cells, 28% fewer neurons in the prefrontal cortex, 20% fewer neurons in the thalamus, and 63% fewer glial cells in the corpus callosum. On the other hand, previous studies indicate normal numbers of neurons and glial cells in these same neuroanatomical regions in young NPC−/− mice. There were normal numbers of cholinergic neurons in sections assessed in the striatum and basal forebrain in the 11-week-old animals and no evidence of neurofibrillary tangles within cells. The present data indicate that both neurons and glial cells die in the NPC mouse but that all cells are not equally vulnerable. There was no evidence for neurofibrillary tangles in the NPC mouse, and therefore the degenerative process in the mouse is unrelated to the neurofibrillary tangle. PMID:11298365

  7. 3-Bromopyruvate enhances TRAIL-induced apoptosis in human nasopharyngeal carcinoma cells through CHOP-dependent upregulation of TRAIL-R2.

    PubMed

    Can, Zhou; Lele, Song; Zhirui, Zhang; Qiong, Pan; Yuzhong, Chen; Lingling, Liu; Surong, Zhao; Yiming, Sun; Pei, Zhang; Chenchen, Jiang; Liu, Hao

    2017-08-01

    Past reports have shown that the sensitivity of cancer cells to TRAIL-induced apoptosis is related to their expression of TRAIL-death receptors on the cell surface. However, the level of TRAIL-death receptors expression on cancer cells is always low. Our previous research showed that nasopharyngeal carcinoma (NPC) cells have a poor sensitivity to low doses of TRAIL. Here, we evaluated combined treatment with the energy inhibitor 3-bromopyruvate (3BP) and TRAIL as a method to produce an increased apoptotic response in NPC cells. The results showed that 3BP and TRAIL together produced higher cytotoxicity and increased TRAIL-R2 expression in NPC cells compared with the effects of either 3BP or TRAIL alone. These findings led us to hypothesize that 3BP may sensitize NPC cells to TRAIL. 3BP is a metabolic blocker that inhibits hexokinase II activity, suppresses ATP production, and induces endoplasmic reticulum (ER) stress. Our results showed that 3BP also activated AMP-activated protein kinase, which we found to play an important role in the induction of ER stress by 3BP. Furthermore, the induction of TRAIL-R2 expression and the sensitization of the NPC cells to TRAIL by 3BP were reduced when we inhibited the expression of CHOP. Taken together, our results showed that a low dose of 3BP sensitized NPC cells to TRAIL-induced apoptosis by the upregulation of CHOP, which was mediated by the activation of AMP-activated protein kinase and ER stress. The results showed that 3BP is a promising candidate agent for enhancing the therapeutic response to TRAIL in NPC.

  8. KAI1 overexpression promotes apoptosis and inhibits proliferation, cell cycle, migration, and invasion in nasopharyngeal carcinoma cells.

    PubMed

    Guo, Zheng; Wang, Yili; Yang, Jing; Zhong, Jinghua; Liu, Xia; Xu, Mingjun

    The purpose of this study is to characterize the effect of KAI1 overexpression on the biological behavior of nasopharyngeal carcinoma (NPC) cells. Nasopharyngeal carcinoma is a highly malignant tumor with a high rate of incidence in China. Currently, there are no ideal therapeutic options for patients with NPC, but a targeted therapy would have great potential for treating it. Therefore, there is an urgent need for novel therapeutic targets to provide new options for treating NPC. The KAI1 gene was originally identified as a metastasis suppressor gene for advanced human cancer. In NPC cell lines and tissues, the expression of KAI1 decreased as the metastatic potential of cells increased, but its potential as a therapeutic target has not been elucidated. Non-transformed nasopharyngeal epithelium cell NP69 and NPC cell line C666-1 were cultured and KAI1 expression in these cells was detected by qRT-PCR and Western blot. After the transfection of KAI1-pCDNA3.1 to NP69 and C666-1, the KAI1 expression in these cells was detected by qRT-PCR and Western blot, the proliferation was performed by MTS, the cell cycle and apoptosis were performed by flow cytometry, the migration and invasion were examined by transwell. Our results showed that KAI1 was significantly upregulated in C666-1 cells compared to that in NP69 cells. In addition, KAI1 overexpression significantly inhibited the proliferation, cell cycle, migration, and invasion, and promoted apoptosis of C666-1 cells, but had no significant effect on NP69 cells. Our findings suggest that KAI1 overexpression promotes apoptosis and inhibits proliferation, cell cycle, migration, and invasion in NPC cells. We hypothesize that KAI1 overexpression could be a potential therapeutic target for NPC. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Localization and role of NPC1L1 in cholesterol absorption in human intestine.

    PubMed

    Sané, Alain Théophile; Sinnett, Daniel; Delvin, Edgard; Bendayan, Moise; Marcil, Valérie; Ménard, Daniel; Beaulieu, Jean-François; Levy, Emile

    2006-10-01

    Recent studies have documented the presence of Niemann-Pick C1-Like 1 (NPC1L1) in the small intestine and its capacity to transport cholesterol in mice and rats. The current investigation was undertaken to explore the localization and function of NPC1L1 in human enterocytes. Cell fractionation experiments revealed an NPC1L1 association with apical membrane of the enterocyte in human jejunum. Signal was also detected in lysosomes, endosomes, and mitochondria. Confirmation of cellular NPC1L1 distribution was obtained by immunocytochemistry. Knockdown of NPC1L1 caused a decline in the ability of Caco-2 cells to capture micellar [(14)C]free cholesterol. Furthermore, this NPC1L1 suppression resulted in increased and decreased mRNA levels and activity of HMG-CoA reductase, the rate-limiting step in cholesterol synthesis, and of ACAT, the key enzyme in cholesterol esterification, respectively. An increase was also noted in the transcriptional factor sterol-regulatory element binding protein that modulates cholesterol homeostasis. Efforts were devoted to define the impact of NPC1L1 knockdown on other mediators of cholesterol uptake. RT-PCR evidence is presented to show the significant decrease in the levels of scavenger receptor class B type I (SR-BI) with no changes in ABCA1, ABCG5, and cluster determinant 36 in NPC1L1-deficient Caco-2 cells. Together, our data suggest that NPC1L1 contributes to intestinal cholesterol homeostasis and possibly cooperates with SR-BI to mediate cholesterol absorption in humans.

  10. Characterization of the NPC1L1 gene and proteome from an exceptional responder to ezetimibe.

    PubMed

    Schweitzer, Morris; Makhoul, Sandra; Paliouras, Miltiadis; Beitel, Lenore K; Gottlieb, Bruce; Trifiro, Mark; Chowdhury, Shafinaz F; Zaman, Naif M; Wang, Edwin; Davis, Harry; Chalifour, Lorraine E

    2016-03-01

    Strategies to reduce LDL-cholesterol involve reductions in cholesterol synthesis or absorption. We identified a familial hypercholesterolemia patient with an exceptional response to the cholesterol absorption inhibitor, ezetimibe. Niemann-Pick C 1-like 1 (NPC1L1) is the molecular target of ezetimibe. Sequencing identified nucleotide changes predicted to change amino acids 52 (L52P), 300 (I300T) and 489 (S489G) in exceptional NPC1L1. In silico analyses identified increased stability and cholesterol binding affinity in L52P-NPC1L1 versus WT-NPC1L1. HEK293 cells overexpressing WT-NPC1L1 or NPC1L1 harboring amino acid changes singly or in combination (Comb-NPC1L1) had reduced cholesterol uptake in Comb-NPC1L1 when ezetimibe was present. Cholesterol uptake was reduced by ezetimibe in L52P-NPC1L1, I300T-NPC1L1, but increased in S489G-NPC1L1 overexpressing cells. Immunolocalization studies found preferential plasma membrane localization of mutant NPC1L1 independent of ezetimibe. Flotillin 1 and 2 expression was reduced and binding to Comb-NPC1L1 was reduced independent of ezetimibe exposure. Proteomic analyses identified increased association with proteins that modulate intermediate filament proteins in Comb-NPC1L1 versus WT-NPC1L1 treated with ezetimibe. This is the first detailed analysis of the role of NPC1L1 mutations in an exceptional responder to ezetimibe. The results point to a complex set of events in which the combined mutations were shown to affect cholesterol uptake in the presence of ezetimibe. Proteomic analysis suggests that the exceptional response may also lie in the nature of interactions with cytosolic proteins. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Effective inhibition of nasopharyngeal carcinoma in vitro and in vivo by targeting glycolysis with oxamate.

    PubMed

    Li, Xiaobing; Lu, Wenhua; Hu, Yumin; Wen, Shijun; Qian, Chaonan; Wu, Wenjing; Huang, Peng

    2013-11-01

    Elevated aerobic glycolysis in cancer cells (Warburg effect) has been observed in many tumor types including nasopharyngeal carcinoma (NPC), which can often be detected clinically using FDG-PET. However, the role of glycolysis in supporting the growth of NPC cells and its therapeutic implications still remain to be investigated. In the present study, we showed that the LDH inhibitor oxamate significantly suppressed NPC cell proliferation in vitro and tumor growth in vivo, yet exhibited minimum toxicity to normal nasopharyngeal epithelial cells in vitro and was well tolerated in mice. Moreover, oxamate exhibited cytotoxic effect in NPC cells under hypoxia. Mechanistic study showed that oxamate significantly inhibited LDH activity, leading to a substantial decrease in glucose uptake and lactate production. Combination of oxamate with a mitochondrial respiratory complex I inhibitor resulted in a significant depletion of cellular ATP and a synergistic killing of cancer cells. Our results suggest that inhibition of glycolysis by oxamate is an effective therapeutic strategy for treatment of NPC and that combination of this compound with mitochondrial-targeted agents may improve the therapeutic activity.

  12. Berberine inhibits the proliferation of human nasopharyngeal carcinoma cells via an Epstein-Barr virus nuclear antigen 1-dependent mechanism.

    PubMed

    Wang, Chao; Wang, Huan; Zhang, Yaqian; Guo, Wei; Long, Cong; Wang, Jingchao; Liu, Limei; Sun, Xiaoping

    2017-04-01

    Nasopharyngeal carcinoma (NPC) is a malignancy derived from the epithelial cells of the nasopharynx cavity, and is closely associated with Epstein-Barr virus (EBV) infection. In addition to NPC, EBV causes various human malignancies, such as gastric cancer, hematological tumors and lymphoepithelioma-like carcinomas. Epstein-Barr nuclear antigen 1 (EBNA1) encoded by EBV is indispensable for replication, partition, transcription and maintenance of viral genomes. Berberine, a naturally occurring isoquinoline alkaloid, shows anti-inflammatory, anticholinergic, antioxidative, and anticancer activities. In the present study, the antitumor effect of berberine was studied. Cell Counting Kit-8 (CCK-8) assays were performed to demonstrate whether the proliferation of EBV-positive NPC cells was inhibited by berberine. Flow cytometric results revealed that berberine induced cell cycle arrest and apoptosis. Quantitative-PCR and western blotting results indicated that berberine decreased the expression of EBNA1 at both the mRNA and protein levels in the EBV-positive NPC cells. The function of EBNA1 promoter Qp which is to drive EBNA1 transcription in type Ⅱ latent infection was strongly suppressed by berberine. Overexpression of EBNA1 attenuated this inhibitory effect. Berberine also suppressed the activity of signal transducer and activator of transcription 3 which is a new therapeutic target in a series of malignancies, including NPC. Viral titer experiments demonstrated that berberine decreased the production of virions in HONE1 and HK1-EBV cells. In a mouse xenograft model of NPC induced by HONE1 cells, berberine significantly inhibited tumor formation. Altogether, these results indicate that berberine decreases the expression of EBNA1 and exhibits an antitumor effect against NPC both in vitro and in vivo.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from themore » binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.« less

  14. MiR-20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells.

    PubMed

    Huang, Dabing; Bian, Geng; Pan, Yueyin; Han, Xinghua; Sun, Yubei; Wang, Yong; Shen, Guodong; Cheng, Min; Fang, Xiang; Hu, Shilian

    2017-01-01

    MicroRNAs (miRNAs) was reported to be involved in cancer radio-resistance, which remains a major obstacle for effective cancer therapy. The differently expressed miRNAs were detected by RNA-seq experiment in nasopharyngeal cancer (NPC) cells. MiR-20a-5p was selected as our target, which was subject to finding its target gene Rab27B via bioinformatics analysis. The qRT-PCR, western blot and the luciferase reporter assays were performed to confirm Rab27B as the target of miR-20a-5p. In addition, the roles of miR-20a-5p in NPC radio-resistance were detected by transfection of either miR-20a-5p-mimic or miR-20a-5p-antagomiR. The involvement of Rab27B with NPC radio-resistance was also detected by the experiments with siRNA-mediated repression of Rab27B or over-expression of GFP-Rab27B. Wound healing and invasion assays were performed to detect the roles of both miR-20a-5p and Rab27B. MiR-20a-5p promotes NPC radio-resistance. We identified that its target gene Rab27B negatively correlates with miR-20a-5p-mediated NPC radio-resistance by systematic studies of a radio-sensitive (CNE-2) and resistant (CNE-1) NPC cell lines. Repression of Rab27B by siRNA suppresses cell apoptosis and passivates CNE-2 cells, whereas over-expression of Rab27B triggered cell apoptosis and sensitizes CNE-1 cells. MiR-20a-5p and its target gene Rab27B might be involved in the NPC radio-resistance. Thus the key players and regulators involved in this pathway might be the potential targets for developing effective therapeutic strategies against NPC.

  15. Tumor-specific cytolysis caused by an E1B55K-attenuated adenovirus in nasopharyngeal carcinoma is augmented by cisplatin.

    PubMed

    Liu, Ran-Yi; Peng, Ji-Lin; Li, Yong-Qiang; Huang, Bi-Jun; Lin, Huan-Xin; Zhou, Ling; Luo, Hui-Ling; Huang, Wenlin

    2013-12-01

    An E1B55K-attenuated adenovirus, dl1520, has been shown to replicate selectively in and lyse tumor cells. In this study, the antitumor activities of dl1520, alone or in combination with the chemotherapeutic agent cisplatin, were investigated in nasopharyngeal carcinoma (NPC) cells. The results demonstrated that dl1520 replicated in and destroyed NPC cells, and induced apoptosis in vitro. In a nude mouse xenograft model, dl1520 significantly inhibited the growth of NPC cell xenografts, and the viral replication was associated with tumor regression. Importantly, the antitumor activity of dl1520 was augmented by the addition of cisplatin both in vitro and in vivo, showing that dl1520 and cisplatin have a synergistic anti-NPC effect. These data suggest that dl1520 exerts an efficient anti-NPC activity through oncolysis and the induction of apoptosis, which is enhanced synergistically by cisplatin. These findings indicate that oncolytic viral therapeutics using the E1B55K-attenuated adenovirus dl1520 could be promising in the comprehensive treatment of NPC, especially in combination with platinum-based chemotherapy. Copyright © 2013 Wiley Periodicals, Inc.

  16. Integrin α9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma

    PubMed Central

    Hu, Li-Fu; Moumad, Khalid; Pavlova, Tatiana V.; Kashuba, Vladimir; Almgren, Malin; Zabarovsky, Eugene R.; Ernberg, Ingemar

    2015-01-01

    Epigenetic silencing of tumor suppressor genes (TSGs) by promoter methylation can be an early event in the multi-step process of carcinogenesis. Human chromosome 3 contains clusters of TSGs involved in many cancer types including nasopharyngeal carcinoma (NPC), the most common cancer in Southern China. Among ten candidate TSGs identified in chromosome 3 using NotI microarray, ITGA9 and WNT7A could be validated. 5′-aza-2′ deoxycytidine treatment restored the expression of ITGA9 and WNT7A in two NPC cell lines. Immunostaining showed strong expression of these genes in the membrane and cytoplasm of adjacent control nasopharyngeal epithelium cells, while they were weakly expressed in NPC tumor cells. The ITGA9 promoter showed marked differentially methylation between tumor and control tissue, whereas no differentially methylation could be detected for the WNT7A promoter. The expression level of ITGA9 in NPC tumors was downregulated 4.9-fold, compared to the expression in control. ITGA9 methylation was detected by methylation specific PCR (MSP) in 56% of EBV positive NPC- cases with 100% specificity. Taken together, this suggests that ITGA9 might be a TSG in NPC that is involved in tumor cell biology. The possibility of using ITGA9 methylation as a marker for early detection of NPC should further be explored. PMID:26372814

  17. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tongxin; Li, Qi; Sun, Quanquan

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediatedmore » by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.« less

  18. Prognostic Value of Molecular Markers and Implication for Molecular Targeted Therapies in Nasopharyngeal Carcinoma: An Update in an Era of New Targeted Molecules Development.

    PubMed

    Liu, Mu-Tai; Chen, Mu-Kuan; Huang, Chia-Chun; Huang, Chao-Yuan

    2015-02-01

    The aim of the study was to evaluate the prognostic significance of molecular biomarkers which could provide information for more accurate prognostication and development of novel therapeutic strategies for nasopharyngeal carcinoma (NPC). NPC is a unique malignant epithelial carcinoma of head and neck region, with an intimate association with the Epstein-Barr virus (EBV). Currently, the prediction of NPC prognosis is mainly based on the clinical TNM staging; however, NPC patients with the same clinical stage often present different clinical outcomes, suggesting that the TNM stage is insufficient to precisely predict the prognosis of this disease. In this review, we give an overview of the prognostic value of molecular markers in NPC and discuss potential strategies of targeted therapies for treatment of NPC. Molecular biomarkers, which play roles in abnormal proliferation signaling pathways (such as Wnt/β-catenin pathway), intracellular mitogenic signal aberration (such as hypoxia-inducible factor (HIF)-1α), receptor-mediated aberrations (such as vascular endothelial growth factor (VEGF)), tumor suppressors (such as p16 and p27 activity), cell cycle aberrations (such as cyclin D1 and cyclin E), cell adhesion aberrations (such as E-cadherin), apoptosis dysregualtion (such as survivin) and centromere aberration (centromere protein H), are prognostic markers for NPC. Plasma EBV DNA concentrations and EBV-encoded latent membrane proteins are also prognostic markers for NPC. Implication of molecular targeted therapies in NPC was discussed. Such therapies could have potential in combination with different cytotoxic agents to combat and eradicate tumor cells. In order to further improve overall survival for patients with loco-regionally advanced NPC, the development of innovative strategies, including prognostic molecular markers and molecular targeted agents is needed.

  19. Hydrolytically Degradable Poly(Ethylene Glycol) Hydrogel Scaffolds as a Cell Delivery Vehicle: Characterization of PC12 Cell Response

    PubMed Central

    Zustiak, Silviya P.; Pubill, Stephanie; Ribeiro, Andreia; Leach, Jennie B.

    2013-01-01

    The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically-degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. PMID:24474590

  20. Mechanisms of nuclear pore complex assembly - two different ways of building one molecular machine.

    PubMed

    Otsuka, Shotaro; Ellenberg, Jan

    2018-02-01

    The nuclear pore complex (NPC) mediates all macromolecular transport across the nuclear envelope. In higher eukaryotes that have an open mitosis, NPCs assemble at two points in the cell cycle: during nuclear assembly in late mitosis and during nuclear growth in interphase. How the NPC, the largest nonpolymeric protein complex in eukaryotic cells, self-assembles inside cells remained unclear. Recent studies have started to uncover the assembly process, and evidence has been accumulating that postmitotic and interphase NPC assembly use fundamentally different mechanisms; the duration, structural intermediates, and regulation by molecular players are different and different types of membrane deformation are involved. In this Review, we summarize the current understanding of these two modes of NPC assembly and discuss the structural and regulatory steps that might drive the assembly processes. We furthermore integrate understanding of NPC assembly with the mechanisms for rapid nuclear growth in embryos and, finally, speculate on the evolutionary origin of the NPC implied by the presence of two distinct assembly mechanisms. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  1. Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats

    PubMed Central

    Ng, Melinda; Ndungo, Esther; Kaczmarek, Maria E; Herbert, Andrew S; Binger, Tabea; Kuehne, Ana I; Jangra, Rohit K; Hawkins, John A; Gifford, Robert J; Biswas, Rohan; Demogines, Ann; James, Rebekah M; Yu, Meng; Brummelkamp, Thijn R; Drosten, Christian; Wang, Lin-Fa; Kuhn, Jens H; Müller, Marcel A; Dye, John M; Sawyer, Sara L; Chandran, Kartik

    2015-01-01

    Biological factors that influence the host range and spillover of Ebola virus (EBOV) and other filoviruses remain enigmatic. While filoviruses infect diverse mammalian cell lines, we report that cells from African straw-colored fruit bats (Eidolon helvum) are refractory to EBOV infection. This could be explained by a single amino acid change in the filovirus receptor, NPC1, which greatly reduces the affinity of EBOV-NPC1 interaction. We found signatures of positive selection in bat NPC1 concentrated at the virus-receptor interface, with the strongest signal at the same residue that controls EBOV infection in Eidolon helvum cells. Our work identifies NPC1 as a genetic determinant of filovirus susceptibility in bats, and suggests that some NPC1 variations reflect host adaptations to reduce filovirus replication and virulence. A single viral mutation afforded escape from receptor control, revealing a pathway for compensatory viral evolution and a potential avenue for expansion of filovirus host range in nature. DOI: http://dx.doi.org/10.7554/eLife.11785.001 PMID:26698106

  2. [Inactivation of PMS2 gene by promoter methylation in nasopharyngeal carcinoma].

    PubMed

    Ni, H F; Jiang, B; Zhou, Z; Li, Y; Yuan, X Y; Cao, X L; Huang, G W

    2016-11-23

    Objective: To investigate the inactivation of PMS2 gene mediated by promoter methylation and its regulatory mechanism in nasopharyngeal carcinoma (NPC). Methods: Fifty-four NPC tissues, 16 normal nasopharyngeal epithelia (NNE), 5 NPC cell lines (CNE1, CNE2, TWO3, HNE1 and HONE1) and 1 normal nasopharyngeal epithelial cell line (NP69) were collected.Methylation-specific PCR (MSP) was used to detect the PMS2 promoter methylation, semi-quantitative reverse transcription PCR (qRT-PCR) was applied to determine its mRNA expression, and immunohistochemistry (IHC) was used to detect the protein expression of PMS2. The expressions of PMS2 mRNA in CNE1 and CNE2 cells before and after treated with methyltransferase inhibitor 5-aza-2-deoxycytidine were analyzed by qRT-PCR. The impact of methylation and demethylation on the mRNA expression of PMS2, and the association of mRNA and protein expression of PMS2 with clinicopathological features of nasopharyngeal cancer were analyzed. Results: Methylation of PMS2 gene was detected in all of the five NPC cell lines, but not in normal nasopharyngeal epithelial NP69 cells. The methylation rate of PMS2 gene in NPC tissues was 63% (34/54), significantly higher than that of the normal nasopharyngeal epithelia (0/16, P <0.001). The expression levels of PMS2 mRNA and protein were significantly down-regulated in the 54 NPC tissues when compared with those in the 16 NNE tissues ( P <0.001), and were also significantly lower in the 34 methylated NPC tissues than those in the 20 unmethylated NPC tissues ( P <0.001). After treatment with 5-aza-2-deoxycytidine, the expression of PMS2 mRNA was restored in the CNE1 and CNE2 cells.However, the expressions of PMS2 mRNA and protein were not significantly correlated with patients' age, gender, TNM stage, histopathologic type or lymph node metastasis ( P >0.05 for all). Conclusions: Promoter methylation-mediated inactivation of PMS2 gene participates in carcinogenesis and development of NPC. PMS2 may be a candidate tumor suppressor in the treatment for patients with inactivation of PMS2 promoter methylation.

  3. A radiotherapy technique to limit dose to neural progenitor cell niches without compromising tumor coverage

    PubMed Central

    Redmond, Kristin J.; Achanta, Pragathi; Grossman, Stuart A.; Armour, Michael; Reyes, Juvenal; Kleinberg, Lawrence; Tryggestad, Erik; Quinones-Hinojosa, Alfredo

    2015-01-01

    Radiation therapy (RT) for brain tumors is associated with neurocognitive toxicity which may be a result of damage to neural progenitor cells (NPCs). We present a novel technique to limit the radiation dose to NPC without compromising tumor coverage. A study was performed in mice to examine the rationale and another was conducted in humans to determine its feasibility. C57BL/6 mice received localized radiation using a dedicated animal irradiation system with on-board CT imaging with either: (1) Radiation which spared NPC containing regions; (2) Radiation which did not spare these niches; or (3) Sham irradiation. Mice were sacrificed 24 h later and the brains were processed for immunohistochemical Ki-67 staining. For the human component of the study, 33 patients with primary brain tumors were evaluated. Two intensity modulated radiotherapy (IMRT) plans were retrospectively compared: a standard clinical plan and a plan which spares NPC regions while maintaining the same dose coverage of the tumor. The change in radiation dose to the contralateral NPC-containing regions was recorded. In the mouse model, non-NPC-sparing radiation treatment resulted in a significant decrease in the number of Ki67+ cells in dentate gyrus (DG) (P = 0.008) and subventricular zone (SVZ) (P = 0.005) compared to NPC-sparing radiation treatment. In NPC-sparing clinical plans, NPC regions received significantly lower radiation dose with no clinically relevant changes in tumor coverage. This novel radiation technique should significantly reduce radiation doses to NPC containing regions of the brain which may reduce neurocognitive deficits following RT for brain tumors. PMID:21327710

  4. Diversity of glycosphingolipid GM2 and cholesterol accumulation in NPC1 patient-specific iPSC-derived neurons.

    PubMed

    Trilck, Michaela; Peter, Franziska; Zheng, Chaonan; Frank, Marcus; Dobrenis, Kostantin; Mascher, Hermann; Rolfs, Arndt; Frech, Moritz J

    2017-02-15

    Niemann-Pick disease Type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. On the cellular level NPC1 mutations lead to an accumulation of cholesterol and gangliosides. As a thorough analysis of the severely affected neuronal cells is unfeasible in NPC1 patients, we recently described the cellular phenotype of neuronal cells derived from NPC1 patient iPSCs carrying the compound heterozygous mutation c.1836A>C/c.1628delC. Here we expanded the analysis to cell lines carrying the prevalent mutation c.3182T>C and the novel mutation c.1180T>C, as well as to the determination of GM2 and GM3 gangliosides in NPC1 patient-specific iPSC-derived neurons and glia cells. Immunocytochemical detection of GM2 revealed punctated staining pattern predominantly localized in neurons. Detection of cholesterol by filipin staining showed a comparable staining pattern, colocalized with GM2, indicating a deposit of GM2 and cholesterol in the same cellular compartments. Accumulations were not only restricted to cell bodies, but were also found in the neuronal extensions. A quantification of the GM2 amount by HPLC-MS/MS confirmed significantly higher amounts in neurons carrying a mutation. Additionally, these cells displayed a lowered activity of the catabolic enzyme Hex A, but not B4GALNT1. Molecular docking simulations indicated binding of cholesterol to Hex A, suggesting cholesterol influences the GM2 degradation pathway and, subsequently, leading to the accumulation of GM2. Taken together, this is the first study showing an accumulation of GM2 in neuronal derivatives of patient-specific iPSCs and thus proving further disease-specific hallmarks in this human in vitro model of NPC1. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing.

    PubMed

    Li, Guo; Liu, Yong; Liu, Chao; Su, Zhongwu; Ren, Shuling; Wang, Yunyun; Deng, Tengbo; Huang, Donghai; Tian, Yongquan; Qiu, Yuanzheng

    2016-09-06

    Radioresistance is one of the major factors limiting the therapeutic efficacy and prognosis of patients with nasopharyngeal carcinoma (NPC). Accumulating evidence has suggested that aberrant expression of long noncoding RNAs (lncRNAs) contributes to cancer progression. Therefore, here we identified lncRNAs associated with radioresistance in NPC. The differential expression profiles of lncRNAs associated with NPC radioresistance were constructed by next-generation deep sequencing by comparing radioresistant NPC cells with their parental cells. LncRNA-related mRNAs were predicted and analyzed using bioinformatics algorithms compared with the mRNA profiles related to radioresistance obtained in our previous study. Several lncRNAs and associated mRNAs were validated in established NPC radioresistant cell models and NPC tissues. By comparison between radioresistant CNE-2-Rs and parental CNE-2 cells by next-generation deep sequencing, a total of 781 known lncRNAs and 2054 novel lncRNAs were annotated. The top five upregulated and downregulated known/novel lncRNAs were detected using quantitative real-time reverse transcription-polymerase chain reaction, and 7/10 known lncRNAs and 3/10 novel lncRNAs were demonstrated to have significant differential expression trends that were the same as those predicted by deep sequencing. From the prediction process, 13 pairs of lncRNAs and their associated genes were acquired, and the prediction trends of three pairs were validated in both radioresistant CNE-2-Rs and 6-10B-Rs cell lines, including lncRNA n373932 and SLITRK5, n409627 and PRSS12, and n386034 and RIMKLB. LncRNA n373932 and its related SLITRK5 showed dramatic expression changes in post-irradiation radioresistant cells and a negative expression correlation in NPC tissues (R = -0.595, p < 0.05). Our study provides an overview of the expression profiles of radioresistant lncRNAs and potentially related mRNAs, which will facilitate future investigations into the function of lncRNAs in NPC radioresistance.

  6. Inhibitory effects of 3-bromopyruvate in human nasopharyngeal carcinoma cells.

    PubMed

    Zou, Xue; Zhang, Mengxiao; Sun, Yiming; Zhao, Surong; Wei, Yingmei; Zhang, Xudong; Jiang, Chenchen; Liu, Hao

    2015-10-01

    Tumor cells depend on aerobic glycolysis for adenosine triphosphate (ATP) production, which is therefore targeted by therapeutic agents. The compound 3-bromopyruvate (3-BrPA), a strong alkylating agent and hexokinase inhibitor, inhibits tumor cell glycolysis and the production of ATP, causing apoptosis. 3-BrPA induces apoptosis of nasopharyngeal carcinoma (NPC) cell lines HNE1 and CNE-2Z, which may be related to its molecular mechanisms. In the present study, we investigated the effects of 3-BrPA on the viability, reactive oxygen species (ROS), apoptosis and other types of programmed cell death in NPC cells in vitro and in vivo. PI staining showed significant apoptosis in NPC cells accompanied by the overproduction of ROS and downregulation of mitochondrial membrane potential (MMP, ΔΨm) by 3-BrPA. However, the ROS scavenger N-acetyl-L-cysteine (NAC) significantly reduced 3-BrPA-induced apoptosis by decreasing ROS and facilitating the recovery of MMP. We elucidated the molecular mechanisms underlying 3-BrPA activity and found that it caused mitochondrial dysfunction and ROS production, leading to necroptosis of NPC cells. We investigated the effects of the caspase inhibitor z-VAD-fmk, which inhibits apoptosis but promotes death domain receptor (DR)-induced NPC cell necrosis. Necrostatin-1 (Nec-1) inhibits necroptosis, apparently via a DR signaling pathway and thus abrogates the effects of z-VAD‑fmk. In addition, we demonstrated the effective attenuation of 3-BrPA-induced necrotic cell death by Nec-1. Finally, animal studies proved that 3-BrPA exhibited significant antitumor activity in nude mice. The present study is the first demonstration of 3-BrPA-induced non-apoptotic necroptosis and ROS generation in NPC cells and provides potential strategies for developing agents against apoptosis‑resistant cancers.

  7. Cholesterol-dependent energy transfer between fluorescent proteins-insights into protein proximity of APP and BACE1 in different membranes in Niemann-Pick type C disease cells.

    PubMed

    von Einem, Bjoern; Weber, Petra; Wagner, Michael; Malnar, Martina; Kosicek, Marko; Hecimovic, Silva; Arnim, Christine A F von; Schneckenburger, Herbert

    2012-11-26

    Förster resonance energy transfer (FRET) -based techniques have recently been applied to study the interactions between β-site APP-cleaving enzyme-GFP (BACE1-GFP) and amyloid precursor protein-mRFP (APP-mRFP) in U373 glioblastoma cells. In this context, the role of APP-BACE1 proximity in Alzheimer's disease (AD) pathogenesis has been discussed. FRET was found to depend on intracellular cholesterol levels and associated alterations in membrane stiffness. Here, NPC1 null cells (CHO-NPC1-/-), exhibiting increased cholesterol levels and disturbed cholesterol transport similar to that observed in Niemann-Pick type C disease (NPC), were used to analyze the influence of altered cholesterol levels on APP-BACE1 proximity. Fluorescence lifetime measurements of whole CHO-wild type (WT) and CHO-NPC1-/- cells (EPI-illumination microscopy), as well as their plasma membranes (total internal reflection fluorescence microscopy, TIRFM), were performed. Additionally, generalized polarization (GP) measurements of CHO-WT and CHO-NPC1-/- cells incubated with the fluorescence marker laurdan were performed to determine membrane stiffness of plasma- and intracellular-membranes. CHO-NPC1-/- cells showed higher membrane stiffness at intracellular- but not plasma-membranes, equivalent to cholesterol accumulation in late endosomes/lysosomes. Along with higher membrane stiffness, the FRET efficiency between BACE1-GFP and APP-mRFP was reduced at intracellular membranes, but not within the plasma membrane of CHO-NPC1-/-. Our data show that FRET combined with TIRF is a powerful technique to determine protein proximity and membrane fluidity in cellular models of neurodegenerative diseases.

  8. Elevated expression of CD93 promotes angiogenesis and tumor growth in nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Lili; Tang, Mingming; Zhang, Qicheng

    2016-08-05

    CD93, also known as the complement component C1q receptor (C1qRp), has been reported to promote the progression of some cancer types. However, the expression and physiological significance of CD93 in nasopharyngeal carcinoma (NPC) remain largely elusive. In this study, we first examined the expression of CD93 in NPC and experimentally manipulated its expression. We observed that vascular CD93 expression is elevated in NPC and is correlated with T classification, N classification, distant metastasis, clinical stage and poor prognosis (all P < 0.05). In addition, overexpression of CD93 promoted angiogenesis in vitro. What’s more, we found that CD93 was highly expressed in NPC tissuesmore » and cells, and the regulation of CD93 on cell proliferation was determined by cell counting kit (CCK)-8 assay and cell cycle analyses. Our findings provide unique insight into the pathogenesis of NPC and underscore the need to explore novel therapeutic targets such as CD93 to improve NPC treatment. -- Highlights: •This is the first research about the relationship between CD93 and nasopharyngeal carcinoma. •We explored the prognostic significance of vascular CD93 expression in nasopharyngeal carcinoma. •We researched on angiogenesis and cell proliferation of nasopharyngeal carcinoma and how CD93 affected them.« less

  9. Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease.

    PubMed

    Torres, Sandra; Matías, Nuria; Baulies, Anna; Nuñez, Susana; Alarcon-Vila, Cristina; Martinez, Laura; Nuño, Natalia; Fernandez, Anna; Caballeria, Joan; Levade, Thierry; Gonzalez-Franquesa, Alba; Garcia-Rovés, Pablo; Balboa, Elisa; Zanlungo, Silvana; Fabrías, Gemma; Casas, Josefina; Enrich, Carlos; Garcia-Ruiz, Carmen; Fernández-Checa, José C

    2017-04-01

    Niemann Pick type C (NPC) disease is a progressive lysosomal storage disorder caused by mutations in genes encoding NPC1/NPC2 proteins, characterized by neurological defects, hepatosplenomegaly and premature death. While the primary biochemical feature of NPC disease is the intracellular accumulation of cholesterol and gangliosides, predominantly in endolysosomes, mitochondrial cholesterol accumulation has also been reported. As accumulation of cholesterol in mitochondria is known to impair the transport of GSH into mitochondria, resulting in mitochondrial GSH (mGSH) depletion, we investigated the impact of mGSH recovery in NPC disease. We show that GSH ethyl ester (GSH-EE), but not N-acetylcysteine (NAC), restored the mGSH pool in liver and brain of Npc1 -/- mice and in fibroblasts from NPC patients, while both GSH-EE and NAC increased total GSH levels. GSH-EE but not NAC increased the median survival and maximal life span of Npc1 -/- mice. Moreover, intraperitoneal therapy with GSH-EE protected against oxidative stress and oxidant-induced cell death, restored calbindin levels in cerebellar Purkinje cells and reversed locomotor impairment in Npc1 -/- mice. High-resolution respirometry analyses revealed that GSH-EE improved oxidative phosphorylation, coupled respiration and maximal electron transfer in cerebellum of Npc1 -/- mice. Lipidomic analyses showed that GSH-EE treatment had not effect in the profile of most sphingolipids in liver and brain, except for some particular species in brain of Npc1 -/- mice. These findings indicate that the specific replenishment of mGSH may be a potential promising therapy for NPC disease, worth exploring alone or in combination with other options. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium, Rhodococcus opacus SAO101

    PubMed Central

    Kitagawa, Wataru; Kimura, Nobutada; Kamagata, Yoichi

    2004-01-01

    p-Nitrophenol (4-NP) is recognized as an environmental contaminant; it is used primarily for manufacturing medicines and pesticides. To date, several 4-NP-degrading bacteria have been isolated; however, the genetic information remains very limited. In this study, a novel 4-NP degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101, was identified and characterized. The deduced amino acid sequences of npcB, npcA, and npcC showed identity with phenol 2-hydroxylase component B (reductase, PheA2) of Geobacillus thermoglucosidasius A7 (32%), with 2,4,6-trichlorophenol monooxygenase (TcpA) of Ralstonia eutropha JMP134 (44%), and with hydroxyquinol 1,2-dioxygenase (ORF2) of Arthrobacter sp. strain BA-5-17 (76%), respectively. The npcB, npcA, and npcC genes were cloned into pET-17b to construct the respective expression vectors pETnpcB, pETnpcA, and pETnpcC. Conversion of 4-NP was observed when a mixture of crude cell extracts of Escherichia coli containing pETnpcB and pETnpcA was used in the experiment. The mixture converted 4-NP to hydroxyquinol and also converted 4-nitrocatechol (4-NCA) to hydroxyquinol. Furthermore, the crude cell extract of E. coli containing pETnpcC converted hydroxyquinol to maleylacetate. These results suggested that npcB and npcA encode the two-component 4-NP/4-NCA monooxygenase and that npcC encodes hydroxyquinol 1,2-dioxygenase. The npcA and npcC mutant strains, SDA1 and SDC1, completely lost the ability to grow on 4-NP as the sole carbon source. These results clearly indicated that the cloned npc genes play an essential role in 4-NP mineralization in R. opacus SAO101. PMID:15262926

  11. Identification of genetic loci that modulate cell proliferation in the adult rostral migratory stream using the expanded panel of BXD mice.

    PubMed

    Poon, Anna; Goldowitz, Daniel

    2014-03-19

    Adult neurogenesis, which is the continual production of new neurons in the mature brain, demonstrates the strikingly plastic nature of the nervous system. Adult neural stem cells and their neural precursors, collectively referred to as neural progenitor cells (NPCs), are present in the subgranular zone (SGZ) of the dentate gyrus, the subventricular zone (SVZ), and rostral migratory stream (RMS). In order to harness the potential of NPCs to treat neurodegenerative diseases and brain injuries, it will be important to understand the molecules that regulate NPCs in the adult brain. The genetic basis underlying NPC proliferation is still not fully understood. From our previous quantitative trait locus (QTL) analysis, we had success in using a relatively small reference population of recombinant inbred strains of mice (AXBXA) to identify a genetic region that is significantly correlated with NPC proliferation in the RMS. In this study, we expanded our initial QTL mapping of RMS proliferation to a far richer genetic resource, the BXD RI mouse strains. A 3-fold difference in the number of proliferative, bromodeoxyuridine (BrdU)-labeled cells was quantified in the adult RMS of 61 BXD RI strains. RMS cell proliferation is highly dependent on the genetic background of the mice with an estimated heritability of 0.58. Genome-wide mapping revealed a significant QTL on chromosome (Chr) 6 and a suggestive QTL on Chr 11 regulating the number of NPCs in the RMS. Composite interval analysis further revealed secondary QTLs on Chr 14 and Chr 18. The loci regulating RMS cell proliferation did not overlap with the suggestive loci modulating cell proliferation in the SGZ. These mapped loci serve as starting points to identify genes important for this process. A subset of candidate genes in this region is associated with cell proliferation and neurogenesis. Interconnectivity of these candidate genes was demonstrated using pathway and transcriptional covariance analyses. Differences in RMS cell proliferation across the BXD RI strains identifies genetic loci that serve to provide insights into the interplay of underlying genes that may be important for regulating NPC proliferation in the adult mouse brain.

  12. Quantification of Epstein-Barr virus DNA load, interleukin-6, interleukin-10, transforming growth factor-beta1 and stem cell factor in plasma of patients with nasopharyngeal carcinoma.

    PubMed

    Tan, Eng-lai; Selvaratnam, G; Kananathan, R; Sam, Choon-kook

    2006-09-24

    Nasopharyngeal carcinoma (NPC) is a common epithelial neoplasm among the Chinese populations in Southern China and South East Asia. Epstein-Barr virus (EBV) is known to be an important etiologic agent of NPC and the viral gene products are frequently detected in NPC tissues along with elevated antibody titres to the viral proteins (VCA and EA) in a majority of patients. Elevated plasma EBV DNA load is regarded as an important marker for the presence of the disease and for the monitoring of disease progression. However, other serum/plasma parameters such as the levels of certain interleukins and growth factors have also been implicated in NPC. The objectives of the present study are, 1) to investigate the correlations between plasma EBV DNA load and the levels of interleukin (IL)-6, IL-10, TGF-beta1 and SCF (steel factor) and 2) to relate these parameters to the stages of NPC and the effect of treatment. A total of 78 untreated NPC patients were enrolled in this study. Of these, 51 were followed-up after treatment. The remaining patients had irregular or were lost to follow-up. Plasma EBV DNA was quantified using real-time quantitative PCR. The levels of plasma interleukins and growth factors were quantified using ELISA. A significant decrease in EBV DNA load was detected in plasma of untreated NPC patients (1669 +/- 637 copies/mL; n = 51) following treatment (57 +/- 37 copies/mL, p < 0.05); n = 51). Plasma EBV DNA load was shown to be a good prognosticator for disease progression and clinical outcome in five of the follow-up patients. A significant difference in IL-6 levels was noted between the untreated patients (164 +/- 37 pg/mL; n = 51) and following treatment (58 +/- 16 pg/mL, p < 0.05; n = 51). Positive correlations between EBV DNA load and IL-10 (r(49) = 0.535, p < 0.01), between IL6 and IL-10 (r(49) = 0.474, p < 0.01) and between TGF and SCF (r(49) = 0.464, p < 0.01) were observed in patients following treatment. None of the parameters tested including IgA-VCA were associated with tumour stages. We conclude that among the parameters investigated, EBV DNA load and IL-6 levels were promising markers for the presence of NPC and for the assessment of treatment outcome.

  13. Characterization of a Spontaneous Novel Mutation in the NPC2 Gene in a Cat Affected by Niemann Pick Type C Disease

    PubMed Central

    Zampieri, Stefania; Bianchi, Ezio; Cantile, Carlo; Saleri, Roberta; Bembi, Bruno; Dardis, Andrea

    2014-01-01

    Niemann-Pick C disease (NPC) is an autosomal recessive lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids within the lysosomes due to mutation in NPC1 or NPC2 genes. A feline model of NPC carrying a mutation in NPC1 gene has been previously described. We have identified two kittens affected by NPC disease due to a mutation in NPC2 gene. They manifested with tremors at the age of 3 months, which progressed to dystonia and severe ataxia. At 6 months of age cat 2 was unable to stand without assistance and had bilaterally reduced menace response. It died at the age of 10 months. Post-mortem histological analysis of the brain showed the presence of neurons with cytoplasmic swelling and vacuoles, gliosis of the substantia nigra and degeneration of the white matter. Spheroids with accumulation of ubiquitinated aggregates were prominent in the cerebellar cortex. Purkinje cells were markedly reduced in number and they showed prominent intracytoplasmic storage. Scattered perivascular aggregates of lymphocytes and microglial cells proliferation were present in the thalamus and midbrain. Proliferation of Bergmann glia was also observed. In the liver, hepatocytes were swollen because of accumulation of small vacuoles and foamy Kupffer cells were also detected. Foamy macrophages were observed within the pulmonary interstitium and alveoli as well. At 9 months cat 1 was unable to walk, developed seizures and it was euthanized at 21 months. Filipin staining of cultured fibroblasts showed massive storage of unesterified cholesterol. Molecular analysis of NPC1 and NPC2 genes showed the presence of a homozygous intronic mutation (c.82+5G>A) in the NPC2 gene. The subsequent analysis of the mRNA showed that the mutation causes the retention of 105 bp in the mature mRNA, which leads to the in frame insertion of 35 amino acids between residues 28 and 29 of NPC2 protein (p.G28_S29ins35). PMID:25396745

  14. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    PubMed Central

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  15. Metastasis-suppressing NID2, an epigenetically-silenced gene, in the pathogenesis of nasopharyngeal carcinoma and esophageal squamous cell carcinoma.

    PubMed

    Chai, Annie Wai Yeeng; Cheung, Arthur Kwok Leung; Dai, Wei; Ko, Josephine Mun Yee; Ip, Joseph Chok Yan; Chan, Kwok Wah; Kwong, Dora Lai-Wan; Ng, Wai Tong; Lee, Anne Wing Mui; Ngan, Roger Kai Cheong; Yau, Chun Chung; Tung, Stewart Yuk; Lee, Victor Ho Fun; Lam, Alfred King-Yin; Pillai, Suja; Law, Simon; Lung, Maria Li

    2016-11-29

    Nidogen-2 (NID2) is a key component of the basement membrane that stabilizes the extracellular matrix (ECM) network. The aim of the study is to analyze the functional roles of NID2 in the pathogenesis of nasopharyngeal carcinoma (NPC) and esophageal squamous cell carcinoma (ESCC). We performed genome-wide methylation profiling of NPC and ESCC and validated our findings using the methylation-sensitive high-resolution melting (MS-HRM) assay. Results showed that promoter methylation of NID2 was significantly higher in NPC and ESCC samples than in their adjacent non-cancer counterparts. Consistently, down-regulation of NID2 was observed in the clinical samples and cell lines of both NPC and ESCC. Re-expression of NID2 suppresses clonogenic survival and migration abilities of transduced NPC and ESCC cells. We showed that NID2 significantly inhibits liver metastasis. Mechanistic studies of signaling pathways also confirm that NID2 suppresses the EGFR/Akt and integrin/FAK/PLCγ metastasis-related pathways. This study provides novel insights into the crucial tumor metastasis suppression roles of NID2 in cancers.

  16. Metastasis-suppressing NID2, an epigenetically-silenced gene, in the pathogenesis of nasopharyngeal carcinoma and esophageal squamous cell carcinoma

    PubMed Central

    Chai, Annie Wai Yeeng; Cheung, Arthur Kwok Leung; Dai, Wei; Ko, Josephine Mun Yee; Ip, Joseph Chok Yan; Chan, Kwok Wah; Kwong, Dora Lai-Wan; Ng, Wai Tong; Lee, Anne Wing Mui; Ngan, Roger Kai Cheong; Yau, Chun Chung; Tung, Stewart Yuk; Lee, Victor Ho Fun; Lam, Alfred King-Yin; Pillai, Suja; Law, Simon; Lung, Maria Li

    2016-01-01

    Nidogen-2 (NID2) is a key component of the basement membrane that stabilizes the extracellular matrix (ECM) network. The aim of the study is to analyze the functional roles of NID2 in the pathogenesis of nasopharyngeal carcinoma (NPC) and esophageal squamous cell carcinoma (ESCC). We performed genome-wide methylation profiling of NPC and ESCC and validated our findings using the methylation-sensitive high-resolution melting (MS-HRM) assay. Results showed that promoter methylation of NID2 was significantly higher in NPC and ESCC samples than in their adjacent non-cancer counterparts. Consistently, down-regulation of NID2 was observed in the clinical samples and cell lines of both NPC and ESCC. Re-expression of NID2 suppresses clonogenic survival and migration abilities of transduced NPC and ESCC cells. We showed that NID2 significantly inhibits liver metastasis. Mechanistic studies of signaling pathways also confirm that NID2 suppresses the EGFR/Akt and integrin/FAK/PLCγ metastasis-related pathways. This study provides novel insights into the crucial tumor metastasis suppression roles of NID2 in cancers. PMID:27793011

  17. MicroRNA-130a-3p suppresses cell viability, proliferation and invasion in nasopharyngeal carcinoma by inhibiting CXCL12.

    PubMed

    Qu, Rongfeng; Sun, Yan; Li, Yarong; Hu, Chunmei; Shi, Guang; Tang, Yan; Guo, Dongrui

    2017-01-01

    Incidence of nasopharyngeal carcinoma (NPC) has remained high worldwide, posing a serious health problem. MicroRNAs (miRNAs) are a family of about 20-23 nucleotides small non-coding molecules, which play a significant role in NPC. In this study, we explored the molecular mechanisms of miR-130a-3p in inhibiting viability, proliferation, migration and invasion of NPC cells by suppressing CXCL12 . The relative expression of miR-130a-3p and CXCL12 mRNA expression in tissues and cells was measured by qRT-PCR. NPC cell line CNE-2Z was transfected with miR-130a-3p mimics, CXCL12 siRNA, cDNA- CXCL12 and negative control. Western Blot was performed to detect CXCL12 expression. The MTT assay was performed to study cell viability. The colony formation assay was done to test cell growth. Flow cytometry was conducted to analyze cell cycle and apoptosis. The Transwell assay was used to investigate cell migration and invasion. The results found that the up-regulation of miR-130a-3p or down-regulation of CXCL12 could inhibit viability, proliferation, migration and invasion of CNE-2Z cells. Luciferase-reporting system assay was performed to investigate miR-130a-3p could bind to the 3'UTR region of CXCL12 and the overexpression of miR-130a-3p could suppress CXCL12 expression. Collectively, our finding suggested demonstrated that miR-130a-3p could prohibit the progression of NPC by suppressing CXCL12 , which might serve as potential therapeutic targets for NPC.

  18. Osthole induces human nasopharyngeal cancer cells apoptosis through Fas-Fas ligand and mitochondrial pathway.

    PubMed

    Liu, Pei-Ying; Chang, Dun-Cheng; Lo, Yu-Sheng; Hsi, Yi-Ting; Lin, Chia-Chieh; Chuang, Yi-Ching; Lin, Shu-Hui; Hsieh, Ming-Ju; Chen, Mu-Kuan

    2018-04-01

    Nasopharyngeal carcinoma (NPC) is endemic in Southern China and Southeast Asia. The present study investigated the activity of osthole in suppressing NPC along with the underlying mechanism. Cell growth inhibition was measured using the MTT assay. Apoptosis was detected through 4',6-diamidino-2-phenylindole staining and flow cytometry. Western blotting was used to identify the signaling pathway. Osthole markedly inhibited cell proliferation and induced apoptosis in the NPC cell line. Western blotting results revealed the increased activation of caspases 3, 8, and 9 and poly (ADP-ribose) polymerase. Osthole treatment significantly reduced the expression of the antiapoptotic protein Bcl-2 and increased the expression of the proapoptotic proteins Bax, Bak, BimL, BimS, and t-Bid. Osthole treatment also increased the expression of Fas, FADD, TNF-R1, TNF-R2, DcR2, RIP, and DR5. In addition, osthole treatment significantly increased the expression levels of phosphorylated ERK1/2 and JNK1/2. These results suggested that osthole exerts cytotoxic effects on NPC cell lines mainly through apoptosis mediated by the Fas-Fas ligand and mitochondrial pathway. Osthole could be a potential anticancer agent for NPC. © 2018 Wiley Periodicals, Inc.

  19. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy.

    PubMed

    Capowski, Elizabeth E; Schneider, Bernard L; Ebert, Allison D; Seehus, Corey R; Szulc, Jolanta; Zufferey, Romain; Aebischer, Patrick; Svendsen, Clive N

    2007-07-30

    Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells.

  20. Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency.

    PubMed

    Dheekollu, Jayaraju; Malecka, Kimberly; Wiedmer, Andreas; Delecluse, Henri-Jacques; Chiang, Alan K S; Altieri, Dario C; Messick, Troy E; Lieberman, Paul M

    2017-01-31

    Epstein-Barr Virus (EBV) latent infection is a causative co-factor for endemic Nasopharyngeal Carcinoma (NPC). NPC-associated variants have been identified in EBV-encoded nuclear antigen EBNA1. Here, we solve the X-ray crystal structure of an NPC-derived EBNA1 DNA binding domain (DBD) and show that variant amino acids are found on the surface away from the DNA binding interface. We show that NPC-derived EBNA1 is compromised for DNA replication and episome maintenance functions. Recombinant virus containing the NPC EBNA1 DBD are impaired in their ability to immortalize primary B-lymphocytes and suppress lytic transcription during early stages of B-cell infection. We identify Survivin as a host protein deficiently bound by the NPC variant of EBNA1 and show that Survivin depletion compromises EBV episome maintenance in multiple cell types. We propose that endemic variants of EBNA1 play a significant role in EBV-driven carcinogenesis by altering key regulatory interactions that destabilize latent infection.

  1. Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells

    PubMed Central

    Rosenbaum, Anton I.; Zhang, Guangtao; Warren, J. David; Maxfield, Frederick R.

    2010-01-01

    Niemann-Pick type C disease (NPC) is a lysosomal storage disorder causing accumulation of unesterified cholesterol in lysosomal storage organelles. Recent studies have shown that hydroxypropyl-β-cyclodextrin injections in npc1−/− mice are partially effective in treating this disease. Using cultured fibroblasts, we have investigated the cellular mechanisms responsible for reduction of cholesterol accumulation. We show that decreased levels of cholesterol accumulation are maintained for several days after removal of cyclodextrin from the culture medium. This suggests that endocytosed cyclodextrin can reduce the cholesterol storage by acting from inside endocytic organelles rather than by removing cholesterol from the plasma membrane. To test this further, we incubated both NPC1 and NPC2 mutant cells with cholesterol-loaded cyclodextrin for 1 h, followed by chase in serum-containing medium. Although the cholesterol content of the treated cells increased after the 1-h incubation, the cholesterol levels in the storage organelles were later reduced significantly. We covalently coupled cyclodextrin to fluorescent dextran polymers. These cyclodextrin–dextran conjugates were delivered to cholesterol-enriched lysosomal storage organelles and were effective at reducing the cholesterol accumulation. We demonstrate that methyl-β-cyclodextrin is more potent than hydroxypropyl-β-cyclodextrin in reducing both cholesterol and bis(monoacylglycerol) phosphate accumulation in NPC mutant fibroblasts. Brief treatment of cells with cyclodextrins causes an increase in cholesterol esterification by acyl CoA:cholesterol acyl transferase, indicating increased cholesterol delivery to the endoplasmic reticulum. These findings suggest that cyclodextrin-mediated enhanced cholesterol transport from the endocytic system can reduce cholesterol accumulation in cells with defects in either NPC1 or NPC2. PMID:20212119

  2. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn; Zhou, Ling; Zhang, Yan-ling

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endomore » via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.« less

  3. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xi; Zhang, Kunshan; Wang, Yanlu

    2013-10-04

    Highlights: •We found that the 3′ UTR of the Fmr1 mRNA is a target of miR-130b. •MiR-130b suppresses the expression of Fmr1 in mouse embryonic stem cell. •MiR-130b alters the proliferation of mouse embryonic stem cell. •MiR-130b alters fate specification of mouse embryonic stem cell. -- Abstract: Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by expansion of the CGG repeat in the 5′-untranslated region of the X-linked Fmr1 gene, which results in transcriptional silencing and loss of expression of its encoded protein FMRP. The loss of FMRP increases proliferation and alters fatemore » specification in adult neural progenitor cells (aNPCs). However, little is known about Fmr1 mRNA regulation at the transcriptional and post-transcriptional levels. In the present study, we report that miR-130b regulated Fmr1 expression by directly targeting its 3′-untranslated region (3′ UTR). Up-regulation of miR-130b in mouse embryonic neural progenitor cells (eNPCs) decreased Fmr1 expression, markedly increased eNPC proliferation and altered the differentiation tendency of eNPCs, suggesting that antagonizing miR-130b may be a new therapeutic entry point for treating Fragile X syndrome.« less

  4. Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes.

    PubMed

    Gorris, Raphaela; Fischer, Julia; Erwes, Kim Lina; Kesavan, Jaideep; Peterson, Daniel A; Alexander, Michael; Nöthen, Markus M; Peitz, Michael; Quandel, Tamara; Karus, Michael; Brüstle, Oliver

    2015-12-01

    Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor-mediated expansion with pre-exposure to the differentiation-inducing agent retinoic acid and subsequent immunoisolation of CD133-positive cells. This protocol yields an adherent and self-renewing population of hindbrain/spinal cord radial glia (RG)-like neural precursor cells (RGL-NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL-NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate-determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL-NPCs efficiently convert into NG2-positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL-NPCs expedite the generation of PSC-derived oligodendrocytes with O4-, 4860-, and myelin basic protein (MBP)-positive cells that already appear within 7 weeks following growth factor withdrawal-induced differentiation. Thus, RGL-NPCs may serve as robust tool for time-efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells. © 2015 Wiley Periodicals, Inc.

  5. Ephrin type-A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3-kinase/Akt signalling pathway

    PubMed Central

    WANG, YUNYUN; LIU, YONG; LI, GUO; SU, ZHONGWU; REN, SHULING; TAN, PINGQING; ZHANG, XIN; QIU, YUANZHENG; TIAN, YONGQUAN

    2015-01-01

    Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that is associated with cancer cell metastasis. There has been little investigation into its impact on the regulation of sensitivity to paclitaxel in nasopharyngeal carcinoma (NPC). In the present study, upregulation of EphA2 expression enhanced the survival of NPC 5-8F cells, compared with control cells exposed to the same concentrations of paclitaxel. Flow cytometry and western blot analysis demonstrated that over-expression of EphA2 decreased NPC cancer cell sensitivity to paclitaxel by regulating paclitaxel-mediated cell cycle progression but not apoptosis in vitro. This was accompanied by alterations in the expression of cyclin-dependent kinase inhibitors, p21 and p27, and of inactive phosphorylated-retinoblastoma protein. Furthermore, paclitaxel stimulation and EphA2 over-expression resulted in activation of the phosphoinositide 3-kinase (PI3K)/Akt signalling pathway in NPC cells. Inhibition of the PI3K/Akt signalling pathway restored sensitivity to paclitaxel in 5-8F cells over-expressing EphA2, which indicated that the PI3K/Akt pathway is involved in EphA2-mediated paclitaxel sensitivity. The current study demonstrated that EphA2 mediates sensitivity to paclitaxel via the regulation of the PI3K/Akt signalling pathway in NPC. PMID:25351620

  6. Apoptosis and TRAF-1 cleavage in Epstein-Barr virus-positive nasopharyngeal carcinoma cells treated with doxorubicin combined with a farnesyl-transferase inhibitor.

    PubMed

    Vicat, Jean Michel; Ardila-Osorio, Hector; Khabir, Abdelmajid; Brezak, Marie Christine; Viossat, Isabelle; Kasprzyk, Philip; Jlidi, Rachid; Opolon, Paule; Ooka, Tadamassa; Prevost, Grégoire; Huang, Dolly P; Busson, Pierre

    2003-02-01

    Epstein-Barr virus (EBV)-associated nasopharyngeal carcinomas (NPC) are much more sensitive to chemotherapy than other head and neck carcinomas. Spectacular regressions are frequently observed after induction chemotherapy. However, these favorable responses are difficult to predict and often of short duration. So far there have been only few experiments to investigate the mechanisms which underline the cytotoxic effects of anti-neoplastic drugs against NPC cells. In addition, these studies were performed almost entirely on EBV-negative cell lines therefore not truly representative of NPC cells. For the first time, we have used two EBV-positive NPC tumor lines derived from a North African (C15) and a Chinese (C666-1) patient as in vitro targets for a panel of anti-neoplastic agents. Doxorubicin, taxol and in a lesser extent cis-platinum efficiently inhibited NPC cell proliferation at clinically relevant concentrations, but all three agents failed to induce apoptosis. However, massive apoptosis of C15 cells was achieved when doxorubicin (1 microM) was combined with a farnesyl-transferase inhibitor, BIM 2001 (5 microM). Moreover, this apoptotic process was associated with a caspase-dependent early cleavage of the TNF-receptor associated factor 1 (TRAF-1) molecule, a signaling adaptor which is specifically expressed in latently EBV-infected cells. TRAF-1 cleavage might become a useful indicator of chemo-induced apoptosis in EBV-associated NPCs.

  7. Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection.

    PubMed

    Gong, Xin; Qian, Hongwu; Zhou, Xinhui; Wu, Jianping; Wan, Tao; Cao, Pingping; Huang, Weiyun; Zhao, Xin; Wang, Xudong; Wang, Peiyi; Shi, Yi; Gao, George F; Zhou, Qiang; Yan, Nieng

    2016-06-02

    Niemann-Pick disease type C (NPC) is associated with mutations in NPC1 and NPC2, whose gene products are key players in the endosomal/lysosomal egress of low-density lipoprotein-derived cholesterol. NPC1 is also the intracellular receptor for Ebola virus (EBOV). Here, we present a 4.4 Å structure of full-length human NPC1 and a low-resolution reconstruction of NPC1 in complex with the cleaved glycoprotein (GPcl) of EBOV, both determined by single-particle electron cryomicroscopy. NPC1 contains 13 transmembrane segments (TMs) and three distinct lumenal domains A (also designated NTD), C, and I. TMs 2-13 exhibit a typical resistance-nodulation-cell division fold, among which TMs 3-7 constitute the sterol-sensing domain conserved in several proteins involved in cholesterol metabolism and signaling. A trimeric EBOV-GPcl binds to one NPC1 monomer through the domain C. Our structural and biochemical characterizations provide an important framework for mechanistic understanding of NPC1-mediated intracellular cholesterol trafficking and Ebola virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells.

    PubMed

    Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing

    2017-08-01

    The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and radiosensitivity of NPC cells.

  9. Neural and oligodendrocyte progenitor cells: transferrin effects on cell proliferation

    PubMed Central

    Silvestroff, Lucas; Franco, Paula Gabriela; Pasquini, Juana María

    2013-01-01

    NSC (neural stem cells)/NPC (neural progenitor cells) are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone) of the mammalian CNS (central nervous system). These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres) to evaluate the effects of Tf (transferrin) on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein), Nestin and Sox2 and the OL (oligodendrocyte) progenitor markers NG2 (nerve/glia antigen 2) and PDGFRα (platelet-derived growth factor receptor α). The results of this study indicate that aTf (apoTransferrin) is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1). Since OPCs (oligodendrocyte progenitor cells) represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs. PMID:23368675

  10. Triptolide inhibits cell growth and GRP78 protein expression but induces cell apoptosis in original and radioresistant NPC cells

    PubMed Central

    Lv, Wuwu; Lai, Chen; Chen, Zhikang; Wang, Ran; Long, Xueying; Feng, Xueping

    2016-01-01

    The radioresistance is the key factor to hamper curative effect and survival of nasopharyngeal carcinoma (NPC) patients. Nature triptolide (TPL) has been found to circumvent drug-resistant effect of cancer, but its effect on NPC radioresistance has been rarely studied. In the present study, the 10 Gy-resistant CNE2 subclones (CNE2-SR) were used as a NPC radioresistant model. The IC50 of TPL in CNE2 and CNE2-SR cells was measured by MTT assay, cell cycle was analyzed by flow cytometry, and protein expression was examined by western blot. Our data showed that TPL treatment decreased the percentage of viable cells, and IC50 value in CNE2 and CNE2-SR cells was 23.6 ± 1.41 nmol/L and 31.2 ± 1.16 nmol/L, respectively. Six Gy was a moderate dosage of X-ray for CNE2, and 25 nM TPL was close to IC50 value of CNE2 and CNE2-SR. Six Gy X-ray and/or 25 nM TPL significantly inhibited tumor growth in nude mice. Furthermore, 6 Gy X-ray and/or 25 nM TPL significantly inhibited cell growth and induced cell apoptosis and M/G2 phase arrest in CNE2 and CNE2-SR cells. Moreover, TPL treatment significantly inhibited the expression of GRP78 protein in CNE2 and CNE2-SR cells. These results suggest that TPL may serve as a potential radiosensitizer agent for NPC treatment. PMID:27391061

  11. CXCR6 and CCR5 localize T lymphocyte subsets in nasopharyngeal carcinoma.

    PubMed

    Parsonage, Greg; Machado, Lee Richard; Hui, Jan Wai-Ying; McLarnon, Andrew; Schmaler, Tilo; Balasothy, Meenarani; To, Ka-Fai; Vlantis, Alexander C; van Hasselt, Charles A; Lo, Kwok-Wai; Wong, Wai-Lap; Hui, Edwin Pun; Chan, Anthony Tak Cheung; Lee, Steven P

    2012-03-01

    The substantial T lymphocyte infiltrate found in cases of nasopharyngeal carcinoma (NPC) has been implicated in the promotion of both tumor growth and immune escape. Conversely, because malignant NPC cells harbor the Epstein-Barr virus, this tumor is a candidate for virus-specific T cell-based therapies. Preventing the accumulation of tumor-promoting T cells or enhancing the recruitment of tumor-specific cytotoxic T cells offers therapeutic potential. However, the mechanisms involved in T cell recruitment to this tumor are poorly understood. Comparing memory T cell subsets that have naturally infiltrated NPC tissue with their counterparts from matched blood revealed enrichment of CD8(+), CD4(+), and regulatory T cells expressing the chemokine receptor CXCR6 in tumor tissue. CD8(+) and (nonregulatory) CD4(+) T cells also were more frequently CCR5(+) in tumor than in blood. Ex vivo studies demonstrated that both receptors were functional. CXCL16 and CCL4, unique chemokine ligands for CXCR6 and CCR5, respectively, were expressed by the malignant cells in tumor tissue from the majority of NPC cases, as was another CCR5 ligand, CCL5. The strongest expression of CXCL16 was found on tumor-infiltrating cells. CCL4 was detected on the tumor vasculature in a majority of cases. These findings suggest that CXCR6 and CCR5 play important roles in T cell recruitment and/or retention in NPC and have implications for the pathogenesis and treatment of this tumor. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Nanoporous-carbon as a potential host material for reversible Mg ion intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegal, Michael P.; Yelton, W. Graham; Perdue, Brian R.

    Here, we study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg 2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignard-based electrolyte. NPC mass density is controlled during growth, ranging from 0.06–1.3 g/cm 3. The specific surface area of NPC increases linearly from 1,000 to 1,700 m 2/g as mass density decreases from 1.3 to 0.26 g/cm 3, however, the surface area fallsmore » off dramatically at lower mass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density ~0.5 g/cm 3 and BET surface area ~1500 m 2/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials.« less

  13. Nanoporous-carbon as a potential host material for reversible Mg ion intercalation

    DOE PAGES

    Siegal, Michael P.; Yelton, W. Graham; Perdue, Brian R.; ...

    2016-03-25

    Here, we study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg 2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignard-based electrolyte. NPC mass density is controlled during growth, ranging from 0.06–1.3 g/cm 3. The specific surface area of NPC increases linearly from 1,000 to 1,700 m 2/g as mass density decreases from 1.3 to 0.26 g/cm 3, however, the surface area fallsmore » off dramatically at lower mass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density ~0.5 g/cm 3 and BET surface area ~1500 m 2/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials.« less

  14. Expression of the Pokemon proto-oncogene in nasopharyngeal carcinoma cell lines and tissues.

    PubMed

    Jiao, Wei; Liu, Fei; Tang, Feng-Zhu; Lan, Jiao; Xiao, Rui-Ping; Chen, Xing-Zhou; Ye, Hui-Lan; Cai, Yong-Lin

    2013-01-01

    To study the differentiated expression of the proto-oncogene Pokemon in nasopharyngeal carcinoma (NPC) cell lines and tissues, mRNA and protein expression levels of CNE1, CNE2, CNE3 and C666-1 were detected separately by reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and Western-blotting. The immortalized nasopharyngeal epithelial cell line NP69 was used as a control. The Pokemon protein expression level in biopsy specimens from chronic rhinitis patients and undifferentiated non keratinizing NPC patients was determined by Western-blotting and arranged from high to low: C666-1>CNE1>CNE2> CNE3>NP69. The Pokemon mRNA expression level was also arranged from high to low: CNE1>CNE2>NP69>C666-1>CNE3. Pokemon expression of NP69 and C666-1 obviously varied from mRNA to protein. The Pokemon protein level of NPC biopsy specimens was obviously higher than in chronic rhinitis. The data suggest that high Pokemon protein expression is closely associated with undifferentiated non-keratinizing NPC and may provide useful information for NPC molecular target therapy.

  15. ELAC (3,12-di-O-acetyl-8-O-tigloilingol), a plant-derived lathyrane diterpene, induces subventricular zone neural progenitor cell proliferation through PKCβ activation.

    PubMed

    Murillo-Carretero, Maribel; Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; García-Bernal, Francisco; Navarro-Quiroz, Elkin A; Carrasco, Manuel; Macías-Sánchez, Antonio J; Herrero-Foncubierta, Pilar; Delgado-Ariza, Antonio; Verástegui, Cristina; Domínguez-Riscart, Jesús; Daoubi, Mourad; Hernández-Galán, Rosario; Castro, Carmen

    2017-07-01

    Pharmacological strategies aimed to facilitate neuronal renewal in the adult brain, by promoting endogenous neurogenesis, constitute promising therapeutic options for pathological or traumatic brain lesions. We have previously shown that non-tumour-promoting PKC-activating compounds (12-deoxyphorbols) promote adult neural progenitor cell (NPC) proliferation in vitro and in vivo, enhancing the endogenous neurogenic response of the brain to a traumatic injury. Here, we show for the first time that a diterpene with a lathyrane skeleton can also activate PKC and promote NPC proliferation. We isolated four lathyranes from the latex of Euphorbia plants and tested their effect on postnatal NPC proliferation, using neurosphere cultures. The bioactive lathyrane ELAC (3,12-di-O-acetyl-8-O-tigloilingol) was also injected into the ventricles of adult mice to analyse its effect on adult NPC proliferation in vivo. The lathyrane ELAC activated PKC and significantly increased postnatal NPC proliferation in vitro, particularly in synergy with FGF2. In addition ELAC stimulated proliferation of NPC, specifically affecting undifferentiated transit amplifying cells. The proliferative effect of ELAC was reversed by either the classical/novel PKC inhibitor Gö6850 or the classical PKC inhibitor Gö6976, suggesting that NPC proliferation is promoted in response to activation of classical PKCs, particularly PKCß. ELAC slightly increased the proportion of NPC expressing Sox2. The effects of ELAC disappeared upon acetylation of its C7-hydroxyl group. We propose lathyranes like ELAC as new drug candidates to modulate adult neurogenesis through PKC activation. Functional and structural comparisons between ELAC and phorboids are included. © 2017 The British Pharmacological Society.

  16. Mitochondrial Superoxide Production Negatively Regulates Neural Progenitor Proliferation and Cerebral Cortical Development

    PubMed Central

    Hou, Yan; Ouyang, Xin; Wan, Ruiqian; Cheng, Heping; Mattson, Mark P.; Cheng, Aiwu

    2012-01-01

    Although high amounts of reactive oxygen species (ROS) can damage cells, ROS can also play roles as second messengers, regulating diverse cellular processes. Here we report that embryonic mouse cerebral cortical neural progenitor cells (NPCs) exhibit intermittent spontaneous bursts of mitochondrial superoxide (SO) generation (mitochondrial SO flashes) that require transient opening of membrane permeability transition pores (mPTP). This quantal SO production negatively regulates NPC self-renewal. Mitochondrial SO scavengers and mPTP inhibitors reduce SO flash frequency and enhance NPC proliferation, whereas prolonged mPTP opening and SO generation increase SO flash incidence and decrease NPC proliferation. The inhibition of NPC proliferation by mitochondrial SO involves suppression of extracellular signal-regulated kinases. Moreover, mice lacking SOD2 (SOD2−/− mice) exhibit significantly fewer proliferative NPCs and differentiated neurons in the embryonic cerebral cortex at mid-gestation compared with wild type littermates. Cultured SOD2−/− NPCs exhibit a significant increase in SO flash frequency and reduced NPC proliferation. Taken together, our findings suggest that mitochondrial SO flashes negatively regulate NPC self-renewal in the developing cerebral cortex. PMID:22949407

  17. EBV‐encoded miRNAs target ATM‐mediated response in nasopharyngeal carcinoma

    PubMed Central

    Lung, Raymond W‐M; Hau, Pok‐Man; Yu, Ken H‐O; Yip, Kevin Y; Tong, Joanna H‐M; Chak, Wing‐Po; Chan, Anthony W‐H; Lam, Ka‐Hei; Lo, Angela Kwok‐Fung; Tin, Edith K‐Y; Chau, Shuk‐Ling; Pang, Jesse C‐S; Kwan, Johnny S‐H; Busson, Pierre; Young, Lawrence S; Yap, Lee‐Fah; Tsao, Sai‐Wah

    2018-01-01

    Abstract Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein–Barr virus (EBV) infection. In NPC, miR‐BARTs, the EBV‐encoded miRNAs derived from BamH1‐A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV‐encoded miRNAs in a panel of NPC patient‐derived xenografts and an EBV‐positive NPC cell line by small RNA sequencing. Among the 40 miR‐BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV‐miRNAs, BART5‐5p, BART7‐3p, BART9‐3p, and BART14‐3p could negatively regulate the expression of a key DNA double‐strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'‐UTR. Notably, the expression of these four miR‐BARTs represented more than 10% of all EBV‐encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT‐PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5‐5p, BART7‐3p, BART9‐3p, and BART14‐3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR‐BARTs in EBV‐positive NPC cells, we further demonstrated the novel function of miR‐BARTs in inhibiting Zta‐induced lytic reactivation. These findings imply that the four viral miRNAs work co‐operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:29230817

  18. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma.

    PubMed

    Lung, Raymond W-M; Hau, Pok-Man; Yu, Ken H-O; Yip, Kevin Y; Tong, Joanna H-M; Chak, Wing-Po; Chan, Anthony W-H; Lam, Ka-Hei; Lo, Angela Kwok-Fung; Tin, Edith K-Y; Chau, Shuk-Ling; Pang, Jesse C-S; Kwan, Johnny S-H; Busson, Pierre; Young, Lawrence S; Yap, Lee-Fah; Tsao, Sai-Wah; To, Ka-Fai; Lo, Kwok-Wai

    2018-04-01

    Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  19. The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma.

    PubMed

    Qiu, Guo-Hua; Tan, Luke K S; Loh, Kwok Seng; Lim, Chai Yen; Srivastava, Gopesh; Tsai, Sen-Tien; Tsao, Sai Wah; Tao, Qian

    2004-06-10

    Loss of heterozygosity at 3p21 is common in various cancers including nasopharyngeal carcinoma (NPC). BLU is one of the candidate tumor suppressor genes (TSGs) in this region. Ectopic expression of BLU results in the inhibition of colony formation of cancer cells, suggesting that BLU is a tumor suppressor. We have identified a functional BLU promoter and found that it can be activated by environmental stresses such as heat shock, and is regulated by E2F. The promoter and first exon are located within a CpG island. BLU is highly expressed in testis and normal upper respiratory tract tissues including nasopharynx. However, in all seven NPC cell lines examined, BLU expression was downregulated and inversely correlated with promoter hypermethylation. Biallelic epigenetic inactivation of BLU was also observed in three cell lines. Hypermethylation was further detected in 19/29 (66%) of primary NPC tumors, but not in normal nasopharyngeal tissues. Treatment of NPC cell lines with 5-aza-2'-deoxycytidine activated BLU expression along with promoter demethylation. Although hypermethylation of RASSF1A, another TSG located immediately downstream of BLU, was detected in 20/27 (74%) of NPC tumors, no correlation between the hypermethylation of these two TSGs was observed (P=0.6334). In addition to methylation, homozygous deletion of BLU was found in 7/29 (24%) of tumors. Therefore, BLU is a stress-responsive gene, being disrupted in 83% (24/29) of NPC tumors by either epigenetic or genetic mechanisms. Our data are consistent with the interpretation that BLU is a TSG for NPC.

  20. A novel mouse model of Niemann-Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations.

    PubMed

    Maue, Robert A; Burgess, Robert W; Wang, Bing; Wooley, Christine M; Seburn, Kevin L; Vanier, Marie T; Rogers, Maximillian A; Chang, Catherine C; Chang, Ta-Yuan; Harris, Brent T; Graber, David J; Penatti, Carlos A A; Porter, Donna M; Szwergold, Benjamin S; Henderson, Leslie P; Totenhagen, John W; Trouard, Theodore P; Borbon, Ivan A; Erickson, Robert P

    2012-02-15

    We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1(nmf164)) of Niemann-Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1(spm) allele and identifying a truncating mutation, confirm that the mutation in Npc1(nmf164) mice is distinct from those in other existing mouse models of NPC disease (Npc1(nih), Npc1(spm)). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1(nmf164) mutant mice than in mice with the null mutations (Npc1(nih), Npc1(spm)). Although Npc1 mRNA levels appear relatively normal, Npc1(nmf164) brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1(nih) mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1(nmf164) mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases.

  1. A novel mouse model of Niemann–Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations

    PubMed Central

    Maue, Robert A.; Burgess, Robert W.; Wang, Bing; Wooley, Christine M.; Seburn, Kevin L.; Vanier, Marie T.; Rogers, Maximillian A.; Chang, Catherine C.; Chang, Ta-Yuan; Harris, Brent T.; Graber, David J.; Penatti, Carlos A.A.; Porter, Donna M.; Szwergold, Benjamin S.; Henderson, Leslie P.; Totenhagen, John W.; Trouard, Theodore P.; Borbon, Ivan A.; Erickson, Robert P.

    2012-01-01

    We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1nmf164) of Niemann–Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1spm allele and identifying a truncating mutation, confirm that the mutation in Npc1nmf164 mice is distinct from those in other existing mouse models of NPC disease (Npc1nih, Npc1spm). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1nmf164 mutant mice than in mice with the null mutations (Npc1nih, Npc1spm). Although Npc1 mRNA levels appear relatively normal, Npc1nmf164 brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1nih mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1nmf164 mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases. PMID:22048958

  2. Estradiol-17β-Induced Human Neural Progenitor Cell Proliferation Is Mediated by an Estrogen Receptor β-Phosphorylated Extracellularly Regulated Kinase Pathway

    PubMed Central

    Wang, Jun Ming; Liu, Lifei; Brinton, Roberta Diaz

    2008-01-01

    Estradiol-17β (E2) induces rodent hippocampal neural progenitor cell (NPC) proliferation in vitro, in vivo, and after brain injury. The purpose of the present investigation was to determine whether E2-induced proliferation observed in rodent model systems generalized to cells of human neural origin and the signaling pathway by which E2 promotes mitosis of human NPCs (hNPCs). Results of these analyses indicate that E2 induced a significant increase in hNPC proliferation in a time- and dose-dependent manner. E2-induced hNPC DNA replication was paralleled by elevated cell cycle protein expression and centrosome amplification, which was associated with augmentation of total cell number. To determine whether estrogen receptor (ER) and which ER subtype were required for E2-induced hNPC proliferation, ER expression was first determined by real-time RT-PCR, followed by Western blot analysis, and subsequently verified pharmacologically using ERα or β-selective ligands. Results of these analyses indicated that ERβ expression was predominant relative to ERα, which was barely detectable in hNPCs. Activation of ERβ by the ERβ-selective ligand, diarylpropionitrile, led to an increase in phosphorylated extracellular signal-regulated kinase, and subsequent centrosome amplification and hNPC proliferation, which were blocked by the MEKK antagonist, UO126, but not its inactive analog, UO124. These findings, for the first time, demonstrate the molecular cascade and related cell biology events involved in E2-induced hNPC proliferation in vitro. Therapeutic implications of these findings relevant to hormone therapy and prevention of neurodegenerative disease are discussed. PMID:17962344

  3. Dual PI3K/mTOR inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma.

    PubMed

    Liu, Tongxin; Sun, Quanquan; Li, Qi; Yang, Hua; Zhang, Yuqin; Wang, Rong; Lin, Xiaoshan; Xiao, Dong; Yuan, Yawei; Chen, Longhua; Wang, Wei

    2015-02-01

    Although combined chemoradiotherapy has provided considerable improvements for nasopharyngeal carcinoma (NPC), recurrence and metastasis are still frequent. The PI3K/Akt/mTOR pathway plays a critical role in tumor formation and tumor cell survival after radiation-induced DNA damage. In the present study, we evaluated whether inhibition of PI3K/mTOR by two novel dual inhibitors, GSK2126458 and PKI-587, could suppress tumor progression and sensitize NPC cells to radiation. Four NPC cell lines (CNE-1, CNE-2, 5-8F, and 6-10B) were used to analyze the effects of GSK216458 and PKI-587 on cell proliferation, migration, invasion, clonogenic survival, amount of residual γ-H2AX foci, cell cycle, and apoptosis after radiation. A 5-8F xenograft model was used to evaluate the in vivo effects of the two compounds in combination with ionizing radiation (IR). Both GSK216458 and PKI-587 effectively inhibited cell proliferation and motility in NPC cells and suppressed phosphorylation of Akt, mTOR, S6, and 4EBP1 proteins in a concentration- and time-dependent manner. Moreover, both compounds sensitized NPC cells to IR by increasing DNA damage, enhancing G2-M cell-cycle delay, and inducing apoptosis. In vivo, the combination of IR with GSK2126458 or PKI-587 significantly inhibited tumor growth. Antitumor effect was correlated with induction of apoptosis and suppression of the phosphorylation of mTOR, Akt, and 4EBP1. These new findings suggest the usefulness of PI3K/mTOR dual inhibition for antitumor and radiosensitizing. The combination of IR with a dual PI3K/mTOR inhibitor, GSK2126458 or PKI-587, might be a promising therapeutic strategy for NPC. ©2014 American Association for Cancer Research.

  4. Physical modelling of the nuclear pore complex

    PubMed Central

    Fassati, Ariberto; Ford, Ian J.; Hoogenboom, Bart W.

    2013-01-01

    Physically interesting behaviour can arise when soft matter is confined to nanoscale dimensions. A highly relevant biological example of such a phenomenon is the Nuclear Pore Complex (NPC) found perforating the nuclear envelope of eukaryotic cells. In the central conduit of the NPC, of ∼30–60 nm diameter, a disordered network of proteins regulates all macromolecular transport between the nucleus and the cytoplasm. In spite of a wealth of experimental data, the selectivity barrier of the NPC has yet to be explained fully. Experimental and theoretical approaches are complicated by the disordered and heterogeneous nature of the NPC conduit. Modelling approaches have focused on the behaviour of the partially unfolded protein domains in the confined geometry of the NPC conduit, and have demonstrated that within the range of parameters thought relevant for the NPC, widely varying behaviour can be observed. In this review, we summarise recent efforts to physically model the NPC barrier and function. We illustrate how attempts to understand NPC barrier function have employed many different modelling techniques, each of which have contributed to our understanding of the NPC.

  5. Comparative interactomics provides evidence for functional specialization of the nuclear pore complex.

    PubMed

    Obado, Samson O; Field, Mark C; Rout, Michael P

    2017-07-04

    The core architecture of the eukaryotic cell was established well over one billion years ago, and is largely retained in all extant lineages. However, eukaryotic cells also possess lineage-specific features, frequently keyed to specific functional requirements. One quintessential core eukaryotic structure is the nuclear pore complex (NPC), responsible for regulating exchange of macromolecules between the nucleus and cytoplasm as well as acting as a nuclear organizational hub. NPC architecture has been best documented in one eukaryotic supergroup, the Opisthokonts (e.g. Saccharomyces cerevisiae and Homo sapiens), which although compositionally similar, have significant variations in certain NPC subcomplex structures. The variation of NPC structure across other taxa in the eukaryotic kingdom however, remains poorly understood. We explored trypanosomes, highly divergent organisms, and mapped and assigned their NPC proteins to specific substructures to reveal their NPC architecture. We showed that the NPC central structural scaffold is conserved, likely across all eukaryotes, but more peripheral elements can exhibit very significant lineage-specific losses, duplications or other alterations in their components. Amazingly, trypanosomes lack the major components of the mRNA export platform that are asymmetrically localized within yeast and vertebrate NPCs. Concomitant with this, the trypanosome NPC is ALMOST completely symmetric with the nuclear basket being the only major source of asymmetry. We suggest these features point toward a stepwise evolution of the NPC in which a coating scaffold first stabilized the pore after which selective gating emerged and expanded, leading to the addition of peripheral remodeling machineries on the nucleoplasmic and cytoplasmic sides of the pore.

  6. Enhanced aerobic glycolysis of nasopharyngeal carcinoma cells by Epstein-Barr virus latent membrane protein 1.

    PubMed

    Sung, Wei-Wen; Chen, Peir-Rong; Liao, Ming-Hui; Lee, Jeng-Woei

    2017-10-01

    Latent membrane protein 1 (LMP1) is a principal viral oncoprotein in Epstein-Barr virus (EBV)-associated malignancies, including nasopharyngeal carcinoma (NPC), which acts through regulating tumorigenesis and metabolic reprogramming of cancers. In the presence of oxygen, we demonstrated that glucose consumption, lactate production and lactate dehydrogenase (LDH) activity were significantly increased upon LMP1 expression in NPC cells and in a LMP1 variant derived from NPC patients-transformed BALB/c-3T3 cells. The amounts of the α subunit of hypoxia-inducible factor-1 (HIF-1α), a key regulator of aerobic glycolysis, and its targets, pyruvate dehydrogenase kinase 1 (PDK1) and the pyruvate kinase M2 (PKM2) isoform, were also consistently elevated by LMP1. Moreover, in parallel with reductions in the oxygen consumption rate and mitochondrial membrane potential in cells, an augmented extracellular lactate concentration was observed due to LMP1 induction. In conclusion, our results proved facilitation of the Warburg effect by LMP1 through alteration of mitochondrial function in NPC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Host-Configured Lithium-Sulfur Cell Built on 3D Nickel Photonic Crystal with Superior Electrochemical Performances.

    PubMed

    Lin, Shengxuan; Yan, Yang; Cai, Zihe; Liu, Lin; Hu, Xiaobin

    2018-04-18

    The insulator of the sulfur cathode and the easy dendrites growth of the lithium anode are the main barriers for lithium-sulfur cells in commercial application. Here, a 3D NPC@S/3D NPC@Li full cell is reported based on 3D hierarchical and continuously porous nickel photonic crystal (NPC) to solve the problems of sulfur cathode and lithium anode at the same time. In this case, the 3D NPC@S cathode can not only offer a fast transfer of electron and lithium ion, but also effectively prevent the dissolution of polysulfides and the tremendous volume change during cycling, and the 3D NPC@Li anode can efficiently inhibit the growth of lithium dendrites and volume expansion, too. As a result, the cell exhibits a high reversible capacity of 1383 mAh g -1 at 0.5 C (the current density of 837 mA g -1 ), superior rate ability (the reversible capacity of 735 mAh g -1 at the extremely high current density of 16 750 mA g -1 ) with excellent coulombic efficiency of about 100% and an excellent cycle life over 500 cycles with only about 0.026% capacity loss per cycle. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Active immunotherapy with anti-idiotypic antibody for patients with nasopharyngeal carcinoma (NPC).

    PubMed

    Li, Guancheng; Xie, Lu; Zhou, Guohua; Zhu, Jiangao; Hu, Jinyue; Sun, Qubing

    2002-12-01

    Two anti-idiotypic monoclonal antibodies (Ab2), designated 2H4 and 5D3, against two antitumor antibodies Ab1 (FC2 and HNL5) that recognize nasopharyngeal carcinoma (NPC) associated antigen were generated. They could substitute NPC antigen to induce humoral and cellular immune response against NPC cells in syngeneic mice. Nineteen patients with NPC at stage IV were chosen for active immunotherapy. They were treated with aluminum hydroxide-precipitated Ab2 2H4 or 5D3 accompanying radiotherapy. None of the immunization of anti-idiotypic monoclonal antibody (mAb) was associated with toxicity or allergies reactions. Nine patients with radiotherapy alone served as control. Both anti-anti-idiotypic antibodies (Ab3) and anti-NPC antibodies (Ab1') were increased and human anti-mouse Ig antibodies (HAMA) occurred in nineteen patients of the experimental group; whereas the levels of Ab1' did not rise in the control group. Serum IL-2, IFN-gamma, and TNF-alpha levels were increased in most patients in the experimental group, while in the control group, there were no differences of Ab1' and cytokine level between pretherapy and posttherapy. In addition, IL-2 mRNA expression in peripheral blood mononuclear cells (PBMC) of NPC patients was closely related to serum IL-2 (r = +0.8829) by in situ hybridization. Therefore, mouse anti-idiotypic antibodies 2H4 and 5D3 are safe for active immunotherapy and might enhance humoral and/or cellular immunity of NPC patients receiving radiotherapy.

  9. Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Alan Tin-Lun, E-mail: alan_lam@bti.a-star.edu.sg; Chen, Allen Kuan-Liang; Ting, Sherwin Qi-Peng

    Current methods for human pluripotent stem cells (hPSC) expansion and differentiation can be limited in scalability and costly (due to their labor intensive nature). This can limit their use in cell therapy, drug screening and toxicity assays. One of the approaches that can overcome these limitations is microcarrier (MC) based cultures in which cells are expanded as cell/MC aggregates and then directly differentiated as embryoid bodies (EBs) in the same agitated reactor. This integrated process can be scaled up and eliminate the need for some culture manipulation used in common monolayer and EBs cultures. This review describes the principles ofmore » such microcarriers based integrated hPSC expansion and differentiation process, and parameters that can affect its efficiency (such as MC type and extracellular matrix proteins coatings, cell/MC aggregates size, and agitation). Finally examples of integrated process for generation cardiomyocytes (CM) and neural progenitor cells (NPC) as well as challenges to be solved are described. - Highlights: • Expansion of hPSC on microcarriers. • Differentiation of hPSC on microcarriers. • Parameters that can affect the expansion and differentiation of hPSC on microcarriers. • Integration of expansion and differentiation of hPSC on microcarriers in one unit operation.« less

  10. Oxymatrine induces nasopharyngeal cancer cell death through inhibition of PI3K/AKT and NF‑κB pathways.

    PubMed

    Ni, Zhili; Yi, Jingmei

    2017-12-01

    Oxymatrine may inhibit tumor cell proliferation, induce cell cycle arrest, promote apoptosis, induce tumor cell differentiation and fight against tumor angiogenesis, as well as inhibit tumor invasion and metastasis. The present study aimed to investigate the anticancer effects of oxymatrine on nasopharyngeal cancer (NPC) cell death, and the underlying molecular mechanisms of these effects. NPC HK‑1 cells were incubated overnight and treated with oxymatrine (0, 2, 4, 6 and 8 mg/ml) for 1, 2 or 3 days. The results demonstrated that oxymatrine significantly inhibited NPC cell proliferation in a time‑ and dose‑dependent manner. Oxymatrine treatment also induced apoptosis, induced the activities of caspase‑3 and caspase‑9, promoted p53 and Bax protein expression, and suppressed cyclin D protein expression in these cells. The protein expression levels of phosphoinositide 3 kinase (PI3K), phosphorylated (p)‑AKT, p‑mammalian target of rapamycin, p‑p70 ribosomal protein S6 kinase and nuclear factor (NF)‑κB were significantly downregulated by oxymatrine treatment. In conclusion, results from the present study suggested that oxymatrine may induce NPC cell death through the inhibition of PI3K/AKT and NF‑κB signaling pathways.

  11. Combination of proteasome and class I HDAC inhibitors induces apoptosis of NPC cells through an HDAC6-independent ER stress-induced mechanism.

    PubMed

    Hui, Kwai Fung; Chiang, Alan K S

    2014-12-15

    The current paradigm stipulates that inhibition of histone deacetylase (HDAC) 6 is essential for the combinatorial effect of proteasome and HDAC inhibitors for the treatment of cancers. Our study aims to investigate the effect of combining different class I HDAC inhibitors (without HDAC6 action) with a proteasome inhibitor on apoptosis of nasopharyngeal carcinoma (NPC). We found that combination of a proteasome inhibitor, bortezomib, and several class I HDAC inhibitors, including MS-275, apicidin and romidepsin, potently induced killing of NPC cells both in vitro and in vivo. Among the drug pairs, combination of bortezomib and romidepsin (bort/romidepsin) was the most potent and could induce apoptosis at low nanomolar concentrations. The apoptosis of NPC cells was reactive oxygen species (ROS)- and caspase-dependent but was independent of HDAC6 inhibition. Of note, bort/romidepsin might directly suppress the formation of aggresome through the downregulation of c-myc. In addition, two markers of endoplasmic reticulum (ER) stress-induced apoptosis, ATF-4 and CHOP/GADD153, were upregulated, whereas a specific inhibitor of caspase-4 (an initiator of ER stress-induced apoptosis) could suppress the apoptosis. When ROS level in the NPC cells was reduced to the untreated level, ER stress-induced caspase activation was abrogated. Collectively, our data demonstrate a model of synergism between proteasome and class I HDAC inhibitors in the induction of ROS-dependent ER stress-induced apoptosis of NPC cells, independent of HDAC6 inhibition, and provide the rationale to combine the more specific and potent class I HDAC inhibitors with proteasome inhibitors for the treatment of cancers. © 2014 UICC.

  12. Tetrandrine Induces Apoptosis in Human Nasopharyngeal Carcinoma NPC-TW 039 Cells by Endoplasmic Reticulum Stress and Ca2+/Calpain Pathways.

    PubMed

    Liu, Kuo-Ching; Lin, Ya-Jing; Hsiao, Yung-Ting; Lin, Meng-Liang; Yang, Jiun-Long; Huang, Yi-Ping; Chu, Yung-Lin; Chung, Jing-Gung

    2017-11-01

    Tetrandrine is an alkaloid extracted from a traditional China medicine plant, and is considered part of food therapy as well. In addition, it has been widely reported to induce apoptotic cell death in many human cancer cells. However, the mechanism of Tetrandrine on human nasopharyngeal carcinoma cells (NPC) is still questioned. In our study, we examined whether Tetrandrine can induce apoptosis of NPC-TW 039 cells. We found that cell morphology was changed after treatment with different concentrations of Tetrandrine. Further, we indicated that the NPC-TW 039 cells viability decreased in a Tetrandrine dose-dependent manner. We also found that tetrandrine induced cell cycle arrest in G 0 /G 1 phase. Tetrandrine induced DNA condensation by DAPI staining as well. In addition, we found that Tetrandrine induced Ca 2+ release in the cytosol. At the same time, endoplasmic reticulum (ER) stress occurred. Then we used western blotting to examine the protein expression which is associated with mitochondria-mediated apoptotic pathways and caspase-dependent pathways. To further examine whether Ca 2+ was released or not with Tetrandrine induced-apoptosis, we used the chelator of Ca 2+ and showed that cell viability increased. At the same time, caspase-3 expression was decreased. Furthermore, confocal microscopy examination revealed that Tetrandrine induced expression of ER stress-related proteins GADD153 and GRP78. Our results indicate that Tetrandrine induces apoptosis through calcium-mediated ER stress and caspase pathway in NPC-TW 039 cells. In conclusion, Tetrandrine may could be used for treatment of human nasopharyngeal carcinoma in future. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. How to operate a nuclear pore complex by Kap-centric control

    PubMed Central

    Lim, Roderick Y H; Huang, Binlu; Kapinos, Larisa E

    2015-01-01

    Nuclear pore complexes (NPCs) mediate molecular transport between the nucleus and cytoplasm in eukaryotic cells. Tethered within each NPC lie numerous intrinsically disordered proteins known as FG nucleoporins (FG Nups) that are central to this process. Over two decades of investigation has converged on a view that a barrier mechanism consisting of FG Nups rejects non-specific macromolecules while promoting the speed and selectivity of karyopherin (Kaps) receptors (and their cargoes). Yet, the number of NPCs in the cell is exceedingly small compared to the number of Kaps, so that in fact there is a high likelihood the pores are always populated by Kaps. Here, we contemplate a view where Kaps actively participate in regulating the selectivity and speed of transport through NPCs. This so-called “Kap-centric” control of the NPC accounts for Kaps as essential barrier reinforcements that play a prerequisite role in facilitating fast transport kinetics. Importantly, Kap-centric control reconciles both mechanistic and kinetic requirements of the NPC, and in so doing potentially resolves incoherent aspects of FG-centric models. On this basis, we surmise that Kaps prime the NPC for nucleocytoplasmic transport by fine-tuning the NPC microenvironment according to the functional needs of the cell. PMID:26338152

  14. The GARP Complex Is Involved in Intracellular Cholesterol Transport via Targeting NPC2 to Lysosomes.

    PubMed

    Wei, Jian; Zhang, Ying-Yu; Luo, Jie; Wang, Ju-Qiong; Zhou, Yu-Xia; Miao, Hong-Hua; Shi, Xiong-Jie; Qu, Yu-Xiu; Xu, Jie; Li, Bo-Liang; Song, Bao-Liang

    2017-06-27

    Proper intracellular cholesterol trafficking is critical for cellular function. Two lysosome-resident proteins, NPC1 and NPC2, mediate the egress of low-density lipoprotein-derived cholesterol from lysosomes. However, other proteins involved in this process remain largely unknown. Through amphotericin B-based selection, we isolated two cholesterol transport-defective cell lines. Subsequent whole-transcriptome-sequencing analysis revealed two cell lines bearing the same mutation in the vacuolar protein sorting 53 (Vps53) gene. Depletion of VPS53 or other subunits of the Golgi-associated retrograde protein (GARP) complex impaired NPC2 sorting to lysosomes and caused cholesterol accumulation. GARP deficiency blocked the retrieval of the cation-independent mannose 6-phosphate receptor (CI-MPR) to the trans-Golgi network. Further, Vps54 mutant mice displayed reduced cellular NPC2 protein levels and increased cholesterol accumulation, underscoring the physiological role of the GARP complex in cholesterol transport. We conclude that the GARP complex contributes to intracellular cholesterol transport by targeting NPC2 to lysosomes in a CI-MPR-dependent manner. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Quantitative Proteomics of Human Fibroblasts with I1061T Mutation in Niemann–Pick C1 (NPC1) Protein Provides Insights into the Disease Pathogenesis*

    PubMed Central

    Rauniyar, Navin; Subramanian, Kanagaraj; Lavallée-Adam, Mathieu; Martínez-Bartolomé, Salvador; Balch, William E.; Yates, John R.

    2015-01-01

    Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in the late endosomal/lysosomal compartments. Mutations in the NPC1 protein are implicated in 95% of patients with NPC disease. The most prevalent mutation is the missense mutation I1061T that occurs in ∼15–20% of the disease alleles. In our study, an isobaric labeling-based quantitative analysis of proteome of NPC1I1061T primary fibroblasts when compared with wild-type cells identified 281 differentially expressed proteins based on stringent data analysis criteria. Gene ontology enrichment analysis revealed that these proteins play important roles in diverse cellular processes such as protein maturation, energy metabolism, metabolism of reactive oxygen species, antioxidant activity, steroid metabolism, lipid localization, and apoptosis. The relative expression level of a subset of differentially expressed proteins (TOR4A, DHCR24, CLGN, SOD2, CHORDC1, HSPB7, and GAA) was independently and successfully substantiated by Western blotting. We observed that treating NPC1I1061T cells with four classes of seven different compounds that are potential NPC drugs increased the expression level of SOD2 and DHCR24. We have also shown an abnormal accumulation of glycogen in NPC1I1061T fibroblasts possibly triggered by defective processing of lysosomal alpha-glucosidase. Our study provides a starting point for future more focused investigations to better understand the mechanisms by which the reported dysregulated proteins triggers the pathological cascade in NPC, and furthermore, their effect upon therapeutic interventions. PMID:25873482

  16. Clinicopathologic Characteristics and Prognosis of Tongue Squamous Cell Carcinoma in Patients with and without a History of Radiation for Nasopharyngeal Carcinoma: A Matched Case-Control Study.

    PubMed

    Zhang, Peng; Zhang, Li; Liu, Hui; Zhao, Lei; Li, Yong; Shen, Jing-Xian; Liu, Qing; Liu, Meng-Zhong; Xi, Mian

    2017-07-01

    Previous studies reported an association between an increased risk of tongue cancer and radiation treatment for nasopharyngeal carcinoma (NPC). This study compared the clinicopathologic characteristics and outcomes of tongue squamous cell carcinoma (TSCC) in patients with and without a history of radiotherapy for NPC. From 1965 to 2009, a total of 73 patients were diagnosed with TSCC with a history of radiotherapy for NPC. The patients were matched in a 1:3 ratio with patients with sporadic TSCC according to age, sex, and year of the TSCC diagnosis. The primary endpoint was the overall survival. The median interval from NPC to TSCC was 82 months. The NPC survivors were more likely to be diagnosed with a more advanced T classification, less likely to have lymph node involvement, and more likely to have the tumor located in the dorsum of the tongue than sporadic TSCC. Regarding the histologic characteristics, the NPC survivors were more likely to have a weak lymphocytic host response, low tumor budding, and low risk of a worse pattern of invasion. The sporadic TSCC patients had a better overall survival (hazard ratio, 0.690; p=0.033) than the NPC survivors. In competing risks analysis, the cumulative incidence functions for the competing event (documented non-tongue cancer death) were significantly higher in the NPC survivors (Gray's test, p=0.001). TSCC patients with a history of radiotherapy for NPC appear to have particular clinicopathologic features, a poorer survival, and are more likely to die from non-tongue cancer causes than those with sporadic TSCC.

  17. Prognostic role of tumour-associated macrophages and regulatory T cells in EBV-positive and EBV-negative nasopharyngeal carcinoma.

    PubMed

    Ooft, Marc L; van Ipenburg, Jolique A; Sanders, Maxime E; Kranendonk, Mariette; Hofland, Ingrid; de Bree, Remco; Koljenović, Senada; Willems, Stefan M

    2018-03-01

    Tumour-associated macrophages (TAMs) and regulatory T cells (Tregs) form a special niche supporting tumour progression, and both correlate with worse survival in head and neck cancers. However, the prognostic role of TAM and Tregs in nasopharyngeal carcinoma (NPC) is still unknown. Therefore, we determined differences in TAMs and Tregs in different NPC subtypes, and their prognostic significance. Tissue of 91 NPCs was assessed for TAMs and Tregs by determination of CD68, CD163, CD206 and FOXP3 expression in the tumour microenvironment. Clinicopathological correlations were assessed using Pearson X 2 test, Fisher's exact test, analysis of variance and Mann-Whitney U test. Survival was analysed using Kaplan-Meier curves and Cox regression. CD68 and FOXP3 counts were higher in Epstein-Barr virus (EBV)-positive NPC, while CD68-/FOXP3-, CD163+/FOXP3- and CD206+/FOXP3- infiltrates were more common in EBV-negative NPC. In the whole NPC group, CD68-/FOXP3- correlated with worse overall survival (OS), and after multivariate analysis high FOXP3 count showed better OS (HR 0.352, 95% CI 0.128 to 0.968). No difference in M2 counts existed between EBV-positive and negative NPC. FOXP3, a Treg marker, seems to be an independent prognostic factor for better OS in the whole NPC group. Therefore, immune-based therapies targeting Tregs should be carefully evaluated. M2 spectrum macrophages are probably more prominent in EBV-negative NPC with also functional differences compared with EBV-positive NPC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Multiple Cationic Amphiphiles Induce a Niemann-Pick C Phenotype and Inhibit Ebola Virus Entry and Infection

    DTIC Science & Technology

    2013-02-18

    genome replication and production of new virions [18]. Several cellular proteins required for the function and maturation of late endosomes (LE) and...studded with a trimeric glycoprotein (GP) whose first function is to attach viral particles to the cell surface. The virions are then internalized into the...with NPC1, but at a site distinct from the C loop of NPC1 (which binds GP19 kDa). Binding to NPC1 inhibits a second function of NPC1 (i.e. in addition

  19. Altered transition metal homeostasis in Niemann-Pick disease, Type C1

    PubMed Central

    Hung, Ya Hui; Faux, Noel G.; Killilea, David W.; Yanjanin, Nicole; Firnkes, Sally; Volitakis, Irene; Ganio, George; Walterfang, Mark; Hastings, Caroline; Porter, Forbes D.; Ory, Daniel S.; Bush, Ashley I.

    2014-01-01

    The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1−/− mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1−/− mouse model. NPC1 deficiency in the Npc1−/− mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1−/− mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C. PMID:24343124

  20. Regulation of adult neural progenitor cell functions by purinergic signaling.

    PubMed

    Tang, Yong; Illes, Peter

    2017-02-01

    Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca 2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230. © 2016 Wiley Periodicals, Inc.

  1. Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells.

    PubMed

    Wang, Juan; Wu, Jiacai; Li, Xumei; Liu, Haowei; Qin, Jianli; Bai, Zhun; Chi, Bixia; Chen, Xu

    2018-06-30

    Identification of the specific protein target(s) of a drug is a critical step in unraveling its mechanisms of action (MOA) in many natural products. Curcumol, isolated from well known Chinese medicinal plant Curcuma zedoary, has been shown to possess multiple biological activities. It can inhibit nasopharyngeal carcinoma (NPC) proliferation and induce apoptosis, but its target protein(s) in NPC cells remains unclear. In this study, we employed a mass spectrometry-based chemical proteomics approach reveal the possible protein targets of curcumol in NPC cells. Cellular thermal shift assay (CETSA), molecular docking and cell-based assay was used to validate the binding interactions. Chemical proteomics capturing uncovered that NCL is a target of curcumol in NPC cells, Molecular docking showed that curcumol bound to NCL with an -7.8 kcal/mol binding free energy. Cell function analysis found that curcumol's treatment leads to a degradation of NCL in NPC cells, and it showed slight effects on NP69 cells. In conclusion, our results providing evidences that NCL is a target protein of curcumol. We revealed that the anti-cancer effects of curcumol in NPC cells are mediated, at least in part, by NCL inhibition. Many natural products showed high bioactivity, while their mechanisms of action (MOA) are very poor or completely missed. Understanding the MOA of natural drugs can thoroughly exploit their therapeutic potential and minimize their adverse side effects. Identification of the specific protein target(s) of a drug is a critical step in unraveling its MOA. Compound-centric chemical proteomics is a classic chemical proteomics approach which integrates chemical synthesis with cell biology and mass spectrometry (MS) to identify protein targets of natural products determine the drug mechanism of action, describe its toxicity, and figure out the possible cause of off-target. It is an affinity-based chemical proteomics method to identify small molecule-protein interactions through affinity chromatography approach coupled with mass spectrometry, has been conventionally used to identify target proteins and has yielded good results. Curcumol, has shown effective inhibition on Nasopharyngeal Carcinoma (NPC) Cells, interacted with NCL and then initiated the anti-tumor biological effect. This research demonstrated the effectiveness of chemical proteomics approaches in natural drugs molecular target identification, revealing and understanding of the novel mechanism of actions of curcumol is crucial for cancer prevention and treatment in nasopharynx cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells

    PubMed Central

    Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-01-01

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489

  3. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    PubMed

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-03-30

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.

  4. Multiple Cationic Amphiphiles Induce a Niemann-Pick C Phenotype and Inhibit Ebola Virus Entry and Infection

    PubMed Central

    Shoemaker, Charles J.; Schornberg, Kathryn L.; Delos, Sue E.; Scully, Corinne; Pajouhesh, Hassan; Olinger, Gene G.; Johansen, Lisa M.; White, Judith M.

    2013-01-01

    Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC50 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann–Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target. PMID:23441171

  5. A galvanotaxis assay for analysis of neural precursor cell migration kinetics in an externally applied direct current electric field.

    PubMed

    Babona-Pilipos, Robart; Popovic, Milos R; Morshead, Cindi M

    2012-10-13

    The discovery of neural stem and progenitor cells (collectively termed neural precursor cells) (NPCs) in the adult mammalian brain has led to a body of research aimed at utilizing the multipotent and proliferative properties of these cells for the development of neuroregenerative strategies. A critical step for the success of such strategies is the mobilization of NPCs toward a lesion site following exogenous transplantation or to enhance the response of the endogenous precursors that are found in the periventricular region of the CNS. Accordingly, it is essential to understand the mechanisms that promote, guide, and enhance NPC migration. Our work focuses on the utilization of direct current electric fields (dcEFs) to promote and direct NPC migration - a phenomenon known as galvanotaxis. Endogenous physiological electric fields function as critical cues for cell migration during normal development and wound repair. Pharmacological disruption of the trans-neural tube potential in axolotl embryos causes severe developmental malformations(1). In the context of wound healing, the rate of repair of wounded cornea is directly correlated with the magnitude of the epithelial wound potential that arises after injury, as shown by pharmacological enhancement or disruption of this dcEF(2-3). We have demonstrated that adult subependymal NPCs undergo rapid and directed cathodal migration in vitro when exposed to an externally applied dcEF. In this protocol we describe our lab's techniques for creating a simple and effective galvanotaxis assay for high-resolution, long-term observation of directed cell body translocation (migration) on a single-cell level. This assay would be suitable for investigating the mechanisms that regulate dcEF transduction into cellular motility through the use of transgenic or knockout mice, short interfering RNA, or specific receptor agonists/antagonists.

  6. Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma.

    PubMed

    Qin, Elizabeth Y; Cooper, Dominique D; Abbott, Keene L; Lennon, James; Nagaraja, Surya; Mackay, Alan; Jones, Chris; Vogel, Hannes; Jackson, Peter K; Monje, Michelle

    2017-08-24

    The lateral ventricle subventricular zone (SVZ) is a frequent and consequential site of pediatric and adult glioma spread, but the cellular and molecular mechanisms mediating this are poorly understood. We demonstrate that neural precursor cell (NPC):glioma cell communication underpins this propensity of glioma to colonize the SVZ through secretion of chemoattractant signals toward which glioma cells home. Biochemical, proteomic, and functional analyses of SVZ NPC-secreted factors revealed the neurite outgrowth-promoting factor pleiotrophin, along with required binding partners SPARC/SPARCL1 and HSP90B, as key mediators of this chemoattractant effect. Pleiotrophin expression is strongly enriched in the SVZ, and pleiotrophin knock down starkly reduced glioma invasion of the SVZ in the murine brain. Pleiotrophin, in complex with the binding partners, activated glioma Rho/ROCK signaling, and ROCK inhibition decreased invasion toward SVZ NPC-secreted factors. These findings demonstrate a pathogenic role for NPC:glioma interactions and potential therapeutic targets to limit glioma invasion. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Environmental Enrichment, Age, and PPARα Interact to Regulate Proliferation in Neurogenic Niches

    PubMed Central

    Pérez-Martín, Margarita; Rivera, Patricia; Blanco, Eduardo; Lorefice, Clara; Decara, Juan; Pavón, Francisco J.; Serrano, Antonia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) ligands have been shown to modulate recovery after brain insults such as ischemia and irradiation by enhancing neurogenesis. In the present study, we investigated the effect of the genetic deletion of PPARα receptors on the proliferative rate of neural precursor cells (NPC) in the adult brain. The study was performed in aged Pparα−/− mice exposed to nutritional (treats) and environmental (games) enrichments for 20 days. We performed immunohistochemical analyses of cells containing the replicating cell DNA marker 5-bromo-2′-deoxyuridine (BrdU+) and the immature neuronal marker doublecortin (Dcx+) in the main neurogenic zones of the adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ), and/or hypothalamus. Results indicated a reduction in the number of BrdU+ cells in the neurogenic zones analyzed as well as Dcx+ cells in the SGZ during aging (2, 6, and 18 months). Pparα deficiency alleviated the age-related reduction of NPC proliferation (BrdU+ cells) in the SVZ of the 18-months-old mice. While no genotype effect on NPC proliferation was detected in the SGZ during aging, an accentuated reduction in the number of Dcx+ cells was observed in the SGZ of the 6-months-old Pparα−/− mice. Exposing the 18-months-old mice to nutritional and environmental enrichments reversed the Pparα−/−-induced impairment of NPC proliferation in the neurogenic zones analyzed. The enriched environment did not modify the number of SGZ Dcx+ cells in the 18 months old Pparα−/− mice. These results identify PPARα receptors as a potential target to counteract the naturally observed decline in adult NPC proliferation associated with aging and impoverished environments. PMID:27013951

  8. Environmental Enrichment, Age, and PPARα Interact to Regulate Proliferation in Neurogenic Niches.

    PubMed

    Pérez-Martín, Margarita; Rivera, Patricia; Blanco, Eduardo; Lorefice, Clara; Decara, Juan; Pavón, Francisco J; Serrano, Antonia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) ligands have been shown to modulate recovery after brain insults such as ischemia and irradiation by enhancing neurogenesis. In the present study, we investigated the effect of the genetic deletion of PPARα receptors on the proliferative rate of neural precursor cells (NPC) in the adult brain. The study was performed in aged Pparα(-/-) mice exposed to nutritional (treats) and environmental (games) enrichments for 20 days. We performed immunohistochemical analyses of cells containing the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) and the immature neuronal marker doublecortin (Dcx+) in the main neurogenic zones of the adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ), and/or hypothalamus. Results indicated a reduction in the number of BrdU+ cells in the neurogenic zones analyzed as well as Dcx+ cells in the SGZ during aging (2, 6, and 18 months). Pparα deficiency alleviated the age-related reduction of NPC proliferation (BrdU+ cells) in the SVZ of the 18-months-old mice. While no genotype effect on NPC proliferation was detected in the SGZ during aging, an accentuated reduction in the number of Dcx+ cells was observed in the SGZ of the 6-months-old Pparα(-/-) mice. Exposing the 18-months-old mice to nutritional and environmental enrichments reversed the Pparα(-/-)-induced impairment of NPC proliferation in the neurogenic zones analyzed. The enriched environment did not modify the number of SGZ Dcx+ cells in the 18 months old Pparα(-/-) mice. These results identify PPARα receptors as a potential target to counteract the naturally observed decline in adult NPC proliferation associated with aging and impoverished environments.

  9. The Immune Adaptor SLP-76 Binds to SUMO-RANGAP1 at Nuclear Pore Complex Filaments to Regulate Nuclear Import of Transcription Factors in T Cells

    PubMed Central

    Liu, Hebin; Schneider, Helga; Recino, Asha; Richardson, Christine; Goldberg, Martin W.; Rudd, Christopher E.

    2015-01-01

    Summary While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. PMID:26321253

  10. The Immune Adaptor SLP-76 Binds to SUMO-RANGAP1 at Nuclear Pore Complex Filaments to Regulate Nuclear Import of Transcription Factors in T Cells.

    PubMed

    Liu, Hebin; Schneider, Helga; Recino, Asha; Richardson, Christine; Goldberg, Martin W; Rudd, Christopher E

    2015-09-03

    While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Cell-fusion method to visualize interphase nuclear pore formation.

    PubMed

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Lycopene reduces cholesterol absorption through the downregulation of Niemann-Pick C1-like 1 in Caco-2 cells.

    PubMed

    Zou, Jun; Feng, Dan

    2015-11-01

    Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Tomato lycopene has been found to have a hypocholesterolemic effect, and the effect was considered to be related to inhibition of cholesterol synthesis. However, since plasma cholesterol levels are also influenced by the absorption of cholesterol in the gut, the present study is to investigate whether lycopene affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with lycopene at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and liver X receptor α (LXRα) was analyzed by Western blot and qPCR. We found that lycopene dose dependently inhibited cholesterol absorption and the expression of NPC1L1 protein and NPC1L1 mRNA. The inhibitory effects of lycopene on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the LXRα pathway. This study provides the first evidence that lycopene inhibits cholesterol absorption in the intestinal cells and this inhibitory effect of lycopene is mediated, at least in part, by LXRα-NPC1L1 signaling pathway. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma

    PubMed Central

    Zhao, Luqing; Tang, Min; Hu, Zheyu; Yan, Bin; Pi, Weiwei; Li, Zhi; Zhang, Jing; Zhang, Liqin; Jiang, Wuzhong; Li, Guo; Qiu, Yuanzheng; Hu, Fang; Liu, Feng; Lu, Jingchen; Chen, Xue; Xiao, Lanbo; Xu, Zhijie; Tao, Yongguang; Yang, Lifang; Bode, Ann M.; Dong, Zigang; Zhou, Jian; Fan, Jia; Sun, Lunquan; Cao, Ya

    2015-01-01

    microRNAs (miRNAs) are involved in the various processes of DNA damage repair and play crucial roles in regulating response of tumors to radiation therapy. Here, we used nasopharyngeal carcinoma (NPC) radio-resistant cell lines as models and found that the expression of miR-504 was significantly up-regulated. In contrast, the expression of nuclear respiratory factor 1 (NRF1) and other mitochondrial metabolism factors, including mitochondrial transcription factor A (TFAM) and oxidative phosphorylation (OXPHOS) complex III were down-regulated in these cell lines. At the same time, the Seahorse cell mitochondrial stress test results indicated that the mitochondrial respiratory capacity was impaired in NPC radio-resistant cell lines and in a miR-504 over-expressing cell line. We also conducted dual luciferase reporter assays and verified that miR-504 could directly target NRF1. Additionally, miR-504 could down-regulate the expression of TFAM and OXPHOS complexes I, III, and IV and impaired the mitochondrial respiratory function of NPC cells. Furthermore, serum from NPC patients showed that miR-504 was up-regulated during different weeks of radiotherapy and correlated with tumor, lymph nodes and metastasis (TNM) stages and total tumor volume. The radio-therapeutic effect at three months after radiotherapy was evaluated. Results indicated that patients with high expression of miR-504 exhibited a relatively lower therapeutic effect ratio of complete response (CR), but a higher ratio of partial response (PR), compared to patients with low expression of miR-504. Taken together, these results demonstrated that miR-504 affected the radio-resistance of NPC by down-regulating the expression of NRF1 and disturbing mitochondrial respiratory function. Thus, miR-504 might become a promising biomarker of NPC radio-resistance and targeting miR-504 might improve tumor radiation response. PMID:26201446

  14. Differential regulation of ATP binding cassette protein A1 expression and ApoA-I lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages.

    PubMed

    Wang, Ming-Dong; Franklin, Vivian; Sundaram, Meenakshi; Kiss, Robert S; Ho, Kenneth; Gallant, Michel; Marcel, Yves L

    2007-08-03

    Niemann-Pick type C1 (Npc1) protein inactivation results in lipid accumulation in late endosomes and lysosomes, leading to a defect of ATP binding cassette protein A1 (Abca1)-mediated lipid efflux to apolipoprotein A-I (apoA-I) in macrophages and fibroblasts. However, the role of Npc1 in Abca1-mediated lipid efflux to apoA-I in hepatocytes, the major cells contributing to HDL formation, is still unknown. Here we show that, whereas lipid efflux to apoA-I in Npc1-null macrophages is impaired, the lipidation of endogenously synthesized apoA-I by low density lipoprotein-derived cholesterol or de novo synthesized cholesterol or phospholipids in Npc1-null hepatocytes is significantly increased by about 1-, 3-, and 8-fold, respectively. The increased cholesterol efflux reflects a major increase of Abca1 protein in Npc1-null hepatocytes, which contrasts with the decrease observed in Npc1-null macrophages. The increased Abca1 expression is largely post-transcriptional, because Abca1 mRNA is only slightly increased and Lxr alpha mRNA is not changed, and Lxr alpha target genes are reduced. This differs from the regulation of Abcg1 expression, which is up-regulated at both mRNA and protein levels in Npc1-null cells. Abca1 protein translation rate is higher in Npc1-null hepatocytes, compared with wild type hepatocytes as measured by [(35)S]methionine incorporation, whereas there is no difference for the degradation of newly synthesized Abca1 in these two types of hepatocytes. Cathepsin D, which we recently identified as a positive modulator of Abca1, is markedly increased at both mRNA and protein levels by Npc1 inactivation in hepatocytes but not in macrophages. Consistent with this, inhibition of cathepsin D with pepstatin A reduced the Abca1 protein level in both Npc1-inactivated and WT hepatocytes. Therefore, Abca1 expression is specifically regulated in hepatocytes, where Npc1 activity modulates cathepsin D expression and Abca1 protein translation rate.

  15. Ontogenic changes in lung cholesterol metabolism, lipid content, and histology in mice with Niemann-Pick type C disease.

    PubMed

    Ramirez, Charina M; Lopez, Adam M; Le, Lam Q; Posey, Kenneth S; Weinberg, Arthur G; Turley, Stephen D

    2014-01-01

    Niemann-Pick Type C (NPC) disease is caused by a deficiency of either NPC1 or NPC2. Loss of function of either protein results in the progressive accumulation of unesterified cholesterol in every tissue leading to cell death and organ damage. Most literature on NPC disease focuses on neurological and liver manifestations. Pulmonary dysfunction is less well described. The present studies investigated how Npc1 deficiency impacts the absolute weight, lipid composition and histology of the lungs of Npc1(-/-) mice (Npc1(nih)) at different stages of the disease, and also quantitated changes in the rates of cholesterol and fatty acid synthesis in the lung over this same time span (8 to 70days of age). Similar measurements were made in Npc2(-/-) mice at 70days. All mice were of the BALB/c strain and were fed a basal rodent chow diet. Well before weaning, the lung weight, cholesterol and phospholipid (PL) content, and cholesterol synthesis rate were all elevated in the Npc1(-/-) mice and remained so at 70days of age. In contrast, lung triacylglycerol content was reduced while there was no change in lung fatty acid synthesis. Despite the elevated PL content, the composition of PL in the lungs of the Npc1(-/-) mice was unchanged. H&E staining revealed an age-related increase in the presence of lipid-laden macrophages in the alveoli of the lungs of the Npc1(-/-) mice starting as early as 28days. Similar metabolic and histologic changes were evident in the lungs of the Npc2(-/-) mice. Together these findings demonstrate an intrinsic lung pathology in NPC disease that is of early onset and worsens over time. © 2013.

  16. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat*

    PubMed Central

    Munkacsi, Andrew B.; Hammond, Natalie; Schneider, Remy T.; Senanayake, Dinindu S.; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J.; Ory, Daniel S.; Maue, Robert A.; Chen, Fannie W.; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J.; Ginsberg, Henry N.; Ioannou, Yiannis A.; Sturley, Stephen L.

    2017-01-01

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1−/−) and missense (Npc1nmf164) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. PMID:28031458

  17. BRAIN REGENERATION IN PHYSIOLOGY AND PATHOLOGY: THE IMMUNE SIGNATURE DRIVING THERAPEUTIC PLASTICITY OF NEURAL STEM CELLS

    PubMed Central

    Martino, Gianvito; Pluchino, Stefano; Bonfanti, Luca; Schwartz, Michal

    2013-01-01

    Regenerative processes occurring under physiological (maintenance) and pathological (reparative) conditions are a fundamental part of life and vary greatly among different species, individuals, and tissues. Physiological regeneration occurs naturally as a consequence of normal cell erosion, or as an inevitable outcome of any biological process aiming at the restoration of homeostasis. Reparative regeneration occurs as a consequence of tissue damage. Although the central nervous system (CNS) has been considered for years as a “perennial” tissue, it has recently become clear that both physiological and reparative regeneration occur also within the CNS to sustain tissue homeostasis and repair. Proliferation and differentiation of neural stem/progenitor cells (NPCs) residing within the healthy CNS, or surviving injury, are considered crucial in sustaining these processes. Thus a large number of experimental stem cell-based transplantation systems for CNS repair have recently been established. The results suggest that transplanted NPCs promote tissue repair not only via cell replacement but also through their local contribution to changes in the diseased tissue milieu. This review focuses on the remarkable plasticity of endogenous and exogenous (transplanted) NPCs in promoting repair. Special attention will be given to the cross-talk existing between NPCs and CNS-resident microglia as well as CNS-infiltrating immune cells from the circulation, as a crucial event sustaining NPC-mediated neuroprotection. Finally, we will propose the concept of the context-dependent potency of transplanted NPCs (therapeutic plasticity) to exert multiple therapeutic actions, such as cell replacement, neurotrophic support, and immunomodulation, in CNS repair. PMID:22013212

  18. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes.

    PubMed

    Bestembayeva, Aizhan; Kramer, Armin; Labokha, Aksana A; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V; Ford, Ian J; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W

    2015-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins, and is therefore not well understood. Here, we show that stiffness topography with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel.

  19. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    PubMed Central

    Labokha, Aksana A.; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V.; Ford, Ian J.; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W.

    2014-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ~5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC1. Whilst the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized2-5, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins5,6, and is therefore not well understood. Here, we show that stiffness topography7 with sharp atomic force microscopy tips can generate nanoscale cross sections of the NPC. The cross sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy2-5. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport, and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel. PMID:25420031

  20. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    NASA Astrophysics Data System (ADS)

    Bestembayeva, Aizhan; Kramer, Armin; Labokha, Aksana A.; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V.; Ford, Ian J.; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W.

    2015-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins, and is therefore not well understood. Here, we show that stiffness topography with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel.

  1. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson's disease.

    PubMed

    Ebert, Allison D; Beres, Amy J; Barber, Amelia E; Svendsen, Clive N

    2008-01-01

    Growth factors such as glial cell line-derived neurotrophic factor (GDNF) have been shown to prevent neurodegeneration and promote regeneration in many animal models of Parkinson's disease (PD). Insulin-like growth factor 1 (IGF-1) is also known to have neuroprotective effects in a number of disease models but has not been extensively studied in models of PD. We produced human neural progenitor cells (hNPC) releasing either GDNF or IGF-1 and transplanted them into a rat model of PD. hNPC secreting either GDNF or IGF-1 were shown to significantly reduce amphetamine-induced rotational asymmetry and dopamine neuron loss when transplanted 7 days after a 6-hydroxydopamine (6-OHDA) lesion. Neither untransduced hNPC nor a sham transplant had this effect suggesting GDNF and IGF-1 release was required. Interestingly, GDNF, but not IGF-1, was able to protect or regenerate tyrosine hydroxylase-positive fibers in the striatum. In contrast, IGF-1, but not GDNF, significantly increased the overall survival of hNPC both in vitro and following transplantation. This suggests a dual role of IGF-1 to both increase hNPC survival after transplantation and exert trophic effects on degenerating dopamine neurons in this rat model of PD.

  2. miR-491-5p suppresses cell growth and invasion by targeting Notch3 in nasopharyngeal carcinoma.

    PubMed

    Zhang, Qi; Li, Qiang; Xu, Tao; Jiang, Hui; Xu, Lin-Gen

    2016-06-01

    MicroRNAs (miRNAs) have critical roles in the progression of nasopharyngeal carcinoma (NPC), a highly invasive and metastatic cancer that is widely prevalent in Southern China. miR-491-5p has been implicated in multiple types of cancer; however, its biological role and underlying mechanism in NPC have not been fully explored. In the present study, we found that miR-491-5p was downregulated in NPC tissues and cell lines compared with the corresponding normal counterparts. Overexpression of miR-491-5p significantly inhibited cell proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Using miRNA target prediction algorithms and reporter assays, we showed that miR-491-5p suppressed Notch3 expression both at the mRNA and protein level through directly targeting the 3' untranslated region (3'-UTR) of Notch3 mRNA. Overexpression of Notch3 significantly reversed the tumor-suppressive effects of miR‑491-5p. Taken together, the present study reveals a mechanistic link between miR-491-5p and Notch3 in the pathogenesis of NPC and that miR-491-5p has potential as a therapeutic target for NPC.

  3. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy

    PubMed Central

    Tan, Zheqiong; Xiao, Lanbo; Tang, Min; Bai, Fang; Li, Jiangjiang; Li, Liling; Shi, Feng; Li, Namei; Li, Yueshuo; Du, Qianqian; Lu, Jingchen; Weng, Xinxian; Yi, Wei; Zhang, Hanwen; Fan, Jia; Zhou, Jian; Gao, Qiang; Onuchic, José N.; Bode, Ann M.; Luo, Xiangjian; Cao, Ya

    2018-01-01

    Nasopharyngeal carcinoma (NPC) has a particularly high prevalence in southern China, southeastern Asia and northern Africa. Radiation resistance remains a serious obstacle to successful treatment in NPC. This study aimed to explore the metabolic feature of radiation-resistant NPC cells and identify new molecular-targeted agents to improve the therapeutic effects of radiotherapy in NPC. Methods: Radiation-responsive and radiation-resistant NPC cells were used as the model system in vitro and in vivo. Metabolomics approach was used to illustrate the global metabolic changes. 13C isotopomer tracing experiment and Seahorse XF analysis were undertaken to determine the activity of fatty acid oxidation (FAO). qRT-PCR was performed to evaluate the expression of essential FAO genes including CPT1A. NPC tumor tissue microarray was used to investigate the prognostic role of CPT1A. Either RNA interference or pharmacological blockade by Etomoxir were used to inhibit CPT1A. Radiation resistance was evaluated by colony formation assay. Mitochondrial membrane potential, apoptosis and neutral lipid content were measured by flow cytometry analysis using JC-1, Annexin V and LipidTOX Red probe respectively. Molecular markers of mitochondrial apoptosis were detected by western blot. Xenografts were treated with Etomoxir, radiation, or a combination of Etomoxir and radiation. Mitochondrial apoptosis and lipid droplets content of tumor tissues were detected by cleaved caspase 9 and Oil Red O staining respectively. Liquid chromatography coupled with tandem mass spectrometry approach was used to identify CPT1A-binding proteins. The interaction of CPT1A and Rab14 were detected by immunoprecipitation, immunofluorescence and in situ proximity ligation analysis. Fragment docking and direct coupling combined computational protein-protein interaction prediction method were used to predict the binding interface. Fatty acid trafficking was measured by pulse-chase assay using BODIPY C16 and MitoTracker Red probe. Results: FAO was active in radiation-resistant NPC cells, and the rate-limiting enzyme of FAO, carnitine palmitoyl transferase 1 A (CPT1A), was consistently up-regulated in these cells. The protein level of CPT1A was significantly associated with poor overall survival of NPC patients following radiotherapy. Inhibition of CPT1A re-sensitized NPC cells to radiation therapy by activating mitochondrial apoptosis both in vitro and in vivo. In addition, we identified Rab14 as a novel CPT1A binding protein. The CPT1A-Rab14 interaction facilitated fatty acid trafficking from lipid droplets to mitochondria, which decreased radiation-induced lipid accumulation and maximized ATP production. Knockdown of Rab14 attenuated CPT1A-mediated fatty acid trafficking and radiation resistance. Conclusion: An active FAO is a vital signature of NPC radiation resistance. Targeting CPT1A could be a beneficial regimen to improve the therapeutic effects of radiotherapy in NPC patients. Importantly, the CPT1A-Rab14 interaction plays roles in CPT1A-mediated radiation resistance by facilitating fatty acid trafficking. This interaction could be an attractive interface for the discovery of novel CPT1A inhibitors. PMID:29721083

  4. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT.

    PubMed

    Wang, Jun; Kang, Min; Wen, Qin; Qin, Yu-Tao; Wei, Zhu-Xin; Xiao, Jing-Jian; Wang, Ren-Sheng

    2017-04-01

    Nasopharyngeal carcinoma (NPC) is a tumor of epithelial origin with radiotherapy as its standard treatment. However, radioresistance remains a critical issue in the treatment of NPC. This study aimed to investigate the effect of berberine on the proliferation, cell cycle regulation, apoptosis, radioresistance of NPC cells and whether specificity protein 1 (Sp1) is a functional target of berberine. Our results showed that treatment with berberine reduced the proliferation and viability of CNE-2 cells in a dose- and time‑dependent manner. Berberine induced cell cycle arrest in the G0/G1 phase and apoptosis. In CNE-2 cells exposed to gamma‑ray irradiation, berberine reduced cell viability at various concentrations (25, 50, 75 and 100 µmol/l). Berberine significantly decreased mRNA and protein expression of Sp1 in the CNE-2 cells. Mithramycin A, a selective Sp1 inhibitor, enhanced the radiosensitivity and the rate of apoptosis in the CNE-2 cells. Berberine inhibited transforming growth factor-β (TGF-β)-induced tumor invasion and suppressed epithelial-to-mesenchymal transition (EMT) process, as evidenced by increased E-cadherin and decreased vimentin proteins. Sp1 may be required for the TGF-β1-induced invasion and EMT by berberine. In conclusion, berberine demonstrated the ability to suppress proliferation, induce cell cycle arrest and apoptosis, and enhance radiosensitivity of the CNE-2 NPC cells. Sp1 may be a target of berberine which is decreased during the radiosensitization of berberine.

  5. Unusual coexistence of extramedullary plasmacytoma and nasopharyngeal carcinoma in nasopharynx.

    PubMed

    Du, Ri-Chang; Li, Hai-Nan; Huang, Wei; Tian, Xiao-Ying; Li, Zhi

    2015-09-17

    Nasopharyngeal carcinoma (NPC) is an EBV-associated malignant tumor of nasopharynx. As extremely rare condition, the second primary cancer of nasopharynx can occur in NPC patients synchronously or subsequently. Extramedullary plasmacytoma (EMP) is a rare tumor and commonly originates in the head and neck region. However, there is no report to describe a collision tumor of NPC and EMP occurring in the same nasopharyngeal mass. We report here an unusual case of synchronous coexistence of NPC and EMP occurring in the nasopharynx of an old male patient. A 63-year-old male patient presented with a 3-month history of right-sided nasal obstruction and recently intermittent epistaxis without enlargement of cervical lymph nodes. The solitary mass of nasopharynx was found by radiological and nasopharyngeal examination. Histologically, the mass contained two separated portions and displayed typically histological features of NPC and EMP, respectively. In EMP portion, the tumor was composed of monomorphic plasmacytoid-appearing cells with immuno-positive to CD79a, CD138, CD38, MUM-1 and CD56, but lack immunoreactivity to pan-CK (AE1/AE3), CD20, CD21 and EBERs. In NPC portion, the tumor cells formed irregular-shaped islands with diffusely immuno-positive to pan-CK (AE1/AE3), EMA and EBERs, but lack expressions of lymphoplasmacytic markers. A diagnosis of simultaneous occurrence of EMP and NPC in nasopharynx was made. There was no evidence of tumor recurrence or metastasis 18-month follow-up after radiotherapy. To our knowledge, it may be the first case of coexistence of EMP and NPC synchronously. In addition, the histological differential diagnosis and relevant potential mechanism of this unusual collision tumor were also discussed.

  6. Microarray expression analysis and identification of serum biomarkers for Niemann-Pick disease, type C1.

    PubMed

    Cluzeau, Celine V M; Watkins-Chow, Dawn E; Fu, Rao; Borate, Bhavesh; Yanjanin, Nicole; Dail, Michelle K; Davidson, Cristin D; Walkley, Steven U; Ory, Daniel S; Wassif, Christopher A; Pavan, William J; Porter, Forbes D

    2012-08-15

    Niemann-Pick disease type C (NPC) is a lysosomal storage disorder characterized by liver disease and progressive neurodegeneration. Deficiency of either NPC1 or NPC2 leads to the accumulation of cholesterol and glycosphingolipids in late endosomes and early lysosomes. In order to identify pathological mechanisms underlying NPC and uncover potential biomarkers, we characterized liver gene expression changes in an Npc1 mouse model at six ages spanning the pathological progression of the disease. We identified altered gene expression at all ages, including changes in asymptomatic, 1-week-old mice. Biological pathways showing early altered gene expression included: lipid metabolism, cytochrome P450 enzymes involved in arachidonic acid and drug metabolism, inflammation and immune responses, mitogen-activated protein kinase and G-protein signaling, cell cycle regulation, cell adhesion and cytoskeleton remodeling. In contrast, apoptosis and oxidative stress appeared to be late pathological processes. To identify potential biomarkers that could facilitate monitoring of disease progression, we focused on a subset of 103 differentially expressed genes that encode secreted proteins. Further analysis identified two secreted proteins with increased serum levels in NPC1 patients: galectin-3 (LGALS3), a pro-inflammatory molecule, and cathepsin D (CTSD), a lysosomal aspartic protease. Elevated serum levels of both proteins correlated with neurological disease severity and appeared to be specific for NPC1. Expression of Lgals3 and Ctsd was normalized following treatment with 2-hydroxypropyl-β-cyclodextrin, a therapy that reduces pathological findings and significantly increases Npc1(-/-) survival. Both LGALS3 and CTSD have the potential to aid in diagnosis and serve as biomarkers to monitor efficacy in therapeutic trials.

  7. Programmed hyperphagia secondary to increased hypothalamic SIRT1.

    PubMed

    Desai, Mina; Li, Tie; Han, Guang; Ross, Michael G

    2014-11-17

    Small for gestational age (SGA) offspring exhibit reduced hypothalamic neural satiety pathways leading to programmed hyperphagia and adult obesity. Appetite regulatory site, the hypothalamic arcuate nucleus (ARC) contains appetite (NPY/AgRP) and satiety (POMC) neurons. Using in vitro culture of hypothalamic neuroprogenitor cells (NPC) which form the ARC, we demonstrated that SGA offspring exhibit reduced NPC proliferation and neuronal differentiation. bHLH protein Hes1 promotes NPC self-renewal and inhibits differentiation by repressing neuronal differentiation genes (Mash1, neurogenin3). We hypothesized that Hes1/Mash1 and ultimately ARC neuronal differentiation and expression of NPY/POMC neurons are influenced by SIRT1 which is a nutrient sensor and a histone deacetylase. Control dams received ad libitum food, whereas study dams were 50% food-restricted from pregnancy day 10 to 21 (SGA). In vivo studies showed that SGA newborns and adult offspring had increased protein expression of hypothalamic/ARC SIRT1 and AgRP with decreased POMC. Additionally, SGA newborns had decreased expression of hypothalamic neurogenic factors with reduced in vivo NPC proliferation. In vitro culture of hypothalamic NPCs showed similar changes with elevated SIRT1 binding to Hes1 in SGA newborn. Silencing SIRT1 increased NPC proliferation and Hes1 and Tuj1expression in both Control and SGA NPCs. Although SGA NPC proliferation remained below that of Controls, it was higher than Control NPCs in the absence of SIRT1 siRNA. The direct impact of SIRT1 on NPC proliferation and differentiation were further confirmed with pharmacologic SIRT1 inhibitor and activator. Thus, in SGA newborns elevated SIRT1 induces premature differentiation of NPCs, reducing the NPC pool and cell proliferation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Programmed Hyperphagia secondary to Increased Hypothalamic SIRT1

    PubMed Central

    Desai, Mina; Li, Tie; Han, Guang; Ross, Michael G.

    2014-01-01

    Small for gestational age (SGA) offspring exhibit reduced hypothalamic neural satiety pathways leading to programmed hyperphagia and adult obesity. Appetite regulatory site, the hypothalamic arcuate nucleus (ARC) contains appetite (NPY/AgRP) and satiety (POMC) neurons. Using in vitro culture of hypothalamic neuroprogenitor cells (NPC) which form the ARC, we demonstrated that SGA offspring exhibit reduced NPC proliferation and neuronal differentiation. bHLH protein Hes1 promotes NPC self-renewal and inhibits differentiation by repressing neuronal differentiation genes (Mash1, neurogenin3). We hypothesized that Hes1/Mash1 and ultimately ARC neuronal differentiation and expression of NPY/POMC neurons are influenced by SIRT1 which is a nutrient sensor and a histone deacetylase. Control dams received ad libitum food, whereas study dams were 50% food-restricted from pregnancy day 10 to 21 (SGA). In vivo studies showed that SGA newborns and adult offspring had increased protein expression of hypothalamic/ARC SIRT1 and AgRP with decreased POMC. Additionally, SGA newborns had decreased expression of hypothalamic neurogenic factors with reduced in vivo NPC proliferation. In vitro culture of hypothalamic NPCs showed similar changes with elevated SIRT1 binding to Hes1 in SGA newborn. Silencing SIRT1 increased NPC proliferation and Hes1 and Tuj1expression in both Control and SGA NPCs. Although SGA NPC proliferation remained below that of Controls, it was higher than Control NPCs in the absence of SIRT1 siRNA. The direct impact of SIRT1 on NPC proliferation and differentiation were further confirmed with pharmacologic SIRT1 inhibitor and activator. Thus, in SGA newborns elevated SIRT1 induces premature differentiation of NPCs, reducing the NPC pool and cell proliferation. PMID:25245521

  9. Conserved mutation of Epstein-Barr virus-encoded BamHI-A Rightward Frame-1 (BARF1) gene in Indonesian nasopharyngeal carcinoma

    PubMed Central

    2010-01-01

    Background BamHI-A rightward frame-1 (BARF1) is a carcinoma-specific Epstein-Barr virus (EBV) encoded oncogene. Here we describe the BARF1 sequence diversity in nasopharyngeal carcinoma (NPC), other EBV-related diseases and Indonesian healthy EBV carriers in relation to EBV genotype, viral load and serology markers. Nasopharyngeal brushings from 56 NPC cases, blood or tissue from 15 other EBV-related disorders, spontaneous B cell lines (LCL) from 5 Indonesian healthy individuals and several prototype EBV isolates were analysed by PCR-direct sequencing. Results Most NPC isolates revealed specific BARF1 nucleotide changes compared to prototype B95-8 virus. At the protein level these mutations resulted in 3 main substitutions (V29A, W72G, H130R), which are not considered to cause gross tertiary structure alterations in the hexameric BARF1 protein. At least one amino acid conversion was detected in 80.3% of NPC samples compared to 33.3% of non-NPC samples (p < 0.001) and 40.0% of healthy LCLs (p = 0.074). NPC isolates also showed more frequent codon mutation than non-NPC samples. EBV strain typing revealed most isolates as EBV type 1. The viral load of either NPC or non-NPC samples was high, but only in non- NPC group it related to a particular BARF1 variant. Serology on NPC sera using IgA/EBNA-1 ELISA, IgA/VCA-p18 ELISA and immunoblot score showed no relation with BARF1 sequence diversity (p = 0.802, 0.382 and 0.058, respectively). NPC patients had variable antibody reactivity against purified hexameric NPC-derived BARF1 irrespective of the endogenous BARF1 sequence. Conclusion The sequence variation of BARF1 observed in Indonesian NPC patients and controls may reflect a natural selection of EBV strains unlikely to be predisposing to carcinogenesis. The conserved nature of BARF1 may reflect an important role in EBV (epithelial) persistence. PMID:20849661

  10. Conserved mutation of Epstein-Barr virus-encoded BamHI-A Rightward Frame-1 (BARF1) gene in Indonesian nasopharyngeal carcinoma.

    PubMed

    Hutajulu, Susanna H; Hoebe, Eveline K; Verkuijlen, Sandra Awm; Fachiroh, Jajah; Hariwijanto, Bambang; Haryana, Sofia M; Stevens, Servi Jc; Greijer, Astrid E; Middeldorp, Jaap M

    2010-09-19

    BamHI-A rightward frame-1 (BARF1) is a carcinoma-specific Epstein-Barr virus (EBV) encoded oncogene. Here we describe the BARF1 sequence diversity in nasopharyngeal carcinoma (NPC), other EBV-related diseases and Indonesian healthy EBV carriers in relation to EBV genotype, viral load and serology markers. Nasopharyngeal brushings from 56 NPC cases, blood or tissue from 15 other EBV-related disorders, spontaneous B cell lines (LCL) from 5 Indonesian healthy individuals and several prototype EBV isolates were analysed by PCR-direct sequencing. Most NPC isolates revealed specific BARF1 nucleotide changes compared to prototype B95-8 virus. At the protein level these mutations resulted in 3 main substitutions (V29A, W72G, H130R), which are not considered to cause gross tertiary structure alterations in the hexameric BARF1 protein. At least one amino acid conversion was detected in 80.3% of NPC samples compared to 33.3% of non-NPC samples (p < 0.001) and 40.0% of healthy LCLs (p = 0.074). NPC isolates also showed more frequent codon mutation than non-NPC samples. EBV strain typing revealed most isolates as EBV type 1. The viral load of either NPC or non-NPC samples was high, but only in non- NPC group it related to a particular BARF1 variant. Serology on NPC sera using IgA/EBNA-1 ELISA, IgA/VCA-p18 ELISA and immunoblot score showed no relation with BARF1 sequence diversity (p = 0.802, 0.382 and 0.058, respectively). NPC patients had variable antibody reactivity against purified hexameric NPC-derived BARF1 irrespective of the endogenous BARF1 sequence. The sequence variation of BARF1 observed in Indonesian NPC patients and controls may reflect a natural selection of EBV strains unlikely to be predisposing to carcinogenesis. The conserved nature of BARF1 may reflect an important role in EBV (epithelial) persistence.

  11. Integrated pathway analysis of nasopharyngeal carcinoma implicates the axonemal dynein complex in the Malaysian cohort.

    PubMed

    Chin, Yoon-Ming; Tan, Lu Ping; Abdul Aziz, Norazlin; Mushiroda, Taisei; Kubo, Michiaki; Mohd Kornain, Noor Kaslina; Tan, Geok Wee; Khoo, Alan Soo-Beng; Krishnan, Gopala; Pua, Kin-Choo; Yap, Yoke-Yeow; Teo, Soo-Hwang; Lim, Paul Vey-Hong; Nakamura, Yusuke; Lum, Chee Lun; Ng, Ching-Ching

    2016-10-15

    Nasopharyngeal carcinoma (NPC) is an epithelial squamous cell carcinoma on the mucosal lining of the nasopharynx. The etiology of NPC remains elusive despite many reported studies. Most studies employ a single platform approach, neglecting the cumulative influence of both the genome and transcriptome toward NPC development. We aim to employ an integrated pathway approach to identify dysregulated pathways linked to NPC. Our approach combines imputation NPC GWAS data from a Malaysian cohort as well as published expression data GSE12452 from both NPC and non-NPC nasopharynx tissues. Pathway association for GWAS data was performed using MAGENTA while for expression data, GSA-SNP was used with gene p values derived from differential expression values from GEO2R. Our study identified NPC association in the gene ontology (GO) axonemal dynein complex pathway (pGWAS-GSEA  = 1.98 × 10(-2) ; pExpr-GSEA  = 1.27 × 10(-24) ; pBonf-Combined  = 4.15 × 10(-21) ). This association was replicated in a separate cohort using gene expression data from NPC and non-NPC nasopharynx tissues (pAmpliSeq-GSEA  = 6.56 × 10(-4) ). Loss of function in the axonemal dynein complex causes impaired cilia function, leading to poor mucociliary clearance and subsequently upper or lower respiratory tract infection, the former of which includes the nasopharynx. Our approach illustrates the potential use of integrated pathway analysis in detecting gene sets involved in the development of NPC in the Malaysian cohort. © 2016 UICC.

  12. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    PubMed

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  13. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor

    PubMed Central

    Sainz, Bruno; Barretto, Naina; Martin, Danyelle N.; Hiraga, Nobuhiko; Imamura, Michio; Hussain, Snawar; Marsh, Katherine A.; Yu, Xuemei; Chayama, Kazuaki; Alrefai, Waddah A.; Uprichard, Susan L.

    2011-01-01

    Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ~170 million individuals infected and current interferon-based treatment having toxic side-effects and marginal efficacy, more effective antivirals are critically needed1. Although HCV protease inhibitors were just FDA approved, analogous to HIV therapy, optimal HCV therapy likely will require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a promising multi-faceted target for antiviral intervention; however, to date FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-Like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection as silencing or antibody-mediated blocking of NPC1L1 impairs cell-cultured-derived HCV (HCVcc) infection initiation. In addition, the clinically-available FDA-approved NPC1L1 antagonist ezetimibe2,3 potently blocks HCV uptake in vitro via a virion cholesterol-dependent step prior to virion-cell membrane fusion. Importantly, ezetimibe inhibits infection of all major HCV genotypes in vitro, and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor, but also discovered a new antiviral target and potential therapeutic agent. PMID:22231557

  14. [Study of the relationship among expression of Survivin and MRP and the drug resistance in human nasopharyngeal carcinoma].

    PubMed

    Yang, Ning; Zhu, Lepan; Tan, Tan; Hou, Chunyan

    2015-02-01

    This study aimed to explore the relationship among expression of Survivin and MRP and drug resistance in NPC. Expression of Survivin were detected by immunohistochemistry method in 45 cases of NPC and 24 cases of normal mucous membrane of nasopharynx (NMMN). The relationship between expression of Survivin and pathological factors in NPC were analysized. Expression of Survivin and MRP were detected in 31 patients of NPC with paclitaxel resistance and 20 patients of NPC without paclitaxel resistance. The relation- ship among the expression of Survivin or MRP and paclitaxel resistance in NPC were analysized. The paclitaxel resistance cell line, 5-8F-PTX(+); was established by a step-increased method. The expression of Survivin and MRP were detected by western blot in 5-8F-PTX(+) and 5-8F. The positive were 71. 1% (32/45) in NPC and 8.33% (2/24) in NMMN. And there were significantly differences between them (P < .05). There were relationship among expression of Survivin and differentiation degree, lymph node metastasis, distant metastasis, and clinic stages of NPC. The positive were 75.9% (31/39) in moderately differentiated NPC and 16.7% (1/6) in lowly differentiated NPC, respectively. There were significantly differences between them (P < 0.05). The positive of Survivin were 83.9% (26/31) in NPC patients with paclitaxel resistance and 45.0% (9/20) in NPC patients without Paclitaxel resistance, respectively. There were significantly differences between them (P < 0.05). The positive of MRP were 87.1% (27/31) in NPC patients with paclitaxel resistance and 40.0% (8/20) in NPC patients without paclitaxel resistance, respectively. There were significantly differences between them (P < 0.05). There were positive correlation between the expression of Survivin and MRP in NPC patients with Paclitaxel resistance. The expression of Survivin and MRP were higher in 5-8F-PTX(+) than in 5-8F. The IC50 of paclitaxel, cDDP, 5-FU and Vincristine were significantly higher in 5-8F-PTX(+) than in 5-8F. There were relationship among the expression of Survivin and difference, metastasis and TNM stages of NPC. Survivin may serves as a molecular marker for development and progress in NPC. There were relationship among the high expression of Survivin and MRP and increasing of drug resistance in NPC.

  15. Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway.

    PubMed

    Lin, Yu-Tsai; Wang, Hung-Chen; Hsu, Yi-Chiang; Cho, Chung-Lung; Yang, Ming-Yu; Chien, Chih-Yen

    2017-06-23

    Capsaicin is a potential chemotherapeutic agent for different human cancers. In Southeast China, nasopharyngeal carcinoma (NPC) has the highest incidence of all cancers, but final treatment outcomes are unsatisfactory. However, there is a lack of information regarding the anticancer activity of capsaicin in NPC cells, and its effects on the signaling transduction pathways related to apoptosis and autophagy remain unclear. In the present study, the precise mechanisms by which capsaicin exerts anti-proliferative effects, cell cycle arrest, autophagy and apoptosis were investigated in NPC-TW01 cells. Exposure to capsaicin inhibited cancer cell growth and increased G1 phase cell cycle arrest. Western blotting and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to measure capsaicin-induced autophagy via involvement of the class III PI3K/Beclin-1/Bcl-2 signaling pathway. Capsaicin induced autophagy by increasing levels of the autophagy markers LC3-II and Atg5, enhancing p62 and Fap-1 degradation and increasing caspase-3 activity to induce apoptosis, suggesting a correlation of blocking the PI3K/Akt/mTOR pathway with the above-mentioned anticancer activities. Taken together, these data confirm that capsaicin inhibited the growth of human NPC cells and induced autophagy, supporting its potential as a therapeutic agent for cancer.

  16. Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis.

    PubMed

    Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir

    2014-09-01

    Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. Copyright © 2014. Published by Elsevier B.V.

  17. Activation Mobilizes the Cholesterol in the Late Endosomes-Lysosomes of Niemann Pick Type C Cells

    PubMed Central

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2012-01-01

    A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3–4 hours, ∼4–5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease. PMID:22276143

  18. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1.

    PubMed

    Wang, Han; Shi, Yi; Song, Jian; Qi, Jianxun; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-01-14

    Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Novel insights into the role of NF-κB p50 in astrocyte-mediated fate specification of adult neural progenitor cells

    PubMed Central

    Bortolotto, Valeria; Grilli, Mariagrazia

    2017-01-01

    Within the CNS nuclear factor-kappa B (NF-κB) transcription factors are involved in a wide range of functions both in homeostasis and in pathology. Over the years, our and other groups produced a vast array of information on the complex involvement of NF-κB proteins in different aspects of postnatal neurogenesis. In particular, several extracellular signals and membrane receptors have been identified as being able to affect neural progenitor cells (NPC) and their progeny via NF-κB activation. A crucial role in the regulation of neuronal fate specification in adult hippocampal NPC is played by the NF-κB p50 subunit. NF-κB p50KO mice display a remarkable reduction in adult hippocampal neurogenesis which correlates with a selective defect in hippocampal-dependent short-term memory. Moreover absence of NF-κB p50 can profoundly affect the in vitro proneurogenic response of adult hippocampal NPC (ahNPC) to several endogenous signals and drugs. Herein we briefly review the current knowledge on the pivotal role of NF-κB p50 in the regulation of adult hippocampal neurogenesis. In addition we discuss more recent data that further extend the relevance of NF-κB p50 to novel astroglia-derived signals which can influence neuronal specification of ahNPC and to astrocyte-NPC cross-talk. PMID:28469638

  20. A PML/Slit Axis Controls Physiological Cell Migration and Cancer Invasion in the CNS.

    PubMed

    Amodeo, Valeria; A, Deli; Betts, Joanne; Bartesaghi, Stefano; Zhang, Ying; Richard-Londt, Angela; Ellis, Matthew; Roshani, Rozita; Vouri, Mikaella; Galavotti, Sara; Oberndorfer, Sarah; Leite, Ana Paula; Mackay, Alan; Lampada, Aikaterini; Stratford, Eva Wessel; Li, Ningning; Dinsdale, David; Grimwade, David; Jones, Chris; Nicotera, Pierluigi; Michod, David; Brandner, Sebastian; Salomoni, Paolo

    2017-07-11

    Cell migration through the brain parenchyma underpins neurogenesis and glioblastoma (GBM) development. Since GBM cells and neuroblasts use the same migratory routes, mechanisms underlying migration during neurogenesis and brain cancer pathogenesis may be similar. Here, we identify a common pathway controlling cell migration in normal and neoplastic cells in the CNS. The nuclear scaffold protein promyelocytic leukemia (PML), a regulator of forebrain development, promotes neural progenitor/stem cell (NPC) and neuroblast migration in the adult mouse brain. The PML pro-migratory role is active also in transformed mouse NPCs and in human primary GBM cells. In both normal and neoplastic settings, PML controls cell migration via Polycomb repressive complex 2 (PRC2)-mediated repression of Slits, key regulators of axon guidance. Finally, a PML/SLIT1 axis regulates sensitivity to the PML-targeting drug arsenic trioxide in primary GBM cells. Taken together, these findings uncover a drug-targetable molecular axis controlling cell migration in both normal and neoplastic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat.

    PubMed

    Munkacsi, Andrew B; Hammond, Natalie; Schneider, Remy T; Senanayake, Dinindu S; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J; Ory, Daniel S; Maue, Robert A; Chen, Fannie W; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J; Ginsberg, Henry N; Ioannou, Yiannis A; Sturley, Stephen L

    2017-03-17

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1 nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null ( Npc1 -/- ) and missense ( Npc1 nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Activation of the FGFR1 signalling pathway by the Epstein-Barr virus-encoded LMP1 promotes aerobic glycolysis and transformation of human nasopharyngeal epithelial cells.

    PubMed

    Lo, Angela Kwok-Fung; Dawson, Christopher W; Young, Lawrence S; Ko, Chuen-Wai; Hau, Pok-Man; Lo, Kwok-Wai

    2015-10-01

    Non-keratinizing nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signalling pathways which collectively promote cell proliferation, transformation, angiogenesis, and invasiveness, as well as modulation of energy metabolism. In this study, we report that LMP1 increases cellular uptake of glucose and glutamine, enhances LDHA activity and lactate production, but reduces pyruvate kinase activity and pyruvate concentrations. LMP1 also increases the phosphorylation of PKM2, LDHA, and FGFR1, as well as the expression of PDHK1, FGFR1, c-Myc, and HIF-1α, regardless of oxygen availability. Collectively, these findings suggest that LMP1 promotes aerobic glycolysis. With respect to FGFR1 signalling, LMP1 not only increases FGFR1 expression, but also up-regulates FGF2, leading to constitutive activation of the FGFR1 signalling pathway. Furthermore, two inhibitors of FGFR1 (PD161570 and SU5402) attenuate LMP1-mediated aerobic glycolysis, cellular transformation (proliferation and anchorage-independent growth), cell migration, and invasion in nasopharyngeal epithelial cells, identifying FGFR1 signalling as a key pathway in LMP1-mediated growth transformation. Immunohistochemical staining revealed that high levels of phosphorylated FGFR1 are common in primary NPC specimens and that this correlated with the expression of LMP1. In addition, FGFR1 inhibitors suppress cell proliferation and anchorage-independent growth of NPC cells. Our current findings demonstrate that LMP1-mediated FGFR1 activation contributes to aerobic glycolysis and transformation of epithelial cells, thereby implicating FGF2/FGFR1 signalling activation in the EBV-driven pathogenesis of NPC. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    PubMed

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  4. Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Upregulates Glucose Transporter 1 Transcription via the mTORC1/NF-κB Signaling Pathways

    PubMed Central

    Zhang, Jun; Jia, Lin; Lin, Weitao; Yip, Yim Ling; Lo, Kwok Wai; Lau, Victoria Ming Yi; Zhu, Dandan; Tsang, Chi Man; Zhou, Yuan; Deng, Wen; Lung, Hong Lok; Lung, Maria Li; Cheung, Lai Man

    2017-01-01

    ABSTRACT Accumulating evidence indicates that oncogenic viral protein plays a crucial role in activating aerobic glycolysis during tumorigenesis, but the underlying mechanisms are largely undefined. Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a transmembrane protein with potent cell signaling properties and has tumorigenic transformation property. Activation of NF-κB is a major signaling pathway mediating many downstream transformation properties of LMP1. Here we report that activation of mTORC1 by LMP1 is a key modulator for activation of NF-κB signaling to mediate aerobic glycolysis. NF-κB activation is involved in the LMP1-induced upregulation of glucose transporter 1 (Glut-1) transcription and growth of nasopharyngeal carcinoma (NPC) cells. Blocking the activity of mTORC1 signaling effectively suppressed LMP1-induced NF-κB activation and Glut-1 transcription. Interfering NF-κB signaling had no effect on mTORC1 activity but effectively altered Glut-1 transcription. Luciferase promoter assay of Glut-1 also confirmed that the Glut-1 gene is a direct target gene of NF-κB signaling. Furthermore, we demonstrated that C-terminal activating region 2 (CTAR2) of LMP1 is the key domain involved in mTORC1 activation, mainly through IKKβ-mediated phosphorylation of TSC2 at Ser939. Depletion of Glut-1 effectively led to suppression of aerobic glycolysis, inhibition of cell proliferation, colony formation, and attenuation of tumorigenic growth property of LMP1-expressing nasopharyngeal epithelial (NPE) cells. These findings suggest that targeting the signaling axis of mTORC1/NF-κB/Glut-1 represents a novel therapeutic target against NPC. IMPORTANCE Aerobic glycolysis is one of the hallmarks of cancer, including NPC. Recent studies suggest a role for LMP1 in mediating aerobic glycolysis. LMP1 expression is common in NPC. The delineation of essential signaling pathways induced by LMP1 in aerobic glycolysis contributes to the understanding of NPC pathogenesis. This study provides evidence that LMP1 upregulates Glut-1 transcription to control aerobic glycolysis and tumorigenic growth of NPC cells through mTORC1/NF-κB signaling. Our results reveal novel therapeutic targets against the mTORC1/NF-κB/Glut-1 signaling axis in the treatment of EBV-infected NPC. PMID:28053105

  5. Experimental Study of Nasopharyngeal Carcinoma Radionuclide Imaging and Therapy Using Transferred Human Sodium/Iodide Symporter Gene

    PubMed Central

    Zhong, Xing; Shi, Changzheng; Gong, Jian; Guo, Bin; Li, Mingzhu; Xu, Hao

    2015-01-01

    Purpose The aim of this study was to design a method of radionuclide for imaging and therapy of nasopharyngeal carcinoma (NPC) using the transferred human sodium/iodide symporter (hNIS) gene. Methods A stable NPC cell line expressing hNIS was established (CNE-2-hNIS). After 131I treatment, we detected proliferation and apoptosis of NPC cells, both in vitro and vivo. In vivo, the radioactivity of different organs of nude mice was counted and 99mTc imaging using SPECT was performed. The apparent diffusion coefficient (ADC) value changes of tumor xenografts were observed by diffusion-weighted magnetic resonance imaging (DW-MRI) within 6–24 days of 131I treatment. The correlation of ADC changes with apoptosis and proliferation was investigated. Post-treatment expression levels of P53, Bax, Bcl-2, Caspase-3, and Survivin proteins were detected by western blotting. Results 131I uptake was higher in CNE-2-hNIS than in CNE-2 cells. The proliferation and apoptosis rate decreased and increased respectively both in vitro and vivo in the experimental group after 131I treatment. The experimental group tumors accumulated 99mTc in vivo, leading to a good visualization by SPECT. DW-MRI showed that ADC values increased in the experimental group 6 days after treatment, while ADC values were positively and negatively correlated with the apoptotic and Ki-67 proliferation indices, respectively. After treatment, CNE-2-hNIS cells up-regulated the expression of P53 and Survivin proteins and activated Caspase-3, and down-regulated the expression of Bcl-2 proteins. Conclusions The radionuclide imaging and therapy technique for NPC hNIS-transfected cell lines can provide a new therapy strategy for monitoring and treatment of NPC. PMID:25615643

  6. Niemann-Pick C1 mice, a model of "juvenile Alzheimer's disease", with normal gene expression in neurons and fibrillary astrocytes show long term survival and delayed neurodegeneration.

    PubMed

    Borbon, Ivan; Totenhagen, John; Fiorenza, Maria Teresa; Canterini, Sonia; Ke, Wangjing; Trouard, Theodore; Erickson, Robert P

    2012-01-01

    Niemann-Pick C1 (NPC) disease, also known as "juvenile Alzheimer's disease", is a disease in which alterations in intracellular cholesterol trafficking occur. The contribution of various CNS cell types to the neurodegeneration has been of much interest. We have previously shown that expression of the normal gene only in fibrillary astrocytes could extend survival of Npc1-/- mice over 3-fold (Zhang et al., 2008 [13]). We have now studied expression only in neurons or in both neurons and fibrillary astrocytes. Neuron-only expression resulted in survivals of over a year (>5-fold) but motor symptoms started at about 6 months. As reflected in weight gain, this especially affected females who weighed less than wild-type starting at about 10 weeks while male differences in weight are delayed. Expression in both cell types led to a nearly normal phenotype with motor symptoms developing at about ten months and increased survival times. Purkinje cell loss was slowed, but severe, in both NSE- and NSE-GFAP-Npc1, transgenic Npc1-/- mice. MRI studies showed that myelination of the long tracts was significantly improved in NSE-Npc1 transgenics, perhaps less than in GFAP-Npc1 transgenics, and not differently than in the double transgenics. Memory was improved in both single and double transgenics. Somatic disease had not been ameliorated and lungs were massively infiltrated with foamy macrophages at 10 months. Our results suggest that neuron-only expression does not completely prevent neurodegeneration and that the addition of astrocyte expression decreases the rate/degree of decline.

  7. CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors.

    PubMed

    Kim, Jeonghun; Young, Christine; Lee, Jaewoo; Park, Min-Sik; Shahabuddin, Mohammed; Yamauchi, Yusuke; Kim, Jung Ho

    2016-10-27

    Carbon nanotubes (CNT) grown on nanoporous carbon (NPC), which yields coexisting amorphous and graphitic nanoarchitectures, have been prepared on a large scale from zeolitic imidazolate framework (ZIF) by introducing bimetallic ions (Co 2+ and Zn 2+ ). Interestingly, the hybrid Co/Zn-ZIF-derived NPC showed rich graphitic CNTs on the surface. This NPC was utilized for a coin-type supercapacitor cell with an aqueous electrolyte, which showed enhanced retention at high current density and good stability over 10 000 cycles.

  8. A Single Residue in Ebola Virus Receptor NPC1 Influences Cellular Host Range in Reptiles

    DTIC Science & Technology

    2016-09-07

    Bats are thought to be important reservoirs 63   for filoviruses; however, conclusive evidence in favor of this hypothesis has been obtained only...in the second luminal domain of 87   NPC1, domain C, is under positive selection in bats , and controls susceptibility of bat cells to 88   EBOV...278   We recently demonstrated that the residue 502 in NPC1 was under positive selection in 279   bats , and was responsible for the reduced

  9. Fomiroid A, a Novel Compound from the Mushroom Fomitopsis nigra, Inhibits NPC1L1-Mediated Cholesterol Uptake via a Mode of Action Distinct from That of Ezetimibe

    PubMed Central

    Chiba, Tomohiro; Sakurada, Tsuyoshi; Watanabe, Rie; Yamaguchi, Kohji; Kimura, Yasuhisa; Kioka, Noriyuki; Kawagishi, Hirokazu; Matsuo, Michinori; Ueda, Kazumitsu

    2014-01-01

    Hypercholesterolemia is one of the key risk factors for coronary heart disease, a major cause of death in developed countries. Suppression of NPC1L1-mediated dietary and biliary cholesterol absorption is predicted to be one of the most effective ways to reduce the risk of hypercholesterolemia. In a screen for natural products that inhibit ezetimibe glucuronide binding to NPC1L1, we found a novel compound, fomiroid A, in extracts of the mushroom Fomitopsis nigra. Fomiroid A is a lanosterone derivative with molecular formula C30H48O3. Fomiroid A inhibited ezetimibe glucuronide binding to NPC1L1, and dose-dependently prevented NPC1L1-mediated cholesterol uptake and formation of esterified cholesterol in NPC1L1-expressing Caco2 cells. Fomiroid A exhibited a pharmacological chaperone activity that corrected trafficking defects of the L1072T/L1168I mutant of NPC1L1. Because ezetimibe does not have such an activity, the binding site and mode of action of fomiroid A are likely to be distinct from those of ezetimibe. PMID:25551765

  10. miR156a Mimic Represses the Epithelial-Mesenchymal Transition of Human Nasopharyngeal Cancer Cells by Targeting Junctional Adhesion Molecule A.

    PubMed

    Tian, Yunhong; Cai, Longmei; Tian, Yunming; Tu, Yinuo; Qiu, Huizhi; Xie, Guofeng; Huang, Donglan; Zheng, Ronghui; Zhang, Weijun

    2016-01-01

    MicroRNAs (miRNAs) have been documented as having an important role in the development of cancer. Broccoli is very popular in large groups of the population and has anticancer properties. Junctional adhesion molecule A (JAMA) is preferentially concentrated at tight junctions and influences cell morphology and migration. Epithelial-mesenchymal transition (EMT) is a developmental program associated with cancer progression and metastasis. In this study we aimed to investigate the role of miRNAs from broccoli in human nasopharyngeal cancer (NPC). We demonstrated that a total of 84 conserved miRNAs and 184 putative novel miRNAs were found in broccoli by sequencing technology. Among these, miR156a was expressed the most. In addition, synthetic miR156a mimic inhibited the EMT of NPC cells in vitro. Furthermore, it was confirmed that JAMA was the target of miR156a mimic as validated by 3' UTR luciferase reporter assays and western blotting. Knockdown of JAMA was consistent with the effects of miR156a mimic on the EMT of NPC, and the up-regulation of JAMA could partially restore EMT repressed by miR156a mimic. In conclusion, these results indicate that the miR156a mimic inhibits the EMT of NPC cells by targeting the 3' UTR of JAMA. These miRNA profiles of broccoli provide a fundamental basis for further research. Moreover, the discovery of miR156a may have clinical implications for the treatment of patients with NPC.

  11. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF

    PubMed Central

    Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.

    2009-01-01

    The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202

  12. Expression of mismatch repair gene PMS2 in nasopharyngeal carcinoma and regulation by glycogen synthase kinase-3β in vivo and in vitro.

    PubMed

    Fang, Jugao; Lei, Wenbin; Huang, Xiaoming; Li, Pingdong; Chen, Xiaohong; Zhu, Xiaolin; Wen, Weiping; Li, Huabin

    2012-02-01

    To evaluate the expression of mismatch repair gene PMS2 in human nasopharyngeal carcinoma (NPC) tissues and evaluate the effect of glycogen synthase kinase (GSK)-3β on PMS2 production in vivo and in vitro. The expression of PMS2 and inactivated phosphorylated GSK-3β(s9) was examined by immunohistochemical staining in 25 NPC tissues and the relation was determined by correlation analysis. The effect of GSK-3β transfection in CNE-2 cells on PMS2 production as well as cell apoptosis and chemosensitization were evaluated using small interference RNA (siRNA), immunoblotting and flow cytometric analysis in vitro. The expression of inactivated phosphorylated GSK-3β(s9) was found to negative correlated with PMS2 in vivo. And transfected GSK-3β was found to be able to enhance PMS2 production, and increase cell apoptosis in CNE-2 cells in combination with cisplatin administration in vitro. Inactivation of GSK-3β might be important for NPC tumorgenesis through negatively regulating PMS2 production, and enhanced PMS2 production by GSK-3β is beneficial for understanding the NPC tumorgenesis and developing potential strategy for future therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Diagnostic tests for Niemann-Pick disease type C (NP-C): A critical review.

    PubMed

    Vanier, Marie T; Gissen, Paul; Bauer, Peter; Coll, Maria J; Burlina, Alberto; Hendriksz, Christian J; Latour, Philippe; Goizet, Cyril; Welford, Richard W D; Marquardt, Thorsten; Kolb, Stefan A

    2016-08-01

    Niemann-Pick disease type C (NP-C) is a neurovisceral lysosomal cholesterol trafficking and lipid storage disorder caused by mutations in one of the two genes, NPC1 or NPC2. Diagnosis has often been a difficult task, due to the wide range in age of onset of NP-C and clinical presentation of the disease, combined with the complexity of the cell biology (filipin) laboratory testing, even in combination with genetic testing. This has led to substantial delays in diagnosis, largely depending on the access to specialist centres and the level of knowledge about NP-C of the physician in the area. In recent years, advances in mass spectrometry has allowed identification of several sensitive plasma biomarkers elevated in NP-C (e.g. cholestane-3β,5α,6β-triol, lysosphingomyelin isoforms and bile acid metabolites), which, together with the concomitant progress in molecular genetic technology, have greatly impacted the strategy of laboratory testing. Specificity of the biomarkers is currently under investigation and other pathologies are being found to also result in elevations. Molecular genetic testing also has its limitations, notably with unidentified mutations and the classification of new variants. This review is intended to increase awareness on the currently available approaches to laboratory diagnosis of NP-C, to provide an up to date, comprehensive and critical evaluation of the various techniques (cell biology, biochemical biomarkers and molecular genetics), and to briefly discuss ongoing/future developments. The use of current tests in proper combination enables a rapid and correct diagnosis in a large majority of cases. However, even with recent progress, definitive diagnosis remains challenging in some patients, for whom combined genetic/biochemical/cytochemical markers do not provide a clear answer. Expertise and reference laboratories thus remain essential, and further work is still required to fulfill unmet needs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease.

    PubMed

    Chung, Chan; Elrick, Matthew J; Dell'Orco, James M; Qin, Zhaohui S; Kalyana-Sundaram, Shanker; Chinnaiyan, Arul M; Shakkottai, Vikram G; Lieberman, Andrew P

    2016-05-01

    Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC) disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1), promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders.

  15. Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid.

    PubMed

    Martin, C; Alonso, M I; Santiago, C; Moro, J A; De la Mano, A; Carretero, R; Gato, A

    2009-11-01

    Cerebrospinal fluid has shown itself to be an essential brain component during development. This is particularly evident at the earliest stages of development where a lot of research, performed mainly in chick embryos, supports the evidence that cerebrospinal fluid is involved in different mechanisms controlling brain growth and morphogenesis, by exerting a trophic effect on neuroepithelial precursor cells (NPC) involved in controlling the behaviour of these cells. Despite it being known that cerebrospinal fluid in mammals is directly involved in corticogenesis at fetal stages, the influence of cerebrospinal fluid on the activity of NPC at the earliest stages of brain development has not been demonstrated. Here, using "in vitro" organotypic cultures of rat embryo brain neuroepithelium in order to expose NPC to or deprive them of cerebrospinal fluid, we show that the neuroepithelium needs the trophic influence of cerebrospinal fluid to undergo normal rates of cell survival, replication and neurogenesis, suggesting that NPC are not self-sufficient to induce their normal activity. This data shows that cerebrospinal fluid is an essential component in chick and rat early brain development, suggesting that its influence could be constant in higher vertebrates.

  16. Glimpsing over the event horizon: evolution of nuclear pores and envelope.

    PubMed

    Jékely, Gáspár

    2005-02-01

    The origin of eukaryotes from prokaryotic ancestors is one of the major evolutionary transitions in the history of life. The nucleus, a membrane bound compartment for confining the genome, is a central feature of eukaryotic cells and its origin also has to be a central feature of any workable theory that ventures to explain eukaryotic origins. Recent bioinformatic analyses of components of the nuclear pore complex (NPC), the nuclear envelope (NE), and the nuclear transport systems revealed exciting evolutionary connections (e.g., between NPC and coated vesicles) and provided a useful record of the phyletic distribution and history of NPC and NE components. These analyses allow us to refine theories on the origin and evolution of the nucleus, and consequently, of the eukaryotic cell.

  17. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liang; Dong, Chuanming; Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and weremore » associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.« less

  18. Purified Hexameric Epstein-Barr Virus-Encoded BARF1 Protein for Measuring Anti-BARF1 Antibody Responses in Nasopharyngeal Carcinoma Patients▿

    PubMed Central

    Hoebe, E. K.; Hutajulu, S. H.; van Beek, J.; Stevens, S. J.; Paramita, D. K.; Greijer, A. E.; Middeldorp, J. M.

    2011-01-01

    WHO type III nasopharyngeal carcinoma (NPC) is highly prevalent in Indonesia and 100% associated with Epstein-Barr virus (EBV). NPC tumor cells express viral proteins, including BARF1, which is secreted and is considered to have oncogenic and immune-modulating properties. Recently, we found conserved mutations in the BARF1 gene in NPC isolates. This study describes the expression and purification of NPC-derived BARF1 and analyzes humoral immune responses against prototype BARF1 (B95-8) and purified native hexameric BARF1 in sera of Indonesian NPC patients (n = 155) compared to healthy EBV-positive (n = 56) and EBV-negative (n = 16) individuals. BARF1 (B95-8) expressed in Escherichia coli and baculovirus, as well as BARF1-derived peptides, did not react with IgG or IgA antibodies in NPC. Purified native hexameric BARF1 protein isolated from culture medium was used in enzyme-linked immunosorbent assay (ELISA) and revealed relatively weak IgG and IgA responses in human sera, although it had strong antibody responses to other EBV proteins. Higher IgG reactivity was found in NPC patients (P = 0.015) than in regional Indonesian controls or EBV-negative individuals (P < 0.001). IgA responses to native BARF1 were marginal. NPC sera with the highest IgG responses to hexameric BARF1 in ELISA showed detectable reactivity with denatured BARF1 by immunoblotting. In conclusion, BARF1 has low immunogenicity for humoral responses and requires native conformation for antibody binding. The presence of antibodies against native BARF1 in the blood of NPC patients provides evidence that the protein is expressed and secreted as a hexameric protein in NPC patients. PMID:21123521

  19. Primary EBV infection of human umbilical cord lymphocytes and EBV genome-negative lymphoblastoid cell lines (BJAB and Ramos).

    PubMed

    Takimoto, T; Sato, H; Ogura, H

    1986-01-01

    The appearance of Epstein-Barr virus (EBV)-associated nuclear antigen (EBNA) and induction of EBV-induced early antigen (EA) in human umbilical cord blood lymphocytes (HUCLs) and two EBV genome-negative Burkitt's lymphoma (BL) lines (BJAB and Ramos) were studied by infection with EBVs prepared from three different cell lines: marmoset cell line (B95-8) derived from infections mononucleosis, BL-derived cell line (P3HR-1) and human epithelial hybrid cell line (NPC-KT) derived from nasopharyngeal carcinoma. B95-8 virus can transform HUCLs but cannot superinfect Raji cells. P3HR-1 virus can transform HUCLs cells but cannot transform HUCLs. NPC-KT virus can transform HUCLs and can superinfect Raji cells. We have examined the time sequence of EBNA appearance and EA induction in HUCLs, BJAB cells and Ramos cells, in order to determine if three different strains of EBV differ in their abilities to infect their cells. We found that all three strains of EBV can induce EBNA in HUCLs, BJAB cells and Ramos cells. On the other hand, we found that P3HR-1 virus and NPC-KT virus can induce EA in BJAB cells and Ramos cells, but B95-8 virus cannot induce EA in their cells.

  20. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency

    NASA Astrophysics Data System (ADS)

    Tharkeshwar, Arun Kumar; Trekker, Jesse; Vermeire, Wendy; Pauwels, Jarne; Sannerud, Ragna; Priestman, David A.; Te Vruchte, Danielle; Vints, Katlijn; Baatsen, Pieter; Decuypere, Jean-Paul; Lu, Huiqi; Martin, Shaun; Vangheluwe, Peter; Swinnen, Johannes V.; Lagae, Liesbet; Impens, Francis; Platt, Frances M.; Gevaert, Kris; Annaert, Wim

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions.

  1. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E,more » a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.« less

  2. Expression of CYP2E1 in human nasopharynx and its metabolic effect in vitro.

    PubMed

    Hou, De-Fu; Wang, Shui-Liang; He, Zhi-Min; Yang, Fang; Chen, Zhu-Chu

    2007-04-01

    It was evident that nitrosamines can act directly on target tissue and result in carcinogenesis. As has been shown, the carcinogenic activity of nitrosamines relied on its bioactivation by Cytochrome P450 2E1 (CYP2E1). In this study, we investigated the expression of CYP2E1 in Nasopharyngeal carcinoma (NPC) cells, embryonic nasopharyngeal epithelial tissue (ENET) specimens, and NPC biopsies by RT-PCR analysis. CYP2E1 was expressed in all NPC cell lines (6/6, including 7429) and ENET (6/6), and 80% of NPC biopsie (8/10). The fact that Human nasopharynx expresses CYP2E1 suggests that CYP2E1 may play an important role in the course of NPC by indirect carcinogens nitrosamines. To further evaluate the function of CYP2E1, the CYP2E1 was stably expressed in the cell line NIH 3T3/rtTA under a tetracycline-controlled transactivator. The expression of CYP2E1 was tightly regulated in a dose-dependent manner by Doxycycline (Dox) When the catalytic activity of CYP2E1 was assayed, the result showed that the generation of 6-hydroxychlorzoxazone (6-OH-CZ) from chlorzoxazone (CZ) was dose- and time-dependent on Dox addition to the medium. In the presence of 1 microg/ml Dox, the CZ 6-hydroxylase activity of the cell line was found to be 0.986 +/- 0.034 nmol/10(6) cells/h. The metabolic activation of Tet/3T3/2E1-6 cells was also assayed by N,N'-dinitrosopiperazine (DNP) cytotoxicity, and the viability of Tet/3T3/2E1-6 cells treated with Dox was lower than that of untreated cells with a significant difference between them in 80 and 160 microg/ml DNP (P ( 0.05, t test. This cell line will be useful not only to assess the metabolic characteristics of CYP2E1, but also will be useful to investigate the role of CYP2E1 in metabolic activation of carcinogenic nitrosamines in vitro.

  3. Identification of a functional variant in SPLUNC1 associated with nasopharyngeal carcinoma susceptibility among Malaysian Chinese.

    PubMed

    Yew, Poh-Yin; Mushiroda, Taisei; Kiyotani, Kazuma; Govindasamy, Gopala Krishnan; Yap, Lee-Fah; Teo, Soo-Hwang; Lim, Paul Vey-Hong; Govindaraju, Selvaratnam; Ratnavelu, Kananathan; Sam, Choon-Kook; Yap, Yoke-Yeow; Khoo, Alan Soo-Beng; Pua, Kin-Choo; Nakamura, Yusuke; Ng, Ching-Ching

    2012-10-01

    Nasopharyngeal carcinoma (NPC) is a multifactorial and polygenic disease with high incidence in Asian countries. Epstein-Barr virus infection, environmental and genetic factors are believed to be involved in the tumorigenesis of NPC. The association of single nucleotide polymorphisms (SNPs) in LPLUNC1 and SPLUNC1 genes with NPC was investigated by performing a two-stage case control association study in a Malaysian Chinese population. The initial screening consisted of 81 NPC patients and 147 healthy controls while the replication study consisted of 366 NPC patients and 340 healthy controls. The combined analysis showed that a SNP (rs2752903) of SPLUNC1 was significantly associated with the risk of NPC (combined P = 0.00032, odds ratio = 1.62, 95% confidence interval = 1.25-2.11). In the subsequent dense fine mapping of SPLUNC1 locus, 36 SNPs in strong linkage disequilibrium with rs2752903 (r(2) ≥ 0.85) were associated with NPC susceptibility. Screening of these variants by electrophoretic mobility shift and luciferase reporter assays showed that rs1407019 located in intron 3 (r(2)  = 0.994 with rs2752903) caused allelic difference in the binding of specificity protein 1 (Sp1) transcription factor and affected luciferase activity. This SNP may consequently alter the expression of SPLUNC1 in the epithelial cells. In summary, our study suggested that rs1407019 in intronic enhancer of SPLUNC1 is associated with NPC susceptibility in which its A allele confers an increased risk of NPC in the Malaysian Chinese population. Copyright © 2011 Wiley Periodicals, Inc.

  4. δ-Tocopherol Reduces Lipid Accumulation in Niemann-Pick Type C1 and Wolman Cholesterol Storage Disorders*

    PubMed Central

    Xu, Miao; Liu, Ke; Swaroop, Manju; Porter, Forbes D.; Sidhu, Rohini; Finkes, Sally; Ory, Daniel S.; Marugan, Juan J.; Xiao, Jingbo; Southall, Noel; Pavan, William J.; Davidson, Cristin; Walkley, Steven U.; Remaley, Alan T.; Baxa, Ulrich; Sun, Wei; McKew, John C.; Austin, Christopher P.; Zheng, Wei

    2012-01-01

    Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca2+ response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases. PMID:23035117

  5. Inhibition of EGF expression and NF-κB activity by treatment with quercetin leads to suppression of angiogenesis in nasopharyngeal carcinoma.

    PubMed

    Huang, Dong-Yan; Dai, Zhi-Rao; Li, Wei-Min; Wang, Rong-Guan; Yang, Shi-Ming

    2018-05-01

    The present study was performed to investigate the effect of quercetin on nasopharyngeal carcinoma (NPC) angiogenesis. The real-time RT-PCR and enzyme-linked immunosorbent assays (ELISA) were performed to analyze the expression levels of vascular endothelial growth factor (VEGF) in nasopharyngeal carcinoma cell lines prior to and after the quercetin treatment. Effect of quercetin on the rate of cell proliferation was measured by MTT assay. It was observed that quercetin treatment at a concentration of 10 mg/mL reduced the rate of NPC039 cell viability to 36% compared to control after 24 h. The expression of VEGF and activity of NF-κB was also markedly reduced. The ability of tube formation in HUVECs was inhibited significantly on exposure to quercetin compared to the untreated cells. Therefore, quercetin plays an important role in the inhibition of NPC039 nasopharyngeal carcinoma and can be of therapeutic importance.

  6. Integrity and Function of the Saccharomyces cerevisiae Spindle Pole Body Depends on Connections Between the Membrane Proteins Ndc1, Rtn1, and Yop1

    PubMed Central

    Casey, Amanda K.; Dawson, T. Renee; Chen, Jingjing; Friederichs, Jennifer M.; Jaspersen, Sue L.; Wente, Susan R.

    2012-01-01

    The nuclear envelope in Saccharomyces cerevisiae harbors two essential macromolecular protein assemblies: the nuclear pore complexes (NPCs) that enable nucleocytoplasmic transport, and the spindle pole bodies (SPBs) that mediate chromosome segregation. Previously, based on metazoan and budding yeast studies, we reported that reticulons and Yop1/DP1 play a role in the early steps of de novo NPC assembly. Here, we examined if Rtn1 and Yop1 are required for SPB function in S. cerevisiae. Electron microscopy of rtn1Δ yop1Δ cells revealed lobular abnormalities in SPB structure. Using an assay that monitors lateral expansion of the SPB central layer, we found that rtn1Δ yop1Δ SPBs had decreased connections to the NE compared to wild type, suggesting that SPBs are less stable in the NE. Furthermore, large budded rtn1Δ yop1Δ cells exhibited a high incidence of short mitotic spindles, which were frequently misoriented with respect to the mother–daughter axis. This correlated with cytoplasmic microtubule defects. We found that overexpression of the SPB insertion factors NDC1, MPS2, or BBP1 rescued the SPB defects observed in rtn1Δ yop1Δ cells. However, only overexpression of NDC1, which is also required for NPC biogenesis, rescued both the SPB and NPC associated defects. Rtn1 and Yop1 also physically interacted with Ndc1 and other NPC membrane proteins. We propose that NPC and SPB biogenesis are altered in cells lacking Rtn1 and Yop1 due to competition between these complexes for Ndc1, an essential common component of both NPCs and SPBs. PMID:22798490

  7. Inhibition of N-acetylglucosaminyltransferase V enhances the cetuximab-induced radiosensitivity of nasopharyngeal carcinoma cells likely through EGFR N-glycan alterations.

    PubMed

    Huang, Xiaomin; Liu, Ting; Wang, Qiongyao; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2017-05-23

    N-acetylglucosaminyltransferase V (GnT-V), an enzyme that catalyses the formation of the N-linked β-1-6 branching of oligosaccharides, is related to the radiosensitivity of nasopharyngeal carcinoma (NPC). Cetuximab (C225) is an epidermal growth factor receptor (EGFR) inhibitor used as a radiosensitizer in the treatment of NPC. In this study, we used GnT-V as a molecular target to further sensitize cetuximab-treated NPC cells to radiation. The results from two NPC cell lines (CNE1 and CNE2) revealed that the silencing of GnT-V enhanced cetuximab-induced radiosensitivity by decreasing the β-1-6 branching of oligosaccharides on the EGFR. GnT-V down-regulation combined with cetuximab decreased the survival fraction, healing rate and cell viability and increased the apoptosis rate. Concomitantly, the combination of cetuximab and irradiation did not change the EGFR mRNA and protein levels and decreased the β-1-6 branching on the EGFR. Subsequently, we further explored the signalling downstream of EGF, particularly the PI3K/Akt signalling pathway, and discovered that treatment consisting of GnT-V down-regulation, irradiation and cetuximab was negatively correlated with phospho-Akt and phspho-PI3K. Finally, an in vivo experiment with radiotherapy revealed that the combination of GnT-V down-regulation and cetuximab decelerated tumour growth. In summary, our study demonstrated that the combination of decreased GnT-V activity and cetuximab enhanced NPC radiosensitivity, and the possible mechanism underlying this effect might involve the N-linked β1-6 branching of the EGFR. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Molecular, anatomical, and biochemical events associated with neurodegeneration in mice with Niemann-Pick type C disease.

    PubMed

    Li, Hao; Repa, Joyce J; Valasek, Mark A; Beltroy, Eduardo P; Turley, Stephen D; German, Dwight C; Dietschy, John M

    2005-04-01

    In Niemann-Pick type C (NPC) disease, cholesterol associated with either apoE or apoB100 is taken up by cells in all tissues, including the central nervous system, through clathrin-coated pits and becomes trapped in late endosomes and lysosomes. This study defines the functional, biochemical, and molecular events that ensue as nerve cell death occurs. In mice homozygous for a mutation in NPC1, neuromuscular dysfunction begins at 5 weeks and death occurs at 13 weeks of age. Cholesterol accumulates in every tissue in the body. Purkinje cell loss in the cerebellum begins at 3 to 4 weeks of age and is nearly complete by 11 weeks. This neurodegeneration in the cerebellum is associated with increases in the levels of mRNA for caspase 1, caspase 3, NPC2, LipA, apoE, apoD, glial fibrillary acidic protein, and tumor necrosis factor-alpha, but not for most target genes of the LXR nuclear receptors. The level for apoER2 is significantly reduced. These studies show there is a compensatory increase in NPC2 and LipA in an attempt to overcome the physiological defect caused by the mutation. Nevertheless, neurodegeneration proceeds utilizing apoptosis with activation of glial cells, increased apoE and apoD synthesis, and increased cholesterol turnover across the CNS.

  9. Oxytocin alters cell fate selection of rat neural progenitor cells in vitro

    PubMed Central

    Kannappan, Ramaswamy; Xu, Zhiqiang; Martino, Audrey; Friese, Matthew B.; Boyd, Justin D.; Crosby, Gregory; Culley, Deborah J.

    2018-01-01

    Synthetic oxytocin (sOT) is widely used during labor, yet little is known about its effects on fetal brain development despite evidence that it reaches the fetal circulation. Here, we tested the hypothesis that sOT would affect early neurodevelopment by investigating its effects on neural progenitor cells (NPC) from embryonic day 14 rat pups. NPCs expressed the oxytocin receptor (OXTR), which was downregulated by 45% upon prolonged treatment with sOT. Next, we examined the effects of sOT on NPC death, apoptosis, proliferation, and differentiation using antibodies to NeuN (neurons), Olig2 (oligodendrocytes), and GFAP (astrocytes). Treated NPCs were analysed with unbiased high-throughput immunocytochemistry. Neither 6 nor 24 h exposure to 100 pM or 100 nM sOT had an effect on viability as assessed by PI or CC-3 immunocytochemistry. Similarly, sOT had negligible effect on NPC proliferation, except that the overall rate of NPC proliferation was higher in the 24 h compared to the 6 h group regardless of sOT exposure. The most significant finding was that sOT exposure caused NPCs to select a predominantly neuronal lineage, along with a concomitant decrease in glial cells. Collectively, our data suggest that perinatal exposure to sOT can have neurodevelopmental consequences for the fetus, and support the need for in vivo anatomical and behavioral studies in offspring exposed to sOT in utero. PMID:29346405

  10. Oxytocin alters cell fate selection of rat neural progenitor cells in vitro.

    PubMed

    Palanisamy, Arvind; Kannappan, Ramaswamy; Xu, Zhiqiang; Martino, Audrey; Friese, Matthew B; Boyd, Justin D; Crosby, Gregory; Culley, Deborah J

    2018-01-01

    Synthetic oxytocin (sOT) is widely used during labor, yet little is known about its effects on fetal brain development despite evidence that it reaches the fetal circulation. Here, we tested the hypothesis that sOT would affect early neurodevelopment by investigating its effects on neural progenitor cells (NPC) from embryonic day 14 rat pups. NPCs expressed the oxytocin receptor (OXTR), which was downregulated by 45% upon prolonged treatment with sOT. Next, we examined the effects of sOT on NPC death, apoptosis, proliferation, and differentiation using antibodies to NeuN (neurons), Olig2 (oligodendrocytes), and GFAP (astrocytes). Treated NPCs were analysed with unbiased high-throughput immunocytochemistry. Neither 6 nor 24 h exposure to 100 pM or 100 nM sOT had an effect on viability as assessed by PI or CC-3 immunocytochemistry. Similarly, sOT had negligible effect on NPC proliferation, except that the overall rate of NPC proliferation was higher in the 24 h compared to the 6 h group regardless of sOT exposure. The most significant finding was that sOT exposure caused NPCs to select a predominantly neuronal lineage, along with a concomitant decrease in glial cells. Collectively, our data suggest that perinatal exposure to sOT can have neurodevelopmental consequences for the fetus, and support the need for in vivo anatomical and behavioral studies in offspring exposed to sOT in utero.

  11. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice.

    PubMed

    Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F

    2018-03-01

    The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex.

  12. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice

    PubMed Central

    Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F

    2018-01-01

    The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex. PMID:29257130

  13. Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry.

    PubMed

    Qiu, Shirley; Leung, Anders; Bo, Yuxia; Kozak, Robert A; Anand, Sai Priya; Warkentin, Corina; Salambanga, Fabiola D R; Cui, Jennifer; Kobinger, Gary; Kobasa, Darwyn; Côté, Marceline

    2018-01-01

    For entry, Ebola virus (EBOV) requires the interaction of its viral glycoprotein with the cellular protein Niemann-Pick C1 (NPC1) which resides in late endosomes and lysosomes. How EBOV is trafficked and delivered to NPC1 and whether this is positively regulated during entry remain unclear. Here, we show that the PIKfyve-ArPIKfyve-Sac3 cellular complex, which is involved in the metabolism of phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P 2 ), is critical for EBOV infection. Although the expression of all subunits of the complex was required for efficient entry, PIKfyve kinase activity was specifically critical for entry by all pathogenic filoviruses. Inhibition of PIKfyve prevented colocalization of EBOV with NPC1 and led to virus accumulation in intracellular vesicles with characteristics of early endosomes. Importantly, genetically-encoded phosphoinositide probes revealed an increase in PtdIns(3,5)P 2 -positive vesicles in cells during EBOV entry. Taken together, our studies suggest that EBOV requires PtdIns(3,5)P 2 production in cells to promote efficient delivery to NPC1. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Exfoliated Human Olfactory Neuroepithelium: A Source of Neural Progenitor Cells.

    PubMed

    Jiménez-Vaca, Ana L; Benitez-King, Gloria; Ruiz, Víctor; Ramírez-Rodríguez, Gerardo B; Hernández-de la Cruz, Beatriz; Salamanca-Gómez, Fabio A; González-Márquez, Humberto; Ramírez-Sánchez, Israel; Ortíz-López, Leonardo; Vélez-Del Valle, Cristina; Ordoñez-Razo, Rosa Ma

    2018-03-01

    Neural progenitor cells (NPC) contained in the human adult olfactory neuroepithelium (ONE) possess an undifferentiated state, the capability of self-renewal, the ability to generate neural and glial cells as well as being kept as neurospheres in cell culture conditions. Recently, NPC have been isolated from human or animal models using high-risk surgical methods. Therefore, it was necessary to improve methodologies to obtain and maintain human NPC as well as to achieve better knowledge of brain disorders. In this study, we propose the establishment and characterization of NPC cultures derived from the human olfactory neuroepithelium, using non-invasive procedures. Twenty-two healthy individuals (29.7 ± 4.5 years of age) were subjected to nasal exfoliation. Cells were recovered and kept as neurospheres under serum-free conditions. The neural progenitor origin of these neurospheres was determined by immunocytochemistry and qPCR. Their ability for self-renewal and multipotency was analyzed by clonogenic and differentiation assays, respectively. In the cultures, the ONE cells preserved the phenotype of the neurospheres. The expression levels of Nestin, Musashi, Sox2, and βIII-tubulin demonstrated the neural origin of the neurospheres; 48% of the cells separated could generate neurospheres, determining that they retained their self-renewal capacity. Neurospheres were differentiated in the absence of growth factors (EGF and FGF), and their multipotency ability was maintained as well. We were also able to isolate and grow human neural progenitor cells (neurospheres) through nasal exfoliates (non-invasive method) of the ONE from healthy adults, which is an extremely important contribution for the study of brain disorders and for the development of new therapies.

  15. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    PubMed

    Zhuang, Mingzhu; Zhao, Mouming; Qiu, Huijuan; Shi, Dingbo; Wang, Jingshu; Tian, Yun; Lin, Lianzhu; Deng, Wuguo

    2014-01-01

    Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC) cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate) had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides) abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  16. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function.

    PubMed

    Lopez, Adam M; Jones, Ryan Dale; Repa, Joyce J; Turley, Stephen D

    2018-06-07

    Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase 1 (SOAT1) or sterol O-acyltransferase 2 (SOAT2) in various cell types, and lecithin cholesterol acyltransferase (LCAT) in plasma. Esterified cholesterol (EC) and triacylglycerol (TAG) contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase (LAL) within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C2 (NPC2) and Niemann-Pick C1 (NPC1), unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7 wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared to their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma ALT and AST activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency.

  17. Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling.

    PubMed

    Hu, Wen-Jian; Liu, Jing; Zhong, Lun-Kun; Wang, Jian

    2018-06-01

    Nasopharyngeal carcinoma (NPC) is a type of head and neck cancers with poor prognosis. Despite that platinum-based chemotherapy concurrent with radiotherapy have made great achievements for the treatment of NPC, the therapeutic reaction and toxicity varies dramatically among individuals. Apigenin (API), a naturally occurring plant flavone, is considered to have anti-cancer effect. Cetuximab (CET), a well known epidermal growth factor receptor (EGFR) inhibitor, is widely used in various cancers, especially head and neck cancers. The aim of our study was to measure the combination of API and CET for the treatment of NPC in vitro and in vivo. Results demonstrated that combining API and CET could better suppress the viability of the human nasopharyngeal carcinoma cell lines (HONE1 and CNE2) and inhibit the growth of NPC than API or CET used alone. Besides, the combination of API with CET produced greater pro-apoptosis effect. Moreover, the increased G2/M phase arrest caused by CET could be remarkably enhanced by adding API in HONE1 and CNE2 cells. Although, both API and CET could decrease the expressions of p-EGFR, p-Akt, p-STAT3 and Cyclin D1. Combining them produced greater inhibition effect. These results suggested that the combination of API and CET may be a promising therapeutic approach for the treatment of NPC. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. c-Abl links APP-BACE1 interaction promoting APP amyloidogenic processing in Niemann-Pick type C disease.

    PubMed

    Yáñez, M J; Belbin, O; Estrada, L D; Leal, N; Contreras, P S; Lleó, A; Burgos, P V; Zanlungo, S; Alvarez, A R

    2016-11-01

    Niemann-Pick type C (NPC) disease is characterized by lysosomal accumulation of cholesterol. Interestingly, NPC patients' brains also show increased levels of amyloid-β (Aβ) peptide, a key protein in Alzheimer's disease pathogenesis. We previously reported that the c-Abl tyrosine kinase is active in NPC neurons and in AD animal models and that Imatinib, a specific c-Abl inhibitor, decreased the amyloid burden in brains of the AD mouse model. Active c-Abl was shown to interact with the APP cytosolic domain, but the relevance of this interaction to APP processing has yet to be defined. In this work we show that c-Abl inhibition reduces APP amyloidogenic cleavage in NPC cells overexpressing APP. Indeed, we found that levels of the Aβ oligomers and the carboxy-terminal fragment βCTF were decreased when the cells were treated with Imatinib and upon shRNA-mediated c-Abl knockdown. Moreover, Imatinib decreased APP amyloidogenic processing in the brain of an NPC mouse model. In addition, we found decreased levels of βCTF in neuronal cultures from c-Abl null mice. We demonstrate that c-Abl directly interacts with APP, that c-Abl inhibition prevents this interaction, and that Tyr682 in the APP cytoplasmic tail is essential for this interaction. More importantly, we found that c-Abl inhibition by Imatinib significantly inhibits the interaction between APP and BACE1. We conclude that c-Abl activity facilitates the APP-BACE1 interaction, thereby promoting amyloidogenic processing of APP. Thus, inhibition of c-Abl could be a pharmacological target for preventing the injurious effects of increased Aβ levels in NPC disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma

    PubMed Central

    Cai, Ting-Ting; Ye, Shu-Biao; Liu, Yi-Na; He, Jia; Chen, Qiu-Yan; Mai, Hai-Qiang; Zhang, Chuan-Xia; Cui, Jun; Zhang, Xiao-Shi; Zeng, Yi-Xin

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) are expanded in tumor microenvironments, including that of Epstein–Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1) promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1) and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1β, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1β, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC. PMID:28732079

  20. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells

    PubMed Central

    S. Pang, Jong-Hwei; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-01-01

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer. PMID:28672814

  1. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells.

    PubMed

    Pang, Jong-Hwei S; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-06-24

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer.

  2. Phenotypic alterations induced by the Hong Kong-prevalent Epstein-Barr virus-encoded LMP1 variant (2117-LMP1) in nasopharyngeal epithelial cells.

    PubMed

    Lo, Angela Kwok Fung; Huang, Dolly P; Lo, Kwok Wai; Chui, Yiu Loon; Li, Hoi Ming; Pang, Jesse Chung Sean; Tsao, Sai-Wah

    2004-05-10

    Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC), a common cancer in Hong Kong. The EBV-encoded LMP1 protein is believed to play an important role in cell transformation. We have previously identified a prevalent LMP1 variant (2117-LMP1) that is expressed in 86% of primary NPC in Hong Kong. In this study, the biologic phenotypes induced by 2117-LMP1 were compared with those of the prototypic B95.8-LMP1 in an immortalized nasopharyngeal epithelial cell line, NP69. The 2117-LMP1 could induce cell proliferation and resistance to apoptosis induced by growth factor deprivation. Expression of 2117-LMP1 also suppressed expression of p16, p21 and Bax but induced expression of CDK2 and A20. Compared with B95.8-LMP1, 2117-LMP1 could induce a higher migration ability in NP69 cells but was less efficient in inducing morphologic changes, anchorage-independent growth and cell invasion. Relatively weaker ability of 2117-LMP1 than B95.8-LMP1 in upregulation of vimentin, VEGF and MMP9 as well as in downregulation of E-cadherin was observed. 2117-LMP1 could activate higher level of NF-kappaB activity in HEK 293 cells than B95.8-LMP1. The present study supports a role of 2117-LMP1 in NPC development by enhancing cell proliferation, cell death inhibition and migration in premalignant nasopharyngeal epithelial cells. Furthermore, our study reveals significant functional differences between 2117-LMP1 and the prototypic B95.8-LMP1. Our results provide insights into the pathologic significance of this prevalent LMP1 variant, 2117-LMP1, in the development of NPC in the Hong Kong population. Copyright 2004 Wiley-Liss, Inc.

  3. Nasopharyngeal carcinoma heterogeneity of DNA content identified on cytologic preparations.

    PubMed

    Maohuai, C; Chang, A R; Lo, D

    2001-06-01

    To evaluate tumor heterogeneity of DNA content in nasopharyngeal carcinoma (NPC) performed on cytologic specimens. Image cytometric analysis of DNA ploidy status of 40 NPCs was performed on nasopharyngeal brushing smears stained with the Feulgen method after hematoxylin eosin staining. If the DNA distribution pattern from the same tumor exhibited diploid, aneuploid or/and tetraploid peaks or some combination of these patterns, the presence of tumor heterogeneity of DNA content was identified. Thirty-four cases (85%) had a nondiploid DNA pattern among the 40 NPCs. Twenty-eight cases exhibited tumor heterogeneity of DNA content (70%). Of the 28 tumors, 13 (46%) had a combination of diploid and tetraploid patterns, 10 (37%) had a combination of diploid and aneuploid patterns, 3 cases (11%) had a combination of tetraploid and aneuploid patterns, and 2 cases had two aneuploid stem lines. The relationship between DNA ploidy pattern and tumor histologic and cytologic morphology was also examined. There is a high incidence of DNA content heterogeneity in NPC. The relevance of tumor heterogeneity to the biologic behavior of NPC awaits further study. DNA quantification with image cytometry on destained cytologic preparations is feasible and reliable.

  4. Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain.

    PubMed

    Rivera, Patricia; Blanco, Eduardo; Bindila, Laura; Alen, Francisco; Vargas, Antonio; Rubio, Leticia; Pavón, Francisco J; Serrano, Antonia; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+) and the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ) and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3 ± 1.1 g/kg/day) after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ, and hypothalamus. The treatments (URB597, ACEA, JWH133) exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence.

  5. Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain

    PubMed Central

    Rivera, Patricia; Blanco, Eduardo; Bindila, Laura; Alen, Francisco; Vargas, Antonio; Rubio, Leticia; Pavón, Francisco J.; Serrano, Antonia; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+) and the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ) and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3 ± 1.1 g/kg/day) after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ, and hypothalamus. The treatments (URB597, ACEA, JWH133) exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence. PMID:26483633

  6. Accumulation of cholesterol and GM2 ganglioside in cells cultured in the presence of progesterone: an implication for the basic defect in Niemann-Pick disease type C.

    PubMed

    Sato, M; Akaboshi, S; Katsumoto, T; Taniguchi, M; Higaki, K; Tai, T; Sakuraba, H; Ohno, K

    1998-01-01

    Cultured fibroblasts from patients with Niemann-Pick disease type C (NP-C) are characterized by lysosomal accumulation of unesterified cholesterol and a defect in intracellular trafficking of cholesterol. We have found the accumulation of GM2 ganglioside in NP-C fibroblasts [Yano T, Taniguchi M, Akaboshi S, Vanier MT, Tai T, Sakuraba H, et al. Proc Japan Acad 1996;72B:214-219]. In this communication we show that several inhibitors known to inhibit intracellular cholesterol transport, progesterone, imipramine and KN-62, elicit accumulation of not only unesterified cholesterol but also GM2 ganglioside. This finding suggests that intracellular transport of cholesterol may be coupled with that of GM2 ganglioside. The accumulation of free cholesterol and GM2 ganglioside may be a clue for understanding the basic defect of NP-C. Recently NPC1 gene is found by the positional cloning. The mechanism of accumulating of GM2 ganglioside should be further investigated by studying of the functions of NPC1 gene.

  7. MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1.

    PubMed

    Fan, Haoning; Shao, Meng; Huang, Shaohui; Liu, Ying; Liu, Jie; Wang, Zhiyuan; Diao, Jianxin; Liu, Yuanliang; Tong, L I; Fan, Qin

    2016-06-01

    Curcumin (Cur) exhibits radiosensitization effects to a variety of malignant tumors. The present study investigates the radiosensitizing effect of Cur on nasopharyngeal carcinoma (NPC) cells and whether its mechanism is associated with microRNA-593 (miR-593) and multidrug resistance gene 1 (MDR1). A clonogenic assay was performed to measure the radiosensitizing effect. The expression of miR-593 and MDR1 was analyzed by quantitative polymerase chain reaction (qPCR) or western blot assay. A transplanted tumor model was established to identify the radiosensitizing effect in vivo . A luciferase-based reporter was constructed to evaluate the effect of direct binding of miR-593 to the putative target site on the 3' UTR of MDR1. The clonogenic assay showed that Cur enhanced the radiosensitivity of cells. Cur (100 mg/kg) combined with 4 Gy irradiation inhibited the growth of a transplanted tumor model in vivo , resulting in the higher inhibition ratio compared with the radiotherapy-alone group. These results demonstrated that Cur had a radiosensitizing effect on NPC cells in vivo and in vitro ; Cur-mediated upregulation of miR-593 resulted in reduced MDR1 expression, which may promote radiosensitivity of NPC cells.

  8. MicroRNA-132 sensitizes nasopharyngeal carcinoma cells to cisplatin through regulation of forkhead box A1 protein.

    PubMed

    Li, Yun-Ling; Zhao, Yi-Gang; Chen, Bin; Li, Xiao-Feng

    2016-12-01

    Chemoresistance in cancer is one of the major hindrances in cisplatin (DPP) treatment for nasopharyngeal carcinoma (NPC). The mechanism of such resistance remains unknown. Therefore, the present study aimed to clarify the mechanism of DDP resistance and attempted to reduce chemoresistance. Here, we found that miR-132, as a tumor suppressor, was poorly expressed in a cisplatin resistant CNE2 cell line (CNE2/DPP) accompanied with a decreased expression of miR-132 and an increased expression of FOXA1 compared with the parental cells CNE2. Exogenous overexpression of miR-132 in CNE2/DPP could sensitize their reaction to the treatment of cisplatin. In addition, FOXA1 knockdown in CNE2/DPP cells increased the chemosensitivity to DPP, suggesting the dependence of FOXA1 regulation in miR-132 activity. Moreover, miR-132 can restore cisplatin treatment response in cisplatin-resistant xenografts in vivo, while FOXA1 protein levels were decreased. In summary, our results provide novel mechanistic insights into the role of miR-132/FOXA1 signaling in the cisplatin resistance of NPC cells. Targeting of miR-132 is a potential therapeutic approach for NPC.

  9. Cytotoxic T Cell Adoptive Immunotherapy as a Treatment for Nasopharyngeal Carcinoma

    PubMed Central

    Crooks, Pauline; Morrison, Leanne; Stevens, Natasha; Davis, Joanne E.; Corban, Monika; Hall, David; Panizza, Benedict; Coman, William B.; Coman, Scott; Moss, Denis J.

    2014-01-01

    Epstein-Barr virus (EBV) is associated with nasopharyngeal carcinoma (NPC). We assess the safety and tolerability of adoptive transfer of autologous cytotoxic T lymphocytes (CTLs) specific for the EBV latent membrane protein (LMP) in a patient with recurrent NPC. After infusion, the majority of pulmonary lesions were no longer evident, although the primary tumor did not regress. PMID:24351754

  10. Cytotoxic T cell adoptive immunotherapy as a treatment for nasopharyngeal carcinoma.

    PubMed

    Lutzky, Viviana P; Crooks, Pauline; Morrison, Leanne; Stevens, Natasha; Davis, Joanne E; Corban, Monika; Hall, David; Panizza, Benedict; Coman, William B; Coman, Scott; Moss, Denis J

    2014-02-01

    Epstein-Barr virus (EBV) is associated with nasopharyngeal carcinoma (NPC). We assess the safety and tolerability of adoptive transfer of autologous cytotoxic T lymphocytes (CTLs) specific for the EBV latent membrane protein (LMP) in a patient with recurrent NPC. After infusion, the majority of pulmonary lesions were no longer evident, although the primary tumor did not regress.

  11. A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation.

    PubMed

    Mao, Jianxin; Huang, Shichao; Liu, Shangfeng; Feng, Xiao-Lin; Yu, Miao; Liu, Junjun; Sun, Yi Eve; Chen, Guoliang; Yu, Yang; Zhao, Jian; Pei, Gang

    2015-10-01

    Aberrant neural progenitor cell (NPC) proliferation and self-renewal have been linked to age-related neurodegeneration and neurodegenerative disorders including Alzheimer's disease (AD). Rhizoma Acori tatarinowii is a traditional Chinese herbal medicine against cognitive decline. In this study, we found that the extract of Rhizoma Acori tatarinowii (AT) and its active constituents, asarones, promote NPC proliferation. Oral administration of AT enhanced NPC proliferation and neurogenesis in the hippocampi of adult and aged mice as well as that of transgenic AD model mice. AT and its fractions also enhanced the proliferation of NPCs cultured in vitro. Further analysis identified α-asarone and β-asarone as the two active constituents of AT in promoting neurogenesis. Our mechanistic study revealed that AT and asarones activated extracellular signal-regulated kinase (ERK) but not Akt, two critical kinase cascades for neurogenesis. Consistently, the inhibition of ERK activities effectively blocked the enhancement of NPC proliferation by AT or asarones. Our findings suggest that AT and asarones, which can be orally administrated, could serve as preventive and regenerative therapeutic agents to promote neurogenesis against age-related neurodegeneration and neurodegenerative disorders. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.

    PubMed

    Trinh, Michael N; Lu, Feiran; Li, Xiaochun; Das, Akash; Liang, Qiren; De Brabander, Jef K; Brown, Michael S; Goldstein, Joseph L

    2017-01-03

    Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.

  13. A rare case of Niemann-Pick disease type C without neurological involvement in a 66-year-old patient.

    PubMed

    Greenberg, C R; Barnes, J G; Kogan, S; Seargeant, L E

    2015-06-01

    The case of a 66 year-old female - the oldest known living patient with Niemann-Pick disease type C (NP-C) who remains free of any neurological or psychiatric manifestations 18 years after presentation - is presented. An incidental finding of massive splenomegaly was detected during a routine pelvic ultrasound. The pathology report after splenectomy showed the presence of lipid-laden macrophages. Fibroblasts cultured in LDL-enriched medium revealed abnormal filipin staining consistent with cholesterol-filled vesicles and the rate of cholesterol esterification in response to stimulation of LDL-cholesterol uptake was significantly depressed at 6% of that seen in cells from normal controls, but at a level similar to that observed in an NP-C positive control. Molecular genetic testing later revealed a compound heterozygous mutant NP-C genotype comprising two previously described disease-causing mutations in the NPC1 gene, one in exon 8 (c.1133T>C [V378A]) and one in exon 13 (c.1990G>A [V664M]). These findings confirmed the diagnosis of NP-C. Only three patients with this disorder aged > 53 years have previously been reported, all of whom presented with neurological or neuropsychiatric manifestations. Our patient is the first reported NP-C patient, now in her seventh decade of life, who has to date only manifested splenomegaly. This case highlights the extreme clinical variability of NP-C, and the need to consider this disease in the differential diagnosis of organomegaly, even in the absence of neurological, psychiatric and related clinical signs. An elderly female patient with confirmed NP-C and isolated splenomegaly has remained asymptomatic for neurological, cognitive, psychiatric or ophthalmologic abnormailities into her seventh decade of life.

  14. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wamore » Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.« less

  15. Various 30 and 69 bp deletion variants of the Epstein-Barr virus LMP1 may arise by homologous recombination in nasopharyngeal carcinoma of Tunisian patients.

    PubMed

    Hadhri-Guiga, Boutheina; Khabir, Abdel-Majid; Mokdad-Gargouri, Raja; Ghorbel, Abdel-Monem; Drira, Mohamed; Daoud, Jamel; Frikha, Mounir; Jlidi, Rachid; Gargouri, Ali

    2006-01-01

    Nasopharyngeal carcinoma (NPC) occurs with a striking geographic distribution, it is endemic in certain areas of Southeast Asia and North Africa. NPC is tightly linked to Epstein-Barr virus (EBV), however, only a small subset of EBV genes are expressed, among them the latent membrane protein 1 (LMP1). LMP1 is considered as the main EBV oncoprotein and its 30 bp deleted-variant has been reported to be more prevalent in biopsies of NPC. We have assessed the 30 bp deletion and the XhoI polymorphisms of the BNLF1 gene in 30 peripheral bloods of NPC patients and 62 nasopharyngeal biopsies, 42 being confirmed as undifferentiated nasopharyngeal carcinoma and 20 are normal nasopharyngeal epithelium cells. Our results show that 100% of individuals retained the XhoI restriction site. A rare NPC variant, having a 69 bp deletion in the C-terminus region of the BNLF1 gene, covering the 30 bp deletion, was found in two NPC biopsies. The deleted 30 and 69 bp deleted-variants are significantly (p = 0.006) more frequent in NPC (71.42%) than in control biopsies (52%). In peripheral blood of NPC patients, the deleted-variants (47%) are also lower than in tumor tissues (p = 0.0004), suggesting that the deletion could be associated with a risk of tumor genesis. Direct repeats, located at the extremities of the 30 and 69 bp deletions, should be involved in this process. We propose that other deletions could be found since another similar direct repeat is present at the vicinity of the former ones.

  16. Bile acids at neutral and acidic pH induce apoptosis and gene cleavages in nasopharyngeal epithelial cells: implications in chromosome rearrangement.

    PubMed

    Tan, Sang-Nee; Sim, Sai-Peng

    2018-04-12

    Chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC) while nasopharyngeal reflux is known to be one of the major aetiological factors of CRS. Bile acid (BA), the component of gastric duodenal contents, has been recognised as a carcinogen. BA-induced apoptosis was suggested to be involved in human malignancies. Cells have the potential and tendency to survive apoptosis. However, cells that evade apoptosis upon erroneous DNA repair may carry chromosome rearrangements. Apoptotic nuclease, caspase-activated deoxyribonuclease (CAD) has been implicated in mediating translocation in leukaemia. We hypothesised that BA-induced apoptosis may cause chromosome breaks mediated by CAD leading to chromosome rearrangement in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is one of the most common deletion sites in NPC. We tested the ability of BA at neutral and acidic pH in inducing phosphatidylserine (PS) externalisation, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) disruption, and caspase 3/7 activity in normal nasopharyngeal epithelial (NP69) and NPC (TWO4) cells. Inverse-PCR (IPCR) was employed to detect AF9 gene cleavages. To investigate the role of CAD in mediating these cleavages, caspase inhibition was performed. IPCR bands representing AF9 cleaved fragments were sequenced. BA-treated cells showed higher levels of PS externalisation, ROS production, MMP loss and caspase 3/7 activity than untreated control cells. The effect of BA in the induction of these intracellular events was enhanced by acid. BA at neutral and acidic pH also induced significant cleavage of the AF9 gene. These BA-induced gene cleavages were inhibited by Z-DEVD-FMK, a caspase-3 inhibitor. Intriguingly, a few chromosome breaks were identified within the AF9 region that was previously reported to participate in reciprocal translocation between the mixed lineage leukaemia (MLL) and AF9 genes in an acute lymphoblastic leukaemia (ALL) patient. These findings suggest a role for BA-induced apoptosis in mediating chromosome rearrangements in NPC. In addition, CAD may be a key player in chromosome cleavages mediated by BA-induced apoptosis. Persistent exposure of sinonasal tract to gastric duodenal refluxate may increase genomic instability in surviving cells.

  17. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis.

    PubMed

    Chen, Hua-Ling; Yuh, Chiou-Hwa; Wu, Kenneth K

    2010-02-19

    Nestin is expressed in neural progenitor cells (NPC) of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO) into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b), a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4) (a neuronal marker), or otx2 (a midbrain neuronal marker), but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.

  18. Deficiency of a Niemann-Pick, Type C1-related Protein in Toxoplasma Is Associated with Multiple Lipidoses and Increased Pathogenicity

    PubMed Central

    Lige, Bao; Romano, Julia D.; Bandaru, Veera Venkata Ratnam; Ehrenman, Karen; Levitskaya, Jelena; Sampels, Vera; Haughey, Norman J.; Coppens, Isabelle

    2011-01-01

    Several proteins that play key roles in cholesterol synthesis, regulation, trafficking and signaling are united by sharing the phylogenetically conserved ‘sterol-sensing domain’ (SSD). The intracellular parasite Toxoplasma possesses at least one gene coding for a protein containing the canonical SSD. We investigated the role of this protein to provide information on lipid regulatory mechanisms in the parasite. The protein sequence predicts an uncharacterized Niemann-Pick, type C1-related protein (NPC1) with significant identity to human NPC1, and it contains many residues implicated in human NPC disease. We named this NPC1-related protein, TgNCR1. Mammalian NPC1 localizes to endo-lysosomes and promotes the movement of sterols and sphingolipids across the membranes of these organelles. Miscoding patient mutations in NPC1 cause overloading of these lipids in endo-lysosomes. TgNCR1, however, lacks endosomal targeting signals, and localizes to flattened vesicles beneath the plasma membrane of Toxoplasma. When expressed in mammalian NPC1 mutant cells and properly addressed to endo-lysosomes, TgNCR1 restores cholesterol and GM1 clearance from these organelles. To clarify the role of TgNCR1 in the parasite, we genetically disrupted NCR1; mutant parasites were viable. Quantitative lipidomic analyses on the ΔNCR1 strain reveal normal cholesterol levels but an overaccumulation of several species of cholesteryl esters, sphingomyelins and ceramides. ΔNCR1 parasites are also characterized by abundant storage lipid bodies and long membranous tubules derived from their parasitophorous vacuoles. Interestingly, these mutants can generate multiple daughters per single mother cell at high frequencies, allowing fast replication in vitro, and they are slightly more virulent in mice than the parental strain. These data suggest that the ΔNCR1 strain has lost the ability to control the intracellular levels of several lipids, which subsequently results in the stimulation of lipid storage, membrane biosynthesis and parasite division. Based on these observations, we ascribe a role for TgNCR1 in lipid homeostasis in Toxoplasma. PMID:22174676

  19. Modeling nasopharyngeal carcinoma in three dimensions

    PubMed Central

    Siva Sankar, Prabu; Che Mat, Mohd Firdaus; Muniandy, Kalaivani; Xiang, Benedict Lian Shi; Ling, Phang Su; Hoe, Susan Ling Ling; Khoo, Alan Soo-Beng; Mohana-Kumaran, Nethia

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is a type of cancer endemic in Asia, including Malaysia, Southern China, Hong Kong and Taiwan. Treatment resistance, particularly in recurring cases, remains a challenge. Thus, studies to develop novel therapeutic agents are important. Potential therapeutic compounds may be effectively examined using two-dimensional (2D) cell culture models, three-dimensional (3D) spheroid models or in vivo animal models. The majority of drug assessments for cancers, including for NPC, are currently performed with 2D cell culture models. This model offers economical and high-throughput screening advantages. However, 2D cell culture models cannot recapitulate the architecture and the microenvironment of a tumor. In vivo models may recapitulate certain architectural and microenvironmental conditions of a tumor, however, these are not feasible for the screening of large numbers of compounds. By contrast, 3D spheroid models may be able to recapitulate a physiological microenvironment not observed in 2D cell culture models, in addition to avoiding the impediments of in vivo animal models. Thus, the 3D spheroid model offers a more representative model for the study of NPC growth, invasion and drug response, which may be cost-effective without forgoing quality. PMID:28454359

  20. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination

    PubMed Central

    2011-01-01

    Methamphetamine (METH) abuse has reached epidemic proportions, and it has become increasingly recognized that abusers suffer from a wide range of neurocognitive deficits. Much previous work has focused on the deleterious effects of METH on mature neurons, but little is known about the effects of METH on neural progenitor cells (NPCs). It is now well established that new neurons are continuously generated from NPCs in the adult hippocampus, and accumulating evidence suggests important roles for these neurons in hippocampal-dependent cognitive functions. In a rat hippocampal NPC culture system, we find that METH results in a dose-dependent reduction of NPC proliferation, and higher concentrations of METH impair NPC survival. NPC differentiation, however, is not affected by METH, suggesting cell-stage specificity of the effects of METH. We demonstrate that the effects of METH on NPCs are, in part, mediated through oxidative and nitrosative stress. Further, we identify seventeen NPC proteins that are post-translationally modified via 3-nitrotyrosination in response to METH, using mass spectrometric approaches. One such protein was pyruvate kinase isoform M2 (PKM2), an important mediator of cellular energetics and proliferation. We identify sites of PKM2 that undergo nitrotyrosination, and demonstrate that nitration of the protein impairs its activity. Thus, METH abuse may result in impaired adult hippocampal neurogenesis, and effects on NPCs may be mediated by protein nitration. Our study has implications for the development of novel therapeutic approaches for METH-abusing individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired. PMID:21708025

  1. Curcumin Stimulates Proliferation of Spinal Cord Neural Progenitor Cells via a Mitogen-Activated Protein Kinase Signaling Pathway

    PubMed Central

    Son, Sihoon; Cho, Dae-Chul; Kim, Hye-Jeong; Sung, Joo-Kyung; Bae, Jae-Sung

    2014-01-01

    Objective The aims of our study are to evaluate the effect of curcumin on spinal cord neural progenitor cell (SC-NPC) proliferation and to clarify the mechanisms of mitogen-activated protein (MAP) kinase signaling pathways in SC-NPCs. Methods We established cultures of SC-NPCs, extracted from the spinal cord of Sprague-Dawley rats weighing 250 g to 350 g. We measured proliferation rates of SC-NPCs after curcumin treatment at different dosage. The immuno-blotting method was used to evaluate the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs), p38, c-Jun NH2-terminal kinases (JNKs) and β-actin as the control group. Results Curcumin has a biphasic effect on SC-NPC proliferation. Lower dosage (0.1, 0.5, 1 µM) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Also, curcumin stimulates proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 protein. The p-ERK protein and p38 protein levels varied depending on curcumin dosage (0.5 and 1 µM, p<0.05). Conclusion Curcumin can stimulate proliferation of SC-NPCs via ERKs and the p38 signaling pathway in low concentrations. PMID:25289117

  2. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity

    PubMed Central

    Holden, Jennifer M.; Koreny, Ludek; Obado, Samson; Ratushny, Alexander V.; Chen, Wei-Ming; Chiang, Jung-Hsien; Kelly, Steven; Chait, Brian T.; Aitchison, John D.; Rout, Michael P.; Field, Mark C.

    2014-01-01

    The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina. PMID:24600046

  3. New Insights from Elucidating the Role of LMP1 in Nasopharyngeal Carcinoma

    PubMed Central

    Shair, Kathy H. Y.; Reddy, Akhil

    2018-01-01

    Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV) oncogenic protein that has no intrinsic enzymatic activity or sequence homology to cellular or viral proteins. The oncogenic potential of LMP1 has been ascribed to pleiotropic signaling properties initiated through protein-protein interactions in cytosolic membrane compartments, but the effects of LMP1 extend to nuclear and extracellular processes. Although LMP1 is one of the latent genes required for EBV-immortalization of B cells, the biology of LMP1 in the pathogenesis of the epithelial cancer nasopharyngeal carcinoma (NPC) is more complex. NPC is prevalent in specific regions of the world with high incidence in southeast China. The epidemiology and time interval from seroconversion to NPC onset in adults would suggest the involvement of multiple risk factors that complement the establishment of a latent and persistent EBV infection. The contribution of LMP1 to EBV pathogenesis in polarized epithelia has only recently begun to be elucidated. Furthermore, the LMP1 gene has emerged as one of the most divergent sequences in the EBV genome. This review will discuss the significance of recent advances in NPC research from elucidating LMP1 function in epithelial cells and lessons that could be learned from mining LMP1 sequence diversity. PMID:29561768

  4. LASSO NTCP predictors for the incidence of xerostomia in patients with head and neck squamous cell carcinoma and nasopharyngeal carcinoma

    PubMed Central

    Lee, Tsair-Fwu; Liou, Ming-Hsiang; Huang, Yu-Jie; Chao, Pei-Ju; Ting, Hui-Min; Lee, Hsiao-Yi

    2014-01-01

    To predict the incidence of moderate-to-severe patient-reported xerostomia among head and neck squamous cell carcinoma (HNSCC) and nasopharyngeal carcinoma (NPC) patients treated with intensity-modulated radiotherapy (IMRT). Multivariable normal tissue complication probability (NTCP) models were developed by using quality of life questionnaire datasets from 152 patients with HNSCC and 84 patients with NPC. The primary endpoint was defined as moderate-to-severe xerostomia after IMRT. The numbers of predictive factors for a multivariable logistic regression model were determined using the least absolute shrinkage and selection operator (LASSO) with bootstrapping technique. Four predictive models were achieved by LASSO with the smallest number of factors while preserving predictive value with higher AUC performance. For all models, the dosimetric factors for the mean dose given to the contralateral and ipsilateral parotid gland were selected as the most significant predictors. Followed by the different clinical and socio-economic factors being selected, namely age, financial status, T stage, and education for different models were chosen. The predicted incidence of xerostomia for HNSCC and NPC patients can be improved by using multivariable logistic regression models with LASSO technique. The predictive model developed in HNSCC cannot be generalized to NPC cohort treated with IMRT without validation and vice versa. PMID:25163814

  5. Epstein-Barr virus latent membrane protein-1 (LMP-1) 30-bp deletion and Xho I-loss is associated with type III nasopharyngeal carcinoma in Malaysia

    PubMed Central

    See, Hui Shien; Yap, Yoke Yeow; Yip, Wai Kien; Seow, Heng Fong

    2008-01-01

    Background Nasopharyngeal carcinoma (NPC) is a human epithelial tumour with high prevalence amongst Chinese in Southern China and South East Asia and is associated with the Epstein-Barr virus (EBV). The viral genome harbours an oncogene, namely, the latent membrane protein 1 (LMP1) gene and known variants such as the 30-bp deletion and loss of XhoI restriction site have been found. Less is known about the relationship between these variants and the population characteristics and histological type. Methods In this study, the EBV LMP1 gene variants from 42 NPC and 10 non-malignant archived formalin fixed, paraffin-embedded tissues, as well as plasma from another 35 patients with nasopharyngeal carcinoma were determined by using Polymerase Chain Reaction (PCR). Statistical analysis was performed by using SPSS programme. Results LMP1 30-bp deletion was detected in 19/34 (55.9%) of NPC tissues, 7/29 (24.1%) of plasma but absent in non-malignant tissues (8/8). Coexistence of variants with and without 30bp deletion was found only in 5/29 (17.2%) plasma samples but not in NPC tissues. The loss of XhoI restriction site in LMP1 gene was found in 34/39 (87.2%) of the NPC tissues and 11/30 (36.7%) of plasma samples. None of the non-malignant nasopharyngeal tissues (8/8) harbour XhoI-loss variants. LMP1 30-bp deletion was detected in 16/18 Chinese versus 3/15 Malays and 13/16 type III (undifferentiated carcinoma) versus 1/6 type I (keratinizing squamous cell carcinoma). XhoI-loss was found in 19/19 Chinese versus 14/19 Malays and 18/18 type III (undifferentiated) versus 2/5 type I (keratinizing squamous cell carcinoma). Statistical analysis showed that these variants were associated with ethnic race (30-bp deletion, p < 0.05; XhoI-loss, p = 0.046) and histological type of NPC (30-bp deletion, p = 0.011; XhoI-loss, p = 0.006). Nineteen out of 32 NPC tissues (19/32; 59.4%) and 6/24 (25%) of plasma samples showed the coexistence of both the 30-bp deletion and the loss of XhoI restriction site. A significant relationship was found with the Chinese race but not histological type. Conclusion The incidence rate of 56% for LMP1 30-bp deletion was lower compared to previously reported rates of 75–100% in NPC tissues. Coexistence of variants with and without 30-bp deletion was found only in 5/29 plasma samples. The incidence rate of XhoI restriction site loss in NPC was comparable to other studies from endemic regions such as Southern China. For the first time, the presence of LMP1 30-bp deletion or XhoI-loss was associated with the Chinese race and type III NPC. Both these variants were not found in non-malignant tissues. The influence of these variants on disease progression and outcome in Chinese and type III NPC requires further investigation. PMID:18275617

  6. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells.

    PubMed

    Chandrasekaran, Abinaya; Avci, Hasan X; Ochalek, Anna; Rösingh, Lone N; Molnár, Kinga; László, Lajos; Bellák, Tamás; Téglási, Annamária; Pesti, Krisztina; Mike, Arpad; Phanthong, Phetcharat; Bíró, Orsolya; Hall, Vanessa; Kitiyanant, Narisorn; Krause, Karl-Heinz; Kobolák, Julianna; Dinnyés, András

    2017-12-01

    Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells and the derived neurons exhibited longer neurites. In contrast, 2D neural induction resulted in more SOX1 positive cells. While 2D monolayer induction resulted in slightly less mature neurons, at an early stage of differentiation, the patch clamp analysis failed to reveal any significant differences between the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6 + /NESTIN + cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural induction, independent of iPSCs' genetic background. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Evaluation of matrix metalloproteinase-9 expressions in nasopharyngeal carcinoma patients

    NASA Astrophysics Data System (ADS)

    Farhat; Asnir, R. A.; Yudhistira, A.; Daulay, E. R.; Puspitasari, D.; Yulius, S.

    2018-03-01

    Nasopharyngeal carcinoma (NPC) is one of head and neck cancer with a poor prognosis because of the position of the tumor adjacent to the skull base and vital structures. Degradation of extracellular matrix that will cause tumor cells to invade surrounding tissues, vascular or lymphatic vessels. One that plays a role in the extracellular matrix degradation process is matrix metalloproteinase-9 (MMP-9). MMP-9 plays a role in tumor invasion process, metastasis and induction of tumor tissue vascularization. To determine the expression of MMP-9 in patients with nasopharyngeal carcinoma, a descriptive study was conducted by examining immunohistochemistry MMP-9 in 30 NPC tissues that had never received radiotherapy, chemotherapy or combination. Frequency distribution of NPC patient mostly in the age group 41-50 years old and 51-60 years were nine people (30.0%); men (73.3%) and non-keratinizing squamous cell carcinoma (53.3%) histopathology type. The overexpression of MMP-9 in patients with nasopharyngeal carcinoma were mostly found in advance stage.

  8. Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer's Disease.

    PubMed

    Huang, Shichao; Mao, Jianxin; Ding, Kan; Zhou, Yue; Zeng, Xianglu; Yang, Wenjuan; Wang, Peipei; Zhao, Cun; Yao, Jian; Xia, Peng; Pei, Gang

    2017-01-10

    Promoting neurogenesis is a promising strategy for the treatment of cognition impairment associated with Alzheimer's disease (AD). Ganoderma lucidum is a revered medicinal mushroom for health-promoting benefits in the Orient. Here, we found that oral administration of the polysaccharides and water extract from G. lucidum promoted neural progenitor cell (NPC) proliferation to enhance neurogenesis and alleviated cognitive deficits in transgenic AD mice. G. lucidum polysaccharides (GLP) also promoted self-renewal of NPC in cell culture. Further mechanistic study revealed that GLP potentiated activation of fibroblast growth factor receptor 1 (FGFR1) and downstream extracellular signal-regulated kinase (ERK) and AKT cascades. Consistently, inhibition of FGFR1 effectively blocked the GLP-promoted NPC proliferation and activation of the downstream cascades. Our findings suggest that GLP could serve as a regenerative therapeutic agent for the treatment of cognitive decline associated with neurodegenerative diseases. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The antiviral agent cidofovir [(S)-1-(3-hydroxy-2-phosphonyl-methoxypropyl)cytosine] has pronounced activity against nasopharyngeal carcinoma grown in nude mice.

    PubMed

    Neyts, J; Sadler, R; De Clercq, E; Raab-Traub, N; Pagano, J S

    1998-02-01

    The effect of the antiviral agent (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine (cidofovir) on the EBV-associated tumor nasopharyngeal carcinoma (NPC) was evaluated in NPC xenografts in athymic mice. Intratumoral injection arrested tumor growth within 1 week, and by 4 weeks, tumors regressed to 8-75% (39 +/- 33%) of the original size, whereas control tumors injected with PBS grew to 282 +/- 25% of the original size. Ganciclovir slowed but did not arrest or cause regression of tumor growth. A striking antitumor effect was also produced by systemic administration; at 4 weeks, tumors were 79 +/- 49% of the original size, compared with 635 +/- 91% for the controls. Widespread apoptosis was detected after treatment for 2-6 days in C15 as well as two other NPC xenografts, C17 and C18; the latter NPCs have mutations in the p53 gene. These data indicate that cidofovir induces rapid cell death through apoptosis in EBV-transformed epithelial cells.

  10. Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Pastor, Angel M

    2013-01-01

    Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might contribute to the restorative effects of these implants.

  11. Epstein-Barr virus infection and nasopharyngeal carcinoma: the other side of the coin.

    PubMed

    Perri, Francesco; Della Vittoria Scarpati, Giuseppina; Giuliano, Mario; D'Aniello, Carmine; Gnoni, Antonio; Cavaliere, Carla; Licchetta, Antonella; Pisconti, Salvatore

    2015-11-01

    Oncogenic viruses may have a significant impact on the therapeutic management of several malignancies besides their well-known role in tumor pathogenesis. Epstein-Barr virus (EBV) induces neoplastic transformation of epithelial cells of the nasopharynx by various molecular mechanisms mostly involving activation of oncogenes and inactivation of tumor-suppressor genes. EBV infection can also induce the expression of several immunogenic peptides on the plasma membrane of the infected cells. Importantly, these virus-related antigens may be used as targets for antitumor immunotherapy-based treatment strategies. Two different immunotherapy strategies, namely adoptive and active immunotherapy, have been developed and strongly improved in the recent years. Furthermore, EBV infection may influence the use of targeted therapies for nasopharyngeal carcinoma (NPC) considering that the presence of EBV can induce important modifications in cell signaling. As an example, latent membrane protein type 1 is a viral transmembrane protein mainly involved in the cancerogenesis process, which can also mediate overexpression of the epidermal growth factor receptor (EGFR) in NPC cells, rendering them more sensitive to anti-EGFR therapy. Finally, EBV may induce epigenetic changes in the infected cells, such as DNA hypermethylation and histone deacetylation, that can sustain tumor growth and can thus be considered potential targets for novel therapies. In conclusion, EBV infection can modify important biological features of NPC cells, rendering them more vulnerable to both immunotherapy and targeted therapy.

  12. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    PubMed

    Lin, Lianzhu; Deng, Wuguo; Tian, Yun; Chen, Wangbing; Wang, Jingshu; Fu, Lingyi; Shi, Dingbo; Zhao, Mouming; Luo, Wei

    2014-01-01

    Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC) cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid). The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  13. Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas

    PubMed Central

    Ramayanti, Octavia; Brinkkemper, Mitch; Verkuijlen, Sandra A. W. M.; Ritmaleni, Leni; Go, Mei Lin

    2018-01-01

    Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC. However, a major challenge is to maximize EBV lytic reactivation by CLVA. Curcumin, a dietary spice used in Asian countries, is known for its antitumor property and therapeutic potential. Novel curcuminoids that were developed to increase efficacy and bioavailability may serve as oral CLVA adjuvants. We investigated the potential of curcumin and its analogs (curcuminoids) to trigger the EBV lytic cycle in EBVaGC and NPC cells. EBV-reactivating effects were measured by immunoblot and immunofluorescence using monoclonal antibodies specific for EBV lytic proteins. Two of the hit compounds (41, EF24) with high lytic inducing activity were further studied for their synergistic or antagonistic effects when combined with GCb+VPA and analyzed by cytotoxicity and mRNA profiling assays to measure the EBV reactivation. Curcuminoid as a single agent significantly induced EBV reactivation in recombinant GC and NPC lines. The drug effects were dose- and time-dependent. Micromolar concentration of curcuminoid EF24 enhanced the CLVA effect in all cell systems except SNU719, a naturally infected EBVaGC cell that carries a more tightly latent viral genome. These findings indicated that EF24 has potential as EBV lytic activator and may serve as an adjuvant in CLVA treatment. PMID:29565326

  14. Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas.

    PubMed

    Ramayanti, Octavia; Brinkkemper, Mitch; Verkuijlen, Sandra A W M; Ritmaleni, Leni; Go, Mei Lin; Middeldorp, Jaap M

    2018-03-22

    Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC. However, a major challenge is to maximize EBV lytic reactivation by CLVA. Curcumin, a dietary spice used in Asian countries, is known for its antitumor property and therapeutic potential. Novel curcuminoids that were developed to increase efficacy and bioavailability may serve as oral CLVA adjuvants. We investigated the potential of curcumin and its analogs (curcuminoids) to trigger the EBV lytic cycle in EBVaGC and NPC cells. EBV-reactivating effects were measured by immunoblot and immunofluorescence using monoclonal antibodies specific for EBV lytic proteins. Two of the hit compounds ( 41 , EF24 ) with high lytic inducing activity were further studied for their synergistic or antagonistic effects when combined with GCb+VPA and analyzed by cytotoxicity and mRNA profiling assays to measure the EBV reactivation. Curcuminoid as a single agent significantly induced EBV reactivation in recombinant GC and NPC lines. The drug effects were dose- and time-dependent. Micromolar concentration of curcuminoid EF24 enhanced the CLVA effect in all cell systems except SNU719, a naturally infected EBVaGC cell that carries a more tightly latent viral genome. These findings indicated that EF24 has potential as EBV lytic activator and may serve as an adjuvant in CLVA treatment.

  15. Intracellular trafficking of the free cholesterol derived from LDL cholesteryl ester is defective in vivo in Niemann-Pick C disease: insights on normal metabolism of HDL and LDL gained from the NP-C mutation.

    PubMed

    Shamburek, R D; Pentchev, P G; Zech, L A; Blanchette-Mackie, J; Carstea, E D; VandenBroek, J M; Cooper, P S; Neufeld, E B; Phair, R D; Brewer, H B; Brady, R O; Schwartz, C C

    1997-12-01

    Niemann-Pick C disease (NP-C) is a rare inborn error of metabolism with hepatic involvement and neurological sequelae that usually manifest in childhood. Although in vitro studies have shown that the lysosomal distribution of LDL-derived cholesterol is defective in cultured cells of NP-C subjects, no unusual characteristics mark the plasma lipoprotein profiles. We set out to determine whether anomalies exist in vivo in the cellular distribution of newly synthesized, HDL-derived or LDL-derived cholesterol under physiologic conditions in NP-C subjects. Three affected and three normal male subjects were administered [14C]mevalonate as a tracer of newly synthesized cholesterol and [3H]cholesteryl linoleate in either HDL or LDL to trace the distribution of lipoprotein-derived free cholesterol. The rate of appearance of free [14C]- and free [3H]cholesterol in the plasma membrane was detected indirectly by monitoring their appearance in plasma and bile. The plasma disappearance of [3H]cholesteryl linoleate was slightly faster in NP-C subjects regardless of its lipoprotein origin. Appearance of free [14C] cholesterol ill the plasma (and in bile) was essentially identical in normal and affected individuals as was the initial appearance of free [3H]cholesterol derived from HDL, observed before extensive exchange occurred of the [3H]cholesteryl linoleate among lipoproteins. In contrast, the rate of appearance of LDL-derived free [3H]cholesterol in the plasma membrane of NP-C subjects, as detected in plasma and bile, was retarded to a similar extent that LDL cholesterol metabolism was defective in cultured fibroblasts of these affected subjects. These findings show that intracellular distribution of both newly synthesized and HDL-derived cholesterol are essentially unperturbed by the NP-C mutation, and therefore occur by lysosomal-independent paths. In contrast, in NP-C there is defective trafficking of LDL-derived cholesterol to the plasma membrane in vivo as well as in vitro. The in vivo assay of intracellular cholesterol distribution developed herein should prove useful to quickly evaluate therapeutic interventions for NP-C.

  16. Therapeutic implications of Epstein–Barr virus infection for the treatment of nasopharyngeal carcinoma

    PubMed Central

    Hutajulu, Susanna Hilda; Kurnianda, Johan; Tan, I Bing; Middeldorp, Jaap M

    2014-01-01

    Nasopharyngeal carcinoma (NPC) is highly endemic in certain regions including the People’s Republic of China and Southeast Asia. Its etiology is unique and multifactorial, involving genetic background, epigenetic, and environment factors, including Epstein–Barr virus (EBV) infection. The presence of EBV in all tumor cells, aberrant pattern of antibodies against EBV antigens in patient sera, and elevated viral DNA in patient circulation as well as nasopharyngeal site underline the role of EBV during NPC development. In NPC tumors, EBV expresses latency type II, where three EBV-encoded proteins, Epstein–Barr nuclear antigen 1, latent membrane protein 1 and 2 (LMP1, 2), are expressed along with BamH1-A rightward reading frame 1, Epstein–Barr virus-encoded small nuclear RNAs, and BamH1-A rightward transcripts. Among all encoded proteins, LMP1 plays a central role in the propagation of NPC. Standard treatment of NPC consists of radiotherapy with or without chemotherapy for early stage, concurrent chemoradiotherapy in locally advanced tumors, and palliative systemic chemotherapy in metastatic disease. However, this standard care has limitations, allowing recurrences and disease progression in a certain proportion of cases. Although the pathophysiological link and molecular process of EBV-induced oncogenesis are not fully understood, therapeutic approaches targeting the virus may increase the cure rate and add clinical benefit. The promising results of early phase clinical trials on EBV-specific immunotherapy, epigenetic therapy, and treatment with viral lytic induction offer new options for treating NPC. PMID:25228810

  17. Potential Pitfalls and Solutions for Use of Fluorescent Fusion Proteins to Study the Lysosome

    PubMed Central

    Huang, Ling; Pike, Douglas; Sleat, David E.; Nanda, Vikas; Lobel, Peter

    2014-01-01

    Use of fusion protein tags to investigate lysosomal proteins can be complicated by the acidic, protease-rich environment of the lysosome. Potential artifacts include degradation or release of the tag and acid quenching of fluorescence. Tagging can also affect protein folding, glycosylation and/or trafficking. To specifically investigate the use of fluorescent tags to reveal lysosomal localization, we tested mCherry derivatives as C-terminal tags for Niemann-Pick disease type C protein 2 (NPC2), a luminal lysosomal protein. Full-length mCherry was released from the NPC2 chimera while deletion of the 11 N-terminal residues of mCherry generated a cleavage-resistant (cr) fluorescent variant. Insertion of proline linkers between NPC2 and crmCherry had little effect while Gly-Ser linkers promoted cleavage. The NPC2-crmCherry fusion was targeted to the lysosome and restored function in NPC2-deficient cells. Fusion of crmCherry to known and candidate lysosomal proteins revealed that the linkers had different effects on lysosomal localization. Direct fusion of crmCherry impaired mannose 6-phosphorylation and lysosomal targeting of the lysosomal protease tripeptidyl peptidase I (TPP1), while insertion of linkers corrected the defects. Molecular modeling suggested structural bases for the effects of different linkers on NPC2 and TPP1 fusion proteins. While mCherry fusion proteins can be useful tools for studying the lysosome and related organelles, our findings underscore the potential artifacts associated with such applications. PMID:24586430

  18. Inhibition of autophagy by 3-MA enhances endoplasmic reticulum stress-induced apoptosis in human nasopharyngeal carcinoma cells.

    PubMed

    Song, Lele; Liu, Hao; Ma, Linyan; Zhang, Xudng; Jiang, Zhiwen; Jiang, Chenchen

    2013-10-01

    Radiotherapy and adjuvant cisplatin chemotherapy are the mainstream treatments for nasopharyngeal carcinoma (NPC), which effectively improve the outcome and reduce tumor recurrence. However, the resistance mechanism(s) involved in radiotherapy and chemotherapy, which is the main barrier in NPC treatment, remains undefined. Therefore, there is an urgent requirement for the identification of new therapeutic strategies or adjuvant drugs. In the present study, the effects of autophagy inhibitors on endoplasmic reticulum (ER) stress-induced autophagy was investigated. Combining 3-methyladenine (3-MA) with cisplatin (DDP), ionizing radiation (IR), 2-deoxy-D-glucose (2-DG) or tunicamycin (TM) resulted in enhanced cell death, as revealed by MTT and colony formation assays. Flow cytometry results demonstrated that the sensitivity of NPC cells to DDP- and IR-induced apoptosis was not significant. DDP, IR, 2-DG and TM induced ER stress and autophagy. Using fluorescence microscopy, 3-MA was identified to increase the apoptotic cell death induced by DDP, IR, 2-DG or TM. In addition, 3-MA inhibited the increased autophagy induced by DDP, IR, 2-DG or TM, as demonstrated by western blot analysis and immunocytochemistry results. Results of the present study indicate that autophagy acts as a protective mechanism response to the apoptosis induced by DDP, IR, 2-DG or TM.

  19. Assessment of plasma chitotriosidase activity, CCL18/PARC concentration and NP-C suspicion index in the diagnosis of Niemann-Pick disease type C: a prospective observational study.

    PubMed

    De Castro-Orós, Isabel; Irún, Pilar; Cebolla, Jorge Javier; Rodriguez-Sureda, Victor; Mallén, Miguel; Pueyo, María Jesús; Mozas, Pilar; Dominguez, Carmen; Pocoví, Miguel

    2017-02-21

    Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. The diagnosis of NP-C remains challenging due to the non-specific, heterogeneous nature of signs/symptoms. This study assessed the utility of plasma chitotriosidase (ChT) and Chemokine (C-C motif) ligand 18 (CCL18)/pulmonary and activation-regulated chemokine (PARC) in conjunction with the NP-C suspicion index (NP-C SI) for guiding confirmatory laboratory testing in patients with suspected NP-C. In a prospective observational cohort study, incorporating a retrospective determination of NP-C SI scores, two different diagnostic approaches were applied in two separate groups of unrelated patients from 51 Spanish medical centers (n = 118 in both groups). From Jan 2010 to Apr 2012 (Period 1), patients with ≥2 clinical signs/symptoms of NP-C were considered 'suspected NP-C' cases, and NPC1/NPC2 sequencing, plasma chitotriosidase (ChT), CCL18/PARC and sphingomyelinase levels were assessed. Based on findings in Period 1, plasma ChT and CCL18/PARC, and NP-C SI prediction scores were determined in a second group of patients between May 2012 and Apr 2014 (Period 2), and NPC1 and NPC2 were sequenced only in those with elevated ChT and/or elevated CCL18/PARC and/or NP-C SI ≥70. Filipin staining and 7-ketocholesterol (7-KC) measurements were performed in all patients with NP-C gene mutations, where possible. In total across Periods 1 and 2, 10/236 (4%) patients had a confirmed diagnosis o NP-C based on gene sequencing (5/118 [4.2%] in each Period): all of these patients had two causal NPC1 mutations. Single mutant NPC1 alleles were detected in 8/236 (3%) patients, overall. Positive filipin staining results comprised three classical and five variant biochemical phenotypes. No NPC2 mutations were detected. All patients with NPC1 mutations had high ChT activity, high CCL18/PARC concentrations and/or NP-C SI scores ≥70. Plasma 7-KC was higher than control cut-off values in all patients with two NPC1 mutations, and in the majority of patients with single mutations. Family studies identified three further NP-C patients. This approach may be very useful for laboratories that do not have mass spectrometry facilities and therefore, they cannot use other NP-C biomarkers for diagnosis.

  20. (68)Ga-DOTA (0)-Tyr (3)-octreotide positron emission tomography in nasopharyngeal carcinoma.

    PubMed

    Schartinger, Volker H; Dudás, József; Url, Christoph; Reinold, Susanne; Virgolini, Irene J; Kroiss, Alexander; Riechelmann, Herbert; Uprimny, Christian

    2015-01-01

    PET/CT with (68)Ga-labelled [DOTA(0),Tyr(3)]-octreotide ((68)Ga-DOTA-TOC PET/CT) is a routinely used imaging modality for neuroendocrine tumours expressing somatostatin receptors (SSTR). Recent studies have shown SSTR expression in head and neck squamous cell carcinoma, albeit lower than in highly differentiated neuroendocrine tumours. We sought to determine whether nasopharyngeal carcinoma (NPC) positive for Epstein-Barr virus (EBV), a rare subtype of head and neck cancer, shows increased (68)Ga-DOTA-TOC uptake indicating expression of SSTR. Five patients with untreated, histologically proven EBV-positive NPC were referred for (68)Ga-DOTA-TOC PET/CT. Tracer uptake in tumour lesions was assessed visually and semiquantitatively measuring maximum standardized uptake values (SUVmax) and tumour to background ratios. Increased tumour-specific uptake was detected in all five patients with a median SUVmax of 10.6 (range 3.6 - 17.1) in the primary tumour and 13.2 (range 6.1 - 14.5) in cervical lymph node metastases. (68)Ga-DOTA-TOC PET/CT demonstrated tracer uptake in EBV-positive NPC comparable to that in highly differentiated neuroendocrine tumours. This observation is consistent with increased SSTR expression in EBV-positive NPC and may open new diagnostic and therapeutic windows in NPC.

  1. Amino Acid Substitutions of Coiled-Coil Protein Tpr Abrogate Anchorage to the Nuclear Pore Complex but Not Parallel, In-Register Homodimerization

    PubMed Central

    Hase, Manuela E.; Kuznetsov, Nikolai V.; Cordes, Volker C.

    2001-01-01

    Tpr is a protein component of nuclear pore complex (NPC)-attached intranuclear filaments. Secondary structure predictions suggest a bipartite structure, with a large N-terminal domain dominated by heptad repeats (HRs) typical for coiled-coil–forming proteins. Proposed functions for Tpr have included roles as a homo- or heteropolymeric architectural element of the nuclear interior. To gain insight into Tpr's ultrastructural properties, we have studied recombinant Tpr segments by circular dichroism spectroscopy, chemical cross-linking, and rotary shadowing electron microscopy. We show that polypeptides of the N-terminal domain homodimerize in vitro and represent α-helical molecules of extended rod-like shape. With the use of a yeast two-hybrid approach, arrangement of the coiled-coil is found to be in parallel and in register. To clarify whether Tpr can self-assemble further into homopolymeric filaments, the full-length protein and deletion mutants were overexpressed in human cells and then analyzed by confocal immunofluorescence microscopy, cell fractionation, and immuno-electron microscopy. Surplus Tpr, which does not bind to the NPC, remains in a soluble state of ∼7.5 S and occasionally forms aggregates of entangled molecules but neither self-assembles into extended linear filaments nor stably binds to other intranuclear structures. Binding to the NPC is shown to depend on the integrity of individual HRs; amino acid substitutions within these HRs abrogate NPC binding and render the protein soluble but do not abolish Tpr's general ability to homodimerize. Possible contributions of Tpr to the structural organization of the nuclear periphery in somatic cells are discussed. PMID:11514627

  2. Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools.

    PubMed

    Kelsen, Jesper; Larsen, Marianne H; Sørensen, Jens Christian; Møller, Arne; Frøkiaer, Jørgen; Nielsen, Søren; Nyengaard, Jens R; Mikkelsen, Jens D; Rønn, Lars Christian B

    2010-04-06

    We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs) one week after tMCAo; (2) to present the practical use of the optical fractionator and 2D nucleator in stereological brain tissue analyses; and (3) to report our experiences with an intraluminal tMCAo model where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo. Twenty-three SDs and twenty SHRs were randomized into four groups subjected to 90 minutes tMCAo or sham. BrdU (50 mg/kg) was administered intraperitoneally twice daily on Day 4 to 7 after surgery. On Day 8 all animals were euthanized. NeuN-stained tissue sections were used for brain and infarct volume estimation with the 2D nucleator and Cavalieri principle. Brains were studied for the presence of activated microglia (ED-1) and hippocampal BrdU incorporation using the optical fractionator. We found no significant difference or increase in post-ischemic NPC proliferation between the two strains. However, the response to remote ischemia may differ between SDs and SHRs. In three animals increased post-stroke NPC proliferation was associated with hippocampal ischemic injury. The mean infarct volume was 89.2 +/- 76.1 mm3 in SHRs and 16.9 +/- 22.7 mm3 in SDs (p < 0.005). Eight out of eleven SHRs had ischemic neocortical damage in contrast to only one out of 12 SDs. We observed involvement of the anterior choroidal and hypothalamic arteries in several animals from both strains and the anterior cerebral artery in two SHRs. We found no evidence of an early hippocampal NPC proliferation one week after tMCAo in both strains. Infarction within the anterior choroidal artery could induce hippocampal ischemia and increase NPC proliferation profoundly. NPC proliferation was not aggravated by the presence of activated microglia. Intraluminal tMCAo in SHRs gave a more reliable infarct with neocortical involvement, but affected territories supplied by the anterior cerebral, anterior choroidal and hypothalamic arteries.

  3. N-arachidonoyl-L-serine (AraS) possesses proneurogenic properties in vitro and in vivo after traumatic brain injury

    PubMed Central

    Cohen-Yeshurun, Ayelet; Willner, Dafna; Trembovler, Victoria; Alexandrovich, Alexander; Mechoulam, Raphael; Shohami, Esther; Leker, Ronen R

    2013-01-01

    N-arachidonoyl-L-serine (AraS) is a novel neuroprotective endocannabinoid. We aimed to test the effects of exogenous AraS on neurogenesis after traumatic brain injury (TBI). The effects of AraS on neural progenitor cells (NPC) proliferation, survival, and differentiation were examined in vitro. Next, mice underwent TBI and were treated with AraS or vehicle. Lesion volumes and clinical outcome were evaluated and the effects on neurogenesis were tested using immunohistochemistry. Treatment with AraS led to a dose-dependent increase in neurosphere size without affecting cell survival. These effects were partially reversed by CB1, CB2, or TRPV1 antagonists. AraS significantly reduced the differentiation of NPC in vitro to astrocytes or neurons and led to a 2.5-fold increase in expression of the NPC marker nestin. Similar effects were observed in vivo in mice treated with AraS 7 days after TBI. These effects were accompanied by a reduction in lesion volume and an improvement in neurobehavioral function compared with controls. AraS increases proliferation of NPCs in vitro in cannabinoid-receptor-mediated mechanisms and maintains NPC in an undifferentiated state in vitro and in vivo. Moreover, although given at 7 days post injury, these effects are associated with significant neuroprotective effects leading to an improvement in neurobehavioral functions. PMID:23695434

  4. N-arachidonoyl-L-serine (AraS) possesses proneurogenic properties in vitro and in vivo after traumatic brain injury.

    PubMed

    Cohen-Yeshurun, Ayelet; Willner, Dafna; Trembovler, Victoria; Alexandrovich, Alexander; Mechoulam, Raphael; Shohami, Esther; Leker, Ronen R

    2013-08-01

    N-arachidonoyl-L-serine (AraS) is a novel neuroprotective endocannabinoid. We aimed to test the effects of exogenous AraS on neurogenesis after traumatic brain injury (TBI). The effects of AraS on neural progenitor cells (NPC) proliferation, survival, and differentiation were examined in vitro. Next, mice underwent TBI and were treated with AraS or vehicle. Lesion volumes and clinical outcome were evaluated and the effects on neurogenesis were tested using immunohistochemistry. Treatment with AraS led to a dose-dependent increase in neurosphere size without affecting cell survival. These effects were partially reversed by CB1, CB2, or TRPV1 antagonists. AraS significantly reduced the differentiation of NPC in vitro to astrocytes or neurons and led to a 2.5-fold increase in expression of the NPC marker nestin. Similar effects were observed in vivo in mice treated with AraS 7 days after TBI. These effects were accompanied by a reduction in lesion volume and an improvement in neurobehavioral function compared with controls. AraS increases proliferation of NPCs in vitro in cannabinoid-receptor-mediated mechanisms and maintains NPC in an undifferentiated state in vitro and in vivo. Moreover, although given at 7 days post injury, these effects are associated with significant neuroprotective effects leading to an improvement in neurobehavioral functions.

  5. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yun; Wang, Jing; Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191

    2011-01-14

    Research highlights: {yields} Nicotinamide inhibit Sirt1. {yields} MASH1 and Ngn2 activation. {yields} Increase the expression of HB9. {yields} Motoneurons formation increases significantly. -- Abstract: Several protocols direct human embryonic stem cells (hESCs) toward differentiation into functional motoneurons, but the efficiency of motoneuron generation varies based on the human ESC line used. We aimed to develop a novel protocol to increase the formation of motoneurons from human ESCs. In this study, we tested a nuclear histone deacetylase protein, Sirt1, to promote neural precursor cell (NPC) development during differentiation of human ESCs into motoneurons. A specific inhibitor of Sirt1, nicotinamide, dramatically increasedmore » motoneuron formation. We found that about 60% of the cells from the total NPCs expressed HB9 and {beta}III-tubulin, commonly used motoneuronal markers found in neurons derived from ESCs following nicotinamide treatment. Motoneurons derived from ESC expressed choline acetyltransferase (ChAT), a positive marker of mature motoneuron. Moreover, we also examined the transcript levels of Mash1, Ngn2, and HB9 mRNA in the differentiated NPCs treated with the Sirt1 activator resveratrol (50 {mu}M) or inhibitor nicotinamide (100 {mu}M). The levels of Mash1, Ngn2, and HB9 mRNA were significantly increased after nicotinamide treatment compared with control groups, which used the traditional protocol. These results suggested that increasing Mash1 and Ngn2 levels by inhibiting Sirt1 could elevate HB9 expression, which promotes motoneuron differentiation. This study provides an alternative method for the production of transplantable motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease.« less

  6. In silico assessment of phosphorylation and O-β-GlcNAcylation sites in human NPC1 protein critical for Ebola virus entry.

    PubMed

    Basharat, Zarrin; Yasmin, Azra

    2015-08-01

    Ebola is a highly pathogenic enveloped virus responsible for deadly outbreaks of severe hemorrhagic fever. It enters human cells by binding a multifunctional cholesterol transporter Niemann-Pick C1 (NPC1) protein. Post translational modification (PTM) information for NPC1 is crucial to understand Ebola virus (EBOV) entry and action due to changes in phosphorylation or glycosylation at the binding site. It is difficult and costly to experimentally assess this type of interaction, so in silico strategy was employed. Identification of phosphorylation sites, including conserved residues that could be possible targets for 21 predicted kinases was followed by interplay study between phosphorylation and O-β-GlcNAc modification of NPC1. Results revealed that only 4 out of 48 predicted phosphosites exhibited O-β-GlcNAc activity. Predicted outcomes were integrated with residue conservation and 3D structural information. Three Yin Yang sites were located in the α-helix regions and were conserved in studied vertebrate and mammalian species. Only one modification site S425 was found in β-turn region located near the N-terminus of NPC1 and was found to differ in pig, mouse, cobra and humans. The predictions suggest that Yin Yang sites may not be important for virus attachment to NPC1, whereas phosphosite 473 may be important for binding and hence entry of Ebola virus. This information could be useful in addressing further experimental studies and therapeutic strategies targeting PTM events in EBOV entry. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of silencing S100A8 and S100A9 with small interfering RNA on the migration of CNE1 nasopharyngeal carcinoma cells.

    PubMed

    Yan, Lin-Lin; Huang, Yuan-Jiao; Yi, Xiang; Yan, Xue-Min; Cai, Yan; He, Qin; Han, Zi-Jian

    2015-06-01

    The calcium-binding S100 proteins are involved in functions such as cell growth, differentiation, migration, adhesion and signal transduction. S100A8 and S100A9 are highly expressed in a variety of tumor cells, and are implicated in tumor development and progression. However, the role of S100A8 and S100A9 in nasopharyngeal carcinoma (NPC) cell migration is unclear. The present study investigated the effect of S100A8 and S100A9 on migration using a NPC cell line, CNE1. The CNE1 cells were transfected with S100A8 or S100A9 small interfering RNA (siRNA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect S100A8 and S100A9 gene expression. Following the downregulation of S100A8 or S100A9, the effects on cell migration were determined using wound-healing assays. The expression of matrix metalloproteinase-7 (MMP7), a member of the MMP family that is associated with tumor cell invasion and migration, was also detected by RT-qPCR. S100A8 and S100A9 siRNAs effectively suppressed S100A8 and S100A9 gene expression, and substantially inhibited the migration of the CNE1 cells. In addition, MMP7 expression was reduced to varying extents in S100A8 and S100A9 siRNA-treated cells compared with controls. Thus, S100A8 and S100A9 promoted the migration of CNE1 NPC cells.

  8. Effects of silencing S100A8 and S100A9 with small interfering RNA on the migration of CNE1 nasopharyngeal carcinoma cells

    PubMed Central

    YAN, LIN-LIN; HUANG, YUAN-JIAO; YI, XIANG; YAN, XUE-MIN; CAI, YAN; HE, QIN; HAN, ZI-JIAN

    2015-01-01

    The calcium-binding S100 proteins are involved in functions such as cell growth, differentiation, migration, adhesion and signal transduction. S100A8 and S100A9 are highly expressed in a variety of tumor cells, and are implicated in tumor development and progression. However, the role of S100A8 and S100A9 in nasopharyngeal carcinoma (NPC) cell migration is unclear. The present study investigated the effect of S100A8 and S100A9 on migration using a NPC cell line, CNE1. The CNE1 cells were transfected with S100A8 or S100A9 small interfering RNA (siRNA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect S100A8 and S100A9 gene expression. Following the downregulation of S100A8 or S100A9, the effects on cell migration were determined using wound-healing assays. The expression of matrix metalloproteinase-7 (MMP7), a member of the MMP family that is associated with tumor cell invasion and migration, was also detected by RT-qPCR. S100A8 and S100A9 siRNAs effectively suppressed S100A8 and S100A9 gene expression, and substantially inhibited the migration of the CNE1 cells. In addition, MMP7 expression was reduced to varying extents in S100A8 and S100A9 siRNA-treated cells compared with controls. Thus, S100A8 and S100A9 promoted the migration of CNE1 NPC cells. PMID:26137102

  9. Structure–function mapping of a heptameric module in the nuclear pore complex

    PubMed Central

    Fernandez-Martinez, Javier; Phillips, Jeremy; Sekedat, Matthew D.; Diaz-Avalos, Ruben; Velazquez-Muriel, Javier; Franke, Josef D.; Williams, Rosemary; Stokes, David L.; Chait, Brian T.

    2012-01-01

    The nuclear pore complex (NPC) is a multiprotein assembly that serves as the sole mediator of nucleocytoplasmic exchange in eukaryotic cells. In this paper, we use an integrative approach to determine the structure of an essential component of the yeast NPC, the ∼600-kD heptameric Nup84 complex, to a precision of ∼1.5 nm. The configuration of the subunit structures was determined by satisfaction of spatial restraints derived from a diverse set of negative-stain electron microscopy and protein domain–mapping data. Phenotypic data were mapped onto the complex, allowing us to identify regions that stabilize the NPC’s interaction with the nuclear envelope membrane and connect the complex to the rest of the NPC. Our data allow us to suggest how the Nup84 complex is assembled into the NPC and propose a scenario for the evolution of the Nup84 complex through a series of gene duplication and loss events. This work demonstrates that integrative approaches based on low-resolution data of sufficient quality can generate functionally informative structures at intermediate resolution. PMID:22331846

  10. Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex.

    PubMed

    Ma, Jiong; Kelich, Joseph M; Junod, Samuel L; Yang, Weidong

    2017-04-01

    The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes. © 2017. Published by The Company of Biologists Ltd.

  11. Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex

    PubMed Central

    Ma, Jiong; Kelich, Joseph M.; Junod, Samuel L.

    2017-01-01

    ABSTRACT The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes. PMID:28202688

  12. Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites.

    PubMed

    Li, Xueqin; Hao, Changlong; Tang, Bochong; Wang, Yue; Liu, Mei; Wang, Yuanwei; Zhu, Yihua; Lu, Chenguang; Tang, Zhiyong

    2017-02-09

    Due to their high specific surface area and good electric conductivity, nitrogen-doped porous carbons (NPCs) and carbon nanotubes (CNTs) have attracted much attention for electrochemical energy storage applications. In the present work, we firstly prepared MWCNT/ZIF-8 composites by decoration of zeolitic imidazolate frameworks (ZIF-8) onto the surface of multi-walled CNTs (MWCNTs), then obtained MWCNT/NPCs by the direct carbonization of MWCNT/ZIF-8. By controlling the reaction conditions, MWCNT/ZIF-8 with three different particle sizes were synthesized. The effect of NPCs size on capacitance performance has been evaluated in detail. The MWCNT/NPC with large-sized NPC (MWCNT/NPC-L) displayed the highest specific capacitance of 293.4 F g -1 at the scan rate of 5 mV s -1 and only lost 4.2% of capacitance after 10 000 cyclic voltammetry cycles, which was attributed to the hierarchically structured pores, N-doping and high electrical conductivity. The studies of symmetric two-electrode supercapacitor cells also confirmed MWCNT/NPC-L as efficient electrode materials that have good electrochemical performance, especially for high-rate applications.

  13. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  14. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin

    PubMed Central

    Vance, Jean E.; Karten, Barbara

    2014-01-01

    Niemann-Pick type C (NPC) disease is a lysosomal storage disease in which endocytosed cholesterol becomes sequestered in late endosomes/lysosomes (LEs/Ls) because of mutations in either the NPC1 or NPC2 gene. Mutations in either of these genes can lead to impaired functions of the NPC1 or NPC2 proteins and progressive neurodegeneration as well as liver and lung disease. NPC1 is a polytopic protein of the LE/L limiting membrane, whereas NPC2 is a soluble protein in the LE/L lumen. These two proteins act in tandem and promote the export of cholesterol from LEs/Ls. Consequently, a defect in either NPC1 or NPC2 causes cholesterol accumulation in LEs/Ls. In this review, we summarize the molecular mechanisms leading to NPC disease, particularly in the CNS. Recent exciting data on the mechanism by which the cholesterol-sequestering agent cyclodextrin can bypass the functions of NPC1 and NPC2 in the LEs/Ls, and mobilize cholesterol from LEs/Ls, will be highlighted. Moreover, the possible use of cyclodextrin as a valuable therapeutic agent for treatment of NPC patients will be considered. PMID:24664998

  15. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    PubMed

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses. Copyright © 2017 American Society for Microbiology.

  16. Comparison of CYFRA 21-1 and tissue polypeptide specific antigen (TPS) for detecting nasopharyngeal carcinoma.

    PubMed

    Tai, Chih-Jaan; Liu, Feng-Yuan; Liang, Ji-An; Yang, Shih-Neng; Tsai, Ming-Hsui; Kao, Cbia-Hung

    2002-01-01

    CYFRA 21-1 is a tumor marker that is useful for detecting squamous cell carcinoma (SCC) of the lung. Tissue polypeptide specific antigen (TPS) is a tumor marker that indicates tumor proliferative rate rather than tumor burden. Our aim in this study was to compare the clinical value of CYFRA 21-1 and TPS in the detection of nasopharyngeal carcinoma (NPC). Serum levels of CYFRA 21-1 and TPS were measured in 60 patients with untreated NPC (including 36 differentiated SCC and 24 undifferentiated carcinomas) for comparison with each other. The cut-off values of CYFRA 21-1 and TPS, determined at the 95th percentile of the 43 healthy controls, were 2.50 ng/ml and 115.2 U/l, respectively. The results revealed that the mean serum values of CYFRA 21-1 (6.20 +/- 5.21 ng/ml) and TPS (153.9 +/- 17.3 U/l) in all 60 NPC patients were significantly higher than that in the 43 healthy controls (CYFRA 21-1 = 1.32 + 0.50 ng/ml, TPS = 85.0 +/- 16.0 U/l) (p value < 0.05). In addition, the detecting sensitivities of CYFRA 21-1 (60.0%) and TPS (58.3%) for all 60 NPC were not significantly different (p value > 0.05). In conclusion, our results suggest that both CYFRA 21-1 and TPS are potential tumor markers for the detection of NPC.

  17. Dendrimer-assisted patch-clamp sizing of nuclear pores

    PubMed Central

    Bustamante, J.O.; Michelette, E.R.F.; Geibel, J.P.; Hanover, J.A.; McDonnell, T.J.; Dean, D.A.

    2015-01-01

    Macromolecular translocation (MMT) across the nuclear envelope (NE) occurs exclusively through the nuclear pore complex (NPC). Therefore, the diameter of the NPC aqueous/electrolytic channel (NPCC) is important for cellular structure and function. The NPCC diameter was previously determined to be ≅10 nm with electron microscopy (EM) using the translocation of colloidal gold particles. Here we present patch-clamp and fluorescence microscopy data from adult cardiomyocyte nuclei that demonstrate the use of patch-clamp for assessing NPCC diameter. Fluorescence microscopy with B-phycoerythrin (BPE, 240 kDa) conjugated to a nuclear localization signal (NLS) demonstrated that these nuclei were competent for NPC-mediated MMT (NPC-MMT). Furthermore, when exposed to an appropriate cell lysate, the nuclei expressed enhanced green fluorescence protein (EGFP) after 5–10 h of incubation with the plasmid for this protein (pEGFP, 3.1 MDa). Nucleus-attached patch-clamp showed that colloidal gold particles were not useful probes; they modified NPCC gating. As a result of this finding, we searched for an inert class of particles that could be used without irreversibly affecting NPCC gating and found that fluorescently labeled Star-burst dendrimers, a distinct class of polymers, were useful. Our patch-clamp and fluorescence microscopy data with calibrated dendrimers indicate that the cardiomyocyte NPCC diameter varies between 8 and 9 nm. These studies open a new direction in the investigation of live, continuous NPC dynamics under physiological conditions. PMID:10784359

  18. Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1.

    PubMed

    Moghanibashi, Mehdi; Rastgar Jazii, Ferdous; Soheili, Zahra-Soheila; Zare, Maryam; Karkhane, Aliasghar; Parivar, Kazem; Mohamadynejad, Parisa

    2013-06-01

    Nuclear pore complex (NPC) is the only corridor for macromolecules exchange between nucleus and cytoplasm. NPC and its components, nucleoporins, play important role in the diverse physiological processes including macromolecule exchange, chromosome segregation, apoptosis and gene expression. Recent reports also suggest involvement of nucleoporins in carcinogenesis. Applying proteomics, we analyzed expression pattern of the NPC components in a newly established esophageal cancer cell line from Persia (Iran), the high-risk region for esophageal cancer. Our results indicate overexpression of Hsc70 and downregulation of subunit alpha type-3 of proteasome, calpain small subunit 1, and eIF5A-1. Among these proteins, Hsc70 and eIF5A-1 are in direct interaction with NPC and involved in the nucleocytoplasmic exchange. Hsc70 plays a critical role as a chaperone in the formation of a cargo-receptor complex in nucleocytoplasmic transport. On the other hand, it is an NPC-associated protein that binds to nucleoporins and contributes in recycling of the nucleocytoplasmic transport receptors in mammals and affects transport of proteins between nucleus and cytoplasm. The other nuclear pore interacting protein: eIF5A-1 binds to the several nucleoporins and participates in nucleocytoplasmic transport. Altered expression of Hsc70 and eIF5A-1 may cause defects in nucleocytoplasmic transport and play a role in esophageal carcinogenesis.

  19. Pluronic based β-cyclodextrin polyrotaxanes for treatment of Niemann-Pick Type C disease

    NASA Astrophysics Data System (ADS)

    Collins, Christopher J.; Loren, Bradley P.; Alam, Md Suhail; Mondjinou, Yawo; Skulsky, Joseph L.; Chaplain, Cheyenne R.; Haldar, Kasturi; Thompson, David H.

    2017-04-01

    Niemann-Pick Type C disease (NPC) is a rare metabolic disorder characterized by disruption of normal cholesterol trafficking within the cells of the body. There are no FDA approved treatments available for NPC patients. Recently, the cycloheptaglucoside 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) has shown efficacy as a potential NPC therapeutic by extending lifetime in NPC mice, delaying neurodegeneration, and decreasing visceral and neurological cholesterol burden. Although promising, systemic HP-β-CD treatment is limited by a pharmacokinetic profile characterized by rapid loss through renal filtration. To address these shortcomings, we sought to design a family of HP-β-CD pro-drug delivery vehicles, known as polyrotaxanes (PR), capable of increasing the efficacy of a given injected dose by improving both pharmacokinetic profile and bioavailability of the HP-β-CD agent. PR can effectively diminish the cholesterol pool within the liver, spleen, and kidney at molar concentrations 10-to-100-fold lower than monomeric HP-β-CD. In addition to this proof-of-concept, use of PR scaffolds with differing physiochemical properties reveal structure-activity relationships in which PR characteristics, including hydrophobicity, threading efficiency and surface charge, were found to both decisively and subtly effect therapeutic efficacy. PR scaffolds exhibit absorption, pharmacokinetics, and biodistribution patterns that are significantly altered from monomeric HP-β-CD. In all, PR scaffolds hold great promise as potential treatments for visceral disease in NPC patients.

  20. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection.

    PubMed

    Côté, Marceline; Misasi, John; Ren, Tao; Bruchez, Anna; Lee, Kyungae; Filone, Claire Marie; Hensley, Lisa; Li, Qi; Ory, Daniel; Chandran, Kartik; Cunningham, James

    2011-08-24

    Ebola virus (EboV) is a highly pathogenic enveloped virus that causes outbreaks of zoonotic infection in Africa. The clinical symptoms are manifestations of the massive production of pro-inflammatory cytokines in response to infection and in many outbreaks, mortality exceeds 75%. The unpredictable onset, ease of transmission, rapid progression of disease, high mortality and lack of effective vaccine or therapy have created a high level of public concern about EboV. Here we report the identification of a novel benzylpiperazine adamantane diamide-derived compound that inhibits EboV infection. Using mutant cell lines and informative derivatives of the lead compound, we show that the target of the inhibitor is the endosomal membrane protein Niemann-Pick C1 (NPC1). We find that NPC1 is essential for infection, that it binds to the virus glycoprotein (GP), and that antiviral compounds interfere with GP binding to NPC1. Combined with the results of previous studies of GP structure and function, our findings support a model of EboV infection in which cleavage of the GP1 subunit by endosomal cathepsin proteases removes heavily glycosylated domains to expose the amino-terminal domain, which is a ligand for NPC1 and regulates membrane fusion by the GP2 subunit. Thus, NPC1 is essential for EboV entry and a target for antiviral therapy.

  1. Pluronic based β-cyclodextrin polyrotaxanes for treatment of Niemann-Pick Type C disease.

    PubMed

    Collins, Christopher J; Loren, Bradley P; Alam, Md Suhail; Mondjinou, Yawo; Skulsky, Joseph L; Chaplain, Cheyenne R; Haldar, Kasturi; Thompson, David H

    2017-04-28

    Niemann-Pick Type C disease (NPC) is a rare metabolic disorder characterized by disruption of normal cholesterol trafficking within the cells of the body. There are no FDA approved treatments available for NPC patients. Recently, the cycloheptaglucoside 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) has shown efficacy as a potential NPC therapeutic by extending lifetime in NPC mice, delaying neurodegeneration, and decreasing visceral and neurological cholesterol burden. Although promising, systemic HP-β-CD treatment is limited by a pharmacokinetic profile characterized by rapid loss through renal filtration. To address these shortcomings, we sought to design a family of HP-β-CD pro-drug delivery vehicles, known as polyrotaxanes (PR), capable of increasing the efficacy of a given injected dose by improving both pharmacokinetic profile and bioavailability of the HP-β-CD agent. PR can effectively diminish the cholesterol pool within the liver, spleen, and kidney at molar concentrations 10-to-100-fold lower than monomeric HP-β-CD. In addition to this proof-of-concept, use of PR scaffolds with differing physiochemical properties reveal structure-activity relationships in which PR characteristics, including hydrophobicity, threading efficiency and surface charge, were found to both decisively and subtly effect therapeutic efficacy. PR scaffolds exhibit absorption, pharmacokinetics, and biodistribution patterns that are significantly altered from monomeric HP-β-CD. In all, PR scaffolds hold great promise as potential treatments for visceral disease in NPC patients.

  2. Niemann-Pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets.

    PubMed

    Elghobashi-Meinhardt, Nadia

    2014-10-21

    Niemann-Pick Type C disease is characterized by disrupted lipid trafficking within the late endosomal (LE)/lysosomal (Lys) cellular compartments. Cholesterol transport within the LE/Lys is believed to take place via a concerted hand-off mechanism in which a small (131aa) soluble cholesterol binding protein, NPC2, transfers cholesterol to the N-terminal domain (NTD) of a larger (1278aa) membrane-bound protein, NPC1(NTD). The transfer is thought to occur through the formation of a stable intermediate complex NPC1(NTD)-NPC2, in which the sterol apertures of the two proteins align to allow passage of the cholesterol molecule. In the working model of the NPC1(NTD)-NPC2 complex, the sterol apertures are aligned, but the binding pockets are bent with respect to one another. In order for cholesterol to slide from one binding pocket to the other, a conformational change must occur in the proteins, in the ligand, or in both. Here, we investigate the possibility that the ligand undergoes a conformational change, or isomerization, to accommodate the bent transfer pathway. To understand what structural factors influence the isomerization rate, we calculate the energy barrier to cholesterol isomerization in both the NPC1(NTD) and NPC2 binding pockets. Here, we use a combined quantum mechanical/molecular mechanical (QM/MM) energy function to calculate the isomerization barrier within the native NPC1(NTD) and NPC2 binding pockets before protein-protein docking as well as in the binding pockets of the NPC1(NTD)-NPC2 complex after docking has occurred. The results indicate that cholesterol isomerization in the NPC2 binding pocket is energetically favorable, both before and after formation of the NPC1(NTD)-NPC2 complex. The NPC1(NTD) binding pocket is energetically unfavorable to conformational rearrangement of the hydrophobic ligand because it contains more water molecules near the ligand tail and amino acids with polar side chains. For three NPC1(NTD) mutants investigated, L175Q/L176Q, L175A/L176A, and E191A/Y192A, the isomerization barriers were all found to be higher than the barrier calculated in the NPC2 binding pocket. Our results indicate that cholesterol isomerization in the NPC2 binding pocket, either before or after docking, may ensure an efficient transfer of cholesterol to NPC1(NTD).

  3. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2

    PubMed Central

    Kirby, Elizabeth D; Muroy, Sandra E; Sun, Wayne G; Covarrubias, David; Leong, Megan J; Barchas, Laurel A; Kaufer, Daniela

    2013-01-01

    Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI: http://dx.doi.org/10.7554/eLife.00362.001 PMID:23599891

  4. Pushing the envelope: microinjection of Minute virus of mice into Xenopus oocytes causes damage to the nuclear envelope.

    PubMed

    Cohen, Sarah; Panté, Nelly

    2005-12-01

    Parvoviruses are small DNA viruses that replicate in the nucleus of their host cells. It has been largely assumed that parvoviruses enter the nucleus through the nuclear pore complex (NPC). However, the details of this mechanism remain undefined. To study this problem, the parvovirus Minute virus of mice (MVM) was microinjected into the cytoplasm of Xenopus oocytes and a transmission electron microscope was used to visualize the effect of the virus on the host cell. It was found that MVM caused damage to the nuclear envelope (NE) in a time- and concentration-dependent manner. Damage was predominantly to the outer nuclear membrane and was often near the NPCs. However, microinjection experiments in which the NPCs were blocked showed that NE damage induced by MVM was independent of the NPC. To address the question of whether this effect of MVM is specific to the NE, purified organelles were incubated with MVM. Visualization by electron microscopy revealed that MVM did not affect all intracellular membranes. These data represent a novel form of virus-induced damage to host cell nuclear structure and suggest that MVM is imported into the nucleus using a unique mechanism that is independent of the NPC, and involves disruption of the NE and import through the resulting breaks.

  5. RNA Export through the NPC in Eukaryotes.

    PubMed

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  6. RNA Export through the NPC in Eukaryotes

    PubMed Central

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-01-01

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC. PMID:25802992

  7. Sensitive Immunofluorescent Staining of Cells via Generation of Fluorescent Nanoscale Polymer Films in Response to Biorecognition

    PubMed Central

    Avens, Heather J.; Berron, Brad J.; May, Allison M.; Voigt, Katerina R.; Seedorf, Gregory J.; Balasubramaniam, Vivek; Bowman, Christopher N.

    2011-01-01

    Immunofluorescent staining is central to nearly all cell-based research, yet only a few fluorescent signal amplification approaches for cell staining exist, each with distinct limitations. Here, the authors present a novel, fluorescent polymerization-based amplification (FPBA) method that is shown to enable similar signal intensities as the highly sensitive, enzyme-based tyramide signal amplification (TSA) approach. Being non-enzymatic, FPBA is not expected to suffer from nonspecific staining of endogenous enzymes, as occurs with enzyme-based approaches. FPBA employs probes labeled with photopolymerization initiators, which lead to the controlled formation of fluorescent polymer films only at targeted biorecognition sites. Nuclear pore complex proteins (NPCs; in membranes), vimentin (in filaments), and von Willebrand factor (in granules) were all successfully immunostained by FPBA. Also, FPBA was demonstrated to be capable of multicolor immunostaining of multiple antigens. To assess relative sensitivity, decreasing concentrations of anti-NPC antibody were used, indicating that both FPBA and TSA stained NPC down to a 1:100,000 dilution. Nonspecific, cytoplasmic signal resulting from NPC staining was found to be reduced up to 5.5-fold in FPBA as compared to TSA, demonstrating better signal localization with FPBA. FPBA’s unique approach affords a combination of preferred attributes, including high sensitivity and specificity not otherwise available with current techniques. PMID:21339175

  8. Neurological Dysfunction in Early Maturity of a Model for Niemann-Pick C1 Carrier Status.

    PubMed

    Hung, Ya Hui; Walterfang, Mark; Churilov, Leonid; Bray, Lisa; Jacobson, Laura H; Barnham, Kevin J; Jones, Nigel C; O'Brien, Terence J; Velakoulis, Dennis; Bush, Ashley I

    2016-07-01

    Autosomal recessive inheritance of NPC1 with loss-of-function mutations underlies Niemann-Pick disease, type C1 (NP-C1), a lysosomal storage disorder with progressive neurodegeneration. It is uncertain from limited biochemical studies and patient case reports whether NPC1 haploinsufficiency can cause a partial NP-C1 phenotype in carriers. In the present study, we examined this possibility in heterozygotes of a natural loss-of-function mutant Npc1 mouse model. We found partial motor dysfunction and increased anxiety-like behavior in Npc1 (+/-) mice by 9 weeks of age. Relative to Npc1 (+/+) mice, Npc1 (+/-) mice failed to show neurodevelopmental improvements in motor coordination and balance on an accelerating Rotarod. In the open-field test, Npc1 (+/-) mice showed an intermediate phenotype in spontaneous locomotor activity compared with Npc1 (+/+) and Npc1 (-/-) mice, as well as decreased center tendency. Together with increased stride length under anxiogenic conditions on the DigiGait treadmill, these findings are consistent with heightened anxiety. Our findings indicate that pathogenic NPC1 allele carriers, who represent about 0.66 % of humans, could be vulnerable to motor and anxiety disorders.

  9. Identifying Niemann-Pick type C in early-onset ataxia: two quick clinical screening tools.

    PubMed

    Synofzik, Matthis; Fleszar, Zofia; Schöls, Ludger; Just, Jennifer; Bauer, Peter; Torres Martin, Juan V; Kolb, Stefan

    2016-10-01

    Niemann-Pick disease type C (NP-C) is a rare multisystemic lysosomal disorder which, albeit treatable, is still starkly underdiagnosed. As NP-C features early onset ataxia (EOA) in 85-90 % of cases, EOA presents a promising target group for undiagnosed NP-C patients. Here, we assessed the ability of the previously established NP-C suspicion index (SI) and a novel abbreviated '2/3 SI' tool for rapid appraisal of suspected NP-C in unexplained EOA. This was a retrospective observational study comparing 'NP-C EOA' cases (EOA patients with confirmed NP-C) with non-NP-C EOA controls (EOA patients negative for NP-C gene mutations). NP-C risk prediction scores (RPS) from both the original and 2/3 SIs were calculated and their discriminatory performance evaluated. Among 133 patients (47 NP-C EOA cases; 86 non-NP-C EOA controls), moderate (40-69 points) and high (≥70 points) RPS were common based on original SI assessments in non-NP-C EOA controls [16 (19 %) and 8 (9 %), respectively], but scores ≥70 points were far more frequent [46 (98 %)] among NP-C EOA cases. RPS cut-off values provided 98 % sensitivity and 91 % specificity for NP-C at 70-point cut-off, and ROC analysis revealed an AUC of 0.982. Using the 2/3 SI, 90 % of NP-C EOA cases had scores of 2 or 3, and RPS analysis showed an AUC of 0.961. In conclusion, the NP-C SI and the new, quick-to-apply 2/3 SI distinguished well between NP-C and non-NP-C patients, even in EOA populations with high background levels of broadly NPC-compatible multisystemic disease features. While the original SI showed the greatest sensitivity, both tools reliably aided identification of patients with unexplained EOA who warranted further investigation for NP-C.

  10. Phase 2 Sequential and Concurrent Chemoradiation for Advanced Nasopharyngeal Carcinoma (NPC)

    ClinicalTrials.gov

    2016-12-09

    Stage II Lymphoepithelioma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx

  11. Inheritance of yeast nuclear pore complexes requires the Nsp1p subcomplex

    PubMed Central

    Makio, Tadashi; Lapetina, Diego L.

    2013-01-01

    In the yeast Saccharomyces cerevisiae, organelles and macromolecular complexes are delivered from the mother to the emerging daughter during cell division, thereby ensuring progeny viability. Here, we have shown that during mitosis nuclear pore complexes (NPCs) in the mother nucleus are actively delivered through the bud neck and into the daughter cell concomitantly with the nuclear envelope. Furthermore, we show that NPC movement into the daughter cell requires members of an NPC subcomplex containing Nsp1p and its interacting partners. NPCs lacking these nucleoporins (Nups) were blocked from entry into the daughter by a putative barrier at the bud neck. This selection process could be observed within individual cells such that NPCs containing Nup82p (an Nsp1p-interacting Nup) were transferred to the daughter cells while functionally compromised NPCs lacking Nup82p were retained in the mother. This mechanism is proposed to facilitate the inheritance of functional NPCs by daughter cells. PMID:24165935

  12. Role of erythropoietin in the brain

    PubMed Central

    Noguchi, Constance Tom; Asavaritikrai, Pundit; Teng, Ruifeng; Jia, Yi

    2007-01-01

    Multi-tissue erythropoietin receptor (EPO-R) expression provides for erythropoietin (EPO) activity beyond its known regulation of red blood cell production. This review highlights the role of EPO and EPO-R in brain development and neuroprotection. EPO-R brain expression includes neural progenitor cells (NPC), neurons, glial cells and endothelial cells. EPO is produced in brain in a hypoxia sensitive manner, stimulates NPC proliferation and differentiation, and neuron survival, and contributes to ischemic preconditioning. Mice lacking EPO or EPO-R exhibit increased neural cell apoptosis during development before embryonic death due to severe anemia. EPO administration provides neural protection in animal models of brain ischemia and trauma, reducing the extent of injury and damage. EPO stimulation of endothelial cells contributes to neuroprotection and is of particular importance since only low levels of EPO appear to cross the blood-brain barrier when administered at high dose intravenously. The therapeutic potential of EPO for brain ischemia/trauma and neurodegenerative diseases has shown promise in early clinical trial and awaits further validation. PMID:17482474

  13. NPC1L1 is a key regulator of intestinal vitamin K absorption and a modulator of warfarin therapy.

    PubMed

    Takada, Tappei; Yamanashi, Yoshihide; Konishi, Kentaro; Yamamoto, Takehito; Toyoda, Yu; Masuo, Yusuke; Yamamoto, Hideaki; Suzuki, Hiroshi

    2015-02-18

    Vitamin K (VK) is a micronutrient that facilitates blood coagulation. VK antagonists, such as warfarin, are used in the clinic to prevent thromboembolism. Because VK is not synthesized in the body, its intestinal absorption is crucial for maintaining whole-body VK levels. However, the molecular mechanism of this absorption is unclear. We demonstrate that Niemann-Pick C1-like 1 (NPC1L1) protein, a cholesterol transporter, plays a central role in intestinal VK uptake and modulates the anticoagulant effect of warfarin. In vitro studies using NPC1L1-overexpressing intestinal cells and in vivo studies with Npc1l1-knockout mice revealed that intestinal VK absorption is NPC1L1-dependent and inhibited by ezetimibe, an NPC1L1-selective inhibitor clinically used for dyslipidemia. In addition, in vivo pharmacological studies demonstrated that the coadministration of ezetimibe and warfarin caused a reduction in hepatic VK levels and enhanced the pharmacological effect of warfarin. Adverse events caused by the coadministration of ezetimibe and warfarin were rescued by oral VK supplementation, suggesting that the drug-drug interaction effects observed were the consequence of ezetimibe-mediated VK malabsorption. This mechanism was supported by a retrospective evaluation of clinical data showing that, in more than 85% of warfarin-treated patients, the anticoagulant activity was enhanced by cotreatment with ezetimibe. Our findings provide insight into the molecular mechanism of VK absorption. This new drug-drug interaction mechanism between ezetimibe (a cholesterol transport inhibitor) and warfarin (a VK antagonist and anticoagulant) could inform clinical care of patients on these medications, such as by altering the kinetics of essential, fat-soluble vitamins. Copyright © 2015, American Association for the Advancement of Science.

  14. The nuclear pore complex protein ALADIN is anchored via NDC1 but not via POM121 and GP210 in the nuclear envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kind, Barbara, E-mail: barbara.kind@uniklinikum-dresden.de; Koehler, Katrin, E-mail: katrin.koehler@uniklinikum-dresden.de; Lorenz, Mike, E-mail: mlorenz@mpi-cbg.de

    2009-12-11

    The nuclear pore complex (NPC) consists of {approx}30 different proteins and provides the only sites for macromolecular transport between cytoplasm and nucleus. ALADIN was discovered as a new member of the NPC. Mutations in ALADIN are known to cause triple A syndrome, a rare autosomal recessive disorder characterized by adrenal insufficiency, alacrima, and achalasia. The function and exact location of the nucleoporin ALADIN within the NPC multiprotein complex is still unclear. Using a siRNA-based approach we downregulated the three known membrane integrated nucleoporins NDC1, GP210, and POM121 in stably expressing GFP-ALADIN HeLa cells. We identified NDC1 but not GP210 andmore » POM121 as the main anchor of ALADIN within the NPC. Solely the depletion of NDC1 caused mislocalization of ALADIN. Vice versa, the depletion of ALADIN led also to disappearance of NDC1 at the NPC. However, the downregulation of two further membrane-integral nucleoporins GP210 and POM121 had no effect on ALADIN localization. Furthermore, we could show a direct association of NDC1 and ALADIN in NPCs by fluorescence resonance energy transfer (FRET) measurements. Based on our findings we conclude that ALADIN is anchored in the nuclear envelope via NDC1 and that this interaction gets lost, if ALADIN is mutated. The loss of integration of ALADIN in the NPC is a main pathogenetic aspect for the development of the triple A syndrome and suggests that the interaction between ALADIN and NDC1 may be involved in the pathogenesis of the disease.« less

  15. Ebola Virus and Severe Acute Respiratory Syndrome Coronavirus Display Late Cell Entry Kinetics: Evidence that Transport to NPC1+ Endolysosomes Is a Rate-Defining Step

    PubMed Central

    Mingo, Rebecca M.; Simmons, James A.; Shoemaker, Charles J.; Nelson, Elizabeth A.; Schornberg, Kathryn L.; D'Souza, Ryan S.; Casanova, James E.

    2014-01-01

    ABSTRACT Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1+ LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. IMPORTANCE Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West Africa in 2014, and there was a significant outbreak of SARS in 2003. No effective vaccine or treatment has yet been approved for either virus. We present evidence that both viruses traffic late into the endocytic pathway, to NPC1+ LE/Lys, in order to enter host cells, and that they do so to access high levels of cathepsin activity, which both viruses use in their fusion-triggering mechanisms. This unexpected similarity suggests an unexplored vulnerability, trafficking to NPC1+ LE/Lys, as a therapeutic target for SARS and EBOV. PMID:25552710

  16. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney.

    PubMed

    Lindström, Nils O; Guo, Jinjin; Kim, Albert D; Tran, Tracy; Guo, Qiuyu; De Sena Brandine, Guilherme; Ransick, Andrew; Parvez, Riana K; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-03-01

    Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2 + nephron progenitor cells (NPCs) and Foxd1 + interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1 , were readily detected within SIX2 + NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2 + NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2 , are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs. Copyright © 2018 by the American Society of Nephrology.

  17. ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma.

    PubMed

    Hu, Qian; Lin, Xiao; Ding, Linxiaoxiao; Zeng, Yinduo; Pang, Danmei; Ouyang, Nengtai; Xiang, Yanqun; Yao, Herui

    2018-06-24

    Rho GTPase-activating protein 42 was identified as an inhibitor of RhoA to maintain normal blood pressure homeostasis. However, the effect of ARHGAP42 in promoting cell malignancy in nasopharyngeal carcinoma is demonstrated in this study. Microarray and real-time quantitative PCR were used for a mRNA profiling of ARHGAP42 in nasopharyngeal primary and metastatic carcinoma tissues. Western blot and immunohistochemical staining were used for detecting the expression of ARHGAP42 protein in nasopharyngeal carcinoma tissues and cell lines. The overexpression and silence experiments of ARHGAP42 were performed in NPC cell lines using siRNA and expressive plasmid for evaluating cancer cell migration and invasion in vitro. Real-time quantitative PCR, western blot, and transwell test were employed for with the function of ARHGAP42 and its antisense lncRNA uc010rul. We confirmed the elevated expression of ARHGAP42 in metastatic NPC tissues of mRNA and protein for the first time. Immunohistochemical analysis indicated that NPC patients with highly ARHGAP42 expression were significantly associated with shorter metastasis-free survival. Knockdown of ARHGAP42 resulted in significant inhibition of nasopharyngeal cancer cell migration and invasion in vitro, and the overexpression of ARHGAP42 showed the opposite effects. In addition, the silence of uc010rul resulted in ARHGAP42 expression decrease and significant inhibition of nasopharyngeal cancer cell migration and invasion. High expression of ARHGAP42 is associated with poor metastasis-free survival of nasopharyngeal carcinoma patients. ARHGAP42 promotes migration and invasion of nasopharyngeal carcinoma cells in vitro; the antisense lncRNA may be involved in this effect. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. Co-evolution of breast-to-brain metastasis and neural progenitor cells.

    PubMed

    Neman, Josh; Choy, Cecilia; Kowolik, Claudia M; Anderson, Athena; Duenas, Vincent J; Waliany, Sarah; Chen, Bihong T; Chen, Mike Y; Jandial, Rahul

    2013-08-01

    Brain colonization by metastatic tumor cells offers a unique opportunity to investigate microenvironmental influences on the neoplastic process. The bi-directional interplay of breast cancer cells (mesodermal origin) and brain cells (neuroectodermal origin) is poorly understood and rarely investigated. In our patients undergoing neurosurgical resection of breast-to-brain metastases, specimens from the tumor/brain interface exhibited increased active gliosis as previously described. In addition, our histological characterization revealed infiltration of neural progenitor cells (NPCs) both outside and inside the tumor margin, leading us to investigate the cellular and molecular interactions between NPCs and metastases. Since signaling by the TGF-β superfamily is involved in both developmental neurobiology and breast cancer pathogenesis, we examined the role of these proteins in the context of brain metastases. The brain-metastatic breast cancer cell line MDA-MB-231Br (231Br) expressed BMP-2 at significantly higher levels compared to its matched primary breast cancer cell line MDA-MB-231 (231). Co-culturing was used to examine bi-directional cellular effects and the relevance of BMP-2 overexpression. When co-cultured with NPCs, 231 (primary) tumor cells failed to proliferate over 15 days. However, 231Br (brain metastatic) tumor cells co-cultured with NPCs escaped growth inhibition after day 5 and proliferated, occurring in parallel with NPC differentiation into astrocytes. Using shRNA and gene knock-in, we then demonstrated BMP-2 secreted by 231Br cells mediated NPC differentiation into astrocytes and concomitant tumor cell proliferation in vitro. In xenografts, overexpression of BMP-2 in primary breast cancer cells significantly enhanced their ability to engraft and colonize the brain, thereby creating a metastatic phenotype. Conversely, BMP-2 knockdown in metastatic breast cancer cells significantly diminished engraftment and colonization. The results suggest metastatic tumor cells create a permissive neural niche by steering NPC differentiation toward astrocytes through paracrine BMP-2 signaling.

  19. Co-evolution of breast-to-brain metastasis and neural progenitor cells

    PubMed Central

    Neman, Josh; Choy, Cecilia; Kowolik, Claudia M.; Anderson, Athena; Duenas, Vincent J.; Waliany, Sarah; Chen, Bihong T.; Chen, Mike Y.

    2013-01-01

    Brain colonization by metastatic tumor cells offers a unique opportunity to investigate microenvironmental influences on the neoplastic process. The bi-directional interplay of breast cancer cells (mesodermal origin) and brain cells (neuroectodermal origin) is poorly understood and rarely investigated. In our patients undergoing neurosurgical resection of breast-to-brain metastases, specimens from the tumor/brain interface exhibited increased active gliosis as previously described. In addition, our histological characterization revealed infiltration of neural progenitor cells (NPCs) both outside and inside the tumor margin, leading us to investigate the cellular and molecular interactions between NPCs and metastases. Since signaling by the TGF-β superfamily is involved in both developmental neurobiology and breast cancer pathogenesis, we examined the role of these proteins in the context of brain metastases. The brain-metastatic breast cancer cell line MDA-MB-231Br (231Br) expressed BMP-2 at significantly higher levels compared to its matched primary breast cancer cell line MDA-MB-231 (231). Co-culturing was used to examine bi-directional cellular effects and the relevance of BMP-2 overexpression. When co-cultured with NPCs, 231 (primary) tumor cells failed to proliferate over 15 days. However, 231Br (brain meta-static) tumor cells co-cultured with NPCs escaped growth inhibition after day 5 and proliferated, occurring in parallel with NPC differentiation into astrocytes. Using shRNA and gene knock-in, we then demonstrated BMP-2 secreted by 231Br cells mediated NPC differentiation into astrocytes and concomitant tumor cell proliferation in vitro. In xenografts, overexpression of BMP-2 in primary breast cancer cells significantly enhanced their ability to engraft and colonize the brain, thereby creating a metastatic phenotype. Conversely, BMP-2 knockdown in metastatic breast cancer cells significantly diminished engraftment and colonization. The results suggest metastatic tumor cells create a permissive neural niche by steering NPC differentiation toward astrocytes through paracrine BMP-2 signaling. PMID:23456474

  20. A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation

    PubMed Central

    Mao, Jianxin; Huang, Shichao; Liu, Shangfeng; Feng, Xiao-Lin; Yu, Miao; Liu, Junjun; Sun, Yi Eve; Chen, Guoliang; Yu, Yang; Zhao, Jian; Pei, Gang

    2015-01-01

    Aberrant neural progenitor cell (NPC) proliferation and self-renewal have been linked to age-related neurodegeneration and neurodegenerative disorders including Alzheimer’s disease (AD). Rhizoma Acori tatarinowii is a traditional Chinese herbal medicine against cognitive decline. In this study, we found that the extract of Rhizoma Acori tatarinowii (AT) and its active constituents, asarones, promote NPC proliferation. Oral administration of AT enhanced NPC proliferation and neurogenesis in the hippocampi of adult and aged mice as well as that of transgenic AD model mice. AT and its fractions also enhanced the proliferation of NPCs cultured in vitro. Further analysis identified α-asarone and β-asarone as the two active constituents of AT in promoting neurogenesis. Our mechanistic study revealed that AT and asarones activated extracellular signal-regulated kinase (ERK) but not Akt, two critical kinase cascades for neurogenesis. Consistently, the inhibition of ERK activities effectively blocked the enhancement of NPC proliferation by AT or asarones. Our findings suggest that AT and asarones, which can be orally administrated, could serve as preventive and regenerative therapeutic agents to promote neurogenesis against age-related neurodegeneration and neurodegenerative disorders. PMID:26010330

  1. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly

    PubMed Central

    Makio, Tadashi; Stanton, Leslie H.; Lin, Cheng-Chao; Goldfarb, David S.; Weis, Karsten

    2009-01-01

    We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs. PMID:19414608

  2. Early discrimination of nasopharyngeal carcinoma based on tissue deoxyribose nucleic acid surface-enhanced Raman spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Qiu, Sufang; Li, Chao; Lin, Jinyong; Xu, Yuanji; Lu, Jun; Huang, Qingting; Zou, Changyan; Chen, Chao; Xiao, Nanyang; Lin, Duo; Chen, Rong; Pan, Jianji; Feng, Shangyuan

    2016-12-01

    Surface-enhanced Raman spectroscopy (SERS) was employed to detect deoxyribose nucleic acid (DNA) variations associated with the development of nasopharyngeal carcinoma (NPC). Significant SERS spectral differences between the DNA extracted from early NPC, advanced NPC, and normal nasopharyngeal tissue specimens were observed at 678, 729, 788, 1337, 1421, 1506, and 1573 cm-1, which reflects the genetic variations in NPC. Principal component analysis combined with discriminant function analysis for early NPC discrimination yielded a diagnostic accuracy of 86.8%, 92.3%, and 87.9% for early NPC, advanced NPC, and normal nasopharyngeal tissue DNA, respectively. In this exploratory study, we demonstrated the potential of SERS for early detection of NPC based on the DNA molecular study of biopsy tissues.

  3. Facilitated aggregation of FG nucleoporins under molecular crowding conditions.

    PubMed

    Milles, Sigrid; Huy Bui, Khanh; Koehler, Christine; Eltsov, Mikhail; Beck, Martin; Lemke, Edward A

    2013-02-01

    Intrinsically disordered and phenylalanine-glycine-rich nucleoporins (FG Nups) form a crowded and selective transport conduit inside the NPC that can only be transited with the help of nuclear transport receptors (NTRs). It has been shown in vitro that FG Nups can assemble into two distinct appearances, amyloids and hydrogels. If and how these phenomena are linked and if they have a physiological role still remains unclear. Using a variety of high-resolution fluorescence and electron microscopic (EM) tools, we reveal that crowding conditions mimicking the NPC environment can accelerate the aggregation and amyloid formation speed of yeast and human FG Nups by orders of magnitude. Aggregation can be inhibited by NTRs, providing a rationale on how the cell might control amyloid formation of FG Nups. The superb spatial resolving power of EM also reveals that hydrogels are enlaced amyloid fibres, and these findings have implications for existing transport models and for NPC assembly.

  4. Facilitated aggregation of FG nucleoporins under molecular crowding conditions

    PubMed Central

    Milles, Sigrid; Huy Bui, Khanh; Koehler, Christine; Eltsov, Mikhail; Beck, Martin; Lemke, Edward A

    2013-01-01

    Intrinsically disordered and phenylalanine–glycine-rich nucleoporins (FG Nups) form a crowded and selective transport conduit inside the NPC that can only be transited with the help of nuclear transport receptors (NTRs). It has been shown in vitro that FG Nups can assemble into two distinct appearances, amyloids and hydrogels. If and how these phenomena are linked and if they have a physiological role still remains unclear. Using a variety of high-resolution fluorescence and electron microscopic (EM) tools, we reveal that crowding conditions mimicking the NPC environment can accelerate the aggregation and amyloid formation speed of yeast and human FG Nups by orders of magnitude. Aggregation can be inhibited by NTRs, providing a rationale on how the cell might control amyloid formation of FG Nups. The superb spatial resolving power of EM also reveals that hydrogels are enlaced amyloid fibres, and these findings have implications for existing transport models and for NPC assembly. PMID:23238392

  5. A neighbor pixel communication filtering structure for Dynamic Vision Sensors

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Liu, Shiqi; Lu, Hehui; Zhang, Zilong

    2017-02-01

    For Dynamic Vision Sensors (DVS), thermal noise and junction leakage current induced Background Activity (BA) is the major cause of the deterioration of images quality. Inspired by the smoothing filtering principle of horizontal cells in vertebrate retina, A DVS pixel with Neighbor Pixel Communication (NPC) filtering structure is proposed to solve this issue. The NPC structure is designed to judge the validity of pixel's activity through the communication between its 4 adjacent pixels. The pixel's outputs will be suppressed if its activities are determined not real. The proposed pixel's area is 23.76×24.71μm2 and only 3ns output latency is introduced. In order to validate the effectiveness of the structure, a 5×5 pixel array has been implemented in SMIC 0.13μm CIS process. 3 test cases of array's behavioral model show that the NPC-DVS have an ability of filtering the BA.

  6. Efficient Immortalization of Primary Nasopharyngeal Epithelial Cells for EBV Infection Study

    PubMed Central

    Yip, Yim Ling; Pang, Pei Shin; Deng, Wen; Tsang, Chi Man; Zeng, Musheng; Hau, Pok Man; Man, Cornelia; Jin, Yuesheng; Yuen, Anthony Po Wing; Tsao, Sai Wah

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic of EBV-infected nasopharyngeal carcinoma. The establishment of an efficient method to immortalize primary nasopharyngeal epithelial cells will facilitate the investigation into the role of EBV infection in pathogenesis of nasopharyngeal carcinoma. PMID:24167620

  7. Analysis of Ebola Virus Entry Into Macrophages

    PubMed Central

    Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B.; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A.; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike

    2015-01-01

    Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)–driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. PMID:25877552

  8. Expression of protease-activated receptor-2 (PAR-2) in patients with nasopharyngeal carcinoma: correlation with clinicopathological features and prognosis.

    PubMed

    Li, Zhi; Bian, Li-Juan; Li, Yang; Liang, Ying-Jie; Liang, Hui-Zhen

    2009-01-01

    We aimed at determining whether the expression of protease-activated receptor 2 (PAR-2) is involved in the progression of nasopharyngeal carcinoma (NPC) and correlated with latent membrane protein 1 (LMP-1), matrix metalloproteinases-9 (MMP9), and angiogenesis of tumor. PAR-2, LMP-1, and MMP9 expressions were detected in 57 biopsies of primary NPC by immunohistochemistry. The presence of Epstein-Barr virus (EBV) was determined using EBER in situ hybridization, and intratumoral microvessels were highlighted by staining endothelial cells for anti-CD34. The correlations with immunostainings and clinicopathological factors, as well as the follow-up data of patients, were analyzed statistically. Strong expression of PAR-2 in 61.4% (35/57) of the biopsies was correlated with extensive lymph node metastasis and advanced stage of NPC. The patients with PAR-2/LMP-1 or PAR-2/MMP9 dual high-expression tumors had a significant worse prognosis than those with single protein high expression and dual low or negative expression tumors (P=0.013 and 0.004, respectively). Angiogenesis in the tumor is related to overall survival of NPC patients (P=0.001), and exhibits strong PAR-2 expression or LMP-1 expression in tumors associated with increased intratumoral microvessel density (P=0.026 and 0.006, respectively). PAR-2 is a possible mediator cooperating with LMP-1 and MMP9 to influence the progression of NPC by inducing angiogenesis and promoting lymph node metastasis.

  9. The C57BL/6J Niemann-Pick C1 mouse model with decreased gene dosage has impaired glucose tolerance independent of body weight.

    PubMed

    Jelinek, David; Castillo, Joseph J; Garver, William S

    2013-09-15

    The human Niemann-Pick C1 (NPC1) gene has been found to be associated with extreme (early-onset and morbid-adult) obesity and type 2 diabetes independent of body weight. We previously performed growth studies using BALB/cJ Npc1 normal (Npc1+/+) and Npc1 heterozygous (Npc1+/-) mice and determined that decreased Npc1 gene dosage interacts with a high-fat diet to promote weight gain and adiposity. The present study was performed using both BALB/cJ and C57BL/6J Npc1+/+ and Npc1+/- mice to determine if decreased Npc1 gene dosage predisposes to metabolic features associated with type 2 diabetes. The results indicated that C57BL/6J Npc1+/- mice, but not BALB/cJ Npc1+/- mice, have impaired glucose tolerance when fed a low-fat diet and independent of body weight. The results also suggest that an accumulation of liver free fatty acids and hepatic lipotoxicity marked by an elevation in the amount of plasma alanine aminotransferase (ALT) may be responsible for hepatic insulin resistance and impaired glucose tolerance. Finally, the peroxisome-proliferator activated receptor α (PPARα) and sterol regulatory element-binding protein-1 (SREBP-1) pathways known to have a central role in regulating free fatty acid metabolism were downregulated in the livers, but not in the adipose or muscle, of C57BL/6J Npc1+/- mice compared to C57BL/6J Npc1+/+ mice. Therefore, decreased Npc1 gene dosage among two different mouse strains interacts with undefined modifying genes to manifest disparate yet often related metabolic diseases. Published by Elsevier B.V.

  10. Evaluation of non-viral risk factors for nasopharyngeal carcinoma in a high-risk population of Southern China

    PubMed Central

    Guo, Xiuchan; Johnson, Randall C.; Deng, Hong; Liao, Jian; Guan, Li; Nelson, George W.; Tang, Mingzhong; Zheng, Yuming; de The, Guy; O’Brien, Stephen J.; Winkler, Cheryl A.; Zeng, Yi

    2015-01-01

    To understand the role of environmental and genetic influences on nasopharyngeal carcinoma (NPC) in populations at high risk of NPC, we have performed a case-control study in Guangxi Province of Southern China in 2004-2005. NPC cases (n=1049) were compared to 785 NPC-free matched controls who were seropositive for IgA antibodies (IgA) to Epstein-Barr virus (EBV) capsid antigen (VCA)—a predictive marker for NPC in Chinese populations. A questionnaire was used to capture exposure and NPC family history data. Risk factors associated with NPC in a multivariant analysis model were the following: 1) a first, second or third degree relative with NPC [Attributable risk (AR)= 6%, Odds ratio (OR) = 3.1, 95%CI = 2.0-4.9, p < 0.001]; 2) consumption of salted fish 3 or more than 3 times per month (AR=3%, OR = 1.9, 95%CI = 1.1-3.5, p = 0.035); 3) exposure to domestic wood cooking fires for more than 10 years (AR=69%, OR = 5.8, 95%CI = 2.5-13.6, p < 0.001); and 4) exposure to occupational solvents for 10 or less years (AR=4%, OR = 2.6, 95%CI = 1.4-4.8, p = 0.002). Consumption of preserved meats or a history of tobacco smoking were not associated with NPC (P>0.05). We also assessed the contribution of EBV/IgA/VCA antibody serostatus to NPC risk—32.2% of NPC can be explained by IgA+ status. However, family history and environmental risk factors cumulatively explained only 2.7% of NPC development in NPC high risk population. These findings should have important public health implications for NPC risk reduction in endemic regions. PMID:19296536

  11. Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles.

    PubMed

    Liu, Hongbing; Chen, Shaowei; Yao, Xiao; Li, Yuwen; Chen, Chao-Hui; Liu, Jiao; Saifudeen, Zubaida; El-Dahr, Samir S

    2018-05-18

    Nephron progenitor cells (NPCs) are Six2-positive metanephric mesenchyme cells, which undergo self-renewal and differentiation to give rise to nephrons until the end of nephrogenesis. Histone deacetylases (HDACs) are a group of epigenetic regulators that control cell fate, but their role in balancing NPC renewal and differentiation is unknown. Here, we report that NPC-specific deletion of Hdac1 and Hdac2 genes in mice results in early postnatal lethality owing to renal hypodysplasia and loss of NPCs. HDAC1/2 interact with the NPC renewal regulators Six2, Osr1 and Sall1, and are co-bound along with Six2 on the Six2 enhancer. Although the mutant NPCs differentiate into renal vesicles (RVs), Hdac1/2 mutant kidneys lack nascent nephrons or mature glomeruli, a phenocopy of Lhx1 mutants. Transcriptional profiling and network analysis identified disrupted expression of Lhx1 and its downstream genes, Dll1 and Hnf1a/4a , as key mediators of the renal phenotype. Finally, although HDAC1/2-deficient NPCs and RVs overexpress hyperacetylated p53, Trp53 deletion failed to rescue the renal dysgenesis. We conclude that the epigenetic regulators HDAC1 and HDAC2 control nephrogenesis via interactions with the transcriptional programs of nephron progenitors and renal vesicles. © 2018. Published by The Company of Biologists Ltd.

  12. Delivering growth factors through a polymeric scaffold to cell cultures containing both nucleus pulposus and annulus fibrosus.

    PubMed

    Akyuva, Yener; Kaplan, Necati; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin, Duygu Yasar; Karaaslan, Numan; Guler, Olcay; Ateş, Özkan

    2018-04-09

    The aim of this in vitro experimental study was to design a novel, polyvinyl alcohol(PVA)-basedpolymericscaffold that permits the controlled release of insulin-likegrowthfactor1(IGF-1)/bonemorphogenetic protein-2(BMP-2) following intervertebral disc administration. The drug delivery system was composed of two different solutions that formed a scaffold within seconds after coming into contact with each other. We performed swelling,pH,temperature tests and analysis of the controlled release of growth factors from this system.The release kinetics of the growth factors was determined through enzyme linked immunosorbent assay(ELISA). Cell proliferation and viability was monitored with microscopy and analyzed using an MTT assay and acridine orange/propidium iodide(AO/PI) staining. Chondroadherin(CHAD), hypoxiainduciblefactor-1alpha(HIF-1α),collagentypeII(COL2A1) gene expressions were determined with quantitative real-timepolymerasechainreaction(qRT-PCR) analysis to show the effects of IGF-1/BMP-2 administration on annulus fibrosus cell(AFC)/nucleus pulposus cell(NPC) cultures. The scaffold allowed for the controlled release of IGF-1 and BMP-2 in different time intervals. It was observed that as the application time increased, the number of cells and the degree of extracellular matrix development increased in AFC/NPC cultures. AO/PI staining and an MTT analysis showed that cells retained their specific morphology and continued to proliferate. It was observed that HIF-1α and CHAD expression increased in a time-dependent manner, and there wasn't any COL2A1 expression in the AFC/NPC cultures. The designed scaffold may be used as an alternative method for intervertebral disc administration of growth factors after further in vivo studies. We believe that such prototype scaffolds may be an innovative technology in targeted drug therapies after reconstructive neurosurgeries.

  13. Abnormal assembly of annulate lamellae and nuclear pore complexes coincides with fertilization arrest at the pronuclear stage of human zygotic development.

    PubMed

    Rawe, V Y; Olmedo, S Brugo; Nodar, F N; Ponzio, R; Sutovsky, P

    2003-03-01

    The assembly of nuclear pore complexes (NPC) and their cytoplasmic stacks, annulate lamellae (AL), promote normal nucleocytoplasmic trafficking and accompany pronuclear development within the mammalian zygote. Previous studies showed that a percentage of human oocytes fertilized in vitro failed to develop normal pronuclei and cleave within 40-48 h post insemination. We hypothesized that an aberrant recruitment of NPC proteins, nucleoporins and/or NPC preassembled into AL, might accompany human fertilization arrest. We explored NPC and AL assembly in unfertilized human oocytes, and fertilized and arrested zygotes by immunofluorescence with an NPC- and AL-specific antibody, mAb 414, and by transmission electron microscopy. Major NPC or AL assembly was not observed in the unfertilized human oocytes. Once fertilization took place, the formation of AL was observed throughout the cytoplasm and near the developing pronuclei with NPC. On the contrary, NPC assembly was disrupted in the arrested zygotes, whereas AL were clustered into large sheaths. This was accompanied by the lack of NPC incorporation into the nuclear envelopes. We conclude that the aberrant assembly of NPC and AL coincides with early developmental failure in humans.

  14. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts

    PubMed Central

    Newton, Jason; Hait, Nitai C.; Maceyka, Michael; Colaco, Alexandria; Maczis, Melissa; Wassif, Christopher A.; Cougnoux, Antony; Porter, Forbes D.; Milstien, Sheldon; Platt, Nicholas; Platt, Frances M.; Spiegel, Sarah

    2017-01-01

    Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 or NPC2 with decreased functions leading to lysosomal accumulation of cholesterol and sphingolipids. FTY720/fingolimod, used for treatment of multiple sclerosis, is phosphorylated by nuclear sphingosine kinase 2, and its active phosphorylated form (FTY720-P) is an inhibitor of class I histone deacetylases. In this study, administration of clinically relevant doses of FTY720 to mice increased expression of NPC1 and -2 in brain and liver and decreased cholesterol in an SphK2-dependent manner. FTY720 greatly increased expression of NPC1 and -2 in human NPC1 mutant fibroblasts that correlated with formation of FTY720-P and significantly reduced the accumulation of cholesterol and glycosphingolipids. In agreement with this finding, FTY720 pretreatment of human NPC1 mutant fibroblasts restored transport of the cholera toxin B subunit, which binds ganglioside GM1, to the Golgi apparatus. Together, these findings suggest that FTY720 administration can ameliorate cholesterol and sphingolipid storage and trafficking defects in NPC1 mutant fibroblasts. Because neurodegeneration is the main clinical feature of NPC disease, and FTY720 accumulates in the CNS and has several advantages over available histone deacetylase inhibitors now in clinical trials, our work provides a potential opportunity for treatment of this incurable disease.—Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., Cougnoux, A., Porter, F. D., Milstien, S., Platt, N., Platt, F. M., Spiegel, S. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. PMID:28082351

  15. Transgenic overexpression of Niemann-Pick C2 protein promotes cholesterol gallstone formation in mice.

    PubMed

    Acuña, Mariana; González-Hódar, Lila; Amigo, Ludwig; Castro, Juan; Morales, M Gabriela; Cancino, Gonzalo I; Groen, Albert K; Young, Juan; Miquel, Juan Francisco; Zanlungo, Silvana

    2016-02-01

    Niemann-Pick C2 (NPC2) is a lysosomal protein involved in the egress of low-density lipoprotein-derived cholesterol from lysosomes to other intracellular compartments. NPC2 has been detected in several tissues and is also secreted from the liver into bile. We have previously shown that NPC2-deficient mice fed a lithogenic diet showed reduced biliary cholesterol secretion as well as cholesterol crystal and gallstone formation. This study aimed to investigate the consequences of NPC2 hepatic overexpression on liver cholesterol metabolism, biliary lipid secretion, gallstone formation and the effect of NPC2 on cholesterol crystallization in model bile. We generated NPC2 transgenic mice (Npc2.Tg) and fed them either chow or lithogenic diets. We studied liver cholesterol metabolism, biliary lipid secretion, bile acid composition and gallstone formation. We performed cholesterol crystallization studies in model bile using a recombinant NPC2 protein. No differences were observed in biliary cholesterol content or secretion between wild-type and Npc2.Tg mice fed the chow or lithogenic diets. Interestingly, Npc2.Tg mice showed an increased susceptibility to the lithogenic diet, developing more cholesterol gallstones at early times, but did not show differences in the bile acid hydrophobicity and gallbladder cholesterol saturation indices compared to wild-type mice. Finally, recombinant NPC2 decreased nucleation time in model bile. These results suggest that NPC2 promotes cholesterol gallstone formation by decreasing the cholesterol nucleation time, indicating a pro-nucleating function of NPC2 in bile. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  16. The transcription factor Olig2 is important for the biology of diffuse intrinsic pontine gliomas.

    PubMed

    Anderson, Jane L; Muraleedharan, Ranjithmenon; Oatman, Nicole; Klotter, Amanda; Sengupta, Satarupa; Waclaw, Ronald R; Wu, Jianqiang; Drissi, Rachid; Miles, Lili; Raabe, Eric H; Weirauch, Matthew L; Fouladi, Maryam; Chow, Lionel M; Hoffman, Lindsey; DeWire, Mariko; Dasgupta, Biplab

    2017-08-01

    Diffuse intrinsic pontine glioma (DIPG) is a high-grade brainstem glioma of children with dismal prognosis. There is no single unifying model about the cell of origin of DIPGs. Proliferating cells in the developing human and mouse pons, the site of DIPGs, express neural stem/progenitor cell (NPC) markers, including Sox2, nestin, vimentin, Olig2, and glial fibrillary acidic protein, in an overlapping and non-overlapping manner, suggesting progenitor cell heterogeneity in the pons. It is thought that during a restricted window of postnatal pons development, a differentiation block caused by genetic/epigenetic changes leads to unrestrained progenitor proliferation and DIPG development. Nearly 80% of DIPGs harbor a mutation in the H3F3A or the related HIST1H3B gene. Supporting the impaired differentiation model, NPCs derived from human induced pluripotent stem cells expressing the H3F3A mutation showed complete differentiation block. However, the mechanisms regulating an altered differentiation program in DIPG are unknown. We established syngeneic serum-dependent and independent primary DIPG lines, performed molecular characterization of DIPG lines in vitro and in an orthotopic xenograft model, and used small hairpin RNA to examine Olig2 function in DIPG. The transcription factor Olig2 is highly expressed in 70%-80% of DIPGs. Here we report that Olig2 expression and DIPG differentiation are mutually exclusive events in vitro, and only DIPG cells that retained Olig2 in vitro formed robust Olig2-positive brainstem glioma with 100% penetrance in a xenograft model. Our results indicate Olig2 as an onco-requisite factor in DIPG and propose investigation of Olig2 target genes as novel candidates in DIPG therapy. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  17. Fluorescent recovery after photobleaching (FRAP) analysis of nuclear export rates identifies intrinsic features of nucleocytoplasmic transport.

    PubMed

    Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri

    2012-02-17

    A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level.

  18. Characterization of Human Neural Progenitor Cell Models for Developmental Neurotoxicity Screening

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating two different human neural progenitor cell (hNPC) models for their utility in screens for...

  19. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.

    PubMed

    Mingo, Rebecca M; Simmons, James A; Shoemaker, Charles J; Nelson, Elizabeth A; Schornberg, Kathryn L; D'Souza, Ryan S; Casanova, James E; White, Judith M

    2015-03-01

    Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1(+) LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West Africa in 2014, and there was a significant outbreak of SARS in 2003. No effective vaccine or treatment has yet been approved for either virus. We present evidence that both viruses traffic late into the endocytic pathway, to NPC1(+) LE/Lys, in order to enter host cells, and that they do so to access high levels of cathepsin activity, which both viruses use in their fusion-triggering mechanisms. This unexpected similarity suggests an unexplored vulnerability, trafficking to NPC1(+) LE/Lys, as a therapeutic target for SARS and EBOV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport.

    PubMed

    McCauliff, Leslie A; Xu, Zhi; Li, Ran; Kodukula, Sarala; Ko, Dennis C; Scott, Matthew P; Kahn, Peter C; Storch, Judith

    2015-11-06

    The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2(-/-) fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Carotid artery stiffness evaluated early by wave intensity in normal left ventricular function in post-radiotherapy patients with nasopharyngeal carcinoma.

    PubMed

    Zhang, Zhuo; Luo, Runlan; Tan, Bijun; Qian, Jing; Duan, Yanfang; Wang, Nan; Li, Guangsen

    2018-04-01

    This study aims to assess carotid elasticity early in normal left ventricular function in post-radiotherapy patients with nasopharyngeal carcinoma (NPC) by wave intensity. Sixty-seven post-radiotherapy patients all with normal left ventricular function were classified into group NPC1 and group NPC2 based on their carotid intima-media thickness. Thirty age- and sex-matched NPC patients without any history of irradiation and chemotherapy were included as a control group. Carotid parameters, including stiffness constant (β), pressure-strain elastic modulus (Ep), arterial compliance (AC), stiffness constant pulse wave velocity (PWVβ), and wave intensity pulse wave velocity (PWVWI) were measured. There were no significant differences in conventional echocardiographic variables among the three groups. In comparison with the control group, β, Ep, PWVβ, and PWVWI were significantly increased, while AC was significantly decreased in the NPC1 and NPC2 groups, and there were differences between the NPC1 group and NPC2 group (all P < 0.05). This study suggested that carotid artery stiffness increased with reduced carotid compliance in post-RT with NPC.

  2. Microglia activation in Niemann-Pick disease, type C1 is amendable to therapeutic intervention.

    PubMed

    Cougnoux, Antony; Drummond, Rebecca A; Collar, Amanda L; Iben, James R; Salman, Alexander; Westgarth, Harrison; Wassif, Christopher A; Cawley, Niamh X; Farhat, Nicole Y; Ozato, Keiko; Lionakis, Michail S; Porter, Forbes D

    2018-06-15

    Niemann-Pick disease, type C1 (NPC1) is a neurodegenerative disorder with limited treatment options. NPC1 is associated with neuroinflammation; however, attempts to therapeutically target neuroinflammation in NPC1 have had mixed success. We show here that NPC1 neuroinflammation is characterized by an atypical microglia activation phenotype. Specifically, Npc1-/- microglia demonstrated altered morphology, reduced levels of lineage markers and a shift toward glycolytic metabolism. Treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a drug currently being studied in a phase 2b/3 clinical trial, reversed all microglia-associated defects in Npc1-/- animals. In addition, impairing microglia mediated neuroinflammation by genetic deletion of IRF8 led to decreased symptoms and increased lifespan. We identified CD22 as a marker of dysregulated microglia in Npc1 mutant mice and subsequently demonstrated that elevated cerebrospinal fluid levels of CD22 in NPC1 patients responds to HPβCD administration. Collectively, these data provide the first in-depth analysis of microglia function in NPC1 and suggest possible new therapeutic approaches.

  3. Identification of Genes with Allelic Imbalance on 6p Associated with Nasopharyngeal Carcinoma in Southern Chinese

    PubMed Central

    Wong, Alissa Michelle Go; Fan, Yan-Hui; Li, Miao-Xin; Bei, Jin-Xin; Jia, Wei-Hua; Zeng, Yi-Xin; Chan, Danny; Cheung, Kenneth M. C.; Sham, Pak; Chua, Daniel; Guan, Xin-Yuan; Song, You-Qiang

    2011-01-01

    Nasopharyngeal carcinoma (NPC) is a malignancy of epithelial origin. The etiology of NPC is complex and includes multiple genetic and environmental factors. We employed case-control analysis to study the association of chromosome 6p regions with NPC. In total, 360 subjects and 360 healthy controls were included, and 233 single nucleotide polymorphisms (SNPs) on 6p were examined. Significant single-marker associations were found for SNPs rs2267633 (p = 4.49×10−5), rs2076483 (most significant, p = 3.36×10−5), and rs29230 (p = 1.43×10−4). The highly associated genes were the gamma-amino butyric acid B receptor 1 (GABBR1), human leukocyte antigen (HLA-A), and HLA complex group 9 (HCG9). Haplotypic associations were found for haplotypes AAA (located within GABBR1, p-value  = 6.46×10−5) and TT (located within HLA-A, p = 0.0014). Further investigation of the homozygous genotype frequencies between cases and controls suggested that micro-deletion regions occur in GABBR1 and neural precursor cell expressed developmentally down-regulated 9 (NEDD9). Quantitative real-time polymerase chain reaction (qPCR) using 11 pairs of NPC biopsy samples confirmed the significant decline in GABBR1 and NEDD9 mRNA expression in the cancer tissues compared to the adjacent non-tumor tissue (p<0.05). Our study demonstrates that multiple chromosome 6p susceptibility loci contribute to the risk of NPC, possibly though GABBR1 and NEDD9 loss of function. PMID:21283797

  4. SWATH-based proteomics identified carbonic anhydrase 2 as a potential diagnosis biomarker for nasopharyngeal carcinoma

    PubMed Central

    Luo, Yanzhang; Mok, Tin Seak; Lin, Xiuxian; Zhang, Wanling; Cui, Yizhi; Guo, Jiahui; Chen, Xing; Zhang, Tao; Wang, Tong

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is a serious threat to public health, and the biomarker discovery is of urgent needs. The data-independent mode (DIA) based sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry (MS) has been proved to be precise in protein quantitation and efficient for cancer biomarker researches. In this study, we performed the first SWATH-MS analysis comparing the NPC and normal tissues. Spike-in stable isotope labeling by amino acids in cell culture (super-SILAC) MS was used as a shotgun reference. We identified and quantified 1414 proteins across all SWATH-MS analyses. We found that SWATH-MS had a unique feature to preferentially detect proteins with smaller molecular weights than either super-SILAC MS or human proteome background. With SWATH-MS, 29 significant differentially express proteins (DEPs) were identified. Among them, carbonic anhydrase 2 (CA2) was selected for further validation per novelty, MS quality and other supporting rationale. With the tissue microarray analysis, we found that CA2 had an AUC of 0.94 in differentiating NPC from normal tissue samples. In conclusion, SWATH-MS has unique features in proteome analysis, and it leads to the identification of CA2 as a potentially new diagnostic biomarker for NPC. PMID:28117408

  5. The erythrocyte osmotic resistance test as screening tool for cholesterol-related lysosomal storage diseases.

    PubMed

    López de Frutos, Laura; Cebolla, Jorge J; Irún, Pilar; Köhler, Ralf; Giraldo, Pilar

    2018-05-01

    Erythrocyte volume regulation and membrane elasticity are essential for adaptation to osmotic and mechanical stress, and life span. Here, we evaluated whether defective cholesterol trafficking caused by the rare lysosomal storages diseases (LSDs), Niemann-Pick type C (NPC) and Lysosomal acid lipase (LAL) deficiency (LALD) impairs these properties. Moreover, we tested whether measurements of cholesterol membrane content and osmotic resistance serve as a screening test for these LSDs. Patients were genotyped for mutations in NPC1, NPC2, or LIPA genes. We measured LSD plasma biomarkers and LAL activity. Red blood cells (RBC) membrane cholesterol content was evaluated in 73 subjects. Osmotic resistance tests (ORT) were conducted in 121 blood samples from LSD suspected patients and controls. We did not find statistically significant differences between RBC cholesterol content between subjects and controls. However, the ORT, particularly at 0.49% (w/v) hypotonic sodium chloride solution, revealed a significant higher osmotic resistance in LSDs patients than in controls. We established a cut-off value of ≤51% of haemolysis with sensibility and specificity values of 80% and 70%, respectively. NPC and LALD do not alter cholesterol content in the RBC membrane but increase osmotic resistance. Therefore, ORT serves as screening test for the studied LSDs. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    PubMed

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Avelumab With Valproic Acid in Virus-associated Cancer

    ClinicalTrials.gov

    2018-06-11

    Cancer That is Associated With a Chronic Viral Infection; p16 Positive SCCHN; Squamous Cell Carcinoma of the Cervix; p16 Positive Squamous Cell Carcinoma of the Vagina or Vulva; p16 Positive Squamous Cell Carcinoma of the Penis; p16 Positive Squamous Cell Carcinoma of the Anus or Anal Canal; EBER Positive NPC; EBER Positive Hodgkins and Non-hodgkins Lymphona

  8. Effects of neural progenitor cells on post-stroke neurological impairment—a detailed and comprehensive analysis of behavioral tests

    PubMed Central

    Doeppner, Thorsten R.; Kaltwasser, Britta; Bähr, Mathias; Hermann, Dirk M.

    2014-01-01

    Systemic transplantation of neural progenitor cells (NPCs) in rodents reduces functional impairment after cerebral ischemia. In light of upcoming stroke trials regarding safety and feasibility of NPC transplantation, experimental studies have to successfully analyze the extent of NPC-induced neurorestoration on the functional level. However, appropriate behavioral tests for analysis of post-stroke motor coordination deficits and cognitive impairment after NPC grafting are not fully established. We therefore exposed male C57BL6 mice to either 45 min (mild) or 90 min (severe) of cerebral ischemia, using the thread occlusion model followed by intravenous injection of PBS or NPCs 6 h post-stroke with an observation period of three months. Post-stroke motor coordination was assessed by means of the rota rod, tight rope, corner turn, inclined plane, grip strength, foot fault, adhesive removal, pole test and balance beam test, whereas cognitive impairment was analyzed using the water maze, the open field and the passive avoidance test. Significant motor coordination differences after both mild and severe cerebral ischemia in favor of NPC-treated mice were observed for each motor coordination test except for the inclined plane and the grip strength test, which only showed significant differences after severe cerebral ischemia. Cognitive impairment after mild cerebral ischemia was successfully assessed using the water maze test, the open field and the passive avoidance test. On the contrary, the water maze test was not suitable in the severe cerebral ischemia paradigm, as it too much depends on motor coordination capabilities of test mice. In terms of both reliability and cost-effectiveness considerations, we thus recommend the corner turn, foot fault, balance beam, and open field test, which do not depend on durations of cerebral ischemia. PMID:25374509

  9. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus.

    PubMed

    Mehedint, Mihai G; Craciunescu, Corneliu N; Zeisel, Steven H

    2010-07-20

    We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus.

  10. Negative regulation of TLX by IL-1β correlates with an inhibition of adult hippocampal neural precursor cell proliferation.

    PubMed

    Ryan, Sinead M; O'Keeffe, Gerard W; O'Connor, Caitriona; Keeshan, Karen; Nolan, Yvonne M

    2013-10-01

    Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1β) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1β-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1β treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1β reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1β receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1β on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1β-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Wogonin induces cross-regulation between autophagy and apoptosis via a variety of Akt pathway in human nasopharyngeal carcinoma cells.

    PubMed

    Chow, Shu-Er; Chen, Yu-Wen; Liang, Chi-Ang; Huang, Yao-Kuan; Wang, Jong-Shyan

    2012-11-01

    Autophagy as well as apoptosis is an emerging target for cancer therapy. Wogonin, a flavonoid compound derived from the traditional Chinese medicine of Huang-Qin, has anticancer activity in many cancer cells including human nasopharyngeal carcinoma (NPC). However, the involvement of autophagy in the wogonin-induced apoptosis of NPC cells was still uninvestigated. In this study, we found wogonin-induced autophagy had interference on the process of apoptosis. Wogonin-induced autophagy formation evidenced by LC3 I/II cleavage, acridine orange (AO)-stained vacuoles and the autophagosome/autolysosome images of TEM analysis. Activation of autophagy with rapamycin resulted in increased wogonin-mediated autophagy via inhibition of mTOR/P70S6K pathway. The functional relevance of autophagy in the antitumor activity was investigated by annexin V-positive stained cells and PARP cleavage. Induction of autophagy by rapamycin ameliorated the wogonin-mediated apoptosis, whereas inhibition of autophagy by 3-methyladenine (3-MA) or bafilomycin A1 increased the apoptotic effect. Interestingly, this study also found, in addition the mTOR/P70S6K pathway, wogonin also inhibited Raf/ERK pathway, a variety of Akt pathways. Inactivation of PI(3) K/Akt by their inhibitors significantly induced apoptosis and markedly sensitized the NPC cells to wogonin-induced apoptosis. This anticancer effect of Akt was further confirmed by SH6, a specific inhibitor of Akt. Importantly, inactivation of its downstream molecule ERK by PD98059, a MEK inhibitor, also induced apoptosis. This study indicated wogonin-induced both autophagy and apoptosis through a variety of Akt pathways and suggested modulation of autophagy might provide profoundly the potential therapeutic effect. Copyright © 2012 Wiley Periodicals, Inc.

  12. Association between nasopharyngeal carcinoma and risk of optic neuropathy: A population-based cohort study.

    PubMed

    Fan, Chao-Yueh; Jen, Yee-Min; Su, Yuan-Chih; Chao, Hsing-Lung; Lin, Chun-Shu; Huang, Wen-Yen; Lin, Miao-Jung; Kao, Chia-Hung

    2018-04-16

    The purpose of this study was to assess the predictive factors of optic neuropathy among patients with nasopharyngeal carcinoma (NPC). The analysis included 16 297 patients with NPC and 65 187 controls. Each patient with NPC was randomly frequency-matched with 4 individuals without NPC by age, sex, and index year. Cox proportional hazard models were applied to measure the hazard ratios (HRs) and 95% confidence intervals (CIs) of optic neuropathy development associated with NPC. The risk of optic neuropathy was significantly higher in the NPC cohort (adjusted HR [aHR] 3.42; 95% CI 2.85-4.09; P < .001). Independent risk factors for optic neuropathy among patients with NPC included stroke (aHR 1.7; 95% CI 1.07-2.7; P = .03) and receipt of chemotherapy (aHR 1.55; 95% CI 1.17-2.06; P = .002). The risk of optic neuropathy was significantly higher in patients with NPC than in the general population. © 2018 Wiley Periodicals, Inc.

  13. Molecular and biochemical biomarkers for diagnosis and therapy monitorization of Niemann-Pick type C patients.

    PubMed

    Hammerschmidt, Tatiane Grazieli; de Oliveira Schmitt Ribas, Graziela; Saraiva-Pereira, Maria Luiza; Bonatto, Márcia Polese; Kessler, Rejane Gus; Souza, Fernanda Timm Seabra; Trapp, Franciele; Michelin-Tirelli, Kristiane; Burin, Maira Graeff; Giugliani, Roberto; Vargas, Carmen Regla

    2018-05-01

    Niemann-Pick type C (NP-C), one of 50 inherited lysosomal storage disorders, is caused by NPC protein impairment that leads to unesterified cholesterol accumulation in late endosomal/lysosomal compartments. The clinical manifestations of NP-C include hepatosplenomegaly, neurological and psychiatric symptoms. Current diagnosis for NP-C is based on observation of the accumulated cholesterol in fibroblasts of affected individuals, using an invasive and time expensive test, called Filipin staining. Lately, two metabolites that are markedly increased in NP-C patients are arising as biomarkers for this disease screening: 7-ketocholesterol and cholestane-3β,5α,6β-triol, both oxidized cholesterol products. In this work, we aimed to evaluate the performance of cholestane-3β,5α,6β-triol analysis for the screening and monitoring of NPC patients, correlating it with chitotriosidase levels, Filipin staining and molecular analysis. It was investigated 76 non-treated individuals with NP-C suspicion and also 7 patients with previous NP-C diagnosis under treatment with miglustat, in order to verify the cholestane-3β,5α,6β-triol value as a tool for therapy monitoring. Considering molecular assay as golden standard, it was verified that cholestane-3β,5α,6β-triol analysis presented 88% of sensitivity, 96.08% of specificity, a positive and negative predictive value calculated in 91.67% and 94.23%, respectively, for the diagnosis of NP-C. Chitotriosidase levels were increased in patients with positive molecular analysis for NP-C. For Filipin staining, it was found 1 false positive, 7 false negative and 24 inconclusive cases, showing that this assay has important limitations for NP-C diagnosis. Besides, we found a significant decrease in cholestane-3β,5α,6β-triol concentrations in NP-C patients under therapy with miglustat when compared to non-treated patients. Taken together, the present data show that cholestane-3β,5α,6β-triol analysis has a high potential to be an important NP-C screening assay, and also can be used for therapy monitorization with miglustat in NP-C patients. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Longitudinal Changes in White Matter Fractional Anisotropy in Adult-Onset Niemann-Pick Disease Type C Patients Treated with Miglustat.

    PubMed

    Bowman, Elizabeth A; Velakoulis, Dennis; Desmond, Patricia; Walterfang, Mark

    2018-01-01

    Niemann-Pick disease type C (NPC) is a rare neurometabolic disorder resulting in impaired intracellular lipid trafficking. The only disease-modifying treatment currently available is miglustat, an iminosugar that inhibits the accumulation of lipid metabolites in neurons and other cells. This longitudinal diffusion tensor imaging (DTI) study examined how the rate of white matter change differed between treated and non-treated adult-onset NPC patient groups. Nine adult-onset NPC patients (seven undergoing treatment with miglustat, two not treated) underwent DTI neuroimaging. Rates of change in white matter structure as indexed by Tract-Based Spatial Statistics (TBSS) of fractional anisotropy were compared between treated and untreated patients. Treated patients were found to have a significantly slower rate of white matter change in the corticospinal tracts, the thalamic radiation and the inferior longitudinal fasciculus. This is further evidence that miglustat treatment may have a protective effect on white matter structure in the adult-onset form of the disease.

  15. Overexpression of COX-2 and LMP1 are correlated with lymph node in Tunisian NPC patients.

    PubMed

    Fendri, Ali; Khabir, Abdelmajid; Hadhri-Guiga, Boutheina; Sellami-Boudawara, Tahia; Ghorbel, Abdelmoonem; Daoud, Jamel; Frikha, Mounir; Jlidi, Rachid; Gargouri, Ali; Mokdad-Gargouri, Raja

    2008-07-01

    Cyclooxygenase 2 (COX-2) an inducible form of COX is frequently up-regulated in many human tumours. The expression of COX-2 in nasopharyngeal carcinoma (NPC) and its relationship to clinicopathological features were studied in Tunisian patients. COX-2 mRNA was detected in 91% of tumour tissues. Immunohistochemical analysis showed that COX-2 protein was strongly detected in tumour cells and the staining was mainly cytoplasmic. In contrast, COX-2 mRNA and protein were very low or undetectable in normal nasopharyngeal mucosa. Our result showed a significant association of COX-2 overexpression with the lymph node involvement, however, no correlation was observed with age, tumour stage, histological type and distant metastasis. Moreover, we showed that all tumour specimens co-overexpressed COX-2 and the EBV oncoprotein LMP1 corroborating the fact that LPM1 is known to induce COX-2. Altogether, our data suggests that the COX-2 is overexpressed in NPC biopsies and that is linked to the lymph node involvement.

  16. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope

    PubMed Central

    Otsuka, Shotaro; Bui, Khanh Huy; Schorb, Martin; Hossain, M Julius; Politi, Antonio Z; Koch, Birgit; Eltsov, Mikhail; Beck, Martin; Ellenberg, Jan

    2016-01-01

    The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM. DOI: http://dx.doi.org/10.7554/eLife.19071.001 PMID:27630123

  17. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex.

    PubMed

    Ketterer, Philip; Ananth, Adithya N; Laman Trip, Diederik S; Mishra, Ankur; Bertosin, Eva; Ganji, Mahipal; van der Torre, Jaco; Onck, Patrick; Dietz, Hendrik; Dekker, Cees

    2018-03-02

    The nuclear pore complex (NPC) is the gatekeeper for nuclear transport in eukaryotic cells. A key component of the NPC is the central shaft lined with intrinsically disordered proteins (IDPs) known as FG-Nups, which control the selective molecular traffic. Here, we present an approach to realize artificial NPC mimics that allows controlling the type and copy number of FG-Nups. We constructed 34 nm-wide 3D DNA origami rings and attached different numbers of NSP1, a model yeast FG-Nup, or NSP1-S, a hydrophilic mutant. Using (cryo) electron microscopy, we find that NSP1 forms denser cohesive networks inside the ring compared to NSP1-S. Consistent with this, the measured ionic conductance is lower for NSP1 than for NSP1-S. Molecular dynamics simulations reveal spatially varying protein densities and conductances in good agreement with the experiments. Our technique provides an experimental platform for deciphering the collective behavior of IDPs with full control of their type and position.

  18. Wnt/B-Catenin Signaling is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson’s Disease

    PubMed Central

    L’Episcopo, Francesca; Tirolo, Cataldo; Testa, Nunzio; Caniglia, Salvatore; Morale, Maria Concetta; Serapide, Maria Francesca; Pluchino, Stefano; Marchetti, Bianca

    2014-01-01

    SUMMARY Wnt/β-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson’s disease (PD) and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/β-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/β-catenin signaling. Cococulture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic β-catenin reporter mice uncovered Wnt/β-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled β-catenin signaling in predopaminergic (Nurr1+/TH−) and imperiled or rescuing DAT+ neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas β-catenin activation in situ with a specific GSK-3β antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD. PMID:24648001

  19. Aging-Induced Nrf2-ARE Pathway Disruption in the Subventricular Zone Drives Neurogenic Impairment in Parkinsonian Mice via PI3K-Wnt/β-Catenin Dysregulation

    PubMed Central

    L’Episcopo, Francesca; Tirolo, Cataldo; Testa, Nunzio; Caniglia, Salvatore; Morale, Maria C.; Impagnatiello, Francesco; Pluchino, Stefano; Marchetti, Bianca

    2013-01-01

    Aging and exposure to environmental toxins including MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) are strong risk factors for developing Parkinson’s disease (PD), a common neurologic disorder characterized by selective degeneration of midbrain dopaminergic (DAergic) neurons and astrogliosis. Aging and PD impair the subventricular zone (SVZ), one of the most important brain regions for adult neurogenesis. Because inflammation and oxidative stress are the hallmarks of aging and PD, we investigated the nature, timing, and signaling mechanisms contributing to aging-induced SVZ stem/neuroprogenitor cell (NPC) inhibition in aging male mice and attempted to determine to what extent manipulation of these pathways produces a functional response in the outcome of MPTP-induced DAergic toxicity. We herein reveal an imbalance of Nrf2-driven antioxidant/anti-inflammatory genes, such as Heme oxygenase1 in the SVZ niche, starting by middle age, amplified upon neurotoxin treatment and associated with an exacerbated proinflammatory SVZ microenvironment converging to dysregulate the Wingless-type MMTV integration site (Wnt)/β-catenin signaling, a key regulatory pathway for adult NPCs. In vitro experiments using coculture paradigms uncovered aged microglial proinflammatory mediators as critical inhibitors of NPC proliferative potential. We also found that interruption of PI3K (phosphatidylinositol 3-kinase)/Akt and the Wnt/Fzd/β-catenin signaling cascades, which switch glycogen synthase kinase 3β (GSK-3β) activation on and off, were causally related to the impairment of SVZ-NPCs. Moreover, a synergy between dysfunctional microglia of aging mice and MPTP exposure further inhibited astrocyte proneurogenic properties, including the expression of key Wnts components. Last, pharmacological activation/antagonism studies in vivo and in vitro suggest the potential that aged SVZ manipulation is associated with DAergic functional recovery. PMID:23345222

  20. Analysis of Ebola Virus Entry Into Macrophages.

    PubMed

    Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike

    2015-10-01

    Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)-driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  1. The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer.

    PubMed

    Zhao, Zhenzhen; Liu, Wen; Liu, Jincheng; Wang, Jiayi; Luo, Bing

    2017-10-01

    Epstein-Barr virus (EBV) is an important DNA tumor virus that is associated with approximately 10% of gastric carcinomas and 99% of nasopharyngeal cancers (NPC). DNA methylation and microRNAs (miRNAs) are the most studied epigenetic mechanisms that can prompt disease susceptibility. This study aimed to detect the effect of EBV on Wnt inhibitory factor 1 (WIF1), Nemo-like kinase (NLK), and adenomatous polyposis coli (APC) gene methylation, and expression in gastric carcinoma and NPC. The WIF1, NLK, and APC gene mRNA expression levels were measured by real-time quantitative RT-PCR in four EBV-positive cell lines and four EBV-negative cell lines. Bisulfite genomic sequencing or methylation-specific PCR was used to detect the methylation status of the WIF1, NLK, and APC promoters. All cell lines were treated with 5-azacytidine (5-aza-dC), miR-BART19-3p mimics or an inhibitor, and analyzed by flow cytometry and MTT cell proliferation assays. The WIF1, NLK, and APC promoters were hypermethylated in all eight cell lines. 5-Aza-dC displayed a growth inhibitory effect on cells . After transfection with miR-BART19-3p mimics, the expression of WIF1, and APC decreased, and the cellular proliferation rate increased. After transfection with the miR-BART19-3p inhibitor, the expression levels were higher, and the cell growth was inhibited. In the NPC and GC cell lines, the promoters of WIF1, NLK, and APC are highly methylated, and the expression of these three genes is regulated by miR-BART19-3p. The activity of the Wnt pathway in EBV-associated tumors may be enhanced by miR-BART19-3p. © 2017 Wiley Periodicals, Inc.

  2. The Yeast Nuclear Pore Complex

    PubMed Central

    Rout, Michael P.; Aitchison, John D.; Suprapto, Adisetyantari; Hjertaas, Kelly; Zhao, Yingming; Chait, Brian T.

    2000-01-01

    An understanding of how the nuclear pore complex (NPC) mediates nucleocytoplasmic exchange requires a comprehensive inventory of the molecular components of the NPC and a knowledge of how each component contributes to the overall structure of this large molecular translocation machine. Therefore, we have taken a comprehensive approach to classify all components of the yeast NPC (nucleoporins). This involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleoporins, and localizing each nucleoporin within the NPC. Using these data, we present a map of the molecular architecture of the yeast NPC and provide evidence for a Brownian affinity gating mechanism for nucleocytoplasmic transport. PMID:10684247

  3. A statistical image analysis framework for pore-free islands derived from heterogeneity distribution of nuclear pore complexes.

    PubMed

    Mimura, Yasuhiro; Takemoto, Satoko; Tachibana, Taro; Ogawa, Yutaka; Nishimura, Masaomi; Yokota, Hideo; Imamoto, Naoko

    2017-11-24

    Nuclear pore complexes (NPCs) maintain cellular homeostasis by mediating nucleocytoplasmic transport. Although cyclin-dependent kinases (CDKs) regulate NPC assembly in interphase, the location of NPC assembly on the nuclear envelope is not clear. CDKs also regulate the disappearance of pore-free islands, which are nuclear envelope subdomains; this subdomain gradually disappears with increase in homogeneity of the NPC in response to CDK activity. However, a causal relationship between pore-free islands and NPC assembly remains unclear. Here, we elucidated mechanisms underlying NPC assembly from a new perspective by focusing on pore-free islands. We proposed a novel framework for image-based analysis to automatically determine the detailed 'landscape' of pore-free islands from a large quantity of images, leading to the identification of NPC intermediates that appear in pore-free islands with increased frequency in response to CDK activity. Comparison of the spatial distribution between simulated and the observed NPC intermediates within pore-free islands showed that their distribution was spatially biased. These results suggested that the disappearance of pore-free islands is highly related to de novo NPC assembly and indicated the existence of specific regulatory mechanisms for the spatial arrangement of NPC assembly on nuclear envelopes.

  4. The distinctive profile of risk factors of nasopharyngeal carcinoma in comparison with other head and neck cancer types

    PubMed Central

    Abdulamir, AS; Hafidh, RR; Abdulmuhaimen, N; Abubakar, F; Abbas, KA

    2008-01-01

    Background Nasopharyngeal carcinoma (NPC) and other head and neck cancer (HNCA) types show a great epidemiological variation in different regions of the world. NPC has multifactorial etiology and many interacting risk factors are involved in NPC development mainly Epstein Barr virus (EBV). There is a need to scrutinize the complicated network of risk factors affecting NPC and how far they are different from that of other HNCA types. Methods 122 HNCA patients and 100 control subjects were studied in the region of the Middle East. Three types of HNCA were involved in our study, NPC, carcinoma of larynx (CL), and hypopharyngeal carcinoma (HPC). The risk factors studied were the level of EBV serum IgG and IgA antibodies measured by ELISA, age, sex, smoking, alcohol intake, histology, and family history of the disease. Results EBV serum level of IgG and IgA antibodies was higher in NPC than CL, HPC, and control groups (p < 0.01). NPC was associated with lymphoepithelioma (LE) tumors, males, regular alcohol intake, and regular smoking while CL and HPC were not (p < 0.05). CL and HPC were associated with SCC tumors (p < 0.05). Furthermore, NPC, unlike CL and HPC groups, was not affected by the positive family history of HNCA (p > 0.05). The serum levels of EBV IgG and IgA antibodies were higher in LE tumors, regular smokers, younger patients, and negative family history groups of NPC patients than SCC tumors, non-regular smokers, older patients and positive family history groups respectively (p < 0.05) while this was not found in the regular alcoholics (p > 0.05). Conclusion It was concluded that risk factors of NPC deviate much from that of other HNCA. EBV, smoking, alcohol intake, LE tumors, male patient, and age > 54 years were hot risk factors of NPC while SCC and positive family history of the disease were not. Earlier incidence, smoking, LE tumors, and negative family history of the disease in NPC patients were associated much clearly with EBV. It is proposed that determining the correct risk factors of NPC is vital in assigning the correct risk groups of NPC which helps the early detection and screening of NPC. PMID:19055849

  5. Nasopharyngeal carcinoma in Indonesia: epidemiology, incidence, signs, and symptoms at presentation

    PubMed Central

    Adham, Marlinda; Kurniawan, Antonius N.; Muhtadi, Arina Ika; Roezin, Averdi; Hermani, Bambang; Gondhowiardjo, Soehartati; Tan, I Bing; Middeldorp, Jaap M.

    2012-01-01

    Among all head and neck (H&N) cancers, nasopharyngeal carcinoma (NPC) represents a distinct entity regarding epidemiology, clinical presentation, biological markers, carcinogenic risk factors, and prognostic factors. NPC is endemic in certain regions of the world, especially in Southeast Asia, and has a poor prognosis. In Indonesia, the recorded mean prevalence is 6.2/100 000, with 13 000 yearly new NPC cases, but otherwise little is documented on NPC in Indonesia. Here, we report on a group of 1121 NPC patients diagnosed and treated at Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia between 1996 and 2005. We studied NPC incidence among all H&N cancer cases (n=6000) observed in that period, focusing on age and gender distribution, the ethnic background of patients, and the disease etiology. We also analyzed most prevalent signs and symptoms and staging of NPC patients at first presentation. In this study population, NPC was the most frequent H&N cancer (28.4%), with a male-to-female ratio of 2.4, and was endemic in the Javanese population. Interestingly, NPC appeared to affect patients at a relatively young age (20% juvenile cases) without a bimodal age distribution. Mostly, NPC initiated in the fossa of Rosenmuller and spreaded intracranially or locally as a mass in the head. Occasionally, NPC developed at the submucosal level spreading outside the anatomic limits of the nasopharynx. At presentation, NPC associated with hearing problems, serous otitis media, tinnitus, nasal obstruction, anosmia, bleeding, difficulty in swallowing and dysphonia, and even eye symptoms with diplopia and pain. The initial diagnosis is difficult to make because early signs and symptoms of NPC are not specific to the disease. Early-age Epstein-Barr virus (EBV) infection combined with frequent exposure to environmental carcinogenic co-factors is suggested to cause NPC development. Undifferentiated NPC is the most frequent histological type and is closely associated with EBV. Expression of the EBV-encoded latent membrane protein 1(LMP1) Oncogene in biopsy material was compared between NPC patients of < 30 years old and those of ≥ 30 years old, matched for sex and tumor stage. Higher LMP1 expression in patients of <30 years old was observed, which was related to more locoregional progressivity. Increased medical awareness of prevailing early stage signs and symptoms coupled to use of EBV-related diagnostic tumor markers may lead to down-staging and timely treatment to improve survival of patients with this aggressive disease. PMID:22313595

  6. Evaluation and Integration of Genetic Signature for Prediction Risk of Nasopharyngeal Carcinoma in Southern China

    PubMed Central

    Winkler, Cheryl A.; Li, Ji; Guan, Li; Tang, Minzhong; Liao, Jian; Deng, Hong; de Thé, Guy; Zeng, Yi; O'Brien, Stephen J.

    2014-01-01

    Genetic factors, as well as environmental factors, play a role in development of nasopharyngeal carcinoma (NPC). A number of single nucleotide polymorphisms (SNPs) have been reported to be associated with NPC. To confirm these genetic associations with NPC, two independent case-control studies from Southern China comprising 1166 NPC cases and 2340 controls were conducted. Seven SNPs in ITGA9 at 3p21.3 and 9 SNPs within the 6p21.3 HLA region were genotyped. To explore the potential clinical application of these genetic markers in NPC, we further evaluate the predictive/diagnostic role of significant SNPs by calculating the area under the curve (AUC). Results. The reported associations between ITGA9 variants and NPC were not replicated. Multiple loci of GABBR1, HLA-F, HLA-A, and HCG9 were statistically significant in both cohorts (P combined range from 5.96 × 10−17 to 0.02). We show for the first time that these factors influence NPC development independent of environmental risk factors. This study also indicated that the SNP alone cannot serve as a predictive/diagnostic marker for NPC. Integrating the most significant SNP with IgA antibodies status to EBV, which is presently used as screening/diagnostic marker for NPC in Chinese populations, did not improve the AUC estimate for diagnosis of NPC. PMID:25180181

  7. Evaluation and integration of genetic signature for prediction risk of nasopharyngeal carcinoma in Southern China.

    PubMed

    Guo, Xiuchan; Winkler, Cheryl A; Li, Ji; Guan, Li; Tang, Minzhong; Liao, Jian; Deng, Hong; de Thé, Guy; Zeng, Yi; O'Brien, Stephen J

    2014-01-01

    Genetic factors, as well as environmental factors, play a role in development of nasopharyngeal carcinoma (NPC). A number of single nucleotide polymorphisms (SNPs) have been reported to be associated with NPC. To confirm these genetic associations with NPC, two independent case-control studies from Southern China comprising 1166 NPC cases and 2340 controls were conducted. Seven SNPs in ITGA9 at 3p21.3 and 9 SNPs within the 6p21.3 HLA region were genotyped. To explore the potential clinical application of these genetic markers in NPC, we further evaluate the predictive/diagnostic role of significant SNPs by calculating the area under the curve (AUC). The reported associations between ITGA9 variants and NPC were not replicated. Multiple loci of GABBR1, HLA-F, HLA-A, and HCG9 were statistically significant in both cohorts (P(combined) range from 5.96 × 10(-17) to 0.02). We show for the first time that these factors influence NPC development independent of environmental risk factors. This study also indicated that the SNP alone cannot serve as a predictive/diagnostic marker for NPC. Integrating the most significant SNP with IgA antibodies status to EBV, which is presently used as screening/diagnostic marker for NPC in Chinese populations, did not improve the AUC estimate for diagnosis of NPC.

  8. High incidence of unrecognized visceral/neurological late-onset Niemann-Pick disease, type C1, predicted by analysis of massively parallel sequencing data sets.

    PubMed

    Wassif, Christopher A; Cross, Joanna L; Iben, James; Sanchez-Pulido, Luis; Cougnoux, Antony; Platt, Frances M; Ory, Daniel S; Ponting, Chris P; Bailey-Wilson, Joan E; Biesecker, Leslie G; Porter, Forbes D

    2016-01-01

    Niemann-Pick disease type C (NPC) is a recessive, neurodegenerative, lysosomal storage disease caused by mutations in either NPC1 or NPC2. The diagnosis is difficult and frequently delayed. Ascertainment is likely incomplete because of both these factors and because the full phenotypic spectrum may not have been fully delineated. Given the recent development of a blood-based diagnostic test and the development of potential therapies, understanding the incidence of NPC and defining at-risk patient populations are important. We evaluated data from four large, massively parallel exome sequencing data sets. Variant sequences were identified and classified as pathogenic or nonpathogenic based on a combination of literature review and bioinformatic analysis. This methodology provided an unbiased approach to determining the allele frequency. Our data suggest an incidence rate for NPC1 and NPC2 of 1/92,104 and 1/2,858,998, respectively. Evaluation of common NPC1 variants, however, suggests that there may be a late-onset NPC1 phenotype with a markedly higher incidence, on the order of 1/19,000-1/36,000. We determined a combined incidence of classical NPC of 1/89,229, or 1.12 affected patients per 100,000 conceptions, but predict incomplete ascertainment of a late-onset phenotype of NPC1. This finding strongly supports the need for increased screening of potential patients.

  9. Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration.

    PubMed

    Jones, Melissa K; Lu, Bin; Saghizadeh, Mehrnoosh; Wang, Shaomei

    2016-01-01

    Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell-based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell-based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. RNA-seq data of retinas from RCS rats injected with hNPCs (RCS(hNPCs)) were compared to sham surgery in RCS (RCS(sham)) and wild-type Long Evans (LE(sham)) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCS(sham) and LE(sham) samples. Additionally, 283 genes were differentially expressed between the RCS(hNPCs) and RCS(sham) samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCS(sham). Pathway analysis of the differential expression gene sets identified three affected pathways in RCS(hNPCs), which all play roles in phagocytosis signaling. Immunofluorescent staining detected the increased presence of macrophages and microglia in RCS(sham) retinas, which decreased in RCS(hNPCs) retinas similar to the patterns detected in LE(sham). The results from this study provide evidence of the gene expression changes that occur following treatment with hNPCs in the degenerating retina. This information can be used in future studies to potentially enhance or predict responses to hNPC and other stem cell therapies for retinal degenerative diseases.

  10. Endosomal/Lysosomal Processing of Gangliosides Affects Neuronal Cholesterol Sequestration in Niemann-Pick Disease Type C

    PubMed Central

    Zhou, Sharon; Davidson, Cristin; McGlynn, Robert; Stephney, Gloria; Dobrenis, Kostantin; Vanier, Marie T.; Walkley, Steven U.

    2011-01-01

    Niemann-Pick disease type C (NPC) is a severe neurovisceral lysosomal storage disorder caused by defects in NPC1 or NPC2 proteins. Although numerous studies support the primacy of cholesterol storage, neurons of double-mutant mice lacking both NPC1 and an enzyme required for synthesis of all complex gangliosides (β1,4GalNAc transferase) have been reported to exhibit dramatically reduced cholesterol sequestration. Here we show that NPC2-deficient mice lacking this enzyme also exhibit reduced cholesterol, but that genetically restricting synthesis to only a-series gangliosides fully restores neuronal cholesterol storage to typical disease levels. Examining the subcellular locations of sequestered compounds in neurons lacking NPC1 or NPC2 by confocal microscopy revealed that cholesterol and the two principal storage gangliosides (GM2 and GM3) were not consistently co-localized within the same intracellular vesicles. To determine whether the lack of GM2 and GM3 co-localization was due to differences in synthetic versus degradative pathway expression, we generated mice lacking both NPC1 and lysosomal β-galactosidase, and therefore unable to generate GM2 and GM3 in lysosomes. Double mutants lacked both gangliosides, indicating that each is the product of endosomal/lysosomal processing. Unexpectedly, GM1 accumulation in double mutants increased compared to single mutants consistent with a direct role for NPC1 in ganglioside salvage. These studies provide further evidence that NPC1 and NPC2 proteins participate in endosomal/lysosomal processing of both sphingolipids and cholesterol. PMID:21708114

  11. Fluorescent Recovery after Photobleaching (FRAP) Analysis of Nuclear Export Rates Identifies Intrinsic Features of Nucleocytoplasmic Transport*

    PubMed Central

    Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri

    2012-01-01

    A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level. PMID:22190681

  12. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1.

    PubMed

    Carette, Jan E; Raaben, Matthijs; Wong, Anthony C; Herbert, Andrew S; Obernosterer, Gregor; Mulherkar, Nirupama; Kuehne, Ana I; Kranzusch, Philip J; Griffin, April M; Ruthel, Gordon; Dal Cin, Paola; Dye, John M; Whelan, Sean P; Chandran, Kartik; Brummelkamp, Thijn R

    2011-08-24

    Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.

  13. Amplicons on chromosome 3 contain oncogenes induced by recurrent exposure to 12-O-tetradecanoylphorbol-13-acetate and sodium n-butyrate and Epstein-Barr virus reactivation in a nasopharyngeal carcinoma cell line.

    PubMed

    Lee, Chia-Huei; Fang, Chih-Yeu; Sheu, Jim Jinn-Chyuan; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2008-08-01

    Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection and exposure to environmental carcinogens. In this study, an inducible Epstein-Barr virus (EBV) reactivation NPC cell line, NA, was used to investigate the impact of recurrent 12-O-tetradecanoylphorbol-13-acetate-sodium n-butyrate (TPA/SB) treatment and EBV reactivation on chromosomal abnormalities utilizing array-based comparative genomic hybridization (CGH). It was observed that most copy-number aberrations (CNA) were progressively nonrandomly clustered on chromosomes 3, 8, and 9, as the frequency of TPA/SB treatment and EBV reactivation increased. All of the prominent amplicons detected (including 3p14.1, 3p13, 3p12.3, 3p12.2, 3q26.2, 3q26.31, and 3q26.32) were located on chromosome 3, with multiple oncogenes assigned to these sites. The amplification patterns of 3p12.3 and 3q26.2 were validated using fluorescence in situ hybridization (FISH) analysis. Subsequent quantitative real-time polymerase chain reaction detected increasing expression of ROBO1 and SKIL oncogenes in NA cells harboring higher frequency of TPA/SB treatment and EBV reactivation, consistent with copy-number amplification of these loci. These findings demonstrate that a high incidence of TPA/SB induced-EBV reactivation has a profound influence on the carcinogenesis of NPC through altered DNA copy number.

  14. Miglustat Improves Purkinje Cell Survival and Alters Microglial Phenotype in Feline Niemann-Pick Disease Type C

    PubMed Central

    Stein, Veronika M.; Crooks, Alexandra; Ding, Wenge; Prociuk, Maria; O’Donnell, Patricia; Bryan, Caroline; Sikora, Tracey; Dingemanse, Jasper; Vanier, Marie T.; Walkley, Steven U.; Vite, Charles H.

    2012-01-01

    Niemann-Pick disease type C (NPC disease) is an incurable cellular lipid trafficking disorder characterized by neurodegeneration and intralysosomal accumulation of cholesterol and glycosphingolipids. Treatment with miglustat, a small imino sugar that reversibly inhibits glucosylceramide synthase, which is necessary for glycosphingolipid synthesis, has been shown to benefit patients with NPC disease. The mechanism(s) and extent of brain cellular changes underlying this benefit are not understood. To investigate the basis of the efficacy of miglustat, cats with disease homologous to the juvenile-onset form of human NPC disease received daily miglustat orally beginning at 3 weeks of age. The plasma half-life of miglustat was 6.6 ± 1.1 hours, with a tmax, Cmax, and area under the plasma concentration-time curve of 1.7 ± 0.6 hours, 20.3 ± 4.6 μg/ml, and 104.1 ± 16.6 μg hours/ml, respectively. Miglustat delayed the onset of neurological signs and increased the lifespan of treated cats, and was associated with decreased GM2 ganglioside accumulation in the cerebellum and improved Purkinje cell survival. Ex vivo examination of microglia from the brains of treated cats revealed normalization of CD1c and class II major histocompatibility complex expression, as well as generation of reactive oxygen species. Together, these results suggest that prolonged Purkinje cell survival, reduced glycosphingolipid accumulation, and/or the modulation of microglial immunophenotype and function contribute to miglustat-induced neurological improvement in treated cats. PMID:22487861

  15. Progression of understanding for the role of Epstein-Barr virus and management of nasopharyngeal carcinoma.

    PubMed

    Nakanishi, Yosuke; Wakisaka, Naohiro; Kondo, Satoru; Endo, Kazuhira; Sugimoto, Hisashi; Hatano, Miyako; Ueno, Takayoshi; Ishikawa, Kazuya; Yoshizaki, Tomokazu

    2017-09-01

    Nasopharyngeal carcinoma (NPC) is very common in southern China and Southeast Asia. In regions where NPC is endemic, undifferentiated subtypes constitute most cases and are invariably associated with Epstein-Barr virus (EBV) infection, whereas the differentiated subtype is more common in other parts of the world. Undifferentiated NPC is a unique malignancy with regard to its epidemiology, etiology, and clinical presentation. Clinically, NPC is highly invasive and metastatic, but sensitive to both chemotherapy and radiotherapy (RT). Overall prognosis has dramatically improved over the past three decades because of advances in management, including the improvement of RT technology, the broader application of chemotherapy, and more accurate disease staging. Despite the excellent local control with modern RT, distant failure remains a challenging problem. Advances in molecular technology have helped to elucidate the molecular pathogenesis of NPC. This article reviews the contribution of EBV gene products to NPC pathogenesis and the current management of NPC.

  16. Retrospective analysis of oncogenic human papilloma virus and Epstein-Barr virus prevalence in Turkish nasopharyngeal cancer patients.

    PubMed

    Tatlı Doğan, Hayriye; Kılıçarslan, Aydan; Doğan, Mehmet; Süngü, Nuran; Güler Tezel, Gaye; Güler, Gülnur

    2016-11-01

    Nasopharyngeal carcinoma (NPC) is associated with the Epstein-Barr virus (EBV). Human papilloma virus (HPV) has also been detected in NPC cases. In this retrospective study, we analyze the frequency of EBV and HPV infection in 82 Turkish patients with NPC. A total of 82 were evaluated for EBV and HPV. In situ hybridization (ISH) was performed for EBV. HPV-ISH and P16 immunohistochemistry used to determine the HPV status. Seventy-two of the 82 (87%) NPC patients were EBV-positive. The highest rate of EBV-positivity was found in undifferentiated NPC patients, which accounted for 65 of 68 (95.6%) undifferentiated cases. One of the 82 NPC patients whose tumor was non-keratinizing differentiated, contained HPV. Our data shows that EBV is closely associated with NPC in Turkey. We found lower rates of HPV-positivity in NPC patients than in North American populations. In addition, both EBV and HPV-negativity were more associated with decreased survival than EBV-positive cases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways.

    PubMed

    Li, Ming-Yi; Liu, Jin-Quan; Chen, Dong-Ping; Li, Zhou-Yu; Qi, Bin; He, Lu; Yu, Yi; Yin, Wen-Jin; Wang, Meng-Yao; Lin, Ling

    2017-09-02

    Nasopharyngeal carcinoma (NPC) is a common malignant neoplasm of the head and neck which is harmful to human's health. Radiotherapy is commonly used in the treatment of NPC and it induces immediate cell cycle arrest and cell apoptosis. However, the mechanism remains unknown. Evidences suggested the activation of Ataxia telangiectasia mutated (ATM) pathway and Smad pathway are 2 of the important crucial mediators in the function of radiotherapy. In this study, we performed in vitro assays with human nasopharyngeal carcinoma CNE-2 cells and in vivo assays with nude mice to investigate the role of the ATM and Smad pathways in the treatment of nasopharyngeal carcinoma with radiotherapy. The results suggested that radiation induced activation of ATM pathway by inducing expression of p-ATM, p-CHK1, p-CHK2, p15 and inhibiting expression of p-Smad3. In addition, Caspase3 expression was increased while CDC25A was decreased, leading to cell cycle arrest and cell apoptosis. On the other hand, activation of Smad3 can inhibited the ATM pathway and attenuated the efficacy of radiation. In summary, we suggest that both ATM and Smad pathways contribute to the cell cycle arrest and cell apoptosis during nasopharyngeal carcinoma cells treated with radiation.

  18. Risk of hypothyroidism among patients with nasopharyngeal carcinoma treated with radiation therapy: A Population-Based Cohort Study.

    PubMed

    Fan, Chao-Yueh; Lin, Chun-Shu; Chao, Hsing-Lung; Huang, Wen-Yen; Su, Yu-Fu; Lin, Kuen-Tze; Tsai, I-Ju; Kao, Chia-Hung

    2017-06-01

    This study aimed to assess the incidence and risk of hypothyroidism among patients with nasopharyngeal carcinoma (NPC) after radiation therapy (RT). We identified 14,893 NPC patients and 16,105 other head and neck cancer (HNC) patients treated with RT without thyroidectomy from the National Health Insurance Research Database in Taiwan between 2000 and 2011. Each NPC patient was randomly frequency-matched with four individuals without NPC by age, sex, and index year. Competing-risk regression models were used to estimate hazard ratios (HRs) of hypothyroidism requiring thyroxin associated with NPC after RT. The risk of developing hypothyroidism was significantly higher in the NPC cohort than in the matched cohort (adjusted HR=14.35, 95% CI=11.85-17.37) and the HNC cohort (adjusted HR=2.06, 95% CI=1.69-2.52). Independent risk factors for hypothyroidism among NPC patients included younger age, female sex, higher urbanization level, autoimmune disease, and receipt of chemotherapy. The risk of hypothyroidism requiring thyroxin was significantly higher in NPC patients after RT than in the general Taiwanese population and HNC patients. Regular clinical and serum thyroid function tests are essential among NPC survivors after RT. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. HLA-A SNPs and amino acid variants are associated with nasopharyngeal carcinoma in Malaysian Chinese.

    PubMed

    Chin, Yoon-Ming; Mushiroda, Taisei; Takahashi, Atsushi; Kubo, Michiaki; Krishnan, Gopala; Yap, Lee-Fah; Teo, Soo-Hwang; Lim, Paul Vey-Hong; Yap, Yoke-Yeow; Pua, Kin-Choo; Kamatani, Naoyuki; Nakamura, Yusuke; Sam, Choon-Kook; Khoo, Alan Soo-Beng; Ng, Ching-Ching

    2015-02-01

    Nasopharyngeal carcinoma (NPC) arises from the mucosal epithelium of the nasopharynx and is constantly associated with Epstein-Barr virus type 1 (EBV-1) infection. We carried out a genome-wide association study (GWAS) of 575,247 autosomal SNPs in 184 NPC patients and 236 healthy controls of Malaysian Chinese ethnicity. Potential association signals were replicated in a separate cohort of 260 NPC patients and 245 healthy controls. We confirmed the association of HLA-A to NPC with the strongest signal detected in rs3869062 (p = 1.73 × 10(-9)). HLA-A fine mapping revealed associations in the amino acid variants as well as its corresponding SNPs in the antigen peptide binding groove (p(HLA-A-aa-site-99) = 3.79 × 10(-8), p(rs1136697) = 3.79 × 10(-8)) and T-cell receptor binding site (p(HLA-A-aa-site-145) = 1.41 × 10(-4), p(rs1059520) = 1.41 × 10(-4)) of the HLA-A. We also detected strong association signals in the 5'-UTR region with predicted active promoter states (p(rs41545520) = 7.91 × 10(-8)). SNP rs41545520 is a potential binding site for repressor ATF3, with increased binding affinity for rs41545520-G correlated with reduced HLA-A expression. Multivariate logistic regression diminished the effects of HLA-A amino acid variants and SNPs, indicating a correlation with the effects of HLA-A*11:01, and to a lesser extent HLA-A*02:07. We report the strong genetic influence of HLA-A on NPC susceptibility in the Malaysian Chinese. © 2014 UICC.

  20. Genetic variations of the NPC1L1 gene associated with hepatitis C virus (HCV) infection and biochemical characteristics of HCV patients in China.

    PubMed

    Zhang, A-Mei; Zhang, Cheng-Lin; Song, Yuzhu; Zhao, Ping; Feng, Yue; Wang, Binghui; Li, Zheng; Liu, Li; Xia, Xueshan

    2016-12-01

    About 2% of the world population is infected with hepatitis C virus (HCV), a leading cause of hepatic cirrhosis and hepatocellular carcinoma. The Niemann-Pick C1-like 1 cholesterol absorption receptor (NPC1L1) was recently identified to be an important factor for HCV entry into host cells. Whether genetic variations of the NPC1L1 gene are associated with HCV infection is unknown. In this study, five single nucleotide polymorphisms (SNPs) of the NPC1L1 gene were analyzed in 261 HCV-infected individuals and 265 general controls from Yunnan Province, China. No significant differences were identified in genotypes or alleles of the SNPs between the two groups. After constructing haplotypes based on the five SNPs, a significant difference between HCV-infected individuals and general controls was shown for two haplotypes. Haplotype GCCTT appeared to be a protective factor and haplotype GCCCT was a risk factor for HCV-infected individuals. Genotypes of four SNPs correlated with biochemical characteristics of HCV-infected persons. Genotypes of SNPs rs799444 and rs2070607 were correlated with total bilirubin. Genotype TT of rs917098 was a risk factor for the gamma-glutamyltransferase level. Furthermore, HCV-infected individuals carrying genotype GG of rs41279633 showed statistically higher gamma-glutamyltransferase levels than HCV-infected persons with GT and TT. The results of this study identified the association between genetic susceptibility of the NPC1L1 gene and HCV infection, as well as biochemical characteristics of HCV-infected persons in Yunnan, China. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse.

    PubMed

    Liu, Benny; Turley, Stephen D; Burns, Dennis K; Miller, Anna M; Repa, Joyce J; Dietschy, John M

    2009-02-17

    Niemann-Pick type C disease is largely attributable to an inactivating mutation of NPC1 protein, which normally aids movement of unesterified cholesterol (C) from the endosomal/lysosomal (E/L) compartment to the cytosolic compartment of cells throughout the body. This defect results in activation of macrophages in many tissues, progressive liver disease, and neurodegeneration. In the npc1(-/-) mouse, a model of this disease, the whole-animal C pool expands from 2,082 to 4,925 mg/kg body weight (bw) and the hepatic C pool increases from 132 to 1,485 mg/kg bw between birth and 49 days of age. A single dose of 2-hydroxypropyl-beta-cyclodextrin (CYCLO) administered at 7 days of age immediately caused this sequestered C to flow from the lysosomes to the cytosolic pool in many organs, resulting in a marked increase in cholesteryl esters, suppression of C but not fatty acid synthesis, down-regulation of genes controlled by sterol regulatory element 2, and up-regulation of many liver X receptor target genes. There was also decreased expression of proinflammatory proteins in the liver and brain. In the liver, where the rate of C sequestration equaled 79 mg x d(-1) x kg(-1), treatment with CYCLO within 24 h increased C movement out of the E/L compartment from near 0 to 233 mg x d(-1) x kg(-1). By 49 days of age, this single injection of CYCLO resulted in a reduction in whole-body C burden of >900 mg/kg, marked improvement in liver function tests, much less neurodegeneration, and, ultimately, significant prolongation of life. These findings suggest that CYCLO acutely reverses the lysosomal transport defect seen in NPC disease.

  2. Niemann-Pick C1 modulates hepatic triglyceride metabolism and its genetic variation contributes to serum triglyceride levels.

    PubMed

    Uronen, Riikka-Liisa; Lundmark, Per; Orho-Melander, Marju; Jauhiainen, Matti; Larsson, Kristina; Siegbahn, Agneta; Wallentin, Lars; Zethelius, Björn; Melander, Olle; Syvänen, Ann-Christine; Ikonen, Elina

    2010-08-01

    To study how Niemann-Pick disease type C1 (NPC1) influences hepatic triacylglycerol (TG) metabolism and to determine whether this is reflected in circulating lipid levels. In Npc1(-/-) mice, the hepatic cholesterol content is increased but the TG content is decreased. We investigated lipid metabolism in Npc1(-/-) mouse hepatocytes and the association of NPC1 single-nucleotide polymorphisms with circulating TGs in humans. TGs were reduced in Npc1(-/-) mouse serum and hepatocytes. In Npc1(-/-) hepatocytes, the incorporation of [3H]oleic acid and [3H]acetate into TG was decreased, but shunting of oleic acid- or acetate-derived [3H]carbons into cholesterol was increased. Inhibition of cholesterol synthesis normalized TG synthesis, content, and secretion in Npc1(-/-) hepatocytes, suggesting increased hepatic cholesterol neogenesis as a cause for the reduced TG content and secretion. We found a significant association between serum TG levels and 5 common NPC1 single-nucleotide polymorphisms in a cohort of 1053 men, with the lowest P=8.7 x 10(-4) for the single-nucleotide polymorphism rs1429934. The association between the rs1429934 A allele and higher TG levels was replicated in 2 additional cohorts, which included 8041 individuals. This study provides evidence of the following: (1) in mice, loss of NPC1 function reduces hepatocyte TG content and secretion by increasing the metabolic flux of carbons into cholesterol synthesis; and (2) common variation in NPC1 contributes to serum TG levels in humans.

  3. Birth order and risk of nasopharyngeal carcinoma in multiplex families from Taiwan.

    PubMed

    Liu, Zhiwei; Coghill, Anna E; Pfeiffer, Ruth M; Hsu, Wan-Lun; Lou, Pei-Jen; Wang, Cheng-Ping; Yu, Kelly J; Niwa, Shelley; Brotzman, Michelle; Ye, Weimin; Chen, Chien-Jen; Hildesheim, Allan

    2016-12-01

    A small proportion of individuals infected with Epstein-Barr virus (EBV) develop nasopharyngeal carcinoma (NPC). Timing of initial exposure could alter immunological responses to primary EBV infection and explain variation in cancer risk later in life. We measured early life family structure as a proxy for the timing of primary EBV infection to examine whether earlier age at infection alters NPC risk. We utilized data from 480 NPC cases and 1,291 unaffected siblings from Taiwanese NPC multiplex families (≥ 2 family members with NPC, N = 2,921). Information on birth order within the family was derived from questionnaires. We utilized logistic regression models to examine the association between birth order and NPC, accounting for correlations between relatives. Within these high-risk families, older siblings had an elevated risk of NPC. Compared with being a first-born child, the risk (95% CIs) of NPC associated with a birth order of two, three, four and five or more was 1.00 (0.71, 1.40), 0.88 (0.62, 1.24), 0.74 (0.53, 1.05) and 0.60 (0.43, 0.82), respectively (P for trend = 0.002). We observed no associations between NPC risk and the number of younger siblings or cumulative infant-years exposure. These associations were not modified by underlying genetic predisposition or family size. We observed that early life family structure was important for NPC risk in NPC multiplex families, with older siblings having a greater risk of disease. Future studies focusing on more direct measures of the immune response to EBV in early childhood could elucidate the underlying mechanisms. © 2016 UICC.

  4. Distinguishing neurocognitive deficits in adult patients with NP-C from early onset Alzheimer's dementia.

    PubMed

    Johnen, Andreas; Pawlowski, Matthias; Duning, Thomas

    2018-06-05

    Niemann-Pick disease type C (NP-C) is a rare, progressive neurodegenerative disease caused by mutations in the NPC1 or the NPC2 gene. Neurocognitive deficits are common in NP-C, particularly in patients with the adolescent/adult-onset form. As a disease-specific therapy is available, it is important to distinguish clinically between the cognitive profiles in NP-C and primary dementia (e.g., early Alzheimer's disease; eAD). In a prospective observational study, we directly compared the neurocognitive profiles of patients with confirmed NP-C (n = 7) and eAD (n = 15). All patients underwent neurocognitive assessment using dementia screening tests (mini-mental status examination [MMSE] and frontal assessment battery [FAB]) and an extensive battery of tests assessing verbal memory, visuoconstructive abilities, visual memory, executive functions and verbal fluency. Overall cognitive impairment (MMSE) was significantly greater in eAD vs. NP-C (p = 0.010). The frequency of patients classified as cognitively 'impaired' was also significantly greater in eAD vs. NP-C (p = 0.025). Patients with NP-C showed relatively preserved verbal memory, but frequent impairment in visual memory, visuoconstruction, executive functions and in particular, verbal fluency. In the eAD group, a wider profile of more frequent and more severe neurocognitive deficits was seen, primarily featuring severe verbal and visual memory deficits along with major executive impairment. Delayed verbal memory recall was a particularly strong distinguishing factor between the two groups. A combination of detailed yet easy-to-apply neurocognitive tests assessing verbal memory, executive functions and verbal fluency may help distinguish NP-C cases from those with primary dementia due to eAD.

  5. Di-22:6-bis(monoacylglycerol)phosphate: A clinical biomarker of drug-induced phospholipidosis for drug development and safety assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nanjun; Tengstrand, Elizabeth A.; Chourb, Lisa

    The inability to routinely monitor drug-induced phospholipidosis (DIPL) presents a challenge in pharmaceutical drug development and in the clinic. Several nonclinical studies have shown di-docosahexaenoyl (22:6) bis(monoacylglycerol) phosphate (di-22:6-BMP) to be a reliable biomarker of tissue DIPL that can be monitored in the plasma/serum and urine. The aim of this study was to show the relevance of di-22:6-BMP as a DIPL biomarker for drug development and safety assessment in humans. DIPL shares many similarities with the inherited lysosomal storage disorder Niemann–Pick type C (NPC) disease. DIPL and NPC result in similar changes in lysosomal function and cholesterol status that leadmore » to the accumulation of multi-lamellar bodies (myeloid bodies) in cells and tissues. To validate di-22:6-BMP as a biomarker of DIPL for clinical studies, NPC patients and healthy donors were classified by receiver operator curve analysis based on urinary di-22:6-BMP concentrations. By showing 96.7-specificity and 100-sensitivity to identify NPC disease, di-22:6-BMP can be used to assess DIPL in human studies. The mean concentration of di-22:6-BMP in the urine of NPC patients was 51.4-fold (p ≤ 0.05) above the healthy baseline range. Additionally, baseline levels of di-22:6-BMP were assessed in healthy non-medicated laboratory animals (rats, mice, dogs, and monkeys) and human subjects to define normal reference ranges for nonclinical/clinical studies. The baseline ranges of di-22:6-BMP in the plasma, serum, and urine of humans and laboratory animals were species dependent. The results of this study support the role of di-22:6-BMP as a biomarker of DIPL for pharmaceutical drug development and health care settings. - Highlights: • A reliable biomarker of drug-induced phospholipidosis (DIPL) is needed for humans. • Di-22:6-BMP is specific/sensitive for DIPL in animals as published in literatures. • The di-22:6-BMP biomarker can be validated for humans via NPC patients. • DIPL shares morphologic/mechanistic similarities with Niemann–Pick type C disease. • Di-22:6-BMP is an effective DIPL biomarker in humans via NPC patient validation.« less

  6. Observational, retrospective study of a large cohort of patients with Niemann-Pick disease type C in the Czech Republic: a surprisingly stable diagnostic rate spanning almost 40 years.

    PubMed

    Jahnova, Helena; Dvorakova, Lenka; Vlaskova, Hana; Hulkova, Helena; Poupetova, Helena; Hrebicek, Martin; Jesina, Pavel

    2014-09-19

    Niemann-Pick disease type C (NPC) is a rare, fatal neurovisceral disorder with autosomal recessive inheritance, and featuring striking clinical variability dependent on the age at onset of neurological symptoms. We report data from a large cohort of 56 Czech patients with NPC diagnosed over a period of 37 years. An observational, retrospective analysis of historic and current clinical and laboratory information was performed among all NPC patients originating from the area of the contemporary Czech Republic and diagnosed between 1975 and 2012. All patients with ≥1 positive diagnostic test and relevant clinical information were included. Data on diagnostic methods (histopathological and/or ultrastructural; biochemical; genetic), clinical status and general information on treatment were collated. Data were examined in accordance with international guidelines for the management of NPC. Between 1975 and 1985 diagnoses were based exclusively on specific histopathological findings, often at autopsy. Bone marrow smear (BMS) analyses have proved to be a very specific indicator for NPC and have become an important part of our diagnostic algorithm. Filipin staining and cholesterol esterification assays became the definitive diagnostic tests after 1985 and were applied in 24 of our patients. Since 2005, more and more patients have been assessed using NPC1/NPC2 gene sequencing. Twelve patients were diagnosed with neonatal/early-infantile onset NPC, 13 with the late-infantile onset form, 20 with the juvenile onset form, and nine with the adolescent/adult onset form. Two diagnosed patients remained neurologically asymptomatic at study completion. Nineteen patients were siblings. Causal NPC1 mutations were determined in 38 patients; two identical NPC2 mutations were identified in one patient. In total, 30 different mutations were identified, 14 of which have been confirmed as novel. The frequency of individual mutated NPC1 alleles in our cohort differs compared with previous published data: the most frequent mutant NPC1 allele was p.R1186H (n = 13), followed by p.P1007A (n = 8), p.S954L (n = 8) and p.I1061T (n = 4). These data demonstrate the evolution of the diagnostic process in NPC over the last four decades. We estimate the contemporary birth prevalence of NPC in the Czech Republic at 0.93 per 100,000.

  7. Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.

    PubMed

    Diehl, William E; Lin, Aaron E; Grubaugh, Nathan D; Carvalho, Luiz Max; Kim, Kyusik; Kyawe, Pyae Phyo; McCauley, Sean M; Donnard, Elisa; Kucukural, Alper; McDonel, Patrick; Schaffner, Stephen F; Garber, Manuel; Rambaut, Andrew; Andersen, Kristian G; Sabeti, Pardis C; Luban, Jeremy

    2016-11-03

    The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [New mutation in a young woman diagnosed with Niemann-Pick disease type C].

    PubMed

    Lario, Ana; de Miguel, Carlos; Ojeda, Emilio; Gil, Santiago; Coll, María J; Alfonso, Pilar

    2016-06-03

    To describe a new molecular variant of Niemann-Pick disease type C (NPC) in a 27 year-old patient with splenomegaly and abolition of osteotendinous reflexes. NPC1 is the main gene with described mutation in NPC disease. Here we report a case with a new mutation, p.N916S, not described before in a patient diagnosed with NPC. p.N916S was described as a cause of NPC disease by predictive programmes Mutation Master, PolyPhen2 and SIFT. p.N916S is a new mutation detected as a cause of NPC disease in a patient without severe neurological symptoms. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  9. Efficacy of 2-Hydroxypropyl-β-cyclodextrin in Niemann-Pick Disease Type C Model Mice and Its Pharmacokinetic Analysis in a Patient with the Disease.

    PubMed

    Tanaka, Yuta; Yamada, Yusei; Ishitsuka, Yoichi; Matsuo, Muneaki; Shiraishi, Koki; Wada, Koki; Uchio, Yushiro; Kondo, Yuki; Takeo, Toru; Nakagata, Naomi; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi; Mochinaga, Sakiko; Higaki, Katsumi; Ohno, Kousaku; Irie, Tetsumi

    2015-01-01

    Niemann-Pick type C disease (NPC), an autosomal recessive lysosomal storage disorder, is an inherited disease characterized by the accumulation of intracellular unesterified cholesterol. A solubilizing agent of lipophilic compounds, 2-hydroxypropyl-β-cyclodextrin (HPBCD), is an attractive drug candidate against NPC disease. However, establishment of the optimum dosage of HPBCD remains to be determined. In this study, we evaluated the effective dosage of HPBCD in NPC model (Npc1(-/-)) mice, and determined serum HPBCD concentrations. Subcutaneous injection of 1000-4000 mg/kg HPBCD improved the lifespan of Npc1(-/-) mice. In addition, liver injury and cholesterol sequestration were significantly prevented by 4000 mg/kg HPBCD in Npc1(-/-) mice. Serum HPBCD concentrations, when treated at the effective dosages (1000-4000 mg/kg), were approximately 1200-2500 µg/mL at 0.5 h after subcutaneous injection, and blood HPBCD concentrations were immediately eliminated in Npc1(-/-) mice. Furthermore, we examined serum HPBCD concentrations when treated at 40000 mg (approximately 2500 mg/kg) in a patient with NPC. We observed that the effective concentration in the in vivo study using Npc1(-/-) mice was similar to that in the patient. In the patient, systemic clearance and the volume of distribution of HPBCD were in accordance with the glomerular filtration rate and extracellular fluid volume, respectively. These results could provide useful information for developing the optimal dosage regimen for HPBCD therapy when administered intravenously to NPC patients.

  10. Psychiatric and neurological symptoms in patients with Niemann-Pick disease type C (NP-C): Findings from the International NPC Registry.

    PubMed

    Bonnot, Olivier; Gama, Clarissa S; Mengel, Eugen; Pineda, Mercè; Vanier, Marie T; Watson, Louise; Watissée, Marie; Schwierin, Barbara; Patterson, Marc C

    2017-10-09

    Niemann-Pick disease type C (NP-C) is a rare inherited neurovisceral disease that should be recognised by psychiatrists as a possible underlying cause of psychiatric abnormalities. This study describes NP-C patients who had psychiatric manifestations at enrolment in the international NPC Registry, a unique multicentre, prospective, observational disease registry. Treating physicians' data entries describing psychiatric manifestations in NPC patients were coded and grouped by expert psychiatrists. Out of 386 NP-C patients included in the registry as of October 2015, psychiatric abnormalities were reported to be present in 34% (94/280) of those with available data. Forty-four patients were confirmed to have identifiable psychiatric manifestations, with text describing these psychiatric manifestations. In these 44 patients, the median (range) age at onset of psychiatric manifestations was 17.9 years (2.5-67.9; n = 15), while the median (range) age at NP-C diagnosis was 23.7 years (0.2-69.8; n = 34). Almost all patients (43/44; 98%) had an occurrence of ≥1 neurological manifestation at enrolment. These data show that substantial delays in diagnosis of NP-C are long among patients with psychiatric symptoms and, moreover, patients presenting with psychiatric features and at least one of cognitive impairment, neurological manifestations, and/or visceral symptoms should be screened for NP-C.

  11. Global Motions of the Nuclear Pore Complex: Insights from Elastic Network Models

    PubMed Central

    Lezon, Timothy R.; Sali, Andrej; Bahar, Ivet

    2009-01-01

    The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at ∼5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations. PMID:19730674

  12. Global motions of the nuclear pore complex: insights from elastic network models.

    PubMed

    Lezon, Timothy R; Sali, Andrej; Bahar, Ivet

    2009-09-01

    The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at approximately 5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations.

  13. Modulation of the Innate Immune Response by Human Neural Precursors Prevails over Oligodendrocyte Progenitor Remyelination to Rescue a Severe Model of Pelizaeus-Merzbacher Disease.

    PubMed

    Marteyn, Antoine; Sarrazin, Nadège; Yan, Jun; Bachelin, Corinne; Deboux, Cyrille; Santin, Mathieu D; Gressens, Pierre; Zujovic, Violetta; Baron-Van Evercooren, Anne

    2016-04-01

    Pelizaeus-Merzbacher disease (PMD) results from an X-linked misexpression of proteolipid protein 1 (PLP1). This leukodystrophy causes severe hypomyelination with progressive inflammation, leading to neurological dysfunctions and shortened life expectancy. While no cure exists for PMD, experimental cell-based therapy in the dysmyelinated shiverer model suggested that human oligodendrocyte progenitor cells (hOPCs) or human neural precursor cells (hNPCs) are promising candidates to treat myelinopathies. However, the fate and restorative advantages of human NPCs/OPCs in a relevant model of PMD has not yet been addressed. Using a model of Plp1 overexpression, resulting in demyelination with progressive inflammation, we compared side-by-side the therapeutic benefits of intracerebrally grafted hNPCs and hOPCs. Our findings reveal equal integration of the donor cells within presumptive white matter tracks. While the onset of exogenous remyelination was earlier in hOPCs-grafted mice than in hNPC-grafted mice, extended lifespan occurred only in hNPCs-grafted animals. This improved survival was correlated with reduced neuroinflammation (microglial and astrocytosis loads) and microglia polarization toward M2-like phenotype followed by remyelination. Thus modulation of neuroinflammation combined with myelin restoration is crucial to prevent PMD pathology progression and ensure successful rescue of PMD mice. These findings should help to design novel therapeutic strategies combining immunomodulation and stem/progenitor cell-based therapy for disorders associating hypomyelination with inflammation as observed in PMD. © 2015 AlphaMed Press.

  14. Changes of saliva microbiota in nasopharyngeal carcinoma patients under chemoradiation therapy.

    PubMed

    Xu, Yuan; Teng, Fei; Huang, Shi; Lin, Zhengmei; Yuan, Xiao; Zeng, Xiaowei; Yang, Fang

    2014-02-01

    A growing body of evidence has implicated human oral microbiota in the aetiology of oral and systemic diseases. Nasopharyngeal carcinoma (NPC), an epithelial-originated malignancy, has a complex aetiology not yet fully understood. Chemoradiation therapy of NPC can affect oral microbiota and is usually accompanied by plaque accumulation. Thus, the study aimed to understand the diversity, divergence and development of the oral microbiota in NPC patients and their associated treatment, which might provide useful insights into disease aetiology and treatment side effects. A longitudinal study was designed that included three Chinese adults with NPC. Saliva samples were collected at three time points: prior to the chemoradiation treatment (carcinoma baseline, or CB), 7 months post-treatment (carcinoma-after-therapy phase 1 or CA1) and 12 months post-treatment (carcinoma-after-therapy phase 2 or CA2). Pyrosequencing of the bacterial 16S ribosomal DNA (rDNA) V1-V3 hypervariable region was employed to characterise the microbiota. Saliva samples of three healthy subjects from our former study were employed as healthy controls. Principal coordinates analysis (PCoA), Metastats and random forest prediction models were used to reveal the key microbial members associated with NPC and its treatment programme. (1) In total, 412 bacterial species from at least 107 genera and 13 phyla were found in the saliva samples of the NPC patients. (2) PCoA revealed that not only were the microbiota from NPC patients distinct from those of healthy controls (p<0.001) but also that separation was found on the saliva microbiota between pre- and post-therapy (p<0.001) in the NPC samples. (3) At the genus level and the operational taxonomic unit (OTU) level, Streptococcus was found with lower abundance in NPC samples. (4) Chemoradiation therapy did not incur similar changes in microbiota structure among the three NPC patients; the microbiota in one of them stayed largely steady, while those in the other two showed significant alteration. This is the first study employing culture-independent techniques to interrogate the phylogenetic diversity, divergence and temporal development of oral microbiota in NPC patients. Our results indicated that certain bacterial taxa might be associated with NPC and that oral microbiota of NPC patients might respond to the chemoradiation therapy in a host-specific manner. Further investigation with larger sample size should help to validate the links between oral microbiota and NPC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Contrasted frequencies of p53 accumulation in the two age groups of North African nasopharyngeal carcinomas.

    PubMed

    Khabir, A; Sellami, A; Sakka, M; Ghorbel, A M; Daoud, J; Frikha, M; Drira, M M; Busson, P; Jlidi, R

    2000-10-01

    EBV-associated nasopharyngeal carcinomas (NPCs) from Southeast Asia and North Africa have many common clinical and biological characteristics. However, they differ with regard to their age distribution. In Asia, NPC mainly affects patients in the 4th or 5th decade of their life, whereas in North Africa an additional peak of incidence is found between the ages of 10 and 20. The p53 gene is rarely mutated in NPC. However, several groups have reported a consistent accumulation of p53 in Asian NPCs. To determine whether p53 was also accumulated in North African NPCs, we investigated its expression, by immunohistochemistry, in a series of 90 Tunisian biopsies. Bc12 and CD95, two proteins involved in the regulation of cell survival and apoptosis, were investigated in the same study. We found accumulation of p53 in 81% of the cases for patients over 30 years of age, but in only 38% of specimens for younger patients (P = 0.00013). There was a trend toward a higher frequency of Bc12 detection in patients over 30, but it was not statistically significant. CD95 expression was detected in all biopsies, generally at a high level, even at advanced stages of the disease. The changing frequency of p53 accumulation, below and over 30, suggests that NPC cells often achieve malignant transformation through different pathways in both age groups.

  16. Yrb4p, a yeast ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus.

    PubMed Central

    Schlenstedt, G; Smirnova, E; Deane, R; Solsbacher, J; Kutay, U; Görlich, D; Ponstingl, H; Bischoff, F R

    1997-01-01

    Gsp1p, the essential yeast Ran homologue, is a key regulator of transport across the nuclear pore complex (NPC). We report the identification of Yrb4p, a novel Gsp1p binding protein. The 123 kDa protein was isolated from Saccharomyces cerevisiae cells and found to be related to importin-beta, the mediator of nuclear localization signal (NLS)-dependent import into the nucleus, and to Pse1p. Like importin-beta, Yrb4p and Pse1p specifically bind to Gsp1p-GTP, protecting it from GTP hydrolysis and nucleotide exchange. The GTPase block of Gsp1p complexed to Yrb4p or Pse1p is released by Yrb1p, which contains a Gsp1p binding domain distinct from that of Yrb4p. This might reflect an in vivo function for Yrb1p. Cells disrupted for YRB4 are defective in nuclear import of ribosomal protein L25, but show no defect in the import of proteins containing classical NLSs. Expression of a Yrb4p mutant deficient in Gsp1p-binding is dominant-lethal and blocks bidirectional traffic across the NPC in wild-type cells. L25 binds to Yrb4p and Pse1p and is released by Gsp1p-GTP. Consistent with its putative role as an import receptor for L25-like proteins, Yrb4p localizes to the cytoplasm, the nucleoplasm and the NPC. PMID:9321403

  17. Effects of polymer molecular weight on relative oral bioavailability of curcumin.

    PubMed

    Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu

    2012-01-01

    Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Curcumin encapsulated in low (5000-15,000) and high (40,000-75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (C(max)) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods.

  18. Effects of polymer molecular weight on relative oral bioavailability of curcumin

    PubMed Central

    Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu

    2012-01-01

    Background Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Methods Curcumin encapsulated in low (5000–15,000) and high (40,000–75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. Results There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Conclusion Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods. PMID:22745556

  19. Sterol transfer between cyclodextrin and membranes: similar but not identical mechanism to NPC2-mediated cholesterol transfer.

    PubMed

    McCauliff, Leslie A; Xu, Zhi; Storch, Judith

    2011-08-30

    Niemann--Pick C disease is an inherited disorder in which cholesterol and other lipids accumulate in the late endosomal/lysosomal compartment. Recently, cyclodextrins (CD) have been shown to reduce symptoms and extend lifespan in animal models of the disease. In the present studies we examined the mechanism of sterol transport by CD using in vitro model systems and fluorescence spectroscopy and NPC2-deficient fibroblasts. We demonstrate that cholesterol transport from the lysosomal cholesterol-binding protein NPC2 to CD occurs via aqueous diffusional transfer and is very slow; the rate-limiting step appears to be dissociation of cholesterol from NPC2, suggesting that specific interactions between NPC2 and CD do not occur. In contrast, the transfer rate of the fluorescent cholesterol analogue dehydroergosterol (DHE) from CD to phospholipid membranes is very rapid and is directly proportional to the acceptor membrane concentration, as is DHE transfer from membranes to CD. Moreover, CD dramatically increases the rate of sterol transfer between membranes, with rates that can approach those mediated by NPC2. The results suggest that sterol transfer from CD to membranes occurs by a collisional transfer mechanism involving direct interaction of CD with membranes, similar to that shown previously for NPC2. For CD, however, absolute rates are slower compared to NPC2 for a given concentration, and the lysosomal phospholipid lysobisphosphatidic acid (LBPA) does not stimulate rates of sterol transfer between membranes and CD. As expected from the apparent absence of interaction between CD and NPC2, the addition of CD to NPC2-deficient fibroblasts rapidly rescued the cholesterol accumulation phenotype. Thus, the recent observations of CD efficacy in mouse models of NPC disease are likely the result of CD enhancement of cholesterol transport between membranes, with rapid sterol transfer occurring during CD--membrane interactions.

  20. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane

    PubMed Central

    Mitchell, Jana M.; Mansfeld, Jörg; Capitanio, Juliana; Kutay, Ulrike

    2010-01-01

    Nuclear pore complexes (NPCs) control the movement of molecules across the nuclear envelope (NE). We investigated the molecular interactions that exist at the interface between the NPC scaffold and the pore membrane. We show that key players mediating these interactions in mammalian cells are the nucleoporins Nup155 and Nup160. Nup155 depletion massively alters NE structure, causing a dramatic decrease in NPC numbers and the improper targeting of membrane proteins to the inner nuclear membrane. The role of Nup155 in assembly is likely closely linked to events at the membrane as we show that Nup155 interacts with pore membrane proteins Pom121 and NDC1. Furthermore, we demonstrate that the N terminus of Pom121 directly binds the β-propeller regions of Nup155 and Nup160. We propose a model in which the interactions of Pom121 with Nup155 and Nup160 are predicted to assist in the formation of the nuclear pore and the anchoring of the NPC to the pore membrane. PMID:20974814

  1. In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain

    PubMed Central

    Li, Jianli

    2017-01-01

    Abstract The neurovascular niche is a specialized microenvironment formed by the interactions between neural progenitor cells (NPCs) and the vasculature. While it is thought to regulate adult neurogenesis by signaling through vascular-derived soluble cues or contacted-mediated cues, less is known about the neurovascular niche during development. In Xenopus laevis tadpole brain, NPCs line the ventricle and extend radial processes tipped with endfeet to the vascularized pial surface. Using in vivo labeling and time-lapse imaging in tadpoles, we find that intracardial injection of fluorescent tracers rapidly labels Sox2/3-expressing NPCs and that vascular-circulating molecules are endocytosed by NPC endfeet. Confocal imaging indicates that about half of the endfeet appear to appose the vasculature, and time-lapse analysis of NPC proliferation and endfeet-vascular interactions suggest that proliferative activity does not correlate with stable vascular apposition. Together, these findings characterize the neurovascular niche in the developing brain and suggest that, while signaling to NPCs may occur through vascular-derived soluble cues, stable contact between NPC endfeet and the vasculature is not required for developmental neurogenesis. PMID:28795134

  2. Determination of serum cholestane-3β,5α,6β-triol by gas chromatography-mass spectrometry for identification of Niemann-Pick type C (NPC) disease.

    PubMed

    Kannenberg, Frank; Nofer, Jerzy-Roch; Schulte, Erhard; Reunert, Janine; Marquardt, Thorsten; Fobker, Manfred

    2017-05-01

    Niemann-Pick type C (NPC) is a neurological disease caused by an intracellular cholesterol accumulation. Cholesterol oxidation product cholestane-3β,5α,6β-triol (C-triol) serves as diagnostic biomarker for NPC, but its measurement in the routine laboratory remains difficult. We developed an isotope dilution gas chromatography-mass spectrometry (GC-MS) method permitting screening for NPC in plasma. 1440 plasma samples obtained from clinically suspicious patients were subjected to alkaline saponification. C-triol was extracted with carbon tetrachloride, transformed into the trimethylsilylethers, separated on a fused silica capillary column with a nonpolar silicone stationary phase, and analyzed by GC-MS. NPC diagnosis was confirmed by DNA sequencing. The method was linear over a concentration range of 0.03-200ng/mL with a mean recovery rate of 98.6%. The intra- and inter-day variation coefficients assessed at two concentrations were below 15%. Limits of quantification (LOQ) and detection (LOD) were 0.03ng/mL and 0.01ng/mL, respectively. Receiver operating characteristic (ROC) analysis estimated that the area under curve was 0.997 implying a significant discriminatory power to identify subjects with NPC. Nevertheless, 13 NPC patients and 29 control subjects confirmed by sequencing showed false negative or positive results, respectively. Two patients with cerebrotendinous xanthomatosis showed a 5-10-fold increase in C-triol levels. We developed a quick and sensitive GC-MS method for determination of C-triol, which may serve as a simple and inexpensive diagnostic tool aiding NPC diagnosis in a routine hospital laboratory. As C-triol elevation is not limited to NPC, the NPC diagnosis has to be confirmed by DNA sequencing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. NPC1L1 and Cholesterol Transport

    PubMed Central

    Betters, Jenna L.; Yu, Liqing

    2010-01-01

    The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, fatty liver, in addition to atherosclerosis. PMID:20307540

  4. Omics-Based Identification of Biomarkers for Nasopharyngeal Carcinoma

    PubMed Central

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is a head and neck cancer that is highly found in distinct geographic areas, such as Southeast Asia. The management of NPC remains burdensome as the prognosis is poor due to the late presentation of the disease and the complex nature of NPC pathogenesis. Therefore, it is necessary to find effective molecular markers for early detection and therapeutic measure of NPC. In this paper, the discovery of molecular biomarker for NPC through the emerging omics technologies including genomics, miRNA-omics, transcriptomics, proteomics, and metabolomics will be extensively reviewed. These markers have been shown to play roles in various cellular pathways in NPC progression. The knowledge on their function will help us understand in more detail the complexity in tumor biology, leading to the better strategies for early detection, outcome prediction, detection of disease recurrence, and therapeutic approach. PMID:25999660

  5. Detection of Human Papillomavirus Genotypes and Epstein-Barr Virus in Nasopharyngeal Carcinomas at the Korle-Bu Teaching Hospital, Ghana

    PubMed Central

    Asmah, Richard Harry; Adjei, Andrew Anthony; Simpong, David Larbi; Brown, Charles Addoquaye; Gyasi, Richard Kwasi

    2017-01-01

    Nasopharyngeal carcinomas (NPC) are endemic in Far East Asia and commonly harbour Epstein-Barr virus (EBV) which is known to serve as a key oncogenic promoter. Human papillomavirus (HPV) is known to contribute to the pathogenesis of NPC. However, in Ghana these two viruses have not been linked to NPC prevalence. This study was designed to determine the HPV genotypes and EBV involved in NPC tissue biopsies. A retrospective study design involving 72 formalin-fixed paraffin-embedded tissue (FFPET) samples of NPC from 2006 to 2012 were retrieved from the Department of Pathology, University of Ghana School of Biomedical and Allied Health Sciences. Sections were taken for histological analysis and for DNA lysate preparation. The DNA lysates were subjected to polymerase chain reaction (PCR) analysis to determine the presence of HPV genotypes and EBV. HPV specific primers were used to type for fourteen HPV genotypes (HPV-16, 18, 6/11, 31, 33, 35, 44, 42, 43, 45, 56, 52, 58, and 59). Out of the 72 NPC biopsies analyzed by PCR, EBV DNA was present in 18 (25%) cases and HPV DNA in 14 (19.23%). High risk HPV (HR-HPV) genotypes 18 and 31 were associated with the NPC. There were 3 (4.2%) cases of coinfection by both viruses. The EBV DNA present in the undifferentiated variant of the NPC and the histopathology of the NPC in Ghana is similar to the type described in endemic areas. PMID:28421207

  6. Houttuynia cordata Thunb extract induces cytotoxicity in human nasopharyngeal carcinoma cells: Raman spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Li, Zuanfang; Yu, Yun; Lin, Duo; Huang, Hao; Shi, Hong

    2016-01-01

    The molecular mechanisms of cytotoxicity induced by Houttuynia cordata Thunb (HCT) in nasopharyngeal carcinoma (NPC) cells was investigated by Raman spectroscopy (RS). The average Raman spectra of cell groups treated with HCT (0, 62.5, 125, 250, and 500 μg ml-1) for 24 h were measured separately. Compared to the control group, the intensities of the selected bands (1002, 1338, and 1448 cm-1) related to protein, DNA, and lipid in the treatment groups decreased obviously as the concentration of HCT increased. Both cell groups treated with 250 and 500 μg ml-1 of HCT could be differentiated from the control group by principal component analysis (PCA) combined with linear discriminate analysis (LDA) with a diagnostic accuracy of 100%, suggesting that cytotoxicity occurred and that 250 μg ml-1 was the proper dose for treatment. Simultaneously, the Raman spectra of cells treated with different treatment times with 250 μg ml-1 of HCT were obtained. We can get that treatment with HCT decreased cell viability in a dose and time-dependent fashion. The results indicated that the RS combined with PCA-LDA can be used for pharmacokinetics studies of HCT in NPC cells, which could also provide useful data for clinical dosage optimization for HCT.

  7. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuanben; Fei, Zhaodong; Chen, Lisha

    This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contoursmore » were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.« less

  8. The Report of Three Rare Cases of the Niemann-pick Disease in Birjand, South Khorasan, Eastern Iran.

    PubMed

    Noroozi Asl, Samaneh; Vakili, Rahim; Ghaemi, Nosrat; Eshraghi, Peyman

    2017-01-01

    Niemann-Pick disease type C (NP-C) is a rare neurovisceral and irreversible disease leading to premature death and disabling neurological signs. This autosomal recessive disease with incidence rate of 1:120000 is caused by mutations in either the NPC1 or the NPC2 gene, which leads to accumulation of cholesterol in body tissues especially brain and progressive neurological symptoms. NP-C is characterized by nonspecific visceral, neurological and psychiatric manifestations in infants. The neurological involvement is typically proceeded by systemic signs (cholestatic jaundice in the neonatal period or isolated spleno-or hepatosplenomegaly in infancy or childhood). Early detection of NPC is important so that therapy with miglustat can delay onset of neurological symptoms and prolong survival. We describe here three infants from Birjand, South Khorasan, eastern Iran in 2016 with splenomegaly and different neurological signs that diagnosis was confirmed by genetic study. In all of them, NPC-509 was pathologically increased. They also had an unreported homozygous mutation (c.1415T>C, p.Leu472Pro) in exon 9 of the NPC1 gene. We found unreported homozygous mutation in NPC gene. Knowing this mutation is significant to our people. Genotype-phenotype correlations for this specific mutation needs to be further studied.

  9. Neurosurgical interventions for patients with nasopharyngeal carcinoma: a single institution experience

    PubMed Central

    2013-01-01

    Background Nasopharyngeal carcinoma (NPC) is a frequent head and neck cancer in southern China and Southeast Asia. The majority of NPC patients are managed by radiation oncologists, medical oncologists and head and neck surgeons. Actually, neurosurgical interventions are warranted under specific circumstances. In this article, we described our experience as neurosurgeons in the management of NPC patients. Methods Medical records of NPC patients who received neurosurgical procedure at Sun Yat-sen University Cancer Center were reviewed. Results Twenty-seven patients were identified. Among 27 cases, neurosurgical procedures were performed in 18 (66.7%) with radiation-induced temporal necrosis, 2 (7.4%) with radiation-induced sarcoma, 4 (14.8%) with synchronous NPC with primary brain tumors, 2 (7.4%) with recurrent NPC involving skull base, and 1 (3.7%) with metachronous skull eosinophilic granuloma, respectively. The diagnosis is challenging in specific cases and initial misdiagnoses were found in 6 (22.2%) patients. Conclusions For NPC patients with intracranial or skull lesions, the initial diagnosis can be occasionally difficult because of the presence or a history of NPC and related treatment. Unawareness of these entities can result in misdiagnosis and subsequent improper treatment. Neurosurgical interventions are necessary for the diagnosis and treatment for these patients. PMID:24034781

  10. Development of a Bile Acid-Based Newborn Screen for Niemann-Pick C Disease

    PubMed Central

    Jiang, Xuntian; Sidhu, Rohini; Mydock, Laurel; Hsu, Fong-Fu; Covey, Douglas F.; Scherrer, David E.; Earley, Brian; Gale, Sarah E.; Farhat, Nicole Y.; Porter, Forbes D.; Dietzen, Dennis J.; Orsini, Joseph J.; Berry-Kravis, Elizabeth; Zhang, Xiaokui; Reunert, Janice; Marquardt, Thorsten; Runz, Heiko; Giugliani, Roberto; Schaffer, Jean E.; Ory, Daniel S.

    2017-01-01

    Niemann-Pick disease type C (NPC) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, it is imperative to improve diagnostics and facilitate early intervention. We used metabolomic profiling to identify potential markers and discovered three unknown bile acids that were increased in plasma from NPC but not control subjects. The bile acids most elevated in the NPC subjects were identified as 3β,5α,6β-trihydroxycholanic acid and its glycine conjugate, both of which were shown to be metabolites of cholestane-3β,5α,6β-triol, an oxysterol elevated in NPC. A high-throughput, mass spectrometry-based method was developed and validated to measure the glycine-conjugated bile acid in dried blood spots. Analysis of dried blood spots from 4992 controls, 134 NPC carriers, and 44 NPC subjects provided 100% sensitivity and specificity in the study samples. Quantification of the bile acid in dried blood spots, therefore, provides the basis for a newborn screen for NPC that is ready for piloting in newborn screening programs. PMID:27147587

  11. Cannabis, tobacco and domestic fumes intake are associated with nasopharyngeal carcinoma in North Africa.

    PubMed

    Feng, B-J; Khyatti, M; Ben-Ayoub, W; Dahmoul, S; Ayad, M; Maachi, F; Bedadra, W; Abdoun, M; Mesli, S; Bakkali, H; Jalbout, M; Hamdi-Cherif, M; Boualga, K; Bouaouina, N; Chouchane, L; Benider, A; Ben-Ayed, F; Goldgar, D E; Corbex, M

    2009-10-06

    The lifestyle risk factors for nasopharyngeal carcinoma (NPC) in North Africa are not known. From 2002 to 2005, we interviewed 636 patients and 615 controls from Algeria, Morocco and Tunisia, frequency-matched by centre, age, sex, and childhood household type (urban/rural). Conditional logistic regression was used to evaluate the association of lifestyles with NPC risk, controlling for socioeconomic status and dietary risk factors. Cigarette smoking and snuff (tobacco powder with additives) intake were significantly associated with differentiated NPC but not with undifferentiated carcinoma (UCNT), which is the major histological type of NPC in these populations. As demonstrated by a stratified permutation test and by conditional logistic regression, marijuana smoking significantly elevated NPC risk independently of cigarette smoking, suggesting dissimilar carcinogenic mechanisms between cannabis and tobacco. Domestic cooking fumes intake by using kanoun (compact charcoal oven) during childhood increased NPC risk, whereas exposure during adulthood had less effect. Neither alcohol nor shisha (water pipe) was associated with risk. Tobacco, cannabis and domestic cooking fumes intake are risk factors for NPC in western North Africa.

  12. Cannabis, tobacco and domestic fumes intake are associated with nasopharyngeal carcinoma in North Africa

    PubMed Central

    Feng, B-J; Khyatti, M; Ben-Ayoub, W; Dahmoul, S; Ayad, M; Maachi, F; Bedadra, W; Abdoun, M; Mesli, S; Bakkali, H; Jalbout, M; Hamdi-Cherif, M; Boualga, K; Bouaouina, N; Chouchane, L; Benider, A; Ben-Ayed, F; Goldgar, D E; Corbex, M

    2009-01-01

    Background: The lifestyle risk factors for nasopharyngeal carcinoma (NPC) in North Africa are not known. Methods: From 2002 to 2005, we interviewed 636 patients and 615 controls from Algeria, Morocco and Tunisia, frequency-matched by centre, age, sex, and childhood household type (urban/rural). Conditional logistic regression was used to evaluate the association of lifestyles with NPC risk, controlling for socioeconomic status and dietary risk factors. Results: Cigarette smoking and snuff (tobacco powder with additives) intake were significantly associated with differentiated NPC but not with undifferentiated carcinoma (UCNT), which is the major histological type of NPC in these populations. As demonstrated by a stratified permutation test and by conditional logistic regression, marijuana smoking significantly elevated NPC risk independently of cigarette smoking, suggesting dissimilar carcinogenic mechanisms between cannabis and tobacco. Domestic cooking fumes intake by using kanoun (compact charcoal oven) during childhood increased NPC risk, whereas exposure during adulthood had less effect. Neither alcohol nor shisha (water pipe) was associated with risk. Conclusion: Tobacco, cannabis and domestic cooking fumes intake are risk factors for NPC in western North Africa. PMID:19724280

  13. Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking

    PubMed Central

    Lowe, Alan R.; Siegel, Jake J.; Kalab, Petr; Siu, Merek; Weis, Karsten; Liphardt, Jan T.

    2010-01-01

    The Nuclear Pore Complex (NPC) mediates all exchange between the cytoplasm and the nucleus. Small molecules can passively diffuse through the NPC, while larger cargos require transport receptors to translocate1. How the NPC facilitates the translocation of transport receptor/cargo complexes remains unclear. Here, we track single protein-functionalized Quantum Dot (QD) cargos as they translocate the NPC. Import proceeds by successive sub-steps comprising cargo capture, filtering and translocation, and release into the nucleus. The majority of QDs are rejected at one of these steps and return to the cytoplasm including very large cargos that abort at a size-selective barrier. Cargo movement in the central channel is subdiffusive and cargos that can bind more transport receptors diffuse more freely. Without Ran, cargos still explore the entire NPC, but have a markedly reduced probability of exit into the nucleus, suggesting that NPC entry and exit steps are not equivalent and that the pore is functionally asymmetric to importing cargos. The overall selectivity of the NPC appears to arise from the cumulative action of multiple reversible sub-steps and a final irreversible exit step. PMID:20811366

  14. Nogo-B Receptor stabilizes Niemann-Pick Type C2 protein and regulates intracellular cholesterol trafficking

    PubMed Central

    Harrison, Kenneth D.; Miao, Robert Qing; Fernandez-Hernándo, Carlos; Suárez, Yajaira; Dávalos, Alberto; Sessa, William C.

    2009-01-01

    Summary The Nogo-B Receptor (NgBR) is a recently identified receptor for the N-terminus of Reticulon 4B/Nogo-B. Other than its role in binding Nogo-B, little is known about the biology of NgBR. To elucidate a basic cellular role for NgBR, we performed a yeast-2-hybrid screen for interacting proteins using the C-terminal domain as bait and identified Niemann-Pick Type C2 protein (NPC2) as an NgBR-interacting protein. NPC2 protein levels are increased in the presence of NgBR and NgBR enhances NPC2 protein stability. NgBR localizes primarily to the endoplasmic reticulum (ER), and regulates the stability of nascent NPC2. RNAi-mediated disruption of NgBR or genetic deficiency in NgBR leads to a decrease in NPC2 levels, increased intracellular cholesterol accumulation and a loss of sterol sensing, all hallmarks of an NPC2 mutation. These data identify NgBR as an NPC2-interacting protein and provide evidence of a role for NgBR in intracellular cholesterol trafficking. PMID:19723497

  15. Localization of Nucleoporin Tpr to the Nuclear Pore Complex Is Essential for Tpr Mediated Regulation of the Export of Unspliced RNA

    PubMed Central

    Rajanala, Kalpana; Nandicoori, Vinay Kumar

    2012-01-01

    Nucleoporin Tpr is a component of the nuclear pore complex (NPC) that localizes exclusively to intranuclear filaments. Tpr functions as a scaffolding element in the nuclear phase of the NPC and plays a role in mitotic spindle checkpoint signalling. Export of intron-containing mRNA in Mason Pfizer Monkey Virus is regulated by direct interaction of cellular proteins with the cis-acting Constitutive Transport Element (CTE). In mammalian cells, the transport of Gag/Pol-CTE reporter construct is not very efficient, suggesting a regulatory mechanism to retain this unspliced RNA. Here we report that the knockdown of Tpr in mammalian cells leads to a drastic enhancement in the levels of Gag proteins (p24) in the cytoplasm, which is rescued by siRNA resistant Tpr. Tpr's role in the retention of unspliced RNA is independent of the functions of Sam68 and Tap/Nxf1 proteins, which are reported to promote CTE dependent export. Further, we investigated the possible role for nucleoporins that are known to function in nucleocytoplasmic transport in modulating unspliced RNA export. Results show that depletion of Nup153, a nucleoporin required for NPC anchoring of Tpr, plays a role in regulating the export, while depletion of other FG repeat-containing nucleoporins did not alter the unspliced RNA export. Results suggest that Tpr and Nup153 both regulate the export of unspliced RNA and they are most likely functioning through the same pathway. Importantly, we find that localization of Tpr to the NPC is necessary for Tpr mediated regulation of unspliced RNA export. Collectively, the data indicates that perinuclear localization of Tpr at the nucleopore complex is crucial for regulating intron containing mRNA export by directly or indirectly participating in the processing and degradation of aberrant mRNA transcripts. PMID:22253824

  16. Apatinib inhibits VEGFR-2 and angiogenesis in an in vivo murine model of nasopharyngeal carcinoma.

    PubMed

    Peng, Qiu-Xia; Han, Yun-Wei; Zhang, Yan-Ling; Hu, Jie; Fan, Juan; Fu, Shao-Zhi; Xu, Shan; Wan, Qiang

    2017-08-08

    Angiogenesis is initiated by the activation of the vascular epidermal growth factor receptor-2 (VEGFR-2) by the vascular epidermal growth factor (VEGF) ligand. Overexpression of VEGFR-2 increases the growth of nasopharyngeal carcinomas (NPC). Apatinib (YN968D1) is a highly-selective inhibitor of VEGFR-2, but its effects on NPC have not been hitherto investigated. In the present study, CNE-2 NPC cells were xenografted into 132 nude mice, which were treated with one of 6 drug regimens of apatinib administered alone or in combination with cisplatin (DDP). The impact of treatment regimens on the growth, microvascularization, apoptosis, and metabolic response of tumors, as well as mouse survival was determined by histopathology, immunohistochemistry (VEGFR-2 and CD31), terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL), micro 18F-FDG PET/CT imaging and survival curves. Administration of apatinib alone inhibited tumor growth, reduced microvascular density, and facilitated the apoptosis of tumors. Tumors treated simultaneously with apatinib and cisplatin exhibited significantly-increased inhibition of tumor growth, prolonged survival time, decreased expression of VEGFR-2, reduced microvascular density, and frequency of apoptosis over standalone and sequential administration therapy. Tumors treated simultaneously with apatinib and cisplatin had the lowest uptake of FDG. Taken together, the simultaneous administration of apatinib and cisplatin improves the therapeutic efficacy over standalone treatments, which also led to improved efficacy over sequential administration regimens. VEGFR-2 is an important predictive marker for efficacy of apatinib treatment of NPC.

  17. Structure of glycosylated NPC1 luminal domain C reveals insights into NPC2 and Ebola virus interactions.

    PubMed

    Zhao, Yuguang; Ren, Jingshan; Harlos, Karl; Stuart, David I

    2016-03-01

    Niemann-pick type C1 (NPC1) is an endo/lysosomal membrane protein involved in intracellular cholesterol trafficking, and its luminal domain C is an essential endosomal receptor for Ebola and Marburg viruses. We have determined the crystal structure of glycosylated NPC1 luminal domain C and find all seven possible sites are glycosylated. Mapping the disease mutations onto the glycosylated structure reveals a potential binding face for NPC2. Knowledge-based docking of NPC1 onto Ebola viral glycoprotein and sequence analysis of filovirus susceptible and refractory species reveals four critical residues, H418, Q421, F502 and F504, some or all of which are likely responsible for the species-specific susceptibility to the virus infection. © 2016 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  18. Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway.

    PubMed

    Wang, Qin; Chuikov, Sergei; Taitano, Sophina; Wu, Qi; Rastogi, Arjun; Tuck, Samuel J; Corey, Joseph M; Lundy, Steven K; Mao-Draayer, Yang

    2015-06-17

    Multiple sclerosis (MS) is the most common multifocal inflammatory demyelinating disease of the central nervous system (CNS). Due to the progressive neurodegenerative nature of MS, developing treatments that exhibit direct neuroprotective effects are needed. Tecfidera™ (BG-12) is an oral formulation of the fumaric acid esters (FAE), containing the active metabolite dimethyl fumarate (DMF). Although BG-12 showed remarkable efficacy in lowering relapse rates in clinical trials, its mechanism of action in MS is not yet well understood. In this study, we reported the potential neuroprotective effects of dimethyl fumarate (DMF) on mouse and rat neural stem/progenitor cells (NPCs) and neurons. We found that DMF increased the frequency of the multipotent neurospheres and the survival of NPCs following oxidative stress with hydrogen peroxide (H2O2) treatment. In addition, utilizing the reactive oxygen species (ROS) assay, we showed that DMF reduced ROS production induced by H2O2. DMF also decreased oxidative stress-induced apoptosis. Using motor neuron survival assay, DMF significantly promoted survival of motor neurons under oxidative stress. We further analyzed the expression of oxidative stress-induced genes in the NPC cultures and showed that DMF increased the expression of transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) at both levels of RNA and protein. Furthermore, we demonstrated the involvement of Nrf2-ERK1/2 MAPK pathway in DMF-mediated neuroprotection. Finally, we utilized SuperArray gene screen technology to identify additional anti-oxidative stress genes (Gstp1, Sod2, Nqo1, Srxn1, Fth1). Our data suggests that analysis of anti-oxidative stress mechanisms may yield further insights into new targets for treatment of multiple sclerosis (MS).

  19. Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway

    PubMed Central

    Wang, Qin; Chuikov, Sergei; Taitano, Sophina; Wu, Qi; Rastogi, Arjun; Tuck, Samuel J.; Corey, Joseph M.; Lundy, Steven K.; Mao-Draayer, Yang

    2015-01-01

    Multiple sclerosis (MS) is the most common multifocal inflammatory demyelinating disease of the central nervous system (CNS). Due to the progressive neurodegenerative nature of MS, developing treatments that exhibit direct neuroprotective effects are needed. Tecfidera™ (BG-12) is an oral formulation of the fumaric acid esters (FAE), containing the active metabolite dimethyl fumarate (DMF). Although BG-12 showed remarkable efficacy in lowering relapse rates in clinical trials, its mechanism of action in MS is not yet well understood. In this study, we reported the potential neuroprotective effects of dimethyl fumarate (DMF) on mouse and rat neural stem/progenitor cells (NPCs) and neurons. We found that DMF increased the frequency of the multipotent neurospheres and the survival of NPCs following oxidative stress with hydrogen peroxide (H2O2) treatment. In addition, utilizing the reactive oxygen species (ROS) assay, we showed that DMF reduced ROS production induced by H2O2. DMF also decreased oxidative stress-induced apoptosis. Using motor neuron survival assay, DMF significantly promoted survival of motor neurons under oxidative stress. We further analyzed the expression of oxidative stress-induced genes in the NPC cultures and showed that DMF increased the expression of transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) at both levels of RNA and protein. Furthermore, we demonstrated the involvement of Nrf2-ERK1/2 MAPK pathway in DMF-mediated neuroprotection. Finally, we utilized SuperArray gene screen technology to identify additional anti-oxidative stress genes (Gstp1, Sod2, Nqo1, Srxn1, Fth1). Our data suggests that analysis of anti-oxidative stress mechanisms may yield further insights into new targets for treatment of multiple sclerosis (MS). PMID:26090715

  20. Sex difference in the incidence of nasopharyngeal carcinoma in Hong Kong 1983-2008: suggestion of a potential protective role of oestrogen.

    PubMed

    Xie, Shao-Hua; Yu, Ignatius Tak-Sun; Tse, Lap-Ah; Mang, Oscar Wai-kong; Yue, Li

    2013-01-01

    Nasopharyngeal carcinoma (NPC) shows a male predominance in incidence while the underlying reasons have rarely been explored. We analysed incident cases of NPC recorded in Hong Kong Cancer Registry during the period 1983-2008. All cases were divided into 5-year age groups. Age group specific incidence rates of NPC by sex and male to female ratios in incidence rate by age group were calculated. A curve fitting approach was taken to quantitatively describe the age-specific incidence rates of NPC using non-linear regressions. During the period 1983-2008, a total of 27,579 new cases of NPC were identified (20,060 males and 7519 females) in Hong Kong. The overall male to female ratio of the annual age-standardised incidence rates of NPC ranged 2.2-3.1. The male to female ratio of NPC incidence increased with age until peaking at ages 55-59 years and showed a decline thereafter. An additional minor increase at ages 15-19 years was also observed. Modelling of the age-specific incidence curves suggested divergent slopes for men and women and a delay in increasing incidence with age among females, by around 5-10 years before menopause ages. The age-dependent pattern of the sex difference in the incidence of NPC could not be completely explained by known risk factors for NPC. The contributions of intrinsic exposures, such as sex hormones, merit consideration and further investigations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Expression patterns of sterol transporters NPC1 and NPC2 in the cnidarian-dinoflagellate symbiosis.

    PubMed

    Dani, Vincent; Priouzeau, Fabrice; Mertz, Marjolijn; Mondin, Magali; Pagnotta, Sophie; Lacas-Gervais, Sandra; Davy, Simon K; Sabourault, Cécile

    2017-10-01

    The symbiotic interaction between cnidarians (e.g., corals and sea anemones) and photosynthetic dinoflagellates of the genus Symbiodinium is triggered by both host-symbiont recognition processes and metabolic exchange between the 2 partners. The molecular communication is crucial for homeostatic regulation of the symbiosis, both under normal conditions and during stresses that further lead to symbiosis collapse. It is therefore important to identify and fully characterise the key players of this intimate interaction at the symbiotic interface. In this study, we determined the cellular and subcellular localization and expression of the sterol-trafficking Niemann-Pick type C proteins (NPC1 and NPC2) in the symbiotic sea anemones Anemonia viridis and Aiptasia sp. We first established that NPC1 is localised within vesicles in host tissues and to the symbiosome membranes in several anthozoan species. We demonstrated that the canonical NPC2-a protein is mainly expressed in the epidermis, whereas the NPC2-d protein is closely associated with symbiosome membranes. Furthermore, we showed that the expression of the NPC2-d protein is correlated with symbiont presence in healthy symbiotic specimens. As npc2-d is a cnidarian-specific duplicated gene, we hypothesised that it probably arose from a subfunctionalisation process that might result in a gain of function and symbiosis adaptation in anthozoans. Niemann-Pick type C proteins may be key players in a functional symbiosis and be useful tools to study host-symbiont interactions in the anthozoan-dinoflagellate association. © 2017 John Wiley & Sons Ltd.

  2. omicsNPC: Applying the Non-Parametric Combination Methodology to the Integrative Analysis of Heterogeneous Omics Data

    PubMed Central

    Karathanasis, Nestoras; Tsamardinos, Ioannis

    2016-01-01

    Background The advance of omics technologies has made possible to measure several data modalities on a system of interest. In this work, we illustrate how the Non-Parametric Combination methodology, namely NPC, can be used for simultaneously assessing the association of different molecular quantities with an outcome of interest. We argue that NPC methods have several potential applications in integrating heterogeneous omics technologies, as for example identifying genes whose methylation and transcriptional levels are jointly deregulated, or finding proteins whose abundance shows the same trends of the expression of their encoding genes. Results We implemented the NPC methodology within “omicsNPC”, an R function specifically tailored for the characteristics of omics data. We compare omicsNPC against a range of alternative methods on simulated as well as on real data. Comparisons on simulated data point out that omicsNPC produces unbiased / calibrated p-values and performs equally or significantly better than the other methods included in the study; furthermore, the analysis of real data show that omicsNPC (a) exhibits higher statistical power than other methods, (b) it is easily applicable in a number of different scenarios, and (c) its results have improved biological interpretability. Conclusions The omicsNPC function competitively behaves in all comparisons conducted in this study. Taking into account that the method (i) requires minimal assumptions, (ii) it can be used on different studies designs and (iii) it captures the dependences among heterogeneous data modalities, omicsNPC provides a flexible and statistically powerful solution for the integrative analysis of different omics data. PMID:27812137

  3. Mitochondrial G8292A and C8794T mutations in patients with Niemann-Pick disease type C.

    PubMed

    Masserrat, Abbas; Sharifpanah, Fatemeh; Akbari, Leila; Tonekaboni, Seyed Hasan; Karimzadeh, Parvaneh; Asharafi, Mahmood Reza; Mazouei, Safoura; Sauer, Heinrich; Houshmand, Massoud

    2018-07-01

    Niemann-Pick disease type C (NP-C) is a neurovisceral lipid storage disorder. At the cellular level, the disorder is characterized by accumulation of unesterified cholesterol and glycolipids in the lysosomal/late endosomal system. NP-C is transmitted in an autosomal recessive manner and is caused by mutations in either the NPC1 (95% of families) or NPC2 gene. The estimated disease incidence is 1 in 120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. Variants of adenosine triphosphatase (ATPase) subunit 6 and ATPase subunit 8 ( ATPase6/8 ) in mitochondrial DNA (mtDNA) have been reported in different types of genetic diseases including NP-C. In the present study, the blood samples of 22 Iranian patients with NP-C and 150 healthy subjects as a control group were analyzed. The DNA of the blood samples was extracted by the salting out method and analyzed for ATPase6/8 mutations using polymerase chain reaction sequencing. Sequence variations in mitochondrial genome samples were determined via the Mitomap database. Analysis of sequencing data confirmed the existence of 11 different single nucleotide polymorphisms (SNPs) in patients with NP-C1. One of the most prevalent polymorphisms was the A8860G variant, which was observed in both affected and non-affected groups and determined to have no significant association with NP-C incidence. Amongst the 11 polymorphisms, only one was identified in the ATPase8 gene, while 9 including A8860G were observed in the ATPase6 gene. Furthermore, two SNPs, G8292A and C8792A, located in the non-coding region of mtDNA and the ATPase6 gene, respectively, exhibited significantly higher prevalence rates in NP-C1 patients compared with the control group (P<0.01). The present study suggests that there may be an association between mitochondrial ATPase6/8 mutations and the incidence of NP-C disease. In addition, the mitochondrial SNPs identified maybe pathogenic mutations involved in the development and prevalence of NP-C. Furthermore, these results suggest a higher occurrence of mutations in ATPase6 than in ATPase8 in NP-C patients.

  4. Differential diagnosis of primary nasopharyngeal lymphoma and nasopharyngeal carcinoma focusing on CT, MRI, and PET/CT.

    PubMed

    Cho, Kyu-Sup; Kang, Dae-Woon; Kim, Hak-Jin; Lee, Jong-Kil; Roh, Hwan-Jung

    2012-04-01

    No study has done a comparative analysis of radiologic imaging findings between primary nasopharyngeal lymphoma (PNL) and nasopharyngeal carcinoma (NPC). The purpose of this study was to analyze computed tomography (CT) and magnetic resonance (MR) images and to evaluate the maximum standardized uptake value (SUV max) of positron emission tomography (PET)/CT between PNL and NPC, knowing the imaging features that distinguish PNL from NPC. Cross-sectional study. University tertiary care facility. The authors analyzed the features on CT, MR imaging, and PET/CT of 16 patients diagnosed with PNL and 32 patients diagnosed with NPC histopathologically. Patients with PNL had a larger tumor volume and showed symmetry of tumor shape than did patients with NPC. Patients with PNL also had higher tumor homogeneity than NPC patients on CT, T2-weighted, and postcontrast MR images. All PNL patients showed a high degree of enhancement without invasion to the adjacent deep structure. The involvement of the Waldeyer ring was significantly higher in PNL patients. Cervical and retropharyngeal lymphadenopathy and PET/CT SUV max showed no significant difference between PNL and NPC. If the images present a bulky, symmetric nasopharyngeal mass with marked homogeneity, a high degree of enhancement, and a higher Waldeyer ring involvement combined with no invasion into the deep structure, PNL should be considered over NPC.

  5. Evaluation of an ultra-low-dose oral contraceptive for dysmenorrhea: a placebo-controlled, double-blind, randomized trial.

    PubMed

    Harada, Tasuku; Momoeda, Mikio

    2016-12-01

    To evaluate the efficacy and safety of an ultra-low-dose oral contraceptive (NPC-01; 0.02 mg ethinyl estradiol and 1 mg norethisterone) in subjects with dysmenorrhea. Placebo-controlled, double-blind, randomized trial. Clinical trial sites. Two hundred fifteen subjects with dysmenorrhea. Subjects were randomly assigned to receive NPC-01, placebo, or IKH-01 (0.035 mg ethinyl estradiol and 1 mg norethisterone) for four cycles. Total dysmenorrhea score (verbal rating scale) assessing pain on the basis of limited ability to work and need for analgesics. The reductions of total dysmenorrhea score and visual analog scale score after the treatment were significantly higher in the NPC-01 group than in the placebo group. Furthermore, the efficacy of NPC-01 was comparable to that of IKH-01. The overall incidence of side effects was significantly higher in the NPC-01 group than in the placebo group. All side effects that occurred in the NPC-01 group were previously reported in patients receiving IKH-01. No serious side effects occurred. The ultra-low-dose contraceptive NPC-01 relieved dysmenorrhea as effectively as IKH-01. Thus, NPC-01 could represent a new option for long-term treatment of dysmenorrhea. NCT01129102. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Contribution of susceptibility locus at HLA class I region and environmental factors to occurrence of nasopharyngeal cancer in Northeast India.

    PubMed

    Lakhanpal, Meena; Singh, Laishram Chandreshwor; Rahman, Tashnin; Sharma, Jagnnath; Singh, M Madhumangal; Kataki, Amal Chandra; Verma, Saurabh; Chauhan, Pradeep Singh; Singh, Y Mohan; Wajid, Saima; Kapur, Sujala; Saxena, Sunita

    2015-04-01

    High incidence of nasopharyngeal carcinoma (NPC) has been reported from China, Southeast Asia and Northeast (NE) region of India. Populations at geographic regions having higher incidence of NPC display human leukocyte antigen (HLA) distribution patterns different from areas having low incidence. The current study has investigated the contribution of environmental risk factors and ethnic variation of microsatellite markers in HLA region for the high incidence of NPC in NE India. Genotyping of HLA region using 33 microsatellite markers by fragment length analysis was done in 220 study subjects (120 NPC patients and 100 healthy controls). Association analysis showed two adjacent microsatellite markers HL003 (allele 121) and D6S2704 (allele 218) in the HLA class I region having association with high risk of NPC while allele 127 of HL003 and allele 255 of D6S2678 conferred a protective effect. The environmental factors mainly use of firewood (odds ratio (OR) = 3.797385, confidence interval (CI) = 1.97-7.30, P < 0), living in mud house (OR = 3.46, CI = 1.19-10.08, P = 0.022) and consumption of alcohol (OR = 2.11, CI = 1.02-4.37, P = 0.043) were found as major risk factors for NPC. Higher-order interaction showed combination of smoked food consumption and firewood use for cooking in multifactor dimensionality reduction (MDR) analysis and interaction of non-firewood users, non-ventilated houses and residence in mud houses in classification and regression tree (CART) analysis as the significant risk factors for NPC. Expression of Epstein-Barr virus (EBV) RNA was found in 92% (23/25) of NPC cases suggesting its significant role in NPC aetiopathogenesis. This study identified association of NPC with a susceptibility locus in the HLA class I region which has complex interaction with viral DNA and environmental factors.

  7. Histogram analysis of diffusion kurtosis imaging of nasopharyngeal carcinoma: Correlation between quantitative parameters and clinical stage.

    PubMed

    Xu, Xiao-Quan; Ma, Gao; Wang, Yan-Jun; Hu, Hao; Su, Guo-Yi; Shi, Hai-Bin; Wu, Fei-Yun

    2017-07-18

    To evaluate the correlation between histogram parameters derived from diffusion-kurtosis (DK) imaging and the clinical stage of nasopharyngeal carcinoma (NPC). High T-stage (T3/4) NPC showed significantly higher Kapp-mean (P = 0.018), Kapp-median (P = 0.029) and Kapp-90th (P = 0.003) than low T-stage (T1/2) NPC. High N-stage NPC (N2/3) showed significantly lower Dapp-mean (P = 0.002), Dapp-median (P = 0.002) and Dapp-10th (P < 0.001) than low N-stage NPC (N0/1). High AJCC-stage NPC (III/IV) showed significantly lower Dapp-10th (P = 0.038) than low AJCC-stage NPC (I/II). ROC analyses indicated that Kapp-90th was optimal for predicting high T-stage (AUC, 0.759; sensitivity, 0.842; specificity, 0.607), while Dapp-10th was best for predicting high N- and AJCC-stage (N-stage, AUC, 0.841; sensitivity, 0.875; specificity, 0.807; AJCC-stage, AUC, 0.671; sensitivity, 0.800; specificity, 0.588). DK imaging data of forty-seven consecutive NPC patients were retrospectively analyzed. Apparent diffusion for Gaussian distribution (Dapp) and apparent kurtosis coefficient (Kapp) were generated using diffusion-kurtosis model. Histogram parameters, including mean, median, 10th, 90th percentiles, skewness and kurtosis of Dapp and Kapp were calculated. Patients were divided into low and high T, N and clinical stage based on American Joint Committee on Cancer (AJCC) staging system. Differences of histogram parameters between low and high T, N and AJCC stages were compared using t test. Multiple receiver operating characteristic (ROC) curves were used to determine and compare the value of significant parameters in predicting high T, N and AJCC stage, respectively. DK imaging-derived parameters correlated well with clinical stage of NPC, therefore could serve as an adjunctive imaging technique for evaluating NPC.

  8. Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner

    PubMed Central

    Lowe, Alan R; Tang, Jeffrey H; Yassif, Jaime; Graf, Michael; Huang, William YC; Groves, Jay T; Weis, Karsten; Liphardt, Jan T

    2015-01-01

    Soluble karyopherins of the importin-β (impβ) family use RanGTP to transport cargos directionally through the nuclear pore complex (NPC). Whether impβ or RanGTP regulate the permeability of the NPC itself has been unknown. In this study, we identify a stable pool of impβ at the NPC. A subpopulation of this pool is rapidly turned-over by RanGTP, likely at Nup153. Impβ, but not transportin-1 (TRN1), alters the pore's permeability in a Ran-dependent manner, suggesting that impβ is a functional component of the NPC. Upon reduction of Nup153 levels, inert cargos more readily equilibrate across the NPC yet active transport is impaired. When purified impβ or TRN1 are mixed with Nup153 in vitro, higher-order, multivalent complexes form. RanGTP dissolves the impβ•Nup153 complexes but not those of TRN1•Nup153. We propose that impβ and Nup153 interact at the NPC's nuclear face to form a Ran-regulated mesh that modulates NPC permeability. DOI: http://dx.doi.org/10.7554/eLife.04052.001 PMID:25748139

  9. Medical History, Medication Use, and Risk of Nasopharyngeal Carcinoma.

    PubMed

    Xiao, Xiling; Zhang, Zhe; Chang, Ellen T; Liu, Zhiwei; Liu, Qing; Cai, Yonglin; Chen, Guomin; Huang, Qi-Hong; Xie, Shang-Hang; Cao, Su-Mei; Shao, Jian-Yong; Jia, Wei-Hua; Zheng, Yuming; Liao, Jian; Chen, Yufeng; Lin, Longde; Ernberg, Ingemar; Huang, Guangwu; Zeng, Yi; Zeng, Yi-Xin; Adami, Hans-Olov; Ye, Weimin

    2018-04-26

    Because persistent inflammation may render the nasopharyngeal mucosa susceptible to carcinogenesis, chronic ear/nose/throat (ENT) disease and its treatment might influence the risk of nasopharyngeal carcinoma (NPC). Existing evidence is, however, inconclusive and often based on methodologically suboptimal epidemiologic studies. In a population-based case-control study in southern China, we enrolled 2532 NPC cases and 2597 controls aged 20-74 years from 2010 to 2014. Odds ratios were estimated for associations between NPC risk and history of ENT and related medications. Any history of chronic ENT disease was associated with a 34% increased risk of NPC. Similarly, use of nasal drops or aspirin was associated with approximately doubled risk of NPC. However, in secondary analyses restricted to chronic ENT diseases and related medication use at least 5 years prior to diagnosis/interview, most results were statistically non-significant, except a history of uncured ENT diseases, untreated nasal polyps, and earlier age at first diagnosis of ENT disease and first or most recent aspirin use. Overall, these findings suggest that ENT disease and related drug use are most likely early indications rather than causes of NPC, although the possibility of a modestly increased NPC risk associated with these diseases and related drugs cannot be excluded.

  10. Comprehensive genomic profiling of different subtypes of nasopharyngeal carcinoma reveals similarities and differences to guide targeted therapy.

    PubMed

    Ali, Siraj M; Yao, Ming; Yao, Jicheng; Wang, Jing; Cheng, Yuwei; Schrock, Alexa B; Chirn, Gung-Wei; Chen, Hui; Mu, Shuo; Gay, Laurie; Elvin, Julia A; Suh, James; Miller, Vincent A; Stephens, Philip J; Ross, Jeffrey S; Wang, Kai

    2017-09-15

    To date, no targeted therapy has been approved for nasopharyngeal carcinoma (NPC), and this underscores the need for an in-depth understanding of clinically relevant genomic alterations (CRGAs). Comprehensive genomic profiling was performed for 190 NPC patients, including 20 patients with nasopharyngeal adenocarcinoma (NPAC), 62 patients with nasopharyngeal squamous cell carcinoma (NPSCC), and 108 patients with nasopharyngeal undifferentiated carcinoma (NPUC). The associations of genes and pathways with subtypes, Epstein-Barr virus (EBV) infections, and the tumor mutation burden (TMB) were statistically evaluated. Although the overall rates of genomic alterations were similar, the 3 NPC subtypes exhibited different mutational landscapes. Notably, mutations in a proven-treatable target gene, isocitrate dehydrogenase 2 (IDH2), were significantly associated with NPUC but not with NPAC or NPSCC. The top 5 ranked CRGAs included CDKN2A (29%), IDH2 (16%), SMARCB1 (7%), PIK3CA (6%), and NF1 (5%) in NPUC; CDKN2A (27%), PIK3CA (23%), FBXW7 (11%), PTEN (11%), and EGFR (8%) in NPSCC; and CDKN2A (20%), KRAS (15%), CCND1 (10%), MAP3K1 (10%), and NOTCH1 (10%) in NPAC. The incidence of EBV infections significantly correlated with the subtypes and with TP53, CDKN2A, and CDKN2B. The TMB status correlated with the subtypes and with LRP1B, FBXW7, and PIK3CA mutations as well as DNA repair, phosphoinositide 3-kinase/mammalian target of rapamycin, and mitogen-activated protein kinase pathways. These results indicate that different NPC subtypes harbor different CRGAs. Both EBV infections and the TMB are associated with the NPC subtypes as well as the alterations of individual genes and pathways. The high frequency of IDH2 mutations in NPUC may facilitate potential targeted therapy and will ultimately point to new therapeutic strategies. Cancer 2017;123:3628-37. © 2017 American Cancer Society. © 2017 American Cancer Society.

  11. EBV latent membrane protein 1 abundance correlates with patient age but not with metastatic behavior in north African nasopharyngeal carcinomas

    PubMed Central

    Khabir, Abdelmajid; Karray, Hela; Rodriguez, Sandrine; Rosé, Mathieu; Daoud, Jamel; Frikha, Mounir; Boudawara, Tahia; Middeldorp, Jaap; Jlidi, Rachid; Busson, Pierre

    2005-01-01

    Background Undifferentiated nasopharyngeal carcinomas are rare in a majority of countries but they occur at a high incidence in South China and to a lesser extent in North Africa. They are constantly associated with the Epstein-Barr virus (EBV) regardless of patient geographic origin. In North Africa, the distribution of NPC cases according to patient age is bi-modal with a large group of patients being around 50 years old (80%) and a smaller group below 25 years old. We and others have previously shown that the juvenile form of NPC has distinct biological characteristics including a low amount of p53 and Bcl2 in the tumor tissue and a low level of anti-EBV IgG and IgA in the peripheral blood. Results To get more insight on potential oncogenic mechanisms specific of these two forms, LMP1 abundance was assessed in 82 NPC patients of both groups, using immuno-histochemistry and semi-quantitative evaluation of tissue staining. Serum levels of anti-EBV antibodies were simultaneously assessed. For LMP1 staining, we used the S12 antibody which has proven to be more sensitive than the common anti-LMP1 CS1-4 for analysis of tissue sections. In all NPC biopsies, at least a small fraction of cells was positively stained by S12. LMP1 abundance was strongly correlated to patient age, with higher amounts of the viral protein detected in specimens of the juvenile form. In contrast, LMP1 abundance was not correlated to the presence of lymph node or visceral metastases, nor to the risk of metastatic recurrence. It was also independent of the level of circulating anti-EBV antibodies. Conclusion The high amount of LMP1 recorded in tumors from young patients confirms that the juvenile form of NPC has specific features regarding not only cellular but also viral gene expression. PMID:15842731

  12. EBV latent membrane protein 1 abundance correlates with patient age but not with metastatic behavior in north African nasopharyngeal carcinomas.

    PubMed

    Khabir, Abdelmajid; Karray, Hela; Rodriguez, Sandrine; Rosé, Mathieu; Daoud, Jamel; Frikha, Mounir; Boudawara, Tahia; Middeldorp, Jaap; Jlidi, Rachid; Busson, Pierre

    2005-04-20

    Undifferentiated nasopharyngeal carcinomas are rare in a majority of countries but they occur at a high incidence in South China and to a lesser extent in North Africa. They are constantly associated with the Epstein-Barr virus (EBV) regardless of patient geographic origin. In North Africa, the distribution of NPC cases according to patient age is bi-modal with a large group of patients being around 50 years old (80%) and a smaller group below 25 years old. We and others have previously shown that the juvenile form of NPC has distinct biological characteristics including a low amount of p53 and Bcl2 in the tumor tissue and a low level of anti-EBV IgG and IgA in the peripheral blood. To get more insight on potential oncogenic mechanisms specific of these two forms, LMP1 abundance was assessed in 82 NPC patients of both groups, using immuno-histochemistry and semi-quantitative evaluation of tissue staining. Serum levels of anti-EBV antibodies were simultaneously assessed. For LMP1 staining, we used the S12 antibody which has proven to be more sensitive than the common anti-LMP1 CS1-4 for analysis of tissue sections. In all NPC biopsies, at least a small fraction of cells was positively stained by S12. LMP1 abundance was strongly correlated to patient age, with higher amounts of the viral protein detected in specimens of the juvenile form. In contrast, LMP1 abundance was not correlated to the presence of lymph node or visceral metastases, nor to the risk of metastatic recurrence. It was also independent of the level of circulating anti-EBV antibodies. The high amount of LMP1 recorded in tumors from young patients confirms that the juvenile form of NPC has specific features regarding not only cellular but also viral gene expression.

  13. The time frame of Epstein-Barr virus latent membrane protein-1 gene to disappear in nasopharyngeal swabs after initiation of primary radiotherapy is an independently significant prognostic factor predicting local control for patients with nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.-Y.; Chang, K.-P.; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Linkou, Taiwan

    Purpose: The presence of Epstein-Barr virus latent membrane protein-1 (LMP-1) gene in nasopharyngeal swabs indicates the presence of nasopharyngeal carcinoma (NPC) mucosal tumor cells. This study was undertaken to investigate whether the time taken for LMP-1 to disappear after initiation of primary radiotherapy (RT) was inversely associated with NPC local control. Methods and Materials: During July 1999 and October 2002, there were 127 nondisseminated NPC patients receiving serial examinations of nasopharyngeal swabbing with detection of LMP-1 during the RT course. The time for LMP-1 regression was defined as the number of days after initiation of RT for LMP-1 results tomore » turn negative. The primary outcome was local control, which was represented by freedom from local recurrence. Results: The time for LMP-1 regression showed a statistically significant influence on NPC local control both univariately (p < 0.0001) and multivariately (p = 0.004). In multivariate analysis, the administration of chemotherapy conferred a significantly more favorable local control (p = 0.03). Advanced T status ({>=} T2b), overall treatment time of external photon radiotherapy longer than 55 days, and older age showed trends toward being poor prognosticators. The time for LMP-1 regression was very heterogeneous. According to the quartiles of the time for LMP-1 regression, we defined the pattern of LMP-1 regression as late regression if it required 40 days or more. Kaplan-Meier plots indicated that the patients with late regression had a significantly worse local control than those with intermediate or early regression (p 0.0129). Conclusion: Among the potential prognostic factors examined in this study, the time for LMP-1 regression was the most independently significant factor that was inversely associated with NPC local control.« less

  14. Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Sheng; Zhang, Haimin; Liu, Rongrong; Zhang, Xian; Zhao, Huijun; Wang, Guozhong

    2017-01-01

    Metal-organic frameworks (MOFs) materials have aroused great research interest in different areas owing to their unique properties, such as high surface area, various composition, well-organized framework and controllable porous structure. Controllable fabrication of MOFs materials at macro-scale may be more promising for their large-scale practical applications. Here we report the synthesis of macro-scale Co-MOFs crystals using 1,3,5-benzenetricarboxylic acid (H3BTC) linker in the presence of Co2+, triethylamine (TEA) and nonanoic acid by a facile solvothermal reaction. Further, the as-fabricated Co-MOFs as precursor was pyrolytically treated at different temperatures in N2 atmosphere to obtain metallic Co nanoparticles embedded in N-doped porous carbon layers (denoted as Co@NPC). The results demonstrate that the Co-MOFs derived sample obtained at 900 °C (Co@NPC-900) shows a porous structure (including micropore and mesopore) with a surface area of 110.8 m2 g-1 and an N doping level of 1.62 at.% resulted from TEA in the pyrolysis process. As electrocatalyst, the Co@NPC-900 exhibits bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media which are key reactions in some renewable energy technologies such as fuel cells and rechargeable metal-air batteries. The results indicate that the Co@NPC-900 can afford an onset potential of 1.50 V (vs. RHE) and a potential value of 1.61 V (vs. RHE) at a current density of 10 mA cm-2 for ORR and OER with high applicable stability, respectively. The efficient catalytic activity of Co@NPC-900 as bifunctional oxygen electrocatalyst can be ascribed to N doping and embedded metallic Co nanoparticles in carbon structure providing catalytic active sites and porous structure favourable for electrocatalysis-related mass transport.

  15. The C Terminus of the Herpes Simplex Virus UL25 Protein Is Required for Release of Viral Genomes from Capsids Bound to Nuclear Pores

    PubMed Central

    Huffman, Jamie B.; Daniel, Gina R.; Falck-Pedersen, Erik; Huet, Alexis

    2017-01-01

    ABSTRACT The herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA. The uncoating reaction has been difficult to study due to the rapid release of the genome once the capsid interacts with the nuclear pore. In this study, we describe the isolation and characterization of a truncation mutant of pUL25. Live-cell imaging and immunofluorescence studies demonstrated that the mutant was not impaired in penetration of the host cell or in trafficking of the capsid to the nuclear membrane. However, expression of viral proteins was absent or significantly delayed in cells infected with the pUL25 mutant virus. Transmission electron microscopy revealed capsids accumulated at nuclear pores that retained the viral genome for at least 4 h postinfection. In addition, cryoelectron microscopy (cryo-EM) reconstructions of virion capsids did not detect any obvious differences in the location or structural organization for the pUL25 or pUL36 proteins on the pUL25 mutant capsids. Further, in contrast to wild-type virus, the antiviral response mediated by the viral DNA-sensing cyclic guanine adenine synthase (cGAS) was severely compromised for the pUL25 mutant. These results demonstrate that the pUL25 capsid protein has a critical role in releasing viral DNA from NPC-bound capsids. IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. Early steps in infection include release of the capsid into the cytoplasm, docking of the capsid at a nuclear pore, and release of the viral genome into the nucleus. A key knowledge gap is how the capsid engages the NPC and what triggers release of the viral genome into the nucleus. Here we show that the C-terminal region of the HSV-1 pUL25 protein is required for releasing the viral genome from capsids docked at nuclear pores. The significance of our research is in identifying pUL25 as a key viral factor for genome uncoating. pUL25 is found at each of the capsid vertices as part of the capsid vertex-specific component and implicates the importance of this complex for NPC binding and genome release. PMID:28490590

  16. Non-parenchymal liver cells support the growth advantage in the first stages of hepatocarcinogenesis.

    PubMed

    Drucker, Claudia; Parzefall, Wolfram; Teufelhofer, Olga; Grusch, Michael; Ellinger, Adolf; Schulte-Hermann, Rolf; Grasl-Kraupp, Bettina

    2006-01-01

    Hepatocellular carcinoma almost always arises in chronically inflamed livers. We developed a culture model to study the role of non-parenchymal cells (NPCs) for inflammation-driven hepatocarcinogenesis. Rats were treated with the carcinogen N-nitrosomorpholine, which induced initiated hepatocytes expressing the marker placental glutathione-S-transferase (GSTp). After 21 days two preparations of hepatocytes were made: (i) conventional ones (Hep-conv) containing NPCs and (ii) hepatocytes purified of NPCs (Hep-pur). Initiated hepatocytes, being positive for GSTp (GSTp-pos) were present in both preparations and were cultured along with normal hepatocytes, being negative for GSTp (GSTp-neg). Under any culture condition DNA synthesis was approximately 4-fold higher in GSTp-pos than in GSTp-neg hepatocytes demonstrating the inherent growth advantage of the first stages of hepatocarcinogenesis. Hepatocytes showed approximately 3-fold lower rates of DNA synthesis in Hep-pur than in Hep-conv, which was elevated above Hep-conv levels by addition of NPC or NPC-supernatant. Pretreatment of NPCs with proinflammatory lipopolysaccharide (LPS) further increased DNA synthesis. Thus, NPCs release soluble growth stimulators. Next we investigated the effect of specific cytokines produced by NPCs. Tumour necrosis factor alpha and interleukin 6 barely altered DNA synthesis, whereas hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and the heparin-binding epidermal growth factor-like growth factor (HB-EGF) were potent inducers of DNA replication in both, GSTp-neg and GSTp-pos cells. In conclusion, DNA synthesis of hepatocytes is increased by factors released from NPCs, an effect augmented by LPS-stimulation. NPC-derived cytokines, such as KGF, HGF and HB-EGF, stimulate DNA synthesis preferentially in initiated hepatocytes, presumably resulting in tumour promotion. Similar mechanisms may contribute to carcinogenesis in human inflammatory liver diseases.

  17. Comprehensive epitope mapping of the Epstein-Barr virus latent membrane protein-2 in normal, non tumor-bearing individuals.

    PubMed

    Provenzano, Maurizio; Selleri, Silvia; Jin, Ping; Wang, Ena; Werden, Rosemary; Slezak, Stephanie; Adams, Sharon D; Panelli, Monica C; Leitman, Susan F; Stroncek, David F; Marincola, Francesco M

    2007-07-01

    Latent membrane protein (LMP)-2 is one of the Epstein-Barr virus (EBV)-encoded proteins consistently expressed by nasopharyngeal carcinoma (NPC). EBV-transformed lymphoblastoid cell lines (LCL) have been used in patients with NPC to induce LMP-2-recognizing T cell lines which have been in turn utilized for protein-wide mapping of T cell epitopes. However, comprehensive mapping of naturally recognized LMP-2 epitopes in non tumor-bearing individuals has not been reported. Here, we applied a low sensitivity epitope-defining technique for the identification of LMP-2 CTL responses detectable ex vivo in EBV-experienced individuals. This screening tool has been previously validated by analyzing memory CTL responses to Flu, cytomegalovirus (CMV), and the melanoma associated antigen gp100/Mel17. Peripheral blood monocytes (PBMC) from ten Caucasian and ten Chinese individuals were stimulated ex vivo with pools of nonamer (9-mer) peptides overlapping in a stepwise fashion each single amino acid of the LMP-2 sequence. No obvious differences were observed between the immune response of the two ethnic groups save for those related to the divergence in the ethnic prevalence of HLA haplotypes. Several novel and known LMP-2 epitopes were identified. Reactivity toward at least one LMP-2 epitope was detected in 18 of the 20 donors but no prevalent human leukocyte antigen (HLA)/epitope combination was observed confirming that LMP-2 reactivity in the context of common HLA alleles is more pleiotropic than that of FLU and CMV. We believe that the usefulness of these epitopes occurring naturally in non-cancer bearing patients as reagents for the immunization of patients with early or advanced stage NPC deserves further evaluation.

  18. Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma

    PubMed Central

    Li, Jiang; Chen, Qiu-Yan; He, Jia; Li, Ze-Lei; Tang, Xiao-Feng; Chen, Shi-Ping; Xie, Chuan-Miao; Li, Yong-Qiang; Huang, Li-Xi; Ye, Shu-bio; Ke, Miao-La; Tang, Lin-Quan; Liu, Huai; Zhang, Lu; Guo, Shan-Shan; Xia, Jian-Chuan; Zhang, Xiao-Shi; Zheng, Li-Min; Guo, Xiang; Qian, Chao-Nan; Mai, Hai-Qiang; Zeng, Yi-Xin

    2015-01-01

    Adoptive cell therapy (ACT) for cancers using autologous tumor-infiltrating lymphocytes (TILs) can induce immune responses and antitumor activity in metastatic melanoma patients. Here, we aimed to assess the safety and antitumor activity of ACT using expanded TILs following concurrent chemoradiotherapy (CCRT) in patients with locoregionally advanced nasopharyngeal carcinoma (NPC). Twenty-three newly diagnosed, locoregionally advanced NPC patients were enrolled, of whom 20 received a single-dose of TIL infusion following CCRT. All treated patients were assessed for toxicity, survival and clinical and immunologic responses. Correlations between immunological responses and treatment effectiveness were further studied. Only mild adverse events (AEs), including Grade 3 neutropenia (1/23, 5%) consistent with immune-related causes, were observed. Nineteen of 20 patients exhibited an objective antitumor response, and 18 patients displayed disease-free survival longer than 12 mo after ACT. A measurable plasma Epstein–Barr virus (EBV) load was detected in 14 patients at diagnosis, but a measurable EBV load was not found in patients after one week of ACT, and the plasma EBV load remained undetectable in 17 patients at 6 mo after ACT. Expansion and persistence of T cells specific for EBV antigens in peripheral blood following TIL therapy were observed in 13 patients. The apparent positive correlation between tumor regression and the expansion of T cells specific for EBV was further investigated in four patients. This study shows that NPC patients can tolerate ACT with TILs following CCRT and that this treatment results in sustained antitumor activity and anti-EBV immune responses. A larger phase II trial is in progress. PMID:25949875

  19. Iminosugar-based inhibitors of glucosylceramide synthase prolong survival but paradoxically increase brain glucosylceramide levels in Niemann-Pick C mice.

    PubMed

    Nietupski, Jennifer B; Pacheco, Joshua J; Chuang, Wei-Lien; Maratea, Kimberly; Li, Lingyun; Foley, Joseph; Ashe, Karen M; Cooper, Christopher G F; Aerts, Johannes M F G; Copeland, Diane P; Scheule, Ronald K; Cheng, Seng H; Marshall, John

    2012-04-01

    Niemann Pick type C (NPC) disease is a progressive neurodegenerative disease caused by mutations in NPC1 or NPC2, the gene products of which are involved in cholesterol transport in late endosomes. NPC is characterized by an accumulation of cholesterol, sphingomyelin and glycosphingolipids in the visceral organs, primarily the liver and spleen. In the brain, there is a redistribution of unesterified cholesterol and a concomitant accumulation of glycosphingolipids. It has been suggested that reducing the aberrant lysosomal storage of glycosphingolipids in the brain by a substrate reduction therapy (SRT) approach may prove beneficial. Inhibiting glucosylceramide synthase (GCS) using the iminosugar-based inhibitor miglustat (NB-DNJ) has been reported to increase the survival of NPC mice. Here, we tested the effects of Genz-529468, a more potent iminosugar-based inhibitor of GCS, in the NPC mouse. Oral administration of Genz-529468 or NB-DNJ to NPC mice improved their motor function, reduced CNS inflammation, and increased their longevity. However, Genz-529468 offered a wider therapeutic window and better therapeutic index than NB-DNJ. Analysis of the glycolipids in the CNS of the iminosugar-treated NPC mouse revealed that the glucosylceramide (GL1) but not the ganglioside levels were highly elevated. This increase in GL1 was likely caused by the off-target inhibition of the murine non-lysosomal glucosylceramidase, Gba2. Hence, the basis for the observed effects of these inhibitors in NPC mice might be related to their inhibition of Gba2 or another unintended target rather than a result of substrate reduction. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Consensus clinical management guidelines for Niemann-Pick disease type C.

    PubMed

    Geberhiwot, Tarekegn; Moro, Alessandro; Dardis, Andrea; Ramaswami, Uma; Sirrs, Sandra; Marfa, Mercedes Pineda; Vanier, Marie T; Walterfang, Mark; Bolton, Shaun; Dawson, Charlotte; Héron, Bénédicte; Stampfer, Miriam; Imrie, Jackie; Hendriksz, Christian; Gissen, Paul; Crushell, Ellen; Coll, Maria J; Nadjar, Yann; Klünemann, Hans; Mengel, Eugen; Hrebicek, Martin; Jones, Simon A; Ory, Daniel; Bembi, Bruno; Patterson, Marc

    2018-04-06

    Niemann-Pick Type C (NPC) is a progressive and life limiting autosomal recessive disorder caused by mutations in either the NPC1 or NPC2 gene. Mutations in these genes are associated with abnormal endosomal-lysosomal trafficking, resulting in the accumulation of multiple tissue specific lipids in the lysosomes. The clinical spectrum of NPC disease ranges from a neonatal rapidly progressive fatal disorder to an adult-onset chronic neurodegenerative disease. The age of onset of the first (beyond 3 months of life) neurological symptom may predict the severity of the disease and determines life expectancy.NPC has an estimated incidence of ~ 1: 100,000 and the rarity of the disease translate into misdiagnosis, delayed diagnosis and barriers to good care. For these reasons, we have developed clinical guidelines that define standard of care for NPC patients, foster shared care arrangements between expert centres and family physicians, and empower patients. The information contained in these guidelines was obtained through a systematic review of the literature and the experiences of the authors in their care of patients with NPC. We adopted the Appraisal of Guidelines for Research & Evaluation (AGREE II) system as method of choice for the guideline development process. We made a series of conclusive statements and scored them according to level of evidence, strengths of recommendations and expert opinions. These guidelines can inform care providers, care funders, patients and their carers of best practice of care for patients with NPC. In addition, these guidelines have identified gaps in the knowledge that must be filled by future research. It is anticipated that the implementation of these guidelines will lead to a step change in the quality of care for patients with NPC irrespective of their geographical location.

  1. Sibship size, birth order and risk of nasopharyngeal carcinoma and infectious mononucleosis: a nationwide study in Sweden.

    PubMed

    Liu, Zhiwei; Fang, Fang; Chang, Ellen T; Adami, Hans-Olov; Ye, Weimin

    2016-06-01

    The aetiology of nasopharyngeal carcinoma (NPC) remains enigmatic in endemic and non-endemic areas. Early-life infection with Epstein-Barr virus (EBV) may predispose to NPC development, whereas delayed primary infection with EBV may cause infectious mononucleosis (IM). We used Swedish population and health registers to investigate whether potential indicators of early EBV infection, such as birth order, sibship size, maternal age and paternal age, are related to the subsequent risks for NPC and IM. We conducted two nested case-control studies, one for each health outcome, based on 251 NPC case patients, 11 314 IM case patients and five population control subjects per case matched by birth year and sex. We used conditional logistic regression modelling to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) for NPC and IM. The multivariate-adjusted ORs of developing NPC increased with number of siblings; the ORs associated with having one, two and three or more siblings, compared with none, were 1.59 (95% CI = 0.97, 2.62), 1.94 (95% CI = 1.17, 3.22), and 2.03 (95% CI = 1.23, 3.35), respectively (Ptrend = 0.006). This increased risk of NPC was explained mainly by having older rather than younger siblings. In contrast, lower risks of IM were observed among individuals with an increasing number of older siblings, younger siblings and total siblings. Early-life social environment, possibly related to EBV infection, contributes to NPC pathogenesis in non-endemic areas. This hypothesis is further supported by the clearly contrasting findings between NPC and IM. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  2. Optimal route of diphtheria toxin administration to eliminate native nephron progenitor cells in vivo for kidney regeneration.

    PubMed

    Fukunaga, Shohei; Yamanaka, Shuichiro; Fujimoto, Toshinari; Tajiri, Susumu; Uchiyama, Taketo; Matsumoto, Kei; Ito, Takafumi; Tanabe, Kazuaki; Yokoo, Takashi

    2018-02-19

    To address the lack of organs for transplantation, we previously developed a method for organ regeneration in which nephron progenitor cell (NPC) replacement is performed via the diphtheria toxin receptor (DTR) system. In transgenic mice with NPC-specific expression of DTR, NPCs were eliminated by DT and replaced with NPCs lacking the DTR with the ability to differentiate into nephrons. However, this method has only been verified in vitro. For applications to natural models, such as animal fetuses, it is necessary to determine the optimal administration route and dose of DT. In this study, two DT administration routes (intra-peritoneal and intra-amniotic injection) were evaluated in fetal mice. The fetus was delivered by caesarean section at E18.5, and the fetal mouse kidney and RNA expression were evaluated. Additionally, the effect of the DT dose (25, 5, 0.5, and 0.05 ng/fetus-body) was studied. Intra-amniotic injection of DT led to a reduction in kidney volume, loss of glomeruli, and decreased differentiation marker expression. The intra-peritoneal route was not sufficient for NPC elimination. By establishing that intra-amniotic injection is the optimal administration route for DT, these results will facilitate studies of kidney regeneration in vivo. In addition, this method might be useful for analysis of kidney development at various time points by deleting NPCs during development. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Noninvasive detection of nasopharyngeal carcinoma based on saliva proteins using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Xueliang; Lin, Duo; Ge, Xiaosong; Qiu, Sufang; Feng, Shangyuan; Chen, Rong

    2017-10-01

    The present study evaluated the capability of saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy (SERS) for noninvasive detection of nasopharyngeal carcinoma (NPC). A rapid and convenient protein purification method based on cellulose acetate membrane was developed. A total of 659 high-quality SERS spectra were acquired from purified proteins extracted from the saliva samples of 170 patients with pathologically confirmed NPC and 71 healthy volunteers. Spectral analysis of those saliva protein SERS spectra revealed specific changes in some biochemical compositions, which were possibly associated with NPC transformation. Furthermore, principal component analysis combined with linear discriminant analysis (PCA-LDA) was utilized to analyze and classify the saliva protein SERS spectra from NPC and healthy subjects. Diagnostic sensitivity of 70.7%, specificity of 70.3%, and diagnostic accuracy of 70.5% could be achieved by PCA-LDA for NPC identification. These results show that this assay based on saliva protein SERS analysis holds promising potential for developing a rapid, noninvasive, and convenient clinical tool for NPC screening.

  4. Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex.

    PubMed

    Onischenko, Evgeny; Tang, Jeffrey H; Andersen, Kasper R; Knockenhauer, Kevin E; Vallotton, Pascal; Derrer, Carina P; Kralt, Annemarie; Mugler, Christopher F; Chan, Leon Y; Schwartz, Thomas U; Weis, Karsten

    2017-11-02

    Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture.

    PubMed

    Lam, Jonathan; Carmichael, S Thomas; Lowry, William E; Segura, Tatiana

    2015-03-11

    Bioactive signals can be incorporated in hydrogels to direct encapsulated cell behavior. Design of experiments methodology methodically varies the signals systematically to determine the individual and combinatorial effects of each factor on cell activity. Using this approach enables the optimization of three ligands concentrations (RGD, YIGSR, IKVAV) for the survival and differentiation of neural progenitor cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Deaths from nasopharyngeal cancer among waiters and waitresses in Chinese restaurants.

    PubMed

    Yu, Ignatius T S; Chiu, Yuk-lan; Wong, Tze-wai; Tang, Jin-ling

    2004-10-01

    Previous studies have shown that waiters have a high risk of developing cancers of the buccal cavity and pharynx, but nasopharyngeal cancer (NPC) has not been specifically studied. This study was carried out to investigate whether waiters/waitresses in Chinese restaurants have an increased risk of dying from NPC. A mortality odds ratio study was used to estimate the relative risk of dying from NPC for waiters/waitresses working in Chinese restaurants in Hong Kong during the period 1986-1995, using the general population as the external comparison group and deceased kitchen workers as an internal comparison group. Cases were deaths from NPC and the controls were deaths from the selected sets of reference causes. Seventeen deaths from NPC were identified among 415 deceased waiters and four NPC deaths occurred among 140 deceased waitresses. The adjusted mortality odds ratio (aMOR) for NPC was increased among waiters, being 3.02 (95% CI 1.82-5.00) and 2.61 (95% CI 1.02-6.69) in the external and internal comparisons, respectively. For waitresses, the aMOR was 4.58 (95% CI 1.63-12.86) in the external comparison. Analysis by duration of union membership suggested a dose-response relationship. An increased risk of dying from NPC was observed among waiters/waitresses and could not be fully explained by bias or confounding factors. Possible risk factors related to poor indoor air quality in the service areas of Chinese restaurants in Hong Kong should be further investigated.

  7. Identifying FGA peptides as nasopharyngeal carcinoma-associated biomarkers by magnetic beads.

    PubMed

    Tao, Ya-Lan; Li, Yan; Gao, Jin; Liu, Zhi-Gang; Tu, Zi-Wei; Li, Guo; Xu, Bing-Qing; Niu, Dao-Li; Jiang, Chang-Bin; Yi, Wei; Li, Zhi-Qiang; Li, Jing; Wang, Yi-Ming; Cheng, Zhi-Bin; Liu, Qiao-Dan; Bai, Li; Zhang, Chun; Zhang, Jing-Yu; Zeng, Mu-Sheng; Xia, Yun-Fei

    2012-07-01

    Early diagnosis and treatment is known to improve prognosis for nasopharyngeal carcinoma (NPC). The study determined the specific peptide profiles by comparing the serum differences between NPC patients and healthy controls, and provided the basis for the diagnostic model and identification of specific biomarkers of NPC. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) can be used to detect the molecular mass of peptides. Mass spectra of peptides were generated after extracting and purification of 40 NPC samples in the training set, 21 in the single center validation set and 99 in the multicenter validation set using weak cationic-exchanger magnetic beads. The spectra were analyzed statistically using FlexAnalysis™ and ClinProt™ bioinformatics software. The four most significant peaks were selected out to train a genetic algorithm model to diagnose NPC. The diagnostic sensitivity and specificity were 100% and 100% in the training set, 90.5% and 88.9% in the single center validation set, 91.9% and 83.3% in the multicenter validation set, and the false positive rate (FPR) and false negative rate (FNR) were obviously lower in the NPC group (FPR, 16.7%; FNR, 8.1%) than in the other cancer group (FPR, 39%; FNR, 61%), respectively. So, the diagnostic model including four peptides can be suitable for NPC but not for other cancers. FGA peptide fragments identified may serve as tumor-associated biomarkers for NPC. Copyright © 2012 Wiley Periodicals, Inc.

  8. Elucidating an Adverse Outcome Pathway of Microcephaly for use in Computational Toxicology (SOT Annual Meeting)

    EPA Science Inventory

    While evidence now supports a causal link between maternal Zika viral infection and microcephaly, genetic errors and chemical stressors may also precipitate this malformation through disruption of neuroprogenitor cell (NPC) proliferation, migration and differentiation in the earl...

  9. Synthesis and evaluation of novel amide amino-β-lactam derivatives as cholesterol absorption inhibitors.

    PubMed

    Dražić, Tonko; Sachdev, Vinay; Leopold, Christina; Patankar, Jay V; Malnar, Martina; Hećimović, Silva; Levak-Frank, Sanja; Habuš, Ivan; Kratky, Dagmar

    2015-05-15

    The β-lactam cholesterol absorption inhibitor ezetimibe is so far the only representative of this class of compounds on the market today. The goal of this work was to synthesize new amide ezetimibe analogs from trans-3-amino-(3R,4R)-β-lactam and to test their cytotoxicity and activity as cholesterol absorption inhibitors. We synthesized six new amide ezetimibe analogs. All new compounds exhibited low toxicity in MDCKIIwt, hNPC1L1/MDCKII and HepG2 cell lines and showed significant inhibition of cholesterol uptake in hNPC1L1/MDCKII cells. In addition, we determined the activity of the three compounds to inhibit cholesterol absorption in vivo. Our results demonstrate that these compounds considerably reduce cholesterol concentrations in liver and small intestine of mice. Thus, our newly synthesized amide ezetimibe analogs are cholesterol absorption inhibitors in vitro and in vivo. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier

    PubMed Central

    Breslow, David K.; Koslover, Elena F.; Seydel, Federica; Spakowitz, Andrew J.

    2013-01-01

    Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia. PMID:24100294

  11. Epigenome profiling and editing of neocortical progenitor cells during development.

    PubMed

    Albert, Mareike; Kalebic, Nereo; Florio, Marta; Lakshmanaperumal, Naharajan; Haffner, Christiane; Brandl, Holger; Henry, Ian; Huttner, Wieland B

    2017-09-01

    The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator Eomes We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the Eomes locus in vivo , which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development. © 2017 The Authors.

  12. OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation.

    PubMed

    Cui, Yan; Ying, Ying; van Hasselt, Andrew; Ng, Ka Man; Yu, Jun; Zhang, Qian; Jin, Jie; Liu, Dingxie; Rhim, Johng S; Rha, Sun Young; Loyo, Myriam; Chan, Anthony T C; Srivastava, Gopesh; Tsao, George S W; Sellar, Grant C; Sung, Joseph J Y; Sidransky, David; Tao, Qian

    2008-08-20

    Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common in multiple tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction. Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells with endogenous silencing. Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies.

  13. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.

    PubMed

    Wong, Roy C H; Chow, Sun Y S; Zhao, Shirui; Fong, Wing-Ping; Ng, Dennis K P; Lo, Pui-Chi

    2017-07-19

    An acid-cleavable acetal-linked zinc(II) phthalocyanine dimer with an azido terminal group (cPc) was prepared and conjugated to alkyne-modified mesoporous silica nanoparticles via copper(I)-catalyzed alkyne-azide cycloaddition reaction. For comparison, an amine-linked analogue (nPc) was also prepared as a non-acid-cleavable counterpart. These dimeric phthalocyanines were significantly self-quenched due to the close proximity of the phthalocyanine units inside the mesopores, resulting in much weaker fluorescence emission and singlet oxygen generation, both in N,N-dimethylformamide and in phosphate-buffered saline (PBS), compared with the free molecular counterparts. Under acidic conditions in PBS, the cPc-encapsulated nanosystem was activated in terms of fluorescence emission and singlet oxygen production. After internalization into human colon adenocarcinoma HT29 cells, it exhibited much higher intracellular fluorescence and photocytotoxicity compared to the nanosystem entrapped with nPc. The activation of this nanosystem was also demonstrated in tumor-bearing nude mice. The intratumoral fluorescence intensity increased gradually over 24 h, while for the nPc counterpart the fluorescence remained very weak. The results suggest that this nanosystem serves as a promising activatable nanophotosensitizing agent for photodynamic therapy.

  14. Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes

    PubMed Central

    Labokha, Aksana A; Gradmann, Sabine; Frey, Steffen; Hülsmann, Bastian B; Urlaub, Henning; Baldus, Marc; Görlich, Dirk

    2013-01-01

    Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability. PMID:23202855

  15. Determining the Involvement and Therapeutic Implications of Host Cellular Factors in Hepatitis C Virus Cell-to-Cell Spread

    PubMed Central

    Barretto, Naina; Sainz, Bruno; Hussain, Snawar

    2014-01-01

    ABSTRACT Hepatitis C virus (HCV) infects 180 million people worldwide and is a leading cause of liver diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma. It has been shown that HCV can spread to naive cells using two distinct entry mechanisms, “cell-free” entry of infectious extracellular virions that have been released by infected cells and direct “cell-to-cell” transmission. Here, we examined host cell requirements for HCV spread and found that the cholesterol uptake receptor NPC1L1, which we recently identified as being an antiviral target involved in HCV cell-free entry/spread, is also required for the cell-to-cell spread. In contrast, the very low density lipoprotein (VLDL) pathway, which is required for the secretion of cell-free infectious virus and thus has been identified as an antiviral target for blocking cell-free virus secretion/spread, is not required for cell-to-cell spread. Noting that HCV cell-free and cell-to-cell spread share some common factors but not others, we tested the therapeutic implications of these observations and demonstrate that inhibitors that target cell factors required for both forms of HCV spread exhibit synergy when used in combination with interferon (a representative inhibitor of intracellular HCV production), while inhibitors that block only cell-free spread do not. This provides insight into the mechanistic basis of synergy between interferon and HCV entry inhibitors and highlights the broader, previously unappreciated impact blocking HCV cell-to-cell spread can have on the efficacy of HCV combination therapies. IMPORTANCE HCV can spread to naive cells using distinct mechanisms: “cell-free” entry of extracellular virus and direct “cell-to-cell” transmission. Herein, we identify the host cell HCV entry factor NPC1L1 as also being required for HCV cell-to-cell spread, while showing that the VLDL pathway, which is required for the secretion of cell-free infectious virus, is not required for cell-to-cell spread. While both these host factors are considered viable antiviral targets, we demonstrate that only inhibitors that block factors required for both forms of HCV entry/spread (i.e., NPC1L1) exhibit synergy when used in combination with interferon, while inhibitors that block factors required only for cell-free spread (i.e., VLDL pathway components) do not. Thus, this study advances our understanding of HCV cell-to-cell spread, provides mechanistic insight into the basis of drug synergy, and highlights inhibition of HCV spread as a previously unappreciated consideration in HCV therapy design. PMID:24554660

  16. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.

    PubMed

    Sun, Yuqiao; Li, Wen; Wu, Xiaoli; Zhang, Na; Zhang, Yongnu; Ouyang, Songying; Song, Xiyong; Fang, Xinyu; Seeram, Ramakrishna; Xue, Wei; He, Liumin; Wu, Wutian

    2016-01-27

    Self-assembling peptide (SAP) RADA16-I (Ac-(RADA)4-CONH2) has been suffering from a main drawback associated with low pH, which damages cells and host tissues upon direct exposure. In this study, we presented a strategy to prepare nanofiber hydrogels from two designer SAPs at neutral pH. RADA16-I was appended with functional motifs containing cell adhesion peptide RGD and neurite outgrowth peptide IKVAV. The two SAPs were specially designed to have opposite net charges at neutral pH, the combination of which created a nanofiber hydrogel (-IKVAV/-RGD) characterized by significantly higher G' than G″ in a viscoelasticity examination. Circular dichroism, Fourier transform infrared spectroscopy, and Raman measurements were performed to investigate the secondary structure of the designer SAPs, indicating that both the hydrophobic/hydrophilic properties and electrostatic interactions of the functional motifs play an important role in the self-assembling behavior of the designer SAPs. The neural progenitor cells (NPCs)/stem cells (NSCs) fully embedded in the 3D-IKVAV/-RGD nanofiber hydrogel survived, whereas those embedded within the RADA 16-I hydrogel hardly survived. Moreover, the -IKVAV/-RGD nanofiber hydrogel supported NPC/NSC neuron and astrocyte differentiation in a 3D environment without adding extra growth factors. Studies of three nerve injury models, including sciatic nerve defect, intracerebral hemorrhage, and spinal cord transection, indicated that the designer -IKVAV/-RGD nanofiber hydrogel provided a more permissive environment for nerve regeneration than the RADA 16-I hydrogel. Therefore, we reported a new mechanism that might be beneficial for the synthesis of SAPs for in vitro 3D cell culture and nerve regeneration.

  17. Selenium-binding protein 1 in head and neck cancer is low-expression and associates with the prognosis of nasopharyngeal carcinoma

    PubMed Central

    Chen, Fasheng; Chen, Chen; Qu, Yangang; Xiang, Hua; Ai, Qingxiu; Yang, Fei; Tan, Xueping; Zhou, Yi; Jiang, Guang; Zhang, Zixiong

    2016-01-01

    Abstract Background: Selenium-binding protein 1 (SELENBP1) expression is reduced markedly in many types of cancers and low SELENBP1 expression levels are associated with poor patient prognosis. Methods: SELENBP1 gene expression in head and neck squamous cell carcinoma (HNSCC) was analyzed with GEO dataset and characteristics of SELENBP1 expression in paraffin embedded tissue were summarized. Expression of SELENBP1 in nasopharyngeal carcinoma (NPC), laryngeal cancer, oral cancer, tonsil cancer, hypopharyngeal cancer and normal tissues were detected using immunohistochemistry, at last, 99 NPC patients were followed up more than 5 years and were analyzed the prognostic significance of SELENBP1. Results: Analysis of GEO dataset concluded that SELENBP1 gene expression in HNSCC was lower than that in normal tissue (P < 0.01), but there was no significant difference of SELENBP1 gene expression in different T-stage and N-stage (P > 0.05). Analysis of pathological section concluded that SELENBP1 in the majority of HNSCC is low expression and in cancer nests is lower expression than surrounding normal tissue, even associated with the malignant degree of tumor. Further study indicated the low SELENBP1 expression group of patients with NPC accompanied by poor overall survival and has significantly different comparing with the high expression group. Conclusion: SELENBP1 expression was down-regulated in HNSCC, but has no associated with T-stage and N-stage of tumor. Low expression of SELENBP1 in patients with NPC has poor over survival, so SELENBP1 could be a novel biomarker for predicting prognosis. PMID:27583873

  18. Understanding the interplay between host immunity and Epstein-Barr virus in NPC patients

    PubMed Central

    Shen, Yong; Zhang, Suzhan; Sun, Ren; Wu, Tingting; Qian, Jing

    2015-01-01

    Epstein-Barr virus (EBV) has been used as a paradigm for studying host–virus interactions, not only because of its importance as a human oncogenic virus associated with several malignancies including nasopharyngeal carcinoma (NPC) but also owing to its sophisticated strategies to subvert the host antiviral responses. An understanding of the interplay between EBV and NPC is critical for the development of EBV-targeted immunotherapy. Here, we summarize the current knowledge regarding the host immune responses and EBV immune evasion mechanisms in the context of NPC. PMID:26038769

  19. A case of variant biochemical phenotype of Niemann-Pick disease type C accompanying savant syndrome.

    PubMed

    Hamatani, Mio; Jingami, Naoto; Uemura, Kengo; Nakasone, Naoe; Kinoshita, Hisanori; Yamakado, Hodaka; Ninomiya, Haruaki; Takahashi, Ryosuke

    2016-06-22

    A 40-year-old man was referred to our hospital because of vertical supranuclear gaze palsy, frequent sudden loss of muscle tonus and ataxia for several years. He had a history of prolonged neonatal jaundice. He was given a diagnosis of autism in his childhood, followed by a diagnosis of schizophrenia in his teenage. He also developed a savant skill of calendar calculating. (123)I-IMP-SPECT showed decreased cerebral blood flow in the left frontotemporal lobe as often seen in savant syndrome. Although genetic analysis of NPC1 and NPC2 revealed no pathogenic mutation, filipin staining of cultured fibroblasts from his biopsied skin revealed a certain amount of intracellular cholesterol storage pattern, indicating a variant biochemical phenotype of Niemann-Pick disease type C (NPC). The diagnosis of adulthood onset NPC is difficult and challenging, especially for neurologists, because the symptoms and signs are not as clear as those in the classical childhood onset NPC and this subtype is not yet widely known. However, the diagnosis can be made by a combination of filipin staining of fibroblast and/or gene analysis. As a disease-specific therapy for NPC has been approved in Japan, the diagnosis of NPC is of significance.

  20. Nuclear pore complex integrity requires Lnp1, a regulator of cortical endoplasmic reticulum

    PubMed Central

    Casey, Amanda K.; Chen, Shuliang; Novick, Peter; Ferro-Novick, Susan; Wente, Susan R.

    2015-01-01

    The nuclear envelope (NE) and endoplasmic reticulum (ER) are components of the same contiguous membrane system and yet have distinct cellular functions. Mounting evidence suggests roles for some ER proteins in the NE for proper nuclear pore complex (NPC) structure and function. In this study, we identify a NE role in Saccharomyces cerevisiae for Lnp1 and Sey1, proteins required for proper cortical ER formation. Both lnp1Δ and sey1Δ mutants exhibit synthetic genetic interactions with mutants in genes encoding key NPC structural components. Both Lnp1 and Sey1 physically associate with other ER components that have established NPC roles, including Rtn1, Yop1, Pom33, and Per33. Of interest, lnp1Δ rtn1Δ mutants but not rtn1Δ sey1Δ mutants exhibit defects in NPC distribution. Furthermore, the essential NPC assembly factor Ndc1 has altered interactions in the absence of Sey1. Lnp1 dimerizes in vitro via its C-terminal zinc finger motif, a property that is required for proper ER structure but not NPC integrity. These findings suggest that Lnp1's role in NPC integrity is separable from functions in the ER and is linked to Ndc1 and Rtn1 interactions. PMID:26041935

  1. AAV9 intracerebroventricular gene therapy improves lifespan, locomotor function and pathology in a mouse model of Niemann-Pick type C1 disease.

    PubMed

    Hughes, Michael P; Smith, Dave A; Morris, Lauren; Fletcher, Claire; Colaco, Alexandria; Huebecker, Mylene; Tordo, Julie; Palomar, Nuria; Massaro, Giulia; Henckaerts, Els; Waddington, Simon N; Platt, Frances M; Rahim, Ahad A

    2018-06-05

    Niemann-Pick type C disease (NP-C) is a fatal neurodegenerative lysosomal storage disorder. It is caused in 95% of cases by a mutation in the NPC1 gene that encodes NPC1, an integral transmembrane protein localised to the limiting membrane of the lysosome. There is no cure for NP-C but there is a disease-modifying drug (miglustat) that slows disease progression but with associated side effects. Here, we demonstrate in a well-characterised mouse model of NP-C that a single administration of AAV-mediated gene therapy to the brain can significantly extend lifespan, improve quality of life, prevent or ameliorate neurodegeneration, reduce biochemical pathology and normalize or improve various indices of motor function. Over-expression of human NPC1 does not cause adverse effects in the brain and correctly localises to late endosomal/lysosomal compartments. Furthermore, we directly compare gene therapy to licensed miglustat. Even at a low dose, gene therapy has all the benefits of miglustat but without adverse effects. On the basis of these findings and on-going ascendency of the field, we propose intracerebroventricular gene therapy as a potential therapeutic option for clinical use in NP-C.

  2. The influence of human papillomavirus on nasopharyngeal carcinoma in Japan.

    PubMed

    Kano, Makoto; Kondo, Satoru; Wakisaka, Naohiro; Moriyama-Kita, Makiko; Nakanishi, Yosuke; Endo, Kazuhira; Murono, Shigeyuki; Nakamura, Hiroyuki; Yoshizaki, Tomokazu

    2017-06-01

    Although Japan is a non-endemic area with nasopharyngeal carcinoma (NPC), the proportion of WHO type I NPC in Japan are different from that in non-endemic areas such as North America and Europe. Recently, it is said that not only Epstein-Barr virus (EBV) but also human papillomavirus (HPV) has an influence on NPC in non-endemic areas. The aim of this study is to clarify the influence of HPV on NPC in Japan. Paraffin-embedded tumor specimens were available for 59 patients with NPC diagnosed between 1996 and 2015. We detected the virus status by p16 immunohistochemistry, HPV PCR, and in situ hybridization for Epstein-Barr virus (EBV)-encoded RNA. Kaplan-Meier curves were used to compare the overall survival by viral status. Among the 59 patients, 49 (83%) were EBV-positive/HPV-negative, 2 (3%) were EBV-positive/HPV-positive, and 8 (16%) were EBV-negative/HPV-negative. All HPV-positive NPCs were co-infected with EBV. There were no significant differences between the overall survival in the three groups (p=0.111). In Japan, HPV was detected in a few patients with NPC, and we suggest that HPV has no influence on NPC carcinogenesis in this population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases

    PubMed Central

    Watters, Kelly; Inankur, Bahar; Gardiner, Jaye C.; Warrick, Jay; Sherer, Nathan M.; Yin, John

    2017-01-01

    ABSTRACT The RNA rhinoviruses (RV) encode 2A proteases (2Apro) that contribute essential polyprotein processing and host cell shutoff functions during infection, including the cleavage of Phe/Gly-containing nucleoporin proteins (Nups) within nuclear pore complexes (NPC). Within the 3 RV species, multiple divergent genotypes encode diverse 2Apro sequences that act differentially on specific Nups. Since only subsets of Phe/Gly motifs, particularly those within Nup62, Nup98, and Nup153, are recognized by transport receptors (karyopherins) when trafficking large molecular cargos through the NPC, the processing preferences of individual 2Apro predict RV genotype-specific targeting of NPC pathways and cargos. To test this idea, transformed HeLa cell lines were created with fluorescent cargos (mCherry) for the importin α/β, transportin 1, and transportin 3 import pathways and the Crm1-mediated export pathway. Live-cell imaging of single cells expressing recombinant RV 2Apro (A16, A45, B04, B14, B52, C02, and C15) showed disruption of each pathway with measurably different efficiencies and reaction rates. The B04 and B52 proteases preferentially targeted Nups in the import pathways, while B04 and C15 proteases were more effective against the export pathway. Virus-type-specific trends were also observed during infection of cells with A16, B04, B14, and B52 viruses or their chimeras, as measured by NF-κB (p65/Rel) translocation into the nucleus and the rates of virus-associated cytopathic effects. This study provides new tools for evaluating the host cell response to RV infections in real time and suggests that differential 2Apro activities explain, in part, strain-dependent host responses and diverse RV disease phenotypes. IMPORTANCE Genetic variation among human rhinovirus types includes unexpected diversity in the genes encoding viral proteases (2Apro) that help these viruses achieve antihost responses. When the enzyme activities of 7 different 2Apro were measured comparatively in transformed cells programed with fluorescent reporter systems and by quantitative cell imaging, the cellular substrates, particularly in the nuclear pore complex, used by these proteases were indeed attacked at different rates and with different affinities. The importance of this finding is that it provides a mechanistic explanation for how different types (strains) of rhinoviruses may elicit different cell responses that directly or indirectly lead to distinct disease phenotypes. PMID:28179529

  4. The Spectrum of Niemann-Pick Type C Disease in Greece.

    PubMed

    Mavridou, Irene; Dimitriou, Evangelia; Vanier, Marie T; Vilageliu, Lluisa; Grinberg, Daniel; Latour, Philippe; Xaidara, Athina; Lycopoulou, Lilia; Bostantjopoulou, Sevasti; Zafeiriou, Dimitrios; Michelakakis, Helen

    2017-01-01

    Niemann-Pick type C disease (NPC) is a neurovisceral lysosomal storage disease caused by mutations in either the NPC1 or the NPC2 gene. It is a cellular lipid trafficking disorder characterized by the accumulation of unesterified cholesterol and various sphingolipids in the lysosomes and late endosomes, and it exhibits a broad clinical spectrum. Today, over 420 disease-causing mutations have been identified in the NPC1 and the NPC2 genes. We present the clinical, biochemical, and molecular findings in 14 cases diagnosed in Greece during the last 28 years. Age at diagnosis ranged from 2.5 months to 48 years. Systemic manifestations were present in 7/14 patients. All developed neurological manifestations (age of onset 5 months to 42 years). Six patients are still alive (age: 5-50 years). Classical filipin staining pattern was observed in all but four patients (3 NPC1, 1 NPC2). The rate of LDL-induced cholesteryl ester formation was severely reduced in 4/7 and significantly reduced in 3/7 patients studied. Increased chitotriosidase activity was observed in 9/12 patients. Mutation analysis in 11 unrelated patients identified 12 different mutations in the NPC1 gene: eight previously described p.E1089K (c.3265G>A), p.F284Lfs*26 (c.852delT), p.A1132P(c.3394G>C), del promoter region and exons 1-10, p.R1186H (c.3557G>A), p.P1007A (c.3019C>G), p.Q92R(c.275A>G),p.S940L (c.2819C>T), and four novel ones: (p.N701K fs*13 (c.2102-2103insA), p.K1057R (c.3170A>G), IVS23+3insT(c.3591+3insT), p.C1119*(c.3357T>C); and the previously described IVS2+5G>A(c.190+5G>A) mutation in the NPC2 gene. All patients were of Greek origin. Assuming a birth rate of 100,000/year, a rough incidence estimate for NPC disease in Greece would be 0.5/100,000 births.

  5. Nasopharyngeal carcinoma with headaches as the main symptom: A potential diagnostic pitfall.

    PubMed

    Wu, Zhou-Xue; Xiang, Li; Rong, Jin-Feng; He, Huai-Lin; Li, Dan

    2016-01-01

    The aim of this study was to investigate medical-related reasons for misdiagnosis of nasopharyngeal carcinoma. (NPC) patients presenting with headaches alone or accompanied by other symptoms. Two-hundred and nineteen NPC cases describing headaches as one of the initial symptoms during primary treatment were selected for this prospective study. Medical records were carefully collected and all data were summarized for final analyses. Distributions of NPC stage in the patients were: Stage II, 1.4%; stage III, 46.6%; stage IVA, 36.1%; stage IVB, 7.7%; and stage IVC, 8.2%. The ratio of men to women was 2.42:1 (155/64 cases). The total misdiagnosis rate was 43.4%. Patients that only complained of headaches had the highest misdiagnosis rate of 86.4% (19/22 cases). The lowest misdiagnosis rate of 10.9% (5/46 cases) was observed in patients with both headaches and epistaxis. The misdiagnosis rate in rural hospitals was more than two times that in provincial hospitals. Neurosurgery departments had a 100% misdiagnosis rate. Frequently, headaches are the only prominent symptom of NPC. Due to the various clinical manifestations, NPC patients encounter a high misdiagnosis rate, which leads to unsatisfactory treatment outcomes. Improved awareness of the various nonspecific symptoms of NPC by nonspecialist physicians will be a pivotal step in decreasing the misdiagnosis rate. Mini Abstract: The misdiagnosis rate of nasopharyngeal carcinoma (NPC) patients with headaches was 43.4%. Improved awareness of the various nonspecific symptoms of NPC is a pivotal step in decreasing the misdiagnosis rate.

  6. Primary Treatment Results of Nasopharyngeal Carcinoma (NPC) in Yogyakarta, Indonesia

    PubMed Central

    Wildeman, Maarten A.; Fles, Renske; Herdini, Camelia; Indrasari, Rai S.; Vincent, Andrew D.; Tjokronagoro, Maesadji; Stoker, Sharon; Kurnianda, Johan; Karakullukcu, Baris; Taroeno-Hariadi, Kartika W.; Hamming-Vrieze, Olga; Middeldorp, Jaap M.; Hariwiyanto, Bambang; Haryana, Sofia M.; Tan, I. Bing

    2013-01-01

    Introduction Nasopharyngeal Carcinoma (NPC) is a major health problem in southern and eastern Asia. In Indonesia NPC is the most frequent cancer in the head and neck area. NPC is very sensitive to radiotherapy resulting in 3-year disease-free and overall survival of approximately 70% and 80%, respectively. Here we present routine treatment results in a prospective study on NPC in a top referral; university hospital in Indonesia. Methods All NPC patients presenting from September 2008 till January 2011 at the ear, nose and throat (ENT) department of the Dr. Sardjito General Hospital, Universitas Gadjah Mada, Yogyakarta, Indonesia, were possible candidates. Patients were included if the biopsy was a histological proven NPC without distant metastasis and were assessed during counselling sessions prior to treatment, as being able to complete the entire treatment. Results In total 78 patients were included for treatment analysis. The median time between diagnosis and start of radiotherapy is 120 days. Forty-eight (62%) patients eventually finished all fractions of radiotherapy. The median duration of the radiotherapy is 62 days for 66 Gy. Median overall survival is 21 months (95% CI 18–35) from day of diagnosis. Conclusion The results presented here reveal that currently the treatment of NPC at an Indonesian hospital is not sufficient and cannot be compared to the treatment results in literature. Main reasons for these poor treatment results are (1) a long waiting time prior to the start of radiotherapy, (2) the extended overall duration of radiotherapy and (3) the advanced stage of disease at presentation. PMID:23675501

  7. [Expression of C-fos in nasopharyngeal carcinoma and the relationship with chemosensitivity and prognosis].

    PubMed

    Liu, Y T; Zhao, F P; Miao, H B; Fu, S Z; Zhou, S; Zhang, X G; Qin, G

    2018-05-01

    Objective: To investigate the expression of C-fos in patients with nasopharyngeal carcinoma(NPC), and analyze the relationship between the expression of C-fos and the clinical characteristics, chemosensitivity and prognosis. Method: Clinical and follow-up data of 75 NPC patients was analyzed retrospectively. The expression of C-fos was detected by immunohistochemical assay, and chemosensitivity was detected by ATP bioluminescent anticancer drug sensitivity detection technology. The relationship between them was studied. Result: The expression of C-fos in NPC was statistically higher than that in the control nasopharyngeal mucosa( P <0.001). It was found that C-fos had no statistical relationship with the gender, age, pathologic type, clinical stage of tumor classification, lymph node status, metastasis status and overall stage of NPC patients( P >0.05). NPC had different chemosensitivity with 8 anticancer drugs( P <0.001).There was a significant difference in chemosensitivity of paclitaxel between the high expression of C-fos group and the low expression of C-fos group( P =0.036). The rate of tumor progression was significantly higher in NPC patients with high expression of C-fos than in the low expression group( P =0.014).There was no significant difference in overall survival between the two groups( P =0.076). Conclusion: C-fos is highly expressed in NPC tissues, and the high expression of C-fos in NPC tissues may be related to tumor progression and resistance to paclitaxel. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  8. [Presentation of Niemann-Pick type C disease with psychiatric disturbance in an adult].

    PubMed

    Tyvaert, L; Stojkovic, T; Cuisset, J-M; Vanier, M-T; Turpin, J-C; De Sèze, J; Vermersch, P

    2005-03-01

    Niemann-Pick Type C disease (NPC) is an autosomal recessive neurovisceral lysosomal lipid storage disorder. A 31-year-old right-handed woman had suffered from schizophrenia for 13 years. At 25 years of age, she developed a gait disorder with a static and kinetic cerebellar syndrome, dysarthria, vertical supranuclear gaze palsy and cognitive impairment. Brain MRI was normal. Abdominal ultrasonography was performed because of hypercholesterolemia and elevated transaminases and revealed hepatosplenomegaly, which in conjunction with other signs and symptoms, suggested the diagnosis of NPC. The diagnosis was confirmed by demonstration of lysosomal storage of unesterified cholesterol (filipin staining) and of a reduced rate of LDL-induced cholesterol esterification. Implication of the NPC1 gene was assessed by genetic complementation analysis. The phenotypic presentation of NPC is remarkably variable. The rarer adult-onset form has a slowly progressive course. Psychotic manifestations are often prominent and may precede neurologic symptoms. Exposure to neuroleptics delays the diagnosis of NPC. Psychotic manifestations associated with cerebellar syndrome, vertical supranuclear gaze palsy, and splenomegaly are very suggestive of NPC disease which can be reliably diagnosed on cultured skin fibroblasts by filipin staining.

  9. TorsinA dysfunction causes persistent neuronal nuclear pore defects.

    PubMed

    Pappas, Samuel S; Liang, Chun-Chi; Kim, Sumin; Rivera, CheyAnne O; Dauer, William T

    2018-02-01

    A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells

    PubMed Central

    Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.

    2015-01-01

    The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387

  11. Liability of physicians supervising nonphysician clinicians.

    PubMed

    Paterick, Barbara B; Waterhouse, Blake E; Paterick, Timothy E; Sanbar, Sandy S

    2014-01-01

    Physicians confront a variety of liability issues when supervising nonphysician clinicians (NPC) including: (1) direct liability resulting from a failure to meet the state-defined standards of supervision/collaboration with NPCs; (2) vicarious liability, arising from agency law, where physicians are held accountable for NPC clinical care that does not meet the national standard of care; and (3) responsibility for medical errors when the NPC and physician are co-employees of the corporate enterprise. Physician-NPC co-employee relationships are highlighted because they are new and becoming predominant in existing healthcare models. Because of their novelty, there is a paucity of judicial decisions determining liability for NPC errors in this setting. Knowledge of the existence of these risks will allow physicians to make informed decisions on what relationships they will enter with NPCs and how these relationships will be structured and monitored.

  12. Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin; Li, Qiaoqin; Zhang, Yong; Yang, Yufei; Cao, Zhi; Xiong, Shanxin

    2018-06-01

    A novel synthesis approach of N-doped porous carbon (NPC)/NiO composites possessing some honeycomb-shaped nanoporous carbon and plentiful NiO nanosheets is exploited. First NPC/Ni composites are achieved with NPC yield of 52.9% through a catalytic pyrolysis method, using coal-based polyaniline particles prepared by an in-situ polymerization method as a carbon and nitrogen source, and nickel particles as a catalyst, respectively. Next NPC/NiO composites are achieved unexpectedly with plentiful NiO nanosheets and N content of 1.00 wt% after a liquid oxidation process. In NPC/NiO composites, porous carbon mainly presents in the amorphous state, while the incorporated nitrogen mainly presents in the form of pyrrolic N (92.9 at.%) and oxidized N (7.1 at.%). Plentiful NiO nanosheets are embedded in the pores or on the NPC surface. 33.3 at.% Ni2O3 components exist in the surface of NiO nanosheets. NPC/NiO composites possess not only rich micropores, but also significant mesopores and nanoscale macropores. The BET specific surface area, BET average pore width and BJH adsorption average pore diameter are 627.5 m2/g, 2.0 nm and 5.1 nm, respectively. NPC/NiO composites demonstrate a high specific capacitance of 404.1 F/g at 1 A/g, and a good cycling stability maintaining high specific capacitance of 212.4 F/g (84.3% of the initial capacitance) at 5 A/g after 5000 cycles of charge and discharge, attributed to some honeycomb-shaped nanopores of carbon and large specific surface area of NiO nanosheets, and the synergistic effects between electric double-layer capacitance of NPC and pseudocapacitance of NiO. This study may provide a novel approach for the value-added applications of low-rank coal.

  13. Seroprevalence of IgA anti Epstein-Barr virus is high among family members of nasopharyngeal cancer patients and individuals presenting with chronic complaints in head and neck area

    PubMed Central

    Argy, Gabriella; Indrasari, Sagung Rai; Indrawati, Luh Putu Lusy; Paramita, Dewi Kartikawati; Jati, Theodola Baning Rahayu; Middeldorp, Jaap M.

    2017-01-01

    Epstein-Barr (EBV) infection and presence of a nasopharyngeal cancer (NPC) case in the family increases the risk of developing NPC. Aberrant anti-EBV immunoglobulin A (IgA) antibodies (EBV-IgA) may be present in the sera of non-cancer individuals and predict NPC. Limited studies report the presence of EBV-IgA antibodies within non-cancer individuals in Indonesia where the disease is prevalent. This study aimed at exploring whether EBV-IgA was found more frequently among first degree relatives of NPC patients and individuals presenting with chronic symptoms in the head and neck area compared to healthy controls. A total of 967 non-cancer subjects were recruited, including 509 family members of NPC cases, 196 individuals having chronic complaints in the head and neck region, and 262 healthy donors of the local blood bank. Sera were analyzed using a standardized peptide-based EBV-IgA ELISA. Overall, 61.6% of all individuals had anti-EBV IgA reactivity equal to or below cut off value (CoV). Seroreactivity above CoV was significantly higher in females (38.7%) compared to males (28.7%) (p = 0.001). Older individuals had more seroreactivity above CoV (42.5%) than the younger ones (26.4%) (p< 0.001). Seroprevalence was significantly higher in family members of NPC patients (41.7%), compared to 32.7% of individuals with chronic head and neck problems (p = 0.028) and 16.4% healthy blood donors (p< 0.001). As conclusion, this study showed a significant higher seroprevalence in healthy family members of NPC cases and subjects presenting with chronic symptoms in the head and neck area compared to healthy individuals from the general community. This finding indicates that both groups have elevated risk of developing NPC and may serve as targets for a regional NPC screening program. PMID:28800616

  14. Seroprevalence of IgA anti Epstein-Barr virus is high among family members of nasopharyngeal cancer patients and individuals presenting with chronic complaints in head and neck area.

    PubMed

    Hutajulu, Susanna Hilda; Fachiroh, Jajah; Argy, Gabriella; Indrasari, Sagung Rai; Indrawati, Luh Putu Lusy; Paramita, Dewi Kartikawati; Jati, Theodola Baning Rahayu; Middeldorp, Jaap M

    2017-01-01

    Epstein-Barr (EBV) infection and presence of a nasopharyngeal cancer (NPC) case in the family increases the risk of developing NPC. Aberrant anti-EBV immunoglobulin A (IgA) antibodies (EBV-IgA) may be present in the sera of non-cancer individuals and predict NPC. Limited studies report the presence of EBV-IgA antibodies within non-cancer individuals in Indonesia where the disease is prevalent. This study aimed at exploring whether EBV-IgA was found more frequently among first degree relatives of NPC patients and individuals presenting with chronic symptoms in the head and neck area compared to healthy controls. A total of 967 non-cancer subjects were recruited, including 509 family members of NPC cases, 196 individuals having chronic complaints in the head and neck region, and 262 healthy donors of the local blood bank. Sera were analyzed using a standardized peptide-based EBV-IgA ELISA. Overall, 61.6% of all individuals had anti-EBV IgA reactivity equal to or below cut off value (CoV). Seroreactivity above CoV was significantly higher in females (38.7%) compared to males (28.7%) (p = 0.001). Older individuals had more seroreactivity above CoV (42.5%) than the younger ones (26.4%) (p< 0.001). Seroprevalence was significantly higher in family members of NPC patients (41.7%), compared to 32.7% of individuals with chronic head and neck problems (p = 0.028) and 16.4% healthy blood donors (p< 0.001). As conclusion, this study showed a significant higher seroprevalence in healthy family members of NPC cases and subjects presenting with chronic symptoms in the head and neck area compared to healthy individuals from the general community. This finding indicates that both groups have elevated risk of developing NPC and may serve as targets for a regional NPC screening program.

  15. A GWAS meta-analysis and replication study identifies a novel locus within CLPTM1L/TERT associated with nasopharyngeal carcinoma in individuals of Chinese ancestry

    PubMed Central

    Yu, Kai; Chin, Yoon-Ming; Lou, Pei-Jen; Hsu, Wan-Lun; McKay, James D.; Chen, Chien-Jen; Chang, Yu-Sun; Chen, Li-Zhen; Chen, Ming-Yuan; Cui, Qian; Feng, Fu-Tuo; Feng, Qi-Shen; Guo, Yun-Miao; Jia, Wei-Hua; Khoo, Alan Soo-Beng; Liu, Wen-Sheng; Mo, Hao-Yuan; Pua, Kin-Choo; Teo, Soo-Hwang; Tse, Ka-Po; Xia, Yun-Fei; Zhang, Hongxin; Zhou, Gang-Qiao; Liu, Jian-Jun; Zeng, Yi-Xin; Hildesheim, Allan

    2015-01-01

    Background Genetic loci within the major histocompatibility complex (MHC) have been associated with nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-associated cancer, in several GWAS. Results outside this region have varied. Methods We conducted a meta-analysis of four NPC GWAS among Chinese individuals (2,152 cases;3,740 controls). 43 noteworthy findings outside the MHC region were identified and targeted for replication in a pooled analysis of 4 independent case-control studies across 3 regions in Asia (4,716 cases;5,379 controls). A meta-analysis that combined results from the initial GWA and replication studies was performed. Results In the combined meta-analysis, rs31489, located within the CLPTM1L/TERT region on chromosome 5p15.33, was strongly associated with NPC (OR=0.81;p-value 6.3*10−13). Our results also provide support for associations reported from published NPC GWAS - rs6774494 (p = 1.5*10−12;located in the MECOM gene region), rs9510787 (p = 5.0*10−10;located in the TNFRSF19 gene region), and rs1412829/rs4977756/rs1063192 (p = 2.8*10−8,p = 7.0*10−7,and p = 8.4*10−7 respectively;located in the CDKN2A/B gene region). Conclusion We have identified a novel association between genetic variation in the CLPTM1L/TERT region and NPC. Supporting our finding, rs31489 and other SNPs in this region have been reported to be associated with multiple cancer sites, candidate-based studies have reported associations between polymorphisms in this region and NPC, the TERT gene is important for telomere maintenance and has been reported to be over-expressed in NPC, and an EBV protein expressed in NPC (LMP1) modulates TERT expression/telomerase activity. Impact Our finding suggests that factors involved in telomere length maintenance are involved in NPC pathogenesis. PMID:26545403

  16. BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action

    PubMed Central

    Dach, Katharina; Bendt, Farina; Huebenthal, Ulrike; Giersiefer, Susanne; Lein, Pamela J.; Heuer, Heike; Fritsche, Ellen

    2017-01-01

    Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants causing developmental neurotoxicity (DNT) in humans and rodents. Their DNT effects are suspected to involve thyroid hormone (TH) signaling disruption. Here, we tested the hypothesis whether disturbance of neural progenitor cell (NPC) differentiation into the oligodendrocyte lineage (O4+ cells) by BDE-99 involves disruption of TH action in human and mouse (h,m)NPCs. Therefore, we quantified differentiation of NPCs into O4+ cells and measured their maturation via expression of myelin-associated genes (hMBP, mMog) in presence and absence of TH and/or BDE-99. T3 promoted O4+ cell differentiation in mouse, but not hNPCs, and induced hMBP/mMog gene expression in both species. BDE-99 reduced generation of human and mouse O4+ cells, but there is no indication for BDE-99 interfering with cellular TH signaling during O4+ cell formation. BDE-99 reduced hMBP expression due to oligodendrocyte reduction, but concentrations that did not affect the number of mouse O4+ cells inhibited TH-induced mMog transcription by a yet unknown mechanism. In addition, ascorbic acid antagonized only the BDE-99-dependent loss of human, not mouse, O4+ cells by a mechanism probably independent of reactive oxygen species. These data point to species-specific modes of action of BDE-99 on h/mNPC development into the oligodendrocyte lineage. PMID:28317842

  17. BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action.

    PubMed

    Dach, Katharina; Bendt, Farina; Huebenthal, Ulrike; Giersiefer, Susanne; Lein, Pamela J; Heuer, Heike; Fritsche, Ellen

    2017-03-20

    Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants causing developmental neurotoxicity (DNT) in humans and rodents. Their DNT effects are suspected to involve thyroid hormone (TH) signaling disruption. Here, we tested the hypothesis whether disturbance of neural progenitor cell (NPC) differentiation into the oligodendrocyte lineage (O4 + cells) by BDE-99 involves disruption of TH action in human and mouse (h,m)NPCs. Therefore, we quantified differentiation of NPCs into O4 + cells and measured their maturation via expression of myelin-associated genes (hMBP, mMog) in presence and absence of TH and/or BDE-99. T3 promoted O4 + cell differentiation in mouse, but not hNPCs, and induced hMBP/mMog gene expression in both species. BDE-99 reduced generation of human and mouse O4 + cells, but there is no indication for BDE-99 interfering with cellular TH signaling during O4 + cell formation. BDE-99 reduced hMBP expression due to oligodendrocyte reduction, but concentrations that did not affect the number of mouse O4 + cells inhibited TH-induced mMog transcription by a yet unknown mechanism. In addition, ascorbic acid antagonized only the BDE-99-dependent loss of human, not mouse, O4 + cells by a mechanism probably independent of reactive oxygen species. These data point to species-specific modes of action of BDE-99 on h/mNPC development into the oligodendrocyte lineage.

  18. Identification of potential serum markers for nasopharyngeal carcinoma from a xenografted mouse model using Cy-dye labeling combined with three-dimensional fractionation.

    PubMed

    Wu, Chih-Ching; Peng, Pei-Hua; Chang, Ya-Ting; Huang, Yu-Shan; Chang, Kai-Ping; Hao, Sheng-Po; Tsang, Ngan-Ming; Yeh, Chau-Ting; Chang, Yu-Sun; Yu, Jau-Song

    2008-09-01

    Nasopharyngeal carcinoma (NPC), one of the most common cancers in Southeast Asia, is commonly diagnosed late due to its deep location and vague symptoms. To identify biomarkers for improving NPC diagnosis, we established a proteomic platform for detecting aberrant serum proteins in nude mice bearing NPC xenografts. We first removed the three most abundant proteins from serum samples of tumor-bearing and control mice, and then labeled the samples with different fluorescent cyanine (Cy) dyes. The labeled serum proteins were then mixed equally and fractionated with ion-exchange chromatography followed by SDS-PAGE. Differentially expressed proteins were identified by in-gel tryptic digestion and MALDI-TOF MS. We identified peroxiredoxin 2 (Prx-II) and carbonic anhydrase 2 (CA-II) as being elevated in the xenograft mouse model compared to controls. Western blot analysis confirmed up-regulation of Prx-II and CA-II in plasma from five NPC patients, and ELISA showed that plasma Prx-II levels were significantly higher in NPC patients (n = 84) versus healthy controls (n = 90) (3.03 +/- 4.47 versus 1.90 +/- 2.74 microg/mL, p = 0.047). In conclusion, Cy dye labeling combined with three-dimensional fractionation is a feasible strategy for identifying differentially expressed serum proteins in an NPC xenograft model, and Prx-II may represent a potential NPC biomarker.

  19. The National Niemann-Pick Type C1 Disease Database: correlation of lipid profiles, mutations, and biochemical phenotypes

    PubMed Central

    Garver, William S.; Jelinek, David; Meaney, F. John; Flynn, James; Pettit, Kathleen M.; Shepherd, Glen; Heidenreich, Randall A.; Vockley, Cate M. Walsh; Castro, Graciela; Francis, Gordon A.

    2010-01-01

    Niemann-Pick type C1 disease (NPC1) is an autosomal recessive lysosomal storage disorder characterized by neonatal jaundice, hepatosplenomegaly, and progressive neurodegeneration. The present study provides the lipid profiles, mutations, and corresponding associations with the biochemical phenotype obtained from NPC1 patients who participated in the National NPC1 Disease Database. Lipid profiles were obtained from 34 patients (39%) in the survey and demonstrated significantly reduced plasma LDL cholesterol (LDL-C) and increased plasma triglycerides in the majority of patients. Reduced plasma HDL cholesterol (HDL-C) was the most consistent lipoprotein abnormality found in male and female NPC1 patients across age groups and occurred independent of changes in plasma triglycerides. A subset of 19 patients for whom the biochemical severity of known NPC1 mutations could be correlated with their lipid profile showed a strong inverse correlation between plasma HDL-C and severity of the biochemical phenotype. Gene mutations were available for 52 patients (59%) in the survey, including 52 different mutations and five novel mutations (Y628C, P887L, I923V, A1151T, and 3741_3744delACTC). Together, these findings provide novel information regarding the plasma lipoprotein changes and mutations in NPC1 disease, and suggest plasma HDL-C represents a potential biomarker of NPC1 disease severity. PMID:19744920

  20. Vestibular function in patients with Niemann-Pick type C disease.

    PubMed

    Bremova, Tatiana; Krafczyk, Siegbert; Bardins, Stanislavs; Reinke, Jörg; Strupp, Michael

    2016-11-01

    We investigated whether vestibular dysfunction may cause or contribute to postural imbalance and falls in patients with Niemann-Pick type C disease (NP-C). Eight patients with NP-C disease and 20 healthy controls were examined using the video-based head impulse test (vHIT) and caloric irrigation to investigate horizontal canal function as well as ocular- and cervical vestibular evoked myogenic potentials (o- and cVEMP), and binocular subjective visual vertical estimation (SVV) for otolith function, and static posturography. There were no significant differences in vestibulo-ocular gain, caloric excitability, o-/cVEMP measures or SVV between the two groups. Posturographic total sway path (tSP) and root mean square (RMS) were significantly higher in NP-C than in controls in 3 out of 4 conditions. The Romberg quotient (RQ) to assess the amount of visual stabilization was significantly lower in the NP-C than in the HC group. In contrast to other inherited metabolic disorders, such as Morbus Gaucher type 3, we did not find any evidence for an impairment of canal or otolith function in patients with NP-C as their cause of postural imbalance. Since RQ was low in NP-C patients, indicating proper sensory input, the observed increased postural sway is most likely due to a cerebellar dysfunction in NP-C, which may therefore, explain postural imbalance.

Top