Science.gov

Sample records for stem cells overexpressing

  1. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  2. Overexpression of facioscapulohumeral muscular dystrophy region gene 1 causes primary defects in myogenic stem cells.

    PubMed

    Xynos, Alexandros; Neguembor, Maria Victoria; Caccia, Roberta; Licastro, Danilo; Nonis, Alessandro; Di Serio, Clelia; Stupka, Elia; Gabellini, Davide

    2013-05-15

    Overexpression of facioscapulohumeral muscular dystrophy region gene 1 (FRG1) in mice, frogs and worms leads to muscular and vascular abnormalities. Nevertheless, the mechanism that follows FRG1 overexpression and finally leads to muscular defects is currently unknown. Here, we show that the earliest phenotype displayed by mice overexpressing FRG1 is a postnatal muscle-growth defect. Long before the development of muscular dystrophy, FRG1 mice also exhibit a muscle regeneration impairment. Ex vivo and in vivo experiments revealed that FRG1 overexpression causes myogenic stem cell activation and proliferative, clonogenic and differentiation defects. A comparative gene expression profiling of muscles from young pre-dystrophic wild-type and FRG1 mice identified differentially expressed genes in several gene categories and networks that could explain the emerging tissue and myogenic stem cell defects. Overall, our study provides new insights into the pathways regulated by FRG1 and suggests that muscle stem cell defects could contribute to the pathology of FRG1 mice.

  3. Overexpression of Rho-GDP-dissociation inhibitor-γ inhibits migration of neural stem cells.

    PubMed

    Wang, Jiao; Li, Xiao; Cheng, Hua; Wang, Kai; Lu, Wei; Wen, Tieqiao

    2013-11-01

    Neural stem cell (NSC) migration relies heavily on the regulation of actin and microtubule cytoskeletons by Rho GTPases, which are critical regulators of key steps during NSC migration. However, the migration mechanism remains unclear. Rho-GDP-dissociation inhibitor-γ (Rho-GDIγ) was identified as an important downregulator of the Rho family of GTPases, because of its ability to prevent nucleotide exchange and thus membrane association. This study investigates the role of Rho-GDIγ in neural stem cells migration. Our results indicate that the overexpression of Rho-GDIγ maintains NSCs in the stem cell state, meanwhile preventing NSC migration through inhibition of Rac1 expression, one of the Rho-family GTPases. This study provides the basis for further study of the molecular mechanism of NSC migration. Copyright © 2013 Wiley Periodicals, Inc.

  4. Ovarian cancer stem cell like side populations are enriched following chemotherapy and overexpress EZH2

    PubMed Central

    Rizzo, Siân; Hersey, Jenny M.; Mellor, Paul; Dai, Wei; Santos-Silva, Alessandra; Liber, Daniel; Luk, Louisa; Titley, Ian; Carden, Craig P; Box, Garry; Hudson, David L.; Kaye, Stanley B.; Brown, Robert

    2010-01-01

    Platinum-based chemotherapy, with cytoreductive surgery, is the cornerstone of treatment of advanced ovarian cancer, however acquired drug resistance is a major clinical obstacle. It has been proposed that subpopulations of tumour cells with stem-cell like properties, such as so-called side populations (SP) which over-express ABC drug-transporters, can sustain the growth of drug resistant tumour cells, leading to tumour recurrence following chemotherapy. The histone methyltransferase EZH2 is a key component of the Polycomb Repressive Complex 2 (PRC2) required for maintenance of a stem cell state and overexpression has been implicated in drug resistance and shorter survival of ovarian cancer patients. We observe higher percentage SP in ascites from patients that have relapsed following chemotherapy compared to chemonaive patients, consistent with selection for this subpopulation during platinum-based chemotherapy. Furthermore, ABCB1 (P-glycoprotein) and EZH2 are consistently over-expressed in SP compared to non-SP from patients’ tumour cells. SiRNA knockdown of EZH2 leads to loss of SP in ovarian tumour models, reduced anchorage-independent growth and reduced tumour growth in vivo. Together these data support a key role for EZH2 in the maintenance of a drug-resistant tumour-sustaining subpopulation of cells in ovarian cancers undergoing chemotherapy. As such, EZH2 is an important target for anticancer drug development. PMID:21216927

  5. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure.

    PubMed

    Zheng, Yu-Bao; Zhang, Xiao-Hong; Huang, Zhan-Lian; Lin, Chao-Shuang; Lai, Jing; Gu, Yu-Rong; Lin, Bin-Liang; Xie, Dong-Ying; Xie, Shi-Bin; Peng, Liang; Gao, Zhi-Liang

    2012-01-01

    Uncontrolled hepatic immunoactivation is regarded as the primary pathological mechanism of fulminant hepatic failure (FHF). The major acute-phase mediators associated with FHF, including IL-1β, IL-6, and TNF-α, impair the regeneration of liver cells and stem cell grafts. Amniotic-fluid-derived mesenchymal stem cells (AF-MSCs) have the capacity, under specific conditions, to differentiate into hepatocytes. Interleukin-1-receptor antagonist (IL-1Ra) plays an anti-inflammatory and anti-apoptotic role in acute and chronic inflammation, and has been used in many experimental and clinical applications. In the present study, we implanted IL-1Ra-expressing AF-MSCs into injured liver via the portal vein, using D-galactosamine-induced FHF in a rat model. IL-1Ra expression, hepatic injury, liver regeneration, cytokines (IL-1β, IL-6), and animal survival were assessed after cell transplantation. Our results showed that AF-MSCs over-expressing IL-1Ra prevented liver failure and reduced mortality in rats with FHF. These animals also exhibited improved liver function and increased survival rates after injection with these cells. Using green fluorescent protein as a marker, we demonstrated that the engrafted cells and their progeny were incorporated into injured livers and produced albumin. This study suggests that AF-MSCs genetically modified to over-express IL-1Ra can be implanted into the injured liver to provide a novel therapeutic approach to the treatment of FHF.

  6. Overexpression of TIMP-1 in embryonic stem cells attenuates adverse cardiac remodeling following myocardial infarction.

    PubMed

    Glass, Carley; Singla, Dinender K

    2012-01-01

    Transplanted embryonic stem (ES) cells, following myocardial infarction (MI), contribute to limited cardiac repair and regeneration with improved function. Therefore, novel strategies are still needed to understand the effects of genetically modified transplanted stem cells on cardiac remodeling. The present study evaluates whether transplanted mouse ES cells overexpressing TIMP-1, an antiapoptotic and antifibrotic protein, can enhance cardiac myocyte differentiation, inhibit native cardiac myocyte apoptosis, reduce fibrosis, and improve cardiac function in the infarcted myocardium. MI was produced in C57BL/6 mice by coronary artery ligation. TIMP-1-ES cells, ES cells, or culture medium (control) were transplanted into the peri-infarct region of the heart. Immunofluorescence, TUNEL staining, caspase-3 activity, ELISAs, histology, and echocardiography were used to identify newly differentiated cardiac myocytes and assess apoptosis, fibrosis, and heart function. Two weeks post-MI, significantly (p < 0.05) enhanced engraftment and cardiac myocyte differentiation was observed in TIMP-1-ES cell-transplanted hearts compared with hearts transplanted with ES cells and control. Hearts transplanted with TIMP-1-ES cells demonstrated a reduction in apoptosis as well as an increase (p< 0.05) in p-Akt activity compared with ES cells or culture media controls. Infarct size and interstitial and vascular fibrosis were significantly (p< 0.05) decreased in the TIMP-1-ES cell group compared to controls. Furthermore, MMP-9, a key profibrotic protein, was significantly (p < 0.01) reduced following TIMP-1-ES cell transplantation. Echocardiography data showed fractional shortening and ejection fraction were significantly (p< 0.05) improved in the TIMP-1-ES cell group compared with respective controls. Our data suggest that transplanted ES cells overexpressing TIMP-1 attenuate adverse myocardial remodeling and improve cardiac function compared with ES cells that may have therapeutic

  7. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium.

    PubMed

    Zhang, Dongsheng; Fan, Guo-Chang; Zhou, Xiaoyang; Zhao, Tiemin; Pasha, Zeeshan; Xu, Meifeng; Zhu, Yi; Ashraf, Muhammad; Wang, Yigang

    2008-02-01

    Bone marrow mesenchymal stem cells (MSCs) participate in myocardial repair following myocardial infarction. However, their in vivo reparative capability is limited due to lack of their survival in the infarcted myocardium. To overcome this limitation, we genetically engineered male rat MSCs overexpressing CXCR4 in order to maximize the effect of stromal cell-derived factor-1alpha (SDF-1alpha) for cell migration and regeneration. MSCs were isolated from adult male rats and cultured. Adenoviral transduction was carried out to over-express either CXCR4/green fluorescent protein (Ad-CXCR4/GFP) or Ad-null/GFP alone (control). Flow cytometry was used to identify and isolate GFP/CXCR4 over-expressing MSCs for transplantation. Female rats were assigned to one of four groups (n=8 each) to receive GFP-transduced male MSCs (2 x 10(6)) via tail vein injection 3 days after ligation of the left anterior descending (LAD) coronary artery: GFP-transduced MSCs (Ad-null/GFP-MSCs, group 1) or MSCs over-expressing CXCR4/GFP (Ad-CXCR4/GFP-MSCs, group 2), or Ad-CXCR4/GFP-MSCs plus SDF-1alpha (50 ng/microl) (Ad-CXCR4/GFP-MSCs/SDF-1alpha, group 3), or Ad-miRNA targeting CXCR4 plus SDF-1alpha (Ad-miRNA/GFP-MSCs+SDF-1alpha treatment, group 4). Cardiodynamic data were obtained 4 weeks after induction of regional myocardial infarction (MI) using echocardiography after which hearts were harvested for immunohistochemical studies. The migration of GFP and Y-chromosome positive cells increased significantly in the peri- and infarct areas of groups 2 and 3 compared to control group (p<0.05), or miRNA-CXCR4 group (p<0.01). The number of CXCR4 positive cells in groups 2, 3 was intimately associated with angiogenesis and myogenesis. MSCs engraftment was blocked by pretreatment with miRNA (group 4). Cardiac function was significantly improved in rats receiving MSCs over-expressing CXCR4 alone or with SDF-1alpha. The up-regulation of matrix metalloproteinases (MMPs) by CXCR4 overexpressing MSCs perhaps

  8. Paracrine effect of CXCR4-overexpressing mesenchymal stem cells on ischemic heart injury.

    PubMed

    Wu, Shi-Zheng; Li, Ying-Lan; Huang, Wei; Cai, Wen-Feng; Liang, Jialiang; Paul, Christian; Jiang, Lin; Wu, Zhi-Chao; Xu, Meifeng; Zhu, Ping; Wang, Yigang

    2017-03-01

    It has been reported that CXCR4-overexpressing mesenchymal stem cells (MSC(CX4) ) can repair heart tissue post myocardial infarction. This study aims to investigate the MSCCX4-derived paracrine cardio-protective signaling in the presence of myocardial infarction. Mesenchymal stem cells (MSCs) were divided into 3 groups: MSC only, MSC(CX4) , and CXCR4 gene-specific siRNA-transduced MSC. Mesenchymal stem cells were exposed to hypoxia, and then MSCs-conditioned culture medium was incubated with neonatal and adult cardiomyocytes, respectively. Cell proliferation-regulating genes were assessed by real-time polymerase chain reaction (RT-PCR). In vitro: The number of cardiomyocytes undergoing DNA synthesis, cytokinesis, and mitosis was increased to a greater extent in MSC(CX4) medium-treated group than control group, while this proproliferative effect was reduced in CXCR4 gene-specific siRNA-transduced MSC-treated cells. Accordingly, the maximal enhancement of vascular endothelial growth factor, cyclin 2, and transforming growth factor-β2 was observed in hypoxia-exposed MSC(CX4) . In vivo: MSCs were labeled with enhanced green fluorescent protein (EGFP) and engrafted into injured myocardium in rats. The number of EGFP and CD31 positive cells in the MSC(CX4) group was significantly increased than other 2 groups, associated with the reduced left ventricular (LV) fibrosis, the increased LV free wall thickness, the enhanced angiogenesis, and the improved contractile function. CXCR4 overexpression can mobilize MSCs into ischemic area, whereby these cells can promoted angiogenesis and alleviate LV remodeling via paracrine signaling mechanism. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells

    PubMed Central

    Lu, Gang; Haider, Husnain Kh; Porollo, Aleksey; Ashraf, Muhammad

    2010-01-01

    Aims We previously reported that preconditioning of stem cells with insulin-like growth factor-1 (IGF-1) translocated connexin-43 (Cx-43) into mitochondria, causing cytoprotection. We posit that these preconditioning effects could be simulated by mitochondria-specific overexpression of Cx-43. Methods and results During IGF-1-induced preconditioning of C57black/6 mouse bone marrow stem cell antigen-1+ (Sca-1+) cells, Cx-43 was mainly translocated onto the mitochondrial inner membrane, which was abrogated by an extracellular signal-regulated kinases 1 and 2 (ERK1/2) blocker PD98059. To investigate the role of mitochondrial Cx-43, we successfully designed a vector coding for full-length mouse Cx-43 with a mitochondria-targeting sequence (mito-Cx-43) and cloned into a shuttle vector (pShuttle-IRES-hrGFP-1) for mitochondria-specific overexpression of Cx-43 (mito-Cx-43). Sca-1+ cells with mito-Cx-43 reduced cytosolic accumulation of cytochrome c, lowered caspase-3 activity, and improved survival during index oxygen–glucose deprivation as determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling and lactate dehydrogenase assays. Computational analysis revealed a B-cell lymphoma-2 (Bcl-2) homology domain-3 (BH3) motif in Cx-43 with a conserved pattern of amino acids consistent with the Bcl-2 family that regulated cytochrome c release. Moreover, computational secondary structure prediction indicated an extended α-helix in this region, a known condition for BH3-driven protein–protein interactions. Conclusion Cx-43 translocation into mitochondria during preconditioning was ERK1/2-dependent. Expression of mito-Cx-43 simulated the cytoprotective effects of preconditioning in stem cells. Structural features of Cx-43 were shared with the Bcl-2 family as determined by computational analysis. PMID:20833648

  10. Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells.

    PubMed

    Lu, Gang; Haider, Husnain Kh; Porollo, Aleksey; Ashraf, Muhammad

    2010-11-01

    We previously reported that preconditioning of stem cells with insulin-like growth factor-1 (IGF-1) translocated connexin-43 (Cx-43) into mitochondria, causing cytoprotection. We posit that these preconditioning effects could be simulated by mitochondria-specific overexpression of Cx-43. During IGF-1-induced preconditioning of C57black/6 mouse bone marrow stem cell antigen-1(+) (Sca-1(+)) cells, Cx-43 was mainly translocated onto the mitochondrial inner membrane, which was abrogated by an extracellular signal-regulated kinases 1 and 2 (ERK1/2) blocker PD98059. To investigate the role of mitochondrial Cx-43, we successfully designed a vector coding for full-length mouse Cx-43 with a mitochondria-targeting sequence (mito-Cx-43) and cloned into a shuttle vector (pShuttle-IRES-hrGFP-1) for mitochondria-specific overexpression of Cx-43 (mito-Cx-43). Sca-1(+) cells with mito-Cx-43 reduced cytosolic accumulation of cytochrome c, lowered caspase-3 activity, and improved survival during index oxygen-glucose deprivation as determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling and lactate dehydrogenase assays. Computational analysis revealed a B-cell lymphoma-2 (Bcl-2) homology domain-3 (BH3) motif in Cx-43 with a conserved pattern of amino acids consistent with the Bcl-2 family that regulated cytochrome c release. Moreover, computational secondary structure prediction indicated an extended α-helix in this region, a known condition for BH3-driven protein-protein interactions. Cx-43 translocation into mitochondria during preconditioning was ERK1/2-dependent. Expression of mito-Cx-43 simulated the cytoprotective effects of preconditioning in stem cells. Structural features of Cx-43 were shared with the Bcl-2 family as determined by computational analysis.

  11. Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency.

    PubMed

    Tsai, Steven C; Chang, David F; Hong, Chang-Mu; Xia, Ping; Senadheera, Dinithi; Trump, Lisa; Mishra, Suparna; Lutzko, Carolyn

    2014-06-15

    Our knowledge of the molecular mechanisms underlying human embryonic stem cell (hESC) self-renewal and differentiation is incomplete. The level of octamer-binding transcription factor 4 (Oct4), a critical regulator of pluripotency, is precisely controlled in mouse embryonic stem cells. However, studies of human OCT4 are often confounded by the presence of three isoforms and six expressed pseudogenes, which has complicated the interpretation of results. Using an inducible lentiviral overexpression and knockdown system to manipulate OCT4A above or below physiological levels, we specifically examine the functional role of the OCT4A isoform in hESC. (We also designed and generated a comparable series of vectors, which were not functional, for the overexpression and knockdown of OCT4B.) We show that specific knockdown of OCT4A results in hESC differentiation, as indicated by morphology changes, cell surface antigen expression, and upregulation of ectodermal genes. In contrast, inducible overexpression of OCT4A in hESC leads to a transient instability of the hESC phenotype, as indicated by changes in morphology, cell surface antigen expression, and transcriptional profile, that returns to baseline within 5 days. Interestingly, sustained expression of OCT4A past 5 days enhances hESC cloning efficiency, suggesting that higher levels of OCT4A can support self-renewal. Overall, our results indicate that high levels of OCT4A increase hESC cloning efficiency and do not induce differentiation (whereas OCT4B expression cannot be induced in hESC), highlighting the importance of isoform-specific studies in a stable and inducible expression system for human OCT4. Additionally, we demonstrate the utility of an efficient method for conditional gene expression in hESC.

  12. Over-expression of HSP47 augments mouse embryonic stem cell smooth muscle differentiation and chemotaxis.

    PubMed

    Wong, Mei Mei; Yin, Xiaoke; Potter, Claire; Yu, Baoqi; Cai, Hao; Di Bernardini, Elisabetta; Xu, Qingbo

    2014-01-01

    In the recent decade, embryonic stem cells (ESC) have emerged as an attractive cell source of smooth muscle cells (SMC) for vascular tissue engineering owing to their unlimited self-renewal and differentiation capacities. Despite their promise in therapy, their efficacy is still hampered by the lack of definitive SMC differentiation mechanisms and difficulties in successful trafficking of the ESC towards a site of injury or target tissue. Heat shock protein 47 (HSP47) is a 47-kDa molecular chaperone that is required for the maturation of various types of collagen and has been shown to be a critical modulator of different pathological and physiological processes. To date, the role of HSP47 on ESC to SMC differentiation or ESC chemotaxis is not known and may represent a potential molecular approach by which ESC can be manipulated to increase their efficacy in clinic. We provide evidence that HSP47 is highly expressed during ESC differentiation into the SMC lineage and that HSP47 reduction results in an attenuation of the differentiation. Our experiments using a HSP47 plasmid transfection system show that gene over-expression is sufficient to induce ESC-SMC differentiation, even in the absence of exogenous stimuli. Furthermore, HSP47 over-expression in ESC also increases their chemotaxis and migratory responses towards a panel of chemokines, likely via the upregulation of chemokine receptors. Our findings provide direct evidence of induced ESC migration and differentiation into SMC via the over-expression of HSP47, thus identifying a novel approach of molecular manipulation that can potentially be exploited to improve stem cell therapy for vascular repair and regeneration.

  13. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells.

    PubMed

    Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi

    2017-06-01

    The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem

  14. Pim1 Kinase Overexpression Enhances ckit(+) Cardiac Stem Cell Cardiac Repair Following Myocardial Infarction in Swine.

    PubMed

    Kulandavelu, Shathiyah; Karantalis, Vasileios; Fritsch, Julia; Hatzistergos, Konstantinos E; Loescher, Viky Y; McCall, Frederic; Wang, Bo; Bagno, Luiza; Golpanian, Samuel; Wolf, Ariel; Grenet, Justin; Williams, Adam; Kupin, Aaron; Rosenfeld, Aaron; Mohsin, Sadia; Sussman, Mark A; Morales, Azorides; Balkan, Wayne; Hare, Joshua M

    2016-12-06

    Pim1 kinase plays an important role in cell division, survival, and commitment of precursor cells towards a myocardial lineage, and overexpression of Pim1 in ckit(+) cardiac stem cells (CSCs) enhances their cardioreparative properties. The authors sought to validate the effect of Pim1-modified CSCs in a translationally relevant large animal preclinical model of myocardial infarction (MI). Human cardiac stem cells (hCSCs, n = 10), hckit(+) CSCs overexpressing Pim1 (Pim1(+); n = 9), or placebo (n = 10) were delivered by intramyocardial injection to immunosuppressed Yorkshire swine (n = 29) 2 weeks after MI. Cardiac magnetic resonance and pressure volume loops were obtained before and after cell administration. Whereas both hCSCs reduced MI size compared to placebo, Pim1(+) cells produced a ∼3-fold greater decrease in scar mass at 8 weeks post-injection compared to hCSCs (-29.2 ± 2.7% vs. -8.4 ± 0.7%; p < 0.003). Pim1(+) hCSCs also produced a 2-fold increase of viable mass compared to hCSCs at 8 weeks (113.7 ± 7.2% vs. 65.6 ± 6.8%; p <0.003), and a greater increase in regional contractility in both infarct and border zones (both p < 0.05). Both CSC types significantly increased ejection fraction at 4 weeks but this was only sustained in the Pim1(+) group at 8 weeks compared to placebo. Both hCSC and Pim1(+) hCSC treatment reduced afterload (p = 0.02 and p = 0.004, respectively). Mechanoenergetic recoupling was significantly greater in the Pim1(+) hCSC group (p = 0.005). Pim1 overexpression enhanced the effect of intramyocardial delivery of CSCs to infarcted porcine hearts. These findings provide a rationale for genetic modification of stem cells and consequent translation to clinical trials. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Zou, Defeng; Chen, Yi; Han, Yaxin; Lv, Chen; Tu, Guanjun

    2014-06-15

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesenchymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced in bone marrow-derived mesenchymal stem cells compared with the other cell types. We constructed a lentiviral vector overexpressing miR-124 and transfected it into bone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markers β-III tubulin and microtubule-associated protein-2 were significantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These results suggest that miR-124 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into neurons. Our findings should facilitate the development of novel strategies for enhancing the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  16. The deubiquitinase USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis.

    PubMed

    Fraile, Julia M; Campos-Iglesias, Diana; Rodríguez, Francisco; Español, Yaiza; Freije, José M P

    2016-11-15

    Ubiquitin-Specific Proteases (USPs) are deubiquitinating enzymes frequently deregulated in human malignancies. Here, we show that USP54 is overexpressed in intestinal stem cells and demonstrate that its downregulation in colorectal carcinoma cells impedes tumorigenesis. We have generated mutant mice deficient for this deubiquitinase, which are viable and fertile, and protected against chemically-induced colorectal carcinoma. Furthermore, we show that USP54 is upregulated in human colon cancer and associates with poor prognosis. In agreement with these results, Usp54 downregulation in mouse melanoma cells inhibits lung metastasis formation. Collectively, this work has uncovered the pro-tumorigenic properties of USP54, highlighting the importance of deubiquitinating enzymes as promising targets for the development of specific anti-cancer therapies.

  17. The deubiquitinase USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis

    PubMed Central

    Fraile, Julia M.; Campos-Iglesias, Diana; Rodríguez, Francisco; Español, Yaiza; Freije, José M.P.

    2016-01-01

    Ubiquitin-Specific Proteases (USPs) are deubiquitinating enzymes frequently deregulated in human malignancies. Here, we show that USP54 is overexpressed in intestinal stem cells and demonstrate that its downregulation in colorectal carcinoma cells impedes tumorigenesis. We have generated mutant mice deficient for this deubiquitinase, which are viable and fertile, and protected against chemically-induced colorectal carcinoma. Furthermore, we show that USP54 is upregulated in human colon cancer and associates with poor prognosis. In agreement with these results, Usp54 downregulation in mouse melanoma cells inhibits lung metastasis formation. Collectively, this work has uncovered the pro-tumorigenic properties of USP54, highlighting the importance of deubiquitinating enzymes as promising targets for the development of specific anti-cancer therapies. PMID:27769071

  18. Overexpression of hypoxia-inducible factor 1 alpha improves immunomodulation by dental mesenchymal stem cells.

    PubMed

    Martinez, Victor G; Ontoria-Oviedo, Imelda; Ricardo, Carolina P; Harding, Sian E; Sacedon, Rosa; Varas, Alberto; Zapata, Agustin; Sepulveda, Pilar; Vicente, Angeles

    2017-09-29

    Human dental mesenchymal stem cells (MSCs) are considered as highly accessible and attractive MSCs for use in regenerative medicine, yet some of their features are not as well characterized as other MSCs. Hypoxia-preconditioning and hypoxia-inducible factor 1 (HIF-1) alpha overexpression significantly improves MSC therapeutics, but the mechanisms involved are not fully understood. In the present study, we characterize immunomodulatory properties of dental MSCs and determine changes in their ability to modulate adaptive and innate immune populations after HIF-1 alpha overexpression. Human dental MSCs were stably transduced with green fluorescent protein (GFP-MSCs) or GFP-HIF-1 alpha lentivirus vectors (HIF-MSCs). A hypoxic-like metabolic profile was confirmed by mitochondrial and glycolysis stress test. Capacity of HIF-MSCs to modulate T-cell activation, dendritic cell differentiation, monocyte migration, and polarizations towards macrophages and natural killer (NK) cell lytic activity was assessed by a number of functional assays in co-cultures. The expression of relevant factors were determined by polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). While HIF-1 alpha overexpression did not modify the inhibition of T-cell activation by MSCs, HIF-MSCs impaired dendritic cell differentiation more efficiently. In addition, HIF-MSCs showed a tendency to induce higher attraction of monocytes, which differentiate into suppressor macrophages, and exhibited enhanced resistance to NK cell-mediated lysis, which supports the improved therapeutic capacity of HIF-MSCs. HIF-MSCs also displayed a pro-angiogenic profile characterized by increased expression of CXCL12/SDF1 and CCL5/RANTES and complete loss of CXCL10/IP10 transcription. Immunomodulation and expression of trophic factors by dental MSCs make them perfect candidates for cell therapy. Overexpression of HIF-1 alpha enhances these features and increases their resistance to allogenic NK

  19. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    PubMed Central

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  20. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  1. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    PubMed

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future.

  2. Preclinical evaluation of mesenchymal stem cells overexpressing VEGF to treat critical limb ischemia

    PubMed Central

    Beegle, Julie R; Magner, Nataly Lessa; Kalomoiris, Stefanos; Harding, Aja; Zhou, Ping; Nacey, Catherine; White, Jeannine Logan; Pepper, Karen; Gruenloh, William; Annett, Geralyn; Nolta, Jan A; Fierro, Fernando A

    2016-01-01

    Numerous clinical trials are utilizing mesenchymal stem cells (MSC) to treat critical limb ischemia, primarily for their ability to secrete signals that promote revascularization. These cells have demonstrated clinical safety, but their efficacy has been limited, possibly because these paracrine signals are secreted at subtherapeutic levels. In these studies the combination of cell and gene therapy was evaluated by engineering MSC with a lentivirus to overexpress vascular endothelial growth factor (VEGF). To achieve clinical compliance, the number of viral insertions was limited to 1–2 copies/cell and a constitutive promoter with demonstrated clinical safety was used. MSC/VEGF showed statistically significant increases in blood flow restoration as compared with sham controls, and more consistent improvements as compared with nontransduced MSC. Safety of MSC/VEGF was assessed in terms of genomic stability, rule-out tumorigenicity, and absence of edema or hemangiomas in vivo. In terms of retention, injected MSC/VEGF showed a steady decline over time, with a very small fraction of MSC/VEGF remaining for up to 4.5 months. Additional safety studies completed include absence of replication competent lentivirus, sterility tests, and absence of VSV-G viral envelope coding plasmid. These preclinical studies are directed toward a planned phase 1 clinical trial to treat critical limb ischemia. PMID:27610394

  3. Mesenchymal stem cells overexpressing CXCR4 attenuate remodeling of postmyocardial infarction by releasing matrix metalloproteinase-9.

    PubMed

    Huang, Wei; Wang, Tao; Zhang, Dongsheng; Zhao, Tiemin; Dai, Bo; Ashraf, Atif; Wang, Xiaohong; Xu, Meifeng; Millard, Ronald W; Fan, Guo-Chang; Ashraf, Muhammad; Yu, Xi-Yong; Wang, Yigang

    2012-03-20

    Myocardial infarction (MI) results in loss of myofibers in the ischemic zone of the heart, followed by scar formation. These factors increase barriers to mobilization of mesenchymal stem cells (MSC), thereby impeding their effectiveness in cardiac repair. This study examined MSC overexpressing CXCR4 (MSC(CX4)) to determine penetration into infarcted myocardium by releasing collagen degrading enzyme, matrix metalloproteinase-9 (MMP-9). In vitro, mouse MSC were utilized, including MSC using adenoviral transduction, to express CXCR4/green fluorescent protein (GFP) (MSC(CX4)), Null/GFP (MSC(Null)), MSC treated with siRNA targeting CXCR4 (MSC(siR)), MSC treated with control siRNA(MSC(Con-siR)), MSC(CX4) treated with siRNA targeting MMP-9 (MSC(CX4-siRMP9)) and MMP-14 (MSC(CX4-siRMP14)), MSC derived from MMP-9 knockout mouse with adenoviral transduction for GFP (MSC(MP9-)), or MSC(MP9-) plus overexpressing CXCR4 (MSC(MP9-CX4)). The ability to cross the basement membrane was evaluated in all MSC using a trans-collagen gel invasion assay. The CXCR4 and MMP expression were analyzed by Western blot. In vivo, MSC with various treatments were infused into mice via tail vein injections 7 days after MI. Echocardiography was performed before harvesting hearts for analysis at 4 weeks after MSC injection. Both in vitro and in vivo studies demonstrated upregulation of MMP-9 induced by MSC(CX4), promoting increased GFP(+) cell migration into the infarcted area in comparison to control group. This enhanced response was associated with reduced left ventricular (LV) fibrosis, increased LV free wall thickness, angiogenesis, and improved LV function. Under hypoxic conditions, MMP-9 is upregulated in MSC(CX4), thus facilitating cross of the basement membrane, resulting in an improved remodeling of post-MI tissue.

  4. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice.

    PubMed

    Sakata, Hiroyuki; Niizuma, Kuniyasu; Wakai, Takuma; Narasimhan, Purnima; Maier, Carolina M; Chan, Pak H

    2012-09-01

    The harsh host brain microenvironment caused by production of reactive oxygen species after ischemic reperfusion injury offers a significant challenge to survival of transplanted neural stem cells (NSCs) after ischemic stroke. Copper/zinc-superoxide dismutase (SOD1) is a specific antioxidant enzyme that counteracts superoxide anions. We have investigated whether genetic manipulation to overexpress SOD1 enhances survival of grafted stem cells and accelerates amelioration of ischemic stroke. NSCs genetically modified to overexpress or downexpress SOD1 were administered intracerebrally 2 days after transient middle cerebral artery occlusion. Histological and behavioral tests were examined from Days 0 to 28 after stroke. Overexpression of SOD1 suppressed production of superoxide anions after ischemic reperfusion injury and reduced NSC death after transplantation. In contrast, downexpression of SOD1 promoted superoxide generation and increased oxidative stress-mediated NSC death. Transplantation of SOD1-overexpressing NSCs enhanced angiogenesis in the ischemic border zone through upregulation of vascular endothelial growth factor. Moreover, grafted SOD1-overexpressing NSCs reduced infarct size and improved behavioral performance compared with NSCs that were not genetically modified. Our findings reveal a strong involvement of SOD1 expression in NSC survival after ischemic reperfusion injury. We propose that conferring antioxidant properties on NSCs by genetic manipulation of SOD1 is a potential approach for enhancing the effectiveness of cell transplantation therapy in ischemic stroke.

  5. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells

    SciTech Connect

    Yamada, Yoji; Sakurada, Kazuhiro; Takeda, Yukiji; Gojo, Satoshi; Umezawa, Akihiro . E-mail: umezawa@1985.jukuin.keio.ac.jp

    2007-02-15

    Bone marrow-derived stromal cells can give rise to cardiomyocytes as well as adipocytes, osteocytes, and chondrocytes in vitro. The existence of mesenchymal stem cells has been proposed, but it remains unclear if a single-cell-derived stem cell stochastically commits toward a cardiac lineage. By single-cell marking, we performed a follow-up study of individual cells during the differentiation of 9-15c mesenchymal stromal cells derived from bone marrow cells. Three types of cells, i.e., cardiac myoblasts, cardiac progenitors and multipotent stem cells were differentiated from a single cell, implying that cardiomyocytes are generated stochastically from a single-cell-derived stem cell. We also demonstrated that overexpression of Csx/Nkx2.5 and GATA4, precardiac mesodermal transcription factors, enhanced cardiomyogenic differentiation of 9-15c cells, and the frequency of cardiomyogenic differentiation was increased by co-culturing with fetal cardiomyocytes. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 behaved like cardiac transient amplifying cells, and still retained their plasticity in vivo.

  6. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS

    PubMed Central

    Barreyro, Laura; Will, Britta; Bartholdy, Boris; Zhou, Li; Todorova, Tihomira I.; Stanley, Robert F.; Ben-Neriah, Susana; Montagna, Cristina; Parekh, Samir; Pellagatti, Andrea; Boultwood, Jacqueline; Paietta, Elisabeth; Ketterling, Rhett P.; Cripe, Larry; Fernandez, Hugo F.; Greenberg, Peter L.; Tallman, Martin S.; Steidl, Christian; Mitsiades, Constantine S.; Verma, Amit

    2012-01-01

    Cellular and interpatient heterogeneity and the involvement of different stem and progenitor compartments in leukemogenesis are challenges for the identification of common pathways contributing to the initiation and maintenance of acute myeloid leukemia (AML). Here we used a strategy of parallel transcriptional analysis of phenotypic long-term hematopoietic stem cells (HSCs), short-term HSCs, and granulocyte-monocyte progenitors from individuals with high-risk (−7/7q−) AML and compared them with the corresponding cell populations from healthy controls. This analysis revealed dysregulated expression of 11 genes, including IL-1 receptor accessory protein (IL1RAP), in all leukemic stem and progenitor cell compartments. IL1RAP protein was found to be overexpressed on the surface of HSCs of AML patients, and marked cells with the −7/7q− anomaly. IL1RAP was also overexpressed on HSCs of patients with normal karyotype AML and high-risk myelodysplastic syndrome, suggesting a pervasive role in different disease subtypes. High IL1RAP expression was independently associated with poor overall survival in 3 independent cohorts of AML patients (P = 2.2 × 10−7). Knockdown of IL1RAP decreased clonogenicity and increased cell death of AML cells. Our study identified genes dysregulated in stem and progenitor cells in −7/7q− AML, and suggests that IL1RAP may be a promising therapeutic and prognostic target in AML and high-risk myelodysplastic syndrome. PMID:22723552

  7. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS.

    PubMed

    Barreyro, Laura; Will, Britta; Bartholdy, Boris; Zhou, Li; Todorova, Tihomira I; Stanley, Robert F; Ben-Neriah, Susana; Montagna, Cristina; Parekh, Samir; Pellagatti, Andrea; Boultwood, Jacqueline; Paietta, Elisabeth; Ketterling, Rhett P; Cripe, Larry; Fernandez, Hugo F; Greenberg, Peter L; Tallman, Martin S; Steidl, Christian; Mitsiades, Constantine S; Verma, Amit; Steidl, Ulrich

    2012-08-09

    Cellular and interpatient heterogeneity and the involvement of different stem and progenitor compartments in leukemogenesis are challenges for the identification of common pathways contributing to the initiation and maintenance of acute myeloid leukemia (AML). Here we used a strategy of parallel transcriptional analysis of phenotypic long-term hematopoietic stem cells (HSCs), short-term HSCs, and granulocyte-monocyte progenitors from individuals with high-risk (-7/7q-) AML and compared them with the corresponding cell populations from healthy controls. This analysis revealed dysregulated expression of 11 genes, including IL-1 receptor accessory protein (IL1RAP), in all leukemic stem and progenitor cell compartments. IL1RAP protein was found to be overexpressed on the surface of HSCs of AML patients, and marked cells with the -7/7q- anomaly. IL1RAP was also overexpressed on HSCs of patients with normal karyotype AML and high-risk myelodysplastic syndrome, suggesting a pervasive role in different disease subtypes. High IL1RAP expression was independently associated with poor overall survival in 3 independent cohorts of AML patients (P = 2.2 × 10(-7)). Knockdown of IL1RAP decreased clonogenicity and increased cell death of AML cells. Our study identified genes dysregulated in stem and progenitor cells in -7/7q- AML, and suggests that IL1RAP may be a promising therapeutic and prognostic target in AML and high-risk myelodysplastic syndrome.

  8. Integrin α4 Overexpression on Rat Mesenchymal Stem Cells Enhances Transmigration and Reduces Cerebral Embolism After Intracarotid Injection.

    PubMed

    Cui, Li-Li; Nitzsche, Franziska; Pryazhnikov, Evgeny; Tibeykina, Marina; Tolppanen, Laura; Rytkönen, Jussi; Huhtala, Tuulia; Mu, Jing-Wei; Khiroug, Leonard; Boltze, Johannes; Jolkkonen, Jukka

    2017-10-01

    Very late antigen-4 (integrin α4β1)/vascular cell adhesion molecule-1 mediates leukocyte trafficking and transendothelial migration after stroke. Mesenchymal stem cells (MSCs) typically express integrin β1 but insufficient ITGA4 (integrin α4), which limits their homing after intravascular transplantation. We tested whether ITGA4 overexpression on MSCs increases cerebral homing after intracarotid transplantation and reduces MSC-borne cerebral embolism. Rat MSCs were lentivirally transduced to overexpress ITGA4. In vitro transendothelial migration was assessed using a Boyden chamber assay. Male Wistar rats intracarotidly received 0.5×10(6) control or modified MSCs 24 hours after sham or stroke surgery. In vivo behavior of MSCs in the cerebral vasculature was observed by intravital microscopy and single-photon emission computed tomography for up to 72 hours. Transendothelial migration of ITGA4-overexpressing MSCs was increased in vitro. MSCs were passively entrapped in microvessels in vivo and occasionally formed large cell aggregates causing local blood flow interruptions. MSCs were rarely found in perivascular niches or parenchyma at 72 hours post-transplantation, but ITGA4 overexpression significantly decreased cell aggregation and ameliorated the evoked cerebral embolism in stroke rats. ITGA4 overexpression on MSCs enhances transendothelial migration in vitro, but not in vivo, although it improves safety after intracarotid transplantation into stroke rats. © 2017 American Heart Association, Inc.

  9. Generation of Osteosarcomas from a Combination of Rb Silencing and c‐Myc Overexpression in Human Mesenchymal Stem Cells

    PubMed Central

    Wang, Jir‐You; Wu, Po‐Kuei; Chen, Paul Chih‐Hsueh; Lee, Chia‐Wen

    2016-01-01

    Abstract Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c‐Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c‐Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum‐free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS‐like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient‐derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c‐Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS‐like cells by Rb knockdown and c‐Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512–526 PMID:28191765

  10. Generation of Osteosarcomas from a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells.

    PubMed

    Wang, Jir-You; Wu, Po-Kuei; Chen, Paul Chih-Hsueh; Lee, Chia-Wen; Chen, Wei-Ming; Hung, Shih-Chieh

    2017-02-01

    Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512-526.

  11. The modeling of Alzheimer's disease by the overexpression of mutant Presenilin 1 in human embryonic stem cells.

    PubMed

    Honda, Makoto; Minami, Itsunari; Tooi, Norie; Morone, Nobuhiro; Nishioka, Hisae; Uemura, Kengo; Kinoshita, Ayae; Heuser, John E; Nakatsuji, Norio; Aiba, Kazuhiro

    2016-01-15

    Cellular disease models are useful tools for Alzheimer's disease (AD) research. Pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), are promising materials for creating cellular models of such diseases. In the present study, we established cellular models of AD in hESCs that overexpressed the mutant Presenilin 1 (PS1) gene with the use of a site-specific gene integration system. The overexpression of PS1 did not affect the undifferentiated status or the neural differentiation ability of the hESCs. We found increases in the ratios of amyloid-β 42 (Aβ42)/Aβ40 and Aβ43/Aβ40. Furthermore, synaptic dysfunction was observed in a cellular model of AD that overexpressed mutant PS1. These results suggest that the AD phenotypes, in particular, the electrophysiological abnormality of the synapses in our AD models might be useful for AD research and drug discovery. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    SciTech Connect

    Wang, Suna Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  13. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    PubMed

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835. © 2016 AlphaMed Press.

  14. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    SciTech Connect

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang; Ko, Kinarm; Koh, Yong-Gon

    2014-08-08

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  15. MiRNA-34a overexpression inhibits multiple myeloma cancer stem cell growth in mice by suppressing TGIF2

    PubMed Central

    Wu, Songyan; He, Xiangfeng; Li, Miao; Shi, Fangfang; Wu, Di; Pan, Meng; Guo, Mei; Zhang, Rong; Luo, Shouhua; Gu, Ning; Dou, Jun

    2016-01-01

    Hematological malignancy originated from B-cell line, multiple myeloma (MM), is a kind of plasma cells in bone marrow hyperplasia and cause of osteoclast-mediated skeletal destruction disease. MiR-34a plays an important epigenetic regulating role in malignant tumors and presents a therapeutic potential. In this study, we investigated the effects of overexpression of miR-34a in MM cancer stem cells (CSCs) on tumor growth and bone lesions. Here we showed that miR-34a overexpression inhibited cell proliferation, colony formation, and increased CSC apoptosis in vitro. The apparent epigenetic modulation induced by miR-34a overexpression was found no only in MM RPMI8226 cells but also in CSC xenograft MM. Both bioinformatics prediction and dual-luciferase reporter assay showed that transforming growth interaction factor 2 (TGIF2) was sufficient to confer miR-34a regulation. The results of qRT-PCR and Western blot assays demonstrated that the expression of TGIF2 was significant decreased in tumor tissues from NOD/SCID mice injected with miR-34a-MM CSCs. We conclude that miR-34a overexpression in MM CSCs significantly suppressed the tumorigenicity and lytic bone lesions in mouse model by inducing apoptosis and inhibiting TGIF2 expression. PMID:28078014

  16. Stem Cell Therapy with Overexpressed VEGF and PDGF Genes Improves Cardiac Function in a Rat Infarct Model

    PubMed Central

    Das, Hiranmoy; George, Jon C.; Joseph, Matthew; Das, Manjusri; Abdulhameed, Nasreen; Blitz, Anna; Khan, Mahmood; Sakthivel, Ramasamy; Mao, Hai-Quan; Hoit, Brian D.; Kuppusamy, Periannan; Pompili, Vincent J.

    2009-01-01

    Background Therapeutic potential was evaluated in a rat model of myocardial infarction using nanofiber-expanded human cord blood derived hematopoietic stem cells (CD133+/CD34+) genetically modified with VEGF plus PDGF genes (VIP). Methods and Findings Myocardial function was monitored every two weeks up to six weeks after therapy. Echocardiography revealed time dependent improvement of left ventricular function evaluated by M-mode, fractional shortening, anterior wall tissue velocity, wall motion score index, strain and strain rate in animals treated with VEGF plus PDGF overexpressed stem cells (VIP) compared to nanofiber expanded cells (Exp), freshly isolated cells (FCB) or media control (Media). Improvement observed was as follows: VIP>Exp> FCB>media. Similar trend was noticed in the exercise capacity of rats on a treadmill. These findings correlated with significantly increased neovascularization in ischemic tissue and markedly reduced infarct area in animals in the VIP group. Stem cells in addition to their usual homing sites such as lung, spleen, bone marrow and liver, also migrated to sites of myocardial ischemia. The improvement of cardiac function correlated with expression of heart tissue connexin 43, a gap junctional protein, and heart tissue angiogenesis related protein molecules like VEGF, pNOS3, NOS2 and GSK3. There was no evidence of upregulation in the molecules of oncogenic potential in genetically modified or other stem cell therapy groups. Conclusion Regenerative therapy using nanofiber-expanded hematopoietic stem cells with overexpression of VEGF and PDGF has a favorable impact on the improvement of rat myocardial function accompanied by upregulation of tissue connexin 43 and pro-angiogenic molecules after infarction. PMID:19809493

  17. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.

    PubMed

    Stewart, Andrew Nathaniel; Matyas, Jessica Jane; Welchko, Ryan Matthew; Goldsmith, Alison Delanie; Zeiler, Sarah Elizabeth; Hochgeschwender, Ute; Lu, Ming; Nan, Zhenhong; Rossignol, Julien; Dunbar, Gary Leo

    2017-01-01

    Utilizing genetic overexpression of trophic molecules in cell populations has been a promising strategy to develop cell replacement therapies for spinal cord injury (SCI). Over-expressing the chemokine, stromal derived factor-1 (SDF-1α), which has chemotactic effects on many cells of the nervous system, offers a promising strategy to promote axonal regrowth following SCI. The purpose of this study was to explore the effects of human SDF-1α, when overexpressed by mesenchymal stem cells (MSCs), on axonal growth and motor behavior in a contusive rat model of SCI. Using a transwell migration assay, the paracrine effects of MSCs, which were engineered to secrete human SDF-1α (SDF-1-MSCs), were assessed on cultured neural stem cells (NSCs). For in vivo analyses, the SDF-1-MSCs, unaltered MSCs, or Hanks Buffered Saline Solution (vehicle) were injected into the lesion epicenter of rats at 9-days post-SCI. Behavior was analyzed for 7-weeks post-injury, using the Basso, Beattie, and Bresnahan (BBB) scale of locomotor functions. Immunohistochemistry was performed to evaluate major histopathological outcomes, including gliosis, inflammation, white matter sparing, and cavitation. New axonal outgrowth was characterized using immunohistochemistry against the neuron specific growth-associated protein-43 (GAP-43). The results of these experiments demonstrate that the overexpression of SDF-1α by MSCs can enhance the migration of NSCs in vitro. Although only modest functional improvements were observed following transplantation of SDF-1-MSCs, a significant reduction in cavitation surrounding the lesion, and an increased density of GAP-43-positive axons inside the SCI lesion/graft site were found. The results from these experiments support the potential role for utilizing SDF-1α as a treatment for enhancing growth and regeneration of axons after traumatic SCI.

  18. Generation of Osteosarcomas From a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells.

    PubMed

    Wang, Jir-You; Wu, Po-Quei; Chen, Paul Chih-Hsueh; Lee, Chia-Wen; Chen, Wei-Ming; Hung, Shih-Chieh

    2016-09-07

    : Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS.

  19. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model

    PubMed Central

    Deveza, Lorenzo; Choi, Jeffrey; Lee, Jerry; Huang, Ngan; Cooke, John; Yang, Fan

    2016-01-01

    Peripheral arterial disease affects nearly 202 million individuals worldwide, sometimes leading to non-healing ulcers or limb amputations in severe cases. Genetically modified stem cells offer potential advantages for therapeutically inducing angiogenesis via augmented paracrine release mechanisms and tuned dynamic responses to environmental stimuli at disease sites. Here, we report the application of nanoparticle-induced CXCR4-overexpressing stem cells in a mouse hindlimb ischemia model. We found that CXCR4 overexpression improved stem cell survival, modulated inflammation in situ, and accelerated blood reperfusion. These effects, unexpectedly, led to complete limb salvage and skeletal muscle repair, markedly outperforming the efficacy of the conventional angiogenic factor control, VEGF. Importantly, assessment of CXCR4-overexpressing stem cells in vitro revealed that CXCR4 overexpression induced changes in paracrine signaling of stem cells, promoting a therapeutically desirable pro-angiogenic and anti-inflammatory phenotype. These results suggest that nanoparticle-induced CXCR4 overexpression may promote favorable phenotypic changes and therapeutic efficacy of stem cells in response to the ischemic environment. PMID:27279910

  20. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    PubMed

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  1. Enhanced tenogenic differentiation and tendon-like tissue formation by CHIP overexpression in tendon-derived stem cells.

    PubMed

    Han, Weifeng; Chen, Lei; Liu, Junpeng; Guo, Ai

    2017-04-01

    The carboxyl terminus of Hsc70-interacting protein (CHIP, also known as STUB1) plays critical roles in the proliferation and differentiation of many types of cells. The potential function of CHIP in tendon-derived stem cells (TDSCs) remains largely unknown at present. Here, we investigated the effects of CHIP on tenogenic differentiation of TDSCs via lentivirus-mediated overexpression. Forced expression of CHIP induced morphological changes and significantly enhanced cell proliferation, as well as tendon differentiation in vitro. Upon stimulation with differentiation induction medium, CHIP-overexpressing TDSCs displayed significant inhibition of differentiation into osteogenic and adipogenic lineages. Subsequent implantation of TDSCs overexpressing CHIP with collagen sponges into nude mice induced a marked increase in ectopic tendon formation in vivo, compared with the control group. Our findings collectively suggest that CHIP is an important contributory factor to tenogenic tissue formation. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Poly(ADP-Ribose) Polymerase 1 (PARP1) Overexpression in Human Breast Cancer Stem Cells and Resistance to Olaparib

    PubMed Central

    Ginestier, Christophe; Bertucci, François; Audebert, Stéphane; Pophillat, Mathieu; Toiron, Yves; Baudelet, Emilie; Finetti, Pascal; Noguchi, Tetsuro; Sobol, Hagay; Birnbaum, Daniel; Borg, Jean-Paul; Charafe-Jauffret, Emmanuelle; Gonçalves, Anthony

    2014-01-01

    Background Breast cancer stem cells (BCSCs) have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL), BrCA-MZ-01. Methods ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+) and mature cancer (ALDH−) cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE). Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS. Results 2-D DIGE identified poly(ADP-ribose) polymerase 1 (PARP1) as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor. Conclusion An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors. PMID:25144364

  3. Maintenance of pluripotency in human embryonic stem cells stably over-expressing enhanced green fluorescent protein.

    PubMed

    Liu, Yi-Ping; Dovzhenko, Oksana V; Garthwaite, Mark A; Dambaeva, Svetlana V; Durning, Maureen; Pollastrini, Leah M; Golos, Thaddeus G

    2004-12-01

    The availability of human embryonic stem (HES) cells with a readily evaluated genetic marker such as green fluorescent protein (GFP) could facilitate a number of experimental opportunities. We constructed a novel plasmid with two elongation factor-1alpha (EF-1alpha) promoters (YPL2) to obtain a vector with mammalian promoters for simultaneous transgene expression in HES cells. An enhanced green fluorescent protein (EGFP) cDNA was inserted under the control of the first EF-1alpha promoter to construct plasmid YPL2-EGFP. The second EF1-alpha promoter was upstream of the neomycin resistance gene. H1 HES cells were transfected with YPL2-EGFP using Fugene 6. Following 100 microg/ml neomycin selection, individual colonies demonstrating stable EGFP expression were observed. After 4 months of passage under neomycin selection, the cells continued to maintain typical HES cell morphology. Undifferentiated cells showed no change in EGFP expression as determined by FACS analysis. Immunostaining demonstrated maintenance of Oct-3/4 expression in undifferentiated H1EGFP cells that was indistinguishable from wild-type HES cells. Addition of 10 ng/ml bone morphogenic protein-4 (BMP-4) to the cells provoked morphological and functional differentiation to trophoblasts, but no loss of EGFP expression. Following injection of EGFP-HES cells into immunodeficient mice, there was robust formation of teratomas that demonstrated a broad range of morphological pluripotency with widespread EGFP expression. EGFP expression was also maintained in differentiating embryoid bodies formed from EGFP-HES cells. This report demonstrates that ES cells carrying EGFP will be useful in diverse areas of embryonic stem cell research.

  4. SLC7A11 Overexpression in Glioblastoma Is Associated with Increased Cancer Stem Cell-Like Properties.

    PubMed

    Polewski, Monika D; Reveron-Thornton, Rosyli F; Cherryholmes, Gregory A; Marinov, Georgi K; Aboody, Karen S

    2017-09-01

    System xc(-) is a sodium-independent electroneutral transporter, comprising a catalytic subunit xCT (SLC7A11), which is involved in importing cystine. Certain cancers such as gliomas upregulate the expression of system xc(-), which confers a survival advantage against the detrimental effects of reactive oxygen species (ROS) by increasing generation of the antioxidant glutathione. However, ROS have also been shown to function as targeted, intracellular second messengers in an array of physiological processes such as proliferation. Several studies have implicated ROS in important cancer features such as migration, invasion, and contribution to a cancer stem cell (CSC)-like phenotype. The role of system xc(-) in regulating these ROS-sensitive processes in glioblastoma multiforme (GBM), the most aggressive malignant primary brain tumor in adults, remains unknown. Stable SLC7A11 knockdown and overexpressing U251 glioma cells were generated and characterized to understand the role of redox and system xc(-) in glioma progression. SLC7A11 knockdown resulted in higher endogenous ROS levels and enhanced invasive properties. On the contrary, overexpression of SLC7A11 resulted in decreased endogenous ROS levels as well as decreased migration and invasion. However, SLC7A11-overexpressing cells displayed actin cytoskeleton changes reminiscent of epithelial-like cells and exhibited an increased CSC-like phenotype. The enhanced CSC-like phenotype may contribute to increased chemoresistance and suggests that overexpression of SLC7A11 in the context of GBM may contribute to tumor progression. These findings have important implications for cancer management where targeting system xC(-) in combination with other chemotherapeutics can reduce cancer resistance and recurrence and improve GBM patient survival.

  5. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  6. Overexpression of suppressors of cytokine signaling 1 regulate the proliferation and differentiation of rat-derived neural stem cells.

    PubMed

    Cui, Meng; Ma, Xin-Long; Sun, Jie; He, Jin-Quan; Shen, Lin; Li, Fang-Guo

    2017-09-01

    Neural stem cells are a reliable resource in various neural tissue repair and neurodegenerative diseases. Increasing evidence has demonstrated that Suppressor of cytokine signaling proteins (SOCS) was involved in the nervous system development. The universality and diversity of SOCS also suggested their important roles in neurogenesis and nerve regeneration. In this study, we employed a lentiviral vector to investigate the impacts of overexpression SOCS1 on the proliferation and differentiation of rat-derived NSCs. Cells infected with LV-EGFP-SOCS1 showed a prominent increased cell number, diameter, and metabolic activity compared with other groups. Immunofluorescence analysis revealed the proportion of cells positive for microtubule associated protein-2 (MAP2) or myelin basic protein (MBP) was significantly increased in LV-EGFP-SOCS1 group while the proportion of glial fibrillary acidic protein (GFAP)-positive cells in LV-EGFP-SOCS1 group was significantly decreased compare to LV-EGFP and PBS group. Moreover, Western blot results were consistent with immunofluorescence results which indicated that overexpression of SOCS1 could promote neuronal and oligodendrocyte differentiations of NSCs but inhibit astrocyte differentiation of NSCs. In conclusion, our findings provided evidence that SOCS1 could promote the proliferation of NSCs and affect the differentiation of NSCs, providing a potential target for NSCs transplantation strategies. Copyright © 2017. Published by Elsevier GmbH.

  7. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction.

    PubMed

    Zhao, Liyan; Liu, Xiaolin; Zhang, Yuelin; Liang, Xiaoting; Ding, Yue; Xu, Yan; Fang, Zhen; Zhang, Fengxiang

    2016-05-15

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold.

    PubMed

    Chen, Xiao; Yin, Zi; Chen, Jia-Lin; Liu, Huan-Huan; Shen, Wei-Liang; Fang, Zhi; Zhu, Ting; Ji, Junfeng; Ouyang, Hong-Wei; Zou, Xiao-Hui

    2014-06-01

    Despite our previous study that demonstrates that human embryonic stem cells (hESCs) can be used as seed cells for tendon tissue engineering after stepwise induction, suboptimal tendon regeneration implies that a new strategy needs to be developed for tendon repair. We investigated whether overexpression of the tendon-specific transcription factor scleraxis (SCX) in hESC-derived mesenchymal stem cells (hESC-MSCs) together with knitted silk-collagen sponge scaffold could promote tendon regeneration. hESCs were initially differentiated into MSCs and then engineered with scleraxis (SCX+hESC-MSCs). Engineered tendons were constructed with SCX+hESC-MSCs and a knitted silk-collagen sponge scaffold and then mechanical stress was applied. SCX elevated tendon gene expression in hESC-MSCs and concomitantly attenuated their adipogenic and chondrogenic potential. Mechanical stress further augmented the expression of tendon-specific genes in SCX+hESC-MSC-engineered tendon. Moreover, in vivo mechanical stimulation promoted the alignment of cells and increased the diameter of collagen fibers after ectopic transplantation. In the in vivo tendon repair model, the SCX+hESC-MSC-engineered tendon enhanced the regeneration process as shown by histological scores and superior mechanical performance compared with control cells, especially at early stages. Our study offers new evidence concerning the roles of SCX in tendon differentiation and regeneration. We demonstrated a novel strategy of combining hESCs, genetic engineering, and tissue-engineering principles for tendon regeneration, which are important for the future application of hESCs and silk scaffolds for tendon repair.

  9. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    PubMed Central

    Zhang, J.C.; Zheng, G.F.; Wu, L.; Ou Yang, L.Y.; Li, W.X.

    2014-01-01

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease. PMID:25118628

  10. Understanding EGFR Signaling in Breast Cancer and Breast Cancer Stem Cells: Overexpression and Therapeutic Implications.

    PubMed

    Alanazi, Ibrahim O; Khan, Zahid

    2016-01-01

    Epidermal growth factor receptors (EGFRs/HERs) and downstream signaling pathways have been implicated in the pathogenesis of several malignancies including breast cancer and its resistance to treatment with chemotherapeutic drugs. Consequently, several monoclonal antibodies as well as small molecule inhibitors targeting these pathways have emerged as therapeutic tools in the recent past. However, studies have shown that utilizing these molecules in combination with chemotherapy has yielded only limited success. This review describes the current understanding of EGFRs/HERs and associated signaling pathways in relation to development of breast cancer and responses to various cancer treatments in the hope of pointing to improved prevention, diagnosis and treatment. Also, we review the role of breast cancer stem cells (BCSCs) in disease and the potential to target these cells.

  11. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells.

    PubMed

    Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan

    2016-03-01

    The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (P<0.05). Flow cytometry analysis revealed a notable increase of CD44+/CD24- subpopulation in SDF-1 overexpressing MCF-7 cells (P<0.001), accompanied by the apparently elevated ALDH activity and the upregulation of the stem cell markers OCT-4, Nanog, and SOX2 compared with parental (P<0.01). Besides, western blot analysis and immunofluorescence assay observed the significant decreased expression of E-cadherin and enhanced expression of slug, fibronectin and vimentin in SDF-1 overexpressed MCF-7 cells in comparison with parental (P<0.01). Further study found that overexpression of SDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (P<0.001). Overall, the above results indicated that overexpression of SDF-1 enhanced

  12. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas.

    PubMed

    Yang, Dazhi; Sun, Shijin; Wang, Zhengguo; Zhu, Peifang; Yang, Zailiang; Zhang, Bo

    2013-06-01

    Stromal cell-derived factor-1 (SDF-1) and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4) are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. This study investigated the hypothesis that bone marrow-derived mesenchymal stem cells (BMSCs) accelerate skin wound healing in the mouse model by overexpression of CXCR4 in BMSCs. We compared SDF-1 expression and skin wound healing times of BALB/c mice, severe combined immunodeficiency (SCID) mice, and immune system-deficient nude mice after (60)Co radiation-induced injury of their bone marrow. The occurrence of transplanted adenovirus-transfected CXCR4-overexpressing male BMSCs in the wound area was compared with the occurrence of untransfected male BALB/c BMSCs in (60)Co-irradiated female mice skin wound healing areas by Y chromosome marker analyses. The wound healing time of BALB/c mice was 14.00±1.41 days, whereas for the nude and SCID mice it was 17.16±1.17 days and 19.83±0.76 days, respectively. Male BMSCs could be detected in the surrounding areas of (60)Co-irradiated female BALB/c mice wounds, and CXCR4-overexpressing BMSCs accelerated the wound healing time. CXCR4-overexpressing BMSCs migrate in an enhanced manner to skin wounds in a SDF-1-expression-dependent manner, thereby reducing the skin wound healing time.

  13. Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells.

    PubMed

    Conti, Anastasia; Rota, Federica; Ragni, Enrico; Favero, Chiara; Motta, Valeria; Lazzari, Lorenza; Bollati, Valentina; Fustinoni, Silvia; Dieci, Giorgio

    2016-06-10

    Hydroquinone (HQ) is an important benzene-derived metabolite associated with acute myelogenous leukemia risk. Although altered DNA methylation has been reported in both benzene-exposed human subjects and HQ-exposed cultured cells, the inventory of benzene metabolite effects on the epigenome is only starting to be established. In this study, we used a monocytic leukemia cell line (THP-1) and hematopoietic stem cells (HSCs) from cord blood to investigate the effects of HQ treatment on the expression of the three most important families of retrotransposons in the human genome: LINE-1, Alu and Endogenous retroviruses (HERVs), that are normally subjected to tight epigenetic silencing. We found a clear tendency towards increased retrotransposon expression in response to HQ exposure, more pronounced in the case of LINE-1 and HERV. Such a partial loss of silencing, however, was generally not associated with HQ-induced DNA hypomethylation. On the other hand, retroelement derepression was also observed in the same cells in response to the hypomethylating agent decitabine. These observations suggest the existence of different types of epigenetic switches operating at human retroelements, and point to retroelement activation in response to benzene-derived metabolites as a novel factor deserving attention in benzene carcinogenesis studies.

  14. Mesenchymal Stem Cells with eNOS Over-Expression Enhance Cardiac Repair in Rats with Myocardial Infarction.

    PubMed

    Chen, Leilei; Zhang, Yuan; Tao, Liangliang; Yang, Zhijian; Wang, Liansheng

    2017-02-01

    Transplantation of mesenchymal stem cells (MSCs) is a promising therapeutic option for patients with acute myocardial infarction. We show here that the ectopic overexpression of endothelial nitric oxide synthases (eNOS), an endothelial form of NOS, could enhance the ability of MSCs in treating ischemic heart damage after the occlusion of the coronary artery. Adenoviral delivery of human eNOS gene into mouse bone marrow-derived MSCs (BM-MSCs) conferred resistance to oxygen glucose deprivation (OGD)-induced cell death in vitro, and elevated the bioavailability of nitric oxide when injected into the myocardium in vivo. In a rat model of acute myocardial infarction, the transplantation of eNOS-overexpressing BM-MSCs significantly reduced myocardial infarct size, corrected hemodynamic parameters and increased capillary density. We also found that the synergistic effects were consistently better than either treatment alone. These findings reveal a positive role of elevated eNOS expression in cardiac repair, and suggest the combination of eNOS and MSC transplant therapy as a potential approach for treating myocardial infarction.

  15. A comprehensive transcriptomic analysis of differentiating embryonic stem cells in response to the overexpression of Mesogenin 1

    PubMed Central

    Tang, Ling; Li, Wei; Zhang, Dongming; Wu, Guoying; Ye, Shoudong; Ban, Qian; He, Kan

    2016-01-01

    The mutation of somitogenesis protein Mesogenin 1 (Msgn1) has been widely used to study the direct link between somitogenesis and the development of an embryo. Several studies have used gene expression profiling of somitogenesis to identify the key genes in the process, but few have focused on the pathways involved and the coexpression patterns of associated pathways. Here we employed time-course microarray datasets of differentiating embryonic stem cells by overexpressing the transcription factor Msgn1 from the public database library of Gene Expression Omnibus (GEO). Then we applied gene set enrichment analysis (GSEA) to the datasets and performed candidate transcription factors selection. As a result, several significantly regulated pathways and transcription factors (TFs), as well as some of the specific signaling pathways, were identified during somitogenesis under Msgn1 overexpression, most of which had not been reported previously. Finally, significant core genes such as Hes1 and Notch1 as well as some of the TFs such as PPARs and FOXs were identified to construct coexpression networks of related pathways, the expression patterns of which had been validated by our following quantitative real-time PCR (qRT-PCR). The results of our study may help us better understand the molecular mechanisms of somitogenesis in mice at the genome-wide level. PMID:27713115

  16. Progastrin overexpression imparts tumorigenic/metastatic potential to embryonic epithelial cells: phenotypic differences between transformed and non-transformed stem cells

    PubMed Central

    Sarkar, Shubhashish; Kantara, Carla; Ortiz, Ixiu; Swiercz, Rafal; Kuo, Joyce; Davey, Robert; Escobar, Kenneth; Ullrich, Robert; Singh, Pomila

    2012-01-01

    We recently reported that overexpression of progastrin in embryonic epithelial cells (HEKmGAS-cells) increased proliferation of the cells, compared to that of control HEKC-cells. Here we report the novel finding that tumorigenic and metastatic potential of HEKmGAS cells is also increased significantly, compared to that of HEKC cells. Cell-surface associated annexinA2 (CS-ANXA2) binds progastrin and is over-expressed on cancer-cells, allowing us to successfully use fluorescently-labeled progastrin-peptide for enumerating metastatic lesions of transformed/cancer cells in vivo. Next, we examined the hypothesis that increased tumorigenic/metastatic potential of isogenic HEKmGAS vs HEKC cells maybe due to transformed-phenotype of stem-cells. FACSorting/FACScanning of cells demonstrated significant increases in percent DCLK1/Lgr5 positive stem-cells, co-expressing CD44/CS-ANXA2, in HEKmGAS vs HEKC-cells. Distinct differences were noted in morphology of HEKC vs HEKmGAS spheroidal growths on non-adherent cultures (selective for stem cells). HEKC-spheroids were rounded with distinct perimeters (basement membranes?), while HEKmGAS-spheroids were amorphous, with no perimeters. Relative levels of DCLK1/Lgr5/CD44 and AnnexinA2/β-catenin/pNFκBp65/metalloproteinases were significantly increased in HEKmGAS vs HEKC-cells, growing either as mono-layer cultures, 3D-spheroids (in vitro), or xenografts (in vivo). Interestingly, HEKC-cells enriched for CS-ANXA2, developed amorphous spheroids, while down-regulation of ANXA2 in HEKmGAS-clones, resulted in loss of matrixmetalloproteinases and re-formation of rounded spheroids, suggesting high levels of CS-ANXA2/matrixmetalloproteinases may impact spheroid morphology. Down-regulation of DCLK1 significantly attenuated activation of β-catenin, with loss of proliferation of HEKmGAS and HEKC-cells, suggesting DCLK1 is required for maintaining proliferation of cells. Conclusions Our results suggest the novel possibility that transformed stem-cells

  17. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose--derived stem cells in vitro and in vivo.

    PubMed

    Zhang, X; Yang, M; Lin, L; Chen, P; Ma, K T; Zhou, C Y; Ao, Y F

    2006-09-01

    Like bone marrow stromal cells, adipose tissue-derived stem cells (ADSCs) possess multilineage potential, a capacity for self-renewal and long-term viability. To confirm whether ADSCs represent a promising source of cells for gene-enhanced bone tissue-engineering, the osteogenic potential of ADSCs under the control of certain osteoinductive genes has been evaluated. Runx2, a transcription factor at the downstream end of bone morphogenetic protein (BMP) signaling pathways, is essential for osteoblast differentiation and bone formation. In this study we used adenovirus vector to deliver Runx2 to ADSCs and then examined the enhancement of osteogenic activity. Overexpression of Runx2 inhibited adipogenesis, as demonstrated by suppression of LPL and PPARgamma expression at the mRNA level and reduced lipid droplet formation. Moreover, ADSCs transduced with Ad-Runx2 underwent rapid and marked osteoblast differentiation as determined by osteoblastic gene expression, alkaline phosphatase activity and mineral deposition. Additionally, histological examination revealed that implantation of Runx2 modified ADSCs could induce mineral deposition and bone-like tissue formation in vivo. These results confirmed, firstly, the ability of Runx2 to promote osteogenesis and cell differentiation and, secondly, the competence of ADSCs as target cells for bone tissue engineering. Our work demonstrates a potential new approach for bone repair using Runx2-modified ADSCs for bone tissue engineering.

  18. Overexpression of soluble RAGE in mesenchymal stem cells enhances their immunoregulatory potential for cellular therapy in autoimmune arthritis

    PubMed Central

    Park, Min-Jung; Lee, Seung Hoon; Moon, Su-Jin; Lee, Jung-Ah; Lee, Eun-Jung; Kim, Eun-Kyung; Park, Jin-Sil; Lee, Jennifer; Min, Jun-Ki; Kim, Seok Jung; Park, Sung-Hwan; Cho, Mi-La

    2016-01-01

    Mesenchymal stem cells (MSCs) are attractive agents for cellular therapy in rheumatoid arthritis (RA). The receptor for advanced glycation end products (RAGE) serves as a pattern recognition receptor for endogenous inflammatory ligands. Soluble RAGE (sRAGE) is a truncated form of RAGE that functions as a decoy and acts as an anti-inflammatory molecule. The aim of this study was to determine whether sRAGE has therapeutic effects and the mechanisms active in sRAGE-overexpressing MSCs (sRAGE-MSCs) in an experimental model of RA. sRAGE-MSCs were generated by DNA transfection of human adipose tissue-derived MSCs (Ad-hMSCs). MSCs showed increased expression of VEGF, IL-1β, IL-6, and HMGB-1 under inflammatory conditions. However, sRAGE-MSCs showed significantly lower production of these proinflammatory molecules. Expression of immunomodulatory molecules such as IL-10, TGF-β, and indoleamine 2, 3-dioxygenase was higher in sRAGE-MSCs than in mock-MSCs. sRAGE-MSCs showed enhanced migration potential. Transplantation of sRAGE-MSCs into arthritic IL-1Ra-knockout mice markedly suppressed inflammatory arthritis, decreased Th17 cells, and reciprocally increased regulatory T cells. The differentiation of IFN-γ+CD4+ and IL-17+CD4+ cells was inhibited by incubation with sRAGE-MSCs compared with mock-MSCs. These findings suggest that sRAGE overexpression in Ad-hMSCs optimizes their immunoregulatory properties, which may be useful as a novel cellular therapy for RA. PMID:27804999

  19. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium.

    PubMed

    Huang, Jing; Zhang, Zhiping; Guo, Jian; Ni, Aiguo; Deb, Arjun; Zhang, Lunan; Mirotsou, Maria; Pratt, Richard E; Dzau, Victor J

    2010-06-11

    Although mesenchymal stem cell (MSC) transplantation has been shown to promote cardiac repair in acute myocardial injury in vivo, its overall restorative capacity appears to be restricted mainly because of poor cell viability and low engraftment in the ischemic myocardium. Specific chemokines are upregulated in the infarcted myocardium. However the expression levels of the corresponding chemokine receptors (eg, CCR1, CXCR2) in MSCs are very low. We hypothesized that this discordance may account for the poor MSC engraftment and survival. To determine whether overexpression of CCR1 or CXCR2 chemokine receptors in MSCs augments their cell survival, migration and engraftment after injection in the infarcted myocardium. Overexpression of CCR1, but not CXCR2, dramatically increased chemokine-induced murine MSC migration and protected MSC from apoptosis in vitro. Moreover, when MSCs were injected intramyocardially one hour after coronary artery ligation, CCR1-MSCs accumulated in the infarcted myocardium at significantly higher levels than control-MSCs or CXCR2-MSCs 3 days postmyocardial infarction (MI). CCR1-MSC-injected hearts exhibited a significant reduction in infarct size, reduced cardiomyocytes apoptosis and increased capillary density in injured myocardium 3 days after MI. Furthermore, intramyocardial injection of CCR1-MSCs prevented cardiac remodeling and restored cardiac function 4 weeks after MI. Our results demonstrate the in vitro and in vivo salutary effects of genetic modification of stem cells. Specifically, overexpression of chemokine receptor enhances the migration, survival and engraftment of MSCs, and may provide a new therapeutic strategy for the injured myocardium.

  20. [Effect of CCR1 gene overexpression on the migration of bone marrow - derived mesenchymal stem cells towards hepatocellular carcinoma].

    PubMed

    Gao, Y; Huang, X L; Zhang, L; Deng, L; Yin, A H; Sun, B C; Lu, S

    2017-05-20

    Objective: To evaluate the effect of human CCR1 (hCCR1) gene overexpression on the migration of human bone marrow-derived mesenchymal stem cells (hMSCs) towards hepatocellular carcinoma (HCC), and to examine the application prospects of MSCs as gene delivery vectors in the treatment of HCC. Methods: The hCCR1 gene was subcloned into a lentiviral vector to generate the recombinant plasmid pLV-hCCR1. The pLV-hCCR1 plasmid and two other packaging plasmids were co-transfected into 293T cells using calcium phosphate, and the virus-containing supernatant was collected. hMSCs were then infected with the recombinant lentivirus, and the expression of hCCR1 mRNA and protein was analyzed by RT-PCR and Western blot, respectively. The effect of CCR1 gene overexpression on the in vitro migration of hMSCs was examined using the Transwell migration assay. Orthotopic nude mice models of HCC were established using the MHCC-97H-GFP cell line, and the mice were divided into two groups (n = 8 per group). hMSCs were then intravenously injected via the tail vein into the tumor-bearing nude mice to examine the effect of hCCR1 overexpression on the in vivo migration of hMSCs towards HCC. Unpaired Student's t-test was used for two-group comparisons, and one-way ANOVA was used for multi-group comparisons. Results: Restriction enzyme digestion and DNA sequencing demonstrated that the recombinant plasmid pLV-hCCR1 was constructed successfully. The LV-hCCR1 lentivirus packaged by 293T cells has high infection efficiency in hMSCs, and hCCR1 was overexpressed in hMSCs after LV-hCCR1 infection. Transwell migration assay showed that hCCR1-transfected hMSCs had significantly enhanced migration towards HCC cell line-derived condition medium (CM) compared with the control RFP-hMSCs [(134.8±15.7)/LPF vs (83.5±10.9)/LPF, t = 10.40, P < 0.01]. In vivo migration experiment also demonstrated that there was significantly higher number of hCCR1-hMSCs localized within the MHCC-97H-GFP xenografts than h

  1. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    PubMed

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care.

  2. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers

    PubMed Central

    Ananthula, Suryatheja; Sinha, Abhilasha; Gassim, Mohamed El; Batth, Simran; Marshall, Gailen D.; Gardner, Lauren H.; Shimizu, Yoshiko; ElShamy, Wael M.

    2016-01-01

    Resident mesenchymal stem cells (MSCs) promote cancer progression. However, pathways and mechanisms involved in recruiting MSCs into breast tumors remain largely undefined. Here we show that geminin-dependent acetylation releases HMGB1 from the chromatin to the cytoplasm and extracellular space. Extracellular acetylated HMGB1 (Ac-HMGB1) promotes geminin overexpressing (GemOE) cells survival by binding to RAGE and activating NF-κB signaling. Extracellular Ac-HMGB1 also triggers expression and activation of RAGE in the non-expressing MSCs. RAGE activation induces expression of CXCR4 in MSCs and directional migration towards SDF1 (aka CXCL12)-expressing GemOE cells in vitro and in vivo. These effects augmented by the necrotic and hypoxic environment in GemOE tumors, especially within their cores. Reciprocal interactions between newly recruited MSCs and GemOE tumor cells elevate tumor-initiating (TIC), basal and epithelial-to-mesenchymal transition (EMT) traits and enhance aggressiveness in vitro and in vivo in GemOE tumor cells. Indeed, faster, larger and more aggressive tumors develop when GemOE cells are co-injected with MSCs in orthotopic breast tumor model. Concurrently, inhibiting c-Abl (and thus geminin function), RAGE or CXCR4 prevented MSCs recruitment to GemOE cells in vitro and in vivo, and decreased the TIC, basal and EMT phenotypes in these tumor cells. Accordingly, we propose that GemOE tumor cells present within tumor cores represent metastatic precursors, and suppressing the GemOE→HMGB1/RAGE→SDF1/CXCR4 signaling circuit could be a valid target for therapies to inhibit GemOE tumors and their metastases. PMID:26989079

  3. A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target.

    PubMed

    Schulte, Alexander; Günther, Hauke S; Phillips, Heidi S; Kemming, Dirk; Martens, Tobias; Kharbanda, Samir; Soriano, Robert H; Modrusan, Zora; Zapf, Svenja; Westphal, Manfred; Lamszus, Katrin

    2011-04-01

    Glioblastomas contain stem-like cells that can be maintained in vitro using specific serum-free conditions. We investigated whether glioblastoma stem-like (GS) cell lines preserve the expression phenotype of human glioblastomas more closely than conventional glioma cell lines. Expression profiling revealed that a distinct subset of GS lines, which displayed a full stem-like phenotype (GSf), mirrored the expression signature of glioblastomas more closely than either other GS lines or cell lines grown in serum. GSf lines are highly tumorigenic and invasive in vivo, express CD133, grow spherically in vitro, are multipotent and display a Proneural gene expression signature, thus recapitulating key functional and transcriptional aspects of human glioblastomas. In contrast, GS lines with a restricted stem-like phenotype exhibited expression signatures more similar to conventional cell lines than to original patient tumors, suggesting that the transcriptional resemblance between GS lines and tumors is associated with different degrees of "stemness". Among markers overexpressed in patient tumors and GSf lines, we identified CXCR4 as a potential therapeutic target. GSf lines contained a minor population of CXCR4(hi) cells, a subfraction of which coexpressed CD133 and was expandable by hypoxia, whereas conventional cell lines contained only CXCR4(lo) cells. Convection-enhanced local treatment with AMD3100, a specific CXCR4 antagonist, inhibited the highly invasive growth of GS xenografts in vivo and cell migration in vitro. We thus demonstrate the utility of GSf lines in testing therapeutic agents and validate CXCR4 as a target to block the growth of invasive tumor-initiating glioma stem cells in vivo.

  4. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    PubMed

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1

  5. The Effect of EPO Gene Overexpression on Proliferation and Migration of Mouse Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Lin, Haihong; Luo, Xinping; Jin, Bo; Shi, Haiming; Gong, Hui

    2015-04-01

    The aim of this study is to investigate the effect of erythropoietin (EPO) gene overexpression on proliferation and migration of mouse bone marrow-derived mesenchymal stem cells (MSCs), and to determine the underlying signaling pathway. Mouse MSCs were cultured in vitro and EPO gene was transfected into the 6th generation of MSCs via lentivirus vector. The transfected cells were identified by flow cytometry and the EPO levels in supernatant were measured with ELISA. In addition, cell proliferation was assessed by CCK-8 assay and cell migration was evaluated by Transwell assay. The activation of Akt, ERK1/2, and p38MAPK signaling was detected by western blotting. The lentivirus vector containing EPO was successfully constructed and transfected into MSCs. No remarkable change was found in the cell surface markers after transfection while a significant increase of EPO level in supernatant was noticed in transfected MSCs compared to controls (P < 0.01). In addition, transfected MSCs showed a significantly enhanced proliferation (P < 0.01) as well as a notable increase in migration (P < 0.01) compared to controls. Furthermore, we also found that EPO modification enhanced the phosphorylation of PI3K/Akt and ERK signaling pathway, and suppressed the phosphorylation of p38MAPK without affecting the levels of total Akt, ERK1/2, and p38MAPK in MSCs. After transfection, MSCs secreted more EPO which enhanced the capability of proliferation and migration. Moreover, our results suggested that the enhanced proliferation and migration might be associated with activation of PI3K/Akt and ERK or inhibition of P38MAPK signaling pathway.

  6. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    PubMed

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  7. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice.

    PubMed

    Taghiyar, Leila; Hesaraki, Mahdi; Sayahpour, Forough Azam; Satarian, Leila; Hosseini, Samaneh; Aghdami, Naser; Baghaban Eslaminejad, Mohamadreza

    2017-06-23

    Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox (Msx) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx-regulated genes (Bmp4, Fgf8, and keratin 14 (K14)) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx-overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8, and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx-transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Induction of Hematopoietic Differentiation of Mouse Embryonic Stem Cells by an AGM-Derived Stromal Cell Line is Not Further Enhanced by Overexpression of HOXB4

    PubMed Central

    Gordon-Keylock, Sabrina A.M.; Jackson, Melany; Huang, Caoxin; Samuel, Kay; Axton, Richard A.; Oostendorp, Robert A.J.; Taylor, Helen; Wilson, Julie

    2010-01-01

    Hematopoietic differentiation of embryonic stem (ES) cells can be enhanced by co-culture with stromal cells derived from hematopoietic tissues and by overexpression of the transcription factor HOXB4. In this study, we compare the hematopoietic inductive effects of stromal cell lines derived from different subregions of the embryonic aorta-gonad-mesonephros tissue with the commonly used OP9 stromal cell line and with HOXB4 activation. We show that stromal cell lines derived from the aorta and surrounding mesenchyme (AM) act at an earlier stage of the differentiation process compared with the commonly used OP9 stromal cells. AM stromal cells were able to promote the further differentiation of isolated brachyury-GFP+ mesodermal cells into hematopoietic progenitors, whereas the OP9 stromal cells could not support the differentiation of these cells. Co-culture and analyses of individual embryoid bodies support the hypothesis that the AM stromal cell lines could enhance the de novo production of hematopoietic progenitors, lending support to the idea that AM stromal cells might act on prehematopoietic mesoderm. The induction level observed for AM stromal cells was comparable to HOXB4 activation, but no additive effect was observed when these 2 inductive strategies were combined. Addition of a γ-secretase inhibitor reduced the inductive effects of both the stromal cell line and HOXB4, providing clues to possible shared molecular mechanisms. PMID:20184433

  9. Induction of hematopoietic differentiation of mouse embryonic stem cells by an AGM-derived stromal cell line is not further enhanced by overexpression of HOXB4.

    PubMed

    Gordon-Keylock, Sabrina A M; Jackson, Melany; Huang, Caoxin; Samuel, Kay; Axton, Richard A; Oostendorp, Robert A J; Taylor, Helen; Wilson, Julie; Forrester, Lesley M

    2010-11-01

    Hematopoietic differentiation of embryonic stem (ES) cells can be enhanced by co-culture with stromal cells derived from hematopoietic tissues and by overexpression of the transcription factor HOXB4. In this study, we compare the hematopoietic inductive effects of stromal cell lines derived from different subregions of the embryonic aorta-gonad-mesonephros tissue with the commonly used OP9 stromal cell line and with HOXB4 activation. We show that stromal cell lines derived from the aorta and surrounding mesenchyme (AM) act at an earlier stage of the differentiation process compared with the commonly used OP9 stromal cells. AM stromal cells were able to promote the further differentiation of isolated brachyury-GFP(+) mesodermal cells into hematopoietic progenitors, whereas the OP9 stromal cells could not support the differentiation of these cells. Co-culture and analyses of individual embryoid bodies support the hypothesis that the AM stromal cell lines could enhance the de novo production of hematopoietic progenitors, lending support to the idea that AM stromal cells might act on prehematopoietic mesoderm. The induction level observed for AM stromal cells was comparable to HOXB4 activation, but no additive effect was observed when these 2 inductive strategies were combined. Addition of a γ-secretase inhibitor reduced the inductive effects of both the stromal cell line and HOXB4, providing clues to possible shared molecular mechanisms.

  10. Activation of an IL-6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2 Overexpressing Breast Cancers by Expanding the Cancer Stem Cell Population

    PubMed Central

    Korkaya, Hasan; Kim, Gwang-il; Davis, April; Malik, Fayaz; Henry, N. Lynn; Ithimakin, Suthinee; Quraishi, Ahmed A.; Tawakkol, Nader; D’Angelo, Rosemarie; Paulson, Amanda; Chung, Susan; Luther, Tahra; Paholak, Hayley S.; Liu, Suling; Hassan, Khaled; Zen, Qin; Clouthier, Shawn G.; Wicha, Max S.

    2012-01-01

    Although inactivation of the PTEN gene has been implicated in the development of resistance to the HER2 targeting antibody trastuzumab, the mechanisms mediating this resistance remain elusive. We generated trastuzumab resistant cells by knocking down PTEN expression in HER2 overexpressing breast cancer cell lines and demonstrate that development of trastuzumab resistance in these cells is mediated by activation of an IL-6 inflammatory feedback loop leading to expansion of the cancer stem cell (CSC) population. Long term trastuzumab treatment generates highly enriched CSCs which display an EMT phenotype secreting over 100-fold more IL-6 than parental cells. An IL-6 receptor antibody interrupted this inflammatory feedback loop reducing the cancer stem cell population resulting in decreased tumor growth and metastasis in mouse xenographs. These studies demonstrate that trastuzumab resistance may be mediated by an IL-6 inflammatory loop and suggest that blocking this loop may provide alternative strategy to overcome trastuzumab resistance. PMID:22819326

  11. CXCR4 Overexpression in Human Adipose Tissue-Derived Stem Cells Improves Homing and Engraftment in an Animal Limb Ischemia Model.

    PubMed

    Kim, MiJung; Kim, Dong-Ik; Kim, Eun Key; Kim, Chan-Wha

    2017-02-16

    We investigated the effects of transplantation of CXCR4-overexpressing adipose tissue-derived stem cells (ADSCs) into a mouse diabetic hindlimb ischemia model on homing and engraftment as early as 48 h after transplant. CXCR4-overexpressing ADSCs were intramuscularly or intravenously injected into diabetic mice with hindlimb ischemia. After 48 h, muscle tissues in the femur and tibia were collected, and the CXCR4 expression pattern was analyzed by immunofluorescence staining. The homing and engraftment of transplanted CXCR4-overexpressing ADSCs into the ischemic area were significantly increased, and intravenous (systemic) injection resulted in the more effective delivery of stem cells to the target site 48 h posttransplantation. Furthermore, CXCR4-overexpressing ADSCs more efficiently contributed to long-term engraftment and muscle tissue regeneration than normal ADSCs in a limb ischemia model. In addition, the homing and engraftment of ADSCs were correlated with the CXCR4 transfection efficiency. These results demonstrated that enhanced CXCR4 signaling could significantly improve the early homing and engraftment of ADSCs into ischemic areas as well as the long-term engraftment and ultimate muscle tissue regeneration.

  12. Retraction: "Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells" by Bao et al.

    PubMed

    2016-08-01

    The above article, published online on April 18, 2011 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the second author that found Figures 1C and 4C to be inappropriately re-used and re-labeled. REFERENCE Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. 2011. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112:2296-2306; doi: 10.1002/jcb.23150.

  13. Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases.

    PubMed

    Kanojia, Deepak; Balyasnikova, Irina V; Morshed, Ramin A; Frank, Richard T; Yu, Dou; Zhang, Lingjiao; Spencer, Drew A; Kim, Julius W; Han, Yu; Yu, Dihua; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S

    2015-10-01

    The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, nontoxic targeted therapy for brain metastases. In this study, we used an established human neural stem cell line, HB1.F3 NSCs and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Preclinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, nontoxic, and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation.

  14. Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression.

    PubMed

    Zhuang, Yong; Gudas, Lorraine J

    2008-09-01

    Vitamin A (retinol [Rol]) and its metabolites are essential for embryonic development. The Rol metabolite all-trans retinoic acid (RA) is a biologically active form of Rol. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription-factors (COUP-TF) proteins have been implicated in the regulation of several important biological processes, such as embryonic development and neuronal cell differentiation. Because there is evidence that COUP-TFs function in the retinoid signaling network during development and differentiation, we generated murine embryonic stem (ES) cell lines which stably and constitutively overexpress COUP-TF1 (NR2F1) and we analyzed RA-induced differentiation. COUP-TF1 overexpression resulted in reduced RA-associated growth arrest. A 2.4+/-0.17-fold higher Nanog mRNA level was seen in COUP-TF1 overexpressing lines, as compared with wild-type (WT) ES cells, after a 72 hr RA treatment. We also showed that COUP-TF1 overexpression enhanced RA-induced extraembryonic endoderm gene expression. Specifically, COUP-TF1 overexpression increased mRNA levels of GATA6 by 3.3+/-0.3-fold, GATA4 by 3.6+/-0.1-fold, laminin B1 (LAMB1) by 3.4+/-0.1-fold, LAMC1 by 3.4+/-0.2-fold, Dab2 by 2.4+0.1-fold, and SOX17 by 2.5-fold at 72 hr after RA treatment plus LIF, as compared with the increases seen in WT ES cells. However, RA-induced neurogenesis was unaffected by COUP-TF1 overexpression, as shown by the equivalent levels of expression of NeuroD1, nestin, GAP43 and other neuronal markers. Our results revealed for the first time that COUP-TF1 is an important signaling molecule during vitamin A (Rol)-mediated very early stage of embryonic development.

  15. CD133 and CD44 are universally overexpressed in GIST and do not represent cancer stem cell markers.

    PubMed

    Chen, Junwei; Guo, Tianhua; Zhang, Lei; Qin, Li-Xuan; Singer, Samuel; Maki, Robert G; Taguchi, Takahiro; Dematteo, Ronald; Besmer, Peter; Antonescu, Cristina R

    2012-02-01

    Although imatinib mesylate has been a major breakthrough in the treatment of advanced gastrointestinal stromal tumors (GIST), complete responses are rare and most patients eventually develop resistance to the drug. Thus, the possibility of an imatinib-insensitive cell subpopulation within GIST tumors, harboring stem cell characteristics, may be responsible for the clinical failures. However, the existence of a cancer stem cell component in GIST has not been yet established. This study was aimed to determine whether expression of commonly used stem cell markers in other malignancies, that is, CD133 and CD44, might identify cells with characteristics of cancer stem/progenitor cells in human GIST. CD133 and CD44 expression in GIST explants was analyzed by flow cytometry, immunofluorescence, and gene expression. Their transcription levels were correlated with clinical and molecular factors in a large, well-annotated cohort of GIST patients. FACS sorted GIST cells based on CD133 and CD44 expression were isolated and used to assess phenotypic characteristics, ability to maintain their surface expression, sensitivity to imatinib, and expression signature. The enrichment in CD133/CD44 cells in the side population (SP) assay was also investigated. CD133 expression was consistently found in GIST. CD133(-) cells formed more colonies, were more invasive in a matrigel assay, and showed enrichment in the SP cells, compared to CD133(+) cells. CD133 expression was also detected in the two imatinib-sensitive GIST cell lines, while was absent in the imatinib-resistant lines. Our results show that CD133 and CD44 are universally expressed in GIST, and may represent a lineage rather than a cancer stem cell marker.

  16. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation.

    PubMed

    Sarate, Rahul M; Chovatiya, Gopal L; Ravi, Vagisha; Khade, Bharat; Gupta, Sanjay; Waghmare, Sanjeev K

    2016-09-01

    Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417.

  17. Effects of Olig2-overexpressing neural stem cells and myelin basic protein-activated T cells on recovery from spinal cord injury.

    PubMed

    Hu, Jian-Guo; Shen, Lin; Wang, Rui; Wang, Qi-Yi; Zhang, Chen; Xi, Jin; Ma, Shan-Feng; Zhou, Jian-Sheng; Lü, He-Zuo

    2012-04-01

    Neural stem cell (NSC) transplantation is a major focus of current research for treatment of spinal cord injury (SCI). However, it is very important to promote the survival and differentiation of NSCs into myelinating oligodendrocytes (OLs). In this study, myelin basic protein-activated T (MBP-T) cells were passively immunized to improve the SCI microenvironment. Olig2-overexpressing NSCs were infected with a lentivirus carrying the enhanced green fluorescent protein (GFP) reporter gene to generate Olig2-GFP-NSCs that were transplanted into the injured site to differentiate into OLs. Transferred MBP-T cells infiltrated the injured spinal cord, produced neurotrophic factors, and induced the differentiation of resident microglia and/or infiltrating blood monocytes into an "alternatively activated" anti-inflammatory macrophage phenotype by producing interleukin-13. As a result, the survival of transplanted NSCs increased fivefold in MBP-T cell-transferred rats compared with that of the vehicle-treated control. In addition, the differentiation of MBP-positive OLs increased 12-fold in Olig2-GFP-NSC-transplanted rats compared with that of GFP-NSC-transplanted controls. In the MBP-T cell and Olig2-GFP-NSC combined group, the number of OL-remyelinated axons significantly increased compared with those of all other groups. However, a significant decrease in spinal cord lesion volume and an increase in spared myelin and behavioral recovery were observed in Olig2-NSC- and NSC-transplanted MBP-T cell groups. Collectively, these results suggest that MBP-T cell adoptive immunotherapy combined with NSC transplantation has a synergistic effect on histological and behavioral improvement after traumatic SCI. Although Olig2 overexpression enhances OL differentiation and myelination, the effect on functional recovery may be surpassed by MBP-T cells.

  18. MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway.

    PubMed

    Wu, Geyan; Liu, Aibin; Zhu, Jinrong; Lei, Fangyong; Wu, Shu; Zhang, Xin; Ye, Liping; Cao, Lixue; He, Shanyang

    2015-10-06

    Wnt/β-catenin signaling pathway is strictly controlled by multiple negative regulators. However, how tumor cells override the negative regulatory effects to maintain constitutive activation of Wnt/β-catenin signaling, which is commonly observed in various cancers, remains puzzling. In current study, we reported that overexpression of miR-1207 in ovarian cancer activated Wnt/β-catenin signaling by directly targeting and suppressing secreted Frizzled-related protein 1 (SFRP1), AXIN2 and inhibitor of β-catenin and TCF-4 (ICAT), which are vital negative regulators of the Wnt/β-catenin pathway. We found that the expression of miR-1207 was ubiquitously upregulated in both ovarian cancer tissues and cells, which inversely correlated with patient overall survival. Furthermore, overexpression of miR-1207 enhanced, while silencing miR-1207 reduced, stem cell-like traits of ovarian cancer cells in vitro and in vivo, including tumor sphere formation capability and proportion of SP+ and CD133+ cells. Importantly, upregulating miR-1207 promoted, while silencing miR-1207 inhibited, the tumorigenicity of ovarian cancer cells. Hence, our results suggest that miR-1207 plays a vital role in promoting the cancer stem cell-like phenotype in ovarian cancer and might represent a potential target for anti-ovarian cancer therapy.

  19. Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites.

    PubMed

    Chen, Tao; Yu, Yan; Tang, Liu-Jiu; Kong, Li; Zhang, Cheng-Hong; Chu, Hai-Ying; Yin, Liang-Wei; Ma, Hai-Ying

    2017-03-01

    Cytoskeletal proteins are involved in neuronal survival. Brain-derived neurotrophic factor can increase expression of cytoskeletal proteins during regeneration after axonal injury. However, the effect of neural stem cells genetically modified by brain-derived neurotrophic factor transplantation on neuronal survival in the injury site still remains unclear. To examine this, we established a rat model of traumatic brain injury by controlled cortical impact. At 72 hours after injury, 2 × 10(7) cells/mL neural stem cells overexpressing brain-derived neurotrophic factor or naive neural stem cells (3 mL) were injected into the injured cortex. At 1-3 weeks after transplantation, expression of neurofilament 200, microtubule-associated protein 2, actin, calmodulin, and beta-catenin were remarkably increased in the injury sites. These findings confirm that brain-derived neurotrophic factor-transfected neural stem cells contribute to neuronal survival, growth, and differentiation in the injury sites. The underlying mechanisms may be associated with increased expression of cytoskeletal proteins and the Wnt/β-catenin signaling pathway.

  20. Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites

    PubMed Central

    Chen, Tao; Yu, Yan; Tang, Liu-jiu; Kong, Li; Zhang, Cheng-hong; Chu, Hai-ying; Yin, Liang-wei; Ma, Hai-ying

    2017-01-01

    Cytoskeletal proteins are involved in neuronal survival. Brain-derived neurotrophic factor can increase expression of cytoskeletal proteins during regeneration after axonal injury. However, the effect of neural stem cells genetically modified by brain-derived neurotrophic factor transplantation on neuronal survival in the injury site still remains unclear. To examine this, we established a rat model of traumatic brain injury by controlled cortical impact. At 72 hours after injury, 2 × 107 cells/mL neural stem cells overexpressing brain-derived neurotrophic factor or naive neural stem cells (3 mL) were injected into the injured cortex. At 1–3 weeks after transplantation, expression of neurofilament 200, microtubule-associated protein 2, actin, calmodulin, and beta-catenin were remarkably increased in the injury sites. These findings confirm that brain-derived neurotrophic factor-transfected neural stem cells contribute to neuronal survival, growth, and differentiation in the injury sites. The underlying mechanisms may be associated with increased expression of cytoskeletal proteins and the Wnt/β-catenin signaling pathway. PMID:28469658

  1. Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells.

    PubMed

    Nami, Babak; Ghasemi-Dizgah, Armin; Vaseghi, Akbar

    2016-01-01

    Breast cancer stem cell with CD44(hi)/CD24(lo) phonotype is described having stem cell properties and represented as the main driving factor in breast cancer initiation, growth, metastasis and low response to anti-cancer agents. Glucoseregulated proteins (GRPs) are heat shock protein family chaperons that are charged with regulation of protein machinery and modulation of endoplasmic reticulum homeostasis whose important roles in stem cell development and invasion of various cancers have been demonstrated. Here, we investigated the expression levels of GRP78 and GRP94 in CD44(hi)/CD24(lo) phenotype breast cancer stem cells (BCSCs). MCF7, T-47D and MDA-MB-231 breast cancer cell lines were used. CD44(hi)/CD24(lo) phenotype cell population were analyzed and sorted by fluorescence-activated cell sorting (FACS). Transcriptional and translational expression of GRP78 and GRP94 were investigated by western blotting and quantitative real time PCR. RESULTS showed different proportion of CD44(hi)/CD24(lo) phenotype cell population in their original bulk cells. The ranking of the cell lines in terms of CD44(hi)/CD24(lo) phenotype cell population was as MCF7cells exhibited higher mRNA and protein expression level of GRP78 and GRP94 compared to their original bulk cells. Our results show a relationship between overexpression of GRP78 and GRP94 and exhibiting CD44hi/CD24lo phenotype in breast cancer cells. We conclude that upregulation of GRPs may be an important factor in the emergence of CD44hi/CD24lo phenotype BCSCs features.

  2. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model.

    PubMed

    Lee, Hong J; Lim, In J; Lee, Min C; Kim, Seung U

    2010-11-15

    Intracerebral hemorrhage (ICH) is a lethal stroke type; mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, so an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs) selectively migrate to the brain and promote functional recovery in rat ICH model, and others have shown that intracerebral infusion of brain-derived neurotrophic factor (BDNF) results in improved structural and functional outcome from cerebral ischemia. We postulated that human NSCs overexpressing BDNF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs and increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by injection of bacterial collagenase into striatum. The HB1.F3.BDNF (F3.BDNF) human NSC line produces sixfold higher amounts of BDNFF over the parental F3 cell line in vitro, induces behavioral improvement, and produces a threefold increase in cell survival at 2 weeks and 8 weeks posttransplantation. Brain transplantation of human NSCs overexpressing BDNF provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results indicate that the F3.BDNF human NSCs should be of great value as a cellular source for experimental studies involving cellular therapy for human neurological disorders, including ICH.

  3. Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots.

    PubMed

    Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang

    2013-01-01

    Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.

  4. Overexpression of Wnt3a facilitates the proliferation and neural differentiation of neural stem cells in vitro and after transplantation into an injured rat retina.

    PubMed

    Yang, Xi-Tao; Bi, Yong-Yan; Chen, Er-Tao; Feng, Dong-Fu

    2014-02-01

    Neural stem cell-based therapy is a promising option for repair after injury. However, poor stem cell proliferation and insufficient differentiation of the stem cells into neurons are still difficult problems. The present study investigated whether transplantation of neural stem cells (NSCs) genetically modified to express Wnt3a is a promising approach to overcome these difficulties. We explored the possibility that Wnt3a might contribute to the therapeutic effect of NSC transplantation in retinal repair. The relative promotion of proliferation and neural differentiation by modified NSCs was investigated in a rat model of optic nerve crush. A recombinant lentivirus (Lenti-Wnt3a) was engineered to express Wnt3a. NSCs infected with control lentivirus (Lenti-GFP) or Lenti-Wnt3a were transplanted into the subretinal space immediately after the optic nerve crush. The proliferation and neural differentiation activity of the NSCs were assessed in vitro and in vivo. Overexpression of Wnt3a in NSCs induced activation of Wnt signaling, promoted proliferation, and directed the differentiation of the NSCs into neurons both in vitro and in vivo. Our study suggests that Wnt3a can potentiate the therapeutic benefits of NSC-based therapy in the injured retina.

  5. Stem cells.

    PubMed

    Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T

    2010-10-01

    Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.

  6. Types of Stem Cells

    MedlinePlus

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  7. Effects of Recombinant Overexpression of Bcl2 on the Proliferation, Apoptosis, and Osteogenic/Odontogenic Differentiation Potential of Dental Pulp Stem Cells.

    PubMed

    Heng, Boon Chin; Ye, Xin; Liu, Yuan; Dissanayaka, Waruna Lakmal; Cheung, Gary Shun Pan; Zhang, Chengfei

    2016-04-01

    The therapeutic usefulness of dental pulp stem cells (DPSCs) is severely limited by low survivability upon transplantation in situ because of the presence of various proapoptotic factors within damaged/diseased tissues (ie, hypoxia and inflammation). One strategy to enhance the survivability of grafted DPSCs could be recombinant overexpression of antiapoptotic genes, such as the B-cell lymphoma 2 gene (Bcl2). DPSCs were transfected with the Bcl2 and/or GFP gene. Cell density and mitotic activity of transfected DPSCs within in vitro culture were evaluated with the water soluble tetrazolium salt-8 (WST-8) and bromodeoxyuridine assay, respectively, whereas apoptosis was evaluated through the detection of cytoplasmic histone-associated DNA fragments. The osteogenic/odontogenic differentiation potential of these cells was evaluated with quantitative real-time polymerase chain reaction, alkaline phosphatase, and alizarin red staining. Bcl2-transfected DPSCs exhibited consistently higher cell densities than the GFP-transfected control within in vitro culture, and this was not because of the higher mitotic rate but was instead attributed to enhanced cell survivability because of the inhibition of apoptosis by Bcl2. Recombinant overexpression of Bcl2 inhibited the osteogenic/odontogenic potential of DPSCs, as indicated by lower levels of alkaline phosphatase activity and mineralized calcium deposition, together with the down-regulated expression of several key osteogenic/odontogenic gene markers including collagen I, osteocalcin, dentin matrix protein-1, bone sialoprotein, and alkaline phosphatase. The results place a "caveat" or limitation on the use of recombinant Bcl2 overexpression as a therapeutic strategy for improving the survivability of grafted DPSCs in that the osteogenic/odontogenic potential of these cells may be compromised despite enhanced survival within the host. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights

  8. Stimulatory effect of HGF-overexpressing adipose tissue-derived mesenchymal stem cells on thymus regeneration in a rat thymus involution model.

    PubMed

    Jung, Woo-Sung; Han, Sei-Myoung; Kim, Sung-Min; Kim, Mi-Eun; Lee, Jun-Sik; Seo, Kyoung-Won; Youn, Hwa-Young; Lee, Hee-Woo

    2014-10-01

    The thymus is the central lymphoid organ providing a unique and essential microenvironment for T-cell precursor development into mature functionally competent T-lymphocytes. Thus, it is important to develop the strategies for enhancing thymic regeneration from involution induced by a variety of clinical treatments and conditions. Hepatocyte growth factor (HGF) promotes proliferation in a variety of cell types. We have used stem cell-based HGF gene therapy to enhance regeneration from acute thymic involution. HGF-overexpressing human adipose tissue-derived mesenchymal stem cells (HGF-hATMSCs) were generated by liposomal transfection with the pMEX expression vector, constructed by inserting the HGF gene. Significantly increased HGF expression in these cells was confirmed by reverse transcription-polymerase chain reaction and an enzyme-linked immunosorbent assay. HGF produced by HGF-hATMSCs enhanced the proliferation of a mouse thymic epithelial cell line and the expression of interleukin-7 in vitro. We also examined the effect of HGF-hATMSCs on thymic regeneration in rats with acute thymic involution. Significant increases in thymus size and weight, as well as the number of thymocytes (especially, early thymocyte progenitors), were seen in the HGF-hATMSCs-treated rats compared to saline-treated control animals. A stimulatory effect of HGF-hATMSCs on thymic regeneration has therefore been shown, highlighting the clinical value of HGF-hATMSCs for treating thymic involution. © 2014 International Federation for Cell Biology.

  9. Co-Transplantation of GDNF-Overexpressing Neural Stem Cells and Fetal Dopaminergic Neurons Mitigates Motor Symptoms in a Rat Model of Parkinson’s Disease

    PubMed Central

    Lu, Hua; Yang, Zhiyong; Liu, Ru’en; Wang, Jinkun; Song, Xiaobin; Long, Jiang; Li, Yu; Lei, Deqiang; Feng, Zhongtang

    2013-01-01

    Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson’s disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo. PMID:24312503

  10. Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson's disease.

    PubMed

    Deng, Xingli; Liang, Yuanxin; Lu, Hua; Yang, Zhiyong; Liu, Ru'en; Wang, Jinkun; Song, Xiaobin; Long, Jiang; Li, Yu; Lei, Deqiang; Feng, Zhongtang

    2013-01-01

    Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson's disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo.

  11. Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target.

    PubMed

    Wakeman, Dustin R; Redmond, D Eugene; Dodiya, Hemraj B; Sladek, John R; Leranth, Csaba; Teng, Yang D; Samulski, R Jude; Snyder, Evan Y

    2014-06-01

    Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition. ©AlphaMed Press.

  12. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models

    PubMed Central

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-01-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  13. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits

    PubMed Central

    WANG, YAN; LI, YIGANG; SONG, LEI; LI, YANYAN; JIANG, SHAN; ZHANG, SONG

    2016-01-01

    Amniotic fluid-derived mesenchymal stem cells (AFMSCs) are an attractive cell source for applications in regenerative medicine, due to characteristics such as proliferative capacity and multipotency. In addition, Akt, a serine-threonine kinase, maintains stem cells by promoting viability and proliferation. Whether the transplantation of Akt-overexpressing AFMSCs protects the heart against ischemia-reperfusion (I/R) injury has yet to be elucidated. Accordingly, the Akt gene was overexpressed in AFMSCs using lentiviral transduction, and Akt-AFMSCs were transplanted into the ischemic myocardium of rabbits prior to reperfusion. Any protective effects resulting from this procedure were subsequently sought after three weeks later. A histological examination revealed that there was a decrease in intramyocardial inflammation and ultrastructural damage, and an increase in capillary density and in the levels of GATA binding protein 4, connexin 43 and cardiac troponin T in the Akt-AFMSC group compared with the control group. A significant decrease in cardiomyocyte apoptosis, accompanying an increase in phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) and a decrease in caspase-3, was also observed. Furthermore, the left ventricular function was markedly augmented in the Akt-AFMSC group compared with the control group. These observations suggested that the protective effect of AFMSCs may be due to the delivery of secreted cytokines, promotion of neoangiogenesis, prevention of cardiomyocyte apoptosis, transdifferentiation into cardiomyocytes and promotion of the viability of AFMSCs, which are assisted by Akt gene modification. Taken together, the results of the present study have indicated that transplantation of Akt-AFMSCs is able to alleviate myocardial I/R injury and improve cardiac function. PMID:27151366

  14. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits.

    PubMed

    Wang, Yan; Li, Yigang; Song, Lei; Li, Yanyan; Jiang, Shan; Zhang, Song

    2016-07-01

    Amniotic fluid-derived mesenchymal stem cells (AFMSCs) are an attractive cell source for applications in regenerative medicine, due to characteristics such as proliferative capacity and multipotency. In addition, Akt, a serine‑threonine kinase, maintains stem cells by promoting viability and proliferation. Whether the transplantation of Akt-overexpressing AFMSCs protects the heart against ischemia‑reperfusion (I/R) injury has yet to be elucidated. Accordingly, the Akt gene was overexpressed in AFMSCs using lentiviral transduction, and Akt‑AFMSCs were transplanted into the ischemic myocardium of rabbits prior to reperfusion. Any protective effects resulting from this procedure were subsequently sought after three weeks later. A histological examination revealed that there was a decrease in intramyocardial inflammation and ultrastructural damage, and an increase in capillary density and in the levels of GATA binding protein 4, connexin 43 and cardiac troponin T in the Akt‑AFMSC group compared with the control group. A significant decrease in cardiomyocyte apoptosis, accompanying an increase in phosphorylated Akt and B‑cell lymphoma 2 (Bcl-2) and a decrease in caspase‑3, was also observed. Furthermore, the left ventricular function was markedly augmented in the Akt‑AFMSC group compared with the control group. These observations suggested that the protective effect of AFMSCs may be due to the delivery of secreted cytokines, promotion of neoangiogenesis, prevention of cardiomyocyte apoptosis, transdifferentiation into cardiomyocytes and promotion of the viability of AFMSCs, which are assisted by Akt gene modification. Taken together, the results of the present study have indicated that transplantation of Akt-AFMSCs is able to alleviate myocardial I/R injury and improve cardiac function.

  15. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model.

    PubMed

    Gómez-Mauricio, Guadalupe; Moscoso, Isabel; Martín-Cancho, María-Fernanda; Crisóstomo, Verónica; Prat-Vidal, Cristina; Báez-Díaz, Claudia; Sánchez-Margallo, Francisco M; Bernad, Antonio

    2016-07-16

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration.

  16. Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels

    PubMed Central

    González, Marisol; Vilches, Rodrigo; Rojas, Pablo; Vásquez, Manuel; Kurte, Mónica; Vega-Letter, Ana María; Carrión, Flavio; Figueroa, Fernando; Rojas, Patricio; Irarrázabal, Carlos

    2016-01-01

    The neurotransmitter GABA has been recently identified as a potent immunosuppressive agent that targets both innate and adaptive immune systems and prevents disease progression of several autoimmunity models. Mesenchymal stem cells (MSCs) are self-renewing progenitor cells that differentiate into various cell types under specific conditions, including neurons. In addition, MSC possess strong immunosuppressive capabilities. Upon cytokine priming, undifferentiated MSC suppress T-cell proliferation via cell-to-cell contact mechanisms and the secretion of soluble factors like nitric oxide, prostaglandin E2 and IDO. Although MSC and MSC-derived neuron-like cells express some GABAergic markers in vitro, the role for GABAergic signaling in MSC-mediated immunosuppression remains completely unexplored. Here, we demonstrate that pro-inflammatory cytokines selectively regulate GAD-67 expression in murine bone marrow-MSC. However, expression of GAD-65 is required for maximal GABA release by MSC. Gain of function experiments using GAD-67 and GAD-65 co-expression demonstrates that GAD increases immunosuppressive function in the absence of pro-inflammatory licensing. Moreover, GAD expression in MSC evokes an increase in both GABA and NO levels in the supernatants of co-cultured MSC with activated splenocytes. Notably, the increase in NO levels by GAD expression was not observed in cultures of isolated MSC expressing GAD, suggesting crosstalk between these two pathways in the setting of immunosuppression. These results indicate that GAD expression increases MSC-mediated immunosuppression via secretion of immunosuppressive agents. Our findings may help reconsider GABAergic activation in MSC for immunological disorders. PMID:27662193

  17. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.

    PubMed

    Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi

    2017-09-01

    Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Suicide gene reveals the myocardial neovascularization role of mesenchymal stem cells overexpressing CXCR4 (MSC(CXCR4)).

    PubMed

    Liang, Jialiang; Huang, Wei; Yu, Xiyong; Ashraf, Atif; Wary, Kishore K; Xu, Meifeng; Millard, Ronald W; Ashraf, Muhammad; Wang, Yigang

    2012-01-01

    Our previous studies indicated that MSC(CXCR4) improved cardiac function after myocardial infarction (MI). This study was aimed to investigate the specific role of MSC(CXCR4) in neovascularization of infarcted myocardium using a suicide gene approach. MSCs were transduced with either lentivirus-null vector/GFP (MSC(Null) as control) or vector encoding for overexpressing CXCR4/GFP. The MSC derived-endothelial cell (EC) differentiation was assessed by a tube formation assay, Dil-ac-LDL uptake, EC marker expression, and VE-cadherin promoter activity assay. Gene expression was analyzed by quantitative RT-PCR or Western blot. The suicide gene approach was under the control of VE-cadherin promoter. In vivo studies: Cell patches containing MSC(Null) or MSC(CXCR4) were transduced with suicide gene and implanted into the myocardium of MI rat. Rats received either ganciclovir (GCV) or vehicle after cell implantation. After one month, the cardiac functional changes and neovascularization were assessed by echocardiography, histological analysis, and micro-CT imaging. The expression of VEGF-A and HIF-1α was significantly higher in MSC(CXCR4) as compared to MSC(Null) under hypoxia. Additionally, MSC(CXCR4) enhanced new vessel formation and EC differentiation, as well as STAT3 phosphorylation under hypoxia. STAT3 participated in the transcription of VE-cadherin in MSC(CXCR4) under hypoxia, which was inhibited by WP1066 (a STAT3 inhibitor). In addition, GCV specifically induced death of ECs with suicide gene activation. In vivo studies: MSC(CXCR4) implantation promoted cardiac functional restoration, reduced infarct size, improved cardiac remodeling, and enhanced neovascularization in ischemic heart tissue. New vessels derived from MSC(CXCR4) were observed at the injured heart margins and communicated with native coronary arteries. However, the derived vessel networks were reduced by GCV, reversing improvement of cardiac function. The transplanted MSC(CXCR4) enhanced

  19. Chondrogenesis of human bone marrow-derived mesenchymal stem cells is modulated by complex mechanical stimulation and adenoviral-mediated overexpression of bone morphogenetic protein 2.

    PubMed

    Neumann, Alexander J; Alini, Mauro; Archer, Charles W; Stoddart, Martin J

    2013-06-01

    Currently available methods to treat articular cartilage defects still fail to demonstrate satisfactory outcomes for many patients. Functional tissue engineering using human bone marrow-derived mesenchymal stem cells (hMSCs) is a promising alternative approach for the treatment of these defects. This study strived to investigate the combined effect of complex mechanical stimulation and adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2) on hMSC chondrogenesis. hMSCs were encapsulated in a fibrin hydrogel and seeded into biodegradable polyurethane (PU) scaffolds. A novel three-dimensional transduction protocol was used to transduce cells with an adenovirus encoding for BMP-2 (Ad.BMP-2). Control cells were left untransduced. Cells were cultured for 7 or 28 days in a chondropermessive medium, which lacks any exogenous growth factors. Thereby, the in vivo situation is mimicked more precisely. hMSCs in fibrin-PU composite scaffolds were either left as free-swelling controls or mechanically stimulated using a custom-built bioreactor system that is able to generate joint-like forces. Outcome parameters measured were BMP-2 concentration within the culture medium, and biochemical and gene expression analysis. Mechanical stimulation resulted in an upregulation of chondrogenic genes. Further, glycosaminoglycan (GAG)/DNA ratios were elevated in mechanically stimulated groups. Transduction with Ad.BMP-2 led to a pronounced upregulation of the gene aggrecan and an upregulation of Sox9 message after 7 days. Furthermore, a synergistic effect in combination with mechanical stimulation on collagen 2 message was detected after 7 days. This synergistic increase was more than 8-fold if compared to the additive effect of the application of each stimulus on its own. However, BMP-2 overexpression consistently resulted in a trend toward decreased GAG/DNA ratios in both mechanical stimulated and unloaded groups.

  20. TNF-α Induced the Enhanced Apoptosis of Mesenchymal Stem Cells in Ankylosing Spondylitis by Overexpressing TRAIL-R2

    PubMed Central

    Liu, Zhenhua; Gao, Liangbin; Wang, Peng; Xie, Zhongyu; Cen, Shuizhong; Li, Yuxi; Wu, Xiaohua; Wang, Le; Su, Hongjun; Deng, Wen; Wang, Shan; Li, Deng; Li, Jinteng; Ouyang, Yi

    2017-01-01

    Ankylosing spondylitis (AS) is an autoimmune disease with unknown etiology. Dysregulated mesenchymal stem cells (MSCs) apoptosis may contribute to the pathogenesis of autoimmune diseases. However, apoptosis of MSCs from patients with AS (ASMSCs) has not been investigated yet. The present study aims to assess the apoptosis of bone marrow-derived ASMSCs and to investigate the underlying mechanisms of altered ASMSCs apoptosis. We successfully induced the apoptosis of ASMSCs and MSCs from healthy donors (HDMSCs) using the combination of tumor necrosis factor alpha (TNF-α) and cycloheximide (CHX). We found that ASMSCs treated with TNF-α and CHX showed higher apoptosis levels compared to HDMSCs. During apoptosis, ASMSCs expressed significantly more TRAIL-R2, which activated both the death receptor pathway and mitochondria pathway by increasing the expression of FADD, cleaved caspase-8, cytosolic cytochrome C, and cleaved caspase-3. Inhibiting TRAIL-R2 expression using shRNA eliminated the apoptosis differences between HDMSCs and ASMSCs by partially reducing ASMSCs apoptosis but minimally affecting that of HDMSCs. Furthermore, the expression of FADD, cleaved caspase-8, cytosolic cytochrome C, and cleaved caspase-3 were comparable between HDMSCs and ASMSCs after TRAIL-R2 inhibition. These results indicated that increased TRAIL-R2 expression results in enhanced ASMSCs apoptosis and may contribute to AS pathogenesis. PMID:28182106

  1. Chitosan Wound Dressings Incorporating Exosomes Derived from MicroRNA-126-Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full-Thickness Skin Defects in a Diabetic Rat Model.

    PubMed

    Tao, Shi-Cong; Guo, Shang-Chun; Li, Min; Ke, Qin-Fei; Guo, Ya-Ping; Zhang, Chang-Qing

    2017-03-01

    There is a need to find better strategies to promote wound healing, especially of chronic wounds, which remain a challenge. We found that synovium mesenchymal stem cells (SMSCs) have the ability to strongly promote cell proliferation of fibroblasts; however, they are ineffective at promoting angiogenesis. Using gene overexpression technology, we overexpressed microRNA-126-3p (miR-126-3p) and transferred the angiogenic ability of endothelial progenitor cells to SMSCs, promoting angiogenesis. We tested a therapeutic strategy involving controlled-release exosomes derived from miR-126-3p-overexpressing SMSCs combined with chitosan. Our in vitro results showed that exosomes derived from miR-126-3p-overexpressing SMSCs (SMSC-126-Exos) stimulated the proliferation of human dermal fibroblasts and human dermal microvascular endothelial cells (HMEC-1) in a dose-dependent manner. Furthermore, SMSC-126-Exos also promoted migration and tube formation of HMEC-1. Testing this system in a diabetic rat model, we found that this approach resulted in accelerated re-epithelialization, activated angiogenesis, and promotion of collagen maturity in vivo. These data provide the first evidence of the potential of SMSC-126-Exos in treating cutaneous wounds and indicate that modifying the cells-for example, by gene overexpression-and using the exosomes derived from these modified cells provides a potential drug delivery system and could have infinite possibilities for future therapy. Stem Cells Translational Medicine 2017;6:736-747.

  2. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis.

    PubMed

    Bhatlekar, Seema; Addya, Sankar; Salunek, Moreh; Orr, Christopher R; Surrey, Saul; McKenzie, Steven; Fields, Jeremy Z; Boman, Bruce M

    2014-01-15

    Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region--the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other crypt subsections (middle or top). Array results were validated by PCR and immunostaining. About 25% of genes analyzed were expressed in crypts: 88 preferentially in the bottom, 68 in the middle, and 131 in the top. Among genes upregulated in the bottom, ∼30% were classified as growth and/or developmental genes including several in the PI3 kinase pathway, a six-transmembrane protein STAMP1, and two homeobox (HOXA4, HOXD10) genes. qPCR and immunostaining validated that HOXA4 and HOXD10 are selectively expressed in the normal crypt bottom and are overexpressed in colon carcinomas (CRCs). Immunostaining showed that HOXA4 and HOXD10 are co-expressed with the SC markers CD166 and ALDH1 in cells at the normal crypt bottom, and the number of these co-expressing cells is increased in CRCs. Thus, our findings show that these two HOX genes are selectively expressed in colonic SCs and that HOX overexpression in CRCs parallels the SC overpopulation that occurs during CRC development. Our study suggests that developmental genes play key roles in the maintenance of normal SCs and crypt renewal, and contribute to the SC overpopulation that drives colon tumorigenesis.

  3. Differentiation of human embryonic stem cells into osteogenic or hematopoietic lineages: a dose-dependent effect of osterix over-expression.

    PubMed

    Kärner, Elerin; Unger, Christian; Cerny, Radim; Ahrlund-Richter, Lars; Ganss, Bernhard; Dilber, M Sirac; Wendel, Mikael

    2009-02-01

    Enhanced differentiation of human embryonic stem cells (HESCs), induced by genetic modification could potentially generate a vast number of diverse cell types. Such genetic modifications have frequently been achieved by over-expression of individual regulatory proteins. However, careful evaluation of the expression levels is critical, since this might have important implications for the differentiation potential of HESCs. To date, attempts to promote osteogenesis by means of gene transfer into HESCs using the early bone "master" transcription factor osterix (Osx) have not been reported. In this study, we attained HESC subpopulations expressing two significantly different levels of Osx, following lentiviral gene transfer. Both subpopulations exhibited spontaneous differentiation and reduced expression of markers characteristic of the pluripotent phenotype, such as SSEA3, Tra1-60, and Nanog, In order to promote bone differentiation, the cells were treated with ascorbic acid, beta-glycerophosphate and dexamethasone. The high level of Osx, compared to endogenous levels found in primary human osteoblasts, did not enhance osteogenic differentiation, and did not up-regulate collagen I expression. We show that the high Osx levels instead induced the commitment towards the hematopoietic-endothelial lineage-by up-regulating the expression of CD34 and Gata1. However, low levels of Osx up-regulated collagen I, bone sialoprotein and osteocalcin. Conversely, forced high level expression of the homeobox transcription factor HoxB4, a known regulator for early hematopoiesis, promoted osteogenesis in HESCs, while low levels of HoxB4 lead to hematopoietic gene expression.

  4. Multiple Sclerosis Gene Therapy with Recombinant Viral Vectors: Overexpression of IL-4, Leukemia Inhibitory Factor, and IL-10 in Wharton's Jelly Stem Cells Used in EAE Mice Model.

    PubMed

    Hosseini, Ahmad; Estiri, Hajar; Akhavan Niaki, Haleh; Alizadeh, Akram; Abdolhossein Zadeh, Baharak; Ghaderian, Sayyed Mohammad Hossein; Farjadfar, Akbar; Fallah, Ali

    2017-10-01

    Immunotherapy and gene therapy play important roles in modern medicine. The aim of this study is to evaluate the overexpression of interleukin-4 (IL-4), IL-10 and leukemia inhibitory factor (LIF) in Wharton's jelly stem cells (WJSCs) in the experimental autoimmune encephalomyelitis (EAE) mice model. In this experimental study, a DNA construction containing IL- 4, IL-10 and LIF was assembled to make a polycistronic vector (as the transfer vector). Transfer and control vectors were co-transfected into Human Embryonic Kidney 293 (HEK-293T) cells with helper plasmids which produced recombinant lentiviral viruses (rLV). WJSCs were transduced with rLV to make recombinant WJSC (rWJSC). In vitro protein and mRNA overexpression of IL-4, LIF, and IL-10 were evaluated using quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) and western blot (WB) analysis. EAE was induced in mice by MOG-CFA and pertussis toxin. EAE mice were injected twice with 2×105 rWJSCs. The in vivo level of IL-4, LIF, IL-10 cytokines and IL-17 were measured by ELISA. Brain tissues were analyzed histologically for evaluation of EAE lesions. Isolated WJSCs were performed to characterize by in vitro differentiation and surface markers were analyzed by flow cytometry method. Cloning of a single lentiviral vector with five genes was done successfully. Transfection of transfer and control vectors were processed based on CaPO4 method with >90% efficiency. Recombinant viruses were produced and results of titration showed 2-3×107 infection-unit/ml. WJSCs were transduced using recombinant viruses. IL-4, IL-10 and LIF overexpression were confirmed by ELISA, WB and qPCR. The EAE mice treated with rWJSC showed reduction of Il-17, and brain lesions as well as brain cellular infiltration, in vivo. Weights and physical activity were improved in gene-treated group. These results showed that gene therapy using anti-inflammatory cytokines can be a promising approach against multiple

  5. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    PubMed Central

    Dong, Liang; Hao, Haojie; Liu, Jiejie; Ti, Dongdong; Tong, Chuan; Hou, Qian; Li, Meirong; Zheng, Jingxi; Liu, Gang

    2017-01-01

    Mesenchymal stem cells (MSCs) can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM) from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs) overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM) components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM) can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair. PMID:28337222

  6. Synergistic effects of overexpression of BMP-2 and TGF-β3 on osteogenic differentiation of bone marrow mesenchymal stem cells

    PubMed Central

    Wang, Yilin; He, Tian; Liu, Jie; Liu, Hongzhi; Zhou, Lugang; Hao, Wei; Sun, Yujie; Wang, Xin

    2016-01-01

    Bone morphogenetic protein 2 (BMP-2) and transforming growth factor β (TGF-β) isoforms are important in advancing bone regeneration. The aim of the present study was to investigate the positive and reciprocal effect of TGF-β3, one of the three TGF-β isoforms, on BMP-2 in promoting osteogenic differentiation. Exogenous BMP-2 and TGF-β3 genes were separately, and in combination, overexpressed in rabbit bone marrow-derived mesenchymal stem cells (rBMSCs). Expression levels of BMP-2 and TGF-β3 were evaluated using reverse-transcription-polymerase chain reaction (RT-PCR) and Western blotting assays. Furthermore, the osteogenic differentiation capacities of BMSCs were assessed by measuring Alizarin Red S staining, an alkaline phosphatase activity assay, and quantification of the osteogenic-specific genes, Runt-related transcription factor 2 (Runx2) and Osterix (Osx). Using lentiviral-mediated transfection, robust co-transfection efficiency of >90% was achieved. RT-PCR and immunoblotting results indicated a marked elevated expression of BMP-2 and TGF-β3 in rBMSCs undergoing co-transfection, compared with transfection with BMP-2 or TGF-β3 alone, indicating that BMP-2 and TGF-β3 are synergistically expressed in rBMSCs. Furthermore, enhanced osteogenic differentiation was observed in rBMSCs co-transfected with BMP-2/TGF-β3. The present study successfully delivered BMP-2 together with TGF-β3 into rBMSCs with high efficiency for the first time. Furthermore, TGF-β3 overexpression was demonstrated to enhance the osteogenic efficacy of BMP-2 in rBMSCs, and vice versa. This provides a potential clinical therapeutic approach for regenerating the function of osseous tissue, and may present a promising strategy for bone defect healing. PMID:27878265

  7. Transplantation of human neural stem/progenitor cells overexpressing galectin-1 improves functional recovery from focal brain ischemia in the mongolian gerbil

    PubMed Central

    2011-01-01

    Transplantation of human neural stem/progenitor cells (hNSPCs) is a promising method to regenerate tissue from damage and recover function in various neurological diseases including brain ischemia. Galectin-1(Gal1) is a lectin that is expressed in damaged brain areas after ischemia. Here, we characterized the detailed Gal1 expression pattern in an animal model of brain ischemia. After brain ischemia, Gal1 was expressed in reactive astrocytes within and around the infarcted region, and its expression diminished over time. Previously, we showed that infusion of human Gal1 protein (hGal1) resulted in functional recovery after brain ischemia but failed to reduce the volume of the ischemic region. This prompted us to examine whether the combination of hNSPCs-transplantation and stable delivery of hGal1 around the ischemic region could reduce the ischemic volume and promote better functional recovery after brain ischemia. In this study, we transplanted hNSPCs that stably overexpressed hGal1 (hGal1-hNSPCs) in a model of unilateral focal brain ischemia using Mongolian gerbils. Indeed, we found that transplantation of hGal1-hNSPCs both reduced the ischemic volume and improved deficits in motor function after brain ischemia to a greater extent than the transplantation of hNSPCs alone. This study provides evidence for a potential application of hGal1 with hNSPCs-transplantation in the treatment of brain ischemia. PMID:21951913

  8. Chitosan Wound Dressings Incorporating Exosomes Derived From MicroRNA-126-Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full-Thickness Skin Defects in a Diabetic Rat Model.

    PubMed

    Tao, Shi-Cong; Guo, Shang-Chun; Li, Min; Ke, Qin-Fei; Guo, Ya-Ping; Zhang, Chang-Qing

    2016-10-26

    : There is a need to find better strategies to promote wound healing, especially of chronic wounds, which remain a challenge. We found that synovium mesenchymal stem cells (SMSCs) have the ability to strongly promote cell proliferation of fibroblasts; however, they are ineffective at promoting angiogenesis. Using gene overexpression technology, we overexpressed microRNA-126-3p (miR-126-3p) and transferred the angiogenic ability of endothelial progenitor cells to SMSCs, promoting angiogenesis. We tested a therapeutic strategy involving controlled-release exosomes derived from miR-126-3p-overexpressing SMSCs combined with chitosan. Our in vitro results showed that exosomes derived from miR-126-3p-overexpressing SMSCs (SMSC-126-Exos) stimulated the proliferation of human dermal fibroblasts and human dermal microvascular endothelial cells (HMEC-1) in a dose-dependent manner. Furthermore, SMSC-126-Exos also promoted migration and tube formation of HMEC-1. Testing this system in a diabetic rat model, we found that this approach resulted in accelerated re-epithelialization, activated angiogenesis, and promotion of collagen maturity in vivo. These data provide the first evidence of the potential of SMSC-126-Exos in treating cutaneous wounds and indicate that modifying the cells-for example, by gene overexpression-and using the exosomes derived from these modified cells provides a potential drug delivery system and could have infinite possibilities for future therapy.

  9. miR-138/miR-222 Overexpression Characterizes the miRNome of Amniotic Mesenchymal Stem Cells in Obesity.

    PubMed

    Nardelli, Carmela; Granata, Ilaria; Iaffaldano, Laura; D'Argenio, Valeria; Del Monaco, Valentina; Maruotti, Giuseppe Maria; Omodei, Daniela; Del Vecchio, Luigi; Martinelli, Pasquale; Salvatore, Francesco; Guarracino, Mario Rosario; Sacchetti, Lucia; Pastore, Lucio

    2017-01-01

    Clinical findings and data obtained in animal models indicate that nutrient uptake and exposure to environmental agents during pregnancy may affect fetal/newborn gestational programming, thereby resulting in obesity and/or obesity-related disorders in offspring. Human amniotic mesenchymal stem cells (hA-MSCs) differentiate into adipocytes and are thus a suitable model to investigate adipocyte functions in obesity. The aim of this study was to elucidate the miRNome of hA-MSCs and its contribution to obesity in pregnancy. To this aim we used the following: (i) high-resolution small RNA sequencing to characterize the microRNA (miRNA) profiles of hA-MSCs of 13 obese (Ob-) and 7 control (Co-) pregnant women at delivery; (ii) multiple-method integrated bioinformatics to predict the metabolic pathways potentially miRNA deregulated in Ob-hA-MSCs; and (iii) microarray mRNA expression profiling to verify obese-associated mRNA alterations. In summary, 12 miRNAs were differentially expressed between Ob-hA-MSCs and Co-hA-MSCs, with a multiple-methods bioinformatic consensus on miR-138-5p and miR-222-3p, which were overexpressed in Ob-hA-MSCs versus Co-hA-MSCs. The top 20 significant pathways predicted to be deregulated through miR-138-5p and/or miR-222-3p/target interaction included fat cell differentiation and deposits, lipid/carbohydrate homeostasis, response to stress, metabolic syndrome, heart disease, and ischemia. In conclusion, our finding of miR-138-5p/miR-222-3p overexpression in Ob-hA-MSCs, together with the transcriptomic data, suggests that these miRNAs in obese pregnancy could derange metabolic pathways previously found impaired in tissues from obese adults or in obesity-associated disorders and concur to modify gestational programming as has been demonstrated in animal models. This raises the possibility of using diet-based strategies to normalize the perinatal miRNome in obesity.

  10. Overexpression of Heme Oxygenase-1 in Mesenchymal Stem Cells Augments Their Protection on Retinal Cells In Vitro and Attenuates Retinal Ischemia/Reperfusion Injury In Vivo against Oxidative Stress

    PubMed Central

    Li, Li; Du, GaiPing; Wang, DaJiang; Zhou, Jin; Jiang, Guomin

    2017-01-01

    Retinal ischemia/reperfusion (I/R) injury, involving several ocular diseases, seriously threatens human ocular health, mainly treated by attenuating I/R-induced oxidative stress. Currently, mesenchymal stem cells (MSCs) could restore I/R-injured retina through paracrine secretion. Additionally, heme oxygenase-1 (HO-1) could ameliorate oxidative stress and thus retinal apoptosis, but the expression of HO-1 in MSC is limited. Here, we hypothesized that overexpression of HO-1 in MSC (MSC-HO-1) may significantly improve their retina-protective potentials. The overexpression of HO-1 in MSC was achieved by lentivirus transduction. Then, MSC or MSC-HO-1 was cocultured with retinal ganglion cells (RGC-5) in H2O2-simulated oxidative condition and their protection on RGC-5 was systemically valuated in vitro. Compared with MSC, MSC-HO-1 significantly attenuated H2O2-induced injury of RGC-5, including decrease in cellular ROS level and apoptosis, activation of antiapoptotic proteins p-Akt and Bcl-2, and blockage of proapoptotic proteins cleaved caspase 3 and Bax. In retinal I/R rats model, compared with control MSC, MSC-HO-1-treated retina significantly retrieved its structural thickness, reduced cell apoptosis, markedly attenuated retinal oxidative stress level, and largely regained the activities of typical antioxidant enzymes, SOD and CAT. Therefore, it could be concluded that overexpression of HO-1 provides a promising strategy to enhance the MSC-based therapy for I/R-related retinal injury. PMID:28255307

  11. Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer’s disease

    PubMed Central

    Garcia, Karina O.; Ornellas, Felipe L. M.; Martin, Priscila K. Matsumoto; Patti, Camilla L.; Mello, Luiz E.; Frussa-Filho, Roberto; Han, Sang W.; Longo, Beatriz M.

    2014-01-01

    Alzheimer’s disease (AD) is clinically characterized by progressive memory loss, behavioral and learning dysfunction and cognitive deficits, such as alterations in social interactions. The major pathological features of AD are the formation of senile plaques and neurofibrillary tangles together with neuronal and vascular damage. The double transgenic mouse model of AD (2xTg-AD) with the APPswe/PS1dE9 mutations shows characteristics that are similar to those observed in AD patients, including social memory impairment, senile plaque formation and vascular deficits. Mesenchymal stem cells (MSCs), when transplanted into the brain, produce positive effects by reducing amyloid-beta (Aβ) deposition in transgenic amyloid precursor protein (APP)/presenilins1 (PS1) mice. Vascular endothelial growth factor (VEGF), exhibits neuroprotective effects against the excitotoxicity implicated in the AD neurodegeneration. The present study investigates the effects of MSCs overexpressing VEGF in hippocampal neovascularization, cognitive dysfunction and senile plaques present in 2xTg-AD transgenic mice. MSC were transfected with vascular endothelial growth factor cloned in uP vector under control of modified CMV promoter (uP-VEGF) vector, by electroporation and expanded at the 14th passage. 2xTg-AD animals at 6, 9 and 12 months old were transplanted with MSC-VEGF or MSC. The animals were tested for behavioral tasks to access locomotion, novelty exploration, learning and memory, and their brains were analyzed by immunohistochemistry (IHC) for vascularization and Aβ plaques. MSC-VEGF treatment favored the neovascularization and diminished senile plaques in hippocampal specific layers. Consequently, the treatment was able to provide behavioral benefits and reduce cognitive deficits by recovering the innate interest to novelty and counteracting memory deficits present in these AD transgenic animals. Therefore, this study has important therapeutic implications for the vascular damage in

  12. Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer's disease.

    PubMed

    Garcia, Karina O; Ornellas, Felipe L M; Martin, Priscila K Matsumoto; Patti, Camilla L; Mello, Luiz E; Frussa-Filho, Roberto; Han, Sang W; Longo, Beatriz M

    2014-01-01

    Alzheimer's disease (AD) is clinically characterized by progressive memory loss, behavioral and learning dysfunction and cognitive deficits, such as alterations in social interactions. The major pathological features of AD are the formation of senile plaques and neurofibrillary tangles together with neuronal and vascular damage. The double transgenic mouse model of AD (2xTg-AD) with the APPswe/PS1dE9 mutations shows characteristics that are similar to those observed in AD patients, including social memory impairment, senile plaque formation and vascular deficits. Mesenchymal stem cells (MSCs), when transplanted into the brain, produce positive effects by reducing amyloid-beta (Aβ) deposition in transgenic amyloid precursor protein (APP)/presenilins1 (PS1) mice. Vascular endothelial growth factor (VEGF), exhibits neuroprotective effects against the excitotoxicity implicated in the AD neurodegeneration. The present study investigates the effects of MSCs overexpressing VEGF in hippocampal neovascularization, cognitive dysfunction and senile plaques present in 2xTg-AD transgenic mice. MSC were transfected with vascular endothelial growth factor cloned in uP vector under control of modified CMV promoter (uP-VEGF) vector, by electroporation and expanded at the 14th passage. 2xTg-AD animals at 6, 9 and 12 months old were transplanted with MSC-VEGF or MSC. The animals were tested for behavioral tasks to access locomotion, novelty exploration, learning and memory, and their brains were analyzed by immunohistochemistry (IHC) for vascularization and Aβ plaques. MSC-VEGF treatment favored the neovascularization and diminished senile plaques in hippocampal specific layers. Consequently, the treatment was able to provide behavioral benefits and reduce cognitive deficits by recovering the innate interest to novelty and counteracting memory deficits present in these AD transgenic animals. Therefore, this study has important therapeutic implications for the vascular damage in the

  13. Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury.

    PubMed

    Gheisari, Yousof; Azadmanesh, Kayhan; Ahmadbeigi, Naser; Nassiri, Seyed Mahdi; Golestaneh, Azadeh Fahim; Naderi, Mahmood; Vasei, Mohammad; Arefian, Ehsan; Mirab-Samiee, Siamak; Shafiee, Abbas; Soleimani, Masoud; Zeinali, Sirous

    2012-11-01

    The therapeutic potential of bone marrow mesenchymal stem cells (MSCs) in kidney failure has been examined in some studies. However, recent findings indicate that after transplantation, these cells home to kidneys at very low levels. Interaction of stromal derived factor-1 (SDF-1) with its receptor, CXCR4, is of pivotal importance in migration and homing. Recently, CXCR7 has also been recognized as another SDF-1 receptor that interacts with CXCR4 and modulates its functions. In this study, CXCR4 and CXCR7 were separately and simultaneously overexpressed in BALB/c bone marrow MSCs by using a lentiviral vector system and the homing and renoprotective potentials of these cells were evaluated in a mouse model of cisplatin-induced acute kidney injury. Using flow cytometry, immunohistochemistry, and real-time PCR methods for detection of GFP-labeled MSCs, we found that although considerably entrapped in lungs, native MSCs home very rarely to kidneys and bone marrow and this rate cannot be significantly affected by CXCR4 and/or CXCR7 upregulation. Transplantation of neither native nor genetically engineered MSCs ameliorated kidney failure. We concluded that overexpression of CXCR4 and CXCR7 receptors in murine MSCs cannot improve the homing and therapeutic potentials of these cells and it can be due to severe chromosomal abnormalities that these cells bear during ex vivo expansion.

  14. Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats

    PubMed Central

    Zhaleh, Fateme; Amiri, Fatemeh; Mohammadzadeh-Vardin, Mohammad; Bahadori, Marzie; Harati, Mitra Dehghan; Roudkenar, Mehryar Habibi; Saki, Sasan

    2016-01-01

    Objective(s): Recently cell therapy is a promising therapeutic modality for many types of disease including acute kidney injury (AKI). Due to the unique biological properties, mesenchymal stem cells (MSCs) are attractive cells in this regard. This study aims to transplant MSCs equipped with nuclear factor E2-related factor 2 (Nrf2) in rat experimental models of acute kidney and evaluate regeneration potential of injured kidney especially expression of injury and repaired biomarkers. Materials and methods: Nrf2 was overexpressed in bone marrow-derived MSCs by pcDNA.3.1 plasmid. AKI was induced using glycerol in rat models. The regenerative potential of Nrf2-overexpressed MSCs was evaluated in AKI-Induced animal models using biochemical and histological methods after transplantation. Expression of repaired genes, AQP1 and CK-18, as well as injury markers, Kim-1 and Cystatin C, was also assayed in engrafted kidney sections. Results: Our results revealed that transplantation of Nrf2-overexpressed MSCs into AKI-induced rats decreased blood urea nitrogen and creatinine and ameliorated kidney regeneration throughout 14 days. Upregulation of repaired markers and downregulation of injury markers were considerable 14 days after transplantation. Conclusions: Overexpression of Nrf2 in MSCs suggests a new strategy to increase efficiency of MSC-based cell therapy in AKI. PMID:27114803

  15. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-{alpha}-induced apoptosis via NF-{kappa}B in mesenchymal stem cells

    SciTech Connect

    Peng, Cheng-Fei; Han, Ya-Ling; Jie-Deng,; Yan, Cheng-Hui; Jian-Kang,; Bo-Luan,; Jie-Li

    2011-03-25

    Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified as a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this study

  16. Stem Cell Sciences plc.

    PubMed

    Daniels, Sebnem

    2006-09-01

    Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.

  17. Transplantation of adipose tissue-derived stem cells overexpressing heme oxygenase-1 improves functions and remodeling of infarcted myocardium in rabbits.

    PubMed

    Yang, Jun-jie; Yang, Xia; Liu, Zhi-qiang; Hu, Shun-yin; Du, Zhi-yan; Feng, Lan-lan; Liu, Jian-feng; Chen, Yun-dai

    2012-01-01

    Adipose tissue-derived stem cells (ADSCs) are a promising source of autologous stem cells that are used for regeneration and repair of infracted heart. However, the efficiency of their transplantation is under debate. One of the possible reasons for marginal improvement in ADSCs transplantation is the significant cell death rate of implanted cells after being grafted into injured heart. Therefore, overcoming the poor survival rate of implanted cells may improve stem cell therapy. Due to limited improvement concerning direct stem cell therapy, gene-transfer methods are used to enhance cellular cardiomyoplasty efficacy. Heme oxygenase-1 (HO-1) can provide various types of cells with protection against oxidative injury and apoptosis. However, exact effects of autologous ADSCs combined with HO-1 on cardiac performance remains unknown. In this study, rabbits were treated with ADSCs transduced with HO-1 (HO-1-ADSCs), treated with non-transduced ADSCs, or injected with phosphate buffered saline 14 days after experimental myocardial infarction was induced, when autologous ADSCs were obtained simultaneously. Four weeks after injection, echocardiography showed significant improvements for cardiac functions and left ventricular dimensions in HO-1-ADSCs-treated animals. Structural consequences of transplantation were determined by detailed histological analysis, which showed differentiation of HO-1-ADSCs to cardiomyocyte-like tissues and lumen-like structure organizations. Apart from improvement in angiogenesis and scar areas, more connexin 43-positive gap junction and greater tyrosine hydroxylase-positive cardiac sympathetic nerves sprouting were observed in the HO-1-ADSCs-treated group compared with ADSCs group. These data suggest that the transplantation of autologous ADSCs combined with HO-1 transduction is a feasible and efficacious method for improving infarcted myocardium.

  18. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  19. Stem Cell Basics

    MedlinePlus

    ... healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of ... as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates ...

  20. [Pancreatic cancer stem cell].

    PubMed

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2015-05-01

    Prognosis of pancreatic cancer remains dismal due to the resistance against conventional therapies. Metastasis and massive invasion toward surrounding organs hamper radical resection. Small part of entire cancer cells reveal resistance against chemotherapy or radiotherapy, increased tumorigenicity and migratory phenotype. These cells are called as cancer stem cells, as a counter part of normal stem cells. In pancreatic cancer, several cancer stem cell markers have been identified, which enabled detailed characterization of pancreatic cancer stem cells. Recent researches clarified that conventional chemotherapy itself could increase cancer cells with stem cell-phenotype, suggesting the necessity of cancer stem cell-targeting therapy. Based on these observations, pancreatic cancer stem cell-targeting therapies have been tested, which effectively eliminated cancer stem cell fraction and attenuated cancer progression in experimental models. Clinical efficacy of these therapies need to be evaluated, and cancer stem cell-targeting therapy will contribute to improve the prognosis of pancreatic cancer.

  1. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity.

    PubMed Central

    Perrotti, D; Melotti, P; Skorski, T; Casella, I; Peschle, C; Calabretta, B

    1995-01-01

    Zinc finger genes encode proteins that act as transcription factors. The myeloid zinc finger 1 (MZF1) gene encodes a zinc finger protein with two DNA-binding domains that recognize two distinct consensus sequences, is preferentially expressed in hematopoietic cells, and may be involved in the transcriptional regulation of hematopoiesis-specific genes. Reverse transcription-PCR analysis of human peripheral blood CD34+ cells cultured under lineage-restricted conditions demonstrated MZF1 expression during both myeloid and erythroid differentiation. Sequence analysis of the 5'-flanking region of the CD34 and c-myb genes, which are a marker of and a transcriptional factor required for hematopoietic proliferation and differentiation, respectively, revealed closely spaced MZF1 consensus binding sites found by electrophoretic mobility shift assays to interact with recombinant MZF1 protein. Transient or constitutive MZF1 expression in different cell types resulted in specific inhibition of chloramphenicol acetyltransferase activity driven by the CD34 or c-myb 5'-flanking region. To determine whether transcriptional modulation by MZF1 activity plays a role in hematopoietic differentiation, constructs containing the MZF1 cDNA under the control of different promoters were transfected into murine embryonic stem cells which, under defined in vitro culture conditions, generate colonies of multiple hematopoietic lineages. Constitutive MZF1 expression interfered with the ability of embryonic stem cells to undergo hematopoietic commitment and erythromyeloid colony formation and prevented the induced expression of CD34 and c-myb mRNAs during differentiation of these cells. These data indicate that MZF1 plays a critical role in hematopoiesis by modulating the expression of genes involved in this process. PMID:7565760

  2. DLL4 overexpression increases gastric cancer stem/progenitor cell self-renewal ability and correlates with poor clinical outcome via Notch-1 signaling pathway activation.

    PubMed

    Miao, Zhi-Feng; Xu, Hao; Xu, Hui-Mian; Wang, Zhen-Ning; Zhao, Ting-Ting; Song, Yong-Xi; Xu, Ying-Ying

    2017-01-01

    Gastric cancer is one of the most common malignant diseases, and poses a serious threat to the quality of human life. Gastric cancer stem/progenitor cells (GCSPCs) have critical effects on tumor formation, affecting specific features of self-renewal and differentiation and playing a critical role in metastasis. The Notch-1 pathway is crucially important to GCSPCs and is regulated by DLL4. In this study, DLL4 and Nestin levels were measured in 383 gastric cancer tissue samples by immunohistochemistry, and the clinico-pathological features of patients assessed. After DLL4 silencing in selected gastric cancer cell lines, the expression of GCSPC markers and colony formation ability were analyzed and the self-renewal and differentiation capacities of the cells were evaluated. The relationship between DLL4 levels and Notch-1 signaling pathway effector amounts was assessed via Western blotting and immunofluorescence. Finally, the tumor formation ability of the gastric cancer cells was evaluated with different levels of DLL4 and multiple cell densities in vivo. Our results indicate that DLL4 expression is associated with TNM stage and cancer metastasis, with high amounts of DLL4 leading to poor outcome. DLL4 silencing inhibited the self-renewal ability of GCSPCs and increased their multidifferentiation capacity, resulting in reduced GCSPC ratios. DLL4 knockdown also blocked the Notch-1 pathway, weakening invasion ability and resistance to 5-FU chemotherapy. In vivo, DLL4 silencing inhibited the tumor formation ability of GCSPCs. In conclusion, DLL4 affects GCSPC stemness, altering their pathological behavior. DLL4 silencing inhibits GCSPC metastatic potential both in vitro and in vivo by impeding Notch-1 signaling pathway activation, indicating that DLL4 may be a new potential therapeutic target.

  3. Overexpression of β-NGF promotes differentiation of bone marrow mesenchymal stem cells into neurons through regulation of AKT and MAPK pathway.

    PubMed

    Yuan, Jun; Huang, Guorong; Xiao, Zhe; Lin, Lvbiao; Han, Tianwang

    2013-11-01

    Bone marrow stromal stem cells (BMSCs) are fibroblastic in shape and capable of self-renewal and have the potential for multi-directional differentiation. Nerve growth factor (NGF), a homodimeric polypeptide, plays an important role in the nervous system by supporting the survival and growth of neural cells, regulating cell growth, promoting differentiation into neuron, and neuron migration. Adenoviral vectors are DNA viruses that contain 36 kb of double-stranded DNA allowing for transmission of the genes to the host nucleus but not inserting them into the host chromosome. The present study aimed to investigate the induction efficiency and differentiation of neural cells from BMSCs by β-NGF gene transfection with recombinant adenoviral vector (Ad-β-NGF) in vitro. The results of immunochemical assay confirmed the induced cells as neuron cells. Moreover, flow cytometric analysis, Annexin-V-FITC/PI, and BrdU assay revealed that chemical inducer β-mercaptoethanol (β-met) triggered apoptosis of BMSCs, as evidenced by inhibition of DNA fragmentation, nuclear condensation, translocation of phospholipid phosphatidylserine, and activation of caspase-3. Furthermore, the results of western blotting showed that β-met suppressed AKT signaling pathway and regulated the MAPKs during differentiation of BMSCs. In contrast, Ad-β-NGF effectively induced the differentiation of BMSCs without causing any cytopathic phenomenon and apoptotic cell death. Moreover, Ad-β-NGF recovered the expression level of phosphorylated AKT and MAPKs in cells exposed to chemical reagents. Taken together, these results suggest that β-NGF gene transfection promotes the differentiation of BMSCs into neurons through regulation of AKT and MAPKs signaling pathways.

  4. Liver cancer stem cells.

    PubMed

    Sell, Stewart; Leffert, Hyam L

    2008-06-10

    In an effort to review the evidence that liver cancer stem cells exist, two fundamental questions must be addressed. First, do hepatocellular carcinomas (HCC) arise from liver stem cells? Second, do HCCs contain cells that possess properties of cancer stem cells? For many years the finding of preneoplastic nodules in the liver during experimental induction of HCCs by chemicals was interpreted to support the hypothesis that HCC arose by dedifferentiation of mature liver cells. More recently, recognition of the role of small oval cells in the carcinogenic process led to a new hypothesis that HCC arises by maturation arrest of liver stem cells. Analysis of the cells in HCC supports the presence of cells with stem-cell properties (ie, immortality, transplantability, and resistance to therapy). However, definitive markers for these putative cancer stem cells have not yet been found and a liver cancer stem cell has not been isolated.

  5. Combination of Electroacupuncture and Grafted Mesenchymal Stem Cells Overexpressing TrkC Improves Remyelination and Function in Demyelinated Spinal Cord of Rats

    PubMed Central

    Ding, Ying; Zhang, Rong-Yi; He, Bing; Liu, Zhou; Zhang, Ke; Ruan, Jing-Wen; Ling, Eng-Ang; Wu, Jin-Lang; Zeng, Yuan-Shan

    2015-01-01

    This study attempted to graft neurotrophin-3 (NT-3) receptor (TrkC) gene modified mesenchymal stem cells (TrkC-MSCs) into the demyelinated spinal cord and to investigate whether electroacupuncture (EA) treatment could promote NT-3 secretion in the demyelinated spinal cord as well as further enhance grafted TrkC-MSCs to differentiate into oligodendrocytes, remyelination and functional recovery. Ethidium bromide (EB) was microinjected into the spinal cord of rats at T10 to establish a demyelinated model. Six groups of animals were prepared for the experiment: the sham, PBS, MSCs, MSCs+EA, TrkC-MSCs and TrkC-MSCs+EA groups. The results showed that TrkC-MSCs graft combined with EA treatment (TrkC-MSCs+EA group) significantly increased the number of OPCs and oligodendrocyte-like cells differentiated from MSCs. Immunoelectron microscopy showed that the oligodendrocyte-like cells differentiated from TrkC-MSCs formed myelin sheaths. Immunofluorescence histochemistry and Western blot analysis indicated that TrkC-MSCs+EA treatment could promote the myelin basic protein (MBP) expression and Kv1.2 arrangement trending towards the normal level. Furthermore, behavioural test and cortical motor evoked potentials detection demonstrated a significant functional recovery in the TrkC-MSCs+EA group. In conclusion, our results suggest that EA treatment can increase NT-3 expression, promote oligodendrocyte-like cell differentiation from TrkC-MSCs, remyelination and functional improvement of demyelinated spinal cord. PMID:25779025

  6. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls.

    PubMed

    Wang, Guifeng; Gao, Yan; Wang, Jinjun; Yang, Liwei; Song, Rentao; Li, Xiaorong; Shi, Jisen

    2011-05-01

    Expansins are unique plant cell wall proteins that possess the ability to induce immediately cell wall extension in vitro and cell expansion in vivo. To investigate the biological functions of expansins that are abundant in wood-forming tissues, we cloned two expansin genes from the differentiating xylem of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). Phylogenetic reconstruction indicated that they belong to α-expansin (EXPA), named ClEXPA1 and ClEXPA2. Expression pattern analysis demonstrated that they are preferentially expressed in the cambium region. Overexpression of ClEXPA1 and ClEXPA2 in tobacco plants yielded pleiotropic phenotypes of plant height, stem diameter, leaf number and seed pod. The height and diameter growth of the 35S(pro) :ClEXPA1 and 35S(pro) :ClEXPA2 transgenic plants were increased drastically, exhibiting an enlargement of pith parenchyma cell size. Isolated cell walls of ClEXPA1 and ClEXPA2 overexpressors contained 30%-50% higher cellulose contents than the wild type, accompanied by a thickening of the cell walls in the xylem region. Both ClEXPA1 and ClEXPA2 are involved in plant growth and development, with a partially functional overlap. Expansins are not only able to induce cell expansion in different tissues/organs in vivo, but they also can act as a potential activator during secondary wall formation by directly or indirectly affecting cellulose metabolism, probably in a cell type-dependent manner.

  7. Preconditioning and stem cell survival.

    PubMed

    Haider, Husnain Kh; Ashraf, Muhammad

    2010-04-01

    The harsh ischemic and cytokine-rich microenvironment in the infarcted myocardium, infiltrated by the inflammatory and immune cells, offers a significant challenge to the transplanted donor stem cells. Massive cell death occurs during transplantation as well as following engraftment which significantly lowers the effectiveness of the heart cell therapy. Various approaches have been adopted to overcome this problem nevertheless with multiple limitations with each of these current approaches. Cellular preconditioning and reprogramming by physical, chemical, genetic, and pharmacological manipulation of the cells has shown promise and "prime" the cells to the "state of readiness" to withstand the rigors of lethal ischemia in vitro as well as posttransplantation. This review summarizes the past and present novel approaches of ischemic preconditioning, pharmacological and genetic manipulation using preconditioning mimetics, recombinant growth factor protein treatment, and reprogramming of stem cells to overexpress survival signaling molecules, microRNAs, and trophic factors for intracrine, autocrine, and paracrine effects on cytoprotection.

  8. Stem Cell Transplant

    MedlinePlus

    ... transplant is a procedure that infuses healthy blood stem cells into your body to replace your damaged or ... A bone marrow transplant is also called a stem cell transplant. A bone marrow transplant may be necessary ...

  9. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis.

    PubMed

    Fu, Xiafei; He, Yuanli; Wang, Xuefeng; Peng, Dongxian; Chen, Xiaoying; Li, Xinran; Wang, Qing

    2017-08-14

    Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF. Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined. The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E2 levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression

  10. Treatment of Parkinson disease with C17.2 neural stem cells overexpressing NURR1 with a recombined republic-deficit adenovirus containing the NURR1 gene.

    PubMed

    Li, Qing-Jun; Tang, Ya-Mei; Liu, Jun; Zhou, Dao-You; Li, Xiang-Pen; Xiao, Song-Hua; Jian, Dong-Xing; Xing, Yi-Gang

    2007-12-01

    To study the potential benefit of the NURR1 gene in Parkinson's disease (PD), we constructed a recombinant republic-deficit adenovirus containing the NURR1 gene (Ad-NURR1) and expressed it in transplanted neural stem cells (NSC). Ad-NURR1 was constructed, and NURR1 mRNA and protein expression were identified by in situ hybridization and western blot analysis, respectively. The identified NURR1 protein could directly or indirectly induce NSC differentiation into neurons. To identify a potential therapeutic use for the transfected NSCs, cells were transplanted into 6-hydroxydopamine lesioned rats. Histopathological and behavioral alterations were evaluated via immunohistochemistry and the ration test, respectively, in rats transplanted with NSCs with or without the Ad-NURR1 adenovirus. The Ad-NURR1 construct effectively expressed the NURR1 protein, which could directly or indirectly induce NSC differentiation into neurons. Both histopathological and behavioral alterations were seen in rats treated with NSCs with or without the Ad-NURR1 construct, although in the case of the latter, the benefits were more robust. These results suggest a potential therapeutic benefit for Ad-NURR1-expressing cells in the treatment of PD. The Ad-NURR1 modification induced NSC differentiation and therefore represents a potential therapy for PD.

  11. Efficient Engraftment of Human Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cells in uPA/SCID Mice by Overexpression of FNK, a Bcl-xL Mutant Gene.

    PubMed

    Nagamoto, Yasuhito; Takayama, Kazuo; Tashiro, Katsuhisa; Tateno, Chise; Sakurai, Fuminori; Tachibana, Masashi; Kawabata, Kenji; Ikeda, Kazuo; Tanaka, Yasuhito; Mizuguchi, Hiroyuki

    2015-01-01

    Human liver chimeric mice are expected to be applied for drug toxicity tests and human hepatitis virus research. Human induced pluripotent stem cell-derived hepatocyte-like cells (iPSC-HLCs) are a highly attractive donor source for the generation of human liver chimeric mice because they can be produced on a large scale and established from an individual. Although these cells have been successfully used to generate human liver chimeric mice, there is still room for improvement in the repopulation efficiency. To enhance the repopulation efficacy, the human iPSC-HLCs were transduced with an adenovirus vector (Ad-FNK) expressing FNK, a hyperactive mutant gene from Bcl-xL, which was expected to inhibit apoptosis in the process of integration into liver parenchyma. We then transplanted Ad-FNK-transduced human iPSC-HLCs into urokinase-type plasminogen activator-transgenic severe combined immunodeficiency (uPA/SCID) mice (FNK mice) and evaluated the repopulation efficacy. The antiapoptotic effects of the human iPSC-HLCs were enhanced by FNK overexpression in vitro. Human albumin levels in the transplanted mice were significantly increased by transplantation of Ad-FNK-transduced human iPSC-HLCs (about 24,000 ng/ml). Immunohistochemical analysis with an anti-human αAT antibody revealed greater repopulation efficacy in the livers of FNK mice than control mice. Interestingly, the expression levels of human hepatocyte-related genes in the human iPSC-HLCs of FNK mice were much higher than those in the human iPSC-HLCs before transplantation. We succeeded in improving the repopulation efficacy of human liver chimeric mice generated by transplanting the Ad-FNK-transduced human iPSC-HLCs into uPA/SCID mice. Our method using ectopic expression of FNK was useful for generating human chimeric mice with high chimerism.

  12. Interaction between amiodarone and hepatitis-C virus nucleotide inhibitors in human induced pluripotent stem cell-derived cardiomyocytes and HEK-293 Cav1.2 over-expressing cells.

    PubMed

    Lagrutta, Armando; Zeng, Haoyu; Imredy, John; Balasubramanian, Bharathi; Dech, Spencer; Lis, Edward; Wang, Jixin; Zhai, Jin; DeGeorge, Joseph; Sannajust, Frederick

    2016-10-01

    Several clinical cases of severe bradyarrhythmias have been reported upon co-administration of the Hepatitis-C NS5B Nucleotide Polymerase Inhibitor (HCV-NI) direct-acting antiviral agent, sofosbuvir (SOF), and the Class-III anti-arrhythmic amiodarone (AMIO). We model the cardiac drug-drug interaction (DDI) between AMIO and SOF, and between AMIO and a closely-related SOF analog, MNI-1 (Merck Nucleotide Inhibitor #1), in functional assays of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), to provide mechanistic insights into recently reported clinical cases. AMIO co-applied with SOF or MNI-1 increased beating rate or field potential (FP) rate and decreased impedance (IMP) and Ca(2+) transient amplitudes in hiPSC-CM syncytia. This action resembled that of Ca(2+) channel blockers (CCBs) in the model, but CCBs did not substitute for AMIO in the DDI. AMIO analog dronedarone (DRON) did not substitute for, but competed with AMIO in the DDI. Ryanodine and thapsigargin, decreasing intracellular Ca(2+) stores, and SEA-0400, a Na(+)/Ca(2+) exchanger-1 (NCX1) inhibitor, partially antagonized or suppressed DDI effects. Other agents affecting FP rate only exerted additive or subtractive effects, commensurate with their individual effects. We also describe an interaction between AMIO and MNI-1 on Cav1.2 ion channels in an over-expressing HEK-293 cell line. MNI-1 enhanced Cav1.2 channel inhibition by AMIO, but did not affect inhibition of Cav1.2 by DRON, verapamil, nifedipine, or diltiazem. Our data in hiPSC-CMs indicate that HCV-NI agents such as SOF and MNI-1 interact with key intracellular Ca(2+)-handling mechanisms. Additional study in a Cav1.2 HEK-293 cell-line suggests that HCV-NIs potentiate the inhibitory action of AMIO on L-type Ca(2+) channels.

  13. Dynamic compression combined with SOX-9 overexpression in rabbit adipose-derived mesenchymal stem cells cultured in a three-dimensional gradual porous PLGA composite scaffold upregulates HIF-1α expression.

    PubMed

    Chen, Xu; Li, Jianjun; Wang, Enbo; Zhao, Qun; Kong, Zhan; Yuan, Xiangnan

    2015-12-01

    There is considerable interest in how the fate of adipose-derived stem cells is determined. Physical stimuli play a crucial role in skeletogenesis and in cartilage repair and regeneration. In the present study, we investigated the comparative and interactive effects of dynamic compression and SRY-related high-mobility group box gene-9 (SOX-9) on chondrogenesis of rabbit adipose-derived stem cells in three-dimensional gradual porous PLGA (polylactic-co-glycolic acid) composite scaffolds. Articular cartilage is stratified into zones delineated by characteristic changes in cellular, matrix, and nutritive components. As a consequence, biochemical and biomechanical properties vary greatly between the different zones, giving the tissue its unique structure and, thus, the ability to cope with extreme loading. The effects on development of the cartilage were examined using a combination of computational modeling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations. In addition, early chondrogenic differentiation was assessed via real-time PCR of mRNA expression levels for bone- and cartilage-specific gene markers. Our findings define the important role of dynamic compression combined with SOX-9 overexpression during in vitro generation of tissue-engineering cartilage and suggest that a 3D gradual porous PLGA composite scaffold may benefit articular cartilage tissue engineering in cartilage regeneration for better force distribution.

  14. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  15. Nail stem cells.

    PubMed

    Sellheyer, Klaus

    2013-03-01

    Our knowledge on stem cells of the hair follicle has increased exponentially after the bulge was characterized as the stem cell niche two decades ago. In contrast, little is known about stem cells in the nail unit. Whereas hair follicles are plentiful and easy to access, the human body has only twenty nails and they are rarely biopsied. Therefore, examining fetal material offers unique advantages. In the following mini-review, our current knowledge on nail stem cells is summarized and analogies to the hair follicle stem cells are drawn.

  16. Development and gene expression of porcine cloned embryos derived from bone marrow stem cells with overexpressing Oct4 and Sox2.

    PubMed

    Lee, Jeong-Hyeon; Lee, Won-Jae; Jeon, Ryoung-Hoon; Lee, Yeon-Mi; Jang, Si-Jung; Lee, Sung-Lim; Jeon, Byung-Geun; Ock, Sun-A; King, W Allen; Rho, Gyu-Jin

    2014-12-01

    The present study compared the potential of porcine bone marrow mesenchymal stem cells (pBMSCs) at different passages as nuclear transfer (NT) donors and the developmental efficiency of NT embryos from donor cells transfected with/without Oct4 and Sox2. Early-passage pBMSCs showed higher proliferation and expression of Oct4 and Sox2 and differentiation potential into mesenchymal lineages than middle- and late-passage pBMSCs. Cleavage rate did not differ among pBMSCs at different passages, but NT embryos with early-passage pBMSCs and middle-passage pBMSCs transfected with Oct4 (Oct4-pBMSCs) had significantly (p<0.05) higher blastocyst development than those with middle-passage pBMSCs. The incidence of apoptotic bodies in NT blastocysts from late-passage pBMSCs and Sox2-transfected middle-passage pBMSCs (Sox2-pBMSCs) was significantly (p<0.05) higher than others. The transcriptional levels of Oct4, Sox2, Nanog, Cdx2, Dnmt3a, and Igf2r genes were significantly (p<0.05) higher in Oct4- and Sox2-pBMSCs NT embryos. Middle-passage pBMSCs NT embryos revealed lower transcriptional levels of Bcl2 than others, except Sox2-pBMSCs NT embryos. The transcriptional level of Bax increased gradually in NT embryos derived from pBMSCs following extended passages and was significantly (p<0.05) higher in Sox2-pBMSCs NT embryos. Our results demonstrated that early-passage pBMSCs are more potent in expressing transcription factors and displayed higher differentiation ability, and middle-passage pBMSCs transfected with Oct4 improved the developmental efficiency of NT embryos, suggesting that high Oct4 expression cells are more efficient as NT donors.

  17. Development and Gene Expression of Porcine Cloned Embryos Derived from Bone Marrow Stem Cells with Overexpressing Oct4 and Sox2

    PubMed Central

    Lee, Jeong-Hyeon; Lee, Won-Jae; Jeon, Ryoung-Hoon; Lee, Yeon-Mi; Jang, Si-Jung; Lee, Sung-Lim; Jeon, Byung-Geun; Ock, Sun-A; King, W. Allen

    2014-01-01

    Abstract The present study compared the potential of porcine bone marrow mesenchymal stem cells (pBMSCs) at different passages as nuclear transfer (NT) donors and the developmental efficiency of NT embryos from donor cells transfected with/without Oct4 and Sox2. Early-passage pBMSCs showed higher proliferation and expression of Oct4 and Sox2 and differentiation potential into mesenchymal lineages than middle- and late-passage pBMSCs. Cleavage rate did not differ among pBMSCs at different passages, but NT embryos with early-passage pBMSCs and middle-passage pBMSCs transfected with Oct4 (Oct4-pBMSCs) had significantly (p<0.05) higher blastocyst development than those with middle-passage pBMSCs. The incidence of apoptotic bodies in NT blastocysts from late-passage pBMSCs and Sox2-transfected middle-passage pBMSCs (Sox2-pBMSCs) was significantly (p<0.05) higher than others. The transcriptional levels of Oct4, Sox2, Nanog, Cdx2, Dnmt3a, and Igf2r genes were significantly (p<0.05) higher in Oct4- and Sox2-pBMSCs NT embryos. Middle-passage pBMSCs NT embryos revealed lower transcriptional levels of Bcl2 than others, except Sox2-pBMSCs NT embryos. The transcriptional level of Bax increased gradually in NT embryos derived from pBMSCs following extended passages and was significantly (p<0.05) higher in Sox2-pBMSCs NT embryos. Our results demonstrated that early-passage pBMSCs are more potent in expressing transcription factors and displayed higher differentiation ability, and middle-passage pBMSCs transfected with Oct4 improved the developmental efficiency of NT embryos, suggesting that high Oct4 expression cells are more efficient as NT donors. PMID:25437870

  18. Stem cell applications in diabetes.

    PubMed

    Noguchi, Hirofumi

    2012-01-01

    Diabetes mellitus is a devastating disease and the World Health Organization (WHO) expects that the number of diabetic patients will increase to 300 million by the year 2025. Patients with diabetes experience decreased insulin secretion that is linked to a significant reduction in the number of islet cells. Type 1 diabetes is characterized by the selective destruction of pancreatic β cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology that, in addition to β cell loss caused by apoptotic programs, includes β cell de-differentiation and peripheric insulin resistance. The success achieved over the last few years with islet transplantation suggests that diabetes can be cured by the replenishment of deficient β cells. These observations are proof of the concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. An increasing body of evidence indicates that, in addition to embryonic stem cells, several potential adult stem/progenitor cells derived from the pancreas, liver, spleen, and bone marrow could differentiate into insulin-producing cells in vitro or in vivo. However, significant controversy currently exists in this field. Pharmacological approaches aimed at stimulating the in vivo/ex vivo regeneration of β cells have been proposed as a way of augmenting islet cell mass. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. A new technology, known as protein transduction, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of β cells has opened up several possibilities for the development of new treatments for diabetes.

  19. Stem cells remember their grade.

    PubMed

    Lo Celso, Cristina; Scadden, David T

    2007-08-16

    The stem cell state is understood based on what cells do in performance assays, crude measures of a highly refined state. In this issue of Cell Stem Cell, Dykstra et al. (2007) reveal stem cell gradation and the extent to which that gradation is retained in stem cell daughters of hematopoietic stem cells.

  20. PEDF & stem cells: niche vs. nurture.

    PubMed

    Fitchev, Philip; Chung, Chuhan; Plunkett, Beth A; Brendler, Charles B; Crawford, Susan E

    2014-01-01

    Anti-angiogenic pigment epithelium-derived factor (PEDF) is a multifunctional 50kD secreted glycoprotein emerging as a key factor in stem cell renewal. Characteristics of the stem cell niche can be highly dependent on location, access to the vasculature, oxygen tension and neighboring cells. In the neural stem cell (NSC) niche, specifically the subventricular zone, PEDF actively participates in the self renewal process and promotes stemness by upregulating Notch signaling effectors Hes1 and Hes5. The local vascular endothelial cells and ependymal cells are the likely sources of PEDF for the NSC while mesenchymal and retinal stem cells can actually produce PEDF. The opposing actions of PEDF and VEGF on various cells are recapitulated in the NSC niche. Intraventricular injection of PEDF promotes stem cell renewal, while injection of VEGF prompts differentiation and neurogenesis in the subventricular zone. Enhancing the expression of PEDF in stem cells has promising therapeutic implications. Bone marrow mesenchymal stem cells overexpressing PEDF effectively inhibited pathologic angiogenesis in the murine eye and these same cells suppressed hepatocellular carcinoma growth. As a protein with bioactivities in nearly all normal organ systems, it is likely that PEDF will continue to gain visibility as an essential component in the development and delivery of novel stem cell-based therapies to combat disease.

  1. Stem Cells and Aging.

    PubMed

    Koliakos, George

    2017-02-01

    The article is a presentation at the 4th Conference of ESAAM, which took place on October 30-31, 2015, in Athens, Greece. Its purpose was not to cover all aspects of cellular aging but to share with the audience of the Conference, in a 15-minute presentation, current knowledge about the rejuvenating and repairing somatic stem cells that are distinct from other stem cell types (such as embryonic or induced pluripotent stem cells), emphasize that our body in old age cannot take advantage of these rejuvenating cells, and provide some examples of novel experimental stem cell applications in the field of rejuvenation and antiaging biomedical research.

  2. Stress and stem cells.

    PubMed

    Tower, John

    2012-01-01

    The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress.

  3. Stress and stem cells

    PubMed Central

    Tower, John

    2013-01-01

    The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress. PMID:23799624

  4. RNAi and overexpression of genes in ovarian somatic cells.

    PubMed

    Saito, Kuniaki

    2014-01-01

    Emerging evidence indicates that PIWI proteins, in collaboration with PIWI-interacting RNAs (piRNAs), play a critical role in retrotransposon silencing in Drosophila gonadal somatic and germ-line cells. The recent establishment of female germ-line stem cells/ovarian somatic sheet and its derivative cell line, ovarian somatic cells (OSCs), allows researchers to study the molecular functions of several protein factors involved in the primary piRNA pathway in Drosophila. Although transgene expression is difficult to achieve in gonad-derived cell lines, transfection of both expression vectors and knockdown reagents is highly effective in OSCs. Here, I focus on techniques that knockdown or overexpress genes of interest in OSCs.

  5. Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones.

    PubMed

    Drakulic, D; Krstic, A; Stevanovic, M

    2012-05-15

    SOX2, a universal marker of pluripotent stem cells, is a transcription factor that helps control embryonic development in vertebrates; its expression persists in neural stem/progenitor cells into adulthood. Considering the critical role of the SOX2 transcription factor in the regulation of genes required for self-renewal and pluripotency of stem cells, we developed and characterized SOX2-overexpressing NT2/D1 cell clones. Using Southern blot and semi-quantitative RT-PCR, we confirmed integration and expression of exogenous SOX2 in three NT2/D1 cell clones. Overexpression of the SOX2 gene was detected in two of these clones. SOX2 overexpression in NT2/D1 cell clones resulted in altered expression of key pluripotency genes OCT4 and NANOG. Furthermore, SOX2-overexpressing NT2/D1 cell clones entered into retinoic acid-dependent neural differentiation, even when there was elevated SOX2 expression. After 21 days of induction by retinoic acid, expression of neural markers (neuroD1 and synaptophysin) was higher in induced cell clones than in induced parental cells. The cell clone with SOX2 overexpression had an approximately 1.3-fold higher growth rate compared to parental cells. SOX2 overexpression did not increase the population of cells undergoing apoptosis. Taken together, we developed two SOX2-overexpressing cell clones, with constitutive SOX2 expression after three weeks of retinoic acid treatment. SOX2 overexpression resulted in altered expression of pluripotency-related genes, increased proliferation, and altered expression of neural markers after three weeks of retinoic acid treatment.

  6. Colorectal cancer stem cells.

    PubMed

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  7. Intraoperative Stem Cell Therapy

    PubMed Central

    Coelho, Mónica Beato; Cabral, Joaquim M.S.; Karp, Jeffrey M.

    2013-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the potential regenerative mechanisms and the roles of different cell populations in the regeneration process are discussed. Although intraoperative stem cell therapies have been shown to be safe and effective for several indications, there are still critical challenges to be tackled prior to adoption into the standard surgical armamentarium. PMID:22809140

  8. Myeloproliferative neoplasm stem cells.

    PubMed

    Mead, Adam J; Mullally, Ann

    2017-03-23

    Myeloproliferative neoplasms (MPNs) arise in the hematopoietic stem cell (HSC) compartment as a result of the acquisition of somatic mutations in a single HSC that provides a selective advantage to mutant HSC over normal HSC and promotes myeloid differentiation to engender a myeloproliferative phenotype. This population of somatically mutated HSC, which initiates and sustains MPNs, is termed MPN stem cells. In >95% of cases, mutations that drive the development of an MPN phenotype occur in a mutually exclusive manner in 1 of 3 genes: JAK2, CALR, or MPL The thrombopoietin receptor, MPL, is the key cytokine receptor in MPN development, and these mutations all activate MPL-JAK-STAT signaling in MPN stem cells. Despite common biological features, MPNs display diverse disease phenotypes as a result of both constitutional and acquired factors that influence MPN stem cells, and likely also as a result of heterogeneity in the HSC in which MPN-initiating mutations arise. As the MPN clone expands, it exerts cell-extrinsic effects on components of the bone marrow niche that can favor the survival and expansion of MPN stem cells over normal HSC, further sustaining and driving malignant hematopoiesis. Although developed as targeted therapies for MPNs, current JAK2 inhibitors do not preferentially target MPN stem cells, and as a result, rarely induce molecular remissions in MPN patients. As the understanding of the molecular mechanisms underlying the clonal dominance of MPN stem cells advances, this will help facilitate the development of therapies that preferentially target MPN stem cells over normal HSC.

  9. Fish Stem Cell Cultures

    PubMed Central

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer. PMID:21547056

  10. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  11. Information on Stem Cell Research

    MedlinePlus

    ... Home » Current Research » Focus on Research Focus on Stem Cell Research Stem cells possess the unique ability to differentiate ... virus infection. To search the complete list of stem cell research projects funded by NIH please go to NIH ...

  12. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants A ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  13. Overexpression of MCT8 enhances the differentiation of ES cells into neural progenitors.

    PubMed

    Sugiura, Mika; Nagaoka, Masato; Yabuuchi, Hikaru; Akaike, Toshihiro

    2007-09-07

    Embryonic stem (ES) cell differentiation is regulated by cytokines and growth factors, as well as small-compound chemicals incorporated into cells by transporter proteins. Little is known regarding the effect of transporters on ES cell differentiation. This study focused on the effect of transporters during the neural-lineage differentiation of ES cells. Among the 27 types of SLC family transporters, MCT8 expression was coincident with that of neural stem cell markers, and the overexpression of MCT8 accelerated the differentiation into neural cells. These results suggested that the transporters and their substrates also play a crucial role in the regulation of ES cell differentiation.

  14. Hematopoietic Stem Cells Therapies.

    PubMed

    Chivu-Economescu, Mihaela; Rubach, Martin

    2017-01-01

    Stem cell-based therapies are recognized as a new way to treat various diseases and injuries, with a wide range of health benefits. The goal is to heal or replace diseased or destroyed organs or body parts with healthy new cells provided by stem cell transplantation. The current practical form of stem cell therapy is the hematopoietic stem cells transplant applied for the treatment of hematological disorders. There are over 2100 clinical studies in progress concerning hematopoietic stem cell therapies. All of them are using hematopoietic stem cells to treat various diseases like: cancers, leukemia, lymphoma, cardiac failure, neural disorders, auto-immune diseases, immunodeficiency, metabolic or genetic disorders. Several challenges are to be addressed prior to developing and applying large scale cell therapies: 1) to explain and control the mechanisms of differentiation and development toward a specific cell type needed to treat the disease, 2) to obtain a sufficient number of desired cell type for transplantation, 3) to overcome the immune rejection and 4) to show that transplanted cells fulfill their normal functions in vivo after transplants.

  15. Stem Cell Organoid Engineering

    PubMed Central

    Yin, Xiaolei; Mead, Benjamin E.; Safaee, Helia; Langer, Robert; Karp, Jeffrey M.; Levy, Oren

    2016-01-01

    Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies. PMID:26748754

  16. Engineering Stem Cell Organoids.

    PubMed

    Yin, Xiaolei; Mead, Benjamin E; Safaee, Helia; Langer, Robert; Karp, Jeffrey M; Levy, Oren

    2016-01-07

    Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies.

  17. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model

    PubMed Central

    Tao, Shi-Cong; Yuan, Ting; Zhang, Yue-Lei; Yin, Wen-Jing; Guo, Shang-Chun; Zhang, Chang-Qing

    2017-01-01

    OBJECTIVES: Osteoarthritis (OA) is the most common joint disease throughout the world. Exosomes derived from miR-140-5p-overexpressing synovial mesenchymal stem cells (SMSC-140s) may be effective in treating OA. We hypothesized that exosomes derived from SMSC-140 (SMSC-140-Exos) would enhance the proliferation and migration abilities of articular chondrocytes (ACs) without harming extracellular matrix (ECM) secretion. METHODS: SMSCs were transfected with or without miR-140-5p. Exosomes derived from SMSCs or SMSC-140s (SMSC-Exos or SMSC-140-Exos) were isolated and identified. Proliferation, migration and ECM secretion were measured in vitro and compared between groups. The mechanism involving alternative Wnt signalling and activation of Yes-associated protein (YAP) was investigated using lentivirus, oligonucleotides or chemical drugs. The preventative effect of exosomes in vivo was measured using Safranin-O and Fast green staining and immunohistochemical staining. RESULTS: Wnt5a and Wnt5b carried by exosomes activated YAP via the alternative Wnt signalling pathway and enhanced proliferation and migration of chondrocytes with the side-effect of significantly decreasing ECM secretion. Highly-expressed miR-140-5p blocked this side-effect via RalA. SMSC-140-Exos enhanced the proliferation and migration of ACs without damaging ECM secretion in vitro, while in vivo, SMSC-140-Exos successfully prevented OA in a rat model. CONCLUSIONS: These findings highlight the promising potential of SMSC-140-Exos in preventing OA. We first found a potential source of exosomes and studied their merits and shortcomings. Based on our understanding of the molecular mechanism, we overcame the shortcomings by modifying the exosomes. Such exosomes derived from modified cells hold potential as future therapeutic strategies. PMID:28042326

  18. [On plant stem cells and animal stem cells].

    PubMed

    You, Yun; Jiang, Chao; Huang, Lu-Qi

    2014-01-01

    A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both kingdoms, stem cells are defined by their clonogenic properties and are maintained by intercellular signals. The signaling molecules are different in plants and animals stem cell niches, but the roles of argonaute and polycomb group proteins suggest that there are some molecular similarities.

  19. Stem cells for the treatment of diabetes.

    PubMed

    Noguchi, Hirofumi

    2007-02-01

    Diabetes mellitus is a devastating disease and over 6% of the population is affected worldwide. The success achieved over the last few years with islet transplantation suggest that diabetes can be cured by the replenishment of deficient beta cells. These observations are proof of concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. Work with ES cells has not yet produced cells with the phenotype of true beta cells, but there has been recent progress in directing ES cells to the endoderm. Bone marrow-derived stem cells could initiate pancreatic regeneration. Pancreatic stem/progenitor cells have been identified, and the formation of new beta cells from duct, acinar and liver cells is an active area of investigation. Some agents including glucagon-like peptide-1/exendin-4 can stimulate the regeneration of beta cells in vivo. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. New technology, known as protein transduction technology, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of beta cells has opened up several possibilities for the development of new treatments for diabetes.

  20. Evaluation of In Vivo Osteogenic Potential of Bone Morphogenetic Protein 2-Overexpressing Human Periodontal Ligament Stem Cells Combined with Biphasic Calcium Phosphate Block Scaffolds in a Critical-Size Bone Defect Model.

    PubMed

    Yi, TacGhee; Jun, Choong-Man; Kim, Su Jin; Yun, Jeong-Ho

    2016-03-01

    Human periodontal ligament stem cells (hPDLSCs) are considered potential cellular carriers for gene delivery in the field of tissue regeneration. This study tested the osseoregenerative potential of hPDLSCs transduced with replication-deficient recombinant adenovirus (rAd) containing the gene encoding bone morphogenetic protein-2 (BMP2; hPDLSCs/rAd-BMP2) in both in vivo and in vitro osteogenic environments. After the optimal condition for rAd-mediated transduction was determined, hPDLSCs were transduced to express BMP2. In vivo bone formation was evaluated in a critical-size rat calvarial bone defect model that more closely mimics the harsher in vivo milieu for bone regeneration than subcutaneous transplantation model. As support materials for bone regeneration, block-type biphasic calcium phosphate (BCP) scaffolds were combined with hPDLSCs and/or BMP2 and transplanted into critical-size bone defects in rats. Experimental groups were as follows: BCP scaffold control (group 1 [Gr1]), scaffold containing recombinant human BMP2 (rhBMP2; group 2 [Gr2]), scaffold loaded with normal hPDLSCs (group 3 [Gr3]), scaffold combined with both normal hPDLSCs and rhBMP2 (group 4 [Gr4]), and scaffold loaded with hPDLSCs transduced with rAd-BMP2 (hPDLSCs/rAd-BMP2; group 5 [Gr5]). Our data showed that new bone formation was highest in Gr2. Less mineralization was observed in Gr3, Gr4, and Gr5 in which hPDLSCs were transplanted. In vitro transwell assay demonstrated that hPDLSCs exert an inhibitory activity on BMP2-induced osteogenic differentiation. Our findings suggest that the in vivo bone regenerative potential of BMP2-overexpressing hPDLSCs could be compromised in a critical-size rat calvarial bone defect model. Thus, further investigations are required to elucidate the underlying mechanisms and to develop efficient techniques for improved tissue regeneration.

  1. Melanoma stem cells.

    PubMed

    Roesch, Alexander

    2015-02-01

    The cancer stem cell concept significantly broadens our understanding of melanoma biology. However, this concept should be regarded as an integral part of a holistic cancer model that also includes the genetic evolution of tumor cells and the variability of cell phenotypes within a dynamic tumor microenvironment. The biologic complexity and methodological difficulties in identifying cancer stem cells and their biomarkers are currently impeding the direct translation of experimental findings into clinical practice. Nevertheless, it is these methodological shortcomings that provide a new perspective on the phenotypic heterogeneity and plasticity of melanoma with important consequences for future therapies. The development of new combination treatment strategies, particularly with regard to overcoming treatment resistance, could significantly benefit from targeted elimination of cell subpopulations with cancer stem cell properties. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  2. Dental pulp stem cells

    PubMed Central

    Ashri, Nahid Y.; Ajlan, Sumaiah A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors. PMID:26620980

  3. Reversing breast cancer stem cell into breast somatic stem cell.

    PubMed

    Wijaya, L; Agustina, D; Lizandi, A O; Kartawinata, M M; Sandra, F

    2011-02-01

    Stem cells have an important role in cell biology, allowing tissues to be renewed by freshly created cells throughout their lifetime. The specific micro-environment of stem cells is called stem cell niche; this environment influences the development of stem cells from quiescence through stages of differentiation. Recent advance researches have improved the understanding of the cellular and molecular components of the micro-environment--or niche--that regulates stem cells. We point out an important trend to the study of niche activity in breast cancers. Breast cancer has long been known to conserve a heterogeneous population of cells. While the majority of cells that make up tumors are destined to differentiate and eventually stop dividing, only minority populations of cells, termed cancer stem cell, possess extensive self renewal capability. These cancer stem cells possess characteristics of both stem cells and cancer cells. Breast cancer stem cells reversal to breast somatic stem cells offer a new therapy, that not only can stop the spread of breast cancer cells, but also can differentiate breast cancer stem cells into normal breast somatic stem cells. These can replace damaged breast tissue. Nevertheless, the complexity of realizing this therapy approach needs further research.

  4. Catalyzing stem cell research.

    PubMed

    Willemse, Lisa; Lyall, Drew; Rudnicki, Michael

    2008-09-01

    In 2001, the Stem Cell Network was the first of its kind, a bold initiative to forge and nurture pan-Canadian collaborations involving researchers, engineers, clinicians and private and public sector partners. Canada's broad and deep pool of stem cell talent proved to be a fertile ground for such an initiative, giving rise to a strong, thriving network that, 7 years later, can list innovative cell expansion and screening technologies, early-phase clinical trials for stroke, pulmonary hypertension, muscular dystrophy and cornea replacement, and leading discourse on ethical, legal and social issues among its accomplishments. As it moves into its second and final phase of funding, the Stem Cell Network continues to push boundaries and has set its sights on overcoming the obstacles that impede the transfer of research findings to clinical applications, commercial products and public policy.

  5. Stem Cell Research

    SciTech Connect

    Verfaillie, Catherine

    2009-01-23

    We have identified a population of primitive cells in normal human post-natal bone marrow that can, at the single cell level, differentiate in many ways and also proliferate extensively. These cells can differentiate in vitro into most mesodermal cell types (for example, bone cells, and others), as well as cells into cells of the nervous system. The finding that stem cells exist in post-natal tissues with previously unknown proliferation and differentiation potential opens up the possibility of using them to treat a host of degenerative, traumatic or congenital diseases.

  6. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    2016-01-01

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  7. Breast cancer stem cells and radiation

    NASA Astrophysics Data System (ADS)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  8. Stem cell mobilization.

    PubMed

    Cottler-Fox, Michele H; Lapidot, Tsvee; Petit, Isabelle; Kollet, Orit; DiPersio, John F; Link, Dan; Devine, Steven

    2003-01-01

    Successful blood and marrow transplant (BMT), both autologous and allogeneic, requires the infusion of a sufficient number of hematopoietic progenitor/stem cells (HPCs) capable of homing to the marrow cavity and regenerating a full array of hematopoietic cell lineages in a timely fashion. At present, the most commonly used surrogate marker for HPCs is the cell surface marker CD34, identified in the clinical laboratory by flow cytometry. Clinical studies have shown that infusion of at least 2 x 10(6) CD34(+) cells/kg recipient body weight results in reliable engraftment as measured by recovery of adequate neutrophil and platelet counts approximately 14 days after transplant. Recruitment of HPCs from the marrow into the blood is termed mobilization, or, more commonly, stem cell mobilization. In Section I, Dr. Tsvee Lapidot and colleagues review the wide range of factors influencing stem cell mobilization. Our current understanding focuses on chemokines, proteolytic enzymes, adhesion molecules, cytokines and stromal cell-stem cell interactions. On the basis of this understanding, new approaches to mobilization have been designed and are now starting to undergo clinical testing. In Section II, Dr. Michele Cottler-Fox describes factors predicting the ability to mobilize the older patient with myeloma. In addition, clinical approaches to improving collection by individualizing the timing of apheresis and adjusting the volume of blood processed to achieve a desired product are discussed. Key to this process is the daily enumeration of blood CD34(+) cells. Newer methods of enumerating and mobilizing autologous blood HPCs are discussed. In Section III, Dr. John DiPersio and colleagues provide data on clinical results of mobilizing allogeneic donors with G-CSF, GM-CSF and the combination of both as relates to the number and type of cells collected by apheresis. Newer methods of stem cell mobilization as well as the relationship of graft composition on immune reconstitution

  9. Cloning of Mammary Stem Cells

    DTIC Science & Technology

    2001-11-01

    these parity-induced cells do represent a totipotent mammary stem cell population per se, but these cells might support stem cell maintenance as... Stem Cells PRINCIPAL INVESTIGATOR: Dr. Kay-Uwe Wagner CONTRACTING ORGANIZATION: University of Nebraska Medical Center Omaha, Nebraska 68198-6810 REPORT...Mammary Stem Cells DAMD17-00-1-0641 6. AUTHOR(S) Dr. Kay-Uwe Wagner 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

  10. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  11. Fifth Annual Stem Cell Summit.

    PubMed

    Knowlton, Daniel

    2010-04-01

    The Fifth Annual Stem Cell Summit, held in New York, included topics covering new commercial developments in the research field of stem cell-based therapies. This conference report highlights selected presentations on embryonic and adult stem cells, stem cell-based therapies for the treatment of orthopedic and cardiovascular indications and inflammatory diseases, as well as technologies for processing and storing stem cells. Investigational therapies discussed include placental expanded (PLX) cells (Pluristem Therapeutics Inc), StemEx (Gamida-Teva Joint Venture/Teva Pharmaceutical Industries Ltd) and remestemcel-L (Osiris Therapeutics Inc/Genzyme Corp/JCR Pharmaceuticals Co Ltd/ Mochida Pharmaceutical Co Ltd).

  12. Stem Cell Transplants (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Stem Cell Transplants KidsHealth > For Parents > Stem Cell Transplants A A A What's in this article? ... Recovery Coping en español Trasplantes de células madre Stem cells are cells in the body that have the ...

  13. Stem cells and transplant arteriosclerosis.

    PubMed

    Xu, Qingbo

    2008-05-09

    Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non-bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow-derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.

  14. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  15. Neural stem cells.

    PubMed

    Kennea, Nigel L; Mehmet, Huseyin

    2002-07-01

    Neural stem cells (NSCs) have the ability to self-renew, and are capable of differentiating into neurones, astrocytes and oligodendrocytes. Such cells have been isolated from the developing brain and more recently from the adult central nervous system. This review aims to provide an overview of the current research in this evolving area. There is now increasing knowledge of the factors controlling the division and differentiation of NSCs during normal brain development. In addition, the cues for differentiation in vitro, and the possibility of transdifferentiation are reviewed. The discovery of these cells in the adult brain has encouraged research into their role during neurogenesis in the normal mature brain and after injury. Lastly other sources of neural precursors are discussed, and the potential for stem cells to be used in cell replacement therapy for brain injury or degenerative brain diseases with a particular emphasis on cerebral ischaemia and Parkinson's disease. Copyright 2002 John Wiley & Sons, Ltd.

  16. [Stem cell colloquy: conclusion].

    PubMed

    Tubiana, Maurice

    2002-10-01

    The stem cell data presented and discussed during the symposium raise the hope that important medical progress can be made in several fields: neuro-degenerative diseases, those linked to cellular deficit, some aspects of aging linked to cellular degeneration, and the treatment of cancers that may harm normal tissues at risk of being infiltrated by malignant cells. Three main types of stem cells are available. (i) Those present in normal adult tissue: contrary to what was believed, some data suggest that certain adult stem cells have a great plasticity (they can differentiate into cells different from those in tissues from which they were taken) and can proliferate in vitro without losing their properties. Nevertheless, their use faces several obstacles: in ill or elderly subjects, then these cells can be limited in number or not multiply well in vitro. In this case, auto-grafting of the cells cannot be used. They must be sought in another subject, and allo-grafting causes difficult and sometimes insoluble problems of immunological tolerance. (ii) Embryonic stem cells from surplus human embryos, obtained by in vitro fertilisation, which the parents decide not to use: these cells have a great potential for proliferation and differentiation, but can also encounter problems of immunological intolerance. (iii) Cells obtained from cell nuclear transfer in oocytes: these cells are well tolerated, since they are genetically and immunologically identical to those of the host. All types of stem cells can be obtained with them. However, they do present problems. For obtaining them, female oocytes are needed, which could lead to their commercialization. Moreover, the first steps for obtaining these cells are identical to those used in reproductive cloning. It therefore appears that each type of cell raises difficult scientific and practical problems. More research is needed to overcome these obstacles and to determine which type of stem cell constitutes the best solution for

  17. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    SciTech Connect

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  18. Effects of Telomerase and Telomere Length on Epidermal Stem Cell Behavior

    NASA Astrophysics Data System (ADS)

    Flores, Ignacio; Cayuela, María L.; Blasco, María A.

    2005-08-01

    A key process in organ homeostasis is the mobilization of stem cells out of their niches. We show through analysis of mouse models that telomere length, as well as the catalytic component of telomerase, Tert, are critical determinants in the mobilization of epidermal stem cells. Telomere shortening inhibited mobilization of stem cells out of their niche, impaired hair growth, and resulted in suppression of stem cell proliferative capacity in vitro. In contrast, Tert overexpression in the absence of changes in telomere length promoted stem cell mobilization, hair growth, and stem cell proliferation in vitro. The effects of telomeres and telomerase on stem cell biology anticipate their role in cancer and aging.

  19. Neural stem cells: an overview.

    PubMed

    Parati, E A; Pozzi, S; Ottolina, A; Onofrj, M; Bez, A; Pagano, S F

    2004-01-01

    Multipotent stem cells are present in the majority of mammalian tissues where they are a renewable source of specialized cells. According to the several biological portions from which multipotent stem cells can be derived, they are characterized as a) embryonic stem cells (ESCs) isolated from the pluripotent inner-cell mass of the pre-implantation blastocyste-stage embryo; b) multipotent fetal stem cells (FSCs) from aborted fetuses; and c) adult stem cells (ASCs) localized in small zones of several organs known as "niche" where a subset of tissue cells and extracellular substrates can indefinitely house one or more stem cells and control their self-renewal and progeny production in vivo. ECSs have an high self-renewing capacity, plasticity and pluripotency over the years. Pluripotency is a property that makes a stem cell able to give rise to all cell type found in the embryo and adult animals.

  20. Stem cells and healthy aging.

    PubMed

    Goodell, Margaret A; Rando, Thomas A

    2015-12-04

    Research into stem cells and aging aims to understand how stem cells maintain tissue health, what mechanisms ultimately lead to decline in stem cell function with age, and how the regenerative capacity of somatic stem cells can be enhanced to promote healthy aging. Here, we explore the effects of aging on stem cells in different tissues. Recent research has focused on the ways that genetic mutations, epigenetic changes, and the extrinsic environmental milieu influence stem cell functionality over time. We describe each of these three factors, the ways in which they interact, and how these interactions decrease stem cell health over time. We are optimistic that a better understanding of these changes will uncover potential strategies to enhance stem cell function and increase tissue resiliency into old age.

  1. Stem Cells and Female Reproduction

    PubMed Central

    Du, Hongling; Taylor, Hugh S.

    2011-01-01

    Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent. PMID:19208782

  2. Differential MDR in Breast Cancer Stem Cells

    DTIC Science & Technology

    2006-05-01

    1977, Reya et al. 2001, Dick 2003, Al-Hajj et al. 2004, Donnenberg and Donnenberg, 2005, Dick and Lapidot, 2005, Wicha et al., 2006, Polyak and Hahn...Med. 341(7):491- 497, 1999. Polyak K, Hahn WC. Roots and stems: Stem cells in cancer. Nat Med 12, 296 – 300, 2006. Rendl M, Lewis L, Fuchs E...glycoprotein overexpression. Cancer Res. 1989;49:4542- 4549. 10. Doyle LA, Yang W, Abruzzo LV , et al. A multidrug resistance trans- porter from human

  3. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  4. Inflammation and cancer stem cells.

    PubMed

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Characterization of Amniotic Stem Cells

    PubMed Central

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio

    2014-01-01

    Abstract The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow–derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow–derived MSCs. The sorted TRA1-60–positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60–negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells. PMID:25068631

  6. Materials as stem cell regulators

    NASA Astrophysics Data System (ADS)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  7. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  8. Melanocytes, melanocyte stem cells, and melanoma stem cells.

    PubMed

    Lang, Deborah; Mascarenhas, Joseph B; Shea, Christopher R

    2013-01-01

    Melanocyte stem cells differ greatly from melanoma stem cells; the former provide pigmented cells during normal tissue homeostasis and repair, and the latter play an active role in a lethal form of cancer. These 2 cell types share several features and can be studied by similar methods. Aspects held in common by both melanocyte stem cells and melanoma stem cells include their expression of shared biochemical markers, a system of similar molecular signals necessary for their maintenance, and a requirement for an ideal niche microenvironment for providing these factors. This review provides a perspective of both these cell types and discusses potential models of stem cell growth and propagation. Recent findings provide a strong foundation for the development of new therapeutics directed at isolating and manipulating melanocyte stem cells for tissue engineering or at targeting and eradicating melanoma specifically, while sparing nontumor cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    PubMed

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  10. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    PubMed

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells.

  11. [Melanocyte stem cells in adults].

    PubMed

    Aubin-Houzelstein, Geneviève; Djian-Zaouche, Johanna; Panthier, Jean-Jacques

    2008-01-01

    Melanocyte stem cells have been recently localized in mice, in the outer root sheath of the lower permanent portion of the hair follicle. Specific depletion of melanocyte stem cell population is responsible for natural hair greying in aging mice and humans. Melanocyte stem cells also seem to drive the growth of malignant melanomas. A few mutations, either spontaneous or genetically engineered, accelerate the natural process of hair greying with age. These mutations allowed the identification of genes and signalling pathways controlling emergence, maintenance and/or differentiation of melanocyte stem cells. This review summarizes recent studies on the melanocyte stem cells and defines a few major unanswered questions in the field.

  12. Stemness is Derived from Thyroid Cancer Cells

    PubMed Central

    Ma, Risheng; Bonnefond, Simon; Morshed, Syed A.; Latif, Rauf; Davies, Terry F.

    2014-01-01

    Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provides cells with therapeutic resistance and is the likely cause of tumor recurrence. However, the relevance of EMT and stemness in thyroid cancer progression has not been extensively studied. Methods: To examine the status of stemness in thyroid papillary cancer, we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E)/TPO-Cre). This construct is only activated at the time of thyroid peroxidase (TPO) expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells, which do not express TPO. Results: There was decreased expression of thyroid-specific genes such as Tg and NIS and increased expression of stemness markers, such as Oct4, Rex1, CD15, and Sox2 in the thyroid carcinoma tissue from 6-week-old BRAFV600E mice indicating the dedifferentiated status of the cells and the fact that stemness was derived in this model from differentiated thyroid cells. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a cancer thyroid cell line (named Marca cells) derived from one of the murine tumors. In this cell line, we also found that overexpression of Snail caused up-regulation of

  13. New perspectives in stem cell research: beyond embryonic stem cells.

    PubMed

    Leeb, C; Jurga, M; McGuckin, C; Forraz, N; Thallinger, C; Moriggl, R; Kenner, L

    2011-04-01

    Although stem cell research is a rather new field in modern medicine, media soon popularized it. The reason for this hype lies in the potential of stem cells to drastically increase quality of life through repairing aging and diseased organs. Nevertheless, the essence of stem cell research is to understand how tissues are maintained during adult life. In this article, we summarize the various types of stem cells and their differentiation potential in vivo and in vitro. We review current clinical applications of stem cells and highlight problems encountered when going from animal studies to clinical practice. Furthermore, we describe the current state of induced pluripotent stem cell technology and applications for disease modelling and cell replacement therapy. © 2011 Blackwell Publishing Ltd.

  14. Therapeutic Potential of Stem Cells Strategy for Cardiovascular Diseases

    PubMed Central

    Lee, Chang Youn; Lee, Jihyun; Oh, Sekyung; Lee, Hojin; Lee, Minyoung; Kim, Jongmin

    2016-01-01

    Despite development of medicine, cardiovascular diseases (CVDs) are still the leading cause of mortality and morbidity worldwide. Over the past 10 years, various stem cells have been utilized in therapeutic strategies for the treatment of CVDs. CVDs are characterized by a broad range of pathological reactions including inflammation, necrosis, hyperplasia, and hypertrophy. However, the causes of CVDs are still unclear. While there is a limit to the currently available target-dependent treatments, the therapeutic potential of stem cells is very attractive for the treatment of CVDs because of their paracrine effects, anti-inflammatory activity, and immunomodulatory capacity. Various studies have recently reported increased therapeutic potential of transplantation of microRNA- (miRNA-) overexpressing stem cells or small-molecule-treated cells. In addition to treatment with drugs or overexpressed miRNA in stem cells, stem cell-derived extracellular vesicles also have therapeutic potential because they can deliver the stem cell-specific RNA and protein into the host cell, thereby improving cell viability. Here, we reported the state of stem cell-based therapy for the treatment of CVDs and the potential for cell-free based therapy. PMID:27829839

  15. Stem cells in dentistry--part I: stem cell sources.

    PubMed

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties.

  16. Lower Oncogenic Potential of Human Mesenchymal Stem Cells Derived from Cord Blood Compared to Induced Pluripotent Stem Cells.

    PubMed

    Foroutan, T; Najmi, M; Kazemi, N; Hasanlou, M; Pedram, A

    2015-01-01

    In regenerative medicine, use of each of the mesenchymal stem cells derived from bone marrow, cord blood, and adipose tissue, has several cons and pros. Mesenchymal stem cells derived from cord blood have been considered the best source for precursor transplantation. Direct reprogramming of a somatic cell into induced pluripotent stem cells by over-expression of 6 transcription factors Oct4, Sox2, Klf4, lin28, Nanog, and c-Myc has great potential for regenerative medicine, eliminating the ethical issues of embryonic stem cells and the rejection problems of using non-autologous cells. To compare reprogramming and pluripotent markers OCT4, Sox-2, c-Myc, Klf4, Nanog, and lin28 in mesenchymal stem cells derived from cord blood and induced pluripotent stem cells. We analyzed the expression level of OCT4, Sox-2, c-Myc, Klf4, Nanog and lin28 genes in human mesenchymal stem cells derived from cord blood and induced pluripotent stem cells by cell culture and RT-PCR. The expression level of pluripotent genes OCT4 and Sox-2, Nanog and lin28 in mesenchymal stem cells derived from cord blood were significantly higher than those in induced pluripotent stem cells. In contrast to OCT-4A and Sox-2, Nanog and lin28, the expression level of oncogenic factors c-Myc and Klf4 were significantly higher in induced pluripotent stem cells than in mesenchymal stem cells derived from cord blood. It could be concluded that mesenchymal stem cells derived from human cord blood have lower oncogenic potential compared to induced pluripotent stem cells.

  17. Measuring stem cell circadian rhythm.

    PubMed

    Hrushesky, William; Rich, Ivan N

    2015-01-01

    Circadian rhythms are biological rhythms that occur within a 24-h time cycle. Sleep is a prime example of a circadian rhythm and with it melatonin production. Stem cell systems also demonstrate circadian rhythms. This is particularly the case for the proliferating cells within the system. In fact, all proliferating cell populations exhibit their own circadian rhythm, which has important implications for disease and the treatment of disease. Stem cell chronobiology is particularly important because the treatment of cancer can be significantly affected by the time of day a drug is administered. This protocol provides a basis for measuring hematopoietic stem cell circadian rhythm for future stem cell chronotherapeutic applications.

  18. Breast Cancer Stem Cells

    PubMed Central

    Velasco-Velázquez, Marco A.; Homsi, Nora; De La Fuente, Marisol; Pestell, Richard G.

    2012-01-01

    Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. Identification of BCSCs from tumor samples or breast cancer cell lines has been based mainly on CD44+/CD24−/low or ALDH+ phenotypes. BCSCs isolation has allowed the analysis of the molecular mechanisms involved in their origin, self-renewal, differentiation into tumor cells, resistance to radiation therapy and chemotherapy, and invasiveness and metastatic ability. Molecular genetic analysis using knockout animals and inducible transgenics have identified NF-κB, c-Jun, p21CIP1, and Forkhead-like-protein Dach1 in BCSC expansion and fate. Clinical analyses of BCSCs in breast tumors have found a correlation between the proportion of BCSCs and poor prognosis. Therefore, new therapies that specifically target BCSCs are an urgent need. We summarize recent evidence that partially explain the biological characteristics of BCSCs. PMID:22249027

  19. RECK overexpression reduces invasive ability in ameloblastoma cells.

    PubMed

    Liang, Qi-xiang; Liang, Yan-can; Xu, Zhi-ying; Chen, Wei-liang; Xie, Hong-liang; Zhang, Bin

    2014-09-01

    Ameloblastoma is a frequent odontogenic neoplasm characterized by local invasiveness and high risk of recurrence. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a tumor suppressor that inhibits metastasis and angiogenesis. The aim of this study was to investigate effects of RECK overexpression on invasive potential in ameloblastoma cells. Lentiviral vectors containing human RECK gene were created and subsequently stably transfected into immortalized ameloblastoma cell line hTERT(+) -AM. Functional characteristics of hTERT(+) -AM cells with stable RECK overexpression included proliferation, migration, invasion, and regulation of matrix metalloproteinases (MMP)-2, MMP-9 measured by zymography or commercially available assays. The stable and higher expression of RECK mRNA and protein (P < 0.01) was detected in RECK-transfected hTERT(+) -AM cells. RECK overexpression caused a decrease in migration and invasion (P < 0.01) for hTERT(+) -AM cells and a decrease in activity of MMP-2, MMP-9 (P < 0.01). Proliferation was not affected by RECK overexpression (P > 0.05). Overexpression of RECK gene significantly inhibited cell invasive ability of hTERT(+) -AM cells, suggesting RECK may be a new target for ameloblastoma treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Autophagy in stem cell aging.

    PubMed

    Revuelta, Miren; Matheu, Ander

    2017-10-01

    Aging is responsible for changes in mammalian tissues that result in an imbalance to tissue homeostasis and a decline in the regeneration capacity of organs due to stem cell exhaustion. Autophagy is a constitutive pathway necessary to degrade damaged organelles and protein aggregates. Autophagy is one of the hallmarks of aging, which involves a decline in the number and functionality of stem cells. Recent studies show that stem cells require autophagy to get rid of cellular waste produced during the quiescent stage. In particular, two independent studies in muscle and hematopoietic stem cells demonstrate the relevance of the autophagy impairment for stem cell exhaustion and aging. In this review, we summarize the main results of these works, which helped to elucidate the impact of autophagy in stem cell activity as well as in age-associated diseases. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Making a Hematopoietic Stem Cell.

    PubMed

    Daniel, Michael G; Pereira, Carlos-Filipe; Lemischka, Ihor R; Moore, Kateri A

    2016-03-01

    Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC. Published by Elsevier Ltd.

  2. (Re)defining stem cells.

    PubMed

    Shostak, Stanley

    2006-03-01

    Stem-cell nomenclature is in a muddle! So-called stem cells may be self-renewing or emergent, oligopotent (uni- and multipotent) or pluri- and totipotent, cells with perpetual embryonic features or cells that have changed irreversibly. Ambiguity probably seeped into stem cells from common usage, flukes in biology's history beginning with Weismann's divide between germ and soma and Haeckel's biogenic law and ending with contemporary issues over the therapeutic efficacy of adult versus embryonic cells. Confusion centers on tissue dynamics, whether stem cells are properly members of emerging or steady-state populations. Clarity might yet be achieved by codifying differences between cells in emergent populations, including embryonic stem and embryonic germ (ES and EG) cells in tissue culture as opposed to self-renewing (SR) cells in steady-state populations.

  3. Pancreatic cancer stem cells.

    PubMed

    Zhu, Ya-Yun; Yuan, Zhou

    2015-01-01

    Studies are emerging in support of the cancer stem cells (CSCs) theory which considers that a tiny subset of cancer cells is exclusively responsible for the initiation and malignant behavior of a cancer. This cell population, also termed CSCs, possesses the capacity both to self-renew, producing progeny that have the identical tumorigenic potential, and to differentiate into the bulk of cancer cells, helping serve the formation of the tumor entities, which, altogether, build the hierarchically organized structure of a cancer. In this review, we try to articulate the complicated signaling pathways regulating the retention of the characteristics of pancreatic CSCs, and in the wake of which, we seek to offer insights into the CSCs-relevant targeted therapeutics which are, in the meantime, confronted with bigger challenges than ever.

  4. Stem cell tracking by nanotechnologies.

    PubMed

    Villa, Chiara; Erratico, Silvia; Razini, Paola; Fiori, Fabrizio; Rustichelli, Franco; Torrente, Yvan; Belicchi, Marzia

    2010-03-12

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking.

  5. Stem Cell Tracking by Nanotechnologies

    PubMed Central

    Villa, Chiara; Erratico, Silvia; Razini, Paola; Fiori, Fabrizio; Rustichelli, Franco; Torrente, Yvan; Belicchi, Marzia

    2010-01-01

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking. PMID:20480000

  6. Macrophages overexpressing Aire induce CD4+Foxp3+ T cells.

    PubMed

    Sun, Jitong; Fu, Haiying; Wu, Jing; Zhu, Wufei; Li, Yi; Yang, Wei

    2013-01-01

    Aire plays an important role in central immune tolerance by regulating the transcription of thousands of genes. However, the role of Aire in the peripheral immune system is poorly understood. Regulatory T (Treg) cells are considered essential for the maintenance of peripheral tolerance, but the effect of Aire on Treg cells in the peripheral immune system is currently unknown. In this study, we investigated the effects of macrophages overexpressing Aire on CD4+Foxp3+ Treg cells by co-culturing Aire-overexpressing RAW264.7 cells or their supernatant with splenocytes. The results show that macrophages overexpressing Aire enhanced the expression of Foxp3 mRNA and induced different subsets of Treg cells in splenocytes through cell-cell contact or a co-culture supernatants. TGF-β is a key molecule in the increases of CD4+CD45RA+Foxp3hi T cell and activating Treg (aTreg) levels observed following cell‑supernatant co-culturing. Subsets of Treg cells were induced by Aire-overexpressing macrophages, and the manipulation of Treg cells by the targeting of Aire may provide a method for the treatment of inflammatory or autoimmune diseases.

  7. Nuclear receptor regulation of stemness and stem cell differentiation

    PubMed Central

    Jeong, Yangsik

    2009-01-01

    Stem cells include a diverse number of toti-, pluri-, and multi-potent cells that play important roles in cellular genesis and differentiation, tissue development, and organogenesis. Genetic regulation involving various transcription factors results in the self-renewal and differentiation properties of stem cells. The nuclear receptor (NR) superfamily is composed of 48 ligand-activated transcription factors involved in diverse physiological functions such as metabolism, development, and reproduction. Increasing evidence shows that certain NRs function in regulating stemness or differentiation of embryonic stem (ES) cells and tissue-specific adult stem cells. Here, we review the role of the NR superfamily in various aspects of stem cell biology, including their regulation of stemness, forward- and trans-differentiation events; reprogramming of terminally differentiated cells; and interspecies differences. These studies provide insights into the therapeutic potential of the NR superfamily in stem cell therapy and in treating stem cell-associated diseases (e.g., cancer stem cell). PMID:19696553

  8. Stem Cells, Redox Signaling, and Stem Cell Aging

    PubMed Central

    Liang, Raymond

    2014-01-01

    Abstract Significance: Functional stem cell decline has been postulated to result in loss of maintenance of tissue homeostasis leading to organismal decline and diseases of aging. Recent Advances: Recent findings implicate redox metabolism in the control of stem cell pool and stem cell aging. Although reactive oxygen species (ROS) are better known for their damaging properties to DNA, proteins and lipids, recent findings suggest that ROS may also be an integral physiological mediator of cellular signaling in primary cells. Critical Issues: Here we review recent published work on major signaling pathways and transcription factors that are regulated by ROS and mediate ROS regulation of stem cell fate. We will specifically focus on how alterations in this regulation may be implicated in disease and particularly in diseases of stem cell aging. In general, based on the work described here we propose a model in which ROS function as stem cell rheostat. Future Directions: Future work in elucidating how ROS control stem cell cycling, apoptotic machinery, and lineage determination should shed light on mechanisms whereby ROS may control stem cell aging. Antioxid. Redox Signal. 20, 1902–1916. PMID:24383555

  9. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population.

  10. FACS Sorting Mammary Stem Cells.

    PubMed

    Iriondo, Oihana; Rábano, Miriam; Vivanco, María D M

    2015-01-01

    Fluorescent-activated cell sorting (FACS) represents one of the key techniques that have been used to isolate and characterize stem cells, including cells from the mammary gland. A combination of approaches, including recognition of cell surface antigens and different cellular activities, has facilitated the identification of stem cells from the healthy mammary gland and from breast tumors. In this chapter we describe the protocol to use FACS to separate breast cancer stem cells, but most of the general principles discussed could be applied to sort other types of cells.

  11. Targeting prostate cancer stem cells.

    PubMed

    Crea, Francesco; Mathews, Lesley A; Farrar, William L; Hurt, Elaine M

    2009-12-01

    Cancer stem cells are the sub-population of cells present within tumors responsible for tumorigenesis. These cells have unique biological properties including self-renewal and the ability to differentiate. Furthermore, it is thought that these cells are more resistant to conventional chemotherapy and, as a result, are responsible for patient relapse. We will discuss the identification of prostate cancer stem cells, their unique properties and how these cells may be targeted for more efficacious therapies.

  12. Epidermal stem cells: an update.

    PubMed

    Watt, Fiona M; Lo Celso, Cristina; Silva-Vargas, Violeta

    2006-10-01

    The mammalian epidermis is a highly accessible tissue in which to study the properties of adult stem cells. Global gene expression profiling has revealed new markers and regulators of the stem cell compartment. Although stem cells have the potential to differentiate into multiple lineages, their progeny follow a more restricted number of lineages in undamaged epidermis as a result of local microenvironmental cues. The response of the epidermis to a particular signal depends on signal strength and duration. Recent advances in the field have led to elucidation of the mechanisms by which stem cells are maintained and the pathways that interact with Wnt signalling to specify lineage choice as cells leave the stem cell compartment. This work has also yielded new insights into skin tumour development.

  13. Bioprinting for stem cell research

    PubMed Central

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  14. Stem cells for spine surgery

    PubMed Central

    Schroeder, Joshua; Kueper, Janina; Leon, Kaplan; Liebergall, Meir

    2015-01-01

    In the past few years, stem cells have become the focus of research by regenerative medicine professionals and tissue engineers. Embryonic stem cells, although capable of differentiating into cell lineages of all three germ layers, are limited in their utilization due to ethical issues. In contrast, the autologous harvest and subsequent transplantation of adult stem cells from bone marrow, adipose tissue or blood have been experimentally utilized in the treatment of a wide variety of diseases ranging from myocardial infarction to Alzheimer’s disease. The physiologic consequences of stem cell transplantation and its impact on functional recovery have been studied in countless animal models and select clinical trials. Unfortunately, the bench to bedside translation of this research has been slow. Nonetheless, stem cell therapy has received the attention of spinal surgeons due to its potential benefits in the treatment of neural damage, muscle trauma, disk degeneration and its potential contribution to bone fusion. PMID:25621119

  15. Stem Cells behind the Barrier

    PubMed Central

    Cangkrama, Michael; Ting, Stephen B.; Darido, Charbel

    2013-01-01

    Epidermal stem cells sustain the adult skin for a lifetime through self-renewal and the production of committed progenitors. These stem cells generate progeny that will undergo terminal differentiation leading to the development of a protective epidermal barrier. Whereas the molecular mechanisms that govern epidermal barrier repair and renewal have been extensively studied, pathways controlling stem cell differentiation remain poorly understood. Asymmetric cell divisions, small non-coding RNAs (microRNAs), chromatin remodeling complexes, and multiple differentiation factors tightly control the balance of stem and progenitor cell proliferation and differentiation, and disruption of this balance leads to skin diseases. In this review, we summarize and discuss current advances in our understanding of the mechanisms regulating epidermal stem and progenitor cell differentiation, and explore new relationships for maintenance of skin barrier function. PMID:23812084

  16. [Stem cell therapy: an update].

    PubMed

    Coulombel, Laure

    2009-03-01

    Medicine will be faced with a major challenge in coming years, namely how to treat for tissue dysfunction due to disease and aging There are two basic options: drug therapy and cell therapy. Stem cells have been the subject of intense speculation and controversy for several years, as they open up radically new therapeutic possibilities. Classical drugs can only smoothen consequences of tissue dysfunction, whereas cell therapy has the potential to restore tissue function by providing fresh cells. Cell therapy is totally different from organ transplantation, which can only benefit a limited number of patients. The use of the generic term "stem cells" to designate a whole variety of cell types that are present throughout life, is a source of confusion and ambiguity. It will take years of cognitive research to unravel the molecular mechanisms that govern a stem cell's multi- or totipotent status before we can fully exploit this therapeutic tool to the full. The younger a stem cell the greater its potential and, probably, the more durable its benefits, but the use of embryonic stem cells raises ethical issues. The redundancy or equivalence of diferent categories of cells is another source of controversy, yet researchers must be able to study stem cells in all their diversity, as complementary rather than competitive alternatives, in an acceptable ethical and regulatory environment. We briefly describe the three types of stem cells: pluripotent embryonic stem cells, fetal and adult stem cells, and pluripotent reprogrammed adult somatic cells. Only the former two categories have physiological functions: the first gives rise to tissues and organs while the second maintains tissue function during adulthood

  17. Stem cells in pharmaceutical biotechnology.

    PubMed

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  18. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine.

    PubMed

    Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-12-01

    Multipotent adult stem cells have many potential therapeutic applications. Our recent findings suggest that hair follicles are a promising source of easily accessible multipotent stem cells. Stem cells in the hair follicle area express the neural stem cell marker nestin, suggesting that hair-follicle stem cells and neural stem cells have common features. Nestin-expressing hair follicle stem cells can form neurons and other cell types, and thus adult hair follicle stem cells could have important therapeutic applications, particularly for neurologic diseases. Transplanted hair follicle stem cells promote the functional recovery of injured peripheral nerve and spinal cord. Recent findings suggest that direct transplantation of hair-follicle stem cells without culture can promote nerve repair, which makes them potentially clinically practical. Human hair follicle stem cells as well as mouse hair follicle stem cells promote nerve repair and can be applied to test the hypothesis that human hair follicle stem cells can provide a readily available source of neurologically therapeutic stem cells. The use of hair follicle stem cells for nerve regeneration overcomes critical problems of embryonic stem cells or induced pluripotent stem cells in that the hair follicle stem cells are multipotent, readily accessible, non-oncogenic, and are not associated with ethical issues.

  19. Effects of HMGB-1 Overexpression on Cell-Cycle Progression in MCF-7 Cells

    PubMed Central

    Yoon, Sarah; Lee, Jin Young; Yoon, Byung-Koo; Bae, DukSoo

    2004-01-01

    High mobility group-1 (HMGB-1) enhances the DNA interactions and possesses a transcriptional activation potential for several families of sequence-specific transcriptional activators. In order to examine the effect of HMGB-1 on the cell cycle progression in MCF-7 cells, the HMGB-1 expression vector was transfected into synchronized MCF-7 cells, and the effect of HMGB-1 overexpression on the cell cycle was examined. The HMGB-1 protein level in the transfected cells increased 4.87-fold compared to the non-transfected cells. There were few changes in the cell cycle phase distribution after HMGB-1 overexpression in the MCF-7 cells. Following the estrogen treatment, the cell cycle progressed in both the HMGB-1 overexpressed MCF-7 and the mock-treated cells. However, a larger proportion of HMGB-1 overexpressing MCF-7 cells progressed to the either S or G2 phase than the mock-treated cells. The mRNA levels of the cell cycle regulators changed after being treated with estrogen in both the HMGB-1 overexpressing MCF-7 and the mock-treated cells, but the changes in the expression level of the cell cycle regulator genes were more prominent in the HMGB-1 overexpressing MCF-7 cells than in the mock-treated cells. In conclusion, HMGB-1 overexpression itself does not alter the MCF-7 cell cycle progression, but the addition of estrogen to the HMGB-1 overexpressing MCF-7 cells appears to accelerate the cell cycle progression. PMID:15201494

  20. Conditional Cripto overexpression in satellite cells promotes myogenic commitment and enhances early regeneration

    PubMed Central

    Prezioso, Carolina; Iaconis, Salvatore; Andolfi, Gennaro; Zentilin, Lorena; Iavarone, Francescopaolo; Guardiola, Ombretta; Minchiotti, Gabriella

    2015-01-01

    Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. Despite extensive studies, knowledge of the molecular mechanisms underlying the early events associated with satellite cell activation and myogenic commitment in muscle regeneration remains still incomplete. Cripto is a novel regulator of postnatal skeletal muscle regeneration and a promising target for future therapy. Indeed, Cripto is expressed both in myogenic and inflammatory cells in skeletal muscle after acute injury and it is required in the satellite cell compartment to achieve effective muscle regeneration. A critical requirement to further explore the in vivo cellular contribution of Cripto in regulating skeletal muscle regeneration is the possibility to overexpress Cripto in its endogenous configuration and in a cell and time-specific manner. Here we report the generation and the functional characterization of a novel mouse model for conditional expression of Cripto, i.e., the Tg:DsRedloxP/loxPCripto-eGFP mice. Moreover, by using a satellite cell specific Cre-driver line we investigated the biological effect of Cripto overexpression in vivo, and provided evidence that overexpression of Cripto in the adult satellite cell compartment promotes myogenic commitment and differentiation, and enhances early regeneration in a mouse model of acute injury. PMID:26052513

  1. Conditional Cripto overexpression in satellite cells promotes myogenic commitment and enhances early regeneration.

    PubMed

    Prezioso, Carolina; Iaconis, Salvatore; Andolfi, Gennaro; Zentilin, Lorena; Iavarone, Francescopaolo; Guardiola, Ombretta; Minchiotti, Gabriella

    2015-01-01

    Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. Despite extensive studies, knowledge of the molecular mechanisms underlying the early events associated with satellite cell activation and myogenic commitment in muscle regeneration remains still incomplete. Cripto is a novel regulator of postnatal skeletal muscle regeneration and a promising target for future therapy. Indeed, Cripto is expressed both in myogenic and inflammatory cells in skeletal muscle after acute injury and it is required in the satellite cell compartment to achieve effective muscle regeneration. A critical requirement to further explore the in vivo cellular contribution of Cripto in regulating skeletal muscle regeneration is the possibility to overexpress Cripto in its endogenous configuration and in a cell and time-specific manner. Here we report the generation and the functional characterization of a novel mouse model for conditional expression of Cripto, i.e., the Tg:DsRed (loxP/loxP) Cripto-eGFP mice. Moreover, by using a satellite cell specific Cre-driver line we investigated the biological effect of Cripto overexpression in vivo, and provided evidence that overexpression of Cripto in the adult satellite cell compartment promotes myogenic commitment and differentiation, and enhances early regeneration in a mouse model of acute injury.

  2. Stem cell therapies: California dreamin'?

    PubMed

    Novak, Kris

    2010-01-08

    Ready or not, stem cells are a step closer to the clinic, thanks to approximately $230 million awarded by CIRM to 14 California-based research groups to develop stem cell-based therapies within 4 years. But, as Kris Novak reports, some of these projects are closer to therapeutic reality than others.

  3. Stem cell mitochondria during aging.

    PubMed

    Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Shyh-Chang, Ng

    2016-04-01

    Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.

  4. [Stem cell properties of therapeutic potential].

    PubMed

    Seo, Geom Seog

    2011-09-25

    Stem cell research is a innovative technology that focuses on using undifferentiated cells able to self-renew through the asymmetrical or symmetrical divisions. Three types of stem cells have been studied in laboratory including embryonic stem cell, adult stem cells and induced pluripotent stem cells. Embryonic stem cells are pluripotent stem cells derived from the inner cell mass and it can give rise to any fetal or adult cell type. Adult stem cells are multipotent, have the ability to differentiate into a limited number of specialized cell types, and have been obtained from the bone marrow, umbilical cord blood, placenta and adipose tissue. Stem cell therapy is the most promising therapy for several degenerative and devastating diseases including digestive tract disease such as liver failure, inflammatory bowel disease, Celiac sprue, and pancreatitis. Further understanding of biological properties of stem cells will lead to safe and successful stem cell therapies. (Korean J Gastroenterol 2011;58: 125-132).

  5. Overexpression of Bmi‑1 promotes epithelial‑mesenchymal transition in CD133+Hep G2 cells.

    PubMed

    Zhang, Zefeng; Wang, Qiyi; Bu, Xiaoling; Zhang, Chuangqiang; Chen, Hao; Sha, Weihong; Liu, Wanwei

    2017-08-24

    Cancer stem cells (CSCs) and epithelial‑mesenchymal transition (EMT) are critical factors contributing to tumor metastasis and recurrence. The BMI1 proto‑oncogene (Bmi‑1) promotes the development and progression of hematologic malignancies and of several types of solid tumors. The aim of the present study was to explore the mechanism by which Bmi‑1 may promote invasion and migration of hepatocellular carcinoma Hep G2 cells. CD133 antigen is a transmembrane glycoprotein and regarded as a cancer stem cells marker in hepatocellular carcinoma. CD133+Hep G2 cells were enriched by magnetic‑activated cell sorting and exhibited greater viability compared with CD133‑Hep G2 cells, as measured by Cell Counting kit‑8 assay. Then, Bmi‑1 was overexpressed in CD133+Hep G2 cells by transfection with the Bmi‑1/pcDNA3.1(+) expression plasmid, and overexpression was confirmed by reverse‑transcription‑polymerase chain reaction and western blotting. Overexpression of Bmi‑1in CD133+Hep G2 cells resulted in the downregulation of E‑cadherin and upregulation of Vimentin at the protein level. The invasion and migration abilities of CD133+Hep G2 cells were increased in the Bmi‑1/pcDNA3.1(+)‑transfected group, as measured by Transwell invasion and wound healing assays, respectively. In conclusion, Bmi‑1 promoted invasion and migration of CD133+Hep G2 cells most likely through inducing EMT. The present findings may offer a potential novel target for the development of hepatocellular carcinoma therapies.

  6. FDA Warns About Stem Cell Claims

    MedlinePlus

    ... Home For Consumers Consumer Updates FDA Warns About Stem Cell Claims Share Tweet Linkedin Pin it More sharing ... blood-forming system. back to top Regulation of Stem Cells FDA regulates stem cells in the U.S. to ...

  7. What's It Like to Donate Stem Cells?

    MedlinePlus

    ... for Cancer What’s It Like to Donate Stem Cells? People usually volunteer to donate stem cells for ... autologous transplant. If you want to donate stem cells for someone else People who want to donate ...

  8. Could the endogenous opioid, morphine, prevent neural stem cell proliferation?

    PubMed

    Shoae-Hassani, Alireza; Sharif, Shiva; Tabatabaei, Seyed Abdolreza Mortazavi; Verdi, Javad

    2011-02-01

    In spite of widespread use of morphine to treat pain in patients, little is known about the effects of this opioid on many cells including stem cells. Moreover the studies have been shown controversial results about morphine effects on several kinds of cells. It is well-known that morphine exposure could decrease testosterone levels in brain and spinal cord. Morphine could increase the activity of 5α-redutase, the enzyme that converts testosterone into its respective 5α-redutase derivative dihydrotestosterone (DHT). Also it could increase aromatase activity that converts testosterone to estradiol. Proliferation of neural stem cells was observed in human stem cells after exposure to certain combinations of steroids especially testosterone. On the other hand DHT has negative effect in neural stem cell reproduction. Morphine induces over-expression of p53 gene that could mediate stem cell apoptosis. Therefore we hypothesized that due to reduction in the testosterone levels, elevation in the DHT levels, and over-expression of p53 gene, morphine could prevent neural stem cell proliferation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. [Plasticity of tissue stem cells].

    PubMed

    Uher, Ferenc; Vas, Virág

    2002-05-05

    In the early stages of embryonic development, cells have the capability of dividing indefinitely and then differentiating into any type of cell in the body. Recent studies have revealed that much of this remarkable developmental potential of stem cells is retained by small populations of cells within most tissues in the adult. Intercellular signals that control the proliferation, differentiation and survival of tissue stem cells in their niches are being identified and include a diverse array of morphogens, cytokines, chemokines and cell adhesion molecules. Adult tissue stem cells, moreover, can also differentiate into developmentally unrelated cell types, such as nerve stem cells into blood cells. Currently, we can only speculate about the mechanisms involved in such dramatic changes in cell fate. For example, the emergence of, say, hematopoietic stem cells from brain neurospheres could involve either transdifferentiation (brain-->blood) or dedifferentiation (brain-->pluripotent cells), or by the actions of rare, but residual pluripotent stem cells. This issue is central to understanding the molecular basis of commitment and lies at the heart of debates about plasticity and the reversibility of developmental restriction.

  10. Lasers, stem cells, and COPD

    PubMed Central

    2010-01-01

    The medical use of low level laser (LLL) irradiation has been occurring for decades, primarily in the area of tissue healing and inflammatory conditions. Despite little mechanistic knowledge, the concept of a non-invasive, non-thermal intervention that has the potential to modulate regenerative processes is worthy of attention when searching for novel methods of augmenting stem cell-based therapies. Here we discuss the use of LLL irradiation as a "photoceutical" for enhancing production of stem cell growth/chemoattractant factors, stimulation of angiogenesis, and directly augmenting proliferation of stem cells. The combination of LLL together with allogeneic and autologous stem cells, as well as post-mobilization directing of stem cells will be discussed. PMID:20158898

  11. Immune privilege of stem cells.

    PubMed

    Ichiryu, Naoki; Fairchild, Paul J

    2013-01-01

    Immune privilege provides protection to vital tissues or cells of the body when foreign antigens are introduced into these sites. The modern concept of relative immune privilege applies to a variety of tissues and anatomical structures, including the hair follicles and mucosal surfaces. Even sites of chronic inflammation and developing tumors may acquire immune privilege by recruiting immunoregulatory effector cells. Adult stem cells are no exception. For their importance and vitality, many adult stem cell populations are believed to be immune privileged. A preimplantation-stage embryo that derives from a totipotent stem cell (i.e., a fertilized oocyte) must be protected from maternal allo-rejection for successful implantation and development to occur. Embryonic stem cells, laboratory-derived cell lines of preimplantation blastocyst-origin, may, therefore, retain some of the immunological properties of the developing embryo. However, embryonic stem cells and their differentiated tissue derivatives transplanted into a recipient do not necessarily have an ability to subvert immune responses to the extent required to exploit their pluripotency for regenerative medicine. In this review, an extended definition of immune privilege is developed and the capacity of adult and embryonic stem cells to display both relative and acquired immune privilege is discussed. Furthermore, we explore how these intrinsic properties of stem cells may one day be harnessed for therapeutic gain.

  12. The less-often-traveled surface of stem cells: caveolin-1 and caveolae in stem cells, tissue repair and regeneration

    PubMed Central

    2013-01-01

    Stem cells are an important resource for tissue repair and regeneration. While a great deal of attention has focused on derivation and molecular regulation of stem cells, relatively little research has focused on how the subcellular structure and composition of the cell membrane influences stem cell activities such as proliferation, differentiation and homing. Caveolae are specialized membrane lipid rafts coated with caveolin scaffolding proteins, which can regulate cholesterol transport and the activity of cell signaling receptors and their downstream effectors. Caveolin-1 is involved in the regulation of many cellular processes, including growth, control of mitochondrial antioxidant levels, migration and senescence. These activities are of relevance to stem cell biology, and in this review evidence for caveolin-1 involvement in stem cell biology is summarized. Altered stem and progenitor cell populations in caveolin-1 null mice suggest that caveolin-1 can regulate stem cell proliferation, and in vitro studies with isolated stem cells suggest that caveolin-1 regulates stem cell differentiation. The available evidence leads us to hypothesize that caveolin-1 expression may stabilize the differentiated and undifferentiated stem cell phenotype, and transient downregulation of caveolin-1 expression may be required for transition between the two. Such regulation would probably be critical in regenerative applications of adult stem cells and during tissue regeneration. We also review here the temporal changes in caveolin-1 expression reported during tissue repair. Delayed muscle regeneration in transgenic mice overexpressing caveolin-1 as well as compromised cardiac, brain and liver tissue repair and delayed wound healing in caveolin-1 null mice suggest that caveolin-1 plays an important role in tissue repair, but that this role may be negative or positive depending on the tissue type and the nature of the repair process. Finally, we also discuss how caveolin-1

  13. On hematopoietic stem cell fate.

    PubMed

    Metcalf, Donald

    2007-06-01

    Multipotential hematopoietic stem cells (HSCs) maintain blood-cell formation throughout life. Here, Metcalf considers the origin and heterogeneity of HSCs, their ability to self-generate, and their commitment to the various hematopoietic lineages.

  14. Stem cell mechanics: Auxetic nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Ning

    2014-06-01

    The nuclei of naive mouse embryonic stem cells that are transitioning towards differentiation expand when the cells are stretched and contract when they are compressed. What drives this auxetic phenotype is, however, unclear.

  15. Gastrointestinal stem cell up-to-date.

    PubMed

    Pirvulet, V

    2015-01-01

    Cellular and tissue regeneration in the gastrointestinal tract depends on stem cells with properties of self-renewal, clonogenicity, and multipotency. Progress in stem cell research and the identification of potential gastric, intestinal, colonic stem cells new markers and the signaling pathways provide hope for the use of stem cells in regenerative medicine and treatments for disease. This review provides an overview of the different types of stem cells, focusing on tissue-restricted adult stem cells.

  16. Keratinocyte stem cells: a commentary.

    PubMed

    Potten, Christopher S; Booth, Catherine

    2002-10-01

    For many years it has been widely accepted that stem cells play a crucial role in adult tissue maintenance. The concept that the renewing tissues of the body contain a small subcompartment of self-maintaining stem cells, upon which the entire tissue is dependent, is also now accepted as applicable to all renewing tissues. Gene therapy and tissue engineering are driving considerable interest in the clinical application of such hierarchically organized cellular compartments. Recent initial observations have provided a tantalizing insight into the large pluripotency of these cells. Indeed, scientists are now beginning to talk about the possible totipotency of some adult tissue stem cells. Such work is currently phenomenologic, but analysis of data derived from genomics and proteomics, identifying the crucial control signals involved, will soon provide a further impetus to stem cell biology with far reaching applications. The epidermis with its relatively simple structure, ease of accessibility, and the ability to grow its cells in vitro is one obvious target tissue for testing stem cell manipulation theories. It is crucial, however, that the normal keratinocyte stem cell is thoroughly characterized prior to attempting to manipulate its pluripotency. This commentary assesses the data generated to date and critically discusses the conclusions that have been drawn. Our current level of understanding, or lack of understanding, of the keratinocyte stem cell is reviewed.

  17. A Comparison of Culture Characteristics between Human Amniotic Mesenchymal Stem Cells and Dental Stem Cells.

    PubMed

    Yusoff, Nurul Hidayat; Alshehadat, Saaid Ayesh; Azlina, Ahmad; Kannan, Thirumulu Ponnuraj; Hamid, Suzina Sheikh Abdul

    2015-04-01

    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.

  18. REST regulation of gene networks in adult neural stem cells.

    PubMed

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-11-07

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state.

  19. REST regulation of gene networks in adult neural stem cells

    PubMed Central

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-01-01

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. PMID:27819263

  20. Germline and Pluripotent Stem Cells.

    PubMed

    Reik, Wolf; Surani, M Azim

    2015-11-02

    Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes.

  1. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  2. Bone repair and stem cells.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2016-10-01

    Bones are an important component of vertebrates; they grow explosively in early life and maintain their strength throughout life. Bones also possess amazing capabilities to repair-the bone is like new without a scar after complete repair. In recent years, a substantial progress has been made in our understanding on mammalian bone stem cells. Mouse genetic models are powerful tools to understand the cell lineage, giving us better insights into stem cells that regulate bone growth, maintenance and repair. Recent findings about these stem cells raise new questions that require further investigations.

  3. Stem cells for tooth engineering.

    PubMed

    Bluteau, G; Luder, H U; De Bari, C; Mitsiadis, T A

    2008-07-31

    Tooth development results from sequential and reciprocal interactions between the oral epithelium and the underlying neural crest-derived mesenchyme. The generation of dental structures and/or entire teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin and enamel. Although mesenchymal stem cells from different origins have been extensively studied in their capacity to form dentin in vitro, information is not yet available concerning the use of epithelial stem cells. The odontogenic potential resides in the oral epithelium and thus epithelial stem cells are necessary for both the initiation of tooth formation and enamel matrix production. This review focuses on the different sources of stem cells that have been used for making teeth in vitro and their relative efficiency. Embryonic, post-natal or even adult stem cells were assessed and proved to possess an enormous regenerative potential, but their application in dental practice is still problematic and limited due to various parameters that are not yet under control such as the high risk of rejection, cell behaviour, long tooth eruption period, appropriate crown morphology and suitable colour. Nevertheless, the development of biological approaches for dental reconstruction using stem cells is promising and remains one of the greatest challenges in the dental field for the years to come.

  4. GPCRs in Stem Cell Function

    PubMed Central

    DOZE, VAN A.; PEREZ, DIANNE M.

    2013-01-01

    Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G-protein coupled receptors in the regulation of stem cells and their potential in future clinical applications. PMID:23415095

  5. Discovery of HAP Stem Cells.

    PubMed

    Li, Lingna; Hoffman, Robert M

    2016-01-01

    Cells expressing the stem cell marker, nestin, were selectively labeled in transgenic mice by placing green fluorescent protein (GFP) under the control of the nestin promoter in transgenic mice. In these transgenic mice, neural and other stem cells brightly expressed GFP. The mice were termed nestin-driven GFP (ND-GFP) mice. During early anagen or growth phase of the hair follicle, ND-GFP appeared in the permanent upper hair follicle immediately below the sebaceous glands in the follicle bulge. The relatively small, oval-shaped, nestin-expressing cells in the bulge area surrounded the hair shaft and were interconnected by short dendrites. The location of the nestin-expressing cells in the hair follicle varied with the hair cycle. During telogen or resting phase and in early anagen, the GFP-positive cells are mainly in the bulge area. However, in mid- and late-anagen, the GFP-expressing cells were located in the upper outer-root sheath as well as in the bulge area. The expression of the unique protein, nestin, in both neural stem cells and hair follicle stem cells, which suggested their relationship. The ND-GFP hair follicle stem cells were later termed hair-follicle-associated pluripotent (HAP) stem cells.

  6. Stem cell therapy without the cells

    PubMed Central

    Maguire, Greg

    2013-01-01

    As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells1 instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells.2 We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions.3 That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment. PMID:24567776

  7. Stem cells and combinatorial science.

    PubMed

    Fang, Yue Qin; Wong, Wan Qing; Yap, Yan Wen; Orner, Brendan P

    2007-09-01

    Stem cell-based technologies have the potential to help cure a number of cell degenerative diseases. Combinatorial and high throughput screening techniques could provide tools to control and manipulate the self-renewal and differentiation of stem cells. This review chronicles historic and recent progress in the stem cell field involving both pluripotent and multipotent cells, and it highlights relevant cellular signal transduction pathways. This review further describes screens using libraries of soluble, small-molecule ligands, and arrays of molecules immobilized onto surfaces while proposing future trends in similar studies. It is hoped that by reviewing both the stem cell and the relevant high throughput screening literature, this paper can act as a resource to the combinatorial science community.

  8. Fibroblast Growth Factor Type 1 (FGF1)-Overexpressed Adipose-Derived Mesenchaymal Stem Cells (AD-MSC(FGF1)) Induce Neuroprotection and Functional Recovery in a Rat Stroke Model.

    PubMed

    Ghazavi, Hamed; Hoseini, Seyed Javad; Ebrahimzadeh-Bideskan, Alireza; Mashkani, Baratali; Mehri, Soghra; Ghorbani, Ahmad; Sadri, Kayvan; Mahdipour, Elahe; Ghasemi, Faezeh; Forouzanfar, Fatemeh; Hoseini, Azar; Pasdar, Ali Reza; Sadeghnia, Hamid Reza; Ghayour-Mobarhan, Majid

    2017-08-09

    Stroke, as the second most common cause of death, imposes a great financial burden on both the individual and society. Mesenchymal stem cells from rodents have demonstrated efficacy in experimental animal models of stroke due to enhanced neurological recovery. Since FGF1 (fibroblast growth factor 1) displays neuroprotective properties, for the first time, we investigated the effect of acute intravenous administration of FGF1 gene transfected adipose-derived mesenchymal stem cell (AD-MSC(FGF1)) on transient experimental ischemic stroke in rats. Stroke induction was made by transient middle cerebral artery occlusion (tMCAO). 2 × 10(6) AD-MSC(FGF1) was administrated intravenously 30 min after carotid reperfusion. The ability of technetium(99m)-hexamethyl propylene amine oxime ((99m)Tc-HMPAO)-labeled AD-MSC(FGF1) to enter into ischemic brain was evaluated 2 h post injection. 24 h post operation, the neurological recovery (rotarod and Roger's tests), the infarct volume (2, 3, 5-triphenyltetrazolium chloride, TTC assay), apoptosis rate (TUNEL assay), and the expression of FGF1 protein (western blotting) in the ischemic hemisphere were assessed. The (99m)Tc-HMPAO-labeled AD-MSC(FGF1) could enter into the ischemic brain. Ischemic hemisphere activity was significantly higher than that observed in the contralateral hemisphere (p = 0.002). The administration of AD-MSC(FGF1) resulted in significant improvement of neurological function tests and increased density of FGF1 protein in the peri-infarct area, while the infarct volume and the apoptotic index were significantly decreased, in comparison to the other treated groups. In conclusion, acute intravenous administration of AD-MSC(FGF1) can be a novel and promising candidate approach for the treatment of ischemic stroke.

  9. Stem Cells in the Lung

    PubMed Central

    Liu, Xiaoming; Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    The lung is composed of two major anatomically distinct regions—the conducting airways and gas-exchanging airspaces. From a cell biology standpoint, the conducting airways can be further divided into two major compartments, the tracheobronchial and bronchiolar airways, while the alveolar regions of the lung make up the gas-exchanging airspaces. Each of these regions consists of distinct epithelial cell types with unique cellular physiologies and stem cell compartments. This chapter focuses on model systems with which to study stem cells in the adult tracheobronchial airways, also referred to as the proximal airway of the lung. Important in such models is an appreciation for the diversity of stem cell niches in the conducting airways that provide localized environmental signals to both maintain and mobilize stem cells in the setting of airway injury and normal cellular turnover. Because cellular turnover in airways is relatively slow, methods for analysis of stem cells in vivo have required prior injury to the lung. In contrast, ex vivo and in vitro models for analysis of airway stem cells have used genetic markers to track lineage relationships together with reconstitution systems that mimic airway biology. Over the past decades, several widely acceptable methods have been developed and used in the characterization of adult airway stem/ progenitor cells. These include localization of label-retaining cells (LRCs), retroviral tagging of epithelial cells seeded into xenografts, air–liquid interface cultures to track clonal proliferative potential, and multiple transgenic mouse models. This chapter reviews the biologic context and use of these models while providing detailed methods for several of the more broadly useful models for studying adult airway stem/progenitor cell types. PMID:17141060

  10. Sonic hedgehog elevates N-myc gene expression in neural stem cells.

    PubMed

    Liu, Dongsheng; Wang, Shouyu; Cui, Yan; Shen, Lun; Du, Yanping; Li, Guilin; Zhang, Bo; Wang, Renzhi

    2012-08-05

    Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gli1 and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells. Sonic hedgehog and N-myc are important mediators of sonic hedgehog-induced proliferation of neural stem cells.

  11. Dental stem cells and their sources.

    PubMed

    Sedgley, Christine M; Botero, Tatiana M

    2012-07-01

    The search for more accessible mesenchymal stem cells than those found in bone marrow has propelled interest in dental tissues. Human dental stem/progenitor cells (collectively termed dental stem cells [DSCs]) that have been isolated and characterized include dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, and dental follicle progenitor cells. Common characteristics of these cell populations are the capacity for self-renewal and the ability to differentiate into multiple lineages. In vitro and animal studies have shown that DSCs can differentiate into osseous, odontogenic, adipose, endothelial, and neural-like tissues.

  12. Nanotechniques Inactivate Cancer Stem Cells

    NASA Astrophysics Data System (ADS)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  13. Modeling Stem Cell Myogenic Differentiation

    PubMed Central

    Deshpande, Rajiv S.; Spector, Alexander A.

    2017-01-01

    The process of stem cell myogenesis (transformation into skeletal muscle cells) includes several stages characterized by the expression of certain combinations of myogenic factors. The first part of this process is accompanied by cell division, while the second part is mainly associated with direct differentiation. The mechanical cues are known to enhance stem cell myogenesis, and the paper focuses on the stem cell differentiation under the condition of externally applied strain. The process of stem cell myogenic differentiation is interpreted as the interplay among transcription factors, targeted proteins and strain-generated signaling molecule, and it is described by a kinetic multi-stage model. The model parameters are optimally adjusted by using the available data from the experiment with adipose-derived stem cells subjected to the application of cyclic uniaxial strains of the magnitude of 10%. The modeling results predict the kinetics of the process of myogenic differentiation, including the number of cells in each stage of differentiation and the rates of differentiation from one stage to another for different strains from 4% to 16%. The developed model can help better understand the process of myogenic differentiation and the effects of mechanical cues on stem cell use in muscle therapies. PMID:28106095

  14. Stem cells, dot-com.

    PubMed

    Liang, Bryan A; Mackey, Tim K

    2012-09-12

    Direct-to-consumer (DTC) advertising of suspect goods and services has burgeoned because of the Internet. Despite very limited approval for use, DTC stem cell-marketed "treatments" have emerged for an array of conditions, creating global public health and safety risks. However, it remains unclear whether such use of stem cells is subject to drugs or biologics regulations. To address this gap, regulatory agencies should be given clear authority, and the international community should create a framework for appropriate stem cell use. In addition, consumer protection laws should be used to scrutinize providers.

  15. Stem cells: research tools and clinical treatments.

    PubMed

    Fahey, Michael C; Wallace, Euan M

    2011-09-01

    The term 'stem cell' most commonly refers to embryonic stem cells, particularly in the lay media; however, it also describes other cell types. A stem cell represents a cell of multi-lineage potential with the ability for self-renewal. It is now clear that the plasticity and immortality of a given stem cell will depend on what type of stem cell it is, whether an embryonic stem cell, a fetal-placental stem cell or an adult stem cell. Stem cells offer great promise as cell-based therapies for the future. With evolving technology, much of the socio-political debate regarding stem cells can now be avoided. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  16. Advances in stem cell therapy.

    PubMed

    Pérez López, Silvia; Otero Hernández, Jesús

    2012-01-01

    Since the beginning of stem cell biology, considerable effort has been focused in the translation of scientific insights into new therapies. Cell-based assays represent a new strategy for organ and tissue repair in several pathologies. Moreover, alternative treatment strategies are urgently needed due to donor organ shortage that costs many lives every year and results in lifelong immunosuppression. At the moment, only the use of hematopoietic stem cells is considered as the standard for the treatment of malignant and genetic bone marrow disorders, being all other stem cell applications highly experimental. The present chapter tries to summarize some ongoing approaches of stem cell regenerative medicine and also introduces recent findings from published studies and trials conducted in various tissues such as skeletal muscle, liver and lung.

  17. Overexpression of ankyrin1 promotes pancreatic cancer cell growth

    PubMed Central

    Omura, Noriyuki; Mizuma, Masamichi; MacGregor, Anne; Hong, Seung-Mo; Ayars, Michael; Almario, Jose Alejandro; Borges, Michael; Kanda, Mitsuro; Li, Ang; Vincent, Audrey; Maitra, Anirban; Goggins, Michael

    2016-01-01

    The methylation status of a promoter influences gene expression and aberrant methylation during tumor development has important functional consequences for pancreatic and other cancers. Using methylated CpG island amplification and promoter microarrays, we identified ANK1 as hypomethylated in pancreatic cancers. Expression analysis determined ANK1 as commonly overexpressed in pancreatic cancers relative to normal pancreas. ANK1 was co-expressed with miR-486 in pancreatic cancer cells. Stable knockdown of ANK1 in the pancreatic cancer cell line AsPC1 led to changes in cell morphology, and decreases in colony formation. Stable knockdown of ANK1 also marked reduced the growth of tumors in athymic nude mice. Among patients undergoing pancreaticoduodenectomy, those with pancreatic cancers expressing ANK1 had a poorer prognosis than those without ANK1 expression. These findings indicate a role for ANK1 overexpression in mediating pancreatic cancer tumorigenicity. PMID:27144336

  18. Steroid signaling promotes stem cell maintenance in the Drosophila testis.

    PubMed

    Li, Yijie; Ma, Qing; Cherry, Christopher M; Matunis, Erika L

    2014-10-01

    Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here, we show that depletion of 20E from adult males by overexpressing a dominant negative form of the Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling. Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females, ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem cell maintenance.

  19. Overexpression of Lymphotoxin in T Cells Induces Fulminant Thymic Involution

    PubMed Central

    Heikenwalder, Mathias; Prinz, Marco; Zeller, Nicolas; Lang, Karl S.; Junt, Tobias; Rossi, Simona; Tumanov, Alexei; Schmidt, Hauke; Priller, Josef; Rülicke, Thomas; Macpherson, Andrew J.; Holländer, Georg A.; Nedospasov, Sergei A.; Aguzzi, Adriano

    2008-01-01

    Activated lymphocytes and lymphoid-tissue inducer cells express lymphotoxins (LTs), which are essential for the organogenesis and maintenance of lymphoreticular microenvironments. Here we describe that T-cell-restricted overexpression of LT induces fulminant thymic involution. This phenotype was prevented by ablation of the LT receptors tumor necrosis factor receptor (TNFR) 1 or LT beta receptor (LTβR), representing two non-redundant pathways. Multiple lines of transgenic Ltαβ and Ltα mice show such a phenotype, which was not observed on overexpression of LTβ alone. Reciprocal bone marrow transfers between LT-overexpressing and receptor-ablated mice show that involution was not due to a T cell-autonomous defect but was triggered by TNFR1 and LTβR signaling to radioresistant stromal cells. Thymic involution was partially prevented by the removal of one allele of LTβR but not of TNFR1, establishing a hierarchy in these signaling events. Infection with the lymphocytic choriomeningitis virus triggered a similar thymic pathology in wt, but not in Tnfr1−/− mice. These mice displayed elevated TNFα in both thymus and plasma, as well as increased LTs on both CD8+ and CD4−CD8− thymocytes. These findings suggest that enhanced T cell-derived LT expression helps to control the physiological size of the thymic stroma and accelerates its involution via TNFR1/LTβR signaling in pathological conditions and possibly also in normal aging. PMID:18483211

  20. Neuroligin-1 Overexpression in Newborn Granule Cells In Vivo

    PubMed Central

    Schnell, Eric; Bensen, AeSoon L.; Washburn, Eric K.; Westbrook, Gary L.

    2012-01-01

    Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons. PMID:23110172

  1. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming.

    PubMed

    Daniel, Michael G; Lemischka, Ihor R; Moore, Kateri

    2016-04-01

    Even though all paradigms of stem cell therapy and regenerative medicine emerged from the study of hematopoietic stem cells (HSCs), the inability to generate these cells de novo or expand them in vitro persists. Initial efforts to obtain these cells began with the use of embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technologies, but these strategies have yet to yield fully functional cells. Subsequently, more recent approaches involve transcription factor (TF) overexpression to reprogram PSCs and various somatic cells. The induction of pluripotency with just four TFs by Yamanaka informs our ability to convert cell fates and demonstrates the feasibility of utilizing terminally differentiated cells to generate cells with multilineage potential. In this review, we discuss the recent efforts undertaken using TF-based reprogramming strategies to convert several cell types into HSCs. © 2016 New York Academy of Sciences.

  2. Diabetes and Stem Cell Function

    PubMed Central

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247

  3. Stem cell therapy for Parkinson's disease.

    PubMed

    Takahashi, Jun

    2007-06-01

    The aim of stem cell therapy for Parkinson's disease is to reconstruct nigro-striatal neuronal pathways using endogenous neural stem/precursor cells or grafted dopaminergic neurons. As an alternative, transplantation of stem cell-derived dopaminergic neurons into the striatum has been attempted, with the aim of stimulating local synapse formation and/or release of dopamine and cytokines from grafted cells. Candidate stem cells include neural stem/precursor cells, embryonic stem cells and other stem/precursor cells. Among these, embryonic stem cells are pluripotent cells that proliferate extensively, making them a good potential donor source for transplantation. However, tumor formation and ethical issues present major problems for embryonic stem cell therapy. This review describes the current status of stem cell therapy for Parkinson's disease, as well as future research approaches from a clinical perspective.

  4. Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development.

    PubMed

    Roese-Koerner, B; Stappert, L; Koch, P; Brüstle, O; Borghese, L

    2013-06-01

    The in vitro differentiation of human pluripotent stem cells represents a convenient approach to generate large numbers of neural cells for basic and translational research. We recently described the derivation of homogeneous populations of long-term self-renewing neuroepithelial-like stem cells from human pluripotent stem cells (lt-NES® cells). These cells constitute a suitable source of neural stem cells for in vitro modelling of early human neural development. Recent evidence demonstrates that microRNAs are important regulators of stem cells and nervous system development. Studies in several model organisms suggest that microRNAs contribute to different stages of neurogenesis - from progenitor self-renewal to survival and function of differentiated neurons. However, the understanding of the impact of microRNA-based regulation in human neural development is still at its dawn. Here, we give an overview on the current state of microRNA biology in stem cells and neural development and examine the role of the neural-associated miR-124, miR- 125b and miR-9/9* in human lt-NES® cells. We show that overexpression of miR-124, as well as overexpression of miR-125b, impair lt-NES® cell self-renewal and induce differentiation into neurons. Overexpression of the miR-9/9* locus also impairs self-renewal of lt-NES® cells and supports their commitment to neuronal differentiation. A detailed examination revealed that overexpression of miR-9 promotes differentiation, while overexpression of miR-9* affects both proliferation and differentiation of lt-NES® cells. This work provides insights into the regulation of early human neuroepithelial cells by microRNAs and highlights the potential of controlling differentiation of human stem cells by modulating the expression of selected microRNAs.

  5. Cancer stem cells in surgery

    PubMed Central

    D’ANDREA, V.; GUARINO, S.; DI MATTEO, F.M.; SACCÀ, M. MAUGERI; DE MARIA, R.

    2014-01-01

    The Cancer Stem Cells (CSC) hypothesis is based on three fundamental ideas: 1) the similarities in the mechanisms that regulate self-renewal of normal stem cells and cancer cells; 2) the possibility that tumour cells might arise from normal stem cells; 3) the notion that tumours might contain ‘cancer stem cells’ - rare cells with indefinite proliferative potential that drive the formation and growth of tumours. The roles for cancer stem cells have been demonstrated for some cancers, such as cancers of the hematopoietic system, breast, brain, prostate, pancreas and liver. The attractive idea about cancer stem cell hypothesis is that it could partially explain the concept of minimal residual disease. After surgical macroscopically zero residual (R0) resections, even the persistence of one single cell nestling in one of the so called “CSCs niches” could give rise to distant relapse. Furthermore the metastatic cells can remain in a “dormant status” and give rise to disease after long period of apparent disease free. These cells in many cases have acquired resistance traits to chemo and radiotherapy making adjuvant treatment vain. Clarifying the role of the cancer stem cells and their implications in the oncogenesis will play an important role in the management of cancer patient by identifying new prospective for drugs and specific markers to prevent and monitoring relapse and metastasis. The identification of the niche where the CSCs reside in a dormant status might represent a valid instrument to follow-up patients also after having obtained a R0 surgical resection. What we believe is that if new diagnostic instruments were developed specifically to identify the localization and status of activity of the CSCs during tumor dormancy, this would lead to impressive improvement in the early detection and management of relapse and metastasis. PMID:25644725

  6. Neural Stem Cells and Glioblastoma

    PubMed Central

    Rispoli, Rossella; Conti, Carlo; Celli, Paolo; Caroli, Emanuela; Carletti, Sandro

    2014-01-01

    Summary Glioblastoma multiforme represents one of the most common brain cancers with a rather heterogeneous cellular composition, as indicated by the term “multiforme". Recent reports have described the isolation and identification of cancer neural stem cells from human adult glioblastoma multiforme, which possess the capacity to establish, sustain, and expand these tumours, even under the challenging settings posed by serial transplantation experiments. Our study focused on the distribution of neural cancer stem cells inside the tumour. The study is divided into three phases: removal of tumoral specimens in different areas of the tumour (centre, periphery, marginal zone) in an operative room equipped with a 1.5 T scanner; isolation and characterization of neural cancer stem cells from human adult glioblastoma multiforme; identification of neural cancer stem cell distribution inside the tumour. PMID:24750704

  7. Framework bolsters stem cell progress.

    PubMed

    Gross, Michael

    2004-08-10

    With many of the leading science nations still stuck in debates on the use of embryonic stem cells, Britain, with a regulatory framework in place, is well-positioned to take the lead. Michael Gross reports.

  8. [Progress in stem cells and regenerative medicine].

    PubMed

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  9. Stem cells, tissue engineering and periodontal regeneration.

    PubMed

    Han, J; Menicanin, D; Gronthos, S; Bartold, P M

    2014-06-01

    The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing relevant literature that assesses the periodontal-regenerative potential of stem cells. We consider and describe the main stem cell populations that have been utilized with regard to periodontal regeneration, including bone marrow-derived mesenchymal stem cells and the main dental-derived mesenchymal stem cell populations: periodontal ligament stem cells, dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla and dental follicle precursor cells. Research into the use of stem cells for tissue regeneration has the potential to significantly influence periodontal treatment strategies in the future.

  10. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment

    PubMed Central

    Aponte, Pedro M.

    2017-01-01

    Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions. PMID:28473858

  11. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment.

    PubMed

    Aponte, Pedro M; Caicedo, Andrés

    2017-01-01

    Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.

  12. Tracking stem cells in the cardiovascular system.

    PubMed

    Chemaly, Elie R; Yoneyama, Ryuichi; Frangioni, John V; Hajjar, Roger J

    2005-11-01

    Stem cells are a promising approach to cardiovascular therapeutics. Animal experiments have assessed the fate of injected stem cells through ex vivo methods on sacrificed animals. Approaches are needed for in vivo tracking of stem cells. Various imaging techniques and contrast agents for stem cell tracking will be reviewed.

  13. Immunotargeting of cancer stem cells

    PubMed Central

    Gąbka-Buszek, Agnieszka; Jankowski, Jakub; Mackiewicz, Andrzej

    2015-01-01

    Cancer stem cells (CSCs) represent a distinctive population of tumour cells that control tumour initiation, progression, and maintenance. Their influence is great enough to risk the statement that successful therapeutic strategy must target CSCs in order to eradicate the disease. Because cancer stem cells are highly resistant to chemo- and radiotherapy, new tools to fight against cancer have to be developed. Expression of antigens such as ALDH, CD44, EpCAM, or CD133, which distinguish CSCs from normal cells, together with CSC immunogenicity and relatively low toxicity of immunotherapies, makes immune targeting of CSCs a promising approach for cancer treatment. This review will present immunotherapeutic approaches using dendritic cells, T cells, pluripotent stem cells, and monoclonal antibodies to target and eliminate CSCs. PMID:25691822

  14. Stem cell potential of the mammalian gonad

    PubMed Central

    Liu, Chia-Feng; Barsoum, Ivraym; Gupta, Rupesh; Hofmann, Marie-Claude; Yao, Humphrey Hung-Chang

    2010-01-01

    Stem cells have enormous potential for therapeutic application because of their ability to self-renew and differentiate into different cell types. Gonads, which consist of somatic cells and germ cells, are the only organs capable of transmitting genetic materials to the offspring. Germ-line stem cells and somatic stem cells have been found in the testis; however, the presence of stem cells in the ovary remains controversial. In this review, we discuss studies focusing on whether stem cell properties are present in the different cell types of male and female gonads and their implications on stem cell research. PMID:19482665

  15. SNEV overexpression extends the life span of human endothelial cells

    SciTech Connect

    Voglauer, Regina; Chang, Martina Wei-Fen; Dampier, Brigitta; Wieser, Matthias; Baumann, Kristin; Sterovsky, Thomas; Schreiber, Martin; Katinger, Hermann; Grillari, Johannes . E-mail: j.grillari@iam.boku.ac.at

    2006-04-01

    In a recent screening for genes downregulated in replicatively senescent human umbilical vein endothelial cells (HUVECs), we have isolated the novel protein SNEV. Since then SNEV has proven as a multifaceted protein playing a role in pre-mRNA splicing, DNA repair, and the ubiquitin/proteosome system. Here, we report that SNEV mRNA decreases in various cell types during replicative senescence, and that it is increased in various immortalized cell lines, as well as in breast tumors, where SNEV transcript levels also correlate with the survival of breast cancer patients. Since these mRNA profiles suggested a role of SNEV in the regulation of cell proliferation, the effect of its overexpression was tested. Thereby, a significant extension of the cellular life span was observed, which was not caused by altered telomerase activity or telomere dynamics but rather by enhanced stress resistance. When SNEV overexpressing cells were treated with bleomycin or bleomycin combined with BSO, inducing DNA damage as well as reactive oxygen species, a significantly lower fraction of apoptotic cells was found in comparison to vector control cells. These data suggest that high levels of SNEV might extend the cellular life span by increasing the resistance to stress or by improving the DNA repair capacity of the cells.

  16. Stem Cells and Calcium Signaling

    PubMed Central

    Tonelli, Fernanda M.P.; Santos, Anderson K.; Gomes, Dawidson A.; da Silva, Saulo L.; Gomes, Katia N.; Ladeira, Luiz O.

    2014-01-01

    The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca2+ concentration [Ca2+]i. Acting as an intracellular messenger, Ca2+ has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca2+-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential. PMID:22453975

  17. New Insights into Thyroid Stem Cells

    PubMed Central

    Lin, Reigh-Yi

    2009-01-01

    Stem cells exhibit an extraordinary ability for self-renewal. They also give rise to many specialized cells. The potential of stem cells in regenerative medicine, developmental biology, and drug discovery has been well documented. Although advances in stem cell science have raised broad ethical concerns, it is clear that stem cell technology has revolutionized our thinking in modern biology and medicine and provided the basis for understanding many of the mechanisms controlling basic biological processes and disease mechanisms. This review details the nascent field of thyroid stem cell research, exploring the current status of thyroid stem cell differentiation from the perspectives of both developmental biology and cell replacement therapy. It highlights successes to date in the generation of thyroid follicular cells from embryonic stem cells in the laboratory and the identification and characterization of adult stem cells from human thyroid glands and thyroid cancers. Finally, it outlines future challenges with a focus on potential stem cell therapy for thyroid patients. PMID:17727339

  18. Overexpression of neurofilament H disrupts normal cell structure and function

    NASA Technical Reports Server (NTRS)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  19. Overexpression of neurofilament H disrupts normal cell structure and function

    NASA Technical Reports Server (NTRS)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  20. Stem Cells in Spine Surgery.

    PubMed

    Hansraj, Kenneth K

    2016-10-26

    Spine surgeons are embracing advanced biologic technologies in an attempt to help millions of people achieve a better outcome in spine surgery. These new technologies may be complicated to understand, partly because the contribution of different types of cells has not been definitively identified. This paper describes the characteristics of the stem cells used in spine surgery, including their actions and possible complications. The description necessitates an overview of all studies to date on the use of stem cells in spine surgery, as well as other cells used in cellular therapy. The paper summarizes the results of major studies to date on the use of stem cells in spine surgery. Cells were harvested from the posterior superior iliac spine, vertebral bodies in surgery, fat tissue, or from the posterior spine of cadavers. This paper reports on three studies involving 37 patients treated with stem cells for regenerative spine surgery, 14 studies involving 533 patients treated with stem cells in spinal fusion surgery, and one study in which stem cells were used for the treatment of anterior cervical discectomy and fusion. Indications, techniques, and calibration of results were different in each study. Results are available for cellular augmentation of demineralized bone sponges, OsteoSponge® (Bacterin, Belgrade, Montana) and concentrated bone marrow (Terumo BCT®, Lakewood, CO); cancellous allograft bone and BMA; mineralized collagen and BMA; Osteocel® Plus (OC+) (Nuvasive®, San Diego, California); b-Tricalcium phosphate (b-TCP) (SYNTHES® Dento, West Chester, Pennsylvania; a silicate-substituted calcium phosphate (Si-CaP) with bone marrow aspirate (BMA), and HEALOS® graft carrier (DePuy Synthes, West Chester, Pennsylvania) with bone marrow aspirate. Stem cell augmentation of spinal fusion surgery is equivalent to the gold standard for iliac crest bone graft in posterolateral fusion models. There is evidence of safety and feasibility in the injectable treatment

  1. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    PubMed

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-07

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells.

  2. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    SciTech Connect

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.

  3. Stem Cells and Liver Regeneration

    PubMed Central

    DUNCAN, ANDREW W.; DORRELL, CRAIG; GROMPE, MARKUS

    2011-01-01

    One of the defining features of the liver is the capacity to maintain a constant size despite injury. Although the precise molecular signals involved in the maintenance of liver size are not completely known, it is clear that the liver delicately balances regeneration with overgrowth. Mammals, for example, can survive surgical removal of up to 75% of the total liver mass. Within 1 week after liver resection, the total number of liver cells is restored. Moreover, liver overgrowth can be induced by a variety of signals, including hepatocyte growth factor or peroxisome proliferators; the liver quickly returns to its normal size when the proliferative signal is removed. The extent to which liver stem cells mediate liver regeneration has been hotly debated. One of the primary reasons for this controversy is the use of multiple definitions for the hepatic stem cell. Definitions for the liver stem cell include the following: (1) cells responsible for normal tissue turnover, (2) cells that give rise to regeneration after partial hepatectomy, (3) cells responsible for progenitor-dependent regeneration, (4) cells that produce hepatocyte and bile duct epithelial phenotypes in vitro, and (5) transplantable liver-repopulating cells. This review will consider liver stem cells in the context of each definition. PMID:19470389

  4. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    PubMed

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  5. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells

    PubMed Central

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-01-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact. PMID:22801967

  6. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    PubMed

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  7. Stem cells in pediatric cardiology.

    PubMed

    Patel, Pranali; Mital, Seema

    2013-10-01

    The ability to reprogram virtually any cell of human origin to behave like embryonic or pluripotent stem cells is a major breakthrough in stem cell biology. Human induced pluripotent stem cells (iPSC) provide a unique opportunity to study "disease in a dish" within a defined genetic and environmental background. Patient-derived iPSCs have been successfully used to model cardiomyopathies, rhythm disorders and vascular disorders. They also provide an exciting opportunity for drug discovery and drug repurposing for disorders with a known molecular basis including childhood onset heart disease, particularly cardiac genetic disorders. The review will discuss their use in drug discovery, efficacy and toxicity studies with emphasis on challenges in pediatric-focused drug discovery. Issues that will need to be addressed in the coming years include development of maturation protocols for iPSC-derived cardiac lineages, use of iPSCs to study not just cardiac but extra-cardiac phenotypes in the same patient, scaling up of stem cell platforms for high-throughput drug screens, translating drug testing results to clinical applications in the paradigm of personalized medicine, and improving both the efficiency and the safety of iPSC-derived lineages for future stem cell therapies.

  8. Pluripotent stem cells for Schwann cell engineering.

    PubMed

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    2015-04-01

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitulating the various stages of in vivo neural crest formation and SC differentiation. In this review, we survey the cellular and molecular mechanisms underlying these in vivo processes. We then focus on the current in vitro strategies for generating SCs from two sources of pluripotent stem cells, namely embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different methods for SC engineering from ESCs and iPSCs are reviewed and suggestions are proposed for optimizing the existing protocols. Potential safety issues regarding the clinical application of iPSC-derived SCs are discussed as well. Lastly, we will address future aspects of SC engineering.

  9. Stem Cell Information: Glossary

    MedlinePlus

    ... a fluid-filled cavity (the blastocoel ), and a cluster of cells on the interior (the inner cell ... the female body. Inner cell mass (ICM) —The cluster of cells inside the blastocyst . These cells give ...

  10. [Therapeutic use of stem cells].

    PubMed

    Uzan, Georges

    2004-09-15

    Stem cells display important capacities of self renewing, proliferation and differentiation. Because those present in the embryo have the more remarkable properties, their potential use in the therapy of until now incurable degenerative diseases have been envisioned. Embryonic stem (ES) cells are located in the inner mass of the balstocyst at early stages of the development. Even in long-term cultures they still retain their undifferentiated features. Under specific culture conditions, ES cells can be committed into a variety of differentiation pathways, giving rise to large amounts of cells corresponding to different tissues (neurones, cardiomyocytes, skeletal muscle, etc.). However, producing these tissues from already established ES cell lines would lead to immune rejection when transplanted to patients. To prevent this pitfall and using the expertise accumulated by animal cloning by nucleus transfer, it has been proposed to adapt this technique to human ES cells. The therapeutic cloning consists in transferring the nucleus of somatic stem cells isolated from the patient into an enucleated oocyte, to allow blastocyst development from which ES cells will be derived. From these stem cells, compatible tissues will be then produced. The problem is that it is in theoretically possible to reimplant the cloned blastocyst into a surrogate mother for obtaining a baby genetically identical to the donor. This is called reproductive cloning. This worrying risk raises important ethic and legal questions.

  11. Epigenetics in cancer stem cells.

    PubMed

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  12. Cancer stem cells in osteosarcoma.

    PubMed

    Brown, Hannah K; Tellez-Gabriel, Marta; Heymann, Dominique

    2017-02-01

    Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and in some cases metastasis. Recent published work demonstrates evidence of cancer stem cell phenotypes in osteosarcoma with links to drug resistance and tumorigenesis. In this review we will discuss the commonly used isolation techniques for cancer stem cells in osteosarcoma as well as the identified biochemical and molecular markers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    SciTech Connect

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon; Yun, Chae-Ok; Han, Deok-Jong; Choi, Eun Young

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  14. Reconstructing the stem cell debate.

    PubMed

    Sitko, Bradley J

    2002-01-01

    Human embryonic stem cells have been a major topic in science, medicine, and religion since their discovery in 1998. However, due to the complex discourse and rhetoric of scientific language, debate has remained within the professional realm via "expert bioethics." Using the tenets of pragmatism, the author examines the need to move the debate to society as a whole and disentangle the stem cell debate from the ideologies of the human cloning and abortion debates. Opening this issue to a societal debate will advance societal growth, resulting in informed decisions on moral issues, funding, or regulation associated with hES cell research.

  15. Stem cells' exodus: a journey to immortality.

    PubMed

    Zhou, Yi; Lewallen, Michelle; Xie, Ting

    2013-01-28

    Stem cell niches provide a regulatory microenvironment that retains stem cells and promotes self-renewal. Recently in Developmental Cell, Rinkevich et al. (2013) showed that cell islands (CIs) of Botryllus schlosseri, a colonial chordate, provide niches for maintaining cycling stem cells that migrate from degenerated CIs to newly formed buds.

  16. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-05

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest.

  17. Targeting Ovarian Carcinoma Stem Cells

    DTIC Science & Technology

    2012-05-01

    expertise with expertise in gynecologic oncology /ovarian carcinoma and in animal models of cancer this proposal will: 1) Identify, isolate, and...more numerous differentiated progeny characterizing the malignancy . Although the clinical significance of these cancer stem cells (CSC) has been...the dramatic initial response rates in ovarian carcinoma represent therapeutic effectiveness against the differentiated cancer cells making up the

  18. Stem-cell ecology and stem cells in motion

    PubMed Central

    Scadden, David T.

    2008-01-01

    This review highlights major scientific developments over the past 50 years or so in concepts related to stem-cell ecology and to stem cells in motion. Many thorough and eloquent reviews have been presented in the last 5 years updating progress in these issues. Some paradigms have been challenged, others validated, or new ones brought to light. In the present review, we will confine our remarks to the historical development of progress. In doing so, we will refrain from a detailed analysis of controversial data, emphasizing instead widely accepted views and some challenging novel ones. PMID:18398055

  19. Common stemness regulators of embryonic and cancer stem cells

    PubMed Central

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-01-01

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies. PMID:26516408

  20. Introduction to stem cells and regenerative medicine.

    PubMed

    Kolios, George; Moodley, Yuben

    2013-01-01

    Stem cells are a population of undifferentiated cells characterized by the ability to extensively proliferate (self-renewal), usually arise from a single cell (clonal), and differentiate into different types of cells and tissue (potent). There are several sources of stem cells with varying potencies. Pluripotent cells are embryonic stem cells derived from the inner cell mass of the embryo and induced pluripotent cells are formed following reprogramming of somatic cells. Pluripotent cells can differentiate into tissue from all 3 germ layers (endoderm, mesoderm, and ectoderm). Multipotent stem cells may differentiate into tissue derived from a single germ layer such as mesenchymal stem cells which form adipose tissue, bone, and cartilage. Tissue-resident stem cells are oligopotent since they can form terminally differentiated cells of a specific tissue. Stem cells can be used in cellular therapy to replace damaged cells or to regenerate organs. In addition, stem cells have expanded our understanding of development as well as the pathogenesis of disease. Disease-specific cell lines can also be propagated and used in drug development. Despite the significant advances in stem cell biology, issues such as ethical controversies with embryonic stem cells, tumor formation, and rejection limit their utility. However, many of these limitations are being bypassed and this could lead to major advances in the management of disease. This review is an introduction to the world of stem cells and discusses their definition, origin, and classification, as well as applications of these cells in regenerative medicine.

  1. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    PubMed

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.

  2. Multipotent Stem Cell and Current Application.

    PubMed

    Sobhani, Aligholi; Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sargolzaei Aval, Fereydoon

    2017-01-01

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. Multipotent Stem cells have been applying in treatment of different disorders such as spinal cord injury, bone fracture, autoimmune diseases, rheumatoid arthritis, hematopoietic defects, and fertility preservation.

  3. MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species.

    PubMed

    Yang, Wei; Shen, Yueming; Wei, Jing; Liu, Fenju

    2015-09-08

    Glioma stem cells (GSCs) exhibit stem cell properties and high resistance to radiotherapy. The main aim of our study was to determine the roles of ROS in radioresistance and stemness of GSCs. We found that microRNA (miR)-153 was down-regulated and its target gene nuclear factor-erythroid 2-related factor-2 (Nrf-2) was up-regulated in GSCs compared with that of non-GSCs glioma cells. The enhanced Nrf-2 expression increased glutathione peroxidase 1 (GPx1) transcription and decreased ROS level leading to radioresistance of GSCs. MiR-153 overexpression resulted in increased ROS production and radiosensitization of GSCs. Moreover, miR-153 overexpression led to decreased neurosphere formation capacity and stem cell marker expression, and induced differentiation through ROS-mediated activation of p38 MAPK in GSCs. Nrf-2 overexpression rescued the decreased stemness and radioresistance resulting from miR-153 overexpression in GSCs. In addition, miR-153 overexpression reduced tumorigenic capacity of GSCs and increased survival in mice bearing human GSCs. These findings demonstrated that miR-153 overexpression decreased radioresistance and stemness of GSCs through targeting Nrf-2/GPx1/ROS pathway.

  4. Aromatase overexpression induces malignant changes in estrogen receptor α negative MCF-10A cells.

    PubMed

    Wang, J; Gildea, J J; Yue, W

    2013-10-31

    Estrogen is a risk factor of breast cancer. Elevated expression of aromatase (estrogen synthase) in breast tissues increases local estradiol concentrations and is associated with breast cancer development, but the causal relationship between aromatase and breast cancer has not been identified. Accumulating data suggest that both estrogen receptor (ER)-dependent and -independent effects are involved in estrogen carcinogenesis. We established a model by expressing aromatase in ERα- MCF-10A human breast epithelial cells to investigate ERα-independent effects of estrogen in the process of malignant transformation. Overexpression of aromatase significantly increased anchorage-independent growth. Parental- or vector-expressing MCF-10A cells did not form colonies under the same conditions. The anchorage-independent growth of MCF-10A(arom) cells can be completely abolished by pre-treatment with the aromatase inhibitor, letrozole. Neither MCF-10A(arom) nor MCF-10A(vector) cells grown in monolayer were affected by short-term exposure to estradiol. Enhanced motility is another characteristic of cellular transformation. Motility of MCF-10A(arom) cells was increased, which could be inhibited by letrozole. Increases in stem cell population in breast cancer tissues are associated with tumor recurrence and metastasis. CD44(high)/CD24(low) is a stem cell marker. We found that CD24 mRNA levels were reduced in MCF-10A(arom) cells compared with those in parental- and vector-transfected cells. By examining individual clones of MCF-10A(arom) with various aromatase activities, we found that the CD24 mRNA levels were inversely correlated with aromatase activity. The ability of MCF-10A(arom) cells to form mammospheres in the absence of serum was increased. Our results suggest that overexpression of aromatase in MCF-10A cells causes malignant transformation. Estrogen metabolite-mediated genotoxicity and induction of a stem cell/progenitor cell population are possible mechanisms. These

  5. Stem cells in orthopaedics and fracture healing.

    PubMed

    Alwattar, Basil J; Schwarzkopf, Ran; Kirsch, Thorsten

    2011-01-01

    Stem cell application is a burgeoning field of medicine that is likely to influence the future of orthopaedic surgery. Stem cells are associated with great promise and great controversy. For the orthopaedic surgeon, stem cells may change the way that orthopaedic surgery is practiced and the overall approach of the treatment of musculoskeletal disease. Stem cells may change the field of orthopaedics from a field dominated by surgical replacements and reconstructions to a field of regeneration and prevention. This review will introduce the basic concepts of stem cells pertinent to the orthopaedic surgeon and proceed with a more in depth discussion of current developments in the study of stem cells in fracture healing.

  6. Salinomycin inhibits osteosarcoma by targeting its tumor stem cells.

    PubMed

    Tang, Qing-Lian; Zhao, Zhi-Qiang; Li, Jin-Chun; Liang, Yi; Yin, Jun-Qiang; Zou, Chang-Ye; Xie, Xian-Biao; Zeng, Yi-Xin; Shen, Jing-Nan; Kang, Tiebang; Wang, Jin

    2011-12-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents and is typically associated with a poor prognosis. Tumor stem cells (TSCs) are presumed to drive tumor initiation and tumor relapse or metastasis. Hence, the poor prognosis of osteosarcoma likely results from a failure to target the osteosarcoma stem cells. Here, we have utilized three different methods to enrich TSCs in osteosarcoma and further evaluated whether salinomycin could selectively target TSCs in osteosarcoma. Our results indicated that sarcosphere selection, chemotherapy selection and stem cell marker OCT4 or SOX2 over-expression are all effective in the enrichment of TSCs from osteosarcoma cell lines. Further investigation found that salinomycin inhibited osteosarcoma by selectively targeting its stem cells both in vitro and in vivo without severe side effects, and the Wnt/β-catenin signaling pathway may be involved in this inhibition of salinomycin. Taken together, we have identified that salinomycin is an effective inhibitor of osteosarcoma stem cells, supporting the use of salinomycin for elimination of osteosarcoma stem cells and implying a need for further clinical evaluation.

  7. PrPC from stem cells to cancer

    PubMed Central

    Martin-Lannerée, Séverine; Hirsch, Théo Z.; Hernandez-Rapp, Julia; Halliez, Sophie; Vilotte, Jean-Luc; Launay, Jean-Marie; Mouillet-Richard, Sophie

    2014-01-01

    The cellular prion protein PrPC was initially discovered as the normal counterpart of the pathological scrapie prion protein PrPSc, the main component of the infectious agent of Transmissible Spongiform Encephalopathies. While clues as to the physiological function of this ubiquitous protein were greatly anticipated from the development of knockout animals, PrP-null mice turned out to be viable and to develop without major phenotypic abnormalities. Notwithstanding, the discovery that hematopoietic stem cells from PrP-null mice have impaired long-term repopulating potential has set the stage for investigating into the role of PrPC in stem cell biology. A wealth of data have now exemplified that PrPC is expressed in distinct types of stem cells and regulates their self-renewal as well as their differentiation potential. A role for PrPC in the fate restriction of embryonic stem cells has further been proposed. Paralleling these observations, an overexpression of PrPC has been documented in various types of tumors. In line with the contribution of PrPC to stemness and to the proliferation of cancer cells, PrPC was recently found to be enriched in subpopulations of tumor-initiating cells. In the present review, we summarize the current knowledge of the role played by PrPC in stem cell biology and discuss how the subversion of its function may contribute to cancer progression. PMID:25364760

  8. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  9. Proliferative control in Drosophila stem cells.

    PubMed

    Kohlmaier, Alexander; Edgar, Bruce A

    2008-12-01

    The relationship between cell growth (cell mass increase over time) and cell division is poorly understood in animal stem cells. Recent studies in several Drosophila stem cell types have provided the tools to interrogate this relationship. In several cases (brat, mei-P26, pros, bam, lethal giant larvae, polo), mutations have been defined that trigger tumorous overproliferation of progenitor cells and reveal how unrestricted self-renewing capacity is controlled. Moreover, microRNAs have been discovered as essential regulators of stem cell division rate and identity, suggesting that stem cell self-renewal depends on protein translational control. Biosynthetic capacity has also been found to be limiting for stem cell division rates. Finally, asymmetric cell division can impose dominant differentiation signals in a stem cell's daughter, and this can inhibit the stem cell-specific proliferation signature and lock in cell cycle exit.

  10. Optimizing mesenchymal stem cell-based therapeutics.

    PubMed

    Wagner, Joseph; Kean, Thomas; Young, Randell; Dennis, James E; Caplan, Arnold I

    2009-10-01

    Mesenchymal stem cell (MSC)-based therapeutics are showing significant benefit in multiple clinical trials conducted by both academic and commercial organizations, but obstacles remain for their large-scale commercial implementation. Recent studies have attempted to optimize MSC-based therapeutics by either enhancing their potency or increasing their delivery to target tissues. Overexpression of trophic factors or in vitro exposure to potency-enhancing factors are two approaches that are demonstrating success in preclinical animal models. Delivery enhancement strategies involving tissue-specific cytokine pathways or binding sites are also showing promise. Each of these strategies has its own set of distinct advantages and disadvantages when viewed with a mindset of ultimate commercialization and clinical utility.

  11. [Cell cycle regulation in cancer stem cells].

    PubMed

    Takeishi, Shoichiro

    2015-05-01

    In addition to the properties of self-renewal and multipotency, cancer stem cells share the characteristics of their distinct cell cycle status with somatic stem cells. Cancer stem cells (CSCs) are maintained in a quiescent state with this characteristic conferring resistance to anticancer therapies that target dividing cells. Elucidation of the mechanisms of CSC quiescence might therefore be expected to provide further insight into CSC behaviors and lead to the elimination of cancer. This review summarizes several key regulators of the cell cycle in CSCs as well as attempts to define future challenges in this field, especially from the point of view of the application of our current understandings to the clinical medicine.

  12. Adult stem cell therapy: dream or reality?

    PubMed

    Moraleda, Jose M; Blanquer, Miguel; Bleda, Patricia; Iniesta, Paqui; Ruiz, Francisco; Bonilla, Sonia; Cabanes, Carmen; Tabares, Lucía; Martinez, Salvador

    2006-12-01

    Adult stem cells may be an invaluable source of plastic cells for tissue regeneration. The bone marrow contains different subpopulations of adult stem cells easily accessible for transplantation. However the therapeutic value of adult stem cell is a question of debate in the scientific community. We have investigated the potential benefits of adult hematopoietic stem cell transplantation in animal models of demyelinating and motor neuron diseases. Our results suggest that transplantation of HSC have direct and indirect neuroregenerative and neuroprotective effects.

  13. Human fetal mesenchymal stem cells.

    PubMed

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  14. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  15. Emerging molecular approaches in stem cell biology.

    PubMed

    Jaishankar, Amritha; Vrana, Kent

    2009-04-01

    Stem cells are characterized by their ability to self-renew and differentiate into multiple adult cell types. Although substantial progress has been made over the last decade in understanding stem cell biology, recent technological advances in molecular and systems biology may hold the key to unraveling the mystery behind stem cell self-renewal and plasticity. The most notable of these advances is the ability to generate induced pluripotent cells from somatic cells. In this review, we discuss our current understanding of molecular similarities and differences among various stem cell types. Moreover, we survey the current state of systems biology and forecast future needs and direction in the stem cell field.

  16. Therapeutic Efficacy of Stem Cells Transplantation in Diabetes: Role of Heme Oxygenase

    PubMed Central

    Raffaele, Marco; Li Volti, Giovanni; Barbagallo, Ignazio A.; Vanella, Luca

    2016-01-01

    The growing data obtained from in vivo studies and clinical trials demonstrated the benefit of adult stem cells transplantation in diabetes; although an important limit is represented by their survival after the transplant. To this regard, recent reports suggest that genetic manipulation of stem cells prior to transplantation can lead to enhanced survival and better engraftment. The following review proposes to stimulate interest in the role of heme oxygenase-1 over-expression on transplantation of stem cells in diabetes, focusing on the clinical potential of heme oxygenase protein and activity to restore tissue damage and/or to improve the immunomodulatory properties of transplanted stem cells. PMID:27547752

  17. The role of miR-145 in stem cell characteristics of human laryngeal squamous cell carcinoma Hep-2 cells.

    PubMed

    Karatas, Omer Faruk; Suer, Ilknur; Yuceturk, Betul; Yilmaz, Mehmet; Hajiyev, Yusif; Creighton, Chad J; Ittmann, Michael; Ozen, Mustafa

    2016-03-01

    The cancer stem-like cells (CSLCs) are tumorigenic cells promoting initiation, progression, and spread of the tumor. Accumulating evidences suggested the presence of CSLCs in distinct tumors including laryngeal squamous cell carcinoma (LSCC). MicroRNAs have been proposed as significant regulators of carcinogenesis, and several of them have been demonstrated to have direct roles in survival of CSLCs. In this study, we aimed to explore the role of miR-145, which is downregulated in LSCC, on cancer stem cell potency of laryngeal cancer cells. We initially showed the downregulation of miR-145 expression in tumor tissue samples and in CD133-enriched CSLCs. Quantitative reverse-transcription PCR (qRT-PCR) analysis of miR-145-transfected Hep-2 cells demonstrated the inhibitory role of miR-145 on stem cell markers like SOX2, OCT4, KLF4, and ABCG2. We, then, investigated the stem cell features of miR-145-overexpressing Hep-2 cells by sphere formation assay, single-cell cloning assay, and aldehyde dehydrogenase (ALDH) assay, which all demonstrated the inhibition of stem cell potency upon miR-145 overexpression. Further qRT-PCR analysis demonstrated altered expression of epithelial to mesenchymal transition markers in miR-145-overexpressing Hep-2 cells. In conclusion, we demonstrated the regulatory role of miR-145 in stem cell characteristics of Hep-2 cells. Based on these results, we propose that miR-145 might carry crucial roles in LSCC tumorigenesis, prognosis, metastasis, chemoresistance, and recurrence through regulating stem cell properties of tumor cells.

  18. Generation of stomach tissue from mouse embryonic stem cells.

    PubMed

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  19. Correlation between receptor-interacting protein 140 expression and directed differentiation of human embryonic stem cells into neural stem cells.

    PubMed

    Zhao, Zhu-Ran; Yu, Wei-Dong; Shi, Cheng; Liang, Rong; Chen, Xi; Feng, Xiao; Zhang, Xue; Mu, Qing; Shen, Huan; Guo, Jing-Zhu

    2017-01-01

    Overexpression of receptor-interacting protein 140 (RIP140) promotes neuronal differentiation of N2a cells via extracellular regulated kinase 1/2 (ERK1/2) signaling. However, involvement of RIP140 in human neural differentiation remains unclear. We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells. Moreover, RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation, and positively correlated with the neural stem cell marker Nestin during later stages. Thus, ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.

  20. Correlation between receptor-interacting protein 140 expression and directed differentiation of human embryonic stem cells into neural stem cells

    PubMed Central

    Zhao, Zhu-ran; Yu, Wei-dong; Shi, Cheng; Liang, Rong; Chen, Xi; Feng, Xiao; Zhang, Xue; Mu, Qing; Shen, Huan; Guo, Jing-zhu

    2017-01-01

    Overexpression of receptor-interacting protein 140 (RIP140) promotes neuronal differentiation of N2a cells via extracellular regulated kinase 1/2 (ERK1/2) signaling. However, involvement of RIP140 in human neural differentiation remains unclear. We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells. Moreover, RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation, and positively correlated with the neural stem cell marker Nestin during later stages. Thus, ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced. PMID:28250757

  1. Mesenchymal Stem Cells as Therapeutics

    PubMed Central

    Parekkadan, Biju; Milwid, Jack M.

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as a new therapeutic for treating a variety of immune-mediated diseases. First heralded as a regenerative therapy for skeletal tissue repair, MSCs have recently been shown to modulate endogenous tissue and immune cells. Preclinical studies of the mechanism of action suggest that the therapeutic effects afforded by MSC transplantation are short-lived and related to dynamic, paracrine interactions between MSCs and host cells. Therefore, representations of MSCs as drug-loaded particles may allow for pharmacokinetic models to predict the therapeutic activity of MSC transplants as a function of drug delivery mode. By integrating principles of MSC biology, therapy, and engineering, the field is armed to usher in the next generation of stem cell therapeutics. PMID:20415588

  2. Stem cell technology for neurodegenerative diseases.

    PubMed

    Lunn, J Simon; Sakowski, Stacey A; Hur, Junguk; Feldman, Eva L

    2011-09-01

    Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

  3. Stem Cell Transplant Patients and Fungal Infections

    MedlinePlus

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  4. Can Stem Cell 'Patch' Help Heart Failure?

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_164475.html Can Stem Cell 'Patch' Help Heart Failure? Small improvement seen over ... Scientists report another step in the use of stem cells to help treat people with debilitating heart failure. ...

  5. International Society for Stem Cell Research

    MedlinePlus

    ... Sessions Workshop on Clinical Translation Clinical Advances in Stem Cell Research Speakers & Session Topics Networking Experiences Job Match ... Industry Committee Session RUCDR Humanity in a Dish Stem Cell Engineering Junior Investigator Events Career Panel Meet the ...

  6. Ethics and Governance of Stem Cell Banks.

    PubMed

    Chalmers, Donald; Rathjen, Peter; Rathjen, Joy; Nicol, Dianne

    2017-01-01

    This chapter examines the ethical principles and governance frameworks for stem cell banks. Good governance of stem cell banks should balance facilitation of the clinical use of stem cells with the proper respect and protection of stem cell sample providers and stem cell recipients and ensure compliance with national regulatory requirements to foster public trust in the use of stem cell technology. Stem cell banks must develop with regard to the science, the needs of scientists, and the requirements of the public, which will benefit from this science. Given the international reach of this promising research and its clinical application, it is necessary for stem cell bank governance frameworks to be harmonized across jurisdictions.

  7. Becoming a Blood Stem Cell Donor

    MedlinePlus Videos and Cool Tools

    ... Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  8. Persistent competition among stem cells and their daughters in the Drosophila ovary germline niche.

    PubMed

    Rhiner, Christa; Díaz, Begoña; Portela, Marta; Poyatos, Juan F; Fernández-Ruiz, Irene; López-Gay, Jesús M; Gerlitz, Offer; Moreno, Eduardo

    2009-03-01

    Cell competition is a short-range cell-cell interaction leading to the proliferation of winner cells at the expense of losers, although either cell type shows normal growth in homotypic environments. Drosophila Myc (dMyc; Dm-FlyBase) is a potent inducer of cell competition in wing epithelia, but its role in the ovary germline stem cell niche is unknown. Here, we show that germline stem cells (GSCs) with relative lower levels of dMyc are replaced by GSCs with higher levels of dMyc. By contrast, dMyc-overexpressing GSCs outcompete wild-type stem cells without affecting total stem cell numbers. We also provide evidence for a naturally occurring cell competition border formed by high dMyc-expressing stem cells and low dMyc-expressing progeny, which may facilitate the concentration of the niche-provided self-renewal factor BMP/Dpp in metabolically active high dMyc stem cells. Genetic manipulations that impose uniform dMyc levels across the germline produce an extended Dpp signaling domain and cause uncoordinated differentiation events. We propose that dMyc-induced competition plays a dual role in regulating optimal stem cell pools and sharp differentiation boundaries, but is potentially harmful in the case of emerging dmyc duplications that facilitate niche occupancy by pre-cancerous stem cells. Moreover, competitive interactions among stem cells may be relevant for the successful application of stem cell therapies in humans.

  9. Perspectives on human stem cell research.

    PubMed

    Jung, Kyu Won

    2009-09-01

    Human stem cell research draws not only scientists' but the public's attention. Human stem cell research is considered to be able to identify the mechanism of human development and change the paradigm of medical practices. However, there are heated ethical and legal debates about human stem cell research. The core issue is that of human dignity and human life. Some prefer human adult stem cell research or iPS cell research, others hES cell research. We do not need to exclude any type of stem cell research because each has its own merits and issues, and they can facilitate the scientific revolution when working together.

  10. Iatrogenic limbal stem cell deficiency.

    PubMed Central

    Holland, E J; Schwartz, G S

    1997-01-01

    PURPOSE: To describe a group of patients with limbal stem cell (SC) deficiency without prior diagnosis of a specific disease entity known to be causative of SC deficiency. METHODS: We performed a retrospective review of the records of all patients with ocular surface disease presenting to the University of Minnesota between 1987 and 1996. Patients were categorized according to etiology of limbal deficiency. Patients who did not have a specific diagnosis previously described as being causative for limbal deficiency were analyzed. Risk factors, clinical findings and sequelae were evaluated. RESULTS: Eight eyes of six patients with stem cell deficiency not secondary to a known diagnosis were described. All eyes had prior ocular surgery involving the corneoscleral limbus. Six eyes had been on chronic topical medications and all eyes had concurrent external disease such as pterygium, keratoconjunctivitis sicca, rosacea or herpes simplex virus keratitis. All eyes had superior quadrants affected corresponding to areas of prior limbal surgery. Sequelae of disease included corneal scarring and neo-vascularization, and five eyes had with visual acuity of 20/200 or worse. CONCLUSIONS: Because the epitheliopathy started peripherally and extended centrally in all patients, we feel it represents a stem cell deficiency. The fact that all patients were affected superiorly, at sites of a prior limbal surgical incision, points to surgical trauma to the SC as the likely major etiologic factor for the deficiency. The surgical trauma to the limbal SC probably made these cells more susceptible to damage from other external disease influences and toxicity from chronic topical medications. Because the stem cell deficiency is secondary to prior ocular surgery and chronic topical medications, we propose the term "iatrogenic limbal stem cell deficiency". Images FIGURE 1 FIGURE 2A FIGURE 2B FIGURE 3A FIGURE 3B PMID:9440165

  11. Learn About Stem Cells

    MedlinePlus

    ... to survive, including the umbilical cord and the placenta that nourishes the developing fetus. Basic cell biology ... types but cannot generate support structures like the placenta and umbilical cord. Other cells are multipotent, meaning ...

  12. Modeling Stem Cell Induction Processes

    PubMed Central

    Grácio, Filipe; Cabral, Joaquim; Tidor, Bruce

    2013-01-01

    Technology for converting human cells to pluripotent stem cell using induction processes has the potential to revolutionize regenerative medicine. However, the production of these so called iPS cells is still quite inefficient and may be dominated by stochastic effects. In this work we build mass-action models of the core regulatory elements controlling stem cell induction and maintenance. The models include not only the network of transcription factors NANOG, OCT4, SOX2, but also important epigenetic regulatory features of DNA methylation and histone modification. We show that the network topology reported in the literature is consistent with the observed experimental behavior of bistability and inducibility. Based on simulations of stem cell generation protocols, and in particular focusing on changes in epigenetic cellular states, we show that cooperative and independent reaction mechanisms have experimentally identifiable differences in the dynamics of reprogramming, and we analyze such differences and their biological basis. It had been argued that stochastic and elite models of stem cell generation represent distinct fundamental mechanisms. Work presented here suggests an alternative possibility that they represent differences in the amount of information we have about the distribution of cellular states before and during reprogramming protocols. We show further that unpredictability and variation in reprogramming decreases as the cell progresses along the induction process, and that identifiable groups of cells with elite-seeming behavior can come about by a stochastic process. Finally we show how different mechanisms and kinetic properties impact the prospects of improving the efficiency of iPS cell generation protocols. PMID:23667423

  13. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  14. Stem cells in kidney diseases.

    PubMed

    Soler, María José; José Tomas, Ortiz-Pérez

    2012-01-01

    Circulating bone marrow-derived endothelial progenitor cells (EPCs) seem to play a crucial role in both vasculogenesis and vascular homeostasis. Chronic kidney disease is a state of endothelial dysfunction, accelerated progression of atherosclerosis and high cardiovascular risk. As a consequence, cardiovascular disorders are the main cause of death in end-stage renal disease (ESRD). It has been shown that patients with advanced renal failure have decreased number of bone marrow-derived endothelial progenitor cells and impaired EPCs function. Moreover, in kidney transplant patients, renal graft function significantly correlated with EPC number. The reduced number of EPCs in patients with ESRD has been ascribed to the uremia. Therefore, therapies that improve the uremic status in dialysis patients such as nocturnal hemodialysis are associated with restoration of impaired EPCs number and migratory function. In fact, some of the common treatments for patients with chronic kidney disease such as erythropoietin, statins and angiotensin II receptor antagonist increase the number of EPCs. Nowadays, there is growing evidence indicating that, under pathophysiological conditions, stem cells (SCs) derived from bone marrow are able to migrate in the injured kidney, and they seem to play a role in glomerular and tubular regeneration. After acute tubular renal injury, surviving tubular epithelial cells and putative renal stem cells proliferate and differentiate into tubular epithelial cells to promote structural and functional repair. Moreover, bone marrow stem cells, including hematopoietic stem cells and mesenchymal stem cells can also participate in the repair process by proliferation and differentiation into renal lineages. For instance, mesenchymal SCs have been shown to decrease inflammation and enhance renal regeneration. The administration of ex vivo expanded bone marrow-derived mesenchymal SCs have been proved to be beneficial in various experimental models of acute

  15. Salivary Gland Cancer Stem Cells

    PubMed Central

    Adams, April; Warner, Kristy; Nör, Jacques E.

    2013-01-01

    Emerging evidence suggests the existence of a tumorigenic population of cancer cells that demonstrate stem cell-like properties such as self-renewal and multipotency. These cells, termed cancer stem cells (CSC), are able to both initiate and maintain tumor formation and progression. Studies have shown that CSC are resistant to traditional chemotherapy treatments preventing complete eradication of the tumor cell population. Following treatment, CSC are able to re-initiate tumor growth leading to patient relapse. Salivary gland cancers are relatively rare but constitute a highly significant public health issue due to the lack of effective treatments. In particular, patients with mucoepidermoid carcinoma or adenoid cystic carcinoma, the two most common salivary malignancies, have low long-term survival rates due to the lack of response to current therapies. Considering the role of CSC in resistance to therapy in other tumor types, it is possible that this unique sub-population of cells is involved in resistance of salivary gland tumors to treatment. Characterization of CSC can lead to better understanding of the pathobiology of salivary gland malignancies as well as to the development of more effective therapies. Here, we make a brief overview of the state-of-the-science in salivary gland cancer, and discuss possible implications of the cancer stem cell hypothesis to the treatment of salivary gland malignancies. PMID:23810400

  16. An introduction to stem cell biology.

    PubMed

    Hemmat, Shirin; Lieberman, David M; Most, Sam P

    2010-10-01

    The field of stem cell biology has undergone tremendous expansion over the past two decades. Scientific investigation has continued to expand our understanding of these complex cells at a rapidly increasing rate. This understanding has produced a vast array of potential clinical applications. This article will serve as an overview of the current state of stem cell research as it applies to scientific and medical applications. Included in the discussion is a review of the many different types of stem cells, including but not limited to adult, embryonic, and perinatal stem cells. Also, this article describes somatic cell nuclear transfer, an exciting technology that allows the production of totipotent stem cells from fully differentiated cells, thereby eliminating the use of embryonic sources. This discussion should serve as a review of the field of stem cell biology and provide a foundation for the reader to better understand the interface of stem cell technology and facial plastic and reconstructive surgery.

  17. Stem/Progenitor cells in vascular regeneration.

    PubMed

    Zhang, Li; Xu, Qingbo

    2014-06-01

    A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.

  18. Epidermal stem cells and their epigenetic regulation.

    PubMed

    Shen, Qi; Jin, Hongchuan; Wang, Xian

    2013-08-30

    Stem cells play an essential role in embryonic development, cell differentiation and tissue regeneration. Tissue homeostasis in adults is maintained by adult stem cells resident in the niches of different tissues. As one kind of adult stem cell, epidermal stem cells have the potential to generate diversified types of progeny cells in the skin. Although its biology is still largely unclarified, epidermal stem cells are widely used in stem cell research and regenerative medicine given its easy accessibility and pluripotency. Despite the same genome, cells within an organism have different fates due to the epigenetic regulation of gene expression. In this review, we will briefly discuss the current understanding of epigenetic modulation in epidermal stem cells.

  19. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    ERIC Educational Resources Information Center

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  20. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    ERIC Educational Resources Information Center

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  1. Stem cells and colorectal carcinogenesis

    PubMed Central

    Stoian, M; Stoica, V; Radulian, G

    2016-01-01

    Abstract Colorectal cancer represents an important cause of mortality and morbidity. Unfortunately, the physiopathology is still under study. There are theories about carcinogenesis and it is known that not only a single factor is responsible for the development of a tumor, but several conditions. Stem cells are a promising target for the treatment of colorectal cancer, along with the environment that has an important role. It has been postulated that mutations within the adult colonic stem cells may induce neoplastic changes. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumor and therefore they are responsible for recurrence. It is important to know that a new way of treatment needs to be found, since these cells are resistant to chemotherapy and radiotherapy. PMID:27713769

  2. [Cell transplant and regenerative stem cell therapy].

    PubMed

    Prosper, F

    2008-01-01

    The derivation of the first human embryonic stem cell lines as well as the notion of the unexpected plasticity and potential of the adult stem cells has significantly impacted the biomedical research. Many of the tissues long believe to lack any regenerative capacity has demonstrated otherwise. Patients alike physicians expectations for treatment of incurable diseases have also fuelled this field and in occasions have led to unrealistic expectations. In the next pages I review some of the tissue specific stem cells that have been used either in preclinical models or even in clinical research. Despite the effort of numerous investigators, more questions that answers remain in the field of cell therapy and only careful and independent -not biased- research will allow us to translate some of this findings into clinical application.

  3. Setting FIRES to Stem Cell Research

    ERIC Educational Resources Information Center

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  4. Blood-Forming Stem Cell Transplants

    MedlinePlus

    ... Health Professionals Questions to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment ... are the donor’s stem cells matched to the patient’s stem cells in allogeneic ...

  5. Setting FIRES to Stem Cell Research

    ERIC Educational Resources Information Center

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  6. Retinal stem cells and potential cell transplantation treatments.

    PubMed

    Lin, Tai-Chi; Hsu, Chih-Chien; Chien, Ke-Hung; Hung, Kuo-Hsuan; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-11-01

    The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone) and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells). The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  7. ADULT STEM CELLS AND THEIR NICHES

    PubMed Central

    Ferraro, Francesca; Celso, Cristina Lo; Scadden, David

    2014-01-01

    Stem cells participate in dynamic physiologic systems that dictate the outcome of developmental events and organismal stress, Since these cells are fundamental to tissue maintenance and repair, the signals they receive play a critical role in the integrity of the organism. Much work has focused on stem cell identification and the molecular pathways involved in their regulation. Yet, we understand little about how these pathways achieve physiologically responsive stem cell functions. This chapter will review the state of our understanding of stem cells in the context of their microenvironment regarding the relation between stem cell niche dysfunction, carcinogenesis and aging. PMID:21222205

  8. Somatic stem cell biology and periodontal regeneration.

    PubMed

    Zhu, Bin; Liu, Yihan; Li, Dehua; Jin, Yan

    2013-01-01

    Somatic stem cells have been acknowledged for their ability to differentiate into multiple cell types and their capacity for self-renewal. Some mesenchymal stem cells play a dominant role in the repair and reconstruction of periodontal tissues. Both dental-derived and some non-dental-derived mesenchymal stem cells possess the capacity for periodontal regeneration under certain conditions with induced differentiation, proliferation, cellular secretion, and their interactions. Stem cell-based tissue engineering technology promises to bring improvements to periodontal regeneration, biologic tooth repair, and bioengineered implants. The present review discusses the roles and values of various somatic stem cells in periodontal regeneration.

  9. Cancer Stem Cells in Lung Tumorigenesis

    PubMed Central

    Kratz, Johannes R.; Yagui-Beltrán, Adam; Jablons, David M.

    2011-01-01

    Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continued research in the field of lung cancer stem cell biology is vital, as ongoing efforts promise to yield new prognostic and therapeutic targets. PMID:20493987

  10. Notch signaling in cancer stem cells.

    PubMed

    Wang, Jialiang; Sullenger, Bruce A; Rich, Jeremy N

    2012-01-01

    Subpopulations of cancer cells with stem cell-like characteristics, termed cancer stem cells, have been identified in a wide range of human cancers. Cancer stem cells are defined by their ability to self-renew as well as recapitulate the original heterogeneity of cancer cells in culture and in serial xenotransplants. Not only are cancer stem cells highly tumorigenic, but these cells are implicated in tumor resistance to conventional chemotherapy and radiotherapy, thus highlighting their significance as therapeutic targets. Considerable similarities have been found between cancer stem cells and normal stem cells on their dependence on certain signaling pathways. More specifically, the core stem cell signaling pathways, such as the Wnt, Notch and Hedgehog pathways, also critically regulate the self-renewal and survival of cancer stem cells. While the oncogenic functions of Notch pathway have been well documented, its role in cancer stem cells is just emerging. In this chapter, we will discuss recent advances in cancer stem cell research and highlight the therapeutic potential of targeting Notch in cancer stem cells.

  11. Methods for Stem Cell Production and Therapy

    NASA Technical Reports Server (NTRS)

    Claudio, Pier Paolo (Inventor); Valluri, Jagan V. (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  12. 28. Embryonic and adult stem cell therapy.

    PubMed

    Henningson, Carl T; Stanislaus, Marisha A; Gewirtz, Alan M

    2003-02-01

    Stem cells are characterized by the ability to remain undifferentiated and to self-renew. Embryonic stem cells derived from blastocysts are pluripotent (able to differentiate into many cell types). Adult stem cells, which were traditionally thought to be monopotent multipotent, or tissue restricted, have recently also been shown to have pluripotent properties. Adult bone marrow stem cells have been shown to be capable of differentiating into skeletal muscle, brain microglia and astroglia, and hepatocytes. Stem cell lines derived from both embryonic stem and embryonic germ cells (from the embryonic gonadal ridge) are pluripotent and capable of self-renewal for long periods. Therefore embryonic stem and germ cells have been widely investigated for their potential to cure diseases by repairing or replacing damaged cells and tissues. Studies in animal models have shown that transplantation of fetal, embryonic stem, or embryonic germ cells may be able to treat some chronic diseases. In this review, we highlight recent developments in the use of stem cells as therapeutic agents for three such diseases: Diabetes, Parkinson disease, and congestive heart failure. We also discuss the potential use of stem cells as gene therapy delivery cells and the scientific and ethical issues that arise with the use of human stem cells.

  13. Dental pulp stem cells in regenerative dentistry.

    PubMed

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  14. Dormancy in the stem cell niche.

    PubMed

    Sottocornola, Roberta; Lo Celso, Cristina

    2012-03-19

    Tissues characterized by constant turnover contain post-mitotic, terminally differentiated cells originating from highly proliferative progenitors, which in turn derive from a relatively small population of stem cells. At the population level, self-renewal and differentiation are the possible outcomes of stem cell proliferation; overall, however, stem cells are quiescent if compared with their direct progeny. The recent discovery of a particularly quiescent, or dormant, subpopulation of hematopoietic stem cells (HSCs) raises a number of fundamental questions. As stem cell fate is influenced by the signals integrated by the stem cell niche, will dormant HSCs reside in specific dormant niches? Is the mechanism of dormancy common to multiple regenerating tissues or specific to the hematopoietic system? If cancer is maintained by a few cancer stem cells, do they also contain a subpopulation of dormant cells, and could this be exploited for therapeutic purposes?

  15. Dormancy in the stem cell niche

    PubMed Central

    2012-01-01

    Tissues characterized by constant turnover contain post-mitotic, terminally differentiated cells originating from highly proliferative progenitors, which in turn derive from a relatively small population of stem cells. At the population level, self-renewal and differentiation are the possible outcomes of stem cell proliferation; overall, however, stem cells are quiescent if compared with their direct progeny. The recent discovery of a particularly quiescent, or dormant, subpopulation of hematopoietic stem cells (HSCs) raises a number of fundamental questions. As stem cell fate is influenced by the signals integrated by the stem cell niche, will dormant HSCs reside in specific dormant niches? Is the mechanism of dormancy common to multiple regenerating tissues or specific to the hematopoietic system? If cancer is maintained by a few cancer stem cells, do they also contain a subpopulation of dormant cells, and could this be exploited for therapeutic purposes? PMID:22429750

  16. Nuclear Mechanics and Stem Cell Differentiation.

    PubMed

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  17. BONE MARROW MESENCHYMAL STEM CELLS ARE PROGENITORS IN VITRO FOR INNER EAR HAIR CELLS

    PubMed Central

    Jeon, Sang-Jun; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2011-01-01

    Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating differentiation to inner ear sensory cells. Some of the cells displayed F-actin positive protrusions in the morphology characteristic of hair cell stereociliary bundles. Hair cell markers were also induced by culture of mouse MSC-derived cells in contact with embryonic chick inner ear cells, and this induction was not due to a cell fusion event, because the chick hair cells could be identified with a chick-specific antibody and chick and mouse antigens were never found in the same cell. PMID:17113786

  18. Stem cells: science, policy, and ethics

    PubMed Central

    Fischbach, Gerald D.; Fischbach, Ruth L.

    2004-01-01

    Human embryonic stem cells offer the promise of a new regenerative medicine in which damaged adult cells can be replaced with new cells. Research is needed to determine the most viable stem cell lines and reliable ways to promote the differentiation of pluripotent stem cells into specific cell types (neurons, muscle cells, etc.). To create new cell lines, it is necessary to destroy preimplantation blastocysts. This has led to an intense debate that threatens to limit embryonic stem cell research. The profound ethical issues raised call for informed, dispassionate debate. PMID:15545983

  19. Stem cells: science, policy, and ethics.

    PubMed

    Fischbach, Gerald D; Fischbach, Ruth L

    2004-11-01

    Human embryonic stem cells offer the promise of a new regenerative medicine in which damaged adult cells can be replaced with new cells. Research is needed to determine the most viable stem cell lines and reliable ways to promote the differentiation of pluripotent stem cells into specific cell types (neurons, muscle cells, etc). To create new cell lines, it is necessary to destroy preimplantation blastocysts. This has led to an intense debate that threatens to limit embryonic stem cell research. The profound ethical issues raised call for informed, dispassionate debate.

  20. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  1. Stem Cells in Prostate

    DTIC Science & Technology

    2005-03-01

    disease upon aging, specifically prostate cancer and benign prostatic hyperplasia . In order to study the cell differentiation lineage associated with...specifically prostate cancer and benign prostatic hyperplasia . In order to study the cell differentiation lineage associated with normal and diseased prostate

  2. A quantitative and dynamic model for plant stem cell regulation.

    PubMed

    Geier, Florian; Lohmann, Jan U; Gerstung, Moritz; Maier, Annette T; Timmer, Jens; Fleck, Christian

    2008-01-01

    Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.

  3. Cell cycle regulation in hematopoietic stem cells.

    PubMed

    Pietras, Eric M; Warr, Matthew R; Passegué, Emmanuelle

    2011-11-28

    Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.

  4. The overexpression of SOX2 affects the migration of human teratocarcinoma cell line NT2/D1.

    PubMed

    Drakulic, Danijela; Vicentic, Jelena Marjanovic; Schwirtlich, Marija; Tosic, Jelena; Krstic, Aleksandar; Klajn, Andrijana; Stevanovic, Milena

    2015-03-01

    The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.

  5. Polymer microarray technology for stem cell engineering.

    PubMed

    Coyle, Robert; Jia, Jia; Mei, Ying

    2016-04-01

    Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Can Nanomedicines Kill Cancer Stem Cells?

    PubMed Central

    Zhao, Yi; Alakhova, Daria Y.; Kabanov, Alexander V.

    2014-01-01

    Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs. PMID:24120657

  7. Endometrial stem cells in regenerative medicine.

    PubMed

    Verdi, Javad; Tan, Aaron; Shoae-Hassani, Alireza; Seifalian, Alexander M

    2014-01-01

    First described in 2004, endometrial stem cells (EnSCs) are adult stem cells isolated from the endometrial tissue. EnSCs comprise of a population of epithelial stem cells, mesenchymal stem cells, and side population stem cells. When secreted in the menstrual blood, they are termed menstrual stem cells or endometrial regenerative cells. Mounting evidence suggests that EnSCs can be utilized in regenerative medicine. EnSCs can be used as immuno-modulatory agents to attenuate inflammation, are implicated in angiogenesis and vascularization during tissue regeneration, and can also be reprogrammed into induced pluripotent stem cells. Furthermore, EnSCs can be used in tissue engineering applications and there are several clinical trials currently in place to ascertain the therapeutic potential of EnSCs. This review highlights the progress made in EnSC research, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo.

  8. Endometrial stem cells in regenerative medicine

    PubMed Central

    2014-01-01

    First described in 2004, endometrial stem cells (EnSCs) are adult stem cells isolated from the endometrial tissue. EnSCs comprise of a population of epithelial stem cells, mesenchymal stem cells, and side population stem cells. When secreted in the menstrual blood, they are termed menstrual stem cells or endometrial regenerative cells. Mounting evidence suggests that EnSCs can be utilized in regenerative medicine. EnSCs can be used as immuno-modulatory agents to attenuate inflammation, are implicated in angiogenesis and vascularization during tissue regeneration, and can also be reprogrammed into induced pluripotent stem cells. Furthermore, EnSCs can be used in tissue engineering applications and there are several clinical trials currently in place to ascertain the therapeutic potential of EnSCs. This review highlights the progress made in EnSC research, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo. PMID:25097665

  9. Stem cell strategies, future and beyond.

    PubMed

    Sugaya, Kiminobu

    2003-01-01

    The use of stem cells for neuroreplacement therapy is no longer science fiction--it is science fact. We have succeeded in the development of neural and mesenchymal stem cell transplantation to produce neural cells in the brain. We have seen the improvement of cognitive function in a memory-impaired aged animal model following stem cell transplantation. These results may promise a bright future for stem cell strategies. Before we begin to think about clinical applications beyond the present preclinical studies or even consider the pathophysiological environments of individual diseases, we must address and weigh the factors that may affect stem cell biology. Here, we not only show the potential for therapeutic applications for stem cell strategies in neuropathological conditions, but we also discuss the effects on the biology of stem cells of those factors that are altered under disease conditions.

  10. Stem cells: are we ready for therapy?

    PubMed

    Schroeder, Insa S

    2014-01-01

    Cell therapy as a replacement for diseased or destroyed endogenous cells is a major component of regenerative medicine. Various types of stem cells are or will be used in clinical settings as autologous or allogeneic products. In this chapter, the progress that has been made to translate basic stem cell research into pharmaceutical manufacturing processes will be reviewed. Even if in public perception, embryonic stem (ES) cells and more recently induced pluripotent stem (iPS) cells dominate the field of regenerative medicine and will be discussed in great detail, it is the adult stem cells that are used for decades as therapeutics. Hence, these cells will be compared to ES and iPS cells. Finally, special emphasis will be placed on the scientific, technical, and economic challenges of developing stem cell-based in vitro model systems and cell therapies that can be commercialized.

  11. History and perspective of stem cell research.

    PubMed

    Bongso, Ariff; Richards, Mark

    2004-12-01

    Several types of stem cell have been discovered from germ cells, the embryo, fetus and adult. Each of these has promised to revolutionize the future of regenerative medicine through the provision of cell-replacement therapies to treat a variety of debilitating diseases. Stem cell research is politically charged, receives considerable media coverage, raises many ethical and religious debates and generates a great deal of public interest. The tremendous versatility of embryonic stem cells versus the unprecedented reports describing adult stem cell plasticity have ignited debates as to the choice of one cell type over another for future application. However, the biology of these mysterious cells have yet to be understood and a lot more basic research is needed before new therapies using stem-cell-differentiated derivatives can be applied. Stem cell research opens-up the new field of 'cell-based therapies' and, as such, several safety measures have also to be evaluated.

  12. Challenges for heart disease stem cell therapy

    PubMed Central

    Hoover-Plow, Jane; Gong, Yanqing

    2012-01-01

    Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI) is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1) improved identification, recruitment, and expansion of autologous stem cells; (2) identification of mobilizing and homing agents that increase recruitment; and (3) development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress. PMID:22399855

  13. Stem cells in the Drosophila digestive system.

    PubMed

    Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X

    2013-01-01

    Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.

  14. Embryonic stem cell patents and human dignity.

    PubMed

    Resnik, David B

    2007-09-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells.

  15. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  16. Stem cell maintenance in a different niche

    PubMed Central

    Ahn, Ji Yeon; Lee, Seung Tae

    2013-01-01

    To overcome the difficulty of controlling stem cell fate and function in applications to regenerative medicine, a number of alternative approaches have been made. Recent reports demonstrate that a non-cellular niche modulating the biophysical microenvironment with chemical factors can support stem cell self-renewal. In our previous studies, early establishment was executed to optimize biophysical factors and it was subsequently found that the microgeometry of the extracellular matrix made huge differences in stem cell behavior and phenotype. We review here a three-dimensional, non-cellular niche designed to support stem cell self-renewal. The characteristics of stem cells under the designed system are further discussed. PMID:23875159

  17. Hypoxia-Regulated Delta-like 1 Homologue Enhances Cancer Cell Stemness and Tumorigenicity

    PubMed Central

    Kim, Yuri; Lin, Qun; Zelterman, Daniel; Yun, Zhong

    2010-01-01

    Reduced oxygenation, or hypoxia, inhibits differentiation and facilitates stem cell maintenance. Hypoxia commonly occurs in solid tumors and promotes malignant progression. Hypoxic tumors are aggressive and exhibit stem cell–like characteristics. It remains unclear, however, whether and how hypoxia regulates cancer cell differentiation and maintains cancer cell stemness. Here, we show that hypoxia increases the expression of the stem cell gene DLK1, or delta-like 1 homologue (Drosophila), in neuronal tumor cells. Inhibition of DLK1 enhances spontaneous differentiation, decreases clonogenicity, and reduces in vivo tumor growth. Overexpression of DLK1 inhibits differentiation and enhances tumorigenic potentials. We further show that the DLK1 cytoplasmic domain, especially Tyrosine339 and Serine355, is required for maintaining both clonogenicity and tumorigenicity. Because elevated DLK1 expression is found in many tumor types, our observations suggest that hypoxia and DLK1 may constitute an important stem cell pathway for the regulation of cancer stem cell–like functionality and tumorigenicity. PMID:19934310

  18. Yap controls stem/progenitor cell proliferation in the mouse postnatal epidermis.

    PubMed

    Beverdam, Annemiek; Claxton, Christina; Zhang, Xiaomeng; James, Gregory; Harvey, Kieran F; Key, Brian

    2013-06-01

    Tissue renewal is an ongoing process in the epithelium of the skin. We have begun to examine the genetic mechanisms that control stem/progenitor cell activation in the postnatal epidermis. The conserved Hippo pathway regulates stem cell turnover in arthropods through to vertebrates. Here we show that its downstream effector, yes-associated protein (YAP), is active in the stem/progenitor cells of the postnatal epidermis. Overexpression of a C-terminally truncated YAP mutant in the basal epidermis of transgenic mice caused marked expansion of epidermal stem/progenitor cell populations. Our data suggest that the C-terminus of YAP controls the balance between stem/progenitor cell proliferation and differentiation in the postnatal interfollicular epidermis. We conclude that YAP functions as a molecular switch of stem/progenitor cell activation in the epidermis. Moreover, our results highlight YAP as a possible therapeutic target for diseases such as skin cancer, psoriasis, and epidermolysis bullosa.

  19. Mesenchymal stem cell exosomes.

    PubMed

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Lim, Sai Kiang

    2015-04-01

    MSCs are an extensively used cell type in clinical trials today. The initial rationale for their clinical testing was based on their differentiation potential. However, the lack of correlation between functional improvement and cell engraftment or differentiation at the site of injury has led to the proposal that MSCs exert their effects not through their differentiation potential but through their secreted product, more specifically, exosomes, a type of extracellular vesicle. We propose here that MSC exosomes function as an extension of MSC's biological role as tissue stromal support cells. Like their cell source, MSC exosomes help maintain tissue homeostasis for optimal tissue function. They target housekeeping biological processes that operate ubiquitously in all tissues and are critical in maintaining tissue homeostasis, enabling cells to recover critical cellular functions and begin repair and regeneration. This hypothesis provides a rationale for the therapeutic efficacy of MSCs and their secreted exosomes in a wide spectrum of diseases. Here, we give a brief introduction of the biogenesis of MSC exosomes, review their physiological functions and highlight some of their biochemical potential to illustrate how MSC exosomes could restore tissue homeostasis leading to tissue recovery and repair.

  20. Klotho, stem cells, and aging

    PubMed Central

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders. PMID:26346243

  1. Klotho, stem cells, and aging.

    PubMed

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.

  2. Sustained telomere erosion due to increased stem cell turnover during triple autologous hematopoietic stem cell transplantation.

    PubMed

    Widmann, Thomas; Kneer, Harald; König, Jochem; Herrmann, Markus; Pfreundschuh, Michael

    2008-01-01

    Telomeres cap chromosomal ends and are shortened throughout a lifetime. Additional telomere erosion has been documented during conventional chemotherapy or hematopoietic stem cell transplantation. Previous studies of stem cell transplantation reported variable amounts of telomere shortening with inconsistent results regarding the persistence of telomere shortening. Here we have prospectively studied telomere length and proliferation kinetics of hematopoietic cells in aggressive non-Hodgkin lymphoma patients who underwent a four-course high-dose chemotherapy protocol combined with triple autologous stem cell transplantation. We observed sustained telomere shortening in hematopoietic cells after triple stem cell transplantation with prolonged stem cell replication during the first year after stem cell transplantation.

  3. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body.

  4. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    PubMed

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  5. Clinical trials for stem cell therapies

    PubMed Central

    2011-01-01

    In recent years, clinical trials with stem cells have taken the emerging field in many new directions. While numerous teams continue to refine and expand the role of bone marrow and cord blood stem cells for their vanguard uses in blood and immune disorders, many others are looking to expand the uses of the various types of stem cells found in bone marrow and cord blood, in particular mesenchymal stem cells, to uses beyond those that could be corrected by replacing cells in their own lineage. Early results from these trials have produced mixed results often showing minor or transitory improvements that may be attributed to extracellular factors. More research teams are accelerating the use of other types of adult stem cells, in particular neural stem cells for diseases where beneficial outcome could result from either in-lineage cell replacement or extracellular factors. At the same time, the first three trials using cells derived from pluripotent cells have begun. PMID:21569277

  6. [Stem cells and tissue engineering techniques].

    PubMed

    Sica, Gigliola

    2013-01-01

    The therapeutic use of stem cells and tissue engineering techniques are emerging in urology. Here, stem cell types, their differentiating potential and fundamental characteristics are illustrated. The cancer stem cell hypothesis is reported with reference to the role played by stem cells in the origin, development and progression of neoplastic lesions. In addition, recent reports of results obtained with stem cells alone or seeded in scaffolds to overcome problems of damaged urinary tract tissue are summarized. Among others, the application of these biotechnologies in urinary bladder, and urethra are delineated. Nevertheless, apart from the ethical concerns raised from the use of embryonic stem cells, a lot of questions need to be solved concerning the biology of stem cells before their widespread use in clinical trials. Further investigation is also required in tissue engineering utilizing animal models.

  7. Stem cells news update: a personal perspective.

    PubMed

    Wong, Sc

    2013-12-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy.

  8. Stem Cells News Update: A Personal Perspective

    PubMed Central

    Wong, SC

    2013-01-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy. PMID:24778557

  9. IGFBP2 promotes glioma tumor stem cell expansion and survival

    SciTech Connect

    Hsieh, David; Hsieh, Antony; Stea, Baldassarre; Ellsworth, Ron

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.

  10. Wnt-11 overexpression promoting the invasion of cervical cancer cells.

    PubMed

    Wei, Heng; Wang, Ning; Zhang, Yao; Wang, Shizhuo; Pang, Xiaoao; Zhang, Shulan

    2016-09-01

    Wnt-11 is a positive regulator of the Wnt signaling pathway, which plays a crucial role in carcinogenesis. However, Wnt-11 expression in cervical cancer has not been well investigated. The aim of this study was to investigate the role of Wnt-11 in cervical tumor proliferation and invasion. This study examined 24 normal cervical squamous epithelia, 29 cervical intraepithelial neoplasia (CIN), and 78 cervical cancer samples. The expression of Wnt-11 was investigated by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction analysis. The expression of the high-risk human papilloma virus (HR-HPV) E6 oncoprotein was also investigated by immunohistochemistry. In addition, the expression of Wnt-11, HR-HPV E6, JNK-1, phosphorylated JNK-1(P-JNK1), and β-catenin was examined by western blot analysis following Wnt-11 knockdown or overexpression in HeLa or SiHa cells, respectively. The promotion of cervical cancer cell proliferation and invasion was investigated using the cell counting kit-8 and Matrigel invasion assay, respectively. Wnt-11 and HR-HPV E6 expression increased in a manner that corresponded with the progression of cervical cancer and was significantly correlated with the International Federation of Gynecology and Obstetrics cancer stage, lymph node metastasis, tumor size, and HPV infection. Wnt-11 protein expression was positively associated with HR-HPV E6 protein expression in all 78 cervical cancer samples (P < 0.001). Furthermore, Wnt-11 was positively associated with P-JNK1 expression and promoted cervical cancer cell proliferation and invasion. These observations suggest that the increased Wnt-11 expression observed in cervical cancer cells may lead to the phosphorylation and activation of JNK-1 and significantly promote tumor cell proliferation and cell migration/invasion through activation of the Wnt/JNK pathway. Consequently, Wnt-11 may serve as a novel target for cervical cancer therapy.

  11. Cholesteatoma Fibroblasts Promote Epithelial Cell Proliferation through Overexpression of Epiregulin

    PubMed Central

    Yoshikawa, Mamoru; Kojima, Hiromi; Yaguchi, Yuichiro; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2013-01-01

    To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b). To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial–mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma. PMID:23826119

  12. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    PubMed Central

    2011-01-01

    Background Cancer stem cells (CSCs) are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44). Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans) -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs. PMID:21669008

  13. Stem Cells, Science, and Public Reasoning

    ERIC Educational Resources Information Center

    Hurlbut, J. Benjamin; Robert, Jason Scott

    2012-01-01

    These are interesting days in the scientific, social, and political debates about human embryonic stem cell research. Pluripotent stem cells--cells that can, in principle, give rise to the body's full range of cell types--were previously derivable only from human embryos that were destroyed in the process. Now, a variety of somatic cell types can…

  14. Stem Cells, Science, and Public Reasoning

    ERIC Educational Resources Information Center

    Hurlbut, J. Benjamin; Robert, Jason Scott

    2012-01-01

    These are interesting days in the scientific, social, and political debates about human embryonic stem cell research. Pluripotent stem cells--cells that can, in principle, give rise to the body's full range of cell types--were previously derivable only from human embryos that were destroyed in the process. Now, a variety of somatic cell types can…

  15. Stem cells, mitochondria and aging.

    PubMed

    Ahlqvist, Kati J; Suomalainen, Anu; Hämäläinen, Riikka H

    2015-11-01

    Decline in metabolism and regenerative potential of tissues are common characteristics of aging. Regeneration is maintained by somatic stem cells (SSCs), which require tightly controlled energy metabolism and genomic integrity for their homeostasis. Recent data indicate that mitochondrial dysfunction may compromise this homeostasis, and thereby contribute to tissue degeneration and aging. Progeroid Mutator mouse, accumulating random mtDNA point mutations in their SSCs, showed disturbed SSC homeostasis, emphasizing the importance of mtDNA integrity for stem cells. The mechanism involved changes in cellular redox-environment, including subtle increase in reactive oxygen species (H₂O₂and superoxide anion), which did not cause oxidative damage, but disrupted SSC function. Mitochondrial metabolism appears therefore to be an important regulator of SSC fate determination, and defects in it in SSCs may underlie premature aging. Here we review the current knowledge of mitochondrial contribution to SSC dysfunction and aging. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.

  16. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  17. Effects of nanotopography on stem cell phenotypes

    PubMed Central

    Ravichandran, Rajeswari; Liao, Susan; Ng, Clarisse CH; Chan, Casey K; Raghunath, Michael; Ramakrishna, Seeram

    2009-01-01

    Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes. PMID:21607108

  18. Cancer stem cells and metastasis.

    PubMed

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  19. Stem cell directed gene therapy.

    PubMed

    Engel, B C; Kohn, D B

    1999-05-01

    A potential therapeutic approach to HIV-1 infection is the genetic modification of cells of a patient to make them resistant to HIV-1. Hematopoietic stem cells are an attractive target for gene therapy of AIDS because of their ability to generate a broad repertoire of mature T lymphocytes, as well as the monocytic cells (macrophages, dendritic cells and microglia) which are also involved in HIV-1 pathogenesis. A number of synthetic "anti-HIV-1 genes" have been developed which inhibit HIV-1 replication. However, current methods for gene transfer into human hematopoietic stem cells, using retroviral vectors derived from the Moloney murine leukemia virus, have been minimally effective. Clinical trials performed to date in which hematopoietic cells from HIV-1-positive patients have been transduced with retroviral vectors and then reinfused have produced low to undetectable levels of gene-containing peripheral blood leukocytes. New vector delivery systems, such as lentiviral vectors, need to be developed to ensure efficient gene transfer and persistent transgene expression to provide life-long resistance to the cells targeted by HIV-1.

  20. Hematopoietic Overexpression of FOG1 Does Not Affect B-Cells but Reduces the Number of Circulating Eosinophils

    PubMed Central

    Du Roure, Camille; Versavel, Aude; Doll, Thierry; Cao, Chun; Pillonel, Vincent; Matthias, Gabriele; Kaller, Markus; Spetz, Jean-François; Kopp, Patrick; Kohler, Hubertus; Müller, Matthias; Matthias, Patrick

    2014-01-01

    We have identified expression of the gene encoding the transcriptional coactivator FOG-1 (Friend of GATA-1; Zfpm1, Zinc finger protein multitype 1) in B lymphocytes. We found that FOG-1 expression is directly or indirectly dependent on the B cell-specific coactivator OBF-1 and that it is modulated during B cell development: expression is observed in early but not in late stages of B cell development. To directly test in vivo the role of FOG-1 in B lymphocytes, we developed a novel embryonic stem cell recombination system. For this, we combined homologous recombination with the FLP recombinase activity to rapidly generate embryonic stem cell lines carrying a Cre-inducible transgene at the Rosa26 locus. Using this system, we successfully generated transgenic mice where FOG-1 is conditionally overexpressed in mature B-cells or in the entire hematopoietic system. While overexpression of FOG-1 in B cells did not significantly affect B cell development or function, we found that enforced expression of FOG-1 throughout all hematopoietic lineages led to a reduction in the number of circulating eosinophils, confirming and extending to mammals the known function of FOG-1 in this lineage. PMID:24747299

  1. Embryonic stem cells: testing the germ-cell theory.

    PubMed

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state.

  2. Galectin-1 is overexpressed in CD133+ human lung adenocarcinoma cells and promotes their growth and invasiveness

    PubMed Central

    Zhou, Xuefeng; Li, Dan; Wang, Xianguo; Zhang, Bo; Zhu, Hua; Zhao, Jinping

    2015-01-01

    Previous studies demonstrated that a subpopulation of cancer cells, which are CD133 positive (CD133+) feature higher invasive and metastatic abilities, are called cancer stem cells (CSCs). By using tumor cells derived from patients with lung adenocarcinoma, we found that galectin-1 is highly overexpressed in the CD133+ cancer cells as compared to the normal cancer cells (CD133−) from the same patients. We overexpressed galectin-1 in CD133− cancer cells and downregulated it in CSCs. We found that overexpression of galectin-1 promoted invasiveness of CD133− cells, while knockdown of galectin-1 suppressed proliferation, colony formation and invasiveness of CSCs. Furthermore, tumor growth was significantly inhibited in CSCs xenografts with knockdown of galectin-1 as compared to CSCs treated with scramble siRNAs. Biochemical studies revealed that galectin-1 knockdown led to the suppression of COX-2/PGE2 and AKT/mTOR pathways, indicating galectin-1 might control the phenotypes of CSCs by regulating these signaling pathways. Finally, a retrospective study revealed that galectin-1 levels in blood circulation negatively correlates with overall survival and positively correlates with lymph node metastasis of the patients. Taken together, these findings suggested that galectin-1 plays a major role on the tumorigenesis and invasiveness of CD133+ cancer cells and might serve as a potential therapeutic target for treatment of human patients with lung adenocarcinoma. PMID:25605013

  3. Overexpression of Selenoprotein SelK in BGC-823 Cells Inhibits Cell Adhesion and Migration.

    PubMed

    Ben, S B; Peng, B; Wang, G C; Li, C; Gu, H F; Jiang, H; Meng, X L; Lee, B J; Chen, C L

    2015-10-01

    Effects of human selenoprotein SelK on the adhesion and migration ability of human gastric cancer BGC-823 cells using Matrigel adhesion and transwell migration assays, respectively, were investigated in this study. The Matrigel adhesion ability of BGC-823 cells that overexpressed SelK declined extremely significantly (p < 0.01) compared with that of the cells not expressing the protein. The migration ability of BGC-823 cells that overexpressed SelK also declined extremely significantly (p < 0.01). On the other hand, the Matrigel adhesion ability and migration ability of the cells that overexpressed C-terminally truncated SelK did not decline significantly. The Matrigel adhesion ability and migration ability of human embryonic kidney HEK-293 cells that overexpressed SelK did not show significant change (p > 0.05) with the cells that overexpressed the C-terminally truncated protein. In addition to the effect on Matrigel adhesion and migration, the overexpression of SelK also caused a loss in cell viability (as measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) colorimetric assay) and induced apoptosis as shown by confocal microscopy and flow cytometry. The cytosolic free Ca2+ level of these cells was significantly increased as detected by flow cytometry. But the overexpression of SelK in HEK-293 cells caused neither significant loss in cell viability nor apoptosis induction. Only the elevation of cytosolic free Ca2+ level in these cells was significant. Taken together, the results suggest that the overexpression of SelK can inhibit human cancer cell Matrigel adhesion and migration and cause both the loss in cell viability and induction of apoptosis. The release of intracellular Ca2+ from the endoplasmic reticulum might be a mechanism whereby the protein exerted its impact. Furthermore, only the full-length protein, but not C-terminally truncated form, was capable of producing such impact. The embryonic cells were not influenced by the

  4. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence

    PubMed Central

    Jensen, Kim B.; Watt, Fiona M.

    2006-01-01

    Considerable progress has been made in characterizing epidermal stem cells by microarray analysis of FACS-selected populations. One limitation of this approach is that the gene expression profiles represent the average of the cell population, potentially masking cellular heterogeneity of functional significance. To overcome this problem, we have performed single-cell expression profiling. We have generated cDNA libraries from single human epidermal cells, designated as stem or transit-amplifying cells on the basis of Delta1 and melanoma-associated chondroitin sulfate proteoglycan expression. Of the 14 putative stem cell markers identified, we selected one, the EGF receptor antagonist leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), for further study. Lrig1 was expressed in groups of basal cells in human interfollicular epidermis previously identified as enriched for stem cells. Overexpression of Lrig1 decreased keratinocyte proliferation but did not affect the proportion of stem and transit-amplifying cells, as judged by clonal growth characteristics. Down-regulation of Lrig1 using siRNA increased cell-surface EGF receptor levels, enhanced activation of downstream pathways, and stimulated proliferation. Lrig1 acted in part by negatively regulating the Myc promoter. We propose that Lrig1 maintains epidermal stem cells in a quiescent nondividing state, and that Lrig1 down-regulation triggers proliferation. PMID:16877544

  5. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence.

    PubMed

    Jensen, Kim B; Watt, Fiona M

    2006-08-08

    Considerable progress has been made in characterizing epidermal stem cells by microarray analysis of FACS-selected populations. One limitation of this approach is that the gene expression profiles represent the average of the cell population, potentially masking cellular heterogeneity of functional significance. To overcome this problem, we have performed single-cell expression profiling. We have generated cDNA libraries from single human epidermal cells, designated as stem or transit-amplifying cells on the basis of Delta1 and melanoma-associated chondroitin sulfate proteoglycan expression. Of the 14 putative stem cell markers identified, we selected one, the EGF receptor antagonist leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), for further study. Lrig1 was expressed in groups of basal cells in human interfollicular epidermis previously identified as enriched for stem cells. Overexpression of Lrig1 decreased keratinocyte proliferation but did not affect the proportion of stem and transit-amplifying cells, as judged by clonal growth characteristics. Down-regulation of Lrig1 using siRNA increased cell-surface EGF receptor levels, enhanced activation of downstream pathways, and stimulated proliferation. Lrig1 acted in part by negatively regulating the Myc promoter. We propose that Lrig1 maintains epidermal stem cells in a quiescent nondividing state, and that Lrig1 down-regulation triggers proliferation.

  6. Haematopoietic stem cells: past, present and future

    PubMed Central

    Ng, Ashley P; Alexander, Warren S

    2017-01-01

    The discovery and characterisation of haematopoietic stem cells has required decades of research. The identification of adult bone marrow as a source of haematopoietic cells capable of protecting an organism from otherwise lethal irradiation led to the intense search for their identity and characteristics. Using functional assays along with evolving techniques for isolation of haematopoietic cells, haematopoietic stem cell populations were able to be enriched and their characteristics analysed. The key haematopoietic stem cell characteristics of pluripotentiality and the ability for self-renewal have emerged as characteristics of several haematopoietic stem cell populations, including those that have recently challenged the conventional concepts of the haematopoietic hierarchy. Human allogeneic stem cell therapy relies on these functional characteristics of haematopoietic stem cells that can be isolated from peripheral blood, bone marrow or cord blood, with the additional requirement that immunological barriers need to be overcome to allow sustained engraftment while minimising risk of graft-versus-host disease developing in the recipient of transplanted stem cells. Current and future research will continue to focus on the identification of haematopoietic stem cell regulators and methods for in vitro and in vivo stem cell manipulation, including genome editing, to expand the scope, potential and safety of therapy using haematopoietic stem cells. PMID:28180000

  7. Making new beta cells from stem cells.

    PubMed

    Colman, Alan

    2004-06-01

    In 2000, Shapiro et al. provided compelling "proof of principle" data showing that the transplantation of human islets, purified from cadaveric material, could restore severely diabetic, Type 1 patients to insulin independence. This demonstration prompted renewed efforts to find an alternative and sustainable source of surrogate islet cells for cell therapy. Experiments involving adult ductal and liver "stem" cells, or embryonic stem cells, are prominent amongst these endeavors and are reviewed in this article. Whilst there are many published claims to success in converting ES cells into insulin secreting, glucose responsive cells, all require careful reinterpretation in the light of findings that cells can adsorb insulin present in growth media. It is likely that work with adult cells is less prone to this potential artifact and significant progress has been made in producing insulin-secreting cells. Assessment of in vivo function in the surrogate cells is most frequently made using cell transplantation into toxin-induced, diabetic mice, but this model is rarely used to maximal advantage. In many cases, it remains unclear whether reductions in the hyperglycemia result from insulin secretion from the transplanted cells or are due to recovery of endogenous islet function. In this latter context, experiments are reviewed where endogenous stimulation of recovery is engendered even by irradiated donor cells.

  8. Engineering Stem Cells for Biomedical Applications.

    PubMed

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Therapeutic potential of dental stem cells

    PubMed Central

    Chalisserry, Elna Paul; Nam, Seung Yun; Park, Sang Hyug; Anil, Sukumaran

    2017-01-01

    Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run. PMID:28616151

  10. Therapeutic potential of dental stem cells.

    PubMed

    Chalisserry, Elna Paul; Nam, Seung Yun; Park, Sang Hyug; Anil, Sukumaran

    2017-01-01

    Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run.

  11. Stem Cells in the Nervous System

    PubMed Central

    Maldonado-Soto, Angel R.; Oakley, Derek H.; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K.; Henderson, Christopher E.

    2014-01-01

    Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in the field of regenerative medicine. This review focuses on our current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain, and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential, as well as finding mechanisms to activate dormant stem cells outside of these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation. PMID:24800720

  12. Stem cells in the nervous system.

    PubMed

    Maldonado-Soto, Angel R; Oakley, Derek H; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K; Henderson, Christopher E

    2014-11-01

    Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in regenerative medicine. This review focuses on the current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential as well as finding mechanisms to activate dormant stem cells outside these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing, and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation.

  13. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner.

    PubMed

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)-dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  15. [Recent progress in hematopoietic stem cell transplantation].

    PubMed

    Shinagawa, Katsuji

    2006-06-01

    The indication for allogeneic stem cell transplantation (allo-SCT) have been expanded nowadays because many stem cell sources became available and new conditioning procedures such as reduced intensity stem cell transplantation (RIST) have been developed. Stem cell sources can be classified into bone marrow cells, peripheral blood stem cells, cord blood cells and every source derived from related or unrelated donors. Also, HLA mismatched transplantation has been studied especially in haploidentical donors. Now we must select the most compatible stem cell source for the recipient condition and disease status. RIST has expanded the indication of allo-SCT because of low regimen related toxicity. However, evaluation of graft versus leukemia (GVL) effect and control of graft versus host disease (GVHD) are still unresolved problems. Further investigations of the therapy of chronic GVHD and other posttransplant problems are warranted to improve the outcome and quality of life of the patients.

  16. Reforming craniofacial orthodontics via stem cells.

    PubMed

    Mohanty, Pritam; Prasad, N K K; Sahoo, Nivedita; Kumar, Gunjan; Mohanty, Debapreeti; Sah, Sushila

    2015-01-01

    Stem cells are the most interesting cells in cell biology. They have the potential to evolve as one of the most powerful technologies in the future. The future refers to an age where it will be used extensively in various fields of medical and dental sciences. Researchers have discovered a number of sources from which stem cells can be derived. Craniofacial problems are very common and occur at all ages. Stem cells can be used therapeutically in almost every field of health science. In fact, many procedures will be reformed after stem cells come into play. This article is an insight into the review of the current researches being carried out on stem cells and its use in the field of orthodontics, which is a specialized branch of dentistry. Although the future is uncertain, there is a great possibility that stem cells will be used extensively in almost all major procedures of orthodontics.

  17. Reforming craniofacial orthodontics via stem cells

    PubMed Central

    Mohanty, Pritam; Prasad, N.K.K.; Sahoo, Nivedita; Kumar, Gunjan; Mohanty, Debapreeti; Sah, Sushila

    2015-01-01

    Stem cells are the most interesting cells in cell biology. They have the potential to evolve as one of the most powerful technologies in the future. The future refers to an age where it will be used extensively in various fields of medical and dental sciences. Researchers have discovered a number of sources from which stem cells can be derived. Craniofacial problems are very common and occur at all ages. Stem cells can be used therapeutically in almost every field of health science. In fact, many procedures will be reformed after stem cells come into play. This article is an insight into the review of the current researches being carried out on stem cells and its use in the field of orthodontics, which is a specialized branch of dentistry. Although the future is uncertain, there is a great possibility that stem cells will be used extensively in almost all major procedures of orthodontics. PMID:25767761

  18. Stressed stem cells: Temperature response in aged mesenchymal stem cells.

    PubMed

    Stolzing, Alexandra; Sethe, Sebastian; Scutt, Andrew M

    2006-08-01

    Mesenchymal stem cells (MSCs) derived from young (6 week) and aged (56 week) Wistar rats were cultured at standard (37 degrees C) and reduced (32 degrees C) temperature and compared for age markers and stress levels. (ROS, NO, TBARS, carbonyls, lipofuscin, SOD, GPx, apoptosis, proteasome activity) and heat shock proteins (HSP27, -60, -70, -90). Aged MSCs display many of the stress markers associated with aging in other cell types, but results vary across marker categories and are temperature dependant. In young MSCs, culturing at reduced temperature had a generally beneficial effect: the anti-apoptotic heat shock proteins HSP 27, HSP70, and HSP90 were up-regulated; pro-apoptotic HSP60 was downregulated; SOD, GPx increased; and levels in ROS, NO, TBARS, carbonyl, and lipofuscin were diminished. Apoptosis was reduced, but also proteasome activity. In contrast, in aged MSCs, culturing at reduced temperature generally produced no 'beneficial' changes in these parameters, and can even have detrimental effects. Implications for tissue engineering and for stem cell gerontology are discussed. The results suggest that a 'hormesis' theory of stress response can be extended to MSCs, but that cooling cultivation temperature stress produces positive effects in young cells only.

  19. Lung stem cell update: promise and controversy.

    PubMed

    Neuringer, I P; Randell, S H

    2006-03-01

    Currently, there is great enthusiasm about potential stem cell therapies for intractable diseases. We previously reviewed the topic of stem cells in lung injury and repair, including the role of endogenous, tissue (somatic) stem cells and the contribution of circulating cells to the lung parenchyma. Our purpose here is to provide a concise update in this fast-moving field. New information and ongoing debate focus attention on basic issues in lung stem cell biology and highlight the need for additional studies to establish the feasibility of cell therapies to prevent or treat lung diseases.

  20. Stem Cells for Augmenting Tendon Repair

    PubMed Central

    Gulotta, Lawrence V.; Chaudhury, Salma; Wiznia, Daniel

    2012-01-01

    Tendon healing is fraught with complications such as reruptures and adhesion formation due to the formation of scar tissue at the injury site as opposed to the regeneration of native tissue. Stem cells are an attractive option in developing cell-based therapies to improve tendon healing. However, several questions remain to be answered before stem cells can be used clinically. Specifically, the type of stem cell, the amount of cells, and the proper combination of growth factors or mechanical stimuli to induce differentiation all remain to be seen. This paper outlines the current literature on the use of stem cells for tendon augmentation. PMID:22190960

  1. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  2. Stem Cells in the Cornea

    PubMed Central

    Hertsenberg, Andrew J.; Funderburgh, James L.

    2017-01-01

    The cornea is the tough, transparent tissue through which light first enters the eye and functions as a barrier to debris and infection as well as two-thirds of the refractive power of the eye. Corneal damage that is not promptly treated will often lead to scarring and vision impairment. Due to the limited options currently available to treat corneal scars, the identification and isolation of stem cells in the cornea has received much attention, as they may have potential for autologous, cell-based approaches to the treatment of damaged corneal tissue. PMID:26310147

  3. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells.

    PubMed

    Jiang, Xiaochun; Yan, Yukui; Hu, Minghua; Chen, Xiande; Wang, Yaxian; Dai, Yi; Wu, Degang; Wang, Yongsheng; Zhuang, Zhixiang; Xia, Hongping

    2016-01-01

    OBJECT Increased levels of H19 long noncoding RNA (lncRNA) have been observed in many cancers, suggesting that overexpression of H19 may be important in the development of carcinogenesis. However, the role of H19 in human glioblastoma is still unclear. The object of this study was to examine the level of H19 in glioblastoma samples and investigate the role of H19 in glioblastoma carcinogenesis. METHODS Glioblastoma and nontumor brain tissue specimens were obtained from tissue obtained during tumor resection in 30 patients with glioblastoma. The level of H19 lncRNA was detected by real-time quantitative reverse transcription polymerase chain reaction. The role of H19 in invasion, angiogenesis, and stemness of glioblastoma cells was then investigated using commercially produced cell lines (U87 and U373). The effects of H19 overexpression on glioblastoma cell invasion and angiogenesis were detected by in vitro Matrigel invasion and endothelial tube formation assay. The effects of H19 on glioblastoma cell stemness and tumorigenicity were investigated by neurosphere formation and an in vivo murine xenograft model. RESULTS The authors found that H19 is significantly overexpressed in glioblastoma tissues, and the level of expression was associated with patient survival. In the subsequent investigations, the authors found that overexpression of H19 promotes glioblastoma cell invasion and angiogenesis in vitro. Interestingly, H19 was also significantly overexpressed in CD133(+) glioblastoma cells, and overexpression of H19 was associated with increased neurosphere formation of glioblastoma cells. Finally, stable overexpression of H19 was associated with increased tumor growth in the murine xenograft model. CONCLUSIONS The results of this study suggest that increased expression of H19 lncRNA promotes invasion, angiogenesis, stemness, and tumorigenicity of glioblastoma cells. Taken together, these findings indicate that H19 plays an important role in tumorigenicity and

  4. Mesenchymal dental stem cells in regenerative dentistry.

    PubMed

    Rodríguez-Lozano, Francisco-Javier; Insausti, Carmen-Luisa; Iniesta, Francisca; Blanquer, Miguel; Ramírez, María-del-Carmen; Meseguer, Luis; Meseguer-Henarejos, Ana-Belén; Marín, Noemí; Martínez, Salvador; Moraleda, José-María

    2012-11-01

    In the last decade, tissue engineering is a field that has been suffering an enormous expansion in the regenerative medicine and dentistry. The use of cells as mesenchymal dental stem cells of easy access for dentist and oral surgeon, immunosuppressive properties, high proliferation and capacity to differentiate into odontoblasts, cementoblasts, osteoblasts and other cells implicated in the teeth, suppose a good perspective of future in the clinical dentistry. However, is necessary advance in the known of growth factors and signalling molecules implicated in tooth development and regeneration of different structures of teeth. Furthermore, these cells need a fabulous scaffold that facility their integration, differentiation, matrix synthesis and promote multiple specific interactions between cells. In this review, we give a brief description of tooth development and anatomy, definition and classification of stem cells, with special attention of mesenchymal stem cells, commonly used in the cellular therapy for their trasdifferentiation ability, non ethical problems and acceptable results in preliminary clinical trials. In terms of tissue engineering, we provide an overview of different types of mesenchymal stem cells that have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs), and stem cells from apical papilla (SCAPs), growth factors implicated in regeneration teeth and types of scaffolds for dental tissue regeneration.

  5. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer

    PubMed Central

    Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-01-01

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells. PMID:27542229

  6. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer.

    PubMed

    Wang, Xiao-Feng; Zhang, Xiao-Wei; Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-09-27

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells.

  7. Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein.

    PubMed

    Veas, Carlos; Jara, Casandra; Willis, Naomi D; Pérez-Contreras, Karen; Gutierrez, Nicolas; Toledo, Jorge; Fernandez, Paulina; Radojkovic, Claudia; Zuñiga, Felipe A; Escudero, Carlos; Aguayo, Claudio

    2016-04-01

    Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis.

  8. Induced Pluripotent Stem Cells: Characteristics and Perspectives

    NASA Astrophysics Data System (ADS)

    Cantz, Tobias; Martin, Ulrich

    The induction of pluripotency in somatic cells is widely considered as a major breakthrough in regenerative medicine, because this approach provides the basis for individualized stem cell-based therapies. Moreover, with respect to cell transplantation and tissue engineering, expertise from bioengineering to transplantation medicine is now meeting basic research of stem cell biology.

  9. Imported Stem Cells Strike against Stroke.

    PubMed

    Péron, Sophie; Berninger, Benedikt

    2015-11-05

    Cells with neural stem cell (NSC)-like properties can be isolated from the cortex of adult brains following injury, but their origins and function are unclear. Now in Cell Stem Cell, Faiz et al. (2015) show that subventricular-zone-derived NSCs home to injured cortical area following stroke, where they generate reactive astrocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Ex vivo nanofiber expansion and genetic modification of human cord blood-derived progenitor/stem cells enhances vasculogenesis.

    PubMed

    Das, Hiranmoy; Abdulhameed, Nasreen; Joseph, Matthew; Sakthivel, Ramasamy; Mao, Hai-Quan; Pompili, Vincent J

    2009-01-01

    The stem cell therapy for treating ischemic diseases is promising; however, the limited availability and compromised quality of progenitor cells in aged and diseased patients limit its therapeutic use. Here we report a nanofiber-based ex vivo stem cell expansion technology and proangiogenic growth factors overexpression of human umbilical cord blood (UCB)-derived progenitor cells to enhance angiogenic potential of therapeutic stem cells. The progenitor cells were expanded approximately 225-fold on nanofiber-based serum-free ex vivo expansion culture technique without inducing differentiation. The expanded cells express high levels of stem cell homing receptor, CXCR4, and adhesion molecule, LFA-1. The nanofiber-expanded stem cells uptake AcLDL effectively, and migrate efficiently in an in vitro transmigration assay. These expanded cells can also differentiate into endothelial and smooth muscle cells in vitro. In a NOD/SCID mouse hind limb vascular injury model, nanofiber-expanded cells were more effective in blood flow restoration and this effect was further augmented by VEGF(164) and PDGF-BB, growth factor overexpression. The data indicate that nanofiber-based ex vivo expansion technology can provide an essential number of therapeutic stem cells. Additionally, proangiogenic growth factors overexpression in progenitor cells can potentially improve autologous or allogeneic stem cell therapy for ischemic diseases.

  11. Musashi 2 contributes to the stemness and chemoresistance of liver cancer stem cells via LIN28A activation.

    PubMed

    Fang, Tian; Lv, Hongwei; Wu, Fuquan; Wang, Changzheng; Li, Ting; Lv, Guishuai; Tang, Liang; Guo, Linna; Tang, Shanhua; Cao, Dan; Wu, Mengchao; Yang, Wen; Wang, Hongyang

    2017-01-01

    Accumulating evidence suggests that cancer stem cells (CSCs), a small subset of cancer cells, are responsible for tumor initiation, progression, relapse and metastasis. Musashi 2 (MSI2), a RNA-binding protein, was proposed to be a potent oncogene playing key roles in myeloid leukemia and gastrointestinal malignancies. However, it remains elusive how MSI2 regulates stem cell features in HCC. Herein, we demonstrated that MSI2 was highly expressed in liver CSCs. Overexpression or knockdown of MSI2 altered CSC-related gene expression, self-renewal as well as resistance to chemotherapy in HCC cell lines. In mouse xenograft models, MSI2 could markedly enhance tumorigenicity. Mechanistically, overexpression of MSI2 resulted in the upregulation of Lin28A. Stemness and chemotherapeutic drug resistance induced by MSI2 overexpression were dramatically reduced by Lin28A knockdown. Moreover, MSI2 and LIN28A levels positively correlated with the clinical severity and prognosis in HCC patients. In conclusion, MSI2 might play a crucial role in sustaining stemness and chemoresistance of liver CSCs via LIN28A-dependent manner in HCC. Our findings revealed that MSI2 and Lin28A might be used as potential therapeutic targets for eradicating liver CSCs. Copyright © 2016. Published by Elsevier Ireland Ltd.

  12. Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis

    PubMed Central

    Xu, Liping; Zeisler, Viktoria; Schreiber, Lukas; Gao, Jie; Hu, Kaining; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2017-01-01

    The cuticle is composed of cutin and cuticular wax. It covers the surfaces of land plants and protects them against environmental damage. At5g02890 encodes a novel protein in Arabidopsis thaliana. In the current study, protein sequence analysis showed that At5g02890 is highly conserved in the Brassicaceae. Arabidopsis lines overexpressing At5g02890 (OE-At5g02890 lines) and an At5g02890 orthologous gene from Brassica napus (OE-Bn1 lines) exhibited glossy stems. Chemical analysis revealed that overexpression of At5g02890 caused significant reductions in the levels of wax components longer than 28 carbons (C28) in inflorescence stems, whereas the levels of wax molecules of chain length C28 or shorter were significantly increased. Transcriptome analysis indicated that nine of 11 cuticular wax synthesis-related genes with different expression levels in OE-At5g02890 plants are involved in very-long-chain fatty acid (VLCFA) elongation. At5g02890 is localized to the endoplasmic reticulum (ER), which is consistent with its function in cuticular wax biosynthesis. These results demonstrate that the overexpression of At5g02890 alters cuticular wax composition by partially blocking VLCFA elongation of C28 and higher. In addition, detailed analysis of differentially expressed genes associated with plant hormones and endogenous phytohormone levels in wild-type and OE-At5g02890 plants indicated that abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) biosynthesis, as well as polar auxin transport, were also affected by overexpression of At5g02890. Taken together, these findings indicate that overexpression of At5g02890 affects both cuticular wax biosynthesis and phytohormone homeostasis in Arabidopsis. PMID:28184233

  13. SET/I2PP2A overexpression induces phenotypic, molecular, and metabolic alterations in an oral keratinocyte cell line.

    PubMed

    Sobral, Lays M; Coletta, Ricardo D; Alberici, Luciane C; Curti, Carlos; Leopoldino, Andréia M

    2017-09-01

    The multifunctional SET/I2PP2A protein is known to be overexpressed in head and neck squamous cell carcinoma. However, SET has been reported to have apparently conflicting roles in promoting cancer cell survival under oxidative stress conditions and preventing invasion and metastasis, complicating efforts to understand the contribution of SET to carcinogenesis. In the present study, we overexpressed SETin a spontaneously immortalized oral keratinocyte cell line (NOK-SI SET) and demonstrated that SET upregulation alone was sufficient to transform cells. In comparison with NOK-SI cells, NOK-SI SET cells demonstrated increased levels of phosphorylated Akt, c-Myc and inactive/phosphorylated Rb, together with decreased total Rb protein levels. In addition, NOK-SI SET cells presented the following: (a) a spindle-cell shape morphology compared with the polygonal morphology of NOK-SI cells; (b) loss of mesenchymal stem cell markers CD44 and CD73, and epithelial cell markers CD71 and integrin α6/β4; (c) the ability to form xenograft tumors in nude mice; and (d) increased mitochondrial respiration accompanied by decreased ROSlevels. Overall, our results show that SEToverexpression promotes morphological and oncogenic cell transformation of an oral keratinocyte cell. © 2017 Federation of European Biochemical Societies.

  14. Stem Cell Therapies for Reversing Vision Loss.

    PubMed

    Higuchi, Akon; Kumar, S Suresh; Benelli, Giovanni; Alarfaj, Abdullah A; Munusamy, Murugan A; Umezawa, Akihiko; Murugan, Kadarkarai

    2017-07-24

    Current clinical trials that evaluate human pluripotent stem cell (hPSC)-based therapies predominantly target treating macular degeneration of the eyes because the eye is an isolated tissue that is naturally weakly immunogenic. Here, we discuss current bioengineering approaches and biomaterial usage in combination with stem cell therapy for macular degeneration disease treatment. Retinal pigment epithelium (RPE) differentiated from hPSCs is typically used in most clinical trials for treating patients, whereas bone marrow mononuclear cells (BMNCs) or mesenchymal stem cells (MSCs) are intravitreally transplanted, undifferentiated, into patient eyes. We also discuss reported negative effects of stem cell therapy, such as patients becoming blind following transplantation of adipose-derived stem cells, which are increasingly used by 'stem-cell clinics'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Semaphorin 3A Induces Mesenchymal-Stem-Like Properties in Human Periodontal Ligament Cells

    PubMed Central

    Maeda, Hidefumi; Hasegawa, Daigaku; Gronthos, Stan; Bartold, Peter Mark; Menicanin, Danijela; Fujii, Shinsuke; Yoshida, Shinichiro; Tomokiyo, Atsushi; Monnouchi, Satoshi; Akamine, Akifumi

    2014-01-01

    Periodontal ligament stem cells (PDLSCs) have recently been proposed as a novel option in periodontal regenerative therapy. However, one of the issues is the difficulty of stably generating PDLSCs because of the variation of stem cell potential between donors. Here, we show that Semaphorin 3A (Sema3A) can induce mesenchymal-stem-like properties in human periodontal ligament (PDL) cells. Sema3A expression was specifically observed in the dental follicle during tooth development and in parts of mature PDL tissue in rodent tooth and periodontal tissue. Sema3A expression levels were found to be higher in multipotential human PDL cell clones compared with low-differentiation potential clones. Sema3A-overexpressing PDL cells exhibited an enhanced capacity to differentiate into both functional osteoblasts and adipocytes. Moreover, PDL cells treated with Sema3A only at the initiation of culture stimulated osteogenesis, while Sema3A treatment throughout the culture had no effect on osteogenic differentiation. Finally, Sema3A-overexpressing PDL cells upregulated the expression of embryonic stem cell markers (NANOG, OCT4, and E-cadherin) and mesenchymal stem cell markers (CD73, CD90, CD105, CD146, and CD166), and Sema3A promoted cell division activity of PDL cells. These results suggest that Sema3A may possess the function to convert PDL cells into mesenchymal-stem-like cells. PMID:24380401

  16. Reduced viability of neuronal cells after overexpression of protein histidine phosphatase.

    PubMed

    Krieglstein, Josef; Lehmann, Martina; Mäurer, Anette; Gudermann, Thomas; Pinkenburg, Olaf; Wieland, Thomas; Litterscheid, Sarah; Klumpp, Susanne

    2008-11-01

    Protein histidine phosphatase (PHP) has just recently been discovered in eukaryotes and ATP-citrate lyase (ACL) was shown to be one of its substrates. Since ACL is crucial for cellular energy and fat metabolism we made an attempt to study the influence of PHP on cell viability. Using an adenoviral vector PHP was overexpressed in SN56 cholinergic murine neuroblastoma cells and in primary cultures of hippocampal neurons obtained from embryonic rats (E18). Overexpression of PHP in these cells caused a decrease in ACL activity and consequently impaired viability. To be sure that the reduced cellular viability was achieved by overexpression of PHP we also downregulated ACL in SN56 cells using RNAi-technology. Downregulation of ACL was harmful to the cells similar to what was observed upon overexpression of PHP. Taken together, it is concluded that overexpression of PHP results in increased dephosphorylation with concomitant inactivation of ACL, thus finally leading to cell damage.

  17. Therapeutic potential of amniotic fluid stem cells.

    PubMed

    Abdulrazzak, Hassan; De Coppi, Paolo; Guillot, Pascale V

    2013-03-01

    Human amniotic fluid cells have been used traditionally as a diagnostic tool for genetic anomalies. More recently it has been recognized that amniotic fluid contains populations of stem cells. Mesenchymal stem cells (AFMSC) were first to be described. These cells are able to differentiate towards mesodermal lineages. More recently cells with broader potential, defined as amniotic fluid stem cells (AFSC), were also isolated. They have intermediate characteristics between embryonic and adult stem cells and are able to differentiate into lineages representative of all three germ layers but unlike ES cells they do not form tumours in vivo. Furthermore, AFSC have been reverted to functional pluripotency in a transgene-free approach using an epigenetics modifier. These characteristics, together with absence of ethical issues concerning their employment, have made stem cells from amniotic fluid a promising candidate for cell therapy and tissue engineering.

  18. Induction of steroidogenic cells from adult stem cells and pluripotent stem cells [Review].

    PubMed

    Yazawa, Takashi; Imamichi, Yoshitaka; Miyamoto, Kaoru; Khan, Md Rafiqul Islam; Uwada, Junsuke; Umezawa, Akihiro; Taniguchi, Takanobu

    2016-11-30

    Steroid hormones are mainly produced in adrenal glands and gonads. Because steroid hormones play vital roles in various physiological processes, replacement of deficient steroid hormones by hormone replacement therapy (HRT) is necessary for patients with adrenal and gonadal failure. In addition to HRT, tissue regeneration using stem cells is predicted to provide novel therapy. Among various stem cell types, mesenchymal stem cells can be differentiated into steroidogenic cells following ectopic expression of nuclear receptor (NR) 5A subfamily proteins, steroidogenic factor-1 (also known as adrenal 4 binding protein) and liver receptor homolog-1, with the aid of cAMP signaling. Conversely, these approaches cannot be applied to pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, because of poor survival following cytotoxic expression of NR5A subfamily proteins. However, if pluripotent stem cells are first differentiated through mesenchymal lineage, they can also be differentiated into steroidogenic cells via NR5A subfamily protein expression. This approach offers a potential suitable cells for future regenerative medicine and gene therapy for diseases caused by steroidogenesis deficiencies. It represents a powerful tool to investigate the molecular mechanisms involved in steroidogenesis. This article highlights our own and current research on the induction of steroidogenic cells from various stem cells. We also discuss the future direction of their clinical application.

  19. Medaka haploid embryonic stem cells.

    PubMed

    Hong, Yunhan

    2010-01-01

    The appearance of diploidy, the presence of two genomes or chromosome sets, is a fundamental hallmark of eukaryotic evolution and bisexual reproduction, because diploidy offers the basis for the bisexual life cycle, allowing for oscillation between diploid and haploid phases. Meiosis produces haploid gametes. At fertilization, male and female gametes fuse to restore diploidy in a zygote, which develops into a new life. At sex maturation, diploid cells enter into meiosis, culminating in the production of haploid gametes. Therefore, diploidy ensures pluripotency, cell proliferation, and functions, whereas haploidy is restricted only to the post-meiotic gamete phase of germline development and represents the end point of cell growth. Diploidy is advantageous for evolution. Haploidy is ideal for genetic analyses, because any recessive mutations of essential genes will show a clear phenotype in the absence of a second gene copy. Recently, my laboratory succeeded in the generation of medaka haploid embryonic stem (ES) cells capable of whole animal production. Therefore, haploidy in a vertebrate is able to support stable cell culture and pluripotency. This finding anticipates the possibility to generate haploid ES cells in other vertebrate species such as zebrafish. These medaka haploid ES cells elegantly combine haploidy and pluripotency, offering a unique yeast-like system for in vitro genetic analyses of molecular, cellular, and developmental events in various cell lineages. This chapter is aimed to describe the strategy of haploid ES cell derivation and their characteristics, and illustrate the perspectives of haploid ES cells for infertility treatment, genetic screens, and analyses.

  20. Stem Cell Therapy for Autism

    PubMed Central

    Ichim, Thomas E; Solano, Fabio; Glenn, Eduardo; Morales, Frank; Smith, Leonard; Zabrecky, George; Riordan, Neil H

    2007-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism. PMID:17597540

  1. Mammary stem cells have myoepithelial cell properties

    PubMed Central

    Prater, Michael D.; Petit, Valérie; Russell, I. Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John

    2014-01-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using 2 independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage tracing approach we follow the progeny of α-smooth muscle actin-expressing myoepithelial cells and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976

  2. Pancreatic cancer stem cells: fact or fiction?

    PubMed

    Bhagwandin, Vikash J; Shay, Jerry W

    2009-04-01

    The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial-mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.

  3. Establishment of a Mesenchymal Stem Cell Bank

    PubMed Central

    Cooper, Khushnuma; Viswanathan, Chandra

    2011-01-01

    Adult stem cells have generated great amount of interest amongst the scientific community for their potential therapeutic applications for unmet medical needs. We have demonstrated the plasticity of mesenchymal stem cells isolated from the umbilical cord matrix. Their immunological profile makes it even more interesting. We have demonstrated that the umbilical cord is an inexhaustible source of mesenchymal stem cells. Being a very rich source, instead of discarding this tissue, we worked on banking these cells for regenerative medicine application for future use. The present paper gives a detailed account of our experience in the establishment of a mesenchymal stem cell bank at our facility. PMID:21826152

  4. Colon cancer: cancer stem cells markers, drug resistance and treatment.

    PubMed

    Kozovska, Zuzana; Gabrisova, Veronika; Kucerova, Lucia

    2014-10-01

    Malignant tumours consist of heterogeneous populations of tumour cells. Cancer stem cells (CSC) represent a population of cells within a tumour with highly tumorigenic and chemoresistant properties. These cells may be identified by the expression of CSC markers. There are several key stem cells markers specified for colon cancer: CD133, CD44, ALDH1, ALCAM. These days, a major obstacle to effective cancer management is development of a multidrug resistance (MDR). The principal mechanism responsible for development of MDR phenotype is the over-expression of ABC transporters. Tumours and relapsing tumours after therapy are drived by subpopulations of tumour cells with aggressive phenotype resistant to chemotherapeutics. These cells are called CSC or tumour-initiating cells (TIC). Here we outline recent information about MDR of colon cancer and CSC markers. We have focused on novel therapeutic strategies which have been developed to prevent or overcome MDR. One such str