Science.gov

Sample records for stem cells undergo

  1. Immature hematopoietic stem cells undergo maturation in the fetal liver.

    PubMed

    Kieusseian, Aurelie; Brunet de la Grange, Philippe; Burlen-Defranoux, Odile; Godin, Isabelle; Cumano, Ana

    2012-10-01

    Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2γc(-/-) mice. This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show that immature HSCs acquire, in this environment, the features of HSCs.

  2. Adjustment in Parents of Children Undergoing Stem Cell Transplantation

    PubMed Central

    Lindwall, Jennifer J.; Russell, Kathy; Huang, Qinlei; Zhang, Hui; Vannatta, Kathryn; Barrera, Maru; Alderfer, Melissa; Phipps, Sean

    2014-01-01

    Background Pediatric stem cell transplant (SCT) is a demanding procedure for children and parents. Interventions to promote positive adjustment of parents in this setting are needed. Method 171 patient/parent dyads from 4 sites received one of 3 interventions to reduce SCT-related distress: a child intervention with massage and humor therapy, an identical child intervention plus a parent intervention with massage and relaxation/imagery, or standard care. Parents completed weekly self-report measures of distress and positive affect during the acute phase of treatment (weeks −1 through +6), and measures of depression, posttraumatic stress (PTSD), and benefit-finding at baseline and week +24. Results No significant differences across treatment arms were observed on repeated measures of parental distress. There was a marginally significant effect of the child intervention on parental positive affect. Over time, parental distress decreased significantly and positive affect increased significantly in all groups. Similarly, there were no significant intervention effects on the global adjustment outcomes of depression, PTSD, and benefit finding. However, reports of depression and PTSD decreased significantly and reports of benefit-finding increased significantly from baseline to week +24 for all groups. Conclusion Across all study arms, parent adjustment improved over time, suggesting that parents demonstrate a transient period of moderately elevated distress at the time of their child’s admission for transplant, followed by rapid improved to normative levels of adjustment. Similar to results previously reported for their children, these parents appear resilient to the challenges of transplant. PMID:24434783

  3. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM.

  4. Distress prior to undergoing hematopoietic stem cell transplantation: demographic and symptom correlations and establishing a baseline

    PubMed Central

    Smith, Sean Robinson; Hobson, Mary Elizabeth; Haig, Andrew J

    2016-01-01

    Background Distress can arise from physical and/or psychosocial impairments and has been documented in patients after hematopoietic stem cell transplantation in the outpatient setting. It has not been evaluated in inpatients admitted to undergo the transplant, nor has potential correlations with length of hospital stay, physical function, and pain after receiving the transplant. Objectives To measure distress in patients admitted to the hospital to undergo hematopoietic stem cell transplantation, and to evaluate potential correlations with length of hospital stay, physical function, pain, and depression/anxiety. Methods Eighty patients were given a questionnaire to report levels of distress and physical and psychosocial functioning. Hierarchical multiple regression analysis was used to test the relationship of demographic and transplant factors with length of stay (LOS), distress, presence of pain, and depression/anxiety. Results Patients reported pretransplant distress with an average score of 2.2 out of 10, and 16 out of 80 patients reported clinically relevant distress. Pain was reported by 42.5% of patients, and 28.8% reported depression/anxiety. Physical functioning was generally high. Distress was correlated with depression/anxiety (P-value <0.01) and pain (0.04) but not with LOS, physical function, patient age, or transplant type. Conclusion LOS after receiving stem cell transplant was not related to pretransplant distress. Distress exists pretransplant but is generally low. Pain and the presence of depression/anxiety may be risk factors for distress. Measuring distress prior to transplant gives a baseline from which to measure changes, potentially leading to earlier intervention. PMID:27695376

  5. Resilience in Children Undergoing Stem Cell Transplantation: Results of a Complementary Intervention Trial

    PubMed Central

    Peasant, Courtney; Barrera, Maru; Alderfer, Melissa A.; Huang, Qinlei; Vannatta, Kathryn

    2012-01-01

    BACKGROUND: Children undergoing stem cell transplantation (SCT) are thought to be at risk for increased distress, adjustment difficulties, and impaired health-related quality of life (HRQL). We report results of a multisite trial designed to improve psychological adjustment and HRQL in children undergoing SCT. METHODS: A total of 171 patients and parents from 4 sites were randomized to receive a child-targeted intervention; a child and parent intervention; or standard care. The child intervention included massage and humor therapy; the parent intervention included massage and relaxation/imagery. Outcomes included symptoms of depression and posttraumatic stress, HRQL, and benefit finding. Assessments were conducted by patient and parent report at admission and SCT week+24. RESULTS: Across the sample, significant improvements were seen on all outcomes from admission to week+24. Surprisingly, patients who had SCT reported low levels of adjustment difficulties at admission, and improved to normative or better than average levels of adjustment and HRQL at week+24. Benefit finding was high at admission and increased at week+24; however, there were no statistically significant differences between intervention arms for any of the measures. CONCLUSIONS: Although the results do not support the benefits of these complementary interventions in pediatric SCT, this may be explained by the remarkably positive overall adjustment seen in this sample. Improvements in supportive care, and a tendency for patients to find benefit in the SCT experience, serve to promote positive outcomes in children undergoing this procedure, who appear particularly resilient to the challenge. PMID:22311995

  6. Iron overload in patients with acute leukemia or MDS undergoing myeloablative stem cell transplantation.

    PubMed

    Armand, Philippe; Kim, Haesook T; Rhodes, Joanna; Sainvil, Marie-Michele; Cutler, Corey; Ho, Vincent T; Koreth, John; Alyea, Edwin P; Hearsey, Doreen; Neufeld, Ellis J; Fleming, Mark D; Steen, Hanno; Anderson, Damon; Kwong, Raymond Y; Soiffer, Robert J; Antin, Joseph H

    2011-06-01

    Patients with hematologic malignancies undergoing allogeneic stem cell transplantation (HSCT) commonly have an elevated serum ferritin prior to HSCT, which has been associated with increased mortality after transplantation. This has led to the suggestion that iron overload is common and deleterious in this patient population. However, the relationship between serum ferritin and parenchymal iron overload in such patients is unknown. We report a prospective study of 48 patients with acute leukemia (AL) or myelodysplastic syndromes (MDS) undergoing myeloablative HSCT, using magnetic resonance imaging (MRI) to estimate liver iron content (LIC) and cardiac iron. The median (and range) pre-HSCT value of serum ferritin was 1549 ng/mL (20-6989); serum hepcidin, 59 ng/mL (10-468); labile plasma iron, 0 LPI units (0.0-0.9). Eighty-five percent of patients had hepatic iron overload (HIO), and 42% had significant HIO (LIC ≥5.0 mg/gdw). Only 1 patient had cardiac iron overload. There was a strong correlation between pre-HSCT serum ferritin and estimated LIC (r = .75), which was mostly dependent on prior transfusion history. Serum hepcidin was appropriately elevated in patients with HIO. Labile plasma iron elevation was rare. A regression calibration analysis supported the hypothesis that elevated pre-HSCT LIC is significantly associated with inferior post-HSCT survival. These results contribute to our understanding of the prevalence, mechanism, and consequences of iron overload in HSCT.

  7. Complementary Therapies for Children Undergoing Stem Cell Transplant: Report of A Multisite Trial

    PubMed Central

    Phipps, Sean; Barrera, Maru; Vannatta, Kathryn; Xiong, Xiaoping; Doyle, John J; Alderfer, Melissa A.

    2010-01-01

    Background Children undergoing stem cell transplant (SCT) experience high levels of somatic distress and mood disturbance. This trial evaluated the efficacy of complementary therapies (massage, humor therapy, relaxation/imagery) for reducing distress associated with pediatric SCT. Methods Across 4 sites, 178 pediatric patients scheduled to undergo SCT were randomized to a child-targeted intervention involving massage and humor therapy (HPI-C), the identical child intervention plus a parent intervention involving massage and relaxation/imagery (HPI-CP) or standard care (SC). Randomization was stratified by site, age, and type of transplant. The interventions began at admission and continued through SCT week +3. Primary outcomes included patient and parent reports of somatic distress and mood disturbance obtained weekly from admission through week +6 using the BASES scales. Secondary outcomes included length of hospitalization, time to engraftment, and usage of narcotic analgesic and antiemetic medications. Results A mixed model approach was used to assess longitudinal trends of patient and parent-report outcomes and test differences between groups on these measures. Significant changes across time were observed on all patient and parent-report outcomes. However, no significant differences between treatment arms were found on the primary outcomes. Similarly, no signficant between group differences were noted on any of the medical variables as secondary outcomes. Conclusions Results of this multi-site trial failed to document significant benefits of complementary interventions in the pediatric SCT setting. PMID:20626016

  8. Pharmacoeconomic analysis of palifermin to prevent mucositis among patients undergoing autologous hematopoietic stem cell transplantation.

    PubMed

    Nooka, Ajay K; Johnson, Heather R; Kaufman, Jonathan L; Flowers, Christopher R; Langston, Amelia; Steuer, Conor; Graiser, Michael; Ali, Zahir; Shah, Nishi N; Rangaraju, Sravanti; Nickleach, Dana; Gao, Jingjing; Lonial, Sagar; Waller, Edmund K

    2014-06-01

    Trials have shown benefits of palifermin in reducing the incidence and severity of oral mucositis in patients with hematological malignancies undergoing autologous hematopoietic stem cell transplantation (HSCT) with total body irradiation (TBI)-based conditioning regimens. Similar outcome data are lacking for patients receiving non-TBI-based regimens. We performed a retrospective evaluation on the pharmacoeconomic benefit of palifermin in the setting of non-TBI-based conditioning and autologous HSCT. Between January 2002 and December 2010, 524 patients undergoing autologous HSCT for myeloma (melphalan 200 mg/m²) and lymphoma (high-dose busulfan, cyclophosphamide, and etoposide) as preparative regimen were analyzed. Use of patient-controlled analgesia (PCA) was significantly lower in the palifermin-treated groups (myeloma: 13% versus 53%, P < .001; lymphoma: 46% versus 68%, P < .001). Median total transplant charges were significantly higher in the palifermin-treated group, after controlling for inflation (myeloma: $167,820 versus $143,200, P < .001; lymphoma: $168,570 versus $148,590, P < .001). Palifermin treatment was not associated with a difference in days to neutrophil engraftment, length of stay, and overall survival and was associated with an additional cost of $5.5K (myeloma) and $14K (lymphoma) per day of PCA avoided. Future studies are suggested to evaluate the cost-effectiveness of palifermin compared with other symptomatic treatments to reduce transplant toxicity using validated measures for pain and quality of life.

  9. Pros and cons of splenectomy in patients with myelofibrosis undergoing stem cell transplantation.

    PubMed

    Li, Z; Deeg, H J

    2001-03-01

    During fetal development, the spleen is a major hemopoietic organ. In the adult human, this task is relinquished to the bone marrow. However, under the stress of certain pathologic conditions, extramedullary hemopoiesis may again occur in the spleen. This is especially true for diseases of the marrow, in particular, myeloproliferative disorders such as agnogenic myeloid metaplasia, which is associated with severe fibrosis of the marrow space. At the same time, the spleen sequesters blood cells and contributes to peripheral blood cytopenias, which may improve following splenectomy. However, success is unpredictable, and the operative mortality of splenectomy is on the order of 10%. As a growing number of patients undergo hemopoietic stem cell transplantation as definitive therapy for myelofibrosis, the decision on splenectomy has additional ramifications since the spleen plays an important role in the kinetics of engraftment of donor cells and in immune reconstitution. We conclude from our analysis of available information that the benefit of splenectomy is difficult to predict, although after transplantation splenectomized patients have faster hemopoietic recovery. It appears that the most important indication for splenectomy in these patients is the relief of symptoms from massive spleen enlargement.

  10. Tracking in vivo dynamics of NK cells transferred in patients undergoing stem cell transplantation.

    PubMed

    Killig, Monica; Friedrichs, Birte; Meisig, Johannes; Gentilini, Chiara; Blüthgen, Nils; Loddenkemper, Christoph; Labopin, Myriam; Basara, Nadezda; Pfrepper, Christian; Niederwieser, Dietger W; Uharek, Lutz; Romagnani, Chiara

    2014-09-01

    Haploidentical stem cell transplantation (haploSCT) offers an alternative treatment option for advanced leukemia patients lacking a HLA-compatible donor. Transfer of NK cells represents a promising therapeutic option in combination with SCT, as NK cells can promote graft versus leukemia with low risk of GVH disease. In this study, we show results from a phase I/II trial in which 24 acute myeloid leukemia patients underwent haploSCT in combination with early transfer of unmodified NK cells and observed a promising 2-year overall survival rate of 37%. By performing immunomonitoring and subsequent principal component analysis, we tracked donor NK-cell dynamics in the patients and distinguished between NK cells reconstituting from CD34(+) precursors, giving rise over time to a continuum of multiple differentiation stages, and adoptively transferred NK cells. Transferred NK cells displayed a mature phenotype and proliferated in vivo during the early days after haploSCT even in the absence of exogenous IL-2 administration. Moreover, we identified the NK-cell phenotype associated with in vivo expansion. Thus, our study indicates a promising path for adoptive transfer of unmodified NK cells in the treatment of high-risk acute myeloid leukemia.

  11. IV busulfan dose individualization in children undergoing hematopoietic stem cell transplant: limited sampling strategies.

    PubMed

    Dupuis, L Lee; Sibbald, Cathryn; Schechter, Tal; Ansari, Marc; Gassas, Adam; Théorêt, Yves; Kassir, Nastya; Champagne, Martin A; Doyle, John

    2008-05-01

    We currently calculate area under the busulfan concentration time curve (AUC) using 7 plasma busulfan concentrations (AUC7) drawn after the first of 16 i.v. busulfan doses given as a 2-hour infusion every 6 hours. The aim of this study was to develop and validate limited sampling strategies (LSSs) using 3 or fewer busulfan concentration values with which to reliably calculate AUC in children undergoing hematopoietic stem cell transplant (HSCT). Children in the development group (44) received i.v. busulfan at Sick Kids; the validation group consisted of 35 children who received care at CHU Ste-Justine. Busulfan doses given and subsequent plasma busulfan concentrations were recorded. LSSs using 1 to 3 concentration-time points were developed using multiple linear regression. LSS were considered to be acceptable when adjusted r(2) > 0.9, mean bias <15% and precision <15%. Extent of agreement between the AUC7 values and the LSS AUC was assessed by the intraclass correlation coefficient (ICC) and Bland-Altman (BA) analysis. Agreement was considered to be excellent when the lower limit of the 95% confidence limit of the ICC exceeded 0.9 and when the limits of agreement in the BA analysis were +/-15% for both AUC and dose. Administration of the theoretic adjusted busulfan doses based on each LSS was simulated and cases where the resulting AUC was >1500 or <900 microM x min were noted. LSSs using 1, 2, or 3 plasma busulfan concentrations were developed that showed excellent agreement with AUC7 and adjusted busulfan doses. In the validation sample, only the 2- and 3-point LSSs demonstrated acceptable precision and lack of bias. LSSs using 2 or 3 plasma busulfan concentrations can be used to reliably estimate busulfan AUC after IV administration in children undergoing HSCT.

  12. Stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant.

    PubMed

    Fall-Dickson, Jane M; Mock, Victoria; Berk, Ronald A; Grimm, Patricia M; Davidson, Nancy; Gaston-Johansson, Fannie

    2008-01-01

    The purpose of this cross-sectional, correlational study was to describe stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant. The hypotheses that significant, positive relationships would exist between oral pain and stomatitis, state anxiety, depression, and alteration in swallowing were tested. Stomatitis, sensory dimension of oral pain, and state anxiety were hypothesized to most accurately predict oral pain overall intensity. Thirty-two women were recruited at 2 East Coast comprehensive cancer centers. Data were collected on bone marrow transplantation day +7 +/- 24 hours using Painometer, Oral Mucositis Index-20, Oral Assessment Guide, State-Trait Anxiety Inventory, and Beck Depression Inventory. Data analysis included descriptive statistics, correlations, and stepwise multiple regression. All participants had stomatitis; 47% had oral pain, with a subset reporting continuous moderate to severe oral pain despite pain management algorithms. Significant, positive associations were seen between oral pain, stomatitis, and alteration in swallowing and between oral pain with swallowing and alteration in swallowing. Oral pain was not significantly correlated with state anxiety and depression. Oral sensory and affective pain intensity most accurately predicted oral pain overall intensity. Future research needs to explore factors that affect perception and response to stomatitis-related oropharyngeal pain and individual patient response to opioid treatment.

  13. Ovarian tissue cryopreservation in girls undergoing haematopoietic stem cell transplant: experience of a single centre.

    PubMed

    Biasin, E; Salvagno, F; Berger, M; Nesi, F; Quarello, P; Vassallo, E; Evangelista, F; Marchino, G L; Revelli, A; Benedetto, C; Fagioli, F

    2015-09-01

    Fertility after childhood haemopoietic stem cell transplant (HSCT) is a major concern. Conditioning regimens before HSCT present a high risk (>80%) of ovarian failure. Since 2000, we have proposed cryopreservation of ovarian tissue to female patients undergoing HSCT at our centre, to preserve future fertility. After clinical and haematological evaluation, the patients underwent ovarian tissue collection by laparoscopy. The tissue was analysed by histologic examination to detect any tumour contamination and then frozen following the slow freezing procedure and cryopreserved in liquid nitrogen. From August 2000 to September 2013, 47 patients planned to receive HSCT, underwent ovarian tissue cryopreservation. The median age at diagnosis was 11.1 years and at the time of procedure it was 13 years, respectively. Twenty-four patients were not pubertal at the time of storage, whereas 23 patients had already experienced menarche. The median time between laparoscopy and HSCT was 25 days. Twenty-six out of 28 evaluable patients (93%) developed hypergonadotropic hypogonadism at a median time of 23.3 months after HSCT. One patient required autologous orthotopic transplantation that resulted in one live birth. Results show a very high rate of iatrogenic hypergonadotropic hypogonadism, highlighting the need for fertility preservation in these patients.

  14. Defibrotide for the management of sinusoidal obstruction syndrome in patients who undergo haemopoietic stem cell transplantation.

    PubMed

    Coutsouvelis, John; Avery, Sharon; Dooley, Michael; Kirkpatrick, Carl; Spencer, Andrew

    2016-11-01

    Sinusoidal obstruction syndrome, previously known as veno-occlusive disease (VOD/SOS), is a complication in patients undergoing haemopoietic stem cell transplantation (HSCT). Severe VOD/SOS, including progression to multi-organ failure, has resulted in a mortality of greater than 80%. Defibrotide's varying pharmacological actions, particularly on endothelial cells, make it is a useful agent to consider for prophylaxis and treatment of VOD/SOS. Barriers to its routine use include the high acquisition cost and the fact that neither the oral or parenteral formulations are licensed products in many countries at this time. This review summarises available literature on the use of defibrotide in the management of VOD/SOS. Publications consist predominantly of single centre cohort studies and case series. Available evidence indicates that defibrotide is effective in the management of VOD/SOS. Using defibrotide prophylaxis should also be considered, especially in the paediatric setting, where there are available results from a large, open label, randomized controlled trial. Patient outcome data from the larger studies and compassionate programs can inform consensus recommendations on dosing regimen and criteria for the treatment of VOD/SOS with defibrotide in the adult population. The reviewed literature indicates an effective and safe dose for treatment is 25mg/kg/day, continued for at least 14days or until complete response is achieved. Further studies are required to determine the optimal dose and duration of treatment in both paediatric patients and adults. Recent recommendations and a phase 3 trial using historical controls indicate that defibrotide should be included as a pharmacotherapy option in protocols guiding management of VOD/SOS.

  15. The Efficacy of an Oral Elemental Diet in Patients Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Morishita, Takanobu; Tsushita, Natsuko; Imai, Kanae; Sakai, Toshiyasu; Miyao, Kotaro; Sakemura, Reona; Kato, Tomonori; Niimi, Keiko; Ono, Yoshitaka; Sawa, Masashi

    2016-01-01

    Objective Conditioning regimens for hematopoietic stem cell transplantation (HSCT) are well known to cause severe gastrointestinal toxicities that often disturb the oral intake of the patients followed by poor nutrition and life-threatening infection. An oral elemental diet (ED) is an easily consumed and assimilated form of liquid nutrients mainly composed of amino acids. It alleviates the digestive loading from the intestine and is mainly used for enteral nutritional support in patients with Crohn's disease. We herein report, for the first time, the efficacy of ED for patients undergoing HSCT. Methods We evaluated the efficacy of ED in a prospective cohort study. The primary endpoint for this study was the hospitalization period. The secondary endpoint was the occurrence of oral mucositis, nausea, diarrhea and fever. Patients A total of 73 patients were consecutively enrolled between March 2011 and March 2013. Twenty-three patients underwent autologous HSCT and 50 patients underwent allogeneic HSCT. The first 21 patients did not receive ED (non-ED group; NEG) while in the successive 52 patients (ED group; EG), oral ED was started before conditioning and was continued until 28 days after transplantation. Results The patient characteristics were similar between the two groups. The mean duration of ED administration for EG was 28.7 days (range, 3-37 days), and the mean total-dose of ED administration was 1904 g (range, 240-2,960 g). The median hospitalization period was significantly shorter in EG compared to NEG, (34 days vs. 50 days; p=0.007). Grade 3-4 oral mucositis occurred less in EG than NEG (25% vs. 48%; p=0.06). Conclusion Oral ED may promote an early mucosal recovery and thereby shorten the duration of hospitalization. PMID:27980254

  16. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  17. Catheter-related bacteremia due to Kocuria rosea in a patient undergoing peripheral blood stem cell transplantation

    PubMed Central

    Altuntas, Fevzi; Yildiz, Orhan; Eser, Bülent; Gündogan, Kürsat; Sumerkan, Bulent; Çetin, Mustafa

    2004-01-01

    Background Micrococcus species may cause intracranial abscesses, meningitis, pneumonia, and septic arthritis in immunosuppressed or immunocompetent hosts. In addition, strains identified as Micrococcus spp. have been reported recently in infections associated with indwelling intravenous lines, continuous ambulatory peritoneal dialysis fluids, ventricular shunts and prosthetic valves. Case presentation We report on the first case of a catheter-related bacteremia caused by Kocuria rosea, a gram-positive microorganism belonging to the family Micrococcaceae, in a 39-year-old man undergoing peripheral blood stem cell transplantation due to relapsed Hodgkin disease. This uncommon pathogen may cause opportunistic infections in immunocompromised patients. Conclusions This report presents a case of Kocuria rosea catheter related bacteremia after stem cell transplantation successfully treated with vancomycin and by catheter removal. PMID:15615593

  18. Oral Ciprofloxacin Prophylaxis in Patients Undergoing High DoseTherapy and Autologous Hematopoietic Stem Cell Transplantation

    PubMed Central

    Tabarraee, Mahdi; Tavakoli-Ardakani, Maria; Mehdizadeh, Mahshid; Ghadiani, Mojtaba; Rezvani, Hamid; Hajifathali, Abbas; khamsi, Samiyeh

    2016-01-01

    Antibiotic prophylaxis is usually used in allogeneic stem cell transplantation, but its use in Autologous Stem Cell Transplantation (ASCT) is controversial. We evaluated the efficacy of ciprofloxacin prophylaxis in ASCT. To identify the efficacy of ciprofloxacin on the incidence of neutropenic fever and its complications, 72 patients that had been admitted to Taleghani Hospital for ASCT between 2010 and 2012 were evaluated in our study. Oral ciprofloxacin 500 mg every 12 h was administered to 30 patients on the same day of high dose chemotherapy until the first febrile episode or until the recovery of neutropenia and the results were analyzed and compared with the historical control group 42 other transplanted patients who had not previously received ciprofloxacin. The incidence of neutropenic fever was 80% with no difference between the two groups. But in ciprofloxacin group, duration of fever (1.7 days VS 3.5 days P=0.017), hospitalization due to stem cell transfusion (18.2 days VS 12.2 days p=0.03), incidence of bacteremia 3.3 % VS 33.3%, p=0.002) and platelet recovery (13.9 VS 17.7 days= 0.035) and platelet transfusions (P=0.04) were significantly lower than the control group no side effects and no delay in. Based on this study oral ciprofloxacin prophylaxis is rational, efficacious and economic in ASCT. PMID:28228813

  19. Evaluation of Quality of Life and Care Needs of Turkish Patients Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Yasar, Neslisah

    2016-01-01

    This descriptive study explored the quality of life and care needs of Turkish patients who underwent hematopoietic stem cell transplantation. The study sample consisted of 100 hematopoietic stem cell transplant patients. Their quality of life was assessed using Functional Assessment of Cancer Therapy-Bone Marrow Transplant Scale. The mean patient age was 44.99 ± 13.92 years. Changes in sexual functions, loss of hair, loss of taste, loss of appetite, and sleep disturbances were the most common symptoms. The quality of life of transplant patients was moderately affected; the functional well-being and social/family well-being subscales were the most adversely and least negatively affected (12.13 ± 6.88) dimensions, respectively. Being female, being between 50 and 59 years of age, being single, having a chronic disease, and having a history of hospitalization were associated with lower quality of life scores. Interventions to improve functional status, physical well-being, and emotional status of patients during the transplantation process may help patients cope with treatment-related impairments more effectively. Frequent screening and management of patient symptoms in order to help patients adapt to life following allogeneic hematopoietic stem cell transplantation are crucial for meeting care needs and developing strategies to improve their quality of life. PMID:28116155

  20. Unusual Methylobacterium fujisawaense Infection in a Patient with Acute Leukaemia Undergoing Hematopoietic Stem Cell Transplantation: First Case Report.

    PubMed

    Fanci, Rosa; Corti, Giampaolo; Bartoloni, Alessandro; Tortoli, Enrico; Mariottini, Alessandro; Pecile, Patrizia

    2010-01-01

    Microorganisms of the genus Methylobacterium are facultative methylotrophic, gram-negative rods that are ubiquitous in nature and rarely cause human disease, mostly in subjects with preexisting causes of immune depression. Methylobacterium fujisawaense, first proposed as a new species in 1988, has never been reported as a bacterial agent of human infections so far. Here we describe a case of M. fujisawaense infection in a relapsed acute leukaemia undergoing unrelated allogeneic hematopoietic stem cell transplantation. Molecular identification of an M. fujisawaense strain was obtained from multiple mycobacterial blood cultures.

  1. Icing oral mucositis: Oral cryotherapy in multiple myeloma patients undergoing autologous hematopoietic stem cell transplant.

    PubMed

    Chen, Joey; Seabrook, Jamie; Fulford, Adrienne; Rajakumar, Irina

    2017-03-01

    Background Up to 70% of patients receiving hematopoietic stem cell transplant develop oral mucositis as a side effect of high-dose melphalan conditioning chemotherapy. Oral cryotherapy has been documented to be potentially effective in reducing oral mucositis. The aim of this study was to examine the effectiveness of the cryotherapy protocol implemented within the hematopoietic stem cell transplant program. Methods A retrospective chart review was conducted of adult multiple myeloma patients who received high-dose melphalan conditioning therapy for autologous hematopoietic stem cell transplant. Primary endpoints were incidence and severity of oral mucositis. Secondary endpoints included duration of oral mucositis, duration of hospital stay, parenteral narcotics use and total parenteral nutrition use. Results One hundred and forty patients were included in the study, 70 patients in both no cryotherapy and cryotherapy groups. Both oral mucositis incidence and severity were found to be significantly lower in the cryotherapy group. Fifty (71.4%) experienced mucositis post cryotherapy compared to 67 (95.7%) in the no cryotherapy group (p < 0.001). The median oral mucositis severity, assessed using the WHO oral toxicity scale from grade 0-4, experienced in the no group was 2.5 vs. 2 in the cryotherapy group (p = 0.03). Oral mucositis duration and use of parenteral narcotics were also significantly reduced. Duration of hospital stay and use of parenteral nutrition were similar between the two groups. Conclusion The cryotherapy protocol resulted in a significantly lower incidence and severity of oral mucositis. These results provide evidence for the continued use of oral cryotherapy, an inexpensive and generally well-tolerated practice.

  2. Nephrotoxicity of high-dose ifosfamide/carboplatin/etoposide in adults undergoing autologous stem cell transplantation.

    PubMed

    Agaliotis, D P; Ballester, O F; Mattox, T; Hiemenz, J W; Fields, K K; Zorsky, P E; Goldstein, S C; Perkins, J B; Rosen, R M; Elfenbein, G J

    1997-11-01

    The objective of this study was to evaluate nephrotoxicity in adult patients treated with high-dose ifosfamide, carboplatin, and etoposide followed by autologous stem cell transplantation. We conducted a retrospective analysis of clinical and laboratory data from 131 patients with various malignancies who received treatment with escalating doses of ifosfamide, carboplatin, and etoposide followed by autologous stem cell transplantation as part of a phase I/II therapeutic trial. Abnormalities in glomerular filtration were evaluated by measuring peak creatinine levels and tubular dysfunction by the lowest recorded serum levels of potassium, magnesium, and bicarbonate, at different time periods after administration of ifosfamide, carboplatin, and etoposide, and after autologous stem cell transplantation. For the entire group of 131 patients, peak creatinine levels were > 1.5 mg/dL but < 3.0 mg/dL in 37% and levels were > 3.0 mg/dL in 11% at some time during their hospital stay. At the time of discharge, creatinine levels were 1.6 mg/dL to 3.0 mg/dL in 25% of patients and were > 3 mg/dL in 5%. Immediately after high-dose therapy, peak creatinine levels were significantly higher in patients receiving higher doses of ifosfamide compared to those receiving lower doses (P < 0.00001) and those receiving intermediate doses (P < 0.005). There was a dramatic decrease in serum bicarbonate, potassium, and magnesium levels immediately after chemotherapy, and they remained significantly decreased throughout the patient's hospital stay, despite massive replacement efforts (P ranging between < 0.008 and < 0.001). This is the largest adult population study documenting the incidence and severity of ifosfamide/carboplatin/etoposide-associated acute nephrotoxicity. Renal dysfunction was dose related and reversible in the majority of patients.

  3. PRES in Children Undergoing Hematopoietic Stem Cell or Solid Organ Transplantation.

    PubMed

    Masetti, Riccardo; Cordelli, Duccio Maria; Zama, Daniele; Vendemini, Francesca; Biagi, Carlotta; Franzoni, Emilio; Pession, Andrea

    2015-05-01

    Posterior reversible encephalopathy syndrome (PRES) is a clinical neuroradiologic entity that is becoming increasingly well known and documented in pediatrics. It is characterized by a variable association of seizures, headache, vomiting, altered mental status, visual disturbances, and seizures, as well as imaging suggesting white-gray matter edema involving the posterior regions of the central nervous system in most cases. The pathophysiology of PRES remains unclear. Although PRES has been associated with a widespread range of clinical conditions, namely infections, adverse drug events, autoimmune diseases, and many others, its onset after hematopoietic stem cell and solid organ transplantation remains the most commonly reported. Historically, PRES has proved to be generally reversible and associated with good clinical outcomes; however, severe complications, sometimes life-threatening, can also occur. Most reported cases of childhood PRES after hematopoietic stem cell or solid organ transplantation have been case reports or series across a broad spectrum of different transplant settings, and no clear consensus exists regarding how best to manage the syndrome. Thus, in this article, we provide a comprehensive review of the pathophysiological, clinical, and diagnostic aspects of PRES in children, with a specific focus on the transplant scenario. Differential diagnoses with other neurologic complications after pediatric transplantation are reviewed, and crucial issues in the management of PRES and the development of future research are ultimately addressed.

  4. Microbiota Manipulation With Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation

    PubMed Central

    Andermann, Tessa M.; Rezvani, Andrew; Bhatt, Ami S.

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) is a potentially life-saving therapy that often comes at the cost of complications such as graft-versus-host disease and post-transplant infections. With improved technology to under-stand the ecosystem of microorganisms (viruses, bacteria, fungi, and microeukaryotes) that make up the gut microbiota, there is increasing evidence of the microbiota’s contribution to the development of post-transplant complications. Antibiotics have traditionally been the mainstay of microbiota-altering therapies available to physicians. Recently, interest is increasing in the use of prebiotics and probiotics to support the development and sustainability of a healthier microbiota. In this review, we will describe the evidence for the use of prebiotics and probiotics in combating microbiota dysbiosis and explore the ways in which they may be used in future research to potentially improve clinical outcomes and decrease rates of graft-versus-host disease (GVHD) and post-transplant infection. PMID:26780719

  5. Synthesis and Organization of Hyaluronan and Versican by Embryonic Stem Cells Undergoing Embryoid Body Differentiation

    PubMed Central

    Shukla, Shreya; Nair, Rekha; Rolle, Marsha W.; Braun, Kathleen R.; Chan, Christina K.; Johnson, Pamela Y.; Wight, Thomas N.; McDevitt, Todd C.

    2010-01-01

    Embryonic stem cells (ESCs) provide a convenient model to probe the molecular and cellular dynamics of developmental cell morphogenesis. ESC differentiation in vitro via embryoid bodies (EBs) recapitulates many aspects of early stages of development, including the epithelial–mesenchymal transition (EMT) of pluripotent cells into more differentiated progeny. Hyaluronan and versican are important extracellular mediators of EMT processes, yet the temporal expression and spatial distribution of these extracellular matrix (ECM) molecules during EB differentiation remains undefined. Thus, the objective of this study was to evaluate the synthesis and organization of hyaluronan and versican by using murine ESCs during EB differentiation. Hyaluronan and versican (V0 and V1 isoforms), visualized by immunohistochemistry and evaluated biochemically, accumulated within EBs during the course of differentiation. Interestingly, increasing amounts of a 70-kDa proteolytic fragment of versican were also detected over time, along with ADAMTS-1 and -5 protein expression. ESCs expressed each of the hyaluronan synthases (HAS) -1, -2, and -3 and versican splice variants (V0, V1, V2, and V3) throughout EB differentiation, but HAS-2, V0, and V1 were expressed at significantly increased levels at each time point examined. Hyaluronan and versican exhibited overlapping expression patterns within EBs in regions of low cell density, and versican expression was excluded from clusters of epithelial (cytokeratin-positive) cells but was enriched within the vicinity of mesenchymal (N-cadherin-positive) cells. These results indicate that hyaluronan and versican synthesized by ESCs within EB microenvironments are associated with EMT processes and furthermore suggest that endogenously produced ECM molecules play a role in ESC differentiation. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 58

  6. Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation.

    PubMed

    Bártová, Eva; Galiová, Gabriela; Krejcí, Jana; Harnicarová, Andrea; Strasák, Ludek; Kozubek, Stanislav

    2008-12-01

    Epigenetic histone (H3) modification patterns and the nuclear radial arrangement of select genetic elements were compared in human embryonic stem cells (hESCs) before and after differentiation. H3K9 acetylation, H3K9 trimethylation, and H3K79 monomethylation were reduced at the nuclear periphery of differentiated hESCs. Differentiation coincided with centromere redistribution, as evidenced by perinucleolar accumulation of the centromeric markers CENP-A and H3K9me3, central repositioning of centromeres 1, 5, 19, and rearrangement of other centromeres at the nuclear periphery. The radial positions of PML, RARalpha genes, and human chromosomes 10, 12, 15, 17, and 19 remained relatively stable as hESCs differentiated. However, the female inactive H3K27-trimethylated X chromosome occupied a more peripheral nuclear position in differentiated cells. Thus, pluripotent and differentiated hESCs have distinct nuclear patterns of heterochromatic structures (centromeres and inactive X chromosome) and epigenetic marks (H3K9me3, and H3K27me3), while relatively conserved gene density-related radial chromatin distributions are already largely established in undifferentiated hES cells.

  7. Acute kidney injury and the risk of mortality in children undergoing hematopoietic stem cell transplantation

    PubMed Central

    Kizilbash, Sarah J.; Kashtan, Clifford E.; Chavers, Blanche M.; Cao, Qing; Smith, Angela R.

    2016-01-01

    Background Acute kidney injury (AKI) is a well-documented complication of pediatric hematopoietic stem cell transplantation (HSCT). Dialysis after HSCT is associated with a lower overall survival (OS); however, the association between less severe AKI and OS is unclear. Method We retrospectively studied 205 consecutive pediatric HSCT patients to determine the incidence and impact of all stages of AKI on OS in pediatric HSCT recipients. We used the peak pRIFLE grade during the first 100 days to classify AKI (R=risk, I= injury, F= failure, L= loss of function, E= End-stage renal disease) and used the modified Schwartz formula to estimate glomerular filtration rate. Results AKI was observed in 173 of the 205 patients (84%). The 1-year OS decreased significantly with an increasing severity of pRIFLE grades (p < 0.01). There was no difference in the OS between patients without AKI and the R/I group. Regardless of the dialysis status, stages F/L/E had significantly lower OS compared with patients without AKI or R/I (p < 0.01). There was no difference in OS among patients with dialysis and F/L/E without dialysis (p 0.65). Stages F/L/E predicted mortality independent of acute graft versus host disease, gender, and malignancy. Conclusion The OS of children after HSCT decreases significantly with an increasing severity of AKI within the first 100 days posttransplant. While our data did not show an increased risk of mortality with stages R/I, stages F/L/E predicted mortality regardless of dialysis. Prevention and minimization of AKI may improve survival after pediatric HSCT. PMID:27034153

  8. Alternatives, and adjuncts, to prophylactic platelet transfusion for people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation

    PubMed Central

    Desborough, Michael; Estcourt, Lise J; Doree, Carolyn; Trivella, Marialena; Hopewell, Sally; Stanworth, Simon J; Murphy, Michael F

    2016-01-01

    Background Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in people with thrombocytopenia. Although considerable advances have been made in platelet transfusion therapy since the mid-1970s, some areas continue to provoke debate especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding. Objectives To determine whether agents that can be used as alternatives, or adjuncts, to platelet transfusions for people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation are safe and effective at preventing bleeding. Search methods We searched 11 bibliographic databases and four ongoing trials databases including the Cochrane Central Register of Controlled Trials (CENTRAL, 2016, Issue 4), MEDLINE (OvidSP, 1946 to 19 May 2016), Embase (OvidSP, 1974 to 19 May 2016), PubMed (e-publications only: searched 19 May 2016), ClinicalTrials.gov, World Health Organization (WHO) ICTRP and the ISRCTN Register (searched 19 May 2016). Selection criteria We included randomised controlled trials in people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation who were allocated to either an alternative to platelet transfusion (artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, recombinant activated factor VII, desmopressin (DDAVP), or thrombopoietin (TPO) mimetics) or a comparator (placebo, standard care or platelet transfusion). We excluded studies of antifibrinolytic drugs, as they were the focus of another review. Data collection and analysis Two review authors screened all electronically derived citations and abstracts of papers identified by the review search strategy. Two review authors assessed risk of bias in the included studies and extracted data independently. Main results We identified 16 eligible trials. Four trials are ongoing and two have been completed but the results have

  9. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation

    PubMed Central

    Wang, Y; Zhang, Z; Chi, Y; Zhang, Q; Xu, F; Yang, Z; Meng, L; Yang, S; Yan, S; Mao, A; Zhang, J; Yang, Y; Wang, S; Cui, J; Liang, L; Ji, Y; Han, Z-B; Fang, X; Han, Z C

    2013-01-01

    Cultured human umbilical cord mesenchymal stem cells (hUC-MSCs) are being tested in several clinical trials and encouraging outcomes have been observed. To determine whether in vitro expansion influences the genomic stability of hUC-MSCs, we maintained nine hUC-MSC clones in long-term culture and comparatively analyzed them at early and late passages. All of the clones senesced in culture, exhibiting decreased telomerase activity and shortened telomeres. Two clones showed no DNA copy number variations (CNVs) at passage 30 (P30). Seven clones had ≥1 CNVs at P30 compared with P3, and one of these clones appeared trisomic chromosome 10 at the late passage. No tumor developed in immunodeficient mice injected with hUC-MSCs, regardless of whether the cells had CNVs at the late passage. mRNA-Seq analysis indicated that pathways of cell cycle control and DNA damage response were downregulated during in vitro culture in hUC-MSC clones that showed genomic instability, but the same pathways were upregulated in the clones with good genomic stability. These results demonstrated that hUC-MSCs can be cultured for many passages and attain a large number of cells, but most of the cultured hUC-MSCs develop genomic alterations. Although hUC-MSCs with genomic alterations do not undergo malignant transformation, periodic genomic monitoring and donor management focusing on genomic stability are recommended before these cells are used for clinical applications. PMID:24309937

  10. Prognostic impact of viral reactivations in acute myeloid leukemia patients undergoing allogeneic stem cell transplantation in first complete response

    PubMed Central

    Guenounou, Sarah; Borel, Cécile; Bérard, Emilie; Yon, Edwige; Fort, Marylise; Mengelle, Catherine; Bertoli, Sarah; Sarry, Audrey; Tavitian, Suzanne; Huguet, Françoise; Attal, Michel; Récher, Christian; Huynh, Anne

    2016-01-01

    Abstract Cytomegalovirus (CMV) serological status of donor and recipient as well as CMV reactivation have been associated with a lower risk of relapse in acute myeloid leukemia (AML) patients after allogeneic stem cell transplantation (alloSCT). Since immunosuppression following transplant allows resurgence of many other viruses, we retrospectively evaluated the impact of viral reactivations on relapse and survival in a cohort of 136 AML patients undergoing alloSCT in first remission from sibling (68%) or unrelated (32%) donors. Myeloablative and reduced-intensity conditioning regimen were given to 71 and 65 patients, respectively. Including CMV reactivations, at least 1 viral reactivation was recorded in 76 patients. Viral reactivations were associated with a lower risk of relapse (adjusted HR 0.14; 95% CI 0.07–0.30; P < 0.01), better disease-free survival (aHR 0.29; 95% CI 0.16–0.54; P < 0.01) but higher non relapse mortality. This translated into a better overall survival (aHR 0.44; 95%CI 0.25–0.77; P < 0.01) in patients who experienced viral reactivation. Thus, viral reactivations, including but not limited to CMV reactivation, are associated with a better outcome particularly with regard to the risk of relapse in AML patients undergoing alloSCT. New guidelines regarding the choice of donor according to the CMV serostatus are needed. PMID:27902595

  11. Study of Pulmonary Complications in Pediatric Patients With Storage Disorders Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

    ClinicalTrials.gov

    2005-06-23

    I Cell Disease; Fucosidosis; Globoid Cell Leukodystrophy; Adrenoleukodystrophy; Mannosidosis; Niemann-Pick Disease; Pulmonary Complications; Mucopolysaccharidosis I; Mucopolysaccharidosis VI; Metachromatic Leukodystrophy; Gaucher's Disease; Wolman Disease

  12. Prevalence of Resistant Gram-Negative Bacilli in Bloodstream Infection in Febrile Neutropenia Patients Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Wang, Ling; Wang, Ying; Fan, Xing; Tang, Wei; Hu, Jiong

    2015-01-01

    Abstract Bloodstream infection (BSI) is an important cause of morbidity and mortality in patients undergoing hematopoietic stem cell transplantation (HSCT). To evaluate the causative bacteria and identify risk factors for BSI associated mortality in febrile neutropenia patients undergoing HSCT, we collected the clinical and microbiological data from patients underwent HSCT between 2008 and 2014 and performed a retrospective analysis. Throughout the study period, among 348 episodes of neutropenic fever in patients underwent HSCT, 89 episodes in 85 patients had microbiological defined BSI with a total of 108 isolates. Gram-negative bacteria (GNB) were the most common isolates (76, 70.3%) followed by gram-positive bacteria (GPB, 29, 26.9%) and fungus (3, 2.8%). As to the drug resistance, 26 multiple drug resistance (MDR) isolates were identified. Resistant isolates (n = 23) were more common documented in GNB, mostly Escherichia coli (9/36, 25%) and Klebsiella pneumonia (6/24, 25%). A total of 12 isolated were resistant to carbapenem including 4 K pneumoniae (4/24, 16.7%), 3 Stenotrophomonas maltophilia, and 1 Pseudomonas aeruginosa and other 4 GNB isolates (Citrobacter freumdii, Pseudomonas stutzeri, Acinetobacter baumanii, and Chryseobacterium indologenes). As to the GPB, only 3 resistant isolates were documented including 2 methicillin-resistant isolates (Staphylococcus hominis and Arcanobacterium hemolysis) and 1 vancomycin-resistant Enterococcus faecium. Among these 85 patients with documented BSI, 11 patients died of BSI as primary or associated cause with a BSI-related mortality of 13.1 ± 3.7% and 90-day overall survival after transplantation at 80.0 ± 4.3%. Patients with high-risk disease undergoing allo-HSCT, prolonged neutropenia (≥15 days) and infection with carbapenem-resistant GNB were associated with BSI associated mortality in univariate and multivariate analyses. Our report revealed a prevalence of GNB in BSI of neutropenic patients

  13. Ravuconazole in Preventing Fungal Infections in Patients Undergoing Allogeneic Stem Cell Transplantation

    ClinicalTrials.gov

    2012-03-07

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Infection; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor

  14. Collecting and Storing Tissue and DNA Samples From Patients Undergoing a Donor Stem Cell Transplant

    ClinicalTrials.gov

    2012-11-04

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor

  15. Mechanical Stimulation in Preventing Bone Density Loss in Patients Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2012-07-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Plasma Cell Neoplasm; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved

  16. Ondansetron in Preventing Nausea and Vomiting in Patients Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2010-08-26

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With T(15;17)(q22;q12); Adult Acute Myeloid Leukemia With T(16;16)(p13;q22); Adult Acute Myeloid Leukemia With T(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; De Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell

  17. Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-11-23

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Nodular Lymphocyte Predominant Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Isolated Plasmacytoma of Bone; Monoclonal Gammopathy of Undetermined Significance; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously

  18. Rat bone marrow mesenchymal stem cells undergo malignant transformation via indirect co-cultured with tumour cells.

    PubMed

    Liu, Jianping; Zhang, Yalan; Bai, Lu; Cui, Xiangrong; Zhu, Jing

    2012-12-01

    Mesenchymal stem cells (MSCs) have potential applications in regenerative medicine and tissue engineering as well as being potential carriers for tumour therapy. However, the safety of using MSCs in tumours is unknown. Herein, we analyse malignant transformation of MSCs in the tumour microenvironment. Rat bone marrow MSCs were cultured with malignant rat glioma C6 cells without direct cell-cell contact. After 7 days, the cells were assessed for transformation using flow cytometry, real-time quantitative PCR, immunofluorescence and chromosomal analysis. In addition, wild-type (WT) p53, mutant p53 and mdm2 was determined using Western blotting. Almost all MSCs became phenotypically malignant cells, with significantly decreased WT p53 expression and increased expression of mutant p53 and mdm2, along with an aneuploid karyotype. To evaluate tumorigenesis in vivo, the MSCs indirect co-cultured with C6 cells for 7 days were transplanted subcutaneously into immuno-deficient mice. The cells developed into a large tumour at the injection site within 8 weeks, with systemic symptoms including cachexia and scoliosis. Pathological and cytological analysis revealed poorly differentiated pleomorphic cells with a dense vascular network and aggressive invasion into the adjacent muscle. These data demonstrate that MSCs became malignant cancer cells when exposed to the tumour microenvironment and suggest that factors released from the cancer cells have a critical role in the malignant transformation of MSCs.

  19. Dendritic cell count in the graft predicts relapse in patients with hematologic malignancies undergoing an HLA-matched related allogeneic peripheral blood stem cell transplant.

    PubMed

    Rajasekar, Reena; Lakshmi, Kavitha M; George, Biju; Viswabandya, Auro; Thirugnanam, Rajasekar; Abraham, Aby; Chandy, Mammen; Srivastava, Alok; Mathews, Vikram

    2010-06-01

    We investigated the impact of the number of infused and reconstituted immunocompetent cells including dendritic cells (DCs) on clinical outcome of patients with hematologic malignancies undergoing an allogeneic peripheral blood stem cell transplantation. Sixty-nine consecutive patients with hematologic malignancies were included in the analysis. The median age of the cohort was 32 years (range: 2-62 years) and there were 39 (57%) males. Twenty-one (30%) patients relapsed with a cumulative incidence of 44 % +/- 14% at a median follow up of 28 months. On a multivariate analysis, a high plasmacytoid dendritic cell (PC) content in the graft was associated with higher risk of relapse. The patients were further categorized based on the median PC counts in the graft as high (> or =2.3 x 10(6)/kg) and low (<2.3 x 10(6)/kg) groups. The baseline characteristics of these 2 groups were comparable. The group that had a high PC content in the graft had significantly higher risk of relapse and lower overall survival (OS) and event-free survival (EFS). Our data suggests that PC content in the graft predicts clinical outcomes such as relapse and survival in patients with hematologic malignancies undergoing an allogeneic HLA matched related peripheral blood stem cell transplantation. There is potential for pretransplant manipulation of this cellular subset in the graft.

  20. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation.

    PubMed

    van Burik, Jo-Anne H; Ratanatharathorn, Voravit; Stepan, Daniel E; Miller, Carole B; Lipton, Jeffrey H; Vesole, David H; Bunin, Nancy; Wall, Donna A; Hiemenz, John W; Satoi, Yoichi; Lee, Jeanette M; Walsh, Thomas J

    2004-11-15

    We hypothesized that chemoprophylaxis with the echinocandin micafungin would be an effective agent for antifungal prophylaxis during neutropenia in patients undergoing hematopoietic stem cell transplantation (HSCT). We therefore conducted a randomized, double-blind, multi-institutional, comparative phase III trial, involving 882 adult and pediatric patients, of 50 mg of micafungin (1 mg/kg for patients weighing <50 kg) and 400 mg of fluconazole (8 mg/kg for patients weighing <50 kg) administered once per day. Success was defined as the absence of suspected, proven, or probable invasive fungal infection (IFI) through the end of therapy and as the absence of proven or probable IFI through the end of the 4-week period after treatment. The overall efficacy of micafungin was superior to that of fluconazole as antifungal prophylaxis during the neutropenic phase after HSCT (80.0% in the micafungin arm vs. 73.5% in the fluconazole arm [difference, 6.5%]; 95% confidence interval, 0.9%-12%; P=.03). This randomized trial demonstrates the efficacy of an echinocandin for antifungal prophylaxis in neutropenic patients.

  1. Etanercept in Treating Young Patients With Idiopathic Pneumonia Syndrome After Undergoing a Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-02-07

    Accelerated Phase Chronic Myelogenous Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Juvenile Myelomonocytic Leukemia; Previously Treated Childhood Rhabdomyosarcoma; Previously Treated Myelodysplastic Syndromes; Pulmonary Complications; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Neuroblastoma; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  2. High-dose weekly AmBisome antifungal prophylaxis in pediatric patients undergoing hematopoietic stem cell transplantation: a pharmacokinetic study.

    PubMed

    Mehta, Parinda; Vinks, Alexander; Filipovich, Alexandra; Vaughn, Gretchen; Fearing, Deborah; Sper, Christine; Davies, Stella

    2006-02-01

    Disseminated fungal infection causes significant morbidity and mortality in children undergoing hematopoietic stem cell transplantation (HSCT). The widespread use of prophylactic oral triazoles has limitations of poor absorption, interindividual variability in metabolism, and hepatic toxicity. AmBisome (amphotericin B liposomal complex) has a better safety profile than the parent drug amphotericin B and produces higher plasma and tissue concentrations. We hypothesized that once-weekly high-dose AmBisome therapy could provide adequate fungal prophylaxis for immunocompromised children undergoing HSCT. We performed a pharmacokinetic pilot study to determine whether once-weekly high-dose AmBisome administration would result in effective concentrations throughout the dosing interval. A total of 14 children (median age, 3 years, 1 month; range, 4.5 months-9 years, 9 months) undergoing HSCT received once-weekly intravenous AmBisome prophylaxis (10 mg/kg as a 2-hour infusion). Blood samples for pharmacokinetic measurements were drawn around the first and the fourth weekly doses. The concentration of non-lipid-complexed amphotericin in plasma was determined by a validated bioassay. Pharmacokinetic parameters after single doses and during steady state were calculated using standard noncompartmental methods. AmBisome was well tolerated at this dose. Complete pharmacokinetic profiles for weeks 1 and 4 were obtained in 12 patients. The half-life calculated in this pediatric population was shorter on average than reported in adults (45 hours vs 152 hours). The volume of distribution correlated best with body weight (R(2) = .55), and clearance was best predicted by initial serum creatinine level (R(2) = .19). Mean (+/- standard deviation) individual plasma trough concentrations were 0.23 (0.13) mg/L after single doses and 0.47 (0.41) mg/L after multiple doses. Mean steady-state area under the curve was higher at week 4 than after a single dose (P < .05). Single-dose and steady

  3. Early Prognostic Value of Monitoring Serum Free Light Chain in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation.

    PubMed

    Özkurt, Zübeyde Nur; Sucak, Gülsan Türköz; Akı, Şahika Zeynep; Yağcı, Münci; Haznedar, Rauf

    2017-03-16

    We hypothesized the levels of free light chains obtained before and after autologous stem cell transplantation can be useful in predicting transplantation outcome. We analyzed 70 multiple myeloma patients. Abnormal free light chain ratios before stem cell transplantation were found to be associated early progression, although without any impact on overall survival. At day +30, the normalization of levels of involved free light chain related with early progression. According to these results almost one-third reduction of free light chain levels can predict favorable prognosis after autologous stem cell transplantation.

  4. Breast Cancer Stem Cells Survive Periods of Farnesyl-Transferase Inhibitor-Induced Dormancy by Undergoing Autophagy

    PubMed Central

    Chaterjee, Moumita; van Golen, Kenneth L.

    2011-01-01

    A cancer stem cell has been defined as a cell within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. These tumor-forming cells could hypothetically originate from stem, progenitor, or differentiated cells. Previously, we have shown that breast cancer cells with low metastatic potential can be induced into a reversible state of dormancy by farnesyl transferase inhibitors (FTIs). Dormancy was induced by changes in RhoA and RhoC GTPases. Specifically, RhoA was found to be hypoactivated while RhoC was hyperactivated. In the current study we demonstrate that these dormant cells also express certain known stem cell markers such as aldehyde dehydrogenase I (ALDHI) and cluster of differentiation 44 (CD44). We also show that autophagy markers Atg5, Atg12, and LC3-B are expressed in these dormant stem cell-like breast cancer cells. Inhibiting autophagy by inhibitor 3-methyladenine (3-MA) blocked the process of autophagy reversing the dormant phenotype. Further, we show that c-jun NH2 terminal kinase (JNK/SAPK) is upregulated in these dormant stem cell-like breast cancer cells and is responsible for increasing autophagy. PMID:22046561

  5. Prediction of area under the cyclosporine concentration versus time curve in children undergoing hematopoietic stem cell transplantation.

    PubMed

    Dupuis, L Lee; Seto, Winnie; Teuffel, Oliver; Gibson, Paul; Schultz, Kirk R; Doyle, John D; Gassas, Adam; Egeler, R Maarten; Sung, Lillian; Schechter, Tal

    2013-03-01

    This prospective study aimed to validate a previously developed first-dose limited sampling strategy (LSS) to predict the area under the cyclosporine concentration-versus-time curve (AUC) and to develop and then validate an LSS to predict cyclosporine AUC at steady state. This two-center Canadian study included children (ages .4 to 17.2 years) undergoing myeloablative allogeneic hematopoietic stem cell transplantation receiving cyclosporine for acute graft-versus-host disease prophylaxis. There were three cohorts, each incorporating 24 AUC determinations: first-dose LSS validation, steady-state LSS development, and steady-state LSS validation. Patients contributing data to either of the development cohorts were excluded from the corresponding validation group. Cyclosporine was given every 12 hours as a 2-hour infusion. Cyclosporine AUC was determined after administration of the first cyclosporine dose (8 samples) and then once weekly (9 samples) until engraftment. Steady-state LSSs were developed using stepwise multiple linear regression. An LSS was considered to provide an acceptable estimate of AUC if the lower limit of the 95% confidence limit (CL) of the intraclass coefficient was .8 or higher and both bias and precision were 15% or less. Fifty-three children age .4 to 18 years participated. Cyclosporine concentrations drawn up to 4 hours from the start of the infusion correlated most strongly with AUC. The previously developed first-dose LSSs and three steady-state LSSs met criteria for acceptability. The intraclass coefficients of the three-point first-dose LSS validation cohort, three-point steady-state LSS development cohort, and three-point steady-state LSS validation cohort were .974 (95% CL: .941 to .988), .984 (95% CL: .965 to .993), and .993 (95% CL: .984 to .997), respectively. The three-point first-dose (2, 6, and 8 hours) and steady-state (2, 2.5, and 8 hours) LSSs are valid measures of cyclosporine AUC after intravenous administration over 2 hours

  6. Stem cells.

    PubMed

    Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T

    2010-10-01

    Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.

  7. Types of Stem Cells

    MedlinePlus

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  8. Higher plasma bilirubin predicts veno-occlusive disease in early childhood undergoing hematopoietic stem cell transplantation with cyclosporine

    PubMed Central

    Kim, Kwi Suk; Moon, Aree; Kang, Hyoung Jin; Shin, Hee Young; Choi, Young Hee; Kim, Hyang Sook; Kim, Sang Geon

    2016-01-01

    AIM: To analyze the association between plasma bilirubin levels and veno-occlusive disease (VOD) in non-adult patients undergoing hematopoietic stem cell transplantation (HSCT) during cyclosporine therapy. METHODS: A total of 123 patients taking cyclosporine were evaluated using an electronic medical system at the Seoul National University Children’s Hospital from the years 2004 through 2011. Patients were grouped by age and analyzed for incidence and type of adverse drug reactions (ADRs) including VOD. RESULTS: The HSCT patients were divided into three age groups: G#1 ≥ 18; 9 ≤ G#2 ≤ 17; and G#3 ≤ 8 years of age). The majority of transplant donor types were cord blood transplantations. Most prevalent ADRs represented acute graft-vs-host disease (aGVHD) and VOD. Although the incidences of aGVHD did not vary among the groups, the higher frequency ratios of VOD in G#3 suggested that an age of 8 or younger is a risk factor for developing VOD in HSCT patients. After cyclosporine therapy, the trough plasma concentrations of cyclosporine were lower in G#3 than in G#1, indicative of its increased clearance. Moreover, in G#3 only, a maximal total bilirubin level (BILmax) of ≥ 1.4 mg/dL correlated with VOD incidence after cyclosporine therapy. CONCLUSION: HSCT patients 8 years of age or younger are more at risk for developing VOD, diagnosed as hyperbilirubinemia, tender hepatomegaly, and ascites/weight gain after cyclosporine therapy, which may be represented by a criterion of plasma BILmax being ≥ 1.4 mg/dL, suggestive of more sensitive VOD indication in this age group. PMID:27358786

  9. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells

    SciTech Connect

    Yamada, Yoji; Sakurada, Kazuhiro; Takeda, Yukiji; Gojo, Satoshi; Umezawa, Akihiro . E-mail: umezawa@1985.jukuin.keio.ac.jp

    2007-02-15

    Bone marrow-derived stromal cells can give rise to cardiomyocytes as well as adipocytes, osteocytes, and chondrocytes in vitro. The existence of mesenchymal stem cells has been proposed, but it remains unclear if a single-cell-derived stem cell stochastically commits toward a cardiac lineage. By single-cell marking, we performed a follow-up study of individual cells during the differentiation of 9-15c mesenchymal stromal cells derived from bone marrow cells. Three types of cells, i.e., cardiac myoblasts, cardiac progenitors and multipotent stem cells were differentiated from a single cell, implying that cardiomyocytes are generated stochastically from a single-cell-derived stem cell. We also demonstrated that overexpression of Csx/Nkx2.5 and GATA4, precardiac mesodermal transcription factors, enhanced cardiomyogenic differentiation of 9-15c cells, and the frequency of cardiomyogenic differentiation was increased by co-culturing with fetal cardiomyocytes. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 behaved like cardiac transient amplifying cells, and still retained their plasticity in vivo.

  10. The Impact of Methylenetetrahydrofolate Reductase C677T Polymorphism on Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation with Methotrexate Prophylaxis

    PubMed Central

    Shin, Dong-Yeop; Koh, Youngil; Yoon, Sung-Soo; Seong, Moon-Woo; Park, Sung Sup; Kim, Jin Hee; Lee, Yun-Gyoo; Kim, Inho

    2016-01-01

    Pharmacogenomics can explain the inter-individual differences in response to drugs, including methotrexate (MTX) used for acute graft-versus-host disease (aGVHD) prophylaxis during hematopoietic stem cell transplantation (HSCT). In real-world practice, preplanned MTX dose is arbitrarily modified according to observed toxicity which can lead to unexpected and severe aGVHD development. We aimed to validate the influence of MTHFR C677T polymorphism on the outcomes of allogenic HSCT in a relatively under-represented homogenous Asian population. A total of 177 patients were divided into 677TT group versus 677C-carriers (677CT+677CC), and clinical outcomes along with baseline characteristics were analyzed and compared. Although there was a tendency towards increased peak liver function test results and accordingly greater delta values between the highest and the baseline in 677TT group, we found no associations between genotypes and hepatotoxicity. However, the incidence of acute liver GVHD (≥ grade 2) was significantly higher in the 677TT group than in the 677CC + 677CT group (P = 0.016). A total of 25 patients (14.1%) expired due to transplantation related mortality (TRM) during the first 180 days after HSCT. Patients carrying 677TT genotype were more likely to experience early TRM than 677C-carriers. The same pattern was observed in the cumulative TRM rate, and 677TT genotype patients were more prone to cumulative TRM (P = 0.010). This translated into shorter OS for patients with 677TT compared to 677C-carriers (P = 0.010). The 3-year survival after HSCT was 29.9% for 677TT cases and 47.1% for 677C-carriers. The multivariate analysis identified 677TT genotype (HR = 1.775. 95% CI 1.122–2.808, P = 0.014) and non-CR state (HR = 2.841. 95% CI 1.627–4.960, P<0.001) as predictors for survival. In conclusion, the MTHFR 677TT genotype appears to be associated with acute liver GVHD, and represent a risk factor for TRM and survival in patients undergoing HSCT with MTX as

  11. Infectious complications associated with the use of central venous catheters in patients undergoing hematopoietic stem cell transplantation.

    PubMed

    Martinho, Gláucia Helena; Romanelli, Roberta M C; Teixeira, Gustavo Machado; Macedo, Antonio V; Chaia, Juliana M C; Nobre, Vandack

    2013-07-01

    In this prospective, observational study, we sought to investigate the incidence, risk factors, and outcomes of central venous catheter-associated infection in 56 patients admitted for hematopoietic stem cell transplantation. In multivariate analysis, we found a 7-fold higher risk of central line-associated bloodstream infection with central venous catheter insertion in the internal jugular vein as compared with the subclavian access. Patients with central line-associated bloodstream infection had a higher incidence of acute renal failure.

  12. BCSH/BSBMT/UK clinical virology network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation.

    PubMed

    Dignan, Fiona L; Clark, Andrew; Aitken, Celia; Gilleece, Maria; Jayakar, Vishal; Krishnamurthy, Pramila; Pagliuca, Antonio; Potter, Michael N; Shaw, Bronwen; Skinner, Roderick; Turner, Andrew; Wynn, Robert F; Coyle, Peter

    2016-05-01

    A joint working group established by the Haemato-oncology subgroup of the British Committee for Standards in Haematology, the British Society for Bone Marrow Transplantation and the UK Clinical Virology Network has reviewed the available literature and made recommendations for the diagnosis and management of respiratory viral infections in patients with haematological malignancies or those undergoing haematopoietic stem cell transplantation. This guideline includes recommendations for the diagnosis, prevention and treatment of respiratory viral infections in adults and children. The suggestions and recommendations are primarily intended for physicians practising in the United Kingdom.

  13. Rituximab in Treating Patients Undergoing Donor Peripheral Blood Stem Cell Transplant for Relapsed or Refractory B-cell Lymphoma

    ClinicalTrials.gov

    2016-11-21

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  14. T Cells in Predicting Acute Graft-Versus-Host Disease in Patients Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-06-22

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor

  15. DNA aneuploidy in porcine bone marrow-derived mesenchymal stem cells undergoing osteogenic and adipogenic in vitro differentiation.

    PubMed

    Opiela, Jolanta; Samiec, Marcin; Bochenek, Michał; Lipiński, Daniel; Romanek, Joanna; Wilczek, Piotr

    2013-10-01

    In this study, we estimated the distribution of DNA diploidy and aneuploidy in porcine mesenchymal stem cells (pMSCs) that were subjected to osteoblast/osteocyte and adipocyte differentiation to determine the impact of long-term in vitro culture and differentiation on the cell cycle distribution and nuclear DNA profile. This determination could be helpful to confirm or exclude the suitability of physico-chemical culture conditions for the purposes of both the maintenance of an undifferentiated state and to promote differentiation in pMSCs. Flow cytometry was applied to analyze the cell cycle and occurrence of aneuploidy/diploidy, and real-time PCR was used to quantify aP2 and osteocalcin, markers of adipocytes and osteocytes, respectively. The chi-squared test was used to compare the total rates of G0/G1-, S-, and G2/M-phase cell fractions with diploid and aneuploid DNA and the DNA index ratios between three experimental groups of pMSCs. Five weeks of in vitro culture under differentiating conditions resulted in a considerable reduction of DNA stability and a remarkable increase in the rate of cells exhibiting an aneuploid DNA stem line; however, a similar dependence was not found in the nondifferentiated MSCs. Furthermore, the cell fraction rates in each phase of the mitotic cycle and the DNA index (DI) were calculated. The results of real-time PCR for aP2 and osteocalcin proved positive MSC differentiation toward adipocytes and osteocytes. In terms of the possible use of differentiated MSC lines in tissue engineering and regenerative medicine, we propose cytokinetic diagnostics using flow cytometry as an objective and useful method for screening the tumor-forming capacity and malignancy potential of both in vitro long-term cultured MSCs and MSCs subjected to ectopic differentiation.

  16. Cardiac conduction abnormalities in patients with breast cancer undergoing high-dose chemotherapy and stem cell transplantation.

    PubMed

    Ando, M; Yokozawa, T; Sawada, J; Takaue, Y; Togitani, K; Kawahigashi, N; Narabayashi, M; Takeyama, K; Tanosaki, R; Mineishi, S; Kobayashi, Y; Watanabe, T; Adachi, I; Tobinai, K

    2000-01-01

    Cardiac toxicities in 39 consecutive patients with breast cancer receiving high-dose chemotherapy (HDC) with stem cell transplantation were reviewed. All 39 patients received various anthracycline-containing regimens in adjuvant settings and/or for metastatic disease before HDC. As a cytoreductive regimen, all received cyclophosphamide 2000 mg/m2 and thiotepa 200 mg/m2 for 3 consecutive days. No immediate fatal toxicities were observed, but one patient developed chronic congestive heart failure and two had transient left ventricular dysfunction. Pericardial effusion was observed in another three patients. ST-T abnormalities during HDC were observed in two patients and arrhythmias were observed in nine, four of which occurred during stem cell infusion (SCI). There were three atrial arrhythmias, two ventricular arrhythmias, and four atrioventricular (AV)-block episodes. Two patients developed advanced and complete AV-block with an asystolic pause. Notably, three patients experienced AV-block with uncontrolled vomiting. No relationship was observed between the cumulative dose of anthracycline and cardiac toxicities during HDC. These results suggest that abnormalities in the conduction system during HDC may be more frequent than previously reported. Vagal reflex secondary to emesis may play an important role in the development of AV-block. Bone Marrow Transplantation (2000) 25, 185-189.

  17. Transfusion of ABO non-identical platelets does not influence the clinical outcome of patients undergoing autologous haematopoietic stem cell transplantation

    PubMed Central

    Solves, Pilar; Carpio, Nelly; Balaguer, Aitana; Romero, Samuel; Iacoboni, Gloria; Gómez, Inés; Lorenzo, Ignacio; Moscardó, Federico; Sanz, Jaime; Lopez, Francisca; Martin, Guillermo; Jarque, Isidro; Montesinos, Pau; de la Rubia, Javier; Sanz, Guillermo; Sanz, Miguel A.

    2015-01-01

    Background There are ABO antigens on the surface of platelets, but whether ABO compatible platelets are necessary for transfusions is a matter of ongoing debate. We retrospectively reviewed the ABO matching of platelet transfusions in a subset of patients undergoing autologous haematopoietic progenitor cell transplantation during a 14-year period. Our aim was to analyse the characteristics and outcomes of patients who received platelet transfusions that were or were not ABO identical. Material and methods We analysed 529 consecutive patients with various haematological and non-haematological diseases who underwent 553 autologous progenitor stem cell transplants at the University Hospital la Fe between January 2000 and December 2013. We retrospectively analysed and compared transfusion and clinical outcomes of patients according to the ABO match of the platelet transfusions received. The period analysed was the time from transplantation until discharge. Results The patients received a total of 2,772 platelet concentrates, of which 2,053 (74.0%) were ABO identical and 719 (26.0%) ABO non-identical; of these latter 309 were compatible and 410 incompatible with the patients’ plasma. Considering all transplants, 36 (6.5%) did not require any platelet transfusions, while in 246 (44.5%) cases, the patients were exclusively transfused with ABO identical platelets and in 47 (8.5%) cases they received only ABO non-identical platelet transfusions. The group of patients who received both ABO identical and ABO non-identical platelet transfusions had higher transfusion needs and worse clinical outcomes compared to patients who received only ABO identical or ABO non-identical platelets. Discussion In our hospital, patients undergoing autologous haematopoietic stem cell transplantation who received ABO identical or ABO non-identical platelet transfusions had similar transfusion and clinical outcomes. The isolated fact of receiving ABO non-identical platelets did not influence

  18. Bortezomib and Filgrastim in Promoting Stem Cell Mobilization in Patients With Non-Hodgkin Lymphoma or Multiple Myeloma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2016-04-19

    Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular

  19. Group-Based Trajectory Modeling of Distress and Well-Being Among Caregivers of Children Undergoing Hematopoetic Stem Cell Transplant.

    PubMed

    Sands, Stephen A; Mee, Laura; Bartell, Abraham; Manne, Sharon; Devine, Katie A; Savone, Mirko; Kashy, Deborah A

    2016-08-20

    OBJECTIVE : To examine the trajectories of caregiver psychological responses in the year following their child's hematopoetic stem cell transplant (HSCT), and whether cognitive and social processing strategies differentiated between trajectories.  METHOD : One hundred and eight caregivers randomized to the control condition of a cognitive-behavioral intervention study completed measures of distress, coping, and social support at baseline, 1 month, 6 months, and 1 year post HSCT of their child.  RESULTS : The majority reported moderate or low anxiety, depression, or distress that decreased over time, but a small group demonstrated high anxiety, depression, or distress that persisted or increased over time. Maladaptive coping was highest among caregivers in the high-persistent distress subgroup compared with the moderate-decreasing and low-stable groups. Adaptive coping was minimally associated with trajectory subgroups.  CONCLUSIONS : Screening HSCT caregivers for distress and maladaptive coping may be useful in identifying caregivers likely to experience persistently high distress who may benefit from psychological intervention.

  20. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation

    PubMed Central

    Paiva, Bruno; Vidriales, Maria-Belén; Cerveró, Jorge; Mateo, Gema; Pérez, Jose J.; Montalbán, Maria A.; Sureda, Anna; Montejano, Laura; Gutiérrez, Norma C.; de Coca, Alfonso García; de las Heras, Natalia; Mateos, Maria V.; López-Berges, Maria C.; García-Boyero, Raimundo; Galende, Josefina; Hernández, Jose; Palomera, Luis; Carrera, Dolores; Martínez, Rafael; de la Rubia, Javier; Martín, Alejandro; Bladé, Joan; Lahuerta, Juan J.; Orfao, Alberto

    2008-01-01

    Minimal residual disease (MRD) assessment is standard in many hematologic malignancies but is considered investigational in multiple myeloma (MM). We report a prospective analysis of the prognostic importance of MRD detection by multiparameter flow cytometry (MFC) in 295 newly diagnosed MM patients uniformly treated in the GEM2000 protocol VBMCP/VBAD induction plus autologous stem cell transplantation [ASCT]). MRD status by MFC was determined at day 100 after ASCT. Progression-free survival (PFS; median 71 vs 37 months, P < .001) and overall survival (OS; median not reached vs 89 months, P = .002) were longer in patients who were MRD negative versus MRD positive at day 100 after ASCT. Similar prognostic differentiation was seen in 147 patients who achieved immunofixation-negative complete response after ASCT. Moreover, MRD− immunofixation-negative (IFx−) patients and MRD− IFx+ patients had significantly longer PFS than MRD+ IFx− patients. Multivariate analysis identified MRD status by MFC at day 100 after ASCT as the most important independent prognostic factor for PFS (HR = 3.64, P = .002) and OS (HR = 2.02, P = .02). Our findings demonstrate the clinical importance of MRD evaluation by MFC, and illustrate the need for further refinement of MM re-sponse criteria. This trial is registered at http://clinicaltrials.gov under identifier NCT00560053. PMID:18669875

  1. Efficacy of Oral Cryotherapy on Oral Mucositis Prevention in Patients with Hematological Malignancies Undergoing Hematopoietic Stem Cell Transplantation: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Zhai, Ruiren; Zhao, Shasha; Luo, Lan; Li, Dandan; Zhao, Xiaoli; Wei, Huaping; Pang, Zhaoxia; Wang, Lili; Liu, Daihong; Wang, Quanshun; Gao, Chunji

    2015-01-01

    Objectives Controversy exists regarding whether oral cryotherapy can prevent oral mucositis (OM) in patients with hematological malignancies undergoing hematopoietic stem cell transplantation (HSCT). The aim of the present meta-analysis was to evaluate the efficacy of oral cryotherapy for OM prevention in patients with hematological malignancies undergoing HSCT. Methods PubMed and the Cochrane Library were searched through October 2014. Randomized controlled trials (RCTs) comparing the effect of oral cryotherapy with no treatment or with other interventions for OM in patients undergoing HSCT were included. The primary outcomes were the incidence, severity, and duration of OM. The secondary outcomes included length of analgesic use, total parenteral nutrition (TPN) use, and length of hospital stay. Results Seven RCTs involving eight articles analyzing 458 patients were included. Oral cryotherapy significantly decreased the incidence of severe OM (RR = 0.52, 95% CI = 0.27 to 0.99) and OM severity (SMD = -2.07, 95% CI = -3.90 to -0.25). In addition, the duration of TPN use and the length of hospitalization were markedly reduced (SMD = -0.56, 95% CI = -0.92 to -0.19; SMD = -0.44, 95% CI = -0.76 to -0.13; respectively). However, the pooled results were uncertain for the duration of OM and analgesic use (SMD = -0.13, 95% CI = -0.41 to 0.15; SMD = -1.15, 95% CI = -2.57 to 0.27; respectively). Conclusions Oral cryotherapy is a readily applicable and cost-effective prophylaxis for OM in patients undergoing HSCT. PMID:26024220

  2. Impact of Prophylactic Levofloxacin on Rates of Bloodstream Infection and Fever in Neutropenic Patients with Multiple Myeloma Undergoing Autologous Hematopoietic Stem Cell Transplantation.

    PubMed

    Satlin, Michael J; Vardhana, Santosh; Soave, Rosemary; Shore, Tsiporah B; Mark, Tomer M; Jacobs, Samantha E; Walsh, Thomas J; Gergis, Usama

    2015-10-01

    Few studies have evaluated the role of antibacterial prophylaxis during neutropenia in patients with multiple myeloma undergoing autologous hematopoietic stem cell transplantation (HSCT). At our center, levofloxacin prophylaxis was initiated in June 2006 in patients with myeloma who were undergoing autologous HSCT. We compared the incidence of bloodstream infection (BSI) and fever and neutropenia (FN) within 30 days of transplantation before (January 2003 to May 2006) and after (June 2006 to April 2010) the initiation of levofloxacin prophylaxis in patients undergoing autologous HSCT for myeloma. We also compared rates of BSI and FN during the same time periods in autologous HSCT recipients with lymphoma who did not receive antibacterial prophylaxis during either time period. After the initiation of levofloxacin prophylaxis, the BSI rate decreased from 41.2% (49 of 119) to 14.7% (23 of 156) and the rate of FN decreased from 91.6% to 60.9% in patients with myeloma (P < .001, for each). In contrast, rates of BSI (43.1% versus 47.3%; P = .50) and FN (98.8% versus 97.1%; P = .63) did not change in patients with lymphoma. Levofloxacin prophylaxis was independently associated with decreased odds of BSI (odds ratio, .27; 95% confidence interval, .14 to .51; P < .001) and FN (odds ratio, .18; 95% confidence interval, .09 to .36; P < .001) in multivariate analysis. Patients with myeloma had a nonsignificant increase in the risk of BSI due to levofloxacin-resistant Enterobacteriaceae (5% versus 1%, P = .08) and Clostridium difficile infection (7% versus 3%, P = .12) after the initiation of levofloxacin prophylaxis but did not have higher rates of BSI due to other resistant bacteria. Levofloxacin prophylaxis is associated with decreased risk of BSI and FN in patients with myeloma undergoing autologous HSCT.

  3. Nutritional support in patients undergoing haematopoietic stem cell transplantation: a multicentre survey of the Gruppo Italiano Trapianto Midollo Osseo (GITMO) transplant programmes.

    PubMed

    Botti, Stefano; Liptrott, Sarah Jayne; Gargiulo, Gianpaolo; Orlando, Laura

    2015-01-01

    A survey within Italian haematopoietic stem cell transplant (HSCT) programmes was performed, in order to obtain a snapshot of nutritional support (NS) in patients undergoing HSCT. The primary objective was to verify whether an evidence-based practice (EBP) approach to NS was implemented in HSCT centres. A multicentre survey was performed by questionnaire, covering the main areas of NS (screening, treatment planning, monitoring, nutritional counselling, and methods of nutritional support). The results indicated a significant variation between clinical practice and evidence-based guidelines in terms of clinical pathways, decision-making, and care provision regarding NS. Further research is required to identify reasons for the limited application of EBP and measures that may be undertaken to address such issues. Development of a multidisciplinary educational programme in order to raise awareness of the issue should be undertaken.

  4. [Altered gut bacterial flora and organic acids in feces of patients undergoing autologous stem cell transplantation with quinolone-based antibacterial prophylaxis].

    PubMed

    Hagiwara, Shotaro; Hagiwara, Shotaro; Asahara, Takashi; Nomoto, Koji; Morotomi, Masami; Ishizuka, Naoki; Miwa, Akiyoshi; O Yoshida, Takato

    2010-06-01

    Gastrointestinal toxicity and various infections are serious problems associated with high-dose chemotherapy. Antibacterial chemoprophylaxis reduces the incidence of gram-negative bacterial infection; however, it may affect the normal intestinal flora and induce drug resistance in organisms. We evaluated the chronological changes in fecal bacteria and organic acids in 6 patients undergoing autologous stem cell transplantation with quinolone-based chemoprophylaxis. All patients developed grade 2-3 diarrhea. Four patients developed grade 3 febrile neutropenia. The total count of obligatory anaerobic bacteria was significantly decreased on Day 7, but total facultative anaerobic bacterial count did not change throughout transplantation. However, Enterobacteriaceae and Lactobacillus were decreased on Day 7 and Staphylococcus was increased after transplantation. Total organic acid concentration and short-chain fatty acids were decreased on Day 7. The bacterial flora and organic acids in the gut were significantly altered in patients who underwent autologous stem cell transplantation with quinolonebased chemoprophylaxis. These changes may contribute to gastrointestinal toxicity and infections.

  5. Comparison of total body irradiation plus cyclophosphamide with busulfan plus cyclophosphamide as conditioning regimens in patients with acute lymphoblastic leukemia undergoing allogeneic hematopoietic stem cell transplant.

    PubMed

    Eroglu, Celalettin; Pala, Cigdem; Kaynar, Leylagül; Yaray, Kadir; Aksozen, M Tarkan; Bankir, Mehmet; Zararsız, Gökmen; Orhan, Okan; Gündog, Mete; Yıldız, Oguz G; Eser, Bülent; Cetin, Mustafa; Unal, Ali

    2013-11-01

    Conditioning regimens used during stem cell transplant provide prolonged control or cure of the disease in patients with acute lymphoblastic leukemia (ALL). In this study, we present a comparison of treatment results for 95 patients with ALL who underwent allogeneic hematopoietic stem cell transplant (AHSCT) with total body irradiation plus cyclophosphamide (TBI + Cy) or busulfan plus cyclophosphamide (Bu + Cy) as conditioning regimen. Median age was 25 (range: 9-54) years. Median follow-up was 24 (range: 3-107) months. Median overall survival (OS) was found to be 29 months. Median event-free survival (EFS) was 9 months. Median OS was 37 months in the TBI + Cy arm, while it was 12 months in the Bu + Cy arm, suggesting a significant advantage favoring the TBI + Cy arm (p = 0.003). Median EFS was 13 months in the TBI + Cy arm, while it was 4 months in the Bu + Cy arm, indicating a significant difference (p = 0.006). In univariate and multivariate analysis, it was found that high OS and EFS were significantly correlated with TBI + Cy conditioning regimen and lack of transplant-related mortality (p < 0.05). The TBI + Cy conditioning regimen was found to be superior to the Bu + Cy regimen in patients with ALL undergoing AHSCT regarding both OS and EFS.

  6. Associations between gastrointestinal toxicity, micro RNA and cytokine production in patients undergoing myeloablative allogeneic stem cell transplantation.

    PubMed

    Pontoppidan, Peter L; Jordan, Karina; Carlsen, Anting Liu; Uhlving, Hilde Hylland; Kielsen, Katrine; Christensen, Mette; Ifversen, Marianne; Nielsen, Claus Henrik; Sangild, Per; Heegaard, Niels Henrik Helweg; Heilmann, Carsten; Sengeløv, Henrik; Müller, Klaus

    2015-03-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a procedure with a high risk of treatment related mortality. The primary aim of the present study was to examine associations between markers of gastrointestinal toxicity, markers of systemic inflammation, and plasma levels of microRNA (miRNA) -155 and -146a during the first month after HSCT. The secondary aim was to characterize the impact of the toxic-inflammatory response on the function of circulating leukocytes during immune recovery. Thirty HSCT patients were included. Gastrointestinal injury was monitored by toxicity scores, lactulose-mannitol test and plasma citrulline, as a measure of the enterocyte population. Nadir of citrulline and maximum of oral toxicity scores, intestinal permeability, CRP and plasma levels of IL-6 and IL-10 was seen at day +7 post-HSCT. miRNA-155 and mi-RNA-146a showed an inverse relation with significantly elevated miRNA-155 and decreased miRNA-146a levels, from day 0 to day +28 compared with pre-conditioning levels. Citrulline levels below the median at day +7 were associated with higher spontaneous production of IL-6 and TNF-α as well as higher in vitro stimulated production of IL-17A at day +21. This study is the first to demonstrate that toxic responses to chemotherapy are accompanied by differential regulation of miRNAs with opposing effects on immune regulation. We find that a proinflammatory miRNA profile is sustained during the first three weeks after the transplantation, indicating that these miRNAs may play a role in the regulation of the inflammatory environment during immune reconstitution after HSCT.

  7. Stem Cell Information: Glossary

    MedlinePlus

    ... cells (skeletal stem cells) Cell-based therapies Cell culture Cell division Chromosome Clone Cloning Cord blood stem cells Culture medium Differentiation Directed differentiation DNA Ectoderm Embryo Embryoid ...

  8. Long term impact of hyperleukocytosis in newly diagnosed acute myeloid leukemia patients undergoing allogeneic stem cell transplantation: an analysis from the acute leukemia working party of the EBMT.

    PubMed

    Canaani, Jonathan; Labopin, Myriam; Socié, Gerard; Nihtinen, Anne; Huynh, Anne; Cornelissen, Jan; Deconinck, Eric; Gedde-Dahl, Tobias; Forcade, Edouard; Chevallier, Patrice; Bourhis, Jean Henri; Blaise, Didier; Mohty, Mohamad; Nagler, Arnon

    2017-03-28

    Up to 20% of acute myeloid leukemia (AML) patients present initially with hyperleukocytosis, placing them at increased risk for early mortality during induction. Yet, it is unknown whether hyperleukocytosis still retains prognostic value for AML patients undergoing hematopoietic stem cell transplantation (HSCT). Furthermore, it is unknown whether hyperleukocytosis holds prognostic significance when modern molecular markers such as FLT3-ITD and NPM1 are accounted for. To determine whether hyperleukocytosis is an independent prognostic factor influencing outcome in transplanted AML patients we performed a retrospective analysis using the registry of the acute leukemia working party of the EBMT. A cohort of 357 patients with hyperleukocytosis (159 patients with WBC 50K-100K, 198 patients with WBC≥100K) was compared to 918 patients without hyperleukocytosis. Patients with hyperleukocytosis were younger, had an increased rate of favorable risk cytogenetics, and more likely to be FLT3 and NPM1 mutated. In multivariate analysis, hyperleukocytosis was independently associated with increased relapse incidence (hazard ratio [HR] of 1.55, 95% confidence interval [CI], 1.14 - 2.12; p=0.004), decreased leukemia-free survival (HR of 1.38, 95% CI, 1.07 - 1.78; p=0.013), and inferior overall survival (HR of 1.4, 95% CI, 1.07 - 1.84; p=0.013). Hyperleukocytosis retains a significant prognostic role for AML patients undergoing HSCT. This article is protected by copyright. All rights reserved.

  9. Stem Cell Basics

    MedlinePlus

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  10. Lactobacillus in Preventing Infection in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-02-02

    Breast Cancer; Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor

  11. Palifermin in Preventing Oral Mucositis Caused by Chemotherapy and/or Radiation Therapy in Young Patients Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2013-05-30

    Breast Cancer; Graft Versus Host Disease; Kidney Cancer; Leukemia; Lymphoma; Mucositis; Multiple Myeloma; Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  12. Dose Monitoring of Busulfan and Combination Chemotherapy in Hodgkin or Non-Hodgkin Lymphoma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2015-08-12

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult

  13. Comparison of Three Distinct Prophylactic Agents Against Invasive Fungal Infections in Patients Undergoing Haplo-identical Hematopoietic Stem Cell Transplantation and Post-transplant Cyclophosphamide

    PubMed Central

    El-Cheikh, Jean; Crocchiolo, Roberto; Vai, Andrea; Furst, Sabine; Bramanti, Stefania; Sarina, Barbara; Granata, Angela; Faucher, Catherine; Mohty, Bilal; Harbi, Samia; Bouabdallah, Reda; Vey, Norbert; Santoro, Armando; Chabannon, Christian; Castagna, Luca; Blaise, Didier

    2015-01-01

    Over the past decade, invasive fungal infections (IFIs) have remained an important problem in patients undergoing allogeneic haematopoietic stem cell transplantation (Allo-HSCT). The optimal approach for prophylactic antifungal therapy has yet to bedetermined. We conducted a retrospective analysis, comparing the safety and efficacy of micafungin 50mg/day vs. fluconazole 400mg/day vs. itraconazole 200mg/day as prophylaxis for adult patients with various haematological diseases receiving haploidentical hematopoietic stem cell transplantation (haplo-HSCT) followed by high-dose cyclophosphamide (PT-Cy). Overall, 99 patients were identified: 30 patients received micafungin, 50 and 19 patients received itraconazole and fluconazole, respectively. After a median follow-up of 12 months (range: 1–51), proven or probable IFIs were reported in 3 patients (10%) in the micafungin, 5 patients in the itraconazole (10%) and 2 patients (11%) in the fluconazole group (p=0.998). Fewer patients in the micafungin group had invasive aspergillosis (1 [3%] vs. 3 [6%] in the itraconazole vs. 2 [11%] in the fluconazole group, p=0.589). Four patients (13%) in the micafungin group vs 13 (26%) patients in the itraconazole group and 10 (53%) patients in the fluconazole received empirical antifungal therapy (P = 0.19). No serious adverse events related to treatment were reported by patients, and there was no treatment discontinuation because of drug-related adverse events in both groups. The present analysis shows that micafungin did better than fluconazole in preventing invasive aspergillosis after transplant in these high-risk hematological diseases, as expected. In addition, micafungin was more effective than itraconazole in preventing all IFI episodes when also considering possible fungal infections. Future prospective studies would shed light on this issue, concerning this increasingly used transplant platform. PMID:26401237

  14. A single, double lumen high-flow catheter for patients undergoing peripheral blood stem cell transplantation. Experience at the National Cancer Institute in Mexico.

    PubMed

    Volkow, P; Téllez, O; Vázquez, C; Aguilar, C; Valencia, M; Barrera, L; Alferián, A; Zinser, J; Sobrevilla, P; Acosta, A; Texcocano, J; Vilar-Compte, D; Reynoso, E

    1997-11-01

    Peripheral blood stem cell transplantation (PBSCT) requires a high-flow catheter for adequate cell collection by apheresis and long i.v. support, this is usually achieved by multiple catheters. We analyzed our experience with Mahurkar or Permacath for apheresis and long-term i.v. support in PBSCT, cared for exclusively by an i.v. therapy team. Fifty-six catheters were used in 53 patients that completed PBSCT (28 Permacath and 28 Mahurkar). In 10 patients (19%) the same catheter was used for multiple PBSCT. The average stay was 58.4 days (7-219), Permacath 76.8 days (14-219) and Mahurkar 42 days (7-106). The incidence of infectious complications was 2.2 x 1000 catheter-days (1.7 Permacath and 3.0 Mahurkar); during neutropenia it was 3.7 x 1000 cathether-days. The incidence of thrombosis was 0.9 x 1000 catheter-days. There was a total of seven infectious episodes (12.7%). Five (9%) were local and two were (3.6%) bacteremias. The microorganism most commonly isolated was Staphylococcus sp. (57%). Four catheters (7.1%) were removed because of complications: one thrombosis and three infections. Both catheters have proven useful and safe for long-lasting vascular access in patients undergoing PBSCT. No statistical difference was found in infectious and non-infectious complications between either catheters.

  15. Rituximab in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2014-05-28

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III

  16. The Prospective Collection, Storage and Reporting of Data on Patients Undergoing Hematopoietic Stem Cell Transplantation Utilizing a Standard Preparative Regimen

    ClinicalTrials.gov

    2017-02-20

    Acute Myelogenous Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Non-Hodgkin's Lymphoma; Hodgkin's Disease; Multiple Myeloma; Germ Cell Neoplasms; Myelodysplastic Syndromes; Chronic Lymphocytic Leukemia; Immunodeficiency Diseases

  17. The Effects of Oral Cryotherapy on Chemotherapy-Induced Oral Mucositis in Patients Undergoing Autologous Transplantation of Blood Stem Cells: A Clinical Trial

    PubMed Central

    Askarifar, Marzieh; Lakdizaji, Sima; Ramzi, Mani; Rahmani, Azad; Jabbarzadeh, Faranak

    2016-01-01

    Background Oral mucositis is one of the irritating side effects of chemotherapy in patients undergoing bone marrow transplantation. However, up until now, the common methods of oral mucositis therapy have failed to show significant effects. Objectives The aim of this study was to investigate the effects of local cryotherapy on the intensity of chemotherapy-induced oral mucositis in autologous bone marrow transplantation patients. Patients and Methods In this single, blinded, randomized clinical trial, 29 patients undergoing stem cell transplantation in Iran were selected by convenience sampling, and randomly allocated to control (n = 13) and intervention groups (n = 16). In the intervention group, cryotherapy was applied, while the control group received a normal saline mouthwash. The severity of the mucositis and neutrophil rate were investigated in five periods, based on the world health organization (WHO) scales. The data were analyzed using descriptive statistics, the Mann-Whitney test, repeated measures analysis of variance (ANOVA), and linear regression. Results In both groups, the mucositis reached its peak intensity on the 7th day, and the least intensity was obtained on the 21st day. The neutrophil rate reached the minimum value on the 7th day, then increased up to the 21st day. The two groups showed no significant differences between the mucositis severity on the 14th and 21st days (P = 0.164), while the severity of the mucositis in the cryotherapy group was significantly less than that in the saline mouthwash group (1.81 < 2.54 and 0.13 < 0.92, respectively) on the 7th and 14th days (P < 0.05). There was no significant difference in the neutrophil rate between the groups. Conclusions The results showed that cryotherapy is more effective than the saline mouthwash in reducing the severity of mucositis. This method is recommended for the prevention of mucositis in bone marrow transplantation. PMID:27257512

  18. Vaccine Therapy in Reducing the Frequency of Cytomegalovirus Events in Patients With Hematologic Malignancies Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-01-16

    Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Hodgkin Lymphoma; Adult Non-Hodgkin Lymphoma; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Cytomegaloviral Infection; Hematopoietic and Lymphoid Cell Neoplasm; HLA-A*0201 Positive Cells Present; Myelodysplastic Syndrome; Adult Lymphoblastic Lymphoma; Chronic Lymphocytic Leukemia; Myelofibrosis; Myeloproliferative Neoplasm

  19. A Simplified Method for the Aspiration of Bone Marrow from Patients Undergoing Hip and Knee Joint Replacement for Isolating Mesenchymal Stem Cells and In Vitro Chondrogenesis

    PubMed Central

    Juneja, Subhash C.; Viswanathan, Sowmya; Ganguly, Milan; Veillette, Christian

    2016-01-01

    The procedure for aspiration of bone marrow from the femur of patients undergoing total knee arthroplasty (TKA) or total hip arthroplasty (THA) may vary from an OR (operating room) to OR based on the surgeon's skill and may lead to varied extent of clotting of the marrow and this, in turn, presents difficulty in the isolation of mesenchymal stem cells (MSCs) from such clotted bone marrow. We present a simple detailed protocol for aspirating bone marrow from such patients, isolation, and characterization of MSCs from the aspirated bone marrow specimens and show that the bone marrow presented no clotting or exhibited minimal clotting. This represents an economical source and convenient source of MSCs from bone marrow for use in regenerative medicine. Also, we presented the detailed protocol and showed that the MSCs derived from such bone marrow specimens exhibited MSCs characteristics and generated micromass cartilages, the recipe for regenerative medicine for osteoarthritis. The protocols we presented can be used as standard operating procedures (SOPs) by researchers and clinicians. PMID:27057356

  20. A Comprehensive Assessment of Toxicities in Patients with Central Nervous System Lymphoma Undergoing Autologous Stem Cell Transplantation Using Thiotepa, Busulfan, and Cyclophosphamide Conditioning.

    PubMed

    Scordo, Michael; Bhatt, Valkal; Hsu, Meier; Omuro, Antonio M; Matasar, Matthew J; DeAngelis, Lisa M; Dahi, Parastoo B; Moskowitz, Craig H; Giralt, Sergio A; Sauter, Craig S

    2017-01-01

    High-dose therapy and autologous stem cell transplantation (ASCT) with thiotepa, busulfan, and cyclophosphamide (TBC) conditioning has emerged as an effective postinduction treatment strategy for patients with primary central nervous system lymphoma (PCNSL) or secondary central nervous system lymphoma (SCNSL), but it is associated with considerable toxicity and transplantation-related mortality (TRM) in the modern era. Forty-three adult patients with chemosensitive PCNSL or SCNSL underwent TBC-conditioned ASCT between 2006 and 2015. Twenty-eight of these patients received pharmacokinetically (PK)-targeted busulfan dosing. The median number of clinically relevant individual grade ≥3 nonhematologic toxicities per patient was 5. We found no association between pretransplantation patient characteristics and the presence of more than 5 grade ≥3 nonhematologic toxicities. Patients with elevated first-dose busulfan area under the curve values did not experience more toxicity. Paradoxically, patients treated with more than 2 regimens before undergoing ASCT had lower first-dose busulfan AUC values. With a median follow-up among survivors of 20 months, 1-year progression-free survival (PFS) and overall survival (OS) from the time of ASCT were 83% and 87%, respectively. Although this study reaffirms the favorable PFS and OS associated with TBC-conditioned ASCT for PCNSL or SCNSL, this treatment strategy carries a large toxicity burden.

  1. Supersaturated Calcium Phosphate Rinse in Preventing Oral Mucositis in Young Patients Undergoing Autologous or Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-10-21

    Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Juvenile Myelomonocytic Leukemia; Mucositis; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Childhood Rhabdomyosarcoma; Previously Treated Myelodysplastic Syndromes; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Unspecified Childhood Solid Tumor, Protocol Specific

  2. Stem cell mobilization.

    PubMed

    Cottler-Fox, Michele H; Lapidot, Tsvee; Petit, Isabelle; Kollet, Orit; DiPersio, John F; Link, Dan; Devine, Steven

    2003-01-01

    Successful blood and marrow transplant (BMT), both autologous and allogeneic, requires the infusion of a sufficient number of hematopoietic progenitor/stem cells (HPCs) capable of homing to the marrow cavity and regenerating a full array of hematopoietic cell lineages in a timely fashion. At present, the most commonly used surrogate marker for HPCs is the cell surface marker CD34, identified in the clinical laboratory by flow cytometry. Clinical studies have shown that infusion of at least 2 x 10(6) CD34(+) cells/kg recipient body weight results in reliable engraftment as measured by recovery of adequate neutrophil and platelet counts approximately 14 days after transplant. Recruitment of HPCs from the marrow into the blood is termed mobilization, or, more commonly, stem cell mobilization. In Section I, Dr. Tsvee Lapidot and colleagues review the wide range of factors influencing stem cell mobilization. Our current understanding focuses on chemokines, proteolytic enzymes, adhesion molecules, cytokines and stromal cell-stem cell interactions. On the basis of this understanding, new approaches to mobilization have been designed and are now starting to undergo clinical testing. In Section II, Dr. Michele Cottler-Fox describes factors predicting the ability to mobilize the older patient with myeloma. In addition, clinical approaches to improving collection by individualizing the timing of apheresis and adjusting the volume of blood processed to achieve a desired product are discussed. Key to this process is the daily enumeration of blood CD34(+) cells. Newer methods of enumerating and mobilizing autologous blood HPCs are discussed. In Section III, Dr. John DiPersio and colleagues provide data on clinical results of mobilizing allogeneic donors with G-CSF, GM-CSF and the combination of both as relates to the number and type of cells collected by apheresis. Newer methods of stem cell mobilization as well as the relationship of graft composition on immune reconstitution

  3. Stem Cell Sciences plc.

    PubMed

    Daniels, Sebnem

    2006-09-01

    Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.

  4. Non-comparative evaluation of the safety of aerosolized amphotericin B lipid complex in patients undergoing allogeneic hematopoietic stem cell transplantation.

    PubMed

    Alexander, B D; Dodds Ashley, E S; Addison, R M; Alspaugh, J A; Chao, N J; Perfect, J R

    2006-03-01

    Allogeneic hematopoietic stem cell transplant (HSCT) recipients are at increased risk for invasive fungal infections (IFIs) over prolonged periods of time. Aerosolized amphotericin B lipid complex (ABLC) has shown promise in lung transplant recipients as a convenient means of delivering protective drug to the upper airways avoiding systemic toxicities. The safety and tolerability of aerosolized ABLC in 40 subjects undergoing allogeneic HSCT was prospectively investigated in an open-labeled, non-comparative study. Subjects received aerosolized ABLC treatment once daily for 4 days, then once weekly for 13 weeks; fluconazole was administered daily as standard of care through post-transplant day 100. Pulmonary mechanics were measured before and after each dose of inhaled ABLC; adverse events (AEs) and the development of IFI were also monitored. Cough, nausea, taste disturbance, or vomiting followed 2.2% of 458 total inhaled ABLC administrations; 5.2% of inhaled ABLC administrations were associated with >or=20% decrease in pulmonary function measurements (forced expiratory volume in 1 second or forced vital capacity) and none required treatment with bronchodilators or withdrawal from study. Four mild AEs were considered possibly or probably related to study treatment; no deaths or withdrawals from treatment were attributed to study drug. Of 3 proven IFIs occurring during the study period, only 1, a catheter-related case of disseminated fusariosis, occurred while the subject was receiving study medication. Aerosolized ABLC was well tolerated in allogeneic HSCT recipients. With only 1 of 40 subjects developing IFI while receiving treatment, the combination of fluconazole and inhaled ABLC warrants further study as antifungal prophylaxis following allogeneic HSCT.

  5. Guideline for the prevention of oral and oropharyngeal mucositis in children receiving treatment for cancer or undergoing haematopoietic stem cell transplantation

    PubMed Central

    Sung, Lillian; Robinson, Paula; Treister, Nathaniel; Baggott, Tina; Gibson, Paul; Tissing, Wim; Wiernikowski, John; Brinklow, Jennifer; Dupuis, L Lee

    2017-01-01

    Purpose To develop an evidence-based clinical practice guideline for the prevention of oral mucositis in children (0–18 years) receiving treatment for cancer or undergoing haematopoietic stem cell transplantation (HSCT). Methods The Mucositis Prevention Guideline Development Group was interdisciplinary and included internationally recognised experts in paediatric mucositis. For the evidence review, we included randomised controlled trials (RCTs) conducted in either children or adults evaluating the following interventions selected according to prespecified criteria: cryotherapy, low level light therapy (LLLT) and keratinocyte growth factor (KGF). We also examined RCTs of any intervention conducted in children. For all systematic reviews, we synthesised the occurrence of severe oral mucositis. The Grades of Recommendation, Assessment, Development and Evaluation approach was used to describe quality of evidence and strength of recommendations. Results We suggest cryotherapy or LLLT may be offered to cooperative children receiving chemotherapy or HSCT conditioning with regimens associated with a high rate of mucositis. We also suggest KGF may be offered to children receiving HSCT conditioning with regimens associated with a high rate of severe mucositis. However, KGF use merits caution as there is a lack of efficacy and toxicity data in children, and a lack of long-term follow-up data in paediatric cancers. No other interventions were recommended for oral mucositis prevention in children. Conclusions All three specific interventions evaluated in this clinical practice guideline were associated with a weak recommendation for use. There may be important organisational and cost barriers to the adoption of LLLT and KGF. Considerations for implementation and key research gaps are highlighted. PMID:25818385

  6. Age and Modified European LeukemiaNet Classification to Predict Transplant Outcomes: An Integrated Approach for Acute Myelogenous Leukemia Patients Undergoing Allogeneic Stem Cell Transplantation.

    PubMed

    Oran, Betül; Jimenez, Antonio M; De Lima, Marcos; Popat, Uday R; Bassett, Roland; Andersson, Borje S; Borthakur, Gautam; Bashir, Qaiser; Chen, Julianne; Ciurea, Stefan O; Jabbour, Elias; Cortes, Jorge; Kebriaei, Partow; Khouri, Issa F; Qazilbash, Muzaffar H; Ravandi, Farhad; Rondon, Gabriela; Lu, Xinyan; Shpall, Elizabeth J; Champlin, Richard E

    2015-08-01

    We evaluated the prognostic significance of a modified European LeukemiaNet (ELN) classification for patients with acute myelogenous leukemia (AML) undergoing hematopoietic stem cell transplantation (HSCT) while in first complete remission (CR1). We analyzed 464 AML patients with matched related (n = 211, 45.5%), matched unrelated (n = 176, 37.9%), and mismatched donors (n = 77, 16.6%). Patients were classified into 4 modified ELN risk groups (favorable, intermediate-I, intermediate-II, and adverse) separately for 354 patients age < 60 years and 110 patients age ≥ 60 years. In this modified version of ELN classification, patients with normal cytogenetic were classified by FLT3-ITD mutational status: favorable risk if FLT3-ITDwild and intermediate-I if FLT3-ITDmut. The best outcomes occurred in the ELN favorable and intermediate-II groups in younger AML patients and in the favorable and intermediate-I groups in older AML patients. Older AML patients had worse transplant outcomes within each modified ELN risk group except intermediate-I when compared with younger patients; leukemia-free survival at 3 years was 67.8% versus 49.8% in favorable, 53.4% versus 50.7% in intermediate-I, 65.7% versus 20.2% in intermediate-II, and 44.6% versus 23.8% in adverse group younger and older patients, respectively. Among lesion-specific abnormalities, del5q/-5 and abnl(17p) had the worse transplant outcomes, with 3-year leukemia-free survival rates of 18.4% and 20% in younger CR1 patients. In conclusion, the modified ELN prognostic classification developed for chemotherapy outcomes also identifies prognostic groups for HSCT, which is useful for a selection of patients for post-transplant strategies to improve outcomes.

  7. [The role of pre-transplant debulking treatment in patients undergoing allogeneic stem cell transplantation for high-risk myelodysplastic syndrome].

    PubMed

    Gauthier, Jordan; Damaj, Gandhi; Yakoub-Agha, Ibrahim

    2015-04-01

    Treatment of myelodysplastic syndromes (MDS) remains unsatisfactory. Variable success in the correction of blood cytopenias, reduction of the proportion of marrow myeloblasts, and normalization of cytogenetics has been achieved with a variety of treatment strategies, including the use of immunosuppressive drugs, differentiating agents, conventional chemotherapy, and hypomethylating agents (HMAs) However, in general, responses have not been complete and have been of limited duration; prolongation of survival, if achieved, on average has been in the range of months. Currently, allogeneic hematopoietic stem-cell transplantation (allo-SCT) remains the only approach with curative potential for patients with higher risk/advanced MDS. Yet, despite the beneficial effects of allo-SCT, post-transplant relapse is a major cause of failure. Debulking prior to transplant treatment in patients with MDS is a matter of debate. The achievement of complete remission (CR) before allo-SCT improves post-transplantation outcome, although it is not clear whether this reflects the selection of patients with more responsive disease or is related to a reduction in disease burden. Higher CR rates in patients with MDS are obtained with induction chemotherapy (ICT) than with hypomethylating agents (HMAs), although HMAs may be active in patients with complex karyotypes in whom ICT almost invariably fails. Furthermore, HMAs have a good toxicity profile compared with ICT and may therefore be considered especially in older patients and in patients with comorbidities. However, all interventions aimed at reducing disease burden before allo-SCT expose patients to the risk of complications, which may prevent them from undergoing transplantation. Therefore, up-front allo-SCT is an option, particularly for patients with life-threatening cytopenias. In the absence of prospective randomized trials, the main therapeutic approaches are discussed in this review.

  8. Stem Cells behind the Barrier

    PubMed Central

    Cangkrama, Michael; Ting, Stephen B.; Darido, Charbel

    2013-01-01

    Epidermal stem cells sustain the adult skin for a lifetime through self-renewal and the production of committed progenitors. These stem cells generate progeny that will undergo terminal differentiation leading to the development of a protective epidermal barrier. Whereas the molecular mechanisms that govern epidermal barrier repair and renewal have been extensively studied, pathways controlling stem cell differentiation remain poorly understood. Asymmetric cell divisions, small non-coding RNAs (microRNAs), chromatin remodeling complexes, and multiple differentiation factors tightly control the balance of stem and progenitor cell proliferation and differentiation, and disruption of this balance leads to skin diseases. In this review, we summarize and discuss current advances in our understanding of the mechanisms regulating epidermal stem and progenitor cell differentiation, and explore new relationships for maintenance of skin barrier function. PMID:23812084

  9. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population.

  10. Germline and Pluripotent Stem Cells.

    PubMed

    Reik, Wolf; Surani, M Azim

    2015-11-02

    Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes.

  11. [Pancreatic cancer stem cell].

    PubMed

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2015-05-01

    Prognosis of pancreatic cancer remains dismal due to the resistance against conventional therapies. Metastasis and massive invasion toward surrounding organs hamper radical resection. Small part of entire cancer cells reveal resistance against chemotherapy or radiotherapy, increased tumorigenicity and migratory phenotype. These cells are called as cancer stem cells, as a counter part of normal stem cells. In pancreatic cancer, several cancer stem cell markers have been identified, which enabled detailed characterization of pancreatic cancer stem cells. Recent researches clarified that conventional chemotherapy itself could increase cancer cells with stem cell-phenotype, suggesting the necessity of cancer stem cell-targeting therapy. Based on these observations, pancreatic cancer stem cell-targeting therapies have been tested, which effectively eliminated cancer stem cell fraction and attenuated cancer progression in experimental models. Clinical efficacy of these therapies need to be evaluated, and cancer stem cell-targeting therapy will contribute to improve the prognosis of pancreatic cancer.

  12. In-Hospital Mortality and Post-Transplant Complications in Elderly Multiple Myeloma Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation: a Population-Based Study.

    PubMed

    Sanchez, Larysa; Sylvester, Michael; Parrondo, Ricardo; Mariotti, Veronica; Eloy, Jean Anderson; Chang, Victor T

    2017-03-09

    Autologous hematopoietic stem cell transplantation (auto-HSCT) has improved survival in patients with multiple myeloma (MM) and is increasingly used in elderly patients. The aim of this study was to characterize and compare in-hospital complications and mortality after auto-HSCT in younger (< age 65) vs. elderly (≥ age 65) MM patients utilizing the Nationwide Inpatient Sample (NIS). Over a three-year period (2008-2010), 2209 patients with MM were admitted to U.S. Hospitals for auto-HSCT. The median age was 59 years, with 1650 patients (74.7%) younger than age 65 and 559 patients (25.3%) age 65 or older. Overall, in-hospital mortality in MM patients following auto-HSCT was rare (1.5%) and there was no significant difference in mortality between elderly and younger patients. Elderly patients did have a significantly increased mean length of stay (18.6 days + 10.8 days (standard deviation) vs. 16.8 days + 7.2 days, p<0.001) and mean total hospital charges ($161,117 + $105,008 vs. $151,192 + $78,342, p=0.018) compared to younger pts. Elderly patients were significantly more likely than younger patients to develop major in-hospital post-transplant complications such as severe sepsis (OR 2.70, 95% CI: 1.40-5.21, p=0.003), septic shock, (OR 3.10, 95% CI: 1.43-6.71, p=0.004), pneumonia (OR 1.62, 95% CI: 1.06-2.46, p=0.024), acute respiratory failure (OR 3.44, 95% CI: 1.70-6.96, p=0.001), endotracheal intubation requiring prolonged mechanical ventilation (OR 2.19, 95% CI: 1.06-4.55, p=0.035), acute renal failure (OR 2.14, 95% CI: 1.38-3.33, p=0.001), and cardiac arrhythmias (OR 2.06, 95% CI: 1.52-2.79, <0.001). This data may help guide informed consent discussions and provide a focus for future studies to reduce treatment-related morbidity in elderly MM patients undergoing auto-HSCT.

  13. Immunomodulatory effects of the Agaricus blazei Murrill-based mushroom extract AndoSan in patients with multiple myeloma undergoing high dose chemotherapy and autologous stem cell transplantation: a randomized, double blinded clinical study.

    PubMed

    Tangen, Jon-Magnus; Tierens, Anne; Caers, Jo; Binsfeld, Marilene; Olstad, Ole Kristoffer; Trøseid, Anne-Marie Siebke; Wang, Junbai; Tjønnfjord, Geir Erland; Hetland, Geir

    2015-01-01

    Forty patients with multiple myeloma scheduled to undergo high dose chemotherapy with autologous stem cell support were randomized in a double blinded fashion to receive adjuvant treatment with the mushroom extract AndoSan, containing 82% of Agaricus blazei Murrill (19 patients) or placebo (21 patients). Intake of the study product started on the day of stem cell mobilizing chemotherapy and continued until the end of aplasia after high dose chemotherapy, a period of about seven weeks. Thirty-three patients were evaluable for all study endpoints, while all 40 included patients were evaluable for survival endpoints. In the leukapheresis product harvested after stem cell mobilisation, increased percentages of Treg cells and plasmacytoid dendritic cells were found in patients receiving AndoSan. Also, in this group, a significant increase of serum levels of IL-1ra, IL-5, and IL-7 at the end of treatment was found. Whole genome microarray showed increased expression of immunoglobulin genes, Killer Immunoglobulin Receptor (KIR) genes, and HLA genes in the Agaricus group. Furthermore, AndoSan displayed a concentration dependent antiproliferative effect on mouse myeloma cells in vitro. There were no statistically significant differences in treatment response, overall survival, and time to new treatment. The study was registered with Clinicaltrials.gov NCT00970021.

  14. Immunomodulatory Effects of the Agaricus blazei Murrill-Based Mushroom Extract AndoSan in Patients with Multiple Myeloma Undergoing High Dose Chemotherapy and Autologous Stem Cell Transplantation: A Randomized, Double Blinded Clinical Study

    PubMed Central

    Tierens, Anne; Caers, Jo; Binsfeld, Marilene; Olstad, Ole Kristoffer; Trøseid, Anne-Marie Siebke; Wang, Junbai; Tjønnfjord, Geir Erland; Hetland, Geir

    2015-01-01

    Forty patients with multiple myeloma scheduled to undergo high dose chemotherapy with autologous stem cell support were randomized in a double blinded fashion to receive adjuvant treatment with the mushroom extract AndoSan, containing 82% of Agaricus blazei Murrill (19 patients) or placebo (21 patients). Intake of the study product started on the day of stem cell mobilizing chemotherapy and continued until the end of aplasia after high dose chemotherapy, a period of about seven weeks. Thirty-three patients were evaluable for all study endpoints, while all 40 included patients were evaluable for survival endpoints. In the leukapheresis product harvested after stem cell mobilisation, increased percentages of Treg cells and plasmacytoid dendritic cells were found in patients receiving AndoSan. Also, in this group, a significant increase of serum levels of IL-1ra, IL-5, and IL-7 at the end of treatment was found. Whole genome microarray showed increased expression of immunoglobulin genes, Killer Immunoglobulin Receptor (KIR) genes, and HLA genes in the Agaricus group. Furthermore, AndoSan displayed a concentration dependent antiproliferative effect on mouse myeloma cells in vitro. There were no statistically significant differences in treatment response, overall survival, and time to new treatment. The study was registered with Clinicaltrials.gov NCT00970021. PMID:25664323

  15. Liver cancer stem cells.

    PubMed

    Sell, Stewart; Leffert, Hyam L

    2008-06-10

    In an effort to review the evidence that liver cancer stem cells exist, two fundamental questions must be addressed. First, do hepatocellular carcinomas (HCC) arise from liver stem cells? Second, do HCCs contain cells that possess properties of cancer stem cells? For many years the finding of preneoplastic nodules in the liver during experimental induction of HCCs by chemicals was interpreted to support the hypothesis that HCC arose by dedifferentiation of mature liver cells. More recently, recognition of the role of small oval cells in the carcinogenic process led to a new hypothesis that HCC arises by maturation arrest of liver stem cells. Analysis of the cells in HCC supports the presence of cells with stem-cell properties (ie, immortality, transplantability, and resistance to therapy). However, definitive markers for these putative cancer stem cells have not yet been found and a liver cancer stem cell has not been isolated.

  16. [Prophylactic, preemptive and curative use of donor lymphocyte infusion in patients undergoing allogeneic stem cell transplantation: guidelines of the SFGM-TC].

    PubMed

    Guillaume, T; Porcheron, S; Audat, F; Bancillon, N; Berceanu, A; Charbonnier, A; Dulery, R; Edy, N; El Cheikh, J; Hermet, E; Maurer, N; Paul, F; Konopacki-Potet, J; Turlure, P; Wallart, A; Boulanger, F; Dhédin, N; Suarez, F; Yakoub-Agha, I

    2014-08-01

    In the attempt to harmonize clinical practices between different French transplantation centers, the French Society of Bone Marrow Transplantation and Cell Therapy (SFGM-TC) set up the fourth annual series of workshops which brought together practitioners from all member centers and took place in September 2013 in Lille. Here, we report our recommendations regarding the use of donor lymphocyte injection (DLI) in the prophylactic, pre-emptive and curative settings. This work has been limited to allogeneic stem cell transplantations from an HLA-matched (10/10) or -one antigen-mismatched (9/10) donor.

  17. Stem Cell Transplant

    MedlinePlus

    ... transplant is a procedure that infuses healthy blood stem cells into your body to replace your damaged or ... A bone marrow transplant is also called a stem cell transplant. A bone marrow transplant may be necessary ...

  18. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  19. Ascitic fluid drainage using a peritoneal dialysis catheter to prevent and treat multi-organ dysfunction in veno-occlusive disease in children undergoing hematopoietic stem cell transplantation.

    PubMed

    Parmar, Vijal; Lewis, Malcolm; Shenoy, Mohan; Bonney, Denise; Wynn, Robert

    2017-02-28

    Veno-occlusive disease (VOD), or sinusoidal obstruction syndrome, is a well-recognised, serious complication associated with the chemotherapy conditioning therapy used in hematopoietic stem cell transplantation (HSCT). Fluid management is typically challenging in children with this condition. We describe effective early use of peritoneal dialysis catheters to drain extravascular, intra-abdominal fluid in children with VOD, allowing intravascular fluid administration to preserve renal perfusion and function, preventing multi-organ dysfunction. All but one of the children are long-term survivors, both of their significant VOD and their HSCT. The child that did not survive died from their underlying metabolic illness, not VOD.

  20. Nail stem cells.

    PubMed

    Sellheyer, Klaus

    2013-03-01

    Our knowledge on stem cells of the hair follicle has increased exponentially after the bulge was characterized as the stem cell niche two decades ago. In contrast, little is known about stem cells in the nail unit. Whereas hair follicles are plentiful and easy to access, the human body has only twenty nails and they are rarely biopsied. Therefore, examining fetal material offers unique advantages. In the following mini-review, our current knowledge on nail stem cells is summarized and analogies to the hair follicle stem cells are drawn.

  1. Learn About Stem Cells

    MedlinePlus

    ... develops and ages, the number and type of stem cells changes. Totipotent cells are no longer present after dividing into the cells that generate the placenta and umbilical cord. Pluripotent cells ... organs and tissues. The stem cells that stay in your body throughout your ...

  2. Cancer stem cell targeted therapy: progress amid controversies.

    PubMed

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-12-29

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy.

  3. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  4. Stress and stem cells.

    PubMed

    Tower, John

    2012-01-01

    The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress.

  5. Colorectal cancer stem cells.

    PubMed

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  6. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    SciTech Connect

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A.; Wang, Xuexia; Laiosa, Michael D.

    2014-06-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.

  7. Developmental Exposure to 2,3,7,8 Tetrachlorodibenzo-p-dioxin Attenuates Capacity of Hematopoietic Stem Cells to Undergo Lymphocyte Differentiation

    PubMed Central

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A.; Wang, Xuexia; Laiosa, Michael D.

    2014-01-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life. PMID:24709672

  8. Intraoperative Stem Cell Therapy

    PubMed Central

    Coelho, Mónica Beato; Cabral, Joaquim M.S.; Karp, Jeffrey M.

    2013-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the potential regenerative mechanisms and the roles of different cell populations in the regeneration process are discussed. Although intraoperative stem cell therapies have been shown to be safe and effective for several indications, there are still critical challenges to be tackled prior to adoption into the standard surgical armamentarium. PMID:22809140

  9. Myeloproliferative neoplasm stem cells.

    PubMed

    Mead, Adam J; Mullally, Ann

    2017-03-23

    Myeloproliferative neoplasms (MPNs) arise in the hematopoietic stem cell (HSC) compartment as a result of the acquisition of somatic mutations in a single HSC that provides a selective advantage to mutant HSC over normal HSC and promotes myeloid differentiation to engender a myeloproliferative phenotype. This population of somatically mutated HSC, which initiates and sustains MPNs, is termed MPN stem cells. In >95% of cases, mutations that drive the development of an MPN phenotype occur in a mutually exclusive manner in 1 of 3 genes: JAK2, CALR, or MPL The thrombopoietin receptor, MPL, is the key cytokine receptor in MPN development, and these mutations all activate MPL-JAK-STAT signaling in MPN stem cells. Despite common biological features, MPNs display diverse disease phenotypes as a result of both constitutional and acquired factors that influence MPN stem cells, and likely also as a result of heterogeneity in the HSC in which MPN-initiating mutations arise. As the MPN clone expands, it exerts cell-extrinsic effects on components of the bone marrow niche that can favor the survival and expansion of MPN stem cells over normal HSC, further sustaining and driving malignant hematopoiesis. Although developed as targeted therapies for MPNs, current JAK2 inhibitors do not preferentially target MPN stem cells, and as a result, rarely induce molecular remissions in MPN patients. As the understanding of the molecular mechanisms underlying the clonal dominance of MPN stem cells advances, this will help facilitate the development of therapies that preferentially target MPN stem cells over normal HSC.

  10. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  11. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants A ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  12. Serum Stem Cell Factor Assay in Elderly Poor Responder Patients Undergoing IVF: A New Biomarker to Customize Follicle Aspiration Cycle by Cycle.

    PubMed

    Gizzo, Salvatore; Quaranta, Michela; Andrisani, Alessandra; Bordin, Luciana; Vitagliano, Amerigo; Esposito, Federica; Venturella, Roberta; Zicchina, Cecilia; Gangemi, Michele; Noventa, Marco

    2016-01-01

    In humans, stem cell factor (SCF), produced during follicular phase, may reflect a successful stimulation and oocyte maturation and so it may be a predictor of in vitro fertilization (IVF) outcome. An observational cohort study was conducted on 37 poor responders scheduled for fresh nondonor IVF/intracytoplasmic sperm injection treatment with standard controlled ovarian stimulation (COS) using recombinant follicle-stimulating hormone (rFSH; S-COS group). A total of 35 women received a second treatment using both rFSH and recombinant luteinizing hormone (rLH; LH-COS group). From 144 samples collected at pickup day, serum concentration of SCF (s-SCF) and follicular levels of SCF (f-SCF) were measured by enzyme-linked immunosorbent assay (ELISA) kit. No differences were observed between the 2 protocols in terms of both f-SCF and s-SCF levels. The comparison between f-SCF and s-SCF levels showed a strong linear correlation. The comparison between s-SCF levels and clinical outcomes showed a statistically significant correlation between both the number of metaphase II (MII) oocytes retrieved and the embryos obtained after fertilization. Cases with at least 3 MII oocytes showed s-SCF values >800 pg/mL, 2 MII oocytes >600 pg/mL, and 1 MII oocytes >400 pg/mL. In 100% of cases with s-SCF <400 pg/mL, no MII oocytes were recovered. All 5 pregnancies occurred in patients with s-SCF values >1000 pg/mL. The introduction of s-SCF assay in the management of poor-responder patients may contribute to solving the dilemma of whether to cancel or proceed with the stimulation cycle.

  13. Screening with spirometry is a useful predictor of later development of noninfectious pulmonary syndromes in patients undergoing allogeneic stem cell transplantation.

    PubMed

    Thompson, Philip A; Lim, Andrew; Panek-Hudson, Yvonne; Tacey, Mark; Hijazi, Ramzi; Ng, Ashley P; Szer, Jeff; Ritchie, David; Bajel, Ashish

    2014-06-01

    Noninfectious pulmonary syndromes (NIPS) frequently complicate allogeneic stem cell transplantation (allo-SCT). The most common and serious is the bronchiolitis obliterans syndrome, characterized by irreversible fixed airflow obstruction, impaired quality of life, and a high mortality. Treatment for established symptomatic disease is relatively ineffective. We therefore sought to identify potential predictive factors for development of NIPS, which may identify patients at risk in whom earlier intervention may be of benefit. Spirometry and diffusing capacity for carbon monoxide were performed before allo-SCT, day 100, and 1 year after allo-SCT. We retrospectively analyzed spirometry in consecutive patients having allo-SCT from 2004 to 2010, along with computed tomography and bronchoalveolar lavage results to identify cases of NIPS. Cases of bronchiolitis obliterans syndrome were defined as per current National Institutes of Health consensus guidelines. Spirometry results and baseline variables were compared between patients with and without NIPS to identify early predictors and risk factors for NIPS. Of 235 assessable patients, 23 (9.8%) developed NIPS. Median time of onset was day 367 (interquartile range [IQR], 144 to 544 days). Changes in forced expiratory volume in 1 second (ΔFEV1.0) was the best predictor of later NIPS development. Median ΔFEV1.0 from pretransplant to day 100 in patients later developing NIPS was -12% (IQR, -25% to -1%) versus -1% (IQR, -7% to +6%) in unaffected patients, P = .002. From pretransplant to 1 year, ΔFEV1.0 was -19% (IQR, -37% to -6%) versus -3% (IQR, -10% to +4%) in patients later developing NIPS and unaffected patients, respectively, P < .001. Busulfan-based, but not total body irradiation-based, conditioning increased the risk of NIPS (hazard ratio, 9.4 [3.4 to 23.9], P < .001). No cases of NIPS were seen in the 53 patients who received in vivo T cell depletion with antithymocyte globulin (ATG, Genzyme Transplant, Cambridge

  14. Hematopoietic Stem Cells Therapies.

    PubMed

    Chivu-Economescu, Mihaela; Rubach, Martin

    2017-01-01

    Stem cell-based therapies are recognized as a new way to treat various diseases and injuries, with a wide range of health benefits. The goal is to heal or replace diseased or destroyed organs or body parts with healthy new cells provided by stem cell transplantation. The current practical form of stem cell therapy is the hematopoietic stem cells transplant applied for the treatment of hematological disorders. There are over 2100 clinical studies in progress concerning hematopoietic stem cell therapies. All of them are using hematopoietic stem cells to treat various diseases like: cancers, leukemia, lymphoma, cardiac failure, neural disorders, auto-immune diseases, immunodeficiency, metabolic or genetic disorders. Several challenges are to be addressed prior to developing and applying large scale cell therapies: 1) to explain and control the mechanisms of differentiation and development toward a specific cell type needed to treat the disease, 2) to obtain a sufficient number of desired cell type for transplantation, 3) to overcome the immune rejection and 4) to show that transplanted cells fulfill their normal functions in vivo after transplants.

  15. When stem cells grow old: phenotypes and mechanisms of stem cell aging

    PubMed Central

    Schultz, Michael B.; Sinclair, David A.

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  16. Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing αβ+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies.

    PubMed

    Muccio, Letizia; Bertaina, Alice; Falco, Michela; Pende, Daniela; Meazza, Raffaella; Lopez-Botet, Miguel; Moretta, Lorenzo; Locatelli, Franco; Moretta, Alessandro; Della Chiesa, Mariella

    2016-03-01

    We analyzed the impact of human cytomegalovirus infection on the development of natural killer cells in 27 pediatric patients affected by hematological malignancies, who had received a HLA-haploidentical hematopoietic stem cell transplantation, depleted of both α/β+ T cells and B cells. In line with previous studies in adult recipients of umbilical cord blood transplantation, we found that human cytomegalovirus reactivation accelerated the emergence of mature natural killer cells. Thus, most children displayed a progressive expansion of a memory-like natural killer cell subset expressing NKG2C, a putative receptor for human cytomegalovirus, and CD57, a marker of terminal natural killer cell differentiation. NKG2C(+)CD57(+) natural killer cells were detectable by month 3 following hematopoietic stem cell transplantation and expanded until at least month 12. These cells were characterized by high killer Ig-like receptors (KIRs) and leukocyte inhibitory receptor 1 (LIR-1) and low Siglec-7, NKG2A and Interleukin-18Rα expression, killed tumor targets and responded to cells expressing HLA-E (a NKG2C ligand). In addition, they were poor Interferon-γ producers in response to Interleukin-12 and Interleukin-18. The impaired response to these cytokines, together with their highly differentiated profile, may reflect their skewing toward an adaptive condition specialized in controlling human cytomegalovirus. In conclusion, in pediatric patients receiving a type of allograft different from umbilical cord blood transplantation, human cytomegalovirus also induced memory-like natural killer cells, possibly contributing to controlling infections and reinforcing anti-leukemia effects.

  17. Stem Cell Organoid Engineering

    PubMed Central

    Yin, Xiaolei; Mead, Benjamin E.; Safaee, Helia; Langer, Robert; Karp, Jeffrey M.; Levy, Oren

    2016-01-01

    Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies. PMID:26748754

  18. Engineering Stem Cell Organoids.

    PubMed

    Yin, Xiaolei; Mead, Benjamin E; Safaee, Helia; Langer, Robert; Karp, Jeffrey M; Levy, Oren

    2016-01-07

    Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies.

  19. Treatment of Oral Mucositis in Hematologic Patients Undergoing Autologous or Allogeneic Transplantation of Peripheral Blood Stem Cells: a Prospective, Randomized Study with a Mouthwash Containing Camelia Sinensis Leaf Extract

    PubMed Central

    Carulli, Giovanni; Rocco, Melania; Panichi, Alessia; Chios, Chiara Feira; Ciurli, Ester; Mannucci, Chiara; Sordi, Elisabetta; Caracciolo, Francesco; Papineschi, Federico; Benedetti, Edoardo; Petrini, Mario

    2013-01-01

    Oral mucositis is an important side effect of hematopoietic stem cell transplantation (HCST), mainly due to toxicity of conditioning regimens. It produces significant pain and morbidity. The present study reports a prospective, randomized, non-blinded study testing the efficacy of a new mouthwash, called Baxidil Onco® (Sanitas Farmaceutici Srl, Tortona, Italy) in 60 hematologic patients undergoing HCST (28 autologous, 32 allogeneic). Baxidil Onco®, used three times a day from Day -1 to Day +30, in addition to standard prophylactic schedules, was administered to 14 patients undergoing autologous and 14 patients undergoing allogeneic HCST. The remaining 32 patients (14 autologous and 18 HCST) were treated only with standard prophylactic schedules and served as control. In our study, the overall incidence of oral mucositis, measured according to the World Health Organization 0-4 scale, was 50% in the Baxidl Onco® group versus 82% in the control group (P=0.022). In addition, a significant reduction in scale 2-4 oral mucositis was observed in the Baxidil Onco® group (25% vs 56.2%; P=0.0029). The results obtained indicate that incidence, severity and duration of oral mucositis induced by conditioning regimens for HCST can be significantly reduced by oral rinsing with Baxidil Onco®, in addition to the standard prophylaxis scheme. Since Camelia Sinensin extract, which is used to produce green tea, is the main agent in this mouthwash, we hypothesize that the anti-oxidative properties of polyphenolic compounds of tea might exert protective effects on oral mucosa. PMID:23888242

  20. [On plant stem cells and animal stem cells].

    PubMed

    You, Yun; Jiang, Chao; Huang, Lu-Qi

    2014-01-01

    A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both kingdoms, stem cells are defined by their clonogenic properties and are maintained by intercellular signals. The signaling molecules are different in plants and animals stem cell niches, but the roles of argonaute and polycomb group proteins suggest that there are some molecular similarities.

  1. Sirolimus, Cyclosporine, and Mycophenolate Mofetil in Preventing Graft-versus-Host Disease in Treating Patients With Hematologic Malignancies Undergoing Donor Peripheral Blood Stem Cell Transplant

    ClinicalTrials.gov

    2016-11-03

    Adult Acute Lymphoblastic Leukemia; Adult Acute Myeloid Leukemia; Adult Diffuse Large B-Cell Lymphoma; Adult Myelodysplastic Syndrome; Adult Non-Hodgkin Lymphoma; Aggressive Non-Hodgkin Lymphoma; Childhood Acute Lymphoblastic Leukemia; Childhood Acute Myeloid Leukemia; Childhood Diffuse Large B -Cell Lymphoma; Childhood Myelodysplastic Syndrome; Childhood Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Chronic Lymphocytic Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Hematopoietic and Lymphoid Cell Neoplasm; Mantle Cell Lymphoma; Plasma Cell Myeloma; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; T-Cell Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia; Waldenstrom Macroglobulinemia

  2. Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2016-06-13

    Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell

  3. Mycophenolate Mofetil and Cyclosporine in Reducing Graft-Versus-Host Disease in Patients With Hematologic Malignancies or Metastatic Kidney Cancer Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-02-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Renal Cell Carcinoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell

  4. Oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation: clinical outcomes in a context of specialized oral care using low-level laser therapy.

    PubMed

    Eduardo, Fernanda de Paula; Bezinelli, Leticia Mello; de Carvalho, Danielle Lima Corrêa; Lopes, Roberta Marques da Graça; Fernandes, Juliana Folloni; Brumatti, Melina; Vince, Carolina Sgaroni Camargo; de Azambuja, Alessandra Milani Prandini; Vogel, Cristina; Hamerschlak, Nelson; Correa, Luciana

    2015-05-01

    OM is a painful inflammatory condition of the oral mucosa, derived from the toxic effects of chemotherapy and radiotherapy. High OM severity is frequently present in HSCT pediatric patients, who exhibit multiple painful ulcers that limit their mastication and swallowing, leading to poor nutritional status. Few studies have demonstrated OM clinical outcomes in young patients undergoing HSCT. Feasibility of oral care and LLLT on OM prophylaxis and treatment is also poorly discussed. The aim of this study was to describe a specialized oral care protocol that included LLLT for pediatric patients undergoing transplantation and to demonstrate the clinical outcomes after OM prevention and treatment. Data from OM-related morbidity were collected from 51 HSCT pediatric patients treated daily with LLLT, followed by standard oral care protocols. All the patients, even infants and young children, accepted the daily oral care and LLLT well. The majority (80.0%) only exhibited erythema in the oral mucosa, and the maximum OM degree was WHO II. Patients who had undergone autologous and HLA-haploidentical transplants showed OM with the lowest severity. The frequency of total body irradiation and methotrexate prescriptions was higher in adolescents when compared with infants (p = 0.044), and adolescents also exhibited OM more severely than infants and young children. We found that good clinical outcomes were obtained using this therapy, mainly in regard to the control of OM severity and pain reduction in the oral cavity. Specialized oral care, including LLLT, is feasible and affordable for HSCT pediatric patients, although some adaptation in the patient's oral hygiene routine must be adopted with help from parents/companions and clinical staff.

  5. Beclomethasone Dipropionate in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2015-03-05

    Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Disease, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small

  6. Dental pulp stem cells

    PubMed Central

    Ashri, Nahid Y.; Ajlan, Sumaiah A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors. PMID:26620980

  7. Immunologic Diagnostic Blood Test in Predicting Side-Effects in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer or Other Diseases

    ClinicalTrials.gov

    2011-03-03

    Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Infection; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic-Myeloproliferative Diseases; Neuroblastoma; Therapy-related Toxicity

  8. Tacrolimus and Mycophenolate Mofetil With or Without Sirolimus in Preventing Acute Graft-Versus-Host Disease in Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2016-11-23

    Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Refractory Chronic Lymphocytic Leukemia; Refractory Plasma Cell Myeloma; Waldenstrom Macroglobulinemia; Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Lymphoma; Childhood Myelodysplastic Syndrome; Stage II Contiguous Adult Burkitt Lymphoma; Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Contiguous Immunoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Contiguous Mantle Cell Lymphoma; Stage II Non-Contiguous Adult Burkitt Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Non-Contiguous Immunoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma

  9. Reversing breast cancer stem cell into breast somatic stem cell.

    PubMed

    Wijaya, L; Agustina, D; Lizandi, A O; Kartawinata, M M; Sandra, F

    2011-02-01

    Stem cells have an important role in cell biology, allowing tissues to be renewed by freshly created cells throughout their lifetime. The specific micro-environment of stem cells is called stem cell niche; this environment influences the development of stem cells from quiescence through stages of differentiation. Recent advance researches have improved the understanding of the cellular and molecular components of the micro-environment--or niche--that regulates stem cells. We point out an important trend to the study of niche activity in breast cancers. Breast cancer has long been known to conserve a heterogeneous population of cells. While the majority of cells that make up tumors are destined to differentiate and eventually stop dividing, only minority populations of cells, termed cancer stem cell, possess extensive self renewal capability. These cancer stem cells possess characteristics of both stem cells and cancer cells. Breast cancer stem cells reversal to breast somatic stem cells offer a new therapy, that not only can stop the spread of breast cancer cells, but also can differentiate breast cancer stem cells into normal breast somatic stem cells. These can replace damaged breast tissue. Nevertheless, the complexity of realizing this therapy approach needs further research.

  10. The Role of Multidetector Computed Tomography in the Early Diagnosis of Invasive Pulmonary Aspergillosis in Patients with Febrile Neutropenia Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Çiledağ, Nazan; Arda, Kemal; Arıbaş, Bilgin Kadri; Tekgündüz, Ali Irfan Emre; Altuntaş, Fevzi

    2012-01-01

    Objective: To evaluate vessel involvement and the role of multidetector computed tomography (MDCT) in the earlydiagnosis of invasive pulmonary aspergillosis (IPA) in patients with febrile neutropenia and antibiotic-resistant feverundergoing autologous bone morrow transplantation. Material and Methods: In all, 74 pulmonary MDCT examinations in 37 consecutive hematopoietic stem celltransplantation patients with febrile neutropenia and clinically suspected IPA were retrospectively evaluated. Results: Diagnosis of IPA was based on Fungal Infections Cooperative Group, and National Institute of Allergy andInfectious Diseases Mycoses Study Consensus Group criteria. In all, 0, 14, and 11 patients were diagnosed as proven,probable, and possible IPA, respectively. Among the 25 patients accepted as probable and possible IPA, all had pulmonaryMDCT findings consistent with IPA. The remaining 12 patients were accepted as having fever of unknown origin (FUO)and had patent vessels based on MDCT findings.In the patients with probable and possible IPA, 72 focal pulmonary lesions were observed; in 41 of the 72 (57%) lesionsvascular occlusion was noted and the CT halo sign was observed in 25 of these 41 (61%) lesions. Resolution of feveroccurred following antifungal therapy in 19 (76%) of the 25 patients with probable and possible IPA. In all, 6 (25%)of the patients diagnosed as IPA died during follow-up. Transplant-related mortality 100 d post transplant in patientswith IPA and FUO was 24% and 0%, respectively. Conclusion: In conclusion, MDCT has a potential role in the early diagnosis of IPA via detection of vessel occlusion. PMID:24744620

  11. Sirolimus, Tacrolimus, and Antithymocyte Globulin in Preventing Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant For Hematological Cancer

    ClinicalTrials.gov

    2014-09-03

    Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Infection; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Precancerous Condition; Secondary Myelofibrosis; Small Intestine Cancer

  12. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  13. Stem Cell Research

    SciTech Connect

    Verfaillie, Catherine

    2009-01-23

    We have identified a population of primitive cells in normal human post-natal bone marrow that can, at the single cell level, differentiate in many ways and also proliferate extensively. These cells can differentiate in vitro into most mesodermal cell types (for example, bone cells, and others), as well as cells into cells of the nervous system. The finding that stem cells exist in post-natal tissues with previously unknown proliferation and differentiation potential opens up the possibility of using them to treat a host of degenerative, traumatic or congenital diseases.

  14. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    2016-01-01

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  15. Impact of FAB classification on predicting outcome in acute myeloid leukemia, not otherwise specified, patients undergoing allogeneic stem cell transplantation in CR1: An analysis of 1690 patients from the acute leukemia working party of EBMT.

    PubMed

    Canaani, Jonathan; Beohou, Eric; Labopin, Myriam; Socié, Gerard; Huynh, Anne; Volin, Liisa; Cornelissen, Jan; Milpied, Noel; Gedde-Dahl, Tobias; Deconinck, Eric; Fegueux, Nathalie; Blaise, Didier; Mohty, Mohamad; Nagler, Arnon

    2017-04-01

    The French, American, and British (FAB) classification system for acute myeloid leukemia (AML) is extensively used and is incorporated into the AML, not otherwise specified (NOS) category in the 2016 WHO edition of myeloid neoplasm classification. While recent data proposes that FAB classification does not provide additional prognostic information for patients for whom NPM1 status is available, it is unknown whether FAB still retains a current prognostic role in predicting outcome of AML patients undergoing allogeneic stem cell transplantation. Using the European Society of Blood and Bone Marrow Transplantation registry we analyzed outcome of 1690 patients transplanted in CR1 to determine if FAB classification provides additional prognostic value. Multivariate analysis revealed that M6/M7 patients had decreased leukemia free survival (hazard ratio (HR) of 1.41, 95% confidence interval (CI), 1.01-1.99; P = .046) in addition to increased nonrelapse mortality (NRM) rates (HR, 1.79; 95% CI, 1.06-3.01; P = .028) compared with other FAB types. In the NPM1(wt) AML, NOS cohort, FAB M6/M7 was also associated with increased NRM (HR, 2.17; 95% CI, 1.14-4.16; P = .019). Finally, in FLT3-ITD(+) patients, multivariate analyses revealed that specific FAB types were tightly associated with adverse outcome. In conclusion, FAB classification may predict outcome following transplantation in AML, NOS patients.

  16. Cloning of Mammary Stem Cells

    DTIC Science & Technology

    2001-11-01

    these parity-induced cells do represent a totipotent mammary stem cell population per se, but these cells might support stem cell maintenance as... Stem Cells PRINCIPAL INVESTIGATOR: Dr. Kay-Uwe Wagner CONTRACTING ORGANIZATION: University of Nebraska Medical Center Omaha, Nebraska 68198-6810 REPORT...Mammary Stem Cells DAMD17-00-1-0641 6. AUTHOR(S) Dr. Kay-Uwe Wagner 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

  17. Determination of telomerase activity in stem cells and non-stem cells of breast cancer.

    PubMed

    Li, Zhi; He, Yanli; Zhang, Jiahua; Zhang, Jinghui; Huang, Tao

    2007-07-01

    Although all normal tissue cells, including stem cells, are genetically homologous, variation in gene expression patterns has already determined the distinct roles for individual cells in the physiological process due to the occurrence of epigenetic modification. This is of special importance for the existence of tissue stem cells because they are exclusively immortal within the body, capable of self-replicating and differentiating by which tissues renew and repair itself and the total tissue cell population maintains a steady-state. Impairment of tissue stem cells is usually accompanied by a reduction in cell number, slows down the repair process and causes hypofunction. For instance, chemotherapy usually leads to depression of bone marrow and hair loss. Cellular aging is closely associated with the continuous erosion of the telomere while activation of telomerase repairs and maintains telomeres, thus slowing the aging process and prolonging cell life. In normal adults, telomerase activation mainly presents in tissue stem cells and progenitor cells giving them unlimited growth potential. Despite the extensive demonstration of telomerase activation in malignancy (> 80%), scientists found that heterogeneity also exists among the tumor cells and only minorities of cells, designated as cancer stem cells, undergo processes analogous to the self-renewal and differentiation of normal stem cells while the rest have limited lifespans. In this study, telomerase activity was measured and compared in breast cancer stem cells and non-stem cells that were phenotypically sorted by examining surface marker expression. The results indicated that cancer stem cells show a higher level of enzyme activity than non-stem cells. In addition, associated with the repair of cancer tissue (or relapse) after chemotherapy, telomerase activity in stem cells was markedly increased.

  18. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  19. Fifth Annual Stem Cell Summit.

    PubMed

    Knowlton, Daniel

    2010-04-01

    The Fifth Annual Stem Cell Summit, held in New York, included topics covering new commercial developments in the research field of stem cell-based therapies. This conference report highlights selected presentations on embryonic and adult stem cells, stem cell-based therapies for the treatment of orthopedic and cardiovascular indications and inflammatory diseases, as well as technologies for processing and storing stem cells. Investigational therapies discussed include placental expanded (PLX) cells (Pluristem Therapeutics Inc), StemEx (Gamida-Teva Joint Venture/Teva Pharmaceutical Industries Ltd) and remestemcel-L (Osiris Therapeutics Inc/Genzyme Corp/JCR Pharmaceuticals Co Ltd/ Mochida Pharmaceutical Co Ltd).

  20. In vitro assessment of bone marrow endothelial colonies (CFU-En) in non-Hodgkin's lymphoma patients undergoing peripheral blood stem cell transplantation.

    PubMed

    Lanza, F; Campioni, D; Punturieri, M; Moretti, S; Dabusti, M; Spanedda, R; Castoldi, G

    2003-12-01

    The distribution and functional characteristics of in vitro bone marrow (BM) endothelial colonies (CFU-En) were studied in 70 non-Hodgkin's lymphoma (NHL) patients in different phases of the disease to explore the association between CFU-En growth and angiogenesis, and between the number of CFU-En and the presence of hematopoietic and mesenchymal progenitor cells. The mean number of CFU-En/10(6) BM mononuclear cells seen in remission patients was significantly higher than that seen in newly diagnosed patients (P=0.04), and in normal subjects (P=0.008). Patients with low-grade NHL in remission displayed a higher CFU-En value compared with high-grade NHL (P=0.04). In the autograft group (40 patients), a significant reduction of CFU-En number was detected in the first 4-6 months after transplantation. In remission patients, the CFU-En number positively correlated with the incidence of BM colony-forming unit granulocyte-macrophage (CFU-GM) (P=0.013) and CFU-multilineage (CFU-GEMM) hematopoietic colonies (P=0.044). These in vitro data show that CFU-En numbers increase following standard-dose chemotherapy, thus providing a rationale for further investigating the effects of different cytostatic drugs on BM endothelial cells growth and function.

  1. Stem Cell Transplants (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Stem Cell Transplants KidsHealth > For Parents > Stem Cell Transplants A A A What's in this article? ... Recovery Coping en español Trasplantes de células madre Stem cells are cells in the body that have the ...

  2. Stem cells and transplant arteriosclerosis.

    PubMed

    Xu, Qingbo

    2008-05-09

    Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non-bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow-derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.

  3. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  4. [Stem cell colloquy: conclusion].

    PubMed

    Tubiana, Maurice

    2002-10-01

    The stem cell data presented and discussed during the symposium raise the hope that important medical progress can be made in several fields: neuro-degenerative diseases, those linked to cellular deficit, some aspects of aging linked to cellular degeneration, and the treatment of cancers that may harm normal tissues at risk of being infiltrated by malignant cells. Three main types of stem cells are available. (i) Those present in normal adult tissue: contrary to what was believed, some data suggest that certain adult stem cells have a great plasticity (they can differentiate into cells different from those in tissues from which they were taken) and can proliferate in vitro without losing their properties. Nevertheless, their use faces several obstacles: in ill or elderly subjects, then these cells can be limited in number or not multiply well in vitro. In this case, auto-grafting of the cells cannot be used. They must be sought in another subject, and allo-grafting causes difficult and sometimes insoluble problems of immunological tolerance. (ii) Embryonic stem cells from surplus human embryos, obtained by in vitro fertilisation, which the parents decide not to use: these cells have a great potential for proliferation and differentiation, but can also encounter problems of immunological intolerance. (iii) Cells obtained from cell nuclear transfer in oocytes: these cells are well tolerated, since they are genetically and immunologically identical to those of the host. All types of stem cells can be obtained with them. However, they do present problems. For obtaining them, female oocytes are needed, which could lead to their commercialization. Moreover, the first steps for obtaining these cells are identical to those used in reproductive cloning. It therefore appears that each type of cell raises difficult scientific and practical problems. More research is needed to overcome these obstacles and to determine which type of stem cell constitutes the best solution for

  5. Stem cells in normal mammary gland and breast cancer.

    PubMed

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  6. Neural stem cells: an overview.

    PubMed

    Parati, E A; Pozzi, S; Ottolina, A; Onofrj, M; Bez, A; Pagano, S F

    2004-01-01

    Multipotent stem cells are present in the majority of mammalian tissues where they are a renewable source of specialized cells. According to the several biological portions from which multipotent stem cells can be derived, they are characterized as a) embryonic stem cells (ESCs) isolated from the pluripotent inner-cell mass of the pre-implantation blastocyste-stage embryo; b) multipotent fetal stem cells (FSCs) from aborted fetuses; and c) adult stem cells (ASCs) localized in small zones of several organs known as "niche" where a subset of tissue cells and extracellular substrates can indefinitely house one or more stem cells and control their self-renewal and progeny production in vivo. ECSs have an high self-renewing capacity, plasticity and pluripotency over the years. Pluripotency is a property that makes a stem cell able to give rise to all cell type found in the embryo and adult animals.

  7. Stem cells and healthy aging.

    PubMed

    Goodell, Margaret A; Rando, Thomas A

    2015-12-04

    Research into stem cells and aging aims to understand how stem cells maintain tissue health, what mechanisms ultimately lead to decline in stem cell function with age, and how the regenerative capacity of somatic stem cells can be enhanced to promote healthy aging. Here, we explore the effects of aging on stem cells in different tissues. Recent research has focused on the ways that genetic mutations, epigenetic changes, and the extrinsic environmental milieu influence stem cell functionality over time. We describe each of these three factors, the ways in which they interact, and how these interactions decrease stem cell health over time. We are optimistic that a better understanding of these changes will uncover potential strategies to enhance stem cell function and increase tissue resiliency into old age.

  8. Stem Cells and Female Reproduction

    PubMed Central

    Du, Hongling; Taylor, Hugh S.

    2011-01-01

    Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent. PMID:19208782

  9. Inflammation and cancer stem cells.

    PubMed

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche.

  10. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  11. On the stem cell origin of cancer.

    PubMed

    Sell, Stewart

    2010-06-01

    In each major theory of the origin of cancer-field theory, chemical carcinogenesis, infection, mutation, or epigenetic change-the tissue stem cell is involved in the generation of cancer. Although the cancer type is identified by the more highly differentiated cells in the cancer cell lineage or hierarchy (transit-amplifying cells), the property of malignancy and the molecular lesion of the cancer exist in the cancer stem cell. In the case of teratocarcinomas, normal germinal stem cells have the potential to become cancers if placed in an environment that allows expression of the cancer phenotype (field theory). In cancers due to chemically induced mutations, viral infections, somatic and inherited mutations, or epigenetic changes, the molecular lesion or infection usually first occurs in the tissue stem cells. Cancer stem cells then give rise to transit-amplifying cells and terminally differentiated cells, similar to what happens in normal tissue renewal. However, the major difference between cancer growth and normal tissue renewal is that whereas normal transit amplifying cells usually differentiate and die, at various levels of differentiation, the cancer transit-amplifying cells fail to differentiate normally and instead accumulate (ie, they undergo maturation arrest), resulting in cancer growth.

  12. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment.

  13. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  14. Materials as stem cell regulators

    NASA Astrophysics Data System (ADS)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  15. Information on Stem Cell Research

    MedlinePlus

    ... Home » Current Research » Focus on Research Focus on Stem Cell Research Stem cells possess the unique ability to differentiate into many ... they also retain the ability to produce more stem cells, a process termed self-renewal. There are multiple ...

  16. Randomized Clinical Trial of Therapeutic Music Video Intervention for Resilience Outcomes in Adolescents/Young Adults Undergoing Hematopoietic Stem Cell Transplant: A Report from the Children’s Oncology Group

    PubMed Central

    Robb, Sheri L.; Burns, Debra S.; Stegenga, Kristin A.; Haut, Paul R.; Monahan, Patrick O.; Meza, Jane; Stump, Timothy E.; Cherven, Brooke O.; Docherty, Sharron L.; Hendricks-Ferguson, Verna L.; Kintner, Eileen K.; Haight, Ann E.; Wall, Donna A.; Haase, Joan E.

    2013-01-01

    Background To reduce the risk of adjustment problems associated with Hematopoietic Stem Cell Transplant (HSCT) for adolescents/young adults (AYA), we examined efficacy of a therapeutic music video (TMV) intervention delivered during the acute phase of HSCT to: (a) increase protective factors of spiritual perspective, social integration, family environment, courageous coping, and hope-derived meaning; (b) decrease risk factors of illness-related distress and defensive coping; and (c) increase outcomes of self-transcendence and resilience. Methods A multi-site, randomized controlled trial (COG-ANUR0631) conducted at 8 Children’s Oncology Group sites involving 113 AYA aged 11–24 years undergoing myeloablative HSCT. Participants, randomized to the TMV or low-dose control (audiobooks) group, completed 6 sessions over 3 weeks with a board-certified music therapist. Variables were based on Haase’s Resilience in Illness Model. Participants completed measures related to latent variables of illness-related distress, social integration, spiritual perspective, family environment, coping, hope-derived meaning and resilience at baseline (T1), post-intervention (T2), and 100-days post-transplant (T3). Results At T2, the TMV group reported significantly better courageous coping (ES=0.505; P=0.030). At T3, the TMV group reported significantly better social integration (ES=0.543; P=.028) and family environment (ES=0.663; P=0.008), as well as moderate non-significant effect sizes for spiritual perspective (E=0.450; P=0.071) and self-transcendence (ES=0.424; P=0.088). Conclusion The TMV intervention improves positive health outcomes of courageous coping, social integration, and family environment during a high risk cancer treatment. We recommend the TMV be examined in a broader population of AYA with high risk cancers. PMID:24469862

  17. Pharmacokinetic and Maximum Tolerated Dose Study of Micafungin in Combination with Fluconazole versus Fluconazole Alone for Prophylaxis of Fungal Infections in Adult Patients Undergoing a Bone Marrow or Peripheral Stem Cell Transplant

    PubMed Central

    Hiemenz, J.; Cagnoni, P.; Simpson, D.; Devine, S.; Chao, N.; Keirns, J.; Lau, W.; Facklam, D.; Buell, D.

    2005-01-01

    In this dose escalation study, 74 adult cancer patients undergoing bone marrow or peripheral blood stem cell transplantation received fluconazole (400 mg/day) and either normal saline (control) (12 subjects) or micafungin (12.5 to 200 mg/day) (62 subjects) for up to 4 weeks. The maximum tolerated dose (MTD) of micafungin was not reached, based on the development of Southwest Oncology Group criteria for grade 3 toxicity; drug-related toxicities were rare. Commonly occurring adverse events considered related to micafungin were headache (6.8%), arthralgia (6.8%), hypophosphatemia (4.1%), insomnia (4.1%), maculopapular rash (4.1%), and rash (4.1%). Pharmacokinetic profiles for micafungin on days 1 and 7 were similar. The mean half-life was approximately 13 h, with little variance after repeated or increasing doses. Mean maximum concentrations of the drug in serum and areas under the concentration-time curve from 0 to 24 h were approximately proportional to dose. There was no clinical or kinetic evidence of interaction between micafungin and fluconazole. Five of 12 patients (42%) in the control group and 14 of 62 (23%) in the micafungin-plus-fluconazole groups had a suspected fungal infection during treatment which resulted in empirical treatment with amphotericin B. The combination of micafungin and fluconazole was found to be safe in this high-risk patient population. The MTD of micafungin was not reached even at doses up to 200 mg/day for 4 weeks. The pharmacokinetic profile of micafungin in adult cancer patients with blood or marrow transplants is consistent with the profile in healthy volunteers, and the area under the curve is proportional to dose. PMID:15793107

  18. Pharmacokinetic and maximum tolerated dose study of micafungin in combination with fluconazole versus fluconazole alone for prophylaxis of fungal infections in adult patients undergoing a bone marrow or peripheral stem cell transplant.

    PubMed

    Hiemenz, J; Cagnoni, P; Simpson, D; Devine, S; Chao, N; Keirns, J; Lau, W; Facklam, D; Buell, D

    2005-04-01

    In this dose escalation study, 74 adult cancer patients undergoing bone marrow or peripheral blood stem cell transplantation received fluconazole (400 mg/day) and either normal saline (control) (12 subjects) or micafungin (12.5 to 200 mg/day) (62 subjects) for up to 4 weeks. The maximum tolerated dose (MTD) of micafungin was not reached, based on the development of Southwest Oncology Group criteria for grade 3 toxicity; drug-related toxicities were rare. Commonly occurring adverse events considered related to micafungin were headache (6.8%), arthralgia (6.8%), hypophosphatemia (4.1%), insomnia (4.1%), maculopapular rash (4.1%), and rash (4.1%). Pharmacokinetic profiles for micafungin on days 1 and 7 were similar. The mean half-life was approximately 13 h, with little variance after repeated or increasing doses. Mean maximum concentrations of the drug in serum and areas under the concentration-time curve from 0 to 24 h were approximately proportional to dose. There was no clinical or kinetic evidence of interaction between micafungin and fluconazole. Five of 12 patients (42%) in the control group and 14 of 62 (23%) in the micafungin-plus-fluconazole groups had a suspected fungal infection during treatment which resulted in empirical treatment with amphotericin B. The combination of micafungin and fluconazole was found to be safe in this high-risk patient population. The MTD of micafungin was not reached even at doses up to 200 mg/day for 4 weeks. The pharmacokinetic profile of micafungin in adult cancer patients with blood or marrow transplants is consistent with the profile in healthy volunteers, and the area under the curve is proportional to dose.

  19. Measuring the Aging Process in Stem Cells

    PubMed Central

    Liu, Yi; Van Zant, Gary; Liang, Ying

    2015-01-01

    Summary Stem cells persist in replenishing functional mature cells throughout life by self-renewal and multilineage differentiation. Hematopoietic stem cells (HSCs) are among the best-characterized and understood stem cells, and they are responsible for the life-long production of all lineages of blood cells. HSCs are a heterogeneous population containing lymphoid-biased, myeloid-biased and balanced subsets. HSCs undergo age-associated phenotypic and functional changes, and the composition of the HSC pool alters with aging. HSCs and their lineage-biased subfractions can be identified and analyzed by flow cytometry based on cell surface makers. Fluorescence-activated cell sorting (FACS) enables the isolation and purification of HSCs that greatly facilitates the mechanistic study of HSCs and their aging process at both cellular and molecular levels. The mouse model has been extensively used in HSC aging study. Bone marrow cells are isolated from young and old mice and stained with fluorescence-conjugated antibodies specific for differentiated and stem cells. HSCs are selected based on the negative expression of lineage markers and positive selection for several sets of stem cell markers. Lineage-biased HSCs can be further distinguished by the level of SLAM/CD150 expression and the extent of Hoechst efflux. PMID:25388383

  20. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

    PubMed

    Grün, Dominic; Muraro, Mauro J; Boisset, Jean-Charles; Wiebrands, Kay; Lyubimova, Anna; Dharmadhikari, Gitanjali; van den Born, Maaike; van Es, Johan; Jansen, Erik; Clevers, Hans; de Koning, Eelco J P; van Oudenaarden, Alexander

    2016-08-04

    Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation.

  1. Building Epithelial Tissues from Skin Stem Cells

    PubMed Central

    Fuchs, E.; Nowak, J.A.

    2009-01-01

    The skin epidermis and its appendages provide a protective barrier that guards against loss of fluids, physical trauma, and invasion by harmful microbes. To perform these functions while confronting the harsh environs of the outside world, our body surface undergoes constant rejuvenation through homeostasis. In addition, it must be primed to repair wounds in response to injury. The adult skin maintains epidermal homeostasis, hair regeneration, and wound repair through the use of its stem cells. What are the properties of skin stem cells, when do they become established during embryogenesis, and how are they able to build tissues with such remarkably distinct architectures? How do stem cells maintain tissue homeostasis and repair wounds and how do they regulate the delicate balance between proliferation and differentiation? What is the relationship between skin cancer and mutations that perturbs the regulation of stem cells? In the past 5 years, the field of skin stem cells has bloomed as we and others have been able to purify and dissect the molecular properties of these tiny reservoirs of goliath potential. We report here progress on these fronts, with emphasis on our laboratory’s contributions to the fascinating world of skin stem cells. PMID:19022769

  2. Skin stem cells: rising to the surface.

    PubMed

    Fuchs, Elaine

    2008-01-28

    The skin epidermis and its appendages provide a protective barrier that is impermeable to harmful microbes and also prevents dehydration. To perform their functions while being confronted with the physicochemical traumas of the environment, these tissues undergo continual rejuvenation through homeostasis, and, in addition, they must be primed to undergo wound repair in response to injury. The skin's elixir for maintaining tissue homeostasis, regenerating hair, and repairing the epidermis after injury is its stem cells, which reside in the adult hair follicle, sebaceous gland, and epidermis. Stem cells have the remarkable capacity to both self-perpetuate and also give rise to the differentiating cells that constitute one or more tissues. In recent years, scientists have begun to uncover the properties of skin stem cells and unravel the mysteries underlying their remarkable capacity to perform these feats. In this paper, I outline the basic lineages of the skin epithelia and review some of the major findings about mammalian skin epithelial stem cells that have emerged in the past five years.

  3. Stem cells in dentistry--part I: stem cell sources.

    PubMed

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties.

  4. Measuring stem cell circadian rhythm.

    PubMed

    Hrushesky, William; Rich, Ivan N

    2015-01-01

    Circadian rhythms are biological rhythms that occur within a 24-h time cycle. Sleep is a prime example of a circadian rhythm and with it melatonin production. Stem cell systems also demonstrate circadian rhythms. This is particularly the case for the proliferating cells within the system. In fact, all proliferating cell populations exhibit their own circadian rhythm, which has important implications for disease and the treatment of disease. Stem cell chronobiology is particularly important because the treatment of cancer can be significantly affected by the time of day a drug is administered. This protocol provides a basis for measuring hematopoietic stem cell circadian rhythm for future stem cell chronotherapeutic applications.

  5. Breast Cancer Stem Cells

    PubMed Central

    Velasco-Velázquez, Marco A.; Homsi, Nora; De La Fuente, Marisol; Pestell, Richard G.

    2012-01-01

    Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. Identification of BCSCs from tumor samples or breast cancer cell lines has been based mainly on CD44+/CD24−/low or ALDH+ phenotypes. BCSCs isolation has allowed the analysis of the molecular mechanisms involved in their origin, self-renewal, differentiation into tumor cells, resistance to radiation therapy and chemotherapy, and invasiveness and metastatic ability. Molecular genetic analysis using knockout animals and inducible transgenics have identified NF-κB, c-Jun, p21CIP1, and Forkhead-like-protein Dach1 in BCSC expansion and fate. Clinical analyses of BCSCs in breast tumors have found a correlation between the proportion of BCSCs and poor prognosis. Therefore, new therapies that specifically target BCSCs are an urgent need. We summarize recent evidence that partially explain the biological characteristics of BCSCs. PMID:22249027

  6. Germ line, stem cells, and epigenetic reprogramming.

    PubMed

    Surani, M A; Durcova-Hills, G; Hajkova, P; Hayashi, K; Tee, W W

    2008-01-01

    The germ cell lineage has the unique attribute of generating the totipotent state. Development of blastocysts from the totipotent zygote results in the establishment of pluripotent primitive ectoderm cells in the inner cell mass of blastocysts, which subsequently develop into epiblast cells in postimplantation embryos. The germ cell lineage in mice originates from these pluripotent epiblast cells of postimplantation embryos in response to specific signals. Pluripotent stem cells and unipotent germ cells share some fundamental properties despite significant phenotypic differences between them. Additionally, early primordial germ cells can be induced to undergo dedifferentiation into pluripotent embryonic germ cells. Investigations on the relationship between germ cells and pluripotent stem cells may further elucidate the nature of the pluripotent state. Furthermore, comprehensive epigenetic reprogramming of the genome in early germ cells, including extensive erasure of epigenetic modifications, is a critical step toward establishment of totipotency. The mechanisms involved may be relevant for gaining insight into events that lead to reprogramming of somatic cells into pluripotent stem cells.

  7. (Re)defining stem cells.

    PubMed

    Shostak, Stanley

    2006-03-01

    Stem-cell nomenclature is in a muddle! So-called stem cells may be self-renewing or emergent, oligopotent (uni- and multipotent) or pluri- and totipotent, cells with perpetual embryonic features or cells that have changed irreversibly. Ambiguity probably seeped into stem cells from common usage, flukes in biology's history beginning with Weismann's divide between germ and soma and Haeckel's biogenic law and ending with contemporary issues over the therapeutic efficacy of adult versus embryonic cells. Confusion centers on tissue dynamics, whether stem cells are properly members of emerging or steady-state populations. Clarity might yet be achieved by codifying differences between cells in emergent populations, including embryonic stem and embryonic germ (ES and EG) cells in tissue culture as opposed to self-renewing (SR) cells in steady-state populations.

  8. Pancreatic cancer stem cells.

    PubMed

    Zhu, Ya-Yun; Yuan, Zhou

    2015-01-01

    Studies are emerging in support of the cancer stem cells (CSCs) theory which considers that a tiny subset of cancer cells is exclusively responsible for the initiation and malignant behavior of a cancer. This cell population, also termed CSCs, possesses the capacity both to self-renew, producing progeny that have the identical tumorigenic potential, and to differentiate into the bulk of cancer cells, helping serve the formation of the tumor entities, which, altogether, build the hierarchically organized structure of a cancer. In this review, we try to articulate the complicated signaling pathways regulating the retention of the characteristics of pancreatic CSCs, and in the wake of which, we seek to offer insights into the CSCs-relevant targeted therapeutics which are, in the meantime, confronted with bigger challenges than ever.

  9. Nuclear receptor regulation of stemness and stem cell differentiation

    PubMed Central

    Jeong, Yangsik

    2009-01-01

    Stem cells include a diverse number of toti-, pluri-, and multi-potent cells that play important roles in cellular genesis and differentiation, tissue development, and organogenesis. Genetic regulation involving various transcription factors results in the self-renewal and differentiation properties of stem cells. The nuclear receptor (NR) superfamily is composed of 48 ligand-activated transcription factors involved in diverse physiological functions such as metabolism, development, and reproduction. Increasing evidence shows that certain NRs function in regulating stemness or differentiation of embryonic stem (ES) cells and tissue-specific adult stem cells. Here, we review the role of the NR superfamily in various aspects of stem cell biology, including their regulation of stemness, forward- and trans-differentiation events; reprogramming of terminally differentiated cells; and interspecies differences. These studies provide insights into the therapeutic potential of the NR superfamily in stem cell therapy and in treating stem cell-associated diseases (e.g., cancer stem cell). PMID:19696553

  10. BRACHYURY confers cancer stem cell characteristics on colorectal cancer cells.

    PubMed

    Sarkar, Debalina; Shields, Brian; Davies, Melanie L; Müller, Jürgen; Wakeman, Jane A

    2012-01-15

    Cancer stem cells (CSCs) are initiating cells in colorectal cancer (CRC). Colorectal tumours undergo epithelial to mesenchymal transition (EMT)-like processes at the invasive front, enabling invasion and metastasis, and recent studies have linked this process to the acquisition of stem cell-like properties. It is of fundamental importance to understand the molecular events leading to the establishment of cancer initiating cells and how these mechanisms relate to cellular transitions during tumourigenesis. We use an in vitro system to recapitulate changes in CRC cells at the invasive front (mesenchymal-like cells) and central mass (epithelial-like cells) of tumours. We show that the mesoderm inducer BRACHYURY is expressed in a subpopulation of CRC cells that resemble invasive front mesenchymal-like cells, where it acts to impose characteristics of CSCs in a fully reversible manner, suggesting reversible formation and modulation of such cells. BRACHYURY, itself regulated by the oncogene β-catenin, influences NANOG and other 'stemness' markers including a panel of markers defining CRC-CSC whose presence has been linked to poor patient prognosis. Similar regulation of NANOG through BRACHYURY was observed in other cells lines, suggesting this might be a pathway common to cancer cells undergoing mesenchymal transition. We suggest that BRACHYURY may regulate NANOG in mesenchymal-like CRC cells to impose a 'plastic-state', allowing competence of cells to respond to signals prompting invasion or metastasis.

  11. Pluripotent Stem Cells: Current Understanding and Future Directions

    PubMed Central

    Romito, Antonio

    2016-01-01

    Pluripotent stem cells have the ability to undergo self-renewal and to give rise to all cells of the tissues of the body. However, this definition has been recently complicated by the existence of distinct cellular states that display these features. Here, we provide a detailed overview of the family of pluripotent cell lines derived from early mouse and human embryos and compare them with induced pluripotent stem cells. Shared and distinct features of these cells are reported as additional hallmark of pluripotency, offering a comprehensive scenario of pluripotent stem cells. PMID:26798367

  12. Stem Cells, Redox Signaling, and Stem Cell Aging

    PubMed Central

    Liang, Raymond

    2014-01-01

    Abstract Significance: Functional stem cell decline has been postulated to result in loss of maintenance of tissue homeostasis leading to organismal decline and diseases of aging. Recent Advances: Recent findings implicate redox metabolism in the control of stem cell pool and stem cell aging. Although reactive oxygen species (ROS) are better known for their damaging properties to DNA, proteins and lipids, recent findings suggest that ROS may also be an integral physiological mediator of cellular signaling in primary cells. Critical Issues: Here we review recent published work on major signaling pathways and transcription factors that are regulated by ROS and mediate ROS regulation of stem cell fate. We will specifically focus on how alterations in this regulation may be implicated in disease and particularly in diseases of stem cell aging. In general, based on the work described here we propose a model in which ROS function as stem cell rheostat. Future Directions: Future work in elucidating how ROS control stem cell cycling, apoptotic machinery, and lineage determination should shed light on mechanisms whereby ROS may control stem cell aging. Antioxid. Redox Signal. 20, 1902–1916. PMID:24383555

  13. FACS Sorting Mammary Stem Cells.

    PubMed

    Iriondo, Oihana; Rábano, Miriam; Vivanco, María D M

    2015-01-01

    Fluorescent-activated cell sorting (FACS) represents one of the key techniques that have been used to isolate and characterize stem cells, including cells from the mammary gland. A combination of approaches, including recognition of cell surface antigens and different cellular activities, has facilitated the identification of stem cells from the healthy mammary gland and from breast tumors. In this chapter we describe the protocol to use FACS to separate breast cancer stem cells, but most of the general principles discussed could be applied to sort other types of cells.

  14. Targeting prostate cancer stem cells.

    PubMed

    Crea, Francesco; Mathews, Lesley A; Farrar, William L; Hurt, Elaine M

    2009-12-01

    Cancer stem cells are the sub-population of cells present within tumors responsible for tumorigenesis. These cells have unique biological properties including self-renewal and the ability to differentiate. Furthermore, it is thought that these cells are more resistant to conventional chemotherapy and, as a result, are responsible for patient relapse. We will discuss the identification of prostate cancer stem cells, their unique properties and how these cells may be targeted for more efficacious therapies.

  15. Stem cells and the developing mammary gland.

    PubMed

    Makarem, Maisam; Spike, Benjamin T; Dravis, Christopher; Kannan, Nagarajan; Wahl, Geoffrey M; Eaves, Connie J

    2013-06-01

    The mammary gland undergoes dynamic changes throughout life. In the mouse, these begin with initial morphogenesis of the gland in the mid-gestation embryo followed by hormonally regulated changes during puberty and later in adulthood. The adult mammary gland contains a hierarchy of cell types with varying potentials for self-maintenance and differentiation. These include cells able to produce complete, functional mammary glands in vivo and that contain daughter cells with the same remarkable regenerative potential, as well as cells with more limited clonogenic activity in vitro. Here we review how applying in vitro and in vivo methods for quantifying these cells in adult mammary tissue to fetal mammary cells has enabled the first cells fulfilling the functional criteria of transplantable, isolated mammary stem cells to be identified a few days before birth. Thereafter, the number of these cells increases rapidly. Populations containing these fetal stem cells display growth and gene expression programs that differ from their adult counterparts but share signatures characteristic of certain types of breast cancer. Such observations reinforce growing evidence of important differences between tissue-specific fetal and adult cells with stem cell properties and emphasize the merits of investigating their molecular basis.

  16. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal.

    PubMed

    Kubota, Hiroshi; Brinster, Ralph L

    2008-01-01

    Spermatogonial stem cells (SSCs), postnatal male germline stem cells, are the foundation of spermatogenesis, during which an enormous number of spermatozoa is produced daily by the testis throughout life of the male. SSCs are unique among stem cells in the adult body because they are the only cells that undergo self-renewal and transmit genes to subsequent generations. In addition, SSCs provide an excellent and powerful model to study stem cell biology because of the availability of a functional assay that unequivocally identifies the stem cell. Development of an in vitro culture system that allows an unlimited supply of SSCs is a crucial technique to manipulate genes of the SSC to generate valuable transgenic animals, to study the self-renewal mechanism, and to develop new therapeutic strategies for infertility. In this chapter, we describe a detailed protocol for the culture of mouse and rat SSCs. A key factor for successful development of the SSC culture system was identification of in vitro growth factor requirements for the stem cell using a defined serum-free medium. Because transplantation assays using immunodeficient mice demonstrated that extrinsic factors for self-renewal of SSCs appear to be conserved among many mammalian species, culture techniques for SSCs of other species, including farm animals and humans, are likely to be developed in the coming 5-10 years.

  17. Stem cells for spine surgery

    PubMed Central

    Schroeder, Joshua; Kueper, Janina; Leon, Kaplan; Liebergall, Meir

    2015-01-01

    In the past few years, stem cells have become the focus of research by regenerative medicine professionals and tissue engineers. Embryonic stem cells, although capable of differentiating into cell lineages of all three germ layers, are limited in their utilization due to ethical issues. In contrast, the autologous harvest and subsequent transplantation of adult stem cells from bone marrow, adipose tissue or blood have been experimentally utilized in the treatment of a wide variety of diseases ranging from myocardial infarction to Alzheimer’s disease. The physiologic consequences of stem cell transplantation and its impact on functional recovery have been studied in countless animal models and select clinical trials. Unfortunately, the bench to bedside translation of this research has been slow. Nonetheless, stem cell therapy has received the attention of spinal surgeons due to its potential benefits in the treatment of neural damage, muscle trauma, disk degeneration and its potential contribution to bone fusion. PMID:25621119

  18. [Stem cell therapy: an update].

    PubMed

    Coulombel, Laure

    2009-03-01

    Medicine will be faced with a major challenge in coming years, namely how to treat for tissue dysfunction due to disease and aging There are two basic options: drug therapy and cell therapy. Stem cells have been the subject of intense speculation and controversy for several years, as they open up radically new therapeutic possibilities. Classical drugs can only smoothen consequences of tissue dysfunction, whereas cell therapy has the potential to restore tissue function by providing fresh cells. Cell therapy is totally different from organ transplantation, which can only benefit a limited number of patients. The use of the generic term "stem cells" to designate a whole variety of cell types that are present throughout life, is a source of confusion and ambiguity. It will take years of cognitive research to unravel the molecular mechanisms that govern a stem cell's multi- or totipotent status before we can fully exploit this therapeutic tool to the full. The younger a stem cell the greater its potential and, probably, the more durable its benefits, but the use of embryonic stem cells raises ethical issues. The redundancy or equivalence of diferent categories of cells is another source of controversy, yet researchers must be able to study stem cells in all their diversity, as complementary rather than competitive alternatives, in an acceptable ethical and regulatory environment. We briefly describe the three types of stem cells: pluripotent embryonic stem cells, fetal and adult stem cells, and pluripotent reprogrammed adult somatic cells. Only the former two categories have physiological functions: the first gives rise to tissues and organs while the second maintains tissue function during adulthood

  19. Stem cells in pharmaceutical biotechnology.

    PubMed

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  20. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine.

    PubMed

    Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-12-01

    Multipotent adult stem cells have many potential therapeutic applications. Our recent findings suggest that hair follicles are a promising source of easily accessible multipotent stem cells. Stem cells in the hair follicle area express the neural stem cell marker nestin, suggesting that hair-follicle stem cells and neural stem cells have common features. Nestin-expressing hair follicle stem cells can form neurons and other cell types, and thus adult hair follicle stem cells could have important therapeutic applications, particularly for neurologic diseases. Transplanted hair follicle stem cells promote the functional recovery of injured peripheral nerve and spinal cord. Recent findings suggest that direct transplantation of hair-follicle stem cells without culture can promote nerve repair, which makes them potentially clinically practical. Human hair follicle stem cells as well as mouse hair follicle stem cells promote nerve repair and can be applied to test the hypothesis that human hair follicle stem cells can provide a readily available source of neurologically therapeutic stem cells. The use of hair follicle stem cells for nerve regeneration overcomes critical problems of embryonic stem cells or induced pluripotent stem cells in that the hair follicle stem cells are multipotent, readily accessible, non-oncogenic, and are not associated with ethical issues.

  1. Super pharmacological levels of calcitriol (1,25-(OH)2D3) inhibits mineral deposition and decreases cell proliferation in a strain dependent manner in chicken mesenchymal stem cells undergoing osteogenic differentiation in vitro.

    PubMed

    Pande, Vivek V; Chousalkar, Kapil C; Bhanugopan, Marie S; Quinn, Jane C

    2015-11-01

    The biologically active form of vitamin D₃, calcitriol (1,25-(OH)₂D₃), plays a key role in mineral homeostasis and bone formation and dietary vitamin D₃deficiency is a major cause of bone disorders in poultry. Supplementary dietary cholecalciferol (25-hydroxyvitamin D, 25-OH), the precursor of calcitriol, is commonly employed to combat this problem; however, dosage must be carefully determined as excess dietary vitamin D can cause toxicity resulting in a decrease in bone calcification, hypercalcinemia and renal failure. Despite much research on the therapeutic administration of dietary vitamin D in humans, the relative sensitivity of avian species to exogenous vitamin D has not been well defined. In order to determine the effects of exogenous 1,25-(OH)₂D₃during avian osteogenesis, chicken bone marrow-derived mesenchymal stem cells (BM-MSCs) were exposed to varying doses of 1,25-(OH)₂D₃during in vitro osteogenic differentiation and examined for markers of early proliferation and osteogenic induction. Similar to humans and other mammals, poultry BM-MSCs were found to be highly sensitive to exogenous 1,25-(OH)₂D₃with super pharmacological levels exerting significant inhibition of mineralization and loss of cell proliferation in vitro. Strain related differences were apparent, with BM-MCSs derived from layers strains showing a higher level of sensitivity to 1,25-(OH)₂D₃than those from broilers. These data suggest that understanding species and strain specific sensitivities to 1,25-(OH)₂D₃is important for optimizing bone health in the poultry industry and that use of avian BM-MSCs are a useful tool for examining underlying effects of genetic variation in poultry.

  2. Stem cell mitochondria during aging.

    PubMed

    Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Shyh-Chang, Ng

    2016-04-01

    Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.

  3. Lasers, stem cells, and COPD

    PubMed Central

    2010-01-01

    The medical use of low level laser (LLL) irradiation has been occurring for decades, primarily in the area of tissue healing and inflammatory conditions. Despite little mechanistic knowledge, the concept of a non-invasive, non-thermal intervention that has the potential to modulate regenerative processes is worthy of attention when searching for novel methods of augmenting stem cell-based therapies. Here we discuss the use of LLL irradiation as a "photoceutical" for enhancing production of stem cell growth/chemoattractant factors, stimulation of angiogenesis, and directly augmenting proliferation of stem cells. The combination of LLL together with allogeneic and autologous stem cells, as well as post-mobilization directing of stem cells will be discussed. PMID:20158898

  4. Immune privilege of stem cells.

    PubMed

    Ichiryu, Naoki; Fairchild, Paul J

    2013-01-01

    Immune privilege provides protection to vital tissues or cells of the body when foreign antigens are introduced into these sites. The modern concept of relative immune privilege applies to a variety of tissues and anatomical structures, including the hair follicles and mucosal surfaces. Even sites of chronic inflammation and developing tumors may acquire immune privilege by recruiting immunoregulatory effector cells. Adult stem cells are no exception. For their importance and vitality, many adult stem cell populations are believed to be immune privileged. A preimplantation-stage embryo that derives from a totipotent stem cell (i.e., a fertilized oocyte) must be protected from maternal allo-rejection for successful implantation and development to occur. Embryonic stem cells, laboratory-derived cell lines of preimplantation blastocyst-origin, may, therefore, retain some of the immunological properties of the developing embryo. However, embryonic stem cells and their differentiated tissue derivatives transplanted into a recipient do not necessarily have an ability to subvert immune responses to the extent required to exploit their pluripotency for regenerative medicine. In this review, an extended definition of immune privilege is developed and the capacity of adult and embryonic stem cells to display both relative and acquired immune privilege is discussed. Furthermore, we explore how these intrinsic properties of stem cells may one day be harnessed for therapeutic gain.

  5. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    SciTech Connect

    Nicolay, Nils H.; Sommer, Eva; Lopez, Ramon; Wirkner, Ute; Trinh, Thuy; Sisombath, Sonevisay; Debus, Jürgen; Ho, Anthony D.; Saffrich, Rainer; Huber, Peter E.

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.

  6. On hematopoietic stem cell fate.

    PubMed

    Metcalf, Donald

    2007-06-01

    Multipotential hematopoietic stem cells (HSCs) maintain blood-cell formation throughout life. Here, Metcalf considers the origin and heterogeneity of HSCs, their ability to self-generate, and their commitment to the various hematopoietic lineages.

  7. Stem cell biology and cell transplantation therapy in the retina.

    PubMed

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  8. Gastrointestinal stem cell up-to-date.

    PubMed

    Pirvulet, V

    2015-01-01

    Cellular and tissue regeneration in the gastrointestinal tract depends on stem cells with properties of self-renewal, clonogenicity, and multipotency. Progress in stem cell research and the identification of potential gastric, intestinal, colonic stem cells new markers and the signaling pathways provide hope for the use of stem cells in regenerative medicine and treatments for disease. This review provides an overview of the different types of stem cells, focusing on tissue-restricted adult stem cells.

  9. Gene and stem cell therapy of the hair follicle.

    PubMed

    Hoffman, Robert M

    2005-01-01

    The hair follicle is a highly complex appendage of the skin containing a multiplicity of cell types. The follicle undergoes constant cycling through the life of the organism including growth and resorption with growth dependent on specific stem cells. The targeting of the follicle by genes and stem cells to change its properties, in particular, the nature of the hair shaft is discussed. Hair follicle delivery systems are described such as liposomes and viral vectors for gene therapy. The nature of the hair follicle stem cells is discussed, in particular, its pluripotency.

  10. A Comparison of Culture Characteristics between Human Amniotic Mesenchymal Stem Cells and Dental Stem Cells.

    PubMed

    Yusoff, Nurul Hidayat; Alshehadat, Saaid Ayesh; Azlina, Ahmad; Kannan, Thirumulu Ponnuraj; Hamid, Suzina Sheikh Abdul

    2015-04-01

    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.

  11. Bone repair and stem cells.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2016-10-01

    Bones are an important component of vertebrates; they grow explosively in early life and maintain their strength throughout life. Bones also possess amazing capabilities to repair-the bone is like new without a scar after complete repair. In recent years, a substantial progress has been made in our understanding on mammalian bone stem cells. Mouse genetic models are powerful tools to understand the cell lineage, giving us better insights into stem cells that regulate bone growth, maintenance and repair. Recent findings about these stem cells raise new questions that require further investigations.

  12. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  13. GPCRs in Stem Cell Function

    PubMed Central

    DOZE, VAN A.; PEREZ, DIANNE M.

    2013-01-01

    Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G-protein coupled receptors in the regulation of stem cells and their potential in future clinical applications. PMID:23415095

  14. Stem cell therapy without the cells

    PubMed Central

    Maguire, Greg

    2013-01-01

    As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells1 instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells.2 We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions.3 That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment. PMID:24567776

  15. Stem cells and combinatorial science.

    PubMed

    Fang, Yue Qin; Wong, Wan Qing; Yap, Yan Wen; Orner, Brendan P

    2007-09-01

    Stem cell-based technologies have the potential to help cure a number of cell degenerative diseases. Combinatorial and high throughput screening techniques could provide tools to control and manipulate the self-renewal and differentiation of stem cells. This review chronicles historic and recent progress in the stem cell field involving both pluripotent and multipotent cells, and it highlights relevant cellular signal transduction pathways. This review further describes screens using libraries of soluble, small-molecule ligands, and arrays of molecules immobilized onto surfaces while proposing future trends in similar studies. It is hoped that by reviewing both the stem cell and the relevant high throughput screening literature, this paper can act as a resource to the combinatorial science community.

  16. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders

    PubMed Central

    Hou, Shaoping; Lu, Paul

    2016-01-01

    Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cells in vitro and in vivo and their potential treatments of neurological disorders. PMID:26981072

  17. Stem Cells in the Lung

    PubMed Central

    Liu, Xiaoming; Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    The lung is composed of two major anatomically distinct regions—the conducting airways and gas-exchanging airspaces. From a cell biology standpoint, the conducting airways can be further divided into two major compartments, the tracheobronchial and bronchiolar airways, while the alveolar regions of the lung make up the gas-exchanging airspaces. Each of these regions consists of distinct epithelial cell types with unique cellular physiologies and stem cell compartments. This chapter focuses on model systems with which to study stem cells in the adult tracheobronchial airways, also referred to as the proximal airway of the lung. Important in such models is an appreciation for the diversity of stem cell niches in the conducting airways that provide localized environmental signals to both maintain and mobilize stem cells in the setting of airway injury and normal cellular turnover. Because cellular turnover in airways is relatively slow, methods for analysis of stem cells in vivo have required prior injury to the lung. In contrast, ex vivo and in vitro models for analysis of airway stem cells have used genetic markers to track lineage relationships together with reconstitution systems that mimic airway biology. Over the past decades, several widely acceptable methods have been developed and used in the characterization of adult airway stem/ progenitor cells. These include localization of label-retaining cells (LRCs), retroviral tagging of epithelial cells seeded into xenografts, air–liquid interface cultures to track clonal proliferative potential, and multiple transgenic mouse models. This chapter reviews the biologic context and use of these models while providing detailed methods for several of the more broadly useful models for studying adult airway stem/progenitor cell types. PMID:17141060

  18. Live imaging of the Drosophila spermatogonial stem cell niche reveals novel mechanisms regulating germline stem cell output.

    PubMed

    Sheng, X Rebecca; Matunis, Erika

    2011-08-01

    Adult stem cells modulate their output by varying between symmetric and asymmetric divisions, but have rarely been observed in living intact tissues. Germline stem cells (GSCs) in the Drosophila testis are anchored to somatic hub cells and were thought to exclusively undergo oriented asymmetric divisions, producing one stem cell that remains hub-anchored and one daughter cell displaced out of the stem cell-maintaining micro-environment (niche). We developed extended live imaging of the Drosophila testis niche, allowing us to track individual germline cells. Surprisingly, new wild-type GSCs are generated in the niche during steady-state tissue maintenance by a previously undetected event we term 'symmetric renewal', where interconnected GSC-daughter cell pairs swivel such that both cells contact the hub. We also captured GSCs undergoing direct differentiation by detaching from the hub. Following starvation-induced GSC loss, GSC numbers are restored by symmetric renewals. Furthermore, upon more severe (genetically induced) GSC loss, both symmetric renewal and de-differentiation (where interconnected spermatogonia fragment into pairs while moving towards then establishing contact with the hub) occur simultaneously to replenish the GSC pool. Thus, stereotypically oriented stem cell divisions are not always correlated with an asymmetric outcome in cell fate, and changes in stem cell output are governed by altered signals in response to tissue requirements.

  19. Dental stem cells and their sources.

    PubMed

    Sedgley, Christine M; Botero, Tatiana M

    2012-07-01

    The search for more accessible mesenchymal stem cells than those found in bone marrow has propelled interest in dental tissues. Human dental stem/progenitor cells (collectively termed dental stem cells [DSCs]) that have been isolated and characterized include dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, and dental follicle progenitor cells. Common characteristics of these cell populations are the capacity for self-renewal and the ability to differentiate into multiple lineages. In vitro and animal studies have shown that DSCs can differentiate into osseous, odontogenic, adipose, endothelial, and neural-like tissues.

  20. Modeling Stem Cell Myogenic Differentiation

    PubMed Central

    Deshpande, Rajiv S.; Spector, Alexander A.

    2017-01-01

    The process of stem cell myogenesis (transformation into skeletal muscle cells) includes several stages characterized by the expression of certain combinations of myogenic factors. The first part of this process is accompanied by cell division, while the second part is mainly associated with direct differentiation. The mechanical cues are known to enhance stem cell myogenesis, and the paper focuses on the stem cell differentiation under the condition of externally applied strain. The process of stem cell myogenic differentiation is interpreted as the interplay among transcription factors, targeted proteins and strain-generated signaling molecule, and it is described by a kinetic multi-stage model. The model parameters are optimally adjusted by using the available data from the experiment with adipose-derived stem cells subjected to the application of cyclic uniaxial strains of the magnitude of 10%. The modeling results predict the kinetics of the process of myogenic differentiation, including the number of cells in each stage of differentiation and the rates of differentiation from one stage to another for different strains from 4% to 16%. The developed model can help better understand the process of myogenic differentiation and the effects of mechanical cues on stem cell use in muscle therapies. PMID:28106095

  1. Diabetes and Stem Cell Function

    PubMed Central

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247

  2. Stem cell therapy for Parkinson's disease.

    PubMed

    Takahashi, Jun

    2007-06-01

    The aim of stem cell therapy for Parkinson's disease is to reconstruct nigro-striatal neuronal pathways using endogenous neural stem/precursor cells or grafted dopaminergic neurons. As an alternative, transplantation of stem cell-derived dopaminergic neurons into the striatum has been attempted, with the aim of stimulating local synapse formation and/or release of dopamine and cytokines from grafted cells. Candidate stem cells include neural stem/precursor cells, embryonic stem cells and other stem/precursor cells. Among these, embryonic stem cells are pluripotent cells that proliferate extensively, making them a good potential donor source for transplantation. However, tumor formation and ethical issues present major problems for embryonic stem cell therapy. This review describes the current status of stem cell therapy for Parkinson's disease, as well as future research approaches from a clinical perspective.

  3. Impact of the intensity of the pretransplantation conditioning regimen in patients with prior invasive aspergillosis undergoing allogeneic hematopoietic stem cell transplantation: a retrospective survey of the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation

    PubMed Central

    Martino, Rodrigo; Parody, Rocio; Fukuda, Takahiro; Maertens, Johan; Theunissen, Koen; Ho, Aloysius; Mufti, Ghulam J.; Kroger, Nicolaus; Zander, Arnold R.; Heim, Dominik; Paluszewska, Monika; Selleslag, Dominik; Steinerova, Katerina; Ljungman, Per; Cesaro, Simone; Nihtinen, Anna; Cordonnier, Catherine; Vazquez, Lourdes; López-Duarte, Monica; Lopez, Javier; Cabrera, Rafael; Rovira, Montserrat; Neuburger, Stefan; Cornely, Oliver; Hunter, Ann E.; Marr, Kieren A.; Dornbusch, Hans Jürgen; Einsele, Hermann

    2006-01-01

    In this retrospective study, we analyzed the outcomes of 129 patients who underwent an allogeneic hematopoietic stem cell transplantation (allo-HSCT) and had a history of probable or proven invasive aspergillosis (IA), of whom 57 (44%) received a reduced-intensity conditioning (RIC). Overall, 27 patients with IA progressed after the allo-HSCT (cumulative incidence [CumInc] at 2 years, 22%). The variables that increased the 2-year CumInc of IA progression were (1) longer duration of neutropenia after transplantation; (2) advanced status of the underlying disease; and (3) less than 6 weeks from start of systemic anti-Aspergillus therapy and the allo-HSCT. In addition, (4) conventional myeloablative conditioning increased the risk of progression early after transplantation (before day 30) only, while 3 variables increased the risk beyond day 30 were (5) cytomegalovirus disease; (6) bone marrow or cord blood as source of stem cells; and (7) grades II to IV acute graft-versus-host disease (GVHD). A risk model for progression was generated, defined as low (0-1 risk factors, 6% incidence), intermediate (2-3 risk factors, 27% incidence), or high risk (≥ 3 risk factors, 72% incidence [P < .001]). These findings may help in the interpretation and design of future studies on secondary prophylaxis of IA after an allo-HSCT. PMID:16720833

  4. DNA repair in murine embryonic stem cells and differentiated cells

    SciTech Connect

    Tichy, Elisia D. Stambrook, Peter J.

    2008-06-10

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.

  5. Neural Stem Cells and Glioblastoma

    PubMed Central

    Rispoli, Rossella; Conti, Carlo; Celli, Paolo; Caroli, Emanuela; Carletti, Sandro

    2014-01-01

    Summary Glioblastoma multiforme represents one of the most common brain cancers with a rather heterogeneous cellular composition, as indicated by the term “multiforme". Recent reports have described the isolation and identification of cancer neural stem cells from human adult glioblastoma multiforme, which possess the capacity to establish, sustain, and expand these tumours, even under the challenging settings posed by serial transplantation experiments. Our study focused on the distribution of neural cancer stem cells inside the tumour. The study is divided into three phases: removal of tumoral specimens in different areas of the tumour (centre, periphery, marginal zone) in an operative room equipped with a 1.5 T scanner; isolation and characterization of neural cancer stem cells from human adult glioblastoma multiforme; identification of neural cancer stem cell distribution inside the tumour. PMID:24750704

  6. Stem cells, tissue engineering and periodontal regeneration.

    PubMed

    Han, J; Menicanin, D; Gronthos, S; Bartold, P M

    2014-06-01

    The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing relevant literature that assesses the periodontal-regenerative potential of stem cells. We consider and describe the main stem cell populations that have been utilized with regard to periodontal regeneration, including bone marrow-derived mesenchymal stem cells and the main dental-derived mesenchymal stem cell populations: periodontal ligament stem cells, dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla and dental follicle precursor cells. Research into the use of stem cells for tissue regeneration has the potential to significantly influence periodontal treatment strategies in the future.

  7. [Progress in stem cells and regenerative medicine].

    PubMed

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  8. Tracking stem cells in the cardiovascular system.

    PubMed

    Chemaly, Elie R; Yoneyama, Ryuichi; Frangioni, John V; Hajjar, Roger J

    2005-11-01

    Stem cells are a promising approach to cardiovascular therapeutics. Animal experiments have assessed the fate of injected stem cells through ex vivo methods on sacrificed animals. Approaches are needed for in vivo tracking of stem cells. Various imaging techniques and contrast agents for stem cell tracking will be reviewed.

  9. Immunotargeting of cancer stem cells

    PubMed Central

    Gąbka-Buszek, Agnieszka; Jankowski, Jakub; Mackiewicz, Andrzej

    2015-01-01

    Cancer stem cells (CSCs) represent a distinctive population of tumour cells that control tumour initiation, progression, and maintenance. Their influence is great enough to risk the statement that successful therapeutic strategy must target CSCs in order to eradicate the disease. Because cancer stem cells are highly resistant to chemo- and radiotherapy, new tools to fight against cancer have to be developed. Expression of antigens such as ALDH, CD44, EpCAM, or CD133, which distinguish CSCs from normal cells, together with CSC immunogenicity and relatively low toxicity of immunotherapies, makes immune targeting of CSCs a promising approach for cancer treatment. This review will present immunotherapeutic approaches using dendritic cells, T cells, pluripotent stem cells, and monoclonal antibodies to target and eliminate CSCs. PMID:25691822

  10. Stem cell potential of the mammalian gonad

    PubMed Central

    Liu, Chia-Feng; Barsoum, Ivraym; Gupta, Rupesh; Hofmann, Marie-Claude; Yao, Humphrey Hung-Chang

    2010-01-01

    Stem cells have enormous potential for therapeutic application because of their ability to self-renew and differentiate into different cell types. Gonads, which consist of somatic cells and germ cells, are the only organs capable of transmitting genetic materials to the offspring. Germ-line stem cells and somatic stem cells have been found in the testis; however, the presence of stem cells in the ovary remains controversial. In this review, we discuss studies focusing on whether stem cell properties are present in the different cell types of male and female gonads and their implications on stem cell research. PMID:19482665

  11. Electrical Property Characterization of Neural Stem Cells in Differentiation

    PubMed Central

    Sun, He; Chen, Deyong; Li, Zhaohui; Fan, Beiyuan; George, Julian; Xue, Chengcheng; Cui, Zhanfeng; Wang, Junbo

    2016-01-01

    Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers

  12. Stem cell applications in diabetes.

    PubMed

    Noguchi, Hirofumi

    2012-01-01

    Diabetes mellitus is a devastating disease and the World Health Organization (WHO) expects that the number of diabetic patients will increase to 300 million by the year 2025. Patients with diabetes experience decreased insulin secretion that is linked to a significant reduction in the number of islet cells. Type 1 diabetes is characterized by the selective destruction of pancreatic β cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology that, in addition to β cell loss caused by apoptotic programs, includes β cell de-differentiation and peripheric insulin resistance. The success achieved over the last few years with islet transplantation suggests that diabetes can be cured by the replenishment of deficient β cells. These observations are proof of the concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. An increasing body of evidence indicates that, in addition to embryonic stem cells, several potential adult stem/progenitor cells derived from the pancreas, liver, spleen, and bone marrow could differentiate into insulin-producing cells in vitro or in vivo. However, significant controversy currently exists in this field. Pharmacological approaches aimed at stimulating the in vivo/ex vivo regeneration of β cells have been proposed as a way of augmenting islet cell mass. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. A new technology, known as protein transduction, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of β cells has opened up several possibilities for the development of new treatments for diabetes.

  13. New Insights into Thyroid Stem Cells

    PubMed Central

    Lin, Reigh-Yi

    2009-01-01

    Stem cells exhibit an extraordinary ability for self-renewal. They also give rise to many specialized cells. The potential of stem cells in regenerative medicine, developmental biology, and drug discovery has been well documented. Although advances in stem cell science have raised broad ethical concerns, it is clear that stem cell technology has revolutionized our thinking in modern biology and medicine and provided the basis for understanding many of the mechanisms controlling basic biological processes and disease mechanisms. This review details the nascent field of thyroid stem cell research, exploring the current status of thyroid stem cell differentiation from the perspectives of both developmental biology and cell replacement therapy. It highlights successes to date in the generation of thyroid follicular cells from embryonic stem cells in the laboratory and the identification and characterization of adult stem cells from human thyroid glands and thyroid cancers. Finally, it outlines future challenges with a focus on potential stem cell therapy for thyroid patients. PMID:17727339

  14. Busulfan and fludarabine conditioning regimen given at hematological nadir of cytoreduction fludarabine, cytarabine, and idarubicin chemotherapy in patients with refractory acute myeloid leukemia undergoing allogeneic stem cell transplantation: a single arm pilot consort study.

    PubMed

    Tang, Wei; Fan, Xing; Wang, Ling; Hu, Jiong

    2015-04-01

    To improve the outcome of allogeneic stem cell transplantation in refractory acute myeloid leukemia (AML), we conducted a single-arm phase II clinical trial to evaluate the efficacy and feasibility of conditioning regimen following cytoreduction chemotherapy with 7-day interval. Adult patients with refractory AML were enrolled in the study and received fludarabine, cytarabine, and idarubicin (FLAG-IDA) as cytoreductive chemotherapy followed by busulfan and fludarabine (Flu-BU) conditioning regimen and transfusion of mobilized peripheral stem cells from human leukocyte antigen-matched sibling or unrelated donor. The primary endpoint of the study was 2-year leukemia-free survival (LFS) and secondary endpoints included complete-remission rate, 2-year overall survival (OS), nonrelapse mortality (NRM), and relapse rate. A total of 16 patients were enrolled with median age of 36 (16-60), which included 9 primary induction failure, 2 early relapse, and 5 with relapse/refractory disease. The median cycles of previous chemotherapy were 4 (3-10) with a median of 55% (1%-90%) blasts in bone marrow. Six patients received transplantation from matched sibling and 10 from matched unrelated donors. After transplantation, 15 patients achieved bone marrow remission (11 complete remissions [CRs] and 4 bone marrow remissions without platelet recovery) at day +28. A total of 8 patients remained alive in CR with median LFS of 29.5 months (9.5-40.5 months). Four patients relapsed and 3 of them died of disease and another 4 patients died because of transplantation-related toxicity. The 2-year NRM and relapse rates were 25.0% ± 10.8% and 33.4% ± 13.8%, respectively with 2-year OS at 53.5% ± 13.1% and LFS at 50.0% ± 12.5%. Based on the Simon 2-stage design, 5 out of first eligible 14 patients remained leukemia-free for more than 2 years after allogeneic hematopoietic stem cell transplantation; thus, the null hypothesis of the study will be rejected and the study protocol

  15. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    PubMed

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-07

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells.

  16. Embryonic stem cell lines of nonhuman primates.

    PubMed

    Nakatsuji, Norio; Suemori, Hirofumi

    2002-06-26

    Human embryonic stem (ES) cell lines have opened great potential and expectation for cell therapy and regenerative medicine. Monkey and human ES cell lines, which are very similar to each other, have been established from monkey blastocysts and surplus human blastocysts from fertility clinics. Nonhuman primate ES cell lines provide important research tools for basic and applicative research. Firstly, they provide wider aspects of investigation of the regulative mechanisms of stem cells and cell differentiation among primate species. Secondly, their usage does not need clearance or permission from the regulative rules in many countries that are associated with the ethical aspects of human ES cells, although human and nonhuman embryos and fetuses are very similar to each other. Lastly and most importantly, they are indispensable for animal models of cell therapy to test effectiveness, safety, and immunological reaction of the allogenic transplantation in a setting similar to the treatment of human diseases. So far, ES cell lines have been established from rhesus monkey (Macaca mulatta), common marmoset (Callithrix jacchus), and cynomolgus monkey (Macaca fascicularis), using blastocysts produced naturally or by in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). These cell lines seem to have very similar characteristics. They express alkaline phosphatase activity and stage-specific embryonic antigen (SSEA)-4 and, in most cases, SSEA-3. Their pluripotency was confirmed by the formation of embryoid bodies and differentiation into various cell types in culture and also by the formation of teratomas that contained many types of differentiated tissues including derivatives of three germ layers after transplantation into the severe combined immunodeficiency (SCID) mice. The noneffectiveness of the leukemia inhibitory factor (LIF) signal makes culture of primate and human ES cell lines prone to undergo spontaneous differentiation and thus it is

  17. Stem Cells and Liver Regeneration

    PubMed Central

    DUNCAN, ANDREW W.; DORRELL, CRAIG; GROMPE, MARKUS

    2011-01-01

    One of the defining features of the liver is the capacity to maintain a constant size despite injury. Although the precise molecular signals involved in the maintenance of liver size are not completely known, it is clear that the liver delicately balances regeneration with overgrowth. Mammals, for example, can survive surgical removal of up to 75% of the total liver mass. Within 1 week after liver resection, the total number of liver cells is restored. Moreover, liver overgrowth can be induced by a variety of signals, including hepatocyte growth factor or peroxisome proliferators; the liver quickly returns to its normal size when the proliferative signal is removed. The extent to which liver stem cells mediate liver regeneration has been hotly debated. One of the primary reasons for this controversy is the use of multiple definitions for the hepatic stem cell. Definitions for the liver stem cell include the following: (1) cells responsible for normal tissue turnover, (2) cells that give rise to regeneration after partial hepatectomy, (3) cells responsible for progenitor-dependent regeneration, (4) cells that produce hepatocyte and bile duct epithelial phenotypes in vitro, and (5) transplantable liver-repopulating cells. This review will consider liver stem cells in the context of each definition. PMID:19470389

  18. Regulation of apoptosis pathways in cancer stem cells.

    PubMed

    Fulda, Simone

    2013-09-10

    Cancer stem cell are considered to represent a population within the bulk tumor that share many similarities to normal stem cells as far as their capacities to self-renew, differentiate, proliferate and to reconstitute the entire tumor upon serial transplantation are concerned. Since cancer stem cells have been shown to be critical for maintaining tumor growth and have been implicated in treatment resistance and tumor progression, they constitute relevant targets for therapeutic intervention. Indeed, it has been postulated that eradication of cancer stem cells will be pivotal in order to achieve long-term relapse-free survival. However, one of the hallmarks of cancer stem cells is their high resistance to undergo cell death including apoptosis in response to environmental cues or cytotoxic stimuli. Since activation of apoptosis programs in tumor cells underlies the antitumor activity of most currently used cancer therapeutics, it will be critical to develop strategies to overcome the intrinsic resistance to apoptosis of cancer stem cells. Thus, a better understanding of the molecular mechanisms that are responsible for the ability of cancer stem cells to evade apoptosis will likely open new avenues to target this critical pool of cells within the tumor in order to develop more efficient treatment options for patients suffering from cancer.

  19. Intestinal stem cell injury and protection during cancer therapy

    PubMed Central

    Yu, Jian

    2014-01-01

    Radiation and chemotherapy remain the most effective and widely used cancer treatments. These treatments cause DNA damage and selectively target rapidly proliferating cells such as cancer cells, as well as inevitably cause damage to normal tissues, particularly those undergoing rapid self renewal. The side effects associated with radiation and chemotherapy are most pronounced in the hematopoietic (HP) system and gastrointestinal (GI) tract. These tissues are fast renewing and have a well-defined stem cell compartment that plays an essential role in homeostasis, and in treatment-induced acute injury that is dose limiting. Using recently defined intestinal stem cell markers and mouse models, a great deal of insight has been gained in the biology of intestinal stem cells (ISCs), which will undoubtedly help further mechanistic understanding of their injury. This review will cover historic discoveries and recent advances in the identification and characterization of intestinal stem cells, their responses to genotoxic stress, and a new crypt and intestinal stem cell culture system. The discussion will include key pathways regulating intestinal crypt and stem cell injury and regeneration caused by cancer treatments, and strategies for their protection. The focus will be on the acute phase of cell killing in mouse radiation models, where our understanding of the mechanisms in relation to intestinal stem cells is most advanced and interventions appear most effective. PMID:24683536

  20. Stem cells in pediatric cardiology.

    PubMed

    Patel, Pranali; Mital, Seema

    2013-10-01

    The ability to reprogram virtually any cell of human origin to behave like embryonic or pluripotent stem cells is a major breakthrough in stem cell biology. Human induced pluripotent stem cells (iPSC) provide a unique opportunity to study "disease in a dish" within a defined genetic and environmental background. Patient-derived iPSCs have been successfully used to model cardiomyopathies, rhythm disorders and vascular disorders. They also provide an exciting opportunity for drug discovery and drug repurposing for disorders with a known molecular basis including childhood onset heart disease, particularly cardiac genetic disorders. The review will discuss their use in drug discovery, efficacy and toxicity studies with emphasis on challenges in pediatric-focused drug discovery. Issues that will need to be addressed in the coming years include development of maturation protocols for iPSC-derived cardiac lineages, use of iPSCs to study not just cardiac but extra-cardiac phenotypes in the same patient, scaling up of stem cell platforms for high-throughput drug screens, translating drug testing results to clinical applications in the paradigm of personalized medicine, and improving both the efficiency and the safety of iPSC-derived lineages for future stem cell therapies.

  1. Mammary development and breast cancer: the role of stem cells.

    PubMed

    Ercan, C; van Diest, P J; Vooijs, M

    2011-06-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.

  2. [Therapeutic use of stem cells].

    PubMed

    Uzan, Georges

    2004-09-15

    Stem cells display important capacities of self renewing, proliferation and differentiation. Because those present in the embryo have the more remarkable properties, their potential use in the therapy of until now incurable degenerative diseases have been envisioned. Embryonic stem (ES) cells are located in the inner mass of the balstocyst at early stages of the development. Even in long-term cultures they still retain their undifferentiated features. Under specific culture conditions, ES cells can be committed into a variety of differentiation pathways, giving rise to large amounts of cells corresponding to different tissues (neurones, cardiomyocytes, skeletal muscle, etc.). However, producing these tissues from already established ES cell lines would lead to immune rejection when transplanted to patients. To prevent this pitfall and using the expertise accumulated by animal cloning by nucleus transfer, it has been proposed to adapt this technique to human ES cells. The therapeutic cloning consists in transferring the nucleus of somatic stem cells isolated from the patient into an enucleated oocyte, to allow blastocyst development from which ES cells will be derived. From these stem cells, compatible tissues will be then produced. The problem is that it is in theoretically possible to reimplant the cloned blastocyst into a surrogate mother for obtaining a baby genetically identical to the donor. This is called reproductive cloning. This worrying risk raises important ethic and legal questions.

  3. Un(MaSC)ing Stem Cell Dynamics in Mammary Branching Morphogenesis.

    PubMed

    Greenwood, Erin; Wrenn, Emma D; Cheung, Kevin J

    2017-02-27

    The properties of stem cells that participate in mammary gland branching morphogenesis remain contested. Reporting in Nature, Scheele et al. (2017) establish a model for post-pubertal mammary branching morphogenesis in which position-dependent, lineage-restricted stem cells undergo cell mixing in order to contribute to long-term growth.

  4. Epigenetics in cancer stem cells.

    PubMed

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  5. Stem cells' exodus: a journey to immortality.

    PubMed

    Zhou, Yi; Lewallen, Michelle; Xie, Ting

    2013-01-28

    Stem cell niches provide a regulatory microenvironment that retains stem cells and promotes self-renewal. Recently in Developmental Cell, Rinkevich et al. (2013) showed that cell islands (CIs) of Botryllus schlosseri, a colonial chordate, provide niches for maintaining cycling stem cells that migrate from degenerated CIs to newly formed buds.

  6. Stem-cell ecology and stem cells in motion

    PubMed Central

    Scadden, David T.

    2008-01-01

    This review highlights major scientific developments over the past 50 years or so in concepts related to stem-cell ecology and to stem cells in motion. Many thorough and eloquent reviews have been presented in the last 5 years updating progress in these issues. Some paradigms have been challenged, others validated, or new ones brought to light. In the present review, we will confine our remarks to the historical development of progress. In doing so, we will refrain from a detailed analysis of controversial data, emphasizing instead widely accepted views and some challenging novel ones. PMID:18398055

  7. Common stemness regulators of embryonic and cancer stem cells

    PubMed Central

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-01-01

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies. PMID:26516408

  8. Introduction to stem cells and regenerative medicine.

    PubMed

    Kolios, George; Moodley, Yuben

    2013-01-01

    Stem cells are a population of undifferentiated cells characterized by the ability to extensively proliferate (self-renewal), usually arise from a single cell (clonal), and differentiate into different types of cells and tissue (potent). There are several sources of stem cells with varying potencies. Pluripotent cells are embryonic stem cells derived from the inner cell mass of the embryo and induced pluripotent cells are formed following reprogramming of somatic cells. Pluripotent cells can differentiate into tissue from all 3 germ layers (endoderm, mesoderm, and ectoderm). Multipotent stem cells may differentiate into tissue derived from a single germ layer such as mesenchymal stem cells which form adipose tissue, bone, and cartilage. Tissue-resident stem cells are oligopotent since they can form terminally differentiated cells of a specific tissue. Stem cells can be used in cellular therapy to replace damaged cells or to regenerate organs. In addition, stem cells have expanded our understanding of development as well as the pathogenesis of disease. Disease-specific cell lines can also be propagated and used in drug development. Despite the significant advances in stem cell biology, issues such as ethical controversies with embryonic stem cells, tumor formation, and rejection limit their utility. However, many of these limitations are being bypassed and this could lead to major advances in the management of disease. This review is an introduction to the world of stem cells and discusses their definition, origin, and classification, as well as applications of these cells in regenerative medicine.

  9. Multipotent Stem Cell and Current Application.

    PubMed

    Sobhani, Aligholi; Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sargolzaei Aval, Fereydoon

    2017-01-01

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. Multipotent Stem cells have been applying in treatment of different disorders such as spinal cord injury, bone fracture, autoimmune diseases, rheumatoid arthritis, hematopoietic defects, and fertility preservation.

  10. Stem cell cultivation in bioreactors.

    PubMed

    Rodrigues, Carlos A V; Fernandes, Tiago G; Diogo, Maria Margarida; da Silva, Cláudia Lobato; Cabral, Joaquim M S

    2011-01-01

    Cell-based therapies have generated great interest in the scientific and medical communities, and stem cells in particular are very appealing for regenerative medicine, drug screening and other biomedical applications. These unspecialized cells have unlimited self-renewal capacity and the remarkable ability to produce mature cells with specialized functions, such as blood cells, nerve cells or cardiac muscle. However, the actual number of cells that can be obtained from available donors is very low. One possible solution for the generation of relevant numbers of cells for several applications is to scale-up the culture of these cells in vitro. This review describes recent developments in the cultivation of stem cells in bioreactors, particularly considerations regarding critical culture parameters, possible bioreactor configurations, and integration of novel technologies in the bioprocess development stage. We expect that this review will provide updated and detailed information focusing on the systematic production of stem cell products in compliance with regulatory guidelines, while using robust and cost-effective approaches.

  11. [Cancer stem cells as the therapeutic target of tomorrow].

    PubMed

    Hatina, Jiří

    2017-02-01

    The concept of hierarchical organization of tumour cell population, with cancer stem cells positioned at the apex of the cell hierarchy, can explain at least some crucial aspects of biological and clinical behaviour of cancer, like its propensity to relapse as well as the development of therapeutic resistance. The underlying biological properties of cancer stem cells are crucially dependent on various signals, inhibition of which provides an attractive opportunity to attack pharmacologically cancer stem cells. Currently, a lot of such stemness-inhibitors undergo various phases of clinical testing. Interestingly, numerous old drugs that are in routine use in human and veterinary medicine for non-oncological indications appear to be able to specifically target cancer stem cells as well. As cancer stem cells, at least for most tumours, represent usually only a minor tumour cell fraction, it is quite probable that the main focus of the clinical use of the stemness inhibitors would consist in their rational combinations with traditional anticancer treatment modalities. A highly important goal for the future research is to identify reliable and clinically applicable predictive markers that would allow to apply these novel anticancer drugs on the individual basis within the context of personalized medicine.

  12. Stem cells in orthopaedics and fracture healing.

    PubMed

    Alwattar, Basil J; Schwarzkopf, Ran; Kirsch, Thorsten

    2011-01-01

    Stem cell application is a burgeoning field of medicine that is likely to influence the future of orthopaedic surgery. Stem cells are associated with great promise and great controversy. For the orthopaedic surgeon, stem cells may change the way that orthopaedic surgery is practiced and the overall approach of the treatment of musculoskeletal disease. Stem cells may change the field of orthopaedics from a field dominated by surgical replacements and reconstructions to a field of regeneration and prevention. This review will introduce the basic concepts of stem cells pertinent to the orthopaedic surgeon and proceed with a more in depth discussion of current developments in the study of stem cells in fracture healing.

  13. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  14. Adult stem cell therapy: dream or reality?

    PubMed

    Moraleda, Jose M; Blanquer, Miguel; Bleda, Patricia; Iniesta, Paqui; Ruiz, Francisco; Bonilla, Sonia; Cabanes, Carmen; Tabares, Lucía; Martinez, Salvador

    2006-12-01

    Adult stem cells may be an invaluable source of plastic cells for tissue regeneration. The bone marrow contains different subpopulations of adult stem cells easily accessible for transplantation. However the therapeutic value of adult stem cell is a question of debate in the scientific community. We have investigated the potential benefits of adult hematopoietic stem cell transplantation in animal models of demyelinating and motor neuron diseases. Our results suggest that transplantation of HSC have direct and indirect neuroregenerative and neuroprotective effects.

  15. Drosophila dyskerin is required for somatic stem cell homeostasis.

    PubMed

    Vicidomini, Rosario; Petrizzo, Arianna; di Giovanni, Annamaria; Cassese, Laura; Lombardi, Antonella Anna; Pragliola, Caterina; Furia, Maria

    2017-03-23

    Drosophila represents an excellent model to dissect the roles played by the evolutionary conserved family of eukaryotic dyskerins. These multifunctional proteins are involved in the formation of H/ACA snoRNP and telomerase complexes, both involved in essential cellular tasks. Since fly telomere integrity is guaranteed by a different mechanism, we used this organism to investigate the specific role played by dyskerin in somatic stem cell maintenance. To this aim, we focussed on Drosophila midgut, a hierarchically organized and well characterized model for stemness analysis. Surprisingly, the ubiquitous loss of the protein uniquely affects the formation of the larval stem cell niches, without altering other midgut cell types. The number of adult midgut precursor stem cells is dramatically reduced, and this effect is not caused by premature differentiation and is cell-autonomous. Moreover, a few dispersed precursors found in the depleted midguts can maintain stem identity and the ability to divide asymmetrically, nor show cell-growth defects or undergo apoptosis. Instead, their loss is mainly specifically dependent on defective amplification. These studies establish a strict link between dyskerin and somatic stem cell maintenance in a telomerase-lacking organism, indicating that loss of stemness can be regarded as a conserved, telomerase-independent effect of dyskerin dysfunction.

  16. Effect of melphalan 140 mg/m(2) vs 200 mg/m(2) on toxicities and outcomes in multiple myeloma patients undergoing single autologous stem cell transplantation-a single center experience.

    PubMed

    Katragadda, Lakshmikanth; McCullough, Lindsay M; Dai, Yunfeng; Hsu, Jack; Byrne, Michael; Hiemenz, John; May, Stratford; Cogle, Christopher R; Norkin, Maxim; Brown, Randy A; Wingard, John R; Chang, Myron; Moreb, Jan S

    2016-08-01

    Although melphalan at a dose of 140 mg/m(2) (MEL140) is an acceptable conditioning regimen for autologous stem cell transplantation (ASCT) in multiple myeloma (MM) patients, very few studies compared it to the most commonly used dose of 200 mg/m(2) (MEL200). A retrospective review of records of MM patients (2001-2010) identified 33 patients who received MEL140 and 96 patients who received MEL200. As expected, significantly higher percentage of patients in the MEL140 arm were >65 years or had cardiac ejection fraction <50%, had Karnofsky score <80, or had creatinine >2 at the time of ASCT (P≤.01). There were no significant differences in incidence of treatment related mortality and morbidity. At a median follow-up of 74 months from ASCT, there were no significant differences in relapse free survival (RFS) and overall survival (OS) between the two groups. Similar proportion had myeloma status improve to ≥VGPR at 3 months post-ASCT. Usage of post-ASCT maintenance was similar. In multivariate cox proportional hazards model, only disease status of ≥VGPR at the time of ASCT significantly improved RFS (P=.024), but not OS (P=.104). In conclusion, MM patients who received MEL140 had similar long-term outcomes to MEL200 patients despite their older age and co-morbidities.

  17. High incidence of post-transplant cytomegalovirus reactivations in myeloma patients undergoing autologous stem cell transplantation after treatment with bortezomib-based regimens: a survey from the Rome transplant network.

    PubMed

    Marchesi, F; Mengarelli, A; Giannotti, F; Tendas, A; Anaclerico, B; Porrini, R; Picardi, A; Cerchiara, E; Dentamaro, T; Chierichini, A; Romeo, A; Cudillo, L; Montefusco, E; Tirindelli, M C; De Fabritiis, P; Annino, L; Petti, M C; Monarca, B; Arcese, W; Avvisati, G

    2014-02-01

    The incidence of cytomegalovirus (CMV) reactivations in patients with multiple myeloma (MM) receiving autologous stem cell transplantation (ASCT) is relatively low. However, the recent increased use of novel agents, such as bortezomib and/or immunomodulators, before transplant, has led to an increasing incidence of Herpesviridae family virus infections. The aim of the study was to establish the incidence of post-engraftment symptomatic CMV reactivations in MM patients receiving ASCT, and to compare this incidence with that of patients treated with novel agents or with conventional chemotherapy before transplant. The study was a survey of 80 consecutive patients who underwent ASCT after treatment with novel agents (Group A). These patients were compared with a cohort of 89 patients treated with VAD regimen (vincristine, doxorubicin, and dexamethasone) before ASCT (Group B). Overall, 7 patients (4.1%) received an antiviral treatment for a symptomatic CMV reactivation and 1 died. The incidence of CMV reactivations was significantly higher in Group A than in Group B (7.5% vs. 1.1%; P = 0.048). When compared with Group B, the CMV reactivations observed in Group A were significantly more frequent in patients who received bortezomib, whether or not associated with immunomodulators (9.4% vs. 1.1%; P = 0.019), but not in those treated with immunomodulators only (3.7% vs. 1.1%; P = 0.396). These results suggest that MM patients treated with bortezomib-based regimens are at higher risk of developing a symptomatic CMV reactivation after ASCT.

  18. Human fetal mesenchymal stem cells.

    PubMed

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  19. Emerging molecular approaches in stem cell biology.

    PubMed

    Jaishankar, Amritha; Vrana, Kent

    2009-04-01

    Stem cells are characterized by their ability to self-renew and differentiate into multiple adult cell types. Although substantial progress has been made over the last decade in understanding stem cell biology, recent technological advances in molecular and systems biology may hold the key to unraveling the mystery behind stem cell self-renewal and plasticity. The most notable of these advances is the ability to generate induced pluripotent cells from somatic cells. In this review, we discuss our current understanding of molecular similarities and differences among various stem cell types. Moreover, we survey the current state of systems biology and forecast future needs and direction in the stem cell field.

  20. Mesenchymal Stem Cells as Therapeutics

    PubMed Central

    Parekkadan, Biju; Milwid, Jack M.

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as a new therapeutic for treating a variety of immune-mediated diseases. First heralded as a regenerative therapy for skeletal tissue repair, MSCs have recently been shown to modulate endogenous tissue and immune cells. Preclinical studies of the mechanism of action suggest that the therapeutic effects afforded by MSC transplantation are short-lived and related to dynamic, paracrine interactions between MSCs and host cells. Therefore, representations of MSCs as drug-loaded particles may allow for pharmacokinetic models to predict the therapeutic activity of MSC transplants as a function of drug delivery mode. By integrating principles of MSC biology, therapy, and engineering, the field is armed to usher in the next generation of stem cell therapeutics. PMID:20415588

  1. Haematopoietic stem cells require a highly regulated protein synthesis rate.

    PubMed

    Signer, Robert A J; Magee, Jeffrey A; Salic, Adrian; Morrison, Sean J

    2014-05-01

    Many aspects of cellular physiology remain unstudied in somatic stem cells, for example, there are almost no data on protein synthesis in any somatic stem cell. Here we set out to compare protein synthesis in haematopoietic stem cells (HSCs) and restricted haematopoietic progenitors. We found that the amount of protein synthesized per hour in HSCs in vivo was lower than in most other haematopoietic cells, even if we controlled for differences in cell cycle status or forced HSCs to undergo self-renewing divisions. Reduced ribosome function in Rpl24(Bst/+) mice further reduced protein synthesis in HSCs and impaired HSC function. Pten deletion increased protein synthesis in HSCs but also reduced HSC function. Rpl24(Bst/+) cell-autonomously rescued the effects of Pten deletion in HSCs; blocking the increase in protein synthesis, restoring HSC function, and delaying leukaemogenesis. Pten deficiency thus depletes HSCs and promotes leukaemia partly by increasing protein synthesis. Either increased or decreased protein synthesis impairs HSC function.

  2. State-of-the-art fertility preservation in children and adolescents undergoing haematopoietic stem cell transplantation: a report on the expert meeting of the Paediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT) in Baden, Austria, 29-30 September 2015.

    PubMed

    Dalle, J-H; Lucchini, G; Balduzzi, A; Ifversen, M; Jahnukainen, K; Macklon, K T; Ahler, A; Jarisch, A; Ansari, M; Beohou, E; Bresters, D; Corbacioglu, S; Dalissier, A; Diaz de Heredia Rubio, C; Diesch, T; Gibson, B; Klingebiel, T; Lankester, A; Lawitschka, A; Moffat, R; Peters, C; Poirot, C; Saenger, N; Sedlacek, P; Trigoso, E; Vettenranta, K; Wachowiak, J; Willasch, A; von Wolff, M; Yaniv, I; Yesilipek, A; Bader, P

    2017-03-13

    Nowadays, allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a well-established treatment procedure and often the only cure for many patients with malignant and non-malignant diseases. Decrease in short-term complications has substantially contributed to increased survival. Therefore long-term sequelae are reaching the focus of patient care. One of the most important risks of stem cell transplant survivors is infertility. As well as in the field of allo-HSCT also the field of reproductive medicine has achieved substantial advances to offer potential options for fertility preservation in both boys and girls. Access to these procedures as well as their financing differs significantly throughout Europe. As all European children and adolescents should have the same possibility, the Paediatric Diseases Working Party of the European Society for Blood and Marrow Transplantation organised an expert meeting in September 2015. This manuscript describes the recommendations for the diagnosis and pre-emptive procedures that should be offered to all children and adolescents in Europe who have to undergo an allo-HSCT.Bone Marrow Transplantation advance online publication, 13 March 2017; doi:10.1038/bmt.2017.21.

  3. Ethics and Governance of Stem Cell Banks.

    PubMed

    Chalmers, Donald; Rathjen, Peter; Rathjen, Joy; Nicol, Dianne

    2017-01-01

    This chapter examines the ethical principles and governance frameworks for stem cell banks. Good governance of stem cell banks should balance facilitation of the clinical use of stem cells with the proper respect and protection of stem cell sample providers and stem cell recipients and ensure compliance with national regulatory requirements to foster public trust in the use of stem cell technology. Stem cell banks must develop with regard to the science, the needs of scientists, and the requirements of the public, which will benefit from this science. Given the international reach of this promising research and its clinical application, it is necessary for stem cell bank governance frameworks to be harmonized across jurisdictions.

  4. Blood-Forming Stem Cell Transplants

    MedlinePlus

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  5. Stem Cell Transplant Patients and Fungal Infections

    MedlinePlus

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  6. Can Stem Cell 'Patch' Help Heart Failure?

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_164475.html Can Stem Cell 'Patch' Help Heart Failure? Small improvement seen over ... Scientists report another step in the use of stem cells to help treat people with debilitating heart failure. ...

  7. Stem cell technology for neurodegenerative diseases.

    PubMed

    Lunn, J Simon; Sakowski, Stacey A; Hur, Junguk; Feldman, Eva L

    2011-09-01

    Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

  8. Iatrogenic limbal stem cell deficiency.

    PubMed Central

    Holland, E J; Schwartz, G S

    1997-01-01

    PURPOSE: To describe a group of patients with limbal stem cell (SC) deficiency without prior diagnosis of a specific disease entity known to be causative of SC deficiency. METHODS: We performed a retrospective review of the records of all patients with ocular surface disease presenting to the University of Minnesota between 1987 and 1996. Patients were categorized according to etiology of limbal deficiency. Patients who did not have a specific diagnosis previously described as being causative for limbal deficiency were analyzed. Risk factors, clinical findings and sequelae were evaluated. RESULTS: Eight eyes of six patients with stem cell deficiency not secondary to a known diagnosis were described. All eyes had prior ocular surgery involving the corneoscleral limbus. Six eyes had been on chronic topical medications and all eyes had concurrent external disease such as pterygium, keratoconjunctivitis sicca, rosacea or herpes simplex virus keratitis. All eyes had superior quadrants affected corresponding to areas of prior limbal surgery. Sequelae of disease included corneal scarring and neo-vascularization, and five eyes had with visual acuity of 20/200 or worse. CONCLUSIONS: Because the epitheliopathy started peripherally and extended centrally in all patients, we feel it represents a stem cell deficiency. The fact that all patients were affected superiorly, at sites of a prior limbal surgical incision, points to surgical trauma to the SC as the likely major etiologic factor for the deficiency. The surgical trauma to the limbal SC probably made these cells more susceptible to damage from other external disease influences and toxicity from chronic topical medications. Because the stem cell deficiency is secondary to prior ocular surgery and chronic topical medications, we propose the term "iatrogenic limbal stem cell deficiency". Images FIGURE 1 FIGURE 2A FIGURE 2B FIGURE 3A FIGURE 3B PMID:9440165

  9. Modeling Stem Cell Induction Processes

    PubMed Central

    Grácio, Filipe; Cabral, Joaquim; Tidor, Bruce

    2013-01-01

    Technology for converting human cells to pluripotent stem cell using induction processes has the potential to revolutionize regenerative medicine. However, the production of these so called iPS cells is still quite inefficient and may be dominated by stochastic effects. In this work we build mass-action models of the core regulatory elements controlling stem cell induction and maintenance. The models include not only the network of transcription factors NANOG, OCT4, SOX2, but also important epigenetic regulatory features of DNA methylation and histone modification. We show that the network topology reported in the literature is consistent with the observed experimental behavior of bistability and inducibility. Based on simulations of stem cell generation protocols, and in particular focusing on changes in epigenetic cellular states, we show that cooperative and independent reaction mechanisms have experimentally identifiable differences in the dynamics of reprogramming, and we analyze such differences and their biological basis. It had been argued that stochastic and elite models of stem cell generation represent distinct fundamental mechanisms. Work presented here suggests an alternative possibility that they represent differences in the amount of information we have about the distribution of cellular states before and during reprogramming protocols. We show further that unpredictability and variation in reprogramming decreases as the cell progresses along the induction process, and that identifiable groups of cells with elite-seeming behavior can come about by a stochastic process. Finally we show how different mechanisms and kinetic properties impact the prospects of improving the efficiency of iPS cell generation protocols. PMID:23667423

  10. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  11. Transcriptional networks that regulate muscle stem cell function.

    PubMed

    Punch, Vincent G; Jones, Andrew E; Rudnicki, Michael A

    2009-01-01

    Muscle stem cells comprise different populations of stem and progenitor cells found in embryonic and adult tissues. A number of signaling and transcriptional networks are responsible for specification and survival of these cell populations and regulation of their behavior during growth and regeneration. Muscle progenitor cells are mostly derived from the somites of developing embryos, while satellite cells are the progenitor cells responsible for the majority of postnatal growth and adult muscle regeneration. In resting muscle, these stem cells are quiescent, but reenter the cell cycle during their activation, whereby they undergo decisions to self-renew, proliferate, or differentiate and fuse into multinucleated myofibers to repair damaged muscle. Regulation of muscle stem cell activity is under the precise control of a number of extrinsic signaling pathways and active transcriptional networks that dictate their behavior, fate, and regenerative potential. Here, we review the networks responsible for these different aspects of muscle stem cell biology and discuss prevalent parallels between mechanisms regulating the activity of embryonic muscle progenitor cells and adult satellite cells.

  12. Stem cells in kidney diseases.

    PubMed

    Soler, María José; José Tomas, Ortiz-Pérez

    2012-01-01

    Circulating bone marrow-derived endothelial progenitor cells (EPCs) seem to play a crucial role in both vasculogenesis and vascular homeostasis. Chronic kidney disease is a state of endothelial dysfunction, accelerated progression of atherosclerosis and high cardiovascular risk. As a consequence, cardiovascular disorders are the main cause of death in end-stage renal disease (ESRD). It has been shown that patients with advanced renal failure have decreased number of bone marrow-derived endothelial progenitor cells and impaired EPCs function. Moreover, in kidney transplant patients, renal graft function significantly correlated with EPC number. The reduced number of EPCs in patients with ESRD has been ascribed to the uremia. Therefore, therapies that improve the uremic status in dialysis patients such as nocturnal hemodialysis are associated with restoration of impaired EPCs number and migratory function. In fact, some of the common treatments for patients with chronic kidney disease such as erythropoietin, statins and angiotensin II receptor antagonist increase the number of EPCs. Nowadays, there is growing evidence indicating that, under pathophysiological conditions, stem cells (SCs) derived from bone marrow are able to migrate in the injured kidney, and they seem to play a role in glomerular and tubular regeneration. After acute tubular renal injury, surviving tubular epithelial cells and putative renal stem cells proliferate and differentiate into tubular epithelial cells to promote structural and functional repair. Moreover, bone marrow stem cells, including hematopoietic stem cells and mesenchymal stem cells can also participate in the repair process by proliferation and differentiation into renal lineages. For instance, mesenchymal SCs have been shown to decrease inflammation and enhance renal regeneration. The administration of ex vivo expanded bone marrow-derived mesenchymal SCs have been proved to be beneficial in various experimental models of acute

  13. An introduction to stem cell biology.

    PubMed

    Hemmat, Shirin; Lieberman, David M; Most, Sam P

    2010-10-01

    The field of stem cell biology has undergone tremendous expansion over the past two decades. Scientific investigation has continued to expand our understanding of these complex cells at a rapidly increasing rate. This understanding has produced a vast array of potential clinical applications. This article will serve as an overview of the current state of stem cell research as it applies to scientific and medical applications. Included in the discussion is a review of the many different types of stem cells, including but not limited to adult, embryonic, and perinatal stem cells. Also, this article describes somatic cell nuclear transfer, an exciting technology that allows the production of totipotent stem cells from fully differentiated cells, thereby eliminating the use of embryonic sources. This discussion should serve as a review of the field of stem cell biology and provide a foundation for the reader to better understand the interface of stem cell technology and facial plastic and reconstructive surgery.

  14. Stem/Progenitor cells in vascular regeneration.

    PubMed

    Zhang, Li; Xu, Qingbo

    2014-06-01

    A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.

  15. Epidermal stem cells and their epigenetic regulation.

    PubMed

    Shen, Qi; Jin, Hongchuan; Wang, Xian

    2013-08-30

    Stem cells play an essential role in embryonic development, cell differentiation and tissue regeneration. Tissue homeostasis in adults is maintained by adult stem cells resident in the niches of different tissues. As one kind of adult stem cell, epidermal stem cells have the potential to generate diversified types of progeny cells in the skin. Although its biology is still largely unclarified, epidermal stem cells are widely used in stem cell research and regenerative medicine given its easy accessibility and pluripotency. Despite the same genome, cells within an organism have different fates due to the epigenetic regulation of gene expression. In this review, we will briefly discuss the current understanding of epigenetic modulation in epidermal stem cells.

  16. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    ERIC Educational Resources Information Center

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  17. Stem cells and colorectal carcinogenesis

    PubMed Central

    Stoian, M; Stoica, V; Radulian, G

    2016-01-01

    Abstract Colorectal cancer represents an important cause of mortality and morbidity. Unfortunately, the physiopathology is still under study. There are theories about carcinogenesis and it is known that not only a single factor is responsible for the development of a tumor, but several conditions. Stem cells are a promising target for the treatment of colorectal cancer, along with the environment that has an important role. It has been postulated that mutations within the adult colonic stem cells may induce neoplastic changes. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumor and therefore they are responsible for recurrence. It is important to know that a new way of treatment needs to be found, since these cells are resistant to chemotherapy and radiotherapy. PMID:27713769

  18. [Cell transplant and regenerative stem cell therapy].

    PubMed

    Prosper, F

    2008-01-01

    The derivation of the first human embryonic stem cell lines as well as the notion of the unexpected plasticity and potential of the adult stem cells has significantly impacted the biomedical research. Many of the tissues long believe to lack any regenerative capacity has demonstrated otherwise. Patients alike physicians expectations for treatment of incurable diseases have also fuelled this field and in occasions have led to unrealistic expectations. In the next pages I review some of the tissue specific stem cells that have been used either in preclinical models or even in clinical research. Despite the effort of numerous investigators, more questions that answers remain in the field of cell therapy and only careful and independent -not biased- research will allow us to translate some of this findings into clinical application.

  19. Hematopoietic stem cells for cancer immunotherapy.

    PubMed

    Gschweng, Eric; De Oliveira, Satiro; Kohn, Donald B

    2014-01-01

    Hematopoietic stem cells (HSCs) provide an attractive target for immunotherapy of cancer and leukemia by the introduction of genes encoding T-cell receptors (TCRs) or chimeric antigen receptors (CARs) directed against tumor-associated antigens. HSCs engraft for long-term blood cell production and could provide a continuous source of targeted anti-cancer effector cells to sustain remissions. T cells produced de novo from HSCs may continuously replenish anti-tumor T cells that have become anergic or exhausted from ex vivo expansion or exposure to the intratumoral microenvironment. In addition, transgenic T cells produced in vivo undergo allelic exclusion, preventing co-expression of an endogenous TCR that could mis-pair with the introduced TCR chains and blunt activity or even cause off-target reactivity. CAR-engineered HSCs may produce myeloid and natural killer cells in addition to T cells expressing the CAR, providing broader anti-tumor activity that arises quickly after transplant and does not solely require de novo thymopoiesis. Use of TCR- or CAR-engineered HSCs would likely require cytoreductive conditioning to achieve long-term engraftment, and this approach may be used in clinical settings where autologous HSC transplant is being performed to add a graft-versus-tumor effect. Results of experimental and preclinical studies performed to date are reviewed.

  20. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  1. Setting FIRES to Stem Cell Research

    ERIC Educational Resources Information Center

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  2. Retinal stem cells and potential cell transplantation treatments.

    PubMed

    Lin, Tai-Chi; Hsu, Chih-Chien; Chien, Ke-Hung; Hung, Kuo-Hsuan; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-11-01

    The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone) and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells). The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  3. Stem Cells for Neurovascular Repair in Stroke

    PubMed Central

    Shinozuka, Kazutaka; Dailey, Travis; Tajiri, Naoki; Ishikawa, Hiroto; Kim, Dae Won; Pabon, Mibel; Acosta, Sandra; Kaneko, Yuji; Borlongan, Cesar V

    2013-01-01

    Stem cells exert therapeutic effects against ischemic stroke via transplantation of exogenous stem cells or stimulation of endogenous stem cells within the neurogenic niches of subventricular zone and subgranular zone, or recruited from the bone marrow through peripheral circulation. In this paper, we review the different sources of stem cells that have been tested in animal models of stroke. In addition, we discuss specific mechanisms of action, in particular neurovascular repair by endothelial progenitor cells, as key translational research for advancing the clinical applications of stem cells for ischemic stroke. PMID:24077523

  4. Somatic stem cell biology and periodontal regeneration.

    PubMed

    Zhu, Bin; Liu, Yihan; Li, Dehua; Jin, Yan

    2013-01-01

    Somatic stem cells have been acknowledged for their ability to differentiate into multiple cell types and their capacity for self-renewal. Some mesenchymal stem cells play a dominant role in the repair and reconstruction of periodontal tissues. Both dental-derived and some non-dental-derived mesenchymal stem cells possess the capacity for periodontal regeneration under certain conditions with induced differentiation, proliferation, cellular secretion, and their interactions. Stem cell-based tissue engineering technology promises to bring improvements to periodontal regeneration, biologic tooth repair, and bioengineered implants. The present review discusses the roles and values of various somatic stem cells in periodontal regeneration.

  5. Cancer Stem Cells in Lung Tumorigenesis

    PubMed Central

    Kratz, Johannes R.; Yagui-Beltrán, Adam; Jablons, David M.

    2011-01-01

    Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continued research in the field of lung cancer stem cell biology is vital, as ongoing efforts promise to yield new prognostic and therapeutic targets. PMID:20493987

  6. Notch signaling in cancer stem cells.

    PubMed

    Wang, Jialiang; Sullenger, Bruce A; Rich, Jeremy N

    2012-01-01

    Subpopulations of cancer cells with stem cell-like characteristics, termed cancer stem cells, have been identified in a wide range of human cancers. Cancer stem cells are defined by their ability to self-renew as well as recapitulate the original heterogeneity of cancer cells in culture and in serial xenotransplants. Not only are cancer stem cells highly tumorigenic, but these cells are implicated in tumor resistance to conventional chemotherapy and radiotherapy, thus highlighting their significance as therapeutic targets. Considerable similarities have been found between cancer stem cells and normal stem cells on their dependence on certain signaling pathways. More specifically, the core stem cell signaling pathways, such as the Wnt, Notch and Hedgehog pathways, also critically regulate the self-renewal and survival of cancer stem cells. While the oncogenic functions of Notch pathway have been well documented, its role in cancer stem cells is just emerging. In this chapter, we will discuss recent advances in cancer stem cell research and highlight the therapeutic potential of targeting Notch in cancer stem cells.

  7. Methods for Stem Cell Production and Therapy

    NASA Technical Reports Server (NTRS)

    Claudio, Pier Paolo (Inventor); Valluri, Jagan V. (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  8. Nuclear Mechanics and Stem Cell Differentiation.

    PubMed

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  9. Stem Cells in Prostate

    DTIC Science & Technology

    2005-03-01

    disease upon aging, specifically prostate cancer and benign prostatic hyperplasia . In order to study the cell differentiation lineage associated with...specifically prostate cancer and benign prostatic hyperplasia . In order to study the cell differentiation lineage associated with normal and diseased prostate

  10. TLR7-expressing cells comprise an interfollicular epidermal stem cell population in murine epidermis

    PubMed Central

    Yin, Chaoran; Zhang, Ting; Qiao, Liangjun; Du, Jia; Li, Shuang; Zhao, Hengguang; Wang, Fangfang; Huang, Qiaorong; Meng, Wentong; Zhu, Hongyan; Bu, Hong; Li, Hui; Xu, Hong; Mo, Xianming

    2014-01-01

    Normal interfollicular epidermis (IFE) homeostasis is maintained throughout the entire life by its own stem cells that self-renew and generate progeny that undergo terminal differentiation. However, the fine markers of the stem cells in interfollicular epidermis are not well defined yet. Here we found that TLR7 identified the existence of progenitors and interfollicular epidermal stem cells in murine skin. In vitro, TLR7-expressing cells comprised of two subpopulations that were competent to proliferate and exhibited distinct differentiation potentials. Three-dimensional (3D) organotypic culture and skin reconstitution assays showed that TLR7-expressing cells were able to reconstruct the interfollicular epidermis. Finally, TLR7-expressing cells maintained the intact interfollicular epidermal structures revealed in serial transplantation assays in vivo in mice. Taken together, our results suggest that TLR7-expressing cells comprise an interfollicular epidermal stem cell population. PMID:25060222

  11. Stem cell strategies, future and beyond.

    PubMed

    Sugaya, Kiminobu

    2003-01-01

    The use of stem cells for neuroreplacement therapy is no longer science fiction--it is science fact. We have succeeded in the development of neural and mesenchymal stem cell transplantation to produce neural cells in the brain. We have seen the improvement of cognitive function in a memory-impaired aged animal model following stem cell transplantation. These results may promise a bright future for stem cell strategies. Before we begin to think about clinical applications beyond the present preclinical studies or even consider the pathophysiological environments of individual diseases, we must address and weigh the factors that may affect stem cell biology. Here, we not only show the potential for therapeutic applications for stem cell strategies in neuropathological conditions, but we also discuss the effects on the biology of stem cells of those factors that are altered under disease conditions.

  12. Endometrial stem cells in regenerative medicine.

    PubMed

    Verdi, Javad; Tan, Aaron; Shoae-Hassani, Alireza; Seifalian, Alexander M

    2014-01-01

    First described in 2004, endometrial stem cells (EnSCs) are adult stem cells isolated from the endometrial tissue. EnSCs comprise of a population of epithelial stem cells, mesenchymal stem cells, and side population stem cells. When secreted in the menstrual blood, they are termed menstrual stem cells or endometrial regenerative cells. Mounting evidence suggests that EnSCs can be utilized in regenerative medicine. EnSCs can be used as immuno-modulatory agents to attenuate inflammation, are implicated in angiogenesis and vascularization during tissue regeneration, and can also be reprogrammed into induced pluripotent stem cells. Furthermore, EnSCs can be used in tissue engineering applications and there are several clinical trials currently in place to ascertain the therapeutic potential of EnSCs. This review highlights the progress made in EnSC research, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo.

  13. Stem cells: are we ready for therapy?

    PubMed

    Schroeder, Insa S

    2014-01-01

    Cell therapy as a replacement for diseased or destroyed endogenous cells is a major component of regenerative medicine. Various types of stem cells are or will be used in clinical settings as autologous or allogeneic products. In this chapter, the progress that has been made to translate basic stem cell research into pharmaceutical manufacturing processes will be reviewed. Even if in public perception, embryonic stem (ES) cells and more recently induced pluripotent stem (iPS) cells dominate the field of regenerative medicine and will be discussed in great detail, it is the adult stem cells that are used for decades as therapeutics. Hence, these cells will be compared to ES and iPS cells. Finally, special emphasis will be placed on the scientific, technical, and economic challenges of developing stem cell-based in vitro model systems and cell therapies that can be commercialized.

  14. Challenges for heart disease stem cell therapy

    PubMed Central

    Hoover-Plow, Jane; Gong, Yanqing

    2012-01-01

    Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI) is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1) improved identification, recruitment, and expansion of autologous stem cells; (2) identification of mobilizing and homing agents that increase recruitment; and (3) development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress. PMID:22399855

  15. Embryonic stem cell patents and human dignity.

    PubMed

    Resnik, David B

    2007-09-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells.

  16. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  17. Stem cell maintenance in a different niche

    PubMed Central

    Ahn, Ji Yeon; Lee, Seung Tae

    2013-01-01

    To overcome the difficulty of controlling stem cell fate and function in applications to regenerative medicine, a number of alternative approaches have been made. Recent reports demonstrate that a non-cellular niche modulating the biophysical microenvironment with chemical factors can support stem cell self-renewal. In our previous studies, early establishment was executed to optimize biophysical factors and it was subsequently found that the microgeometry of the extracellular matrix made huge differences in stem cell behavior and phenotype. We review here a three-dimensional, non-cellular niche designed to support stem cell self-renewal. The characteristics of stem cells under the designed system are further discussed. PMID:23875159

  18. Mesenchymal stem cell exosomes.

    PubMed

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Lim, Sai Kiang

    2015-04-01

    MSCs are an extensively used cell type in clinical trials today. The initial rationale for their clinical testing was based on their differentiation potential. However, the lack of correlation between functional improvement and cell engraftment or differentiation at the site of injury has led to the proposal that MSCs exert their effects not through their differentiation potential but through their secreted product, more specifically, exosomes, a type of extracellular vesicle. We propose here that MSC exosomes function as an extension of MSC's biological role as tissue stromal support cells. Like their cell source, MSC exosomes help maintain tissue homeostasis for optimal tissue function. They target housekeeping biological processes that operate ubiquitously in all tissues and are critical in maintaining tissue homeostasis, enabling cells to recover critical cellular functions and begin repair and regeneration. This hypothesis provides a rationale for the therapeutic efficacy of MSCs and their secreted exosomes in a wide spectrum of diseases. Here, we give a brief introduction of the biogenesis of MSC exosomes, review their physiological functions and highlight some of their biochemical potential to illustrate how MSC exosomes could restore tissue homeostasis leading to tissue recovery and repair.

  19. Klotho, stem cells, and aging

    PubMed Central

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders. PMID:26346243

  20. Klotho, stem cells, and aging.

    PubMed

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.

  1. Sustained telomere erosion due to increased stem cell turnover during triple autologous hematopoietic stem cell transplantation.

    PubMed

    Widmann, Thomas; Kneer, Harald; König, Jochem; Herrmann, Markus; Pfreundschuh, Michael

    2008-01-01

    Telomeres cap chromosomal ends and are shortened throughout a lifetime. Additional telomere erosion has been documented during conventional chemotherapy or hematopoietic stem cell transplantation. Previous studies of stem cell transplantation reported variable amounts of telomere shortening with inconsistent results regarding the persistence of telomere shortening. Here we have prospectively studied telomere length and proliferation kinetics of hematopoietic cells in aggressive non-Hodgkin lymphoma patients who underwent a four-course high-dose chemotherapy protocol combined with triple autologous stem cell transplantation. We observed sustained telomere shortening in hematopoietic cells after triple stem cell transplantation with prolonged stem cell replication during the first year after stem cell transplantation.

  2. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body.

  3. Clinical trials for stem cell therapies

    PubMed Central

    2011-01-01

    In recent years, clinical trials with stem cells have taken the emerging field in many new directions. While numerous teams continue to refine and expand the role of bone marrow and cord blood stem cells for their vanguard uses in blood and immune disorders, many others are looking to expand the uses of the various types of stem cells found in bone marrow and cord blood, in particular mesenchymal stem cells, to uses beyond those that could be corrected by replacing cells in their own lineage. Early results from these trials have produced mixed results often showing minor or transitory improvements that may be attributed to extracellular factors. More research teams are accelerating the use of other types of adult stem cells, in particular neural stem cells for diseases where beneficial outcome could result from either in-lineage cell replacement or extracellular factors. At the same time, the first three trials using cells derived from pluripotent cells have begun. PMID:21569277

  4. Stem Cells News Update: A Personal Perspective

    PubMed Central

    Wong, SC

    2013-01-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy. PMID:24778557

  5. Stem cells news update: a personal perspective.

    PubMed

    Wong, Sc

    2013-12-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy.

  6. [Stem cells and tissue engineering techniques].

    PubMed

    Sica, Gigliola

    2013-01-01

    The therapeutic use of stem cells and tissue engineering techniques are emerging in urology. Here, stem cell types, their differentiating potential and fundamental characteristics are illustrated. The cancer stem cell hypothesis is reported with reference to the role played by stem cells in the origin, development and progression of neoplastic lesions. In addition, recent reports of results obtained with stem cells alone or seeded in scaffolds to overcome problems of damaged urinary tract tissue are summarized. Among others, the application of these biotechnologies in urinary bladder, and urethra are delineated. Nevertheless, apart from the ethical concerns raised from the use of embryonic stem cells, a lot of questions need to be solved concerning the biology of stem cells before their widespread use in clinical trials. Further investigation is also required in tissue engineering utilizing animal models.

  7. ETOPOSIDE INDUCES CHROMOSOMAL ABNORMALITIES IN SPERMATOCYTES AND SPERMATOGONIAL STEM CELLS

    SciTech Connect

    Marchetti, F; Pearson, F S; Bishop, J B; Wyrobek, A J

    2005-07-15

    Etoposide (ET) is a chemotherapeutic agent widely used in the treatment of leukemia, lymphomas and many solid tumors, such as testicular and ovarian cancers, that affect patients in their reproductive years. The purpose of the study was to use sperm FISH analyses to characterize the long-term effects of ET on male germ cells. We used a mouse model to characterize the induction of chromosomal aberrations (partial duplications and deletions) and whole chromosomal aneuploidies in sperm of mice treated with a clinical dose of ET. Semen samples were collected at 25 and 49 days after dosing to investigate the effects of ET on meiotic pachytene cells and spermatogonial stem-cells, respectively. ET treatment resulted in major increases in the frequencies of sperm carrying chromosomal aberrations in both meiotic pachytene (27- to 578-fold) and spermatogonial stem-cells (8- to 16-fold), but aneuploid sperm were induced only after treatment of meiotic cells (27-fold) with no persistent effects in stem cells. These results demonstrate that male meiotic germ cells are considerably more sensitive to ET than spermatogonial stem-cell and that increased frequencies of sperm with structural aberrations persist after spermatogonial stem-cell treatment. These findings predict that patients who undergo chemotherapy with ET may have transient elevations in the frequencies of aneuploid sperm, but more importantly, may have persistent elevations in the frequencies of sperm with chromosomal aberrations, placing them at higher risk for abnormal reproductive outcomes long after the end of their chemotherapy.

  8. Stem Cells, Science, and Public Reasoning

    ERIC Educational Resources Information Center

    Hurlbut, J. Benjamin; Robert, Jason Scott

    2012-01-01

    These are interesting days in the scientific, social, and political debates about human embryonic stem cell research. Pluripotent stem cells--cells that can, in principle, give rise to the body's full range of cell types--were previously derivable only from human embryos that were destroyed in the process. Now, a variety of somatic cell types can…

  9. Stem cells, mitochondria and aging.

    PubMed

    Ahlqvist, Kati J; Suomalainen, Anu; Hämäläinen, Riikka H

    2015-11-01

    Decline in metabolism and regenerative potential of tissues are common characteristics of aging. Regeneration is maintained by somatic stem cells (SSCs), which require tightly controlled energy metabolism and genomic integrity for their homeostasis. Recent data indicate that mitochondrial dysfunction may compromise this homeostasis, and thereby contribute to tissue degeneration and aging. Progeroid Mutator mouse, accumulating random mtDNA point mutations in their SSCs, showed disturbed SSC homeostasis, emphasizing the importance of mtDNA integrity for stem cells. The mechanism involved changes in cellular redox-environment, including subtle increase in reactive oxygen species (H₂O₂and superoxide anion), which did not cause oxidative damage, but disrupted SSC function. Mitochondrial metabolism appears therefore to be an important regulator of SSC fate determination, and defects in it in SSCs may underlie premature aging. Here we review the current knowledge of mitochondrial contribution to SSC dysfunction and aging. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.

  10. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  11. Effects of nanotopography on stem cell phenotypes

    PubMed Central

    Ravichandran, Rajeswari; Liao, Susan; Ng, Clarisse CH; Chan, Casey K; Raghunath, Michael; Ramakrishna, Seeram

    2009-01-01

    Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes. PMID:21607108

  12. Stem cell directed gene therapy.

    PubMed

    Engel, B C; Kohn, D B

    1999-05-01

    A potential therapeutic approach to HIV-1 infection is the genetic modification of cells of a patient to make them resistant to HIV-1. Hematopoietic stem cells are an attractive target for gene therapy of AIDS because of their ability to generate a broad repertoire of mature T lymphocytes, as well as the monocytic cells (macrophages, dendritic cells and microglia) which are also involved in HIV-1 pathogenesis. A number of synthetic "anti-HIV-1 genes" have been developed which inhibit HIV-1 replication. However, current methods for gene transfer into human hematopoietic stem cells, using retroviral vectors derived from the Moloney murine leukemia virus, have been minimally effective. Clinical trials performed to date in which hematopoietic cells from HIV-1-positive patients have been transduced with retroviral vectors and then reinfused have produced low to undetectable levels of gene-containing peripheral blood leukocytes. New vector delivery systems, such as lentiviral vectors, need to be developed to ensure efficient gene transfer and persistent transgene expression to provide life-long resistance to the cells targeted by HIV-1.

  13. Cancer stem cells and metastasis.

    PubMed

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  14. Embryonic stem cells: testing the germ-cell theory.

    PubMed

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state.

  15. Haematopoietic stem cells: past, present and future

    PubMed Central

    Ng, Ashley P; Alexander, Warren S

    2017-01-01

    The discovery and characterisation of haematopoietic stem cells has required decades of research. The identification of adult bone marrow as a source of haematopoietic cells capable of protecting an organism from otherwise lethal irradiation led to the intense search for their identity and characteristics. Using functional assays along with evolving techniques for isolation of haematopoietic cells, haematopoietic stem cell populations were able to be enriched and their characteristics analysed. The key haematopoietic stem cell characteristics of pluripotentiality and the ability for self-renewal have emerged as characteristics of several haematopoietic stem cell populations, including those that have recently challenged the conventional concepts of the haematopoietic hierarchy. Human allogeneic stem cell therapy relies on these functional characteristics of haematopoietic stem cells that can be isolated from peripheral blood, bone marrow or cord blood, with the additional requirement that immunological barriers need to be overcome to allow sustained engraftment while minimising risk of graft-versus-host disease developing in the recipient of transplanted stem cells. Current and future research will continue to focus on the identification of haematopoietic stem cell regulators and methods for in vitro and in vivo stem cell manipulation, including genome editing, to expand the scope, potential and safety of therapy using haematopoietic stem cells. PMID:28180000

  16. Making new beta cells from stem cells.

    PubMed

    Colman, Alan

    2004-06-01

    In 2000, Shapiro et al. provided compelling "proof of principle" data showing that the transplantation of human islets, purified from cadaveric material, could restore severely diabetic, Type 1 patients to insulin independence. This demonstration prompted renewed efforts to find an alternative and sustainable source of surrogate islet cells for cell therapy. Experiments involving adult ductal and liver "stem" cells, or embryonic stem cells, are prominent amongst these endeavors and are reviewed in this article. Whilst there are many published claims to success in converting ES cells into insulin secreting, glucose responsive cells, all require careful reinterpretation in the light of findings that cells can adsorb insulin present in growth media. It is likely that work with adult cells is less prone to this potential artifact and significant progress has been made in producing insulin-secreting cells. Assessment of in vivo function in the surrogate cells is most frequently made using cell transplantation into toxin-induced, diabetic mice, but this model is rarely used to maximal advantage. In many cases, it remains unclear whether reductions in the hyperglycemia result from insulin secretion from the transplanted cells or are due to recovery of endogenous islet function. In this latter context, experiments are reviewed where endogenous stimulation of recovery is engendered even by irradiated donor cells.

  17. Keratinocyte stem cells and the targets for nonmelanoma skin cancer.

    PubMed

    Singh, Ashok; Park, Heuijoon; Kangsamaksin, Thaned; Singh, Anupama; Readio, Nyssa; Morris, Rebecca J

    2012-01-01

    The mammalian skin is a complex dynamic organ composed of thin multilayered epidermis and a thick underlying connective tissue layer dermis. The epidermis undergoes continuous renewal throughout life. The stems cells uniquely express particular surface markers utilized for their identification, isolation and localization in specific niches in epidermis as well as hair follicles (HFs). The two stage skin carcinogenesis model involves stepwise accumulation of genetic alterations and ultimately leading to malignancy. Whereas early research on skin carcinogenesis focused on the molecular nature of carcinogens and tumor promoters, more recent studies have focused on the identification of the target cells and tumor promoting cells for both chemical and physical carcinogens and promoters. Recent studies support the hypothesis that keratinocyte stem cells are the targets in skin carcinogenesis. In this review, we discuss briefly the localization of stem cells in the epidermis and HFs, and review the possibility that skin papillomas and carcinomas are derived from stem cells, as well as from other cells in the cutaneous epithelium whose stem cell properties are not well known.

  18. Effects of priming with recombinant human granulocyte colony-stimulating factor on conditioning regimen for high-risk acute myeloid leukemia patients undergoing human leukocyte antigen-haploidentical hematopoietic stem cell transplantation: a multicenter randomized controlled study in southwest China.

    PubMed

    Gao, Lei; Wen, Qin; Chen, Xinghua; Liu, Yao; Zhang, Cheng; Gao, Li; Kong, Peiyan; Zhang, Yanqi; Li, Yunlong; Liu, Jia; Wang, Qingyu; Su, Yi; Wang, Chunsen; Wang, Sanbin; Zeng, Yun; Sun, Aihua; Du, Xin; Zeng, Dongfeng; Liu, Hong; Peng, Xiangui; Zhang, Xi

    2014-12-01

    HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is an effective and immediate treatment for high-risk acute myeloid leukemia (HR-AML) patients lacking matched donors. Relapse remains the leading cause of death for HR-AML patients after haplo-HSCT. Accordingly, the prevention of relapse remains a challenge in the treatment of HR-AML. In a multicenter randomized controlled trial in southwestern China, 178 HR-AML patients received haplo-HSCT with conditioning regimens involving recombinant human granulocyte colony-stimulating factor (rhG-CSF) or non-rhG-CSF. The cumulative incidences of relapse and graft-versus-host disease (GVHD), 2-year leukemia-free survival (LFS), and overall survival (OS) were evaluated. HR-AML patients who underwent the priming conditioning regimen with rhG-CSF had a lower relapse rate than those who were treated with non-rhG-CSF (38.2%; 95% confidence interval [CI], 28.1% to 48.3% versus 60.7%, 95% CI, 50.5% to 70.8%; P < .01). The cumulative incidences of acute GVHD, chronic GVHD, transplantation-related toxicity, and infectious complications appeared to be equivalent. In total, 53 patients in the rhG-CSF-priming group and 31 patients in the non-rhG-CSF-priming group were still alive at the median follow-up time of 42 months (range, 24 to 80 months). The 2-year probabilities of LFS and OS in the rhG-CSF-priming and non-rhG-CSF-priming groups were 55.1% (95% CI, 44.7% to 65.4%) versus 32.6% (95% CI, 22.8% to 42.3%) (P < .01) and 59.6% (95% CI, 49.4% to 69.7%) versus 34.8% (95% CI, 24.9% to 44.7%) (P < .01), respectively. Multivariate analyses indicated that the 2-year probability of LFS of patients who achieved complete remission (CR) before transplantation was better than that of patients who did not achieve CR. The 2-year probability of LFS of patients with no M4/M5/M6 subtype was better than that of patients with the M4/M5/M6 subtype in the G-CSF-priming group (67.4%; 95% CI, 53.8% to 80.9% versus 41.9%; 95% CI, 27

  19. Breast Cancer Stem Cells in Antiestrogen Resistance

    DTIC Science & Technology

    2013-08-01

    stimulated by antiestrogens. The effects of antiestrogens on the ER-positive breast cancer stem/progenitor involve changes of both proliferation and...self-renewal capabilities of breast cancer stem/progenitor cells. The effects of antiestrogens on the ER- positive breast cancer stem/progenitor...potent tumor-seeding efficiency. . Fig 3. The effects of antiestrogens on the differentiation of ER-positive breast cancer stem cells expressing

  20. Stem Cells in the Nervous System

    PubMed Central

    Maldonado-Soto, Angel R.; Oakley, Derek H.; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K.; Henderson, Christopher E.

    2014-01-01

    Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in the field of regenerative medicine. This review focuses on our current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain, and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential, as well as finding mechanisms to activate dormant stem cells outside of these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation. PMID:24800720

  1. Engineering Stem Cells for Biomedical Applications.

    PubMed

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.

  2. Reforming craniofacial orthodontics via stem cells.

    PubMed

    Mohanty, Pritam; Prasad, N K K; Sahoo, Nivedita; Kumar, Gunjan; Mohanty, Debapreeti; Sah, Sushila

    2015-01-01

    Stem cells are the most interesting cells in cell biology. They have the potential to evolve as one of the most powerful technologies in the future. The future refers to an age where it will be used extensively in various fields of medical and dental sciences. Researchers have discovered a number of sources from which stem cells can be derived. Craniofacial problems are very common and occur at all ages. Stem cells can be used therapeutically in almost every field of health science. In fact, many procedures will be reformed after stem cells come into play. This article is an insight into the review of the current researches being carried out on stem cells and its use in the field of orthodontics, which is a specialized branch of dentistry. Although the future is uncertain, there is a great possibility that stem cells will be used extensively in almost all major procedures of orthodontics.

  3. Lung stem cell update: promise and controversy.

    PubMed

    Neuringer, I P; Randell, S H

    2006-03-01

    Currently, there is great enthusiasm about potential stem cell therapies for intractable diseases. We previously reviewed the topic of stem cells in lung injury and repair, including the role of endogenous, tissue (somatic) stem cells and the contribution of circulating cells to the lung parenchyma. Our purpose here is to provide a concise update in this fast-moving field. New information and ongoing debate focus attention on basic issues in lung stem cell biology and highlight the need for additional studies to establish the feasibility of cell therapies to prevent or treat lung diseases.

  4. Stem Cells for Augmenting Tendon Repair

    PubMed Central

    Gulotta, Lawrence V.; Chaudhury, Salma; Wiznia, Daniel

    2012-01-01

    Tendon healing is fraught with complications such as reruptures and adhesion formation due to the formation of scar tissue at the injury site as opposed to the regeneration of native tissue. Stem cells are an attractive option in developing cell-based therapies to improve tendon healing. However, several questions remain to be answered before stem cells can be used clinically. Specifically, the type of stem cell, the amount of cells, and the proper combination of growth factors or mechanical stimuli to induce differentiation all remain to be seen. This paper outlines the current literature on the use of stem cells for tendon augmentation. PMID:22190960

  5. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  6. Stem cell death and survival in heart regeneration and repair

    PubMed Central

    Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-01-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function. PMID:26687129

  7. Stem Cells in the Cornea

    PubMed Central

    Hertsenberg, Andrew J.; Funderburgh, James L.

    2017-01-01

    The cornea is the tough, transparent tissue through which light first enters the eye and functions as a barrier to debris and infection as well as two-thirds of the refractive power of the eye. Corneal damage that is not promptly treated will often lead to scarring and vision impairment. Due to the limited options currently available to treat corneal scars, the identification and isolation of stem cells in the cornea has received much attention, as they may have potential for autologous, cell-based approaches to the treatment of damaged corneal tissue. PMID:26310147

  8. What Is a Blood and Marrow Stem Cell Transplant?

    MedlinePlus

    ... and Bone Marrow Transplant Also known as hematopoietic stem cell transplant, hematopoietic cell transplant, autologous transplant, or allogeneic ... or bone marrow transplant replaces abnormal blood-forming stem cells with healthy cells. When the healthy stem cells ...

  9. PEDF & stem cells: niche vs. nurture.

    PubMed

    Fitchev, Philip; Chung, Chuhan; Plunkett, Beth A; Brendler, Charles B; Crawford, Susan E

    2014-01-01

    Anti-angiogenic pigment epithelium-derived factor (PEDF) is a multifunctional 50kD secreted glycoprotein emerging as a key factor in stem cell renewal. Characteristics of the stem cell niche can be highly dependent on location, access to the vasculature, oxygen tension and neighboring cells. In the neural stem cell (NSC) niche, specifically the subventricular zone, PEDF actively participates in the self renewal process and promotes stemness by upregulating Notch signaling effectors Hes1 and Hes5. The local vascular endothelial cells and ependymal cells are the likely sources of PEDF for the NSC while mesenchymal and retinal stem cells can actually produce PEDF. The opposing actions of PEDF and VEGF on various cells are recapitulated in the NSC niche. Intraventricular injection of PEDF promotes stem cell renewal, while injection of VEGF prompts differentiation and neurogenesis in the subventricular zone. Enhancing the expression of PEDF in stem cells has promising therapeutic implications. Bone marrow mesenchymal stem cells overexpressing PEDF effectively inhibited pathologic angiogenesis in the murine eye and these same cells suppressed hepatocellular carcinoma growth. As a protein with bioactivities in nearly all normal organ systems, it is likely that PEDF will continue to gain visibility as an essential component in the development and delivery of novel stem cell-based therapies to combat disease.

  10. Mesenchymal dental stem cells in regenerative dentistry.

    PubMed

    Rodríguez-Lozano, Francisco-Javier; Insausti, Carmen-Luisa; Iniesta, Francisca; Blanquer, Miguel; Ramírez, María-del-Carmen; Meseguer, Luis; Meseguer-Henarejos, Ana-Belén; Marín, Noemí; Martínez, Salvador; Moraleda, José-María

    2012-11-01

    In the last decade, tissue engineering is a field that has been suffering an enormous expansion in the regenerative medicine and dentistry. The use of cells as mesenchymal dental stem cells of easy access for dentist and oral surgeon, immunosuppressive properties, high proliferation and capacity to differentiate into odontoblasts, cementoblasts, osteoblasts and other cells implicated in the teeth, suppose a good perspective of future in the clinical dentistry. However, is necessary advance in the known of growth factors and signalling molecules implicated in tooth development and regeneration of different structures of teeth. Furthermore, these cells need a fabulous scaffold that facility their integration, differentiation, matrix synthesis and promote multiple specific interactions between cells. In this review, we give a brief description of tooth development and anatomy, definition and classification of stem cells, with special attention of mesenchymal stem cells, commonly used in the cellular therapy for their trasdifferentiation ability, non ethical problems and acceptable results in preliminary clinical trials. In terms of tissue engineering, we provide an overview of different types of mesenchymal stem cells that have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs), and stem cells from apical papilla (SCAPs), growth factors implicated in regeneration teeth and types of scaffolds for dental tissue regeneration.

  11. Induced Pluripotent Stem Cells: Characteristics and Perspectives

    NASA Astrophysics Data System (ADS)

    Cantz, Tobias; Martin, Ulrich

    The induction of pluripotency in somatic cells is widely considered as a major breakthrough in regenerative medicine, because this approach provides the basis for individualized stem cell-based therapies. Moreover, with respect to cell transplantation and tissue engineering, expertise from bioengineering to transplantation medicine is now meeting basic research of stem cell biology.

  12. Iodine I 131 Tositumomab and Fludarabine Phosphate in Treating Older Patients Who Are Undergoing an Autologous or Syngeneic Stem Cell Transplant for Relapsed or Refractory Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2014-08-04

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  13. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    stem cells (CSCs)- stem cell like cells in tumors that have stem cell properties and tumor initiating ability- retain epigenetic memories of their...months showing megacephaly. Abb: ctx=cortex, cb= cerebellum, hp= hippocampus Page 5 of 12 To circumvent early lethality associated with PIK3CA

  14. Medaka haploid embryonic stem cells.

    PubMed

    Hong, Yunhan

    2010-01-01

    The appearance of diploidy, the presence of two genomes or chromosome sets, is a fundamental hallmark of eukaryotic evolution and bisexual reproduction, because diploidy offers the basis for the bisexual life cycle, allowing for oscillation between diploid and haploid phases. Meiosis produces haploid gametes. At fertilization, male and female gametes fuse to restore diploidy in a zygote, which develops into a new life. At sex maturation, diploid cells enter into meiosis, culminating in the production of haploid gametes. Therefore, diploidy ensures pluripotency, cell proliferation, and functions, whereas haploidy is restricted only to the post-meiotic gamete phase of germline development and represents the end point of cell growth. Diploidy is advantageous for evolution. Haploidy is ideal for genetic analyses, because any recessive mutations of essential genes will show a clear phenotype in the absence of a second gene copy. Recently, my laboratory succeeded in the generation of medaka haploid embryonic stem (ES) cells capable of whole animal production. Therefore, haploidy in a vertebrate is able to support stable cell culture and pluripotency. This finding anticipates the possibility to generate haploid ES cells in other vertebrate species such as zebrafish. These medaka haploid ES cells elegantly combine haploidy and pluripotency, offering a unique yeast-like system for in vitro genetic analyses of molecular, cellular, and developmental events in various cell lineages. This chapter is aimed to describe the strategy of haploid ES cell derivation and their characteristics, and illustrate the perspectives of haploid ES cells for infertility treatment, genetic screens, and analyses.

  15. Mammary stem cells have myoepithelial cell properties

    PubMed Central

    Prater, Michael D.; Petit, Valérie; Russell, I. Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John

    2014-01-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using 2 independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage tracing approach we follow the progeny of α-smooth muscle actin-expressing myoepithelial cells and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976

  16. Establishment of a Mesenchymal Stem Cell Bank

    PubMed Central

    Cooper, Khushnuma; Viswanathan, Chandra

    2011-01-01

    Adult stem cells have generated great amount of interest amongst the scientific community for their potential therapeutic applications for unmet medical needs. We have demonstrated the plasticity of mesenchymal stem cells isolated from the umbilical cord matrix. Their immunological profile makes it even more interesting. We have demonstrated that the umbilical cord is an inexhaustible source of mesenchymal stem cells. Being a very rich source, instead of discarding this tissue, we worked on banking these cells for regenerative medicine application for future use. The present paper gives a detailed account of our experience in the establishment of a mesenchymal stem cell bank at our facility. PMID:21826152

  17. Pancreatic cancer stem cells: fact or fiction?

    PubMed

    Bhagwandin, Vikash J; Shay, Jerry W

    2009-04-01

    The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial-mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.

  18. [Stem and progenitor cells in biostructure of blood vessel walls].

    PubMed

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  19. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation.

    PubMed

    Cieri, Nicoletta; Oliveira, Giacomo; Greco, Raffaella; Forcato, Mattia; Taccioli, Cristian; Cianciotti, Beatrice; Valtolina, Veronica; Noviello, Maddalena; Vago, Luca; Bondanza, Attilio; Lunghi, Francesca; Marktel, Sarah; Bellio, Laura; Bordignon, Claudio; Bicciato, Silvio; Peccatori, Jacopo; Ciceri, Fabio; Bonini, Chiara

    2015-04-30

    Memory stem T cells (TSCM) have been proposed as key determinants of immunologic memory. However, their exact contribution to a mounting immune response, as well as the mechanisms and timing of their in vivo generation, are poorly understood. We longitudinally tracked TSCM dynamics in patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT), thereby providing novel hints on the contribution of this subset to posttransplant immune reconstitution in humans. We found that donor-derived TSCM are highly enriched early after HSCT. We showed at the antigen-specific and clonal level that TSCM lymphocytes can differentiate directly from naive precursors infused within the graft and that the extent of TSCM generation might correlate with interleukin 7 serum levels. In vivo fate mapping through T-cell receptor sequencing allowed defining the in vivo differentiation landscapes of human naive T cells, supporting the notion that progenies of single naive cells embrace disparate fates in vivo and highlighting TSCM as relevant novel players in the diversification of immunological memory after allogeneic HSCT.

  20. Effect of aging on stem cells

    PubMed Central

    Ahmed, Abu Shufian Ishtiaq; Sheng, Matilda HC; Wasnik, Samiksha; Baylink, David J; Lau, Kin-Hing William

    2017-01-01

    Pluripotent stem cells have the remarkable self-renewal ability and are capable of differentiating into multiple diverse cells. There is increasing evidence that the aging process can have adverse effects on stem cells. As stem cells age, their renewal ability deteriorates and their ability to differentiate into the various cell types is altered. Accordingly, it is suggested aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Understanding the role of the aging process in deterioration of stem cell function is crucial, not only in understanding the pathophysiology of aging-associated disorders, but also in future development of novel effective stem cell-based therapies to treat aging-associated diseases. This review article first focuses on the basis of the various aging disease-related stem cell dysfunction. It then addresses the several concepts on the potential mechanism that causes aging-related stem cell dysfunction. It also briefly discusses the current potential therapies under development for aging-associated stem cell defects. PMID:28261550

  1. Patenting human genes and stem cells.

    PubMed

    Martin-Rendon, Enca; Blake, Derek J

    2007-01-01

    Cell lines and genetically modified single cell organisms have been considered patentable subjects for the last two decades. However, despite the technical patentability of genes and stem cell lines, social and legal controversy concerning their 'ownership' has surrounded stem cell research in recent years. Some granted patents on stem cells with extremely broad claims are casting a shadow over the commercialization of these cells as therapeutics. However, in spite of those early patents, the number of patent applications related to stem cells is growing exponentially. Both embryonic and adult stem cells have the ability to differentiate into several cell lineages in an organism as a result of specific genetic programs that direct their commitment and cell fate. Genes that control the pluripotency of stem cells have been recently identified and the genetic manipulation of these cells is becoming more efficient with the advance of new technologies. This review summarizes some of the recent published patents on pluripotency genes, gene transfer into stem cells and genetic reprogramming and takes the hematopoietic and embryonic stem cell as model systems.

  2. Stem cell niche engineering through droplet microfluidics.

    PubMed

    Allazetta, Simone; Lutolf, Matthias P

    2015-12-01

    Stem cells reside in complex niches in which their behaviour is tightly regulated by various biochemical and biophysical signals. In order to unveil some of the crucial stem cell-niche interactions and expedite the implementation of stem cells in clinical and pharmaceutical applications, in vitro methodologies are being developed to reconstruct key features of stem cell niches. Recently, droplet-based microfluidics has emerged as a promising strategy to build stem cell niche models in a miniaturized and highly precise fashion. This review highlights current advances in using droplet microfluidics in stem cell biology. We also discuss recent efforts in which microgel technology has been interfaced with high-throughput analyses to engender screening paradigms with an unparalleled potential for basic and applied biological studies.

  3. Stem cells in the light of evolution

    PubMed Central

    Chakraborty, Chiranjib; Agoramoorthy, Govindasamy

    2012-01-01

    All organisms depend on stem cells for their survival. As a result, stem cells may be a prerequisite for the evolution of specific characteristics in organisms that include regeneration, multicellularity and coloniality. Stem cells have attracted the attention of biologists and medical scientists for a long time. These provide materials for regenerative medicine. We review in this paper, the link between modern stem cell research and early studies in ancient organisms. It also outlines details on stem cells in the light of evolution with an emphasis on their regeneration potential, coloniality and multicellularity. The information provided might be of use to molecular biologists, medical scientists and developmental biologists who are engaged in integrated research involving the stem cells. PMID:22825600

  4. Of Microenvironments and Mammary Stem Cells

    SciTech Connect

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  5. [Bioethical challenges of stem cell tourism].

    PubMed

    Ventura-Juncá, Patricio; Erices, Alejandro; Santos, Manuel J

    2013-08-01

    Stem cells have drawn extraordinary attention from scientists and the general public due to their potential to generate effective therapies for incurable diseases. At the same time, the production of embryonic stem cells involves a serious ethical issue concerning the destruction of human embryos. Although adult stem cells and induced pluripotential cells do not pose this ethical objection, there are other bioethical challenges common to all types of stem cells related particularly to the clinical use of stem cells. Their clinical use should be based on clinical trials, and in special situations, medical innovation, both of which have particular ethical dimensions. The media has raised unfounded expectations in patients and the public about the real clinical benefits of stem cells. At the same time, the number of unregulated clinics is increasing around the world, making direct offers through Internet of unproven stem cell therapies that attract desperate patients that have not found solutions in standard medicine. This is what is called stem cells tourism. This article reviews this situation, its consequences and the need for international cooperation to establish effective regulations to prevent the exploitation of patients and to endanger the prestige of legitimate stem cell research.

  6. Stem cells: classifications, controversies, and clinical applications.

    PubMed

    Fortier, Lisa A

    2005-01-01

    The application of stem cells in regenerative and reparative therapies is emerging in surgery. Published information can lead to an over simplified view of stem cells with respect to their definitions, tissues of origin, abilities to differentiate into tissue lineages, and their capacity for functional tissue regeneration. The goals of this review article are to define embryonic and adult stem cells, compare differences between them, and summarize their potential clinical applications.

  7. Programming Retinal Stem Cells into Cone Photoreceptors

    DTIC Science & Technology

    2015-12-01

    to program human stem cells directly into cones. Using RNA -seq, we identified several genes that are upregulated in advance of the earliest...reverse vision loss. 15. SUBJECT TERMS Cone photoreceptor, retina, retinal stem cell, Otx2, Onecut1, Blimp1, RNA -seq., transcription factors, and...1 Keywords: 1. Cone photoreceptor 2. Retina 3. Retinal stem cell 4. Otx2 5. Onecut1 6. Blimp1 7. RNA -seq. 8. Transcription factors 9

  8. Telomeres, stem cells, and hematology

    PubMed Central

    2008-01-01

    Telomeres are highly dynamic structures that adjust the cellular response to stress and growth stimulation based on previous cell divisions. This critical function is accomplished by progressive telomere shortening and DNA damage responses activated by chromosome ends without sufficient telomere repeats. Repair of critically short telomeres by telomerase or recombination is limited in most somatic cells, and apoptosis or cellular senescence is triggered when too many uncapped telomeres accumulate. The chance of the latter increases as the average telomere length decreases. The average telomere length is set and maintained in cells of the germ line that typically express high levels of telomerase. In somatic cells, the telomere length typically declines with age, posing a barrier to tumor growth but also contributing to loss of cells with age. Loss of (stem) cells via telomere attrition provides strong selection for abnormal cells in which malignant progression is facilitated by genome instability resulting from uncapped telomeres. The critical role of telomeres in cell proliferation and aging is illustrated in patients with 50% of normal telomerase levels resulting from a mutation in one of the telomerase genes. Here, the role of telomeres and telomerase in human biology is reviewed from a personal historical perspective. PMID:18263784

  9. Stem cell reprogramming: A 3D boost

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2016-03-01

    Biophysical factors in an optimized three-dimensional microenvironment enhance the reprogramming efficiency of human somatic cells into pluripotent stem cells when compared to traditional cell-culture substrates.

  10. Ocular stem cells: a status update!

    PubMed Central

    2014-01-01

    Stem cells are unspecialized cells that have been a major focus of the field of regenerative medicine, opening new frontiers and regarded as the future of medicine. The ophthalmology branch of the medical sciences was the first to directly benefit from stem cells for regenerative treatment. The success stories of regenerative medicine in ophthalmology can be attributed to its accessibility, ease of follow-up and the eye being an immune-privileged organ. Cell-based therapies using stem cells from the ciliary body, iris and sclera are still in animal experimental stages but show potential for replacing degenerated photoreceptors. Limbal, corneal and conjunctival stem cells are still limited for use only for surface reconstruction, although they might have potential beyond this. Iris pigment epithelial, ciliary body epithelial and choroidal epithelial stem cells in laboratory studies have shown some promise for retinal or neural tissue replacement. Trabecular meshwork, orbital and sclera stem cells have properties identical to cells of mesenchymal origin but their potential has yet to be experimentally determined and validated. Retinal and retinal pigment epithelium stem cells remain the most sought out stem cells for curing retinal degenerative disorders, although treatments using them have resulted in variable outcomes. The functional aspects of the therapeutic application of lenticular stem cells are not known and need further attention. Recently, embryonic stem cell-derived retinal pigment epithelium has been used for treating patients with Stargardts disease and age-related macular degeneration. Overall, the different stem cells residing in different components of the eye have shown some success in clinical and animal studies in the field of regenerative medicine. PMID:25158127

  11. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  12. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival

    PubMed Central

    Tinkum, Kelsey L.; Stemler, Kristina M.; White, Lynn S.; Loza, Andrew J.; Jeter-Jones, Sabrina; Michalski, Basia M.; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S.; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-01-01

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy. PMID:26644583

  13. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  14. Alternative splicing modulates stem cell differentiation.

    PubMed

    Fu, Ru-Huei; Liu, Shih-Ping; Ou, Chen-Wei; Yu, Hsiu-Hui; Li, Kuo-Wei; Tsai, Chang-Hai; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2009-01-01

    Stem cells have the surprising potential to develop into many different cell types. Therefore, major research efforts have focused on transplantation of stem cells and/or derived progenitors for restoring depleted diseased cells in degenerative disorders. Understanding the molecular controls, including alternative splicing, that arise during lineage differentiation of stem cells is crucial for developing stem cell therapeutic approaches in regeneration medicine. Alternative splicing to allow a single gene to encode multiple transcripts with different protein coding sequences and RNA regulatory elements increases genomic complexities. Utilizing differences in alternative splicing as a molecular marker may be more sensitive than simply gene expression in various degrees of stem cell differentiation. Moreover, alternative splicing maybe provide a new concept to acquire induced pluripotent stem cells or promote cell-cell transdifferentiation for restorative therapies and basic medicine researches. In this review, we highlight the recent advances of alternative splicing regulation in stem cells and their progenitors. It will hopefully provide much needed knowledge into realizing stem cell biology and related applications.

  15. Mesenchymal stem cells, aging and regenerative medicine

    PubMed Central

    Raggi, Chiara; Berardi, Anna C.

    2012-01-01

    Summary Tissue maintenance and regeneration is dependent on stem cells and increasing evidence has shown to decline with age. Stem cell based-aging is thought to influence therapeutic efficacy. Mesenchymal stromal cells (MSCs) are involved in tissue regeneration. Here, we discuss the effects of age-related changes on MSC properties considering their possible use in research or regenerative medicine. PMID:23738303

  16. Nanomaterials for Engineering Stem Cell Responses.

    PubMed

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications.

  17. Stomach development, stem cells and disease.

    PubMed

    Kim, Tae-Hee; Shivdasani, Ramesh A

    2016-02-15

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.

  18. Paediatric idiopathic limbal stem cell deficiency.

    PubMed

    Vincent, Stephen J; Lee, Graham A

    2017-03-20

    Acquired limbal stem cell deficiency (LSCD) describes a condition in which the corneal limbal stem cells are altered or destroyed, typically due to ocular trauma, chronic allergy or inflammation. Idiopathic LSCD is a term used to describe limbal stem cell failure in the absence of any identifiable causative factor. While several cases of adult-onset LSCD have been identified previously, this case report describes a rare presentation of bilateral asymmetric idiopathic paediatric limbal stem cell deficiency in a sixteen-year-old male with an otherwise unremarkable ocular history.

  19. Wnt Signaling in Cancer Stem Cell Biology

    PubMed Central

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  20. Genetic and epigenetic instability of stem cells.

    PubMed

    Rajamani, Karthyayani; Li, Yuan-Sheng; Hsieh, Dean-Kuo; Lin, Shinn-Zong; Harn, Horng-Jyh; Chiou, Tzyy-Wen

    2014-01-01

    Recently, research on stem cells has been receiving an increasing amount of attention, both for its advantages and disadvantages. Genetic and epigenetic instabilities among stem cells have been a recurring obstacle to progress in regenerative medicine using stem cells. Various reports have stated that these instabilities can transform stem cells when transferred in vivo and thus have the potential to develop tumors. Previous research has shown that various extrinsic and intrinsic factors can contribute to the stability of stem cells. The extrinsic factors include growth supplements, growth factors, oxygen tension, passage technique, and cryopreservation. Controlling these factors based on previous reports may assist researchers in developing strategies for the production and clinical application of "safe" stem cells. On the other hand, the intrinsic factors can be unpredictable and uncontrollable; therefore, to ensure the successful use of stem cells in regenerative medicine, it is imperative to develop and implement appropriate strategies and technique for culturing stem cells and to confirm the genetic and epigenetic safety of these stem cells before employing them in clinical trials.

  1. Pituitary stem cells: where do we stand?

    PubMed

    Vankelecom, Hugo; Chen, Jianghai

    2014-03-25

    Some 5 years ago, the stem cells of the adult pituitary gland were discovered. Subsequent in-depth characterization revealed expression of several stemness markers and embryo-typical factors. Now, the quest is open to decipher their role in the gland. When and how pituitary stem cells differentiate to contribute to the mature hormone-producing cell populations is not known. New research models support their involvement in cell regeneration after injury in the gland, and suggest a possible role in pituitary tumor formation. From their expression phenotype, pituitary stem cells seem to re-use embryonic developmental programs during the creation of new hormonal cells. Here, we will review the latest progression in the domain of pituitary stem cells, including the uncovering of some new molecular flavors and of the first potential functions. Eventually, we will speculate on their differentiation programs towards hormonal cells, with a particular focus on gonadotropes.

  2. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal

    PubMed Central

    Ito, Kyoko; Ito, Keisuke

    2016-01-01

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603

  3. Current Biosafety Considerations in Stem Cell Therapy

    PubMed Central

    Mousavinejad, Masoumeh; Andrews, Peter W.; Shoraki, Elham Kargar

    2016-01-01

    Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient’s life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies. PMID:27540533

  4. Lineage tracing quantification reveals symmetric stem cell division in Drosophila male germline stem cells.

    PubMed

    Salzmann, Viktoria; Inaba, Mayu; Cheng, Jun; Yamashita, Yukiko M

    2013-12-01

    In the homeostatic state, adult stem cells divide either symmetrically to increase the stem cell number to compensate stem cell loss, or asymmetrically to maintain the population while producing differentiated cells. We have investigated the mode of stem cell division in the testes of Drosophila melanogaster by lineage tracing and confirm the presence of symmetric stem cell division in this system. We found that the rate of symmetric division is limited to 1-2% of total germline stem cell (GSC) divisions, but it increases with expression of a cell adhesion molecule, E-cadherin, or a regulator of the actin cytoskeleton, Moesin, which may modulate adhesiveness of germ cells to the stem cell niche. Our results indicate that the decision regarding asymmetric vs. symmetric division is a dynamically regulated process that contributes to tissue homeostasis, responding to the needs of the tissue.

  5. Single-cell sequencing in stem cell biology.

    PubMed

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  6. Fludarabine Phosphate, Radiation Therapy, and Rituximab in Treating Patients Who Are Undergoing Donor Stem Cell Transplant Followed by Rituximab for High-Risk Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2017-03-27

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma; T-Cell Large Granular Lymphocyte Leukemia

  7. Nonclinical safety strategies for stem cell therapies

    SciTech Connect

    Sharpe, Michaela E.; Morton, Daniel; Rossi, Annamaria

    2012-08-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  8. Nitric Oxide Receptor Soluble Guanylyl Cyclase Undergoes Splicing Regulation in Differentiating Human Embryonic Cells

    PubMed Central

    Sharin, Vladislav G.; Mujoo, Kalpana; Kots, Alexander Y.; Martin, Emil; Murad, Ferid

    2011-01-01

    Nitric oxide (NO), an important mediator molecule in mammalian physiology, initiates a number of signaling mechanisms by activating the enzyme soluble guanylyl cyclase (sGC). Recently, a new role for NO/cyclic guanosine monophosphate signaling in embryonic development and cell differentiation has emerged. The changes in expression of NO synthase isoforms and various sGC subunits has been demonstrated during human and mouse embryonic stem (ES) cells differentiation. Previously, our laboratory demonstrated that nascent α1 sGC transcript undergoes alternative splicing and that expression of α1 sGC splice forms directly affects sGC activity. Expression of sGC splice variants in the process of human ES (hES) cells differentiation has not been investigated. In this report, we demonstrate that α1 sGC undergoes alternative splicing during random hES differentiation for the first time. Our results indicate that C-α1 sGC splice form is expressed at high levels in differentiating cells and its intracellular distribution varies from canonical α1 sGC subunit. Together, our data suggest that alternative splicing of sGC subunits is associated with differentiation of hES cells. PMID:20964618

  9. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  10. Bone marrow stromal stem cells: nature, biology, and potential applications.

    PubMed

    Bianco, P; Riminucci, M; Gronthos, S; Robey, P G

    2001-01-01

    Bone marrow stromal cells are progenitors of skeletal tissue components such as bone, cartilage, the hematopoiesis-supporting stroma, and adipocytes. In addition, they may be experimentally induced to undergo unorthodox differentiation, possibly forming neural and myogenic cells. As such, they represent an important paradigm of post-natal nonhematopoietic stem cells, and an easy source for potential therapeutic use. Along with an overview of the basics of their biology, we discuss here their potential nature as components of the vascular wall, and the prospects for their use in local and systemic transplantation and gene therapy.

  11. Enhancing spontaneous stem cell healing (Review)

    PubMed Central

    MAGUIRE, GREG; FRIEDMAN, PETER

    2014-01-01

    Adult stem cells are distributed throughout the human body and are responsible to a great extent for the body’s ability to maintain and heal itself. Accumulating data since the 1990s regarding stem cells have demonstrated that the beneficial effects of stem cells are not restricted to their ability to differentiate and are more likely due to their ability to release a multitude of molecules. Recent studies indicated that ≤80% of the therapeutic benefit of adult stem cells is manifested by the stem cell released molecules (SRM) rather than the differentiation of the stem cells into mature tissue. Stem cells may release potent combinations of factors that modulate the molecular composition of the cellular milieu to evoke a multitude of responses from neighboring cells. A multitude of pathways are involved in cellular and tissue function and, when the body is in a state of disease or trauma, a multitude of pathways are involved in the underlying mechanisms of that disease or trauma. Therefore, stem cells represent a natural systems-based biological factory for the production and release of a multitude of molecules that interact with the system of biomolecular circuits underlying disease or tissue damage. Currently, efforts are aimed at defining, stimulating, enhancing and harnessing SRM mechanisms, in order to develop systems-based methods for tissue regeneration, develop drugs/biologics or other therapeutics and enhance the release of SRM into the body for natural healing through proper dietary, exercise and other lifestyle strategies. PMID:24649089

  12. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  13. Stem cells of the skin epithelium

    PubMed Central

    Alonso, Laura; Fuchs, Elaine

    2003-01-01

    Tissue stem cells form the cellular base for organ homeostasis and repair. Stem cells have the unusual ability to renew themselves over the lifetime of the organ while producing daughter cells that differentiate into one or multiple lineages. Difficult to identify and characterize in any tissue, these cells are nonetheless hotly pursued because they hold the potential promise of therapeutic reprogramming to grow human tissue in vitro, for the treatment of human disease. The mammalian skin epithelium exhibits remarkable turnover, punctuated by periods of even more rapid production after injury due to burn or wounding. The stem cells responsible for supplying this tissue with cellular substrate are not yet easily distinguishable from neighboring cells. However, in recent years a significant body of work has begun to characterize the skin epithelial stem cells, both in tissue culture and in mouse and human skin. Some epithelial cells cultured from skin exhibit prodigious proliferative potential; in fact, for >20 years now, cultured human skin has been used as a source of new skin to engraft onto damaged areas of burn patients, representing one of the first therapeutic uses of stem cells. Cell fate choices, including both self-renewal and differentiation, are crucial biological features of stem cells that are still poorly understood. Skin epithelial stem cells represent a ripe target for research into the fundamental mechanisms underlying these important processes. PMID:12913119

  14. Transdifferentiation of Stem Cells: A Critical View

    NASA Astrophysics Data System (ADS)

    Gruh, Ina; Martin, Ulrich

    Recently a large amount of new data on the plasticity of stem cells of various lineages have emerged, providing new perspectives especially for the therapeutic application of adult stem cells. Previously unknown possibilities of cell differentiation beyond the known commitment of a given stem cell have been described using keywords such as "blood to liver," or "bone to brain." Controversies on the likelihood, as well as the biological significance, of these conversions almost immediately arose within this young field of stem cell biology. This chapter will concentrate on these controversies and focus on selected examples demonstrating the technical aspects of stem cell transdifferentiation and the evaluation of the tools used to analyze these events.

  15. Isolation and Culture of Embryonic Stem Cells, Mesenchymal Stem Cells, and Dendritic Cells from Humans and Mice.

    PubMed

    Kar, Srabani; Mitra, Shinjini; Banerjee, Ena Ray

    2016-01-01

    Stem cells are cells capable of proliferation, self-renewal, and differentiation into specific phenotypes. They are an essential part of tissue engineering, which is used in regenerative medicine in case of degenerative diseases. In this chapter, we describe the methods of isolating and culturing various types of stem cells, like human embryonic stem cells (hESCs), human umbilical cord derived mesenchymal stem cells (hUC-MSCs), murine bone marrow derived mesenchymal stem cells (mBM-MSCs), murine adipose tissue derived mesenchymal stem cells (mAD-MSCs), and murine bone marrow derived dendritic cells (mBMDCs). All these cell types can be used in tissue engineering techniques.

  16. Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy

    PubMed Central

    Turinetto, Valentina; Vitale, Emanuela; Giachino, Claudia

    2016-01-01

    Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches. PMID:27447618

  17. Differentiation of mesenchymal stem cells into gonad and adrenal steroidogenic cells

    PubMed Central

    Yazawa, Takashi; Imamichi, Yoshitaka; Miyamoto, Kaoru; Umezawa, Akihiro; Taniguchi, Takanobu

    2014-01-01

    Hormone replacement therapy is necessary for patients with adrenal and gonadal failure. Steroid hormone treatment is also employed in aging people for sex hormone deficiency. These patients undergo such therapies, which have associated risks, for their entire life. Stem cells represent an innovative tool for tissue regeneration and the possibility of solving these problems. Among various stem cell types, mesenchymal stem cells have the potential to differentiate into steroidogenic cells both in vivo and in vitro. In particular, they can effectively be differentiated into steroidogenic cells by expressing nuclear receptor 5A subfamily proteins (steroidogenic factor-1 and liver receptor homolog-1) with the aid of cAMP. This approach will provide a source of cells for future regenerative medicine for the treatment of diseases caused by steroidogenesis deficiencies. It can also represent a useful tool for studying the molecular mechanisms of steroidogenesis and its related diseases. PMID:24772247

  18. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer.

  19. Epigenetic Targeting of Ovarian Cancer Stem Cells

    PubMed Central

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P.; Matei, Daniela

    2014-01-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer (OC). As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cell (OCSC). In this study, we tested the hypothesis that DNA hypomethylating agents may be able to reset OCSC towards a differentiated phenotype, by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH+ OC cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low dose SGI-110 reduced the stem-like properties of ALDH+ cells, including their tumor initiating capacity, resensitized these OCSCs to platinum, and induced re-expression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by re-programming residual cancer stem-like cells. Further, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  20. Improving Stem Cell Therapeutics with Mechanobiology

    PubMed Central

    Shin, Jae-Won; Mooney, David J.

    2017-01-01

    In recent years, it has become clear that mechanical cues play an integral role in maintaining stem cell functions. Here we discuss how integrating physical approaches and engineering principles in stem cell biology, including culture systems, preclinical models, and functional assessment, may improve clinical application in regenerative medicine. PMID:26748752

  1. Stem Cell Research and Health Education

    ERIC Educational Resources Information Center

    Eve, David J.; Marty, Phillip J.; McDermott, Robert J.; Klasko, Stephen K.; Sanberg, Paul R.

    2008-01-01

    Stem cells are being touted as the greatest discovery for the potential treatment of a myriad of diseases in the new millennium, but there is still much research to be done before it will be known whether they can live up to this description. There is also an ethical debate over the production of one of the most valuable types of stem cell: the…

  2. Representations of stem cell clinics on Twitter.

    PubMed

    Kamenova, Kalina; Reshef, Amir; Caulfield, Timothy

    2014-12-01

    The practice of travelling abroad to receive unproven and unregulated stem cell treatments has become an increasingly problematic global phenomenon known as 'stem cell tourism'. In this paper, we examine representations of nine major clinics and providers of such treatments on the microblogging network Twitter. We collected and conducted a content analysis of Twitter posts (n = 363) by these establishments and by other users mentioning them, focusing specifically on marketing claims about treatment procedures and outcomes, discussions of safety and efficacy of stem cell transplants, and specific representations of patients' experiences. Our analysis has shown that there were explicit claims or suggestions of benefits associated with unproven stem cell treatments in approximately one third of the tweets and that patients' experiences, whenever referenced, were presented as invariably positive and as testimonials about the efficacy of stem cell transplants. Furthermore, the results indicated that the tone of most tweets (60.2 %) was overwhelmingly positive and there were rarely critical discussions about significant health risks associated with unproven stem cell therapies. When placed in the context of past research on the problems associated with the marketing of unproven stem cell therapies, this analysis of representations on Twitter suggests that discussions in social media have also remained largely uncritical of the stem cell tourism phenomenon, with inaccurate representations of risks and benefits for patients.

  3. Stem Cell Transplants in Cancer Treatment

    Cancer.gov

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  4. Stem cell banking: between traceability and identifiability.

    PubMed

    Knoppers, Bartha M; Isasi, Rosario

    2010-10-05

    Stem cell banks are increasingly seen as an essential resource of biological materials for both basic and translational research. Stem cell banks support transnational access to quality-controlled and ethically sourced stem cell lines from different origins and of varying grades. According to the Organisation for Economic Co-operation and Development, advances in regenerative medicine are leading to the development of a bioeconomy, 'a world where biotechnology contributes to a significant share of economic output'. Consequently, stem cell banks are destined to constitute a pillar of the bioeconomy in many countries. While certain ethical and legal concerns are specific to the nature of stem cells, stem cell banking could do well to examine the approaches fostered by tissue banking generally. Indeed, the past decade has seen a move to simplify and harmonize biological tissue and data banking so as to foster international interoperability. In particular, the issues of consent and of traceability illustrate not only commonalities but the opportunity for stem cell banking to appreciate the lessons learned in biobanking generally. This paper analyzes convergence and divergence in issues surrounding policy harmonization, transnational sharing, informed consent, traceability and return of results in the context of stem cell banks.

  5. Pathological modifications of plant stem cell destiny

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  6. Organ or Stem Cell Transplant and Your Mouth

    MedlinePlus

    ... Stem Cell Transplant and Your Mouth Organ or Stem Cell Transplant and Your Mouth Main Content Key Points​ ... Your Dentist Before Transplant Before an organ or stem cell transplant, have a dental checkup. Your mouth should ...

  7. Molecular mechanism of extrinsic factors affecting anti-aging of stem cells.

    PubMed

    Wong, Tzyy Yue; Solis, Mairim Alexandra; Chen, Ying-Hui; Huang, Lynn Ling-Huei

    2015-03-26

    Scientific evidence suggests that stem cells possess the anti-aging ability to self-renew and maintain differentiation potentials, and quiescent state. The objective of this review is to discuss the micro-environment where stem cells reside in vivo, the secreted factors to which stem cells are exposed, the hypoxic environment, and intracellular factors including genome stability, mitochondria integrity, epigenetic regulators, calorie restrictions, nutrients, and vitamin D. Secreted tumor growth factor-β and fibroblast growth factor-2 are reported to play a role in stem cell quiescence. Extracellular matrices may interact with caveolin-1, the lipid raft on cell membrane to regulate quiescence. N-cadherin, the adhesive protein on niche cells provides support for stem cells. The hypoxic micro-environment turns on hypoxia-inducible factor-1 to prevent mesenchymal stem cells aging through p16 and p21 down-regulation. Mitochondria express glucosephosphate isomerase to undergo glycolysis and prevent cellular aging. Epigenetic regulators such as p300, protein inhibitors of activated Stats and H19 help maintain stem cell quiescence. In addition, calorie restriction may lead to secretion of paracrines cyclic ADP-ribose by intestinal niche cells, which help maintain intestinal stem cells. In conclusion, it is crucial to understand the anti-aging phenomena of stem cells at the molecular level so that the key to solving the aging mystery may be unlocked.

  8. Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation.

    PubMed

    Wang, Mengmeng; Liu, Xiaoli; Lyu, Zhonglin; Gu, Hao; Li, Dan; Chen, Hong

    2017-02-01

    Glycosaminoglycans (GAGs) are linear sulfated polysaccharides that exist in most mammalian cells. By undergoing conjugation with various proteins, GAGs play important roles in a variety of bioactivities, including promoting stem cell differentiation. However, they have their own intrinsic disadvantages that limit their further applications for cell therapy and tissue engineering. Therefore, more and more GAG-mimetic materials have been studied as natural GAG analogs for emerging applications. This review explains the mechanism of how GAGs regulate stem cell differentiation and elaborates on the current progress of the applications of GAG-based materials on regulating stem cell differentiation. The types and applications of GAG-mimetic materials on regulating stem cell differentiation are introduced as well. Finally, the challenges and perspectives for GAGs and their mimetics in regulating stem cell differentiation are discussed.

  9. Computational Tools for Stem Cell Biology.

    PubMed

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate.

  10. Cancer Stem Cells: Repair Gone Awry?

    PubMed Central

    Rangwala, Fatima; Omenetti, Alessia; Diehl, Anna Mae

    2011-01-01

    Because cell turnover occurs in all adult organs, stem/progenitor cells within the stem-cell niche of each tissue must be appropriately mobilized and differentiated to maintain normal organ structure and function. Tissue injury increases the demands on this process, and thus may unmask defective regulation of pathways, such as Hedgehog (Hh), that modulate progenitor cell fate. Hh pathway dysregulation has been demonstrated in many types of cancer, including pancreatic and liver cancers, in which defective Hh signaling has been linked to outgrowth of Hh-responsive cancer stem-initiating cells and stromal elements. Hence, the Hh pathway might be a therapeutic target in such tumors. PMID:21188169

  11. Clinical trials for stem cell transplantation: when are they needed?

    PubMed

    Van Pham, Phuc

    2016-04-27

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.

  12. [Application prospect of adult stem cells in male infertility].

    PubMed

    Yang, Rui-Feng; Xiong, Cheng-Liang

    2013-05-01

    The study on stem cells is a hot field in biomedical science in recent years, and has furthered from laboratory to clinical application. Stem cells, according to their developmental stage and differential properties, can be divided into embryonic stem cells, induced PS cells and adult stem cells, among which, adult stem cells have already been applied to the clinical treatment of many systemic diseases. Currently, the study of spermatogonial stem cells and adult stem cells is in the front of the basic researches on the treatment of male infertility, but the time has not yet arrived for their clinical application. This paper outlines the application prospect of adult stem cells in male infertility.

  13. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches.

    PubMed

    Williams, Karin; Motiani, Karan; Giridhar, Premkumar Vummidi; Kasper, Susan

    2013-03-01

    The stem cell niche provides a regulatory microenvironment for cells as diverse as totipotent embryonic stem cells to cancer stem cells (CSCs) which exhibit stem cell-like characteristics and have the capability of regenerating the bulk of tumor cells while maintaining self-renewal potential. The transmembrane glycoprotein CD44 is a common component of the stem cell niche and exists as a standard isoform (CD44s) and a range of variant isoforms (CD44v) generated though alternative splicing. CD44 modulates signal transduction through post-translational modifications as well as interactions with hyaluronan, extracellular matrix molecules and growth factors and their cognate receptor tyrosine kinases. While the function of CD44 in hematopoietic stem cells has been studied in considerable detail, our knowledge of CD44 function in tissue-derived stem cell niches remains limited. Here we review CD44s and CD44v in both hematopoietic and tissue-derived stem cell niches, focusing on their roles in regulating stem cell behavior including self-renewal and differentiation in addition to cell-matrix interactions and signal transduction during cell migration and tumor progression. Determining the role of CD44 and CD44v in normal stem cell, CSC and (pre)metastatic niches and elucidating their unique functions could provide tools and therapeutic strategies for treating diseases as diverse as fibrosis during injury repair to cancer progression.

  14. [Stem cells--cloning, plasticity, bioethic].

    PubMed

    Pflegerl, Pamina; Keller, Thomas; Hantusch, Brigitte; Hoffmann, Thomas Sören; Kenner, Lukas

    2008-01-01

    Stem cells with certain characteristics have become promising tools for molecular medicine. They have the potential to self-regenerate and to differentiate into specific tissues. Besides their great potential, embryonic stem cells (ESC) run the risk of enhanced tumorigenesis. The use of human embryonic stem cells (hESC) is ethically problematic because their isolation involves the destruction of human embryos. Recently developed methods generate are able to pluripotent stem cells from fibroblasts. Alternatives for ESC are adult stem cells (ASC) derived from bone marrow, cord blood, amniotic fluid and other tissues. The following article is on the basis of testimony of Lukas Kenner for the German Bundestag about the use of ESC for research, therapy and drug development. Ethical aspects are taken into consideration.

  15. [Biological properties of spermatogonial stem cell niches].

    PubMed

    Li, Ling-Ling; Liu, Yang; Jin, Bo; Zhang, Xue-Ming

    2012-04-01

    The self-renewal and differentiation of adult stem cells are closely related to their niches. Naturally, spermatogonial stem cells (SSCs) are the only adult stem cells in the body, which can transfer genetic information into the offspring. An insight into the modulation of the self-renewal and differentiation of SSCs can help elucidate the mechanisms of spermatogenesis and investigate the proliferation and differentiation of other adult stem cells. Therefore, the SSC system provides an ideal model for researches on the adult stem cell niche. More and more evidence indicates that the self-renewal and differentiation of SSCs are regulated by their niches. Based on our previous work and other related findings recently reported, this article presents an overview on the biological properties of SSC niches and their relationship with the self-renewal and differentiation of SSCs, focusing on the basic properties and components of SSC niches and various regulatory factors they produce.

  16. Peripheral blood stem cell mobilization failure.

    PubMed

    Kurnaz, Fatih; Kaynar, Leylagül

    2015-08-01

    Autologous hematopoietic stem cell transplantation (HSCT) is an important and often life saving treatment for many hematological malignancies and selected solid tumors. To rescue hematopoiesis after high-dose chemotherapy in autologous HSCT depends on maintaining sufficient stem cells. Hematopoietic stem cells and progenitor cells expressing CD34 in the BM are mobilized into the circulation with granulocyte-colony stimulating factor ± chemotherapy prior to autologous HSCT. One of the most important factors for success of autologous HSCT is hematopoietic stem cell (HSC) count. Minimum threshold for the engraftment of hematopoietic cells is accepted as 2 × 10(6) CD34 + cells/kg especially for platelet engraftment. Below this level it is defined as stem cell mobilization failure. There are several factors affecting stem cell mobilization: prior chemotherapy (such as fludarabine, melphalan, lenalidomide) and radiotherapy, age, type of disease, bone marrow cellularity. We tried to summarize the reasons of peripheral stem cell mobilization failure.

  17. Planarians, a tale of stem cells.

    PubMed

    Rossi, L; Salvetti, A; Batistoni, R; Deri, P; Gremigni, V

    2008-01-01

    Planarians possess amazing abilities to regulate tissue homeostasis and regenerate missing body parts. These features reside on the presence of a population of pluripotent/totipotent stem cells, the neoblasts, which are considered as the only planarian cells able to proliferate in the asexual strains. Neoblast distribution has been identified by mapping the cells incorporating bromodeoxyuridine, analyzing mitotic figures and using cell proliferation markers. Recently identified molecular markers specifically label subgroups of neoblasts, revealing thus the heterogeneity of the planarian stem cell population. Therefore, the apparent totipotency of neoblasts probably reflects the composite activities of multiple stem cell types. First steps have been undertaken to understand how neoblasts and differentiated cells communicate with each other to adapt the self-renewal and differentiation rates of neoblasts to the demands of the body. Moreover, the introduction of molecular resource database on planarians now paves the way to renewed strategies to understand planarian regeneration and stem cell-related issues.

  18. Functional ion channels in stem cells

    PubMed Central

    Li, Gui-Rong; Deng, Xiu-Ling

    2011-01-01

    Bioelectrical signals generated by ion channels play crucial roles in excitation genesis and impulse conduction in excitable cells as well as in cell proliferation, migration and apoptosis in proliferative cells. Recent studies have demonstrated that multiple ion channels are heterogeneously present in different stem cells; however, patterns and phenotypes of ion channels are species- and/or origin-dependent. This editorial review focuses on the recent findings related to the expression of functional ion channels and the roles of these channels in regulation of cell proliferation in stem cells. Additional effort is required in the future to clarify the ion channel expression in different types of stem cells; special attention should be paid to the relationship between ion channels and stem cell proliferation, migration and differentiation. PMID:21607133

  19. Pluripotent Stem Cells and Gene Therapy

    PubMed Central

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  20. An introduction to induced pluripotent stem cells.

    PubMed

    Hanley, Joanna; Rastegarlari, Ghasem; Nathwani, Amit C

    2010-10-01

    Recent landmark studies show that it is now possible to convert somatic cells, such as skin fibroblasts and B lymphocytes, into pluripotent stem cells that closely resemble embryonic stem cells. These induced pluripotent stem (iPS) cells can be generated without using human embryos or oocytes, thus bypassing some of the ethical issues that have limited the use of human embryonic stems (hES) cells. Additionally, they can be derived from the patient to be treated, thereby overcoming problems of immunological rejection associated with the use of allogeneic hES cell derived progenitors. Whilst these patient-specific iPS cells have great clinical potential, their immediate utility is likely to be in drug screening and for understanding the disease process. This review discusses the promise of iPS cells as well as the challenges to their use in the clinic.

  1. Translational research of adult stem cell therapy.

    PubMed

    Suzuki, Gen

    2015-11-26

    Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  2. Breast cancer stem cells and radiation

    NASA Astrophysics Data System (ADS)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  3. Stem cells and liver engineering.

    PubMed

    Ordovás, Laura; Park, Yonsil; Verfaillie, Catherine M

    2013-11-15

    Human hepatocytes, suitable for treatment of patients with liver failure, for the creation of bioartificial (BAL) devices, or for studies for toxicity and metabolization studies in the pharmaceutical industry, are in short supply due to the lack of donor organs. Therefore, methods that allow ex vivo expansion of hepatocytes with mature function are being pursued. One cell source, believed to be a possible inexhaustible source of hepatocytes, is pluripotent stem cells (PSCs). However, directed differentiation of PSCs to cells with features of adult hepatocytes is not yet possible. Differentiated progeny remains mixed and PSC progeny does not have a number of the functional features of mature hepatocytes. In this review article, we will address tools being developed that allow for the identification of mature hepatocytes, in a non-invasive manner; to perform lineage tracing of PSC progeny; and novel culture systems being created for the in vitro differentiation of PSCs to hepatocyte like cells, and for the maintenance of primary liver derived hepatocytes or PSC-derived hepatic progeny in culture. As conventional two-dimensional (2D) static culture conditions poorly recapitulate the in vivo cellular environment, we will discuss bioreactor systems for liver tissue engineering, both macro-scale and micro-scale culture systems.

  4. Stem cells from oral niches: a review

    PubMed Central

    Giordano, Guido; La Monaca, Gerardo; Annibali, Susanna; Cicconetti, Andrea; Ottolenghi, Livia

    2011-01-01

    Summary Aim Stem cell research in recent years have been considered the most advanced sort of medical-scientific research and early results have aroused great expectations. Also in dentistry many studies were performed with the final aim of obtaining new bone and new teeth. In this work we describe the state of the art in dental science stem cell research. Methods We have performed a web-based research on MEDLINE within (www.pubmed.gov). We have used “stem cells from human exfoliated deciduous teeth” (24 paper found), “periodontal ligament stem cells” (32 paper found), “stem cell apical papilla” (16 paper found), “dental pulp stem cells” (136 paper found) as keywords for research. For each keyword we have performed a complete review focusing on knowledge upgrade. Results For each topic was created a selection of papers in chronological order of publication date so to give a timetable of the development of the research for each niche. Conclusion Research about stem cell from oral niches began in 2000 and every year papers publicated were more than the precedent. This review analysed about 180 articles most of which in the last 5 years. Dentla pulp from adult as from deciduous teeth seems to be the most valuable font of stem cells due to the pluripotential type of cells. PMID:22238715

  5. Isolation and culture of neural crest stem cells from human hair follicles.

    PubMed

    Yang, Ruifeng; Xu, Xiaowei

    2013-04-06

    Hair follicles undergo lifelong growth and hair cycle is a well-controlled process involving stem cell proliferation and quiescence. Hair bulge is a well-characterized niche for adult stem cells. This segment of the outer root sheath contains a number of different types of stem cells, including epithelial stem cells, melanocyte stem cells and neural crest like stem cells. Hair follicles represent an accessible and rich source for different types of human stem cells. We and others have isolated neural crest stem cells (NCSCs) from human fetal and adult hair follicles. These human stem cells are label-retaining cells and are capable of self-renewal through asymmetric cell division in vitro. They express immature neural crest cell markers but not differentiation markers. Our expression profiling study showed that they share a similar gene expression pattern with murine skin immature neural crest cells. They exhibit clonal multipotency that can give rise to myogenic, melanocytic, and neuronal cell lineages after in vitro clonal single cell culture. Differentiated cells not only acquire lineage-specific markers but also demonstrate appropriate functions in ex vivo conditions. In addition, these NCSCs show differentiation potential toward mesenchymal lineages. Differentiated neuronal cells can persist in mouse brain and retain neuronal differentiation markers. It has been shown that hair follicle derived NCSCs can help nerve regrowth, and they improve motor function in mice transplanted with these stem cells following transecting spinal cord injury. Furthermore, peripheral nerves have been repaired with stem cell grafts, and implantation of skin-derived precursor cells adjacent to crushed sciatic nerves has resulted in remyelination. Therefore, the hair follicle/skin derived NCSCs have already shown promising results for regenerative therapy in preclinical models. Somatic cell reprogramming to induced pluripotent stem (iPS) cells has shown enormous potential for

  6. [Stem cells of mammalian brain: biology of the stem cells in vivo and in vitro].

    PubMed

    Viktorov, I V

    2001-01-01

    Stem cells are totipotent cells of the blastocyst (embryonal stem cells) and multipotent germinative cells of ento-, ecto-, and mesoderm that give rise to all tissues during embryogenesis. The stem cells have high proliferation activity and an unlimited capacity for self-production by symmetrical mitosis. Asymmetrical mitosis of the stem cells generates daughter cells ("progenitor cells") with unlimited proliferation potential. During differentiation, the progenitor cells give rise to definitive somatic cells. The stem and progenitor cells are preserved in most tissues of adult organism and provide for the constant replacement of the cells after their physiological death and damage. At the end of last century, stem cells were found in the brain of the adult mouse and rat and later in the brain of other mammals including humans. The subependymal zone of the lateral ventricles is considered the site of stem cells localization; however, there are indications of stem cells origination from ependyma while the subependymal zone serves as a collector of the progenitor cells where these cells divide. The problem of the localization of stem cells in a mature brain has not yet been resolved and is actively discussed. The stem and progenitor cells, as well as neuro- and gliogenesis, are most explored in the hippocampus and olfactory bulb. The progenitor cells migrate to the olfactory bulb from the subependymal zone of the lateral ventricles via a rostral migratory stream formed by the astrocytes, and then they differentiate to neural and glial cells. In the hippocampus, the neurons are formed in the subgranular zone of dentate gyrus. The discovery of stem and progenitor cells in the mature brain and their subsequent investigation point to an ongoing neuro- and gliogenesis in all periventricular sections of the brain and spinal cord during the whole animal or human lifespan. These processes proved to be related to the functional condition of CNS, and the de novo formed neural

  7. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy.

    PubMed

    Maeshima, Akito; Nakasatomi, Masao; Nojima, Yoshihisa

    2014-01-01

    The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  8. Curbing stem cell tourism in South Africa.

    PubMed

    Meissner-Roloff, Madelein; Pepper, Michael S

    2013-12-01

    Stem cells have received much attention globally due in part to the immense therapeutic potential they harbor. Unfortunately, malpractice and exploitation (financial and emotional) of vulnerable patients have also drawn attention to this field as a result of the detrimental consequences experienced by some individuals that have undergone unproven stem cell therapies. South Africa has had limited exposure to stem cells and their applications and, while any exploitation is detrimental to the field of stem cells, South Africa is particularly vulnerable in this regard. The current absence of adequate legislation and the inability to enforce existing legislation, coupled to the sea of misinformation available on the Internet could lead to an increase in illegitimate stem cell practices in South Africa. Circumstances are already precarious because of a lack of understanding of concepts involved in stem cell applications. What is more, credible and easily accessible information is not available to the public. This in turn cultivates fears born out of existing superstitions, cultural beliefs, rituals and practices. Certain cultural or religious concerns could potentially hinder the effective application of stem cell therapies in South Africa and novel ways of addressing these concerns are necessary. Understanding how scientific progress and its implementation will affect each individual and, consequently, the community, will be of cardinal importance to the success of the fields of stem cell therapy and regenerative medicine in South Africa. A failure to understand the ethical, cultural or moral ramifications when new scientific concepts are introduced could hinder the efficacy and speed of bringing discoveries to the patient. Neglecting proper procedure for establishing the field would lead to long delays in gaining public support in South Africa. Understanding the dangers of stem cell tourism - where vulnerable patients are subjected to unproven stem cell therapies that

  9. Stem cells for the treatment of diabetes.

    PubMed

    Noguchi, Hirofumi

    2007-02-01

    Diabetes mellitus is a devastating disease and over 6% of the population is affected worldwide. The success achieved over the last few years with islet transplantation suggest that diabetes can be cured by the replenishment of deficient beta cells. These observations are proof of concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. Work with ES cells has not yet produced cells with the phenotype of true beta cells, but there has been recent progress in directing ES cells to the endoderm. Bone marrow-derived stem cells could initiate pancreatic regeneration. Pancreatic stem/progenitor cells have been identified, and the formation of new beta cells from duct, acinar and liver cells is an active area of investigation. Some agents including glucagon-like peptide-1/exendin-4 can stimulate the regeneration of beta cells in vivo. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. New technology, known as protein transduction technology, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of beta cells has opened up several possibilities for the development of new treatments for diabetes.

  10. From adult stem cells to cancer stem cells: Oct-4 Gene, cell-cell communication, and hormones during tumor promotion.

    PubMed

    Trosko, James E

    2006-11-01

    Carcinogenesis is characterized by "initiation," "promotion," and "progression" phases. The "stem cell theory" and "de-differentiation" theories are used to explain the origin of cancer. Growth control for stem cells, which lack functional gap junctional intercellular communication (GJIC), involves negative soluble or niche factors, while for progenitor cells, it involves GJIC. Tumor promoters, hormones, and growth factors inhibit GJIC reversibly. Oncogenes stably inhibit GJIC. Cancer cells, which lack growth control and the ability to terminally differentiate and to apoptose, lack GJIC. The Oct3/4 gene, a POU (Pit-Oct-Unc) family of transcription factors was thought to be expressed only in embryonic stem cells and in tumor cells. With the availability of normal adult human stem cells, tests for the expression of Oct3/4 gene and the stem cell theory in human carcinogenesis became possible. Human breast, liver, pancreas, kidney, mesenchyme, and gastric stem cells, HeLa and MCF-7 cells, and canine tumors were tested with antibodies and polymerase chain reaction (PCR) primers for Oct3/4. Adult human breast stem cells, immortalized nontumorigenic and tumor cell lines, but not the normal differentiated cells, expressed Oct3/4. Adult human differentiated cells lose their Oct-4 expression. Oct3/4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that normal adult stem cells and cancer stem cells maintain expression of Oct3/4, consistent with the stem cell hypothesis of carcinogenesis. These Oct-4 positive cells might represent the "cancer stem cells." A strategy to target "cancer stem cells" is to suppress the Oct-4 gene in order to cause the cells to differentiate.

  11. Stem cells and regeneration in planarians.

    PubMed

    Handberg-Thorsager, Mette; Fernandez, Enrique; Salo, Emili

    2008-05-01

    Understanding stem cells is a major goal of current research because of its potential medical applications. Although great advances have been made, such as the culturing and differentiation of embryonic stem cells and reprogramming of cell fates, many basic questions remain unanswered. Describing the mechanisms underlying regeneration will help to understand the biology of stem cells and therefore to control their behavior. While regeneration is being studied in a variety of models, the planarian is particularly noteworthy. In this model system a fragment as small as 1/279 of the animal can regenerate completely within a few weeks. These animals can also grow and degrow--specifically degenerating certain tissues--according to environmental conditions, thus demonstrating a complete control of their stem cell dynamics. However, one of the most interesting aspects of the planarian model system is the presence of a unique type of stem cell that can differentiate into all cell types found in the organism, including the germ line. This represents a simple, extremely powerful, and accessible stem cell system in which to address a variety of important questions. In the last ten years, molecular, cellular, and bioinformatics tools have been established for use in this model, making it ideally placed for in vivo analysis of stem cells in their natural environment without ethical complications.

  12. [Stem cells: limitations and opportunities in Peru].

    PubMed

    Amiel-Pérez, José; Casado, Fanny

    2015-10-01

    Stem cells are defined as rare cells that are characterized by asymmetric division, a process known as self-renewal, and the potential to differentiate into more than one type of terminally differentiated cell. There is a diversity of stem cells including embryonic stem cells, which exist only during the first stages of human development, and many adult stem cells depending on the specific tissues from where they derive or the ones derived from mesenchymal or stromal tissues. On the other hand, there are induced pluripotent stem cells generated by genetic engineering with similar properties to embryonic stem cells that are derived from adult tissues without the ethical and legal limitations. In all cases, there are many questions that are being addressed by research in basic sciences to better inform clinical practice. In Peru, there is much to do refining techniques and improving methodologies, which requires experience, proper facilities and highly specialized human resources. However, there are interesting efforts to place Peruvian stem cell research in the international scientific arena.

  13. Making gametes from pluripotent stem cells--a promising role for very small embryonic-like stem cells.

    PubMed

    Bhartiya, Deepa; Hinduja, Indira; Patel, Hiren; Bhilawadikar, Rashmi

    2014-11-24

    The urge to have one's own biological child supersedes any desire in life. Several options have been used to obtain gametes including pluripotent stem cells (embryonic ES and induced pluripotent iPS stem cells); gonadal stem cells (spermatogonial SSCs, ovarian OSCs stem cells), bone marrow, mesenchymal cells and fetal skin. However, the field poses a huge challenge including inefficient existing protocols for differentiation, epigenetic and genetic changes associated with extensive in vitro manipulation and also ethical/regulatory constraints. A tremendous leap in the field occurred using mouse ES and iPS cells wherein they were first differentiated into epiblast-like cells and then primordial germ cell-like cells. These on further development produced sperm, oocytes and live offspring (had associated genetic problems). Evidently differentiating pluripotent stem cells into primordial germ cells (PGCs) remains a major bottleneck. Against this backdrop, we propose that a novel population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs) may serve as an alternative, potential source of autologus gametes, keeping in mind that they are indeed PGCs surviving in adult mammalian ovaries and testes. Both VSELs and PGCs are pluripotent, relatively quiescent because of epigenetic modifications of parentally imprinted genes loci like Igf2-H19 and KCNQ1p57, share several markers like Stella, Fragilis, Mvh, Dppa2, Dppa4, Sall4, Blimp1 and functional receptors. VSELs are localized in the basement membrane of seminiferous tubules in testis and in the ovary surface epithelium. Ovarian stem cells from mouse, rabbit, sheep, marmoset and humans (menopausal women and those with premature ovarian failure) spontaneously differentiate into oocyte-like structures in vitro with no additional requirement of growth factors. Thus a more pragmatic option to obtain autologus gametes may be the pluripotent VSELs and if we could manipulate them in vivo - existing

  14. PLURIPOTENT STEM CELL APPLICATIONS FOR REGENERATIVE MEDICINE

    PubMed Central

    Angelos, Mathew G.; Kaufman, Dan S.

    2015-01-01

    Purpose of Review In this review, we summarize the current status of clinical trials using therapeutic cells produced from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). We also discuss combined cell and gene therapy via correction of defined mutations in human pluripotent stem cells and provide commentary on key obstacles facing wide-scale clinical adoption of pluripotent stem cell-based therapy. Recent Findings Initial data suggest hESC/hiPSC-derived cell products used for retinal repair and spinal cord injury are safe for human use. Early stage studies for treatment of cardiac injury and diabetes are also in progress. However, there remain key concerns regarding the safety and efficacy of these cells that need to be addressed in additional well-designed clinical trials. Advances using the CRISPR/Cas9 gene-editing system offer an improved tool for more rapid and on-target gene correction of genetic diseases. Combined gene and cell therapy using human pluripotent stem cells may provide an additional curative approach for disabling or lethal genetic and degenerative diseases where there are currently limited therapeutic opportunities. Summary Human pluripotent stem cells are emerging as a promising tool to produce cells and tissues suitable for regenerative therapy for a variety of genetic and degenerative diseases. PMID:26536430

  15. Stem cells in pediatric heart failure.

    PubMed

    Pillekamp, F; Khalil, M; Emmel, M; Brockmeier, K; Hescheler, J

    2008-06-01

    Pediatric heart failure could be a target for regenerative therapy. Stem cell-based therapy has the potential to provide functional cardiomyocytes. Whereas adult stem cells have shown no or only minimal therapeutic benefit in adults with no evidence of transdifferentiation, embryonic stem cells can differentiate to any cell type, including cardiomyocytes. However, ethical concerns and immunological problems are associated with embryonic stem cells derived from the inner cell mass of blastocysts. Recently, somatic cells could be reprogrammed to a pluripotent state (i.e. induced pluripotent stem cells) with the help of transcription factors. This technique removes ethical and probably also immunological concerns. Nevertheless extensive experimental research will be necessary before cell replacement strategies become clinically applicable. Because the underlying pathophysiology differs significantly with age, caution is warranted extrapolating data obtained in experimental models of cardiac ischemia and clinical studies in adults to the pediatric population. Pediatric heart failure has a good prognosis if causal therapy is possible. However, some forms of congenital heart disease and especially dilated cardiomyopathy still have limited therapeutic options. Almost half of children with symptomatic cardiomyopathy receive a transplant or die within two years. The authors will review the relevant stem cell sources for cell-based treatments. And, given the differences of the underlying diseases between adult and pediatric patients with heart failure, it is contemplated which condition of pediatric patients with heart failure is most likely to benefit and which cell type would be appropriate.

  16. Signal propagation in stem-cell niches

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2009-09-01

    Stem cells, maintaining tissue homeostasis, are nurtured in microscopic niches formed of so-called environmental cells. The kinetics of proliferation and differentiation of stem cells in such niches depend on their interaction with the messenger proteins secreted by environmental cells. We propose a generic mean-field kinetic model of the propagation of such signals. To motivate our study, we briefly describe a stem-cell niche in the Drosophila ovary. Our model is however applicable to other niches as well. In particular, it helps one to understand the necessary conditions for the niche function. For example, the model predicts that in the case of the Drosophila ovary each germline stem cell should have in the external membrane at least 700 receptors interacting with the signaling Dpp and Gpp proteins emanating from the cap cells.

  17. Multipotent Stem Cells in Cardiac Regeneration

    PubMed Central

    Karra, Ravi; Wu, Sean M.

    2008-01-01

    Summary The potential for stem cells to ameliorate or cure heart diseases has galvanized a cadre of cardiovascular translational and clinical scientists to take a “first-in-man” approach using autologous stem cells from a variety of tissues. However, recent clinical trial data show that when these cells are given by intracoronary infusion or direct myocardial injection, limited improvement in heart function occurs with no evidence of cardiomyogenesis. These studies illustrate the great need to understand the logic of cell-lineage commitment and the principles of cardiac differentiation. Recent identification of stem/progenitor cells of embryological origin with intrinsic competence to differentiate into multiple lineages within the heart offers new possibilities for cardiac regeneration. When combined with developments in nuclear reprogramming and provided that tumor risks and other challenges of embryonic cell transplantation can be overcome, the prospect of achieving autologous, cardiomyogenic, stem cell-based therapy may be within reach. PMID:18307403

  18. Odontogenic epithelial stem cells: hidden sources.

    PubMed

    Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh

    2015-12-01

    The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed.

  19. [Hematopoietic stem cell transplantation in autoimmune diseases].

    PubMed

    Albarracín, Flavio; López Meiller, María José; Naswetter, Gustavo; Longoni, Héctor

    2008-01-01

    Transplantation of hematopoietic stem cells, which are capable of self renewal and reconstitution of all types of blood cells, can be a treatment for numerous potential lethal diseases, including leukemias and lymphomas. It may now be applicable for the treatment of severe autoimmune diseases, such as therapy-resistant multiple sclerosis, lupus and systemic sclerosis. Studies in animal models show that the transfer of hematopoietic stem cells can reverse autoimmunity. The outcome of ongoing clinical trials, as well as of studies in patients and animal models, will help to determine the role that stem-cell transplantation can play in the treatment of autoimmune diseases.

  20. Update on small intestinal stem cells.

    PubMed

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-08-07

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to identify the integrating signals from the surrounding niche, supporting a model whereby distinct cell populations facilitate homeostatic vs injury-induced regeneration.

  1. The role of stem cells in vein graft remodelling.

    PubMed

    Xu, Q

    2007-11-01

    The vessel wall is a dynamic tissue that undergoes positive remodelling in response to altered mechanical stress. A typical example is vein graft remodelling, because veins do not develop arteriosclerosis until a vein segment is grafted on to arteries. In this process, it was observed that vascular endothelial and smooth muscle cells of vein grafts die due to suddenly elevated blood pressure. This cell death is followed by endothelial regeneration. Central to this theme is the essential role played by EPCs (endothelial progenitor cells) in regenerating the lost endothelium. The mechanisms by which EPCs attach to the vessel wall and differentiate into mature endothelial cells involve increased chemokine production and laminar shear flow stimulation on the vessel wall. It seems that neo-endothelial cells derived from EPCs lack mature cell functions and express high levels of adhesion molecules resulting in LDL (low-density lipoprotein) penetration and mononuclear cell infiltration into the sub-endothelial space. Among infiltrated mononuclear cells, there are smooth muscle progenitors that proliferate and differentiate into smooth muscle cells. Meanwhile, stem cells present in the media and adventitia may also migrate into arteriosclerotic lesions via the vasa vasorum that are abundant in the diseased vessels. However, the molecular events leading to the homing, differentiation and maturation of stem/progenitor cells still needs elucidation. The present review attempts to update the progress in stem cell research related to the pathogenesis of vein graft arteriosclerosis or remodelling, focusing on the mechanisms by which stem/progenitor cells participate in the development of lesions, and to discuss the controversial issues and the future perspectives surrounding this research area.

  2. Stem cell applications in military medicine

    PubMed Central

    2011-01-01

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers - and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research. PMID:22011454

  3. Stem cell tracking using iron oxide nanoparticles.

    PubMed

    Bull, Elizabeth; Madani, Seyed Yazdan; Sheth, Roosey; Seifalian, Amelia; Green, Mark; Seifalian, Alexander M

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.

  4. Stem cell applications in military medicine.

    PubMed

    Christopherson, Gregory T; Nesti, Leon J

    2011-10-19

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research.

  5. Time to reconsider stem cell induction strategies.

    PubMed

    Denker, Hans-Werner

    2012-12-17

    Recent developments in stem cell research suggest that it may be time to reconsider the current focus of stem cell induction strategies. During the previous five years, approximately, the induction of pluripotency in somatic cells, i.e., the generation of so-called 'induced pluripotent stem cells' (iPSCs), has become the focus of ongoing research in many stem cell laboratories, because this technology promises to overcome limitations (both technical and ethical) seen in the production and use of embryonic stem cells (ESCs). A rapidly increasing number of publications suggest, however, that it is now possible to choose instead other, alternative ways of generating stem and progenitor cells bypassing pluripotency. These new strategies may offer important advantages with respect to ethics, as well as to safety considerations. The present communication discusses why these strategies may provide possibilities for an escape from the dilemma presented by pluripotent stem cells (self-organization potential, cloning by tetraploid complementation, patenting problems and tumor formation risk).

  6. Current understanding concerning intestinal stem cells

    PubMed Central

    Cui, Shuang; Chang, Peng-Yu

    2016-01-01

    In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same. PMID:27610020

  7. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates.

    PubMed

    Qi, Hao; Huang, Guoyou; Han, Yu Long; Lin, Wang; Li, Xiujun; Wang, Shuqi; Lu, Tian Jian; Xu, Feng

    2016-01-01

    With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.

  8. Current stem cell based therapies in diabetes

    PubMed Central

    Lilly, Meredith A; Davis, Meghan F; Fabie, Josh E; Terhune, Elizabeth B; Gallicano, G Ian

    2016-01-01

    Diabetes is a disease with wide-ranging personal and societal impacts that has been managed medicinally for over half a century. Since the discovery of stem cells, pancreatic islet regeneration has become a central target for clinical application that has the potential to decrease or eliminate the need for insulin administration and adjunctive medications. The discovery of alternative routes to pluripotency that bypass the ethical implications of embryonic stem cells has significantly expanded the horizons of stem cell based therapy. Engraftment of mature insulin producing cells derived from induced pluripotent stem cells may represent the most promising treatment strategy for diabetic patients with impaired β-cell function. These cells are easily accessible and have been shown to closely mimic endogenous β-cell function in vivo. While the risks of oncogenesis and transplant rejection are still of great concern, large strides have been made on both fronts with the application of integration free induction strategies and the ongoing development of microcapsules that cloak implanted cells from an autoimmune response. This review will focus on the progress and remaining obstacles in diabetes related stem cell research, and will specifically discuss approaches using embryonic, induced pluripotent, germline and mesenchymal derived stem cells. PMID:27853630

  9. Stem cells as promising therapeutic options for neurological disorders.

    PubMed

    Yoo, Jongman; Kim, Han-Soo; Hwang, Dong-Youn

    2013-04-01

    Due to the limitations of pharmacological and other current therapeutic strategies, stem cell therapies have emerged as promising options for treating many incurable neurologic diseases. A variety of stem cells including pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells) and multipotent adult stem cells (i.e., fetal brain tissue, neural stem cells, and mesenchymal stem cells from various sources) have been explored as therapeutic options for treating many neurologic diseases, and it is becoming obvious that each type of stem cell has pros and cons as a source for cell therapy. Wise selection of stem cells with regard to the nature and status of neurologic dysfunctions is required to achieve optimal therapeutic efficacy. To this aim, the stem cell-mediated therapeutic efforts on four major neurological diseases, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke, will be introduced, and current problems and future directions will be discussed.

  10. Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses?

    PubMed

    Harmes, David C; DiRenzo, James

    2009-03-01

    Cellular quiescence is a state of reversible cell cycle arrest and has more recently been shown to be a blockade to differentiation and to correlate with resistance to cancer chemotherapeutics and other xenobiotics; features that are common to adult stem cells and possibly tumor stem cells. The biphasic kinetics of mammary regeneration, coupled to its cyclic endocrine control suggest that mammary stem cells most likely divide during a narrow window of the regenerative cycle and return to a state of quiescence. This would enable them to retain their proliferative capacity, resist differentiation signals and preserve their prolonged life span. There is accumulating evidence that mammary stem cells and other adult stem cells utilize quiescence for this purpose, however the degree to which tumor stem cells do so is largely unknown. The retained proliferative capacity of mammary stem cells likely enables them to accumulate and harbor mutations that lead to breast cancer initiation. However it is currently unclear if these causative lesions lead to defective or deranged quiescence in mammary stem cells. Evidence of such effects could potentially lead to the development of diagnostic systems that monitor mammary stem cell quiescence or activation. Such systems may be useful for the evaluation of patients who are at significant risk of breast cancer. Additionally quiescence has been postulated to contribute to therapeutic resistance and tumor recurrence. This review aims to evaluate what is known about the mechanisms governing cellular quiescence and the role of tumor stem cell quiescence in breast cancer recurrence.

  11. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface.

    PubMed

    Zhang, Yan; Gordon, Andrew; Qian, Weiyi; Chen, Weiqiang

    2015-09-16

    Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.

  12. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    PubMed

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  13. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    PubMed

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications.

  14. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM ELEMENT NUMBER 6...some oncogene function in determining molecular phenotypes. To test this hypothesis, we proposed to transform neural stem cells (NSCs) and neural

  15. Minireview: Nuclear Receptors, Hematopoiesis, and Stem Cells

    PubMed Central

    Chute, John P.; Ross, Joel R.; McDonnell, Donald P.

    2010-01-01

    Nuclear receptors (NRs) regulate a panoply of biological processes, including the function and development of cells within the hematopoietic and immune system, such as erythrocytes, monocytes, and lymphocytes. Significantly less is known regarding the function of NRs in regulating the fate of hematopoietic stem cells (HSCs), the self-renewing, pluripotent cells that give rise to the entirety of the blood and immune systems throughout the lifetime of an individual. Several recent studies suggest, either directly or indirectly, a role for members of the NR family in regulating the differentiation and self-renewal of HSCs, embryonic stem cells, and induced pluripotent stem cells. Herein, we review in detail the function of specific NRs in controlling HSC and other stem cell fate and propose a framework through which these observations can be translated into therapeutic amplification of HSCs for clinical purposes. PMID:19934345

  16. Laminin regulates PDGFRβ+ cell stemness and muscle development

    PubMed Central

    Yao, Yao; Norris, Erin H.; E. Mason, Christopher; Strickland, Sidney

    2016-01-01

    Muscle-resident PDGFRβ+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ+ cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ+ cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ+ cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ+ cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. PMID:27138650

  17. Analytical strategies for studying stem cell metabolism

    PubMed Central

    Arnold, James M.; Choi, William T.; Sreekumar, Arun

    2015-01-01

    Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of metabolism, through the production of energy and generation of small molecules, as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling of stem cells both in vitro and in vivo, providing a systems perspective on key metabolic and molecular pathways which influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology. PMID:26213533

  18. Analytical strategies for studying stem cell metabolism.

    PubMed

    Arnold, James M; Choi, William T; Sreekumar, Arun; Maletić-Savatić, Mirjana

    2015-04-01

    Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of metabolism, through the production of energy and generation of small molecules, as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling of stem cells both in vitro and in vivo, providing a systems perspective on key metabolic and molecular pathways which influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology.

  19. Time to Reconsider Stem Cell Induction Strategies

    PubMed Central

    Denker, Hans-Werner

    2012-01-01

    Recent developments in stem cell research suggest that it may be time to reconsider the current focus of stem cell induction strategies. During the previous five years, approximately, the induction of pluripotency in somatic cells, i.e., the generation of so-called ‘induced pluripotent stem cells’ (iPSCs), has become the focus of ongoing research in many stem cell laboratories, because this technology promises to overcome limitations (both technical and ethical) seen in the production and use of embryonic stem cells (ESCs). A rapidly increasing number of publications suggest, however, that it is now possible to choose instead other, alternative ways of generating stem and progenitor cells bypassing pluripotency. These new strategies may offer important advantages with respect to ethics, as well as to safety considerations. The present communication discusses why these strategies may provide possibilities for an escape from the dilemma presented by pluripotent stem cells (self-organization potential, cloning by tetraploid complementation, patenting problems and tumor formation risk). PMID:24710555

  20. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  1. Major complications following hematopoietic stem cell transplantation.

    PubMed

    Afessa, Bekele; Peters, Steve G

    2006-06-01

    Tens of thousands of patients undergo hematopoietic stem cell transplantation (HSCT) annually, 15 to 40% of whom are admitted to the intensive care unit. Pulmonary complications are the most life threatening conditions that develop in HSCT recipients. Both infectious and noninfectious complications occur more frequently in allogeneic HSCT. The management of HSCT recipients requires knowledge of their immune status, appropriate diagnostic evaluation, and early treatment. During the pre-engraftment phase (0 to 30 days after transplant), the most prevalent pathogens causing infection are bacteria and Candida species and, if the neutropenia persists, Aspergillus species. The early post-engraftment phase (30 to 100 days) is characterized by cytomegalovirus (CMV), Pneumocystis jiroveci, and Aspergillus infections. During the late posttransplant phase (> 100 days), allogeneic HSCT recipients are at risk for CMV, community-acquired respiratory virus, and encapsulated bacterial infections. Antigen and polymerase chain reaction assays are important for the diagnosis of CMV and Aspergillus infections. Diffuse alveolar hemorrhage (DAH) and peri-engraftment respiratory distress syndrome occur in both allogeneic and autologous HSCT recipients, usually during the first 30 days. Bronchiolitis obliterans occurs exclusively in allogeneic HSCT recipients with graft versus host disease. Idiopathic pneumonia syndrome occurs at any time following transplant. Bronchoscopy is usually helpful for the diagnosis of the infectious pulmonary complications and DAH.

  2. Cancer stem cells, cancer cell plasticity and radiation therapy.

    PubMed

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  3. Senescence from glioma stem cell differentiation promotes tumor growth

    PubMed Central

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs’ role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. PMID:26775840

  4. Stem cells engineering for cell-based therapy.

    PubMed

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  5. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    NASA Astrophysics Data System (ADS)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  6. Cancer stem cells and differentiation therapy.

    PubMed

    Sell, Stewart

    2006-01-01

    Cancers arise from stem cells in adult tissues and the cells that make up a cancer reflect the same stem cell --> progeny --> differentiation progression observed in normal tissues. All adult tissues are made up of lineages of cells consisting of tissue stem cells and their progeny (transit-amplifying cells and terminally differentiated cells); the number of new cells produced in normal tissue lineages roughly equals the number of old cells that die. Cancers result from maturation arrest of this process, resulting in continued proliferation of cells and a failure to differentiate and die. The biological behavior, morphological appearance, and clinical course of a cancer depend on the stage of maturation at which the genetic lesion is activated. This review makes a comparison of cancer cells to embryonic stem cells and to adult tis sue stem cells while addressing two basic questions: (1) Where do cancers come from?, and (2) How do cancers grow? The answers to these questions are critical to the development of approaches to the detection, prevention, and treatment of cancer.

  7. Renal stem cell reprogramming: Prospects in regenerative medicine

    PubMed Central

    Morales, Elvin E; Wingert, Rebecca A

    2014-01-01

    Stem cell therapy is a promising future enterprise for renal replacement in patients with acute and chronic kidney disease, conditions which affect millions worldwide and currently require patients to undergo lifelong medical treatments through dialysis and/or organ transplant. Reprogramming differentiated renal cells harvested from the patient back into a pluripotent state would decrease the risk of tissue rejection and provide a virtually unlimited supply of cells for regenerative medicine treatments, making it an exciting area of current research in nephrology. Among the major hurdles that need to be overcome before stem cell therapy for the kidney can be applied in a clinical setting are ensuring the fidelity and relative safety of the reprogrammed cells, as well as achieving feasible efficiency in the reprogramming processes that are utilized. Further, improved knowledge about the genetic control of renal lineage development is vital to identifying predictable and efficient reprogramming approaches, such as the expression of key modulators or the regulation of gene activity through small molecule mimetics. Here, we discuss several recent advances in induced pluripotent stem cell technologies. We also explore strategies that have been successful in renal progenitor generation, and explore what these methods might mean for the development of cell-based regenerative therapies for kidney disease. PMID:25258667

  8. Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview

    PubMed Central

    Accomasso, Lisa; Gallina, Clara; Turinetto, Valentina; Giachino, Claudia

    2016-01-01

    Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies. Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting. PMID:26839568

  9. Evidence for Human Lung Stem Cells

    PubMed Central

    Kajstura, Jan; Rota, Marcello; Hall, Sean R.; Hosoda, Toru; D’Amario, Domenico; Sanada, Fumihiro; Zheng, Hanqiao; Ogórek, Barbara; Rondon-Clavo, Carlos; Ferreira-Martins, João; Matsuda, Alex; Arranto, Christian; Goichberg, Polina; Giordano, Giovanna; Haley, Kathleen J.; Bardelli, Silvana; Rayatzadeh, Hussein; Liu, Xiaoli; Quaini, Federico; Liao, Ronglih; Leri, Annarosa; Perrella, Mark A.; Loscalzo, Joseph; Anversa, Piero

    2011-01-01

    BACKGROUND Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.) PMID:21561345

  10. Growing vascularized heart tissue from stem cells.

    PubMed

    Lim, Shiang Y; Hernández, Damián; Dusting, Gregory J

    2013-08-01

    The promise of stem cells to repair the heart after damage or heart attack has not been realized because most such cells are lost after transplantation. A new approach is to grow substantial viable pieces of cardiac tissue from human stem cells by cardiac tissue engineering. Such constructs must be fully vascularized and perfused to ensure the viability of clinically relevant volumes of tissue. This requires careful choice of cells, culture conditions, a biomaterial to act as scaffold, and crucial strategies for vascularization. Autologous stem cells with high plasticity, which would avoid the need for antirejection therapies after transplantation, are an attractive source of both cardiomyocytes and vascular cells. Most stem cells also have inherent paracrine activity, releasing cytoprotective factors and growth-promoting cytokines that can further stimulate tissue regeneration and neovascularization through recruitment of endogenous stem and progenitor cells. Current advances for growing vascularized and functional cardiac constructs with human stem cells are described, bringing us a step closer to the engineering of complex cardiac tissues such as pacemaker, conducting tissue, or contractile myocardial flaps ideal for transplantation. From studies in rats successful transplantation of thin constructs to the ventricle has been reported, but there remain further issues to resolve before larger human constructs will be available to test in the clinic.

  11. Cell therapy for diabetes mellitus: an opportunity for stem cells?

    PubMed

    Soria, B; Bedoya, F J; Tejedo, J R; Hmadcha, A; Ruiz-Salmerón, R; Lim, S; Martin, F

    2008-01-01

    Diabetes is a chronic disease characterized by a deficit in beta cell mass and a failure of glucose homeostasis. Both circumstances result in a variety of severe complications and an overall shortened life expectancy. Thus, diabetes represents an attractive candidate for cell therapy. Reversal of diabetes can be achieved through pancreas and islet transplantation, but shortage of donor organs has prompted an intensive search for alternative sources of beta cells. This achievement has stimulated the search for appropriate stem cell sources. Both embryonic and adult stem cells have been used to generate surrogate beta cells or otherwise restore beta cell functioning. In this regard, several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Due to beta cell complexity, insulin-producing cells generated from stem cells do not possess all beta cell attributes. This indicates the need for further development of methods for differentiation and selection of completely functional beta cells. While these problems are overcome, diabetic patients may benefit from therapeutic strategies based on autologous stem cell therapies addressing late diabetic complications. In this article, we discuss the recent progress in the generation of insulin-producing cells from embryonic and adult stem cells, together with the challenges for the clinical use of diabetes stem cell therapy.

  12. Elucidating the identity and behavior of spermatogenic stem cells in the mouse testis.

    PubMed

    Yoshida, Shosei

    2012-09-01

    Spermatogenesis in mice and other mammalians is supported by a robust stem cell system. Stem cells maintain themselves and continue to produce progeny that will differentiate into sperm over a long period. The pioneering studies conducted from the 1950s to the 1970s, which were based largely on extensive morphological analyses, have established the fundamentals of mammalian spermatogenesis and its stem cells. The prevailing so-called A(single) (A(s)) model, which was originally established in 1971, proposes that singly isolated A(s) spermatogonia are in fact the stem cells. In 1994, the first functional stem cell assay was established based on the formation of repopulating colonies after transplantation in germ cell-depleted host testes, which substantially accelerated the understanding of spermatogenic stem cells. However, because testicular tissues are dissociated into single-cell suspension before transplantation, it was impossible to evaluate the A(s) and other classical models solely by this technique. From 2007 onwards, functional assessment of stem cells without destroying the tissue architecture has become feasible by means of pulse-labeling and live-imaging strategies. Results obtained from these experiments have been challenging the classical thought of stem cells, in which stem cells are a limited number of specialized cells undergoing asymmetric division to produce one self-renewing and one differentiating daughter cells. In contrast, the emerging data suggest that an extended and heterogeneous population of cells exhibiting different degrees of self-renewing and differentiating probabilities forms a reversible, flexible, and stochastic stem cell system as a population. These features may lead to establishment of a more universal principle on stem cells that is shared by other systems.

  13. Stem Cell Research and Health Education

    PubMed Central

    Eve, David J.; Marty, Phillip J.; McDermott, Robert J.; Klasko, Stephen K.; Sanberg, Paul R.

    2009-01-01

    Stem cells are being touted as the greatest discovery for the potential treatment of a myriad of diseases in the new millennium, but there is still much research to be done before it will be known whether they can live up to this description. There is also an ethical debate over the production of one of the most valuable types of stem cell: the embryonic form. Consequently, there is public confusion over the benefits currently being derived from the use of stem cells and what can potentially be expected from their use in the future. The health educator’s role is to give an unbiased account of the current state of stem cell research. This paper provides the groundwork by discussing the types of cells currently identified, their potential use, and some of the political and ethical pitfalls resulting from such use. PMID:19672471

  14. Cancer stem cells: mirage or reality?

    PubMed

    Gupta, Piyush B; Chaffer, Christine L; Weinberg, Robert A

    2009-09-01

    The similarities and differences between normal tissue stem cells and cancer stem cells (CSCs) have been the source of much contention, with some recent studies calling into question the very existence of CSCs. An examination of the literature indicates, however, that the CSC model rests on firm experimental foundations and that differences in the observed frequencies of CSCs within tumors reflect the various cancer types and hosts used to assay these cells. Studies of stem cells and the differentiation program termed the epithelial-mesenchymal transition (EMT) point to the possible existence of plasticity between stem cells and their more differentiated derivatives. If present, such plasticity would have major implications for the CSC model and for future therapeutic approaches.

  15. Epithelial stem cells and intestinal cancer.

    PubMed

    Tan, Shawna; Barker, Nick

    2015-06-01

    The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised.

  16. Human embryonic stem cells and lung regeneration.

    PubMed

    Varanou, A; Page, C P; Minger, S L

    2008-10-01

    Human embryonic stem cells are pluripotent cells derived from the inner cell mass of preimplantation stage embryos. Their unique potential to give rise to all differentiated cell types has generated great interest in stem cell research and the potential that it may have in developmental biology, medicine and pharmacology. The main focus of stem cell research has been on cell therapy for pathological conditions with no current methods of treatment, such as neurodegenerative diseases, cardiac pathology, retinal dysfunction and lung and liver disease. The overall aim is to develop methods of application either of pure cell populations or of whole tissue parts to the diseased organ under investigation. In the field of pulmonary research, studies using human embryonic stem cells have succeeded in generating enriched cultures of type II pneumocytes in vitro. On account of their potential of indefinite proliferation in vitro, embryonic stem cells could be a source of an unlimited supply of cells available for transplantation and for use in gene therapy. Uncovering the ability to generate such cell types will expand our understanding of biological processes to such a degree that disease understanding and management could change dramatically.

  17. Mammary Stem Cell Research in Veterinary Science: An Update

    PubMed Central

    Borena, Bizunesh M.; Bussche, Leen; Burvenich, Christian; Duchateau, Luc

    2013-01-01

    The mammary gland is an organ with a remarkable regenerative capacity that can undergo multiple cycles of proliferation, lactation, and involution. Growing evidence suggests that these changes are driven by the coordinated division and differentiation of mammary stem cell populations (MaSC). Whereas information regarding MaSC and their role in comparative mammary gland physiology is readily available in human and mice, such information remains scarce in most veterinary mammal species such as cows, horses, sheep, goats, pigs, and dogs. We believe that a better knowledge on the MaSC in these species will not only help to gain more insights into mammary gland (patho) physiology in veterinary medicine, but will also be of value for human medicine. Therefore, this review summarizes the current knowledge on stem cell isolation and characterization in different mammals of veterinary importance. PMID:23360296

  18. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine.

    PubMed

    Chen, Ching-Huan; Luhur, Arthur; Sokol, Nicholas

    2015-10-15

    Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration.

  19. Stem cells and somatic cells: reprogramming and plasticity.

    PubMed

    Estrov, Zeev

    2009-01-01

    Recent seminal discoveries have significantly advanced the field of stem cell research and received worldwide attention. Improvements in somatic cell nuclear transfer (SCNT) technology, enabling the cloning of Dolly the sheep, and the derivation and differentiation of human embryonic stem cells raised hopes that normal cells could be generated to replace diseased or injured tissue. At the same time, in vitro and in vivo studies demonstrated that somatic cells of one tissue are capable of generating cells of another tissue. It was theorized that any cell might be reprogrammed, by exposure to a new environment, to become another cell type. This concept contradicts two established hypotheses: (1) that only specific tissues are generated from the endoderm, mesoderm, and ectoderm and (2) that tissue cells arise from a rare population of tissue-specific stem cells in a hierarchical fashion. SCNT, cell fusion experiments, and most recent gene transfer studies also contradict these hypotheses, as they demonstrate that mature somatic cells can be reprogrammed to regain pluripotent (or even totipotent) stem cell capacity. On the basis of the stem cell theory, hierarchical cancer stem cell differentiation models have been proposed. Cancer cell plasticity is an established phenomenon that supports the notion that cellular phenotype and function might be altered. Therefore, mechanisms of cellular plasticity should be exploited and the clinical significance of the cancer stem cell theory cautiously assessed.

  20. Stem cell systems and regeneration in planaria.

    PubMed

    Rink, Jochen C

    2013-03-01

    Planarians are members of the Platyhelminthes (flatworms). These animals have evolved a remarkable stem cell system. A single pluripotent adult stem cell type ("neoblast") gives rise to the entire range of cell types and organs in the planarian body plan, including a brain, digestive-, excretory-, sensory- and reproductive systems. Neoblasts are abundantly present throughout the mesenchyme and divide continuously. The resulting stream of progenitors and turnover of differentiated cells drive the rapid self-renewal of the entire animal within a matter of weeks. Planarians grow and literally de-grow ("shrink") by the food supply-dependent adjustment of organismal turnover rates, scaling body plan proportions over as much as a 50-fold size range. Their dynamic body architecture further allows astonishing regenerative abilities, including the regeneration of complete and perfectly proportioned animals even from tiny tissue remnants. Planarians as an experimental system, therefore, provide unique opportunities for addressing a spectrum of current problems in stem cell research, including the evolutionary conservation of pluripotency, the dynamic organization of differentiation lineages and the mechanisms underlying organismal stem cell homeostasis. The first part of this review focuses on the molecular biology of neoblasts as pluripotent stem cells. The second part examines the fascinating mechanistic and conceptual challenges posed by a stem cell system that epitomizes a universal design principle of biological systems: the dynamic steady state.

  1. Stem cell genome-to-systems biology.

    PubMed

    Chia, Na-Yu; Ng, Huck-Hui

    2012-01-01

    Stem cells are capable of extended proliferation and concomitantly differentiating into a plethora of specialized cell types that render them apropos for their usage as a form of regenerative medicine for cell replacement therapies. The molecular processes that underlie the ability for stem cells to self-renew and differentiate have been intriguing, and elucidating the intricacies within the genome is pertinent to enhance our understanding of stem cells. Systems biology is emerging as a crucial field in the study of the sophisticated nature of stem cells, through the adoption of multidisciplinary approaches which couple high-throughput experimental techniques with computational and mathematical analysis. This allows for the determination of the molecular constituents that govern stem cell characteristics and conjointly with functional validations via genetic perturbation and protein location binding analysis necessitate the construction of the complex transcriptional regulatory network. With the elucidation of protein-protein interaction, protein-DNA regulation, microRNA involvement as well as the epigenetic modifications, it is possible to comprehend the defining features of stem cells at the system level.

  2. Prion potency in stem cells biology.

    PubMed

    Lopes, Marilene H; Santos, Tiago G

    2012-01-01

    Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

  3. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    PubMed Central

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032

  4. Regulation of breast cancer stem cell features.

    PubMed

    Czerwinska, Patrycja; Kaminska, Bozena

    2015-01-01

    Cancer stem cells (CSCs) are rare, tumour-initiating cells that exhibit stem cell properties: capacity of self-renewal, pluripotency, highly tumorigenic potential, and resistance to therapy. Cancer stem cells have been characterised and isolated from many cancers, including breast cancer. Developmental pathways, such as the Wnt/β-catenin, Notch/γ-secretase/Jagged, Shh (sonic hedgehog), and BMP signalling pathways, which direct proliferation and differentiation of normal stem cells, have emerged as major signalling pathways that contribute to the self-renewal of stem and/or progenitor cells in a variety of organs and cancers. Deregulation of these signalling pathways is frequently linked to an epithelial-mesenchymal transition (EMT), and breast CSCs often possess properties of cells that have undergone the EMT process. Signalling networks mediated by microRNAs and EMT-inducing transcription factors tie the EMT process to regulatory networks that maintain "stemness". Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, which allows an assessment on how embryonic and normal tissue stem cells are deregulated during cancerogenesis to give rise to CSCs. Epigenetic-based mechanisms are reversible, and the possibility of "resetting" the abnormal cancer epigenome by applying pharmacological compounds targeting epigenetic enzymes is a promising new therapeutic strategy. Chemoresistance of CSCs is frequently driven by various mechanisms, including aberrant expression/activity of ABC transporters, aldehyde dehydrogenase and anti-oncogenic proteins (i.e. BCL2, B-cell lymphoma-2), enhanced DNA damage response, activation of pro-survival signalling pathways, and epigenetic deregulations. Despite controversy surrounding the CSC hypothesis, there is substantial evidence for their role in cancer, and a number of drugs intended to specifically target CSCs have entered clinical trials.

  5. Mesenchymal stem cells in regenerative rehabilitation

    PubMed Central

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  6. Ethical issues in stem cell research.

    PubMed

    Lo, Bernard; Parham, Lindsay

    2009-05-01

    Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson's disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramming of somatic cells to produce induced pluripotent stem cells avoids the ethical problems specific to embryonic stem cell research. In any hSC research, however, difficult dilemmas arise regarding sensitive downstream research, consent to donate materials for hSC research, early clinical trials of hSC therapies, and oversight of hSC research. These ethical and policy issues need to be discussed along with scientific challenges to ensure that stem cell research is carried out in an ethically appropriate manner. This article provides a critical analysis of these issues and how they are addressed in current policies.

  7. Ethical Issues in Stem Cell Research

    PubMed Central

    Lo, Bernard; Parham, Lindsay

    2009-01-01

    Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson’s disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramming of somatic cells to produce induced pluripotent stem cells avoids the ethical problems specific to embryonic stem cell research. In any hSC research, however, difficult dilemmas arise regarding sensitive downstream research, consent to donate materials for hSC research, early clinical trials of hSC therapies, and oversight of hSC research. These ethical and policy issues need to be discussed along with scientific challenges to ensure that stem cell research is carried out in an ethically appropriate manner. This article provides a critical analysis of these issues and how they are addressed in current policies. PMID:19366754

  8. Mesenchymal stem cells in regenerative rehabilitation.

    PubMed

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-06-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient's medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future.

  9. FDA Warns About Stem Cell Claims

    MedlinePlus

    ... perpetrators who expose the American public to the dangers of unapproved stem cells and ensure that they ... You Need to Know More in Consumer Updates Animal & Veterinary Children's Health Cosmetics Dietary Supplements Drugs Food ...

  10. Becoming a Blood Stem Cell Donor

    MedlinePlus Videos and Cool Tools

    ... donors at http://www.marrow.org . Category Science & Technology License Standard YouTube License Show more Show less ... views 10:58 Susan Solomon: The promise of research with stem cells - Duration: 14:59. TED 61, ...

  11. Hematopoietic stem cell engineering at a crossroads.

    PubMed

    Rivière, Isabelle; Dunbar, Cynthia E; Sadelain, Michel

    2012-02-02

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead.

  12. De Novo Kidney Regeneration with Stem Cells

    PubMed Central

    Yokote, Shinya; Yamanaka, Shuichiro; Yokoo, Takashi

    2012-01-01

    Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD) remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD), traditional stem cell-based therapy is unable to completely regenerate the damaged tissue. This suggests that whole organ regeneration may be a promising therapeutic approach to alleviate patients with uncured CKD. We summarize here the potential of stem-cell-based therapy for injured tissue repair and de novo whole kidney regeneration. In addition, we describe the hurdles that must be overcome and possible applications of this approach in kidney regeneration. PMID:23251079

  13. Will embryonic stem cells change health policy?

    PubMed

    Sage, William M

    2010-01-01

    Embryonic stem cells are actively debated in political and public policy arenas. However, the connections between stem cell innovation and overall health care policy are seldom elucidated. As with many controversial aspects of medical care, the stem cell debate bridges to a variety of social conversations beyond abortion. Some issues, such as translational medicine, commercialization, patient and public safety, health care spending, physician practice, and access to insurance and health care services, are core health policy concerns. Other issues, such as economic development, technologic progress, fiscal politics, and tort reform, are only indirectly related to the health care system but are frequently seen through a health care lens. These connections will help determine whether the stem cell debate reaches a resolution, and what that resolution might be.

  14. Generation of pluripotent stem cells from adult human testis.

    PubMed

    Conrad, Sabine; Renninger, Markus; Hennenlotter, Jörg; Wiesner, Tina; Just, Lothar; Bonin, Michael; Aicher, Wilhelm; Bühring, Hans-Jörg; Mattheus, Ulrich; Mack, Andreas; Wagner, Hans-Joachim; Minger, Stephen; Matzkies, Matthias; Reppel, Michael; Hescheler, Jürgen; Sievert, Karl-Dietrich; Stenzl, Arnulf; Skutella, Thomas

    2008-11-20

    Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.

  15. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    PubMed

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  16. Matrix elasticity directs stem cell lineage specification

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2010-03-01

    Adhesion of stem cells - like most cells - is not just a membrane phenomenon. Most tissue cells need to adhere to a ``solid'' for viability, and over the last decade it has become increasingly clear that the physical ``elasticity'' of that solid is literally ``felt'' by cells. Here we show that Mesenchymal Stem Cells (MSCs) specify lineage and commit to phenotypes with extreme sensitivity to the elasticity typical of tissues [1]. In serum only media, soft matrices that mimic brain appear neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. Inhibition of nonmuscle myosin II activity blocks all elasticity directed lineage specification, which indicates that the cytoskeleton pulls on matrix through adhesive attachments. Results have significant implications for `therapeutic' stem cells and have motivated development of a proteomic-scale method to identify mechano-responsive protein structures [2] as well as deeper physical studies of matrix physics [3] and growth factor pathways [4]. [4pt] [1] A. Engler, et al. Matrix elasticity directs stem cell lineage specification. Cell (2006).[0pt] [2] C.P. Johnson, et al. Forced unfolding of proteins within cells. Science (2007).[0pt] [3] A.E.X. Brown, et al. Multiscale mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water. Science (2009).[0pt] [4] D.E. Discher, et al. Growth factors, matrices, and forces combine and control stem cells. Science (2009).

  17. Mesenchymal stem cells: the fibroblasts’ new clothes?

    PubMed Central

    Haniffa, Muzlifah A.; Collin, Matthew P.; Buckley, Christopher D.; Dazzi, Francesco

    2009-01-01

    Mesenchymal stem cells are adherent stromal cells, initially isolated from the bone marrow, characterized by their ability to differentiate into mesenchymal tissues such as bone, cartilage and fat. They have also been shown to suppress immune responses in vitro. Because of these properties, mesenchymal stem cells have recently received a very high profile. Despite the dramatic benefits reported in early phase clinical trials, their functions remain poorly understood. Particularly, several questions remain concerning the origin of mesenchymal stem cells and their relationship to other stromal cells such as fibroblasts. Whereas clear gene expression signatures are imprinted in stromal cells of different anatomical origins, the anti-proliferative effects of mesenchymal stem cells and fibroblasts and their potential to differentiate appear to be common features between these two cell types. In this review, we summarize recent studies in the context of historical and often neglected stromal cell literature, and present the evidence that mesenchymal stem cells and fibroblasts share much more in common than previously recognized. PMID:19109217

  18. Stem Cell Therapy for the Inner Ear

    PubMed Central

    Okano, Takayuki

    2012-01-01

    In vertebrates, perception of sound, motion, and balance is mediated through mechanosensory hair cells located within the inner ear. In mammals, hair cells are only generated during a short period of embryonic development. As a result, loss of hair cells as a consequence of injury, disease, or genetic mutation, leads to permanent sensory deficits. At present, cochlear implantation is the only option for profound hearing loss. However, outcomes are still variable and even the best implant cannot provide the acuity of a biological ear. The recent emergence of stem cell technology has the potential to open new approaches for hair cell regeneration. The goal of this review is to summarize the current state of inner ear stem cell research from a viewpoint of its clinical application for inner ear disorders to illustrate how complementary studies have the potential to promote and refine stem cell therapies for inner ear diseases. The review initially discusses our current understanding of the genetic pathways that regulate hair cell formation from inner ear progenitors during normal development. Subsequent sections discuss the possible use of endogenous inner ear stem cells to induce repair as well as the initial studies aimed at transplanting stem cells into the ear. PMID:22514095

  19. 3 CFR - Guidelines for Human Stem Cell Research

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the...

  20. Deriving blood stem cells from pluripotent stem cells for research and therapy.

    PubMed

    Daley, George Q

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells offer promise for research and treatment of hematologic diseases. While broad clinical application in humans is still a distant prospect, there are promising near-term applications in transfusion of platelets and red blood cells.

  1. Multiple myeloma cancer stem cells

    PubMed Central

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  2. The role of DNA repair in the pluripotency and differentiation of human stem cells.

    PubMed

    Rocha, Clarissa Ribeiro Reily; Lerner, Leticia Koch; Okamoto, Oswaldo Keith; Marchetto, Maria Carolina; Menck, Carlos Frederico Martins

    2013-01-01

    All living cells utilize intricate DNA repair mechanisms to address numerous types of DNA lesions and to preserve genomic integrity, and pluripotent stem cells have specific needs due to their remarkable ability of self-renewal and differentiation into different functional cell types. Not surprisingly, human stem cells possess a highly efficient DNA repair network that becomes less efficient upon differentiation. Moreover, these cells also have an anaerobic metabolism, which reduces the mitochondria number and the likelihood of oxidative stress, which is highly related to genomic instability. If DNA lesions are not repaired, human stem cells easily undergo senescence, cell death or differentiation, as part of their DNA damage response, avoiding the propagation of stem cells carrying mutations and genomic alterations. Interestingly, cancer stem cells and typical stem cells share not only the differentiation potential but also their capacity to respond to DNA damage, with important implications for cancer therapy using genotoxic agents. On the other hand, the preservation of the adult stem cell pool, and the ability of cells to deal with DNA damage, is essential for normal development, reducing processes of neurodegeneration and premature aging, as one can observe on clinical phenotypes of many human genetic diseases with defects in DNA repair processes. Finally, several recent findings suggest that DNA repair also plays a fundamental role in maintaining the pluripotency and differentiation potential of embryonic stem cells, as well as that of induced pluripotent stem (iPS) cells. DNA repair processes also seem to be necessary for the reprogramming of human cells when iPS cells are produced. Thus, the understanding of how cultured pluripotent stem cells ensure the genetic stability are highly relevant for their safe therapeutic application, at the same time that cellular therapy is a hope for DNA repair deficient patients.

  3. Development in intracerebral stem cell grafts

    PubMed Central

    Reyes, Stephanny; Tajiri, Naoki; Borlongan, Cesar V.

    2015-01-01

    The field of stem cell therapy has emerged as a promising research area for brain repair. Optimizing the safety and efficacy of the therapy for clinical trials will require revisiting transplantation protocols. The cell delivery route stands as a key translational item that warrants careful consideration in facilitating the success of stem cell therapy in the clinic. Intracerebral administration, compared to peripheral route, requires an invasive procedure to directly implant stem cells into injured brain. Although invasive, intracerebral transplantation circumvents the prohibitive blood brain barrier in allowing grafted cells when delivered peripherally to penetrate the brain and reach the discreet damaged brain tissues. This review will highlight milestone discoveries in cell therapy for neurological disorders, with emphasis on intracerebral transplantation in relevant animal models and provide insights necessary to optimize the safety and efficacy of cell therapy for the treatment of Parkinson’s disease, Huntington’s disease, stroke, and traumatic brain injury. PMID:25739415

  4. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with ad