Sample records for stem leaf number

  1. Productive potential of cassava plants (Manihot esculenta Crantz) propagated by leaf buds.

    PubMed

    Neves, Reizaluamar J; Diniz, Rafael P; Oliveira, Eder J DE

    2018-04-23

    New techniques of rapid multiplication of cassava (Manihot esculenta Crantz) have been developed, requiring technical support for large-scale use. This work main to evaluate the agronomic performance of plantlets obtained by leaf buds technique against stem cuttings in the field conditions. The work was conducted using the randomized block design in a factorial scheme with 3 varieties (BRS Kiriris, 98150-06, 9624-09) × 4 origins of the plantlets (conventional - stem cuttings of 20 cm length, leaf buds of the upper, middle and inferior stem part) × 2 agrochemicals (control and treated). There was a remarkable decrease in some agronomic traits that ranged from 23% (number of branches) to 62% (shoot weight) when using leaf buds plantlets. The treatment of plantlets with agrochemicals promoted significant increases in all traits, ranging from 26% (number of roots per plant) to 46% (shoot weight). The plantlets originating from leaf buds of the upper and middle parts were able to generate stem-like plants similar to stem-derived ones. Despite its lower agronomic performance under field conditions, multiplication by leaf buds may generate five times the number of propagules in comparison with the conventional multiplication, and therefore it could be a viable alternative for rapid cassava multiplication.

  2. Effect aquadest-extracted Gloriosa superba seed as mutagen on morphology of Artemisia annua

    NASA Astrophysics Data System (ADS)

    Rahmawati, S. I.; Susilowati, A.; Yunus, A.; Widyastuti, Y.

    2018-03-01

    Gloriosa superba is a plant that contains colchicine in all parts of organs, especially in the seeds. Its extract is as a mutagen to produce plants with polyploid cells. Artemisia annua is a plant that produces active ingredients artemisinin as malarial drugs, hemorrhoids therapy, aromatherapy, antiviral, anticancer, and anti-bacterial. The aims of this research was to determine the effect aquadest-extracted Gloriosa superba seed as a mutagen to Artemisia annua morphology. Extraction of Gloriosa superba seeds obtained from Sukoharjo using maceration method with aquadest solvent (1: 1). The extracts were diluted (0, 25, 50, 75 and 100%) for Artemisia annua sprinkling with different times (0, 30, 60 and 90 minutes). Observations of morphology Artemisia annua included height, stem circumference, number of branches, number of leaves, leaf width and leaf length. The treatments did not affect plant morphology observation included height, stem circumference, number of branches, number of leaves, leaf width, and leaf length. The EB treatment (100%, 30 minutes) was higher (120 cm) than other. In all treatments stem circumference about 2.5 cm, number of branches ranged between 40-50, leaves width ranged 9-16c m, and leaf length ranged 8-15 cm.

  3. Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.).

    PubMed

    Halilou, Oumarou; Hissene, Halime Mahamat; Clavijo Michelangeli, José A; Hamidou, Falalou; Sinclair, Thomas R; Soltani, Afshin; Mahamane, Saadou; Vadez, Vincent

    2016-12-01

    Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut ( Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm 2  m -2 . The slightly higher prediction in India and slightly lower prediction in Niger reflected GxE interactions. Until more understanding is obtained on the possible GxE interaction effects on the canopy development, a generic PLAPOW value of 2.71, no correction for sowing density, and a phyllochron on 53 °C could be used to model canopy development in peanut.

  4. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species.

    PubMed

    Meng, Fengqun; Zhang, Guangfu; Li, Xincheng; Niklas, Karl J; Sun, Shucun

    2015-06-01

    During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length (αLS) and between leaf size and leaf number (αSN) and we derived the α values from logistic functions taking the general form of A = A(max)/[1 + exp(β - αB)] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A(max) is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α, the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α(LS) and α(SN), showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α(LS) and α(SN) were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and phylogenetic generalized least squares. The across-species synchronies during twig development show that the temporal dynamics of the leaf size-twig size spectrum is of adaptive significance in plants. We suggest that temporal dynamics of plant functional traits should be extensively studied to characterize plant life history. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Temperature and leaf wetness duration affect phenotypic expression of Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus.

    PubMed

    Huang, Yong-Ju; Evans, Neal; Li, Zi-Qin; Eckert, Maria; Chèvre, Anne-Marie; Renard, Michel; Fitt, Bruce D L

    2006-01-01

    Near-isogenic Brassica napus lines carrying/lacking resistance gene Rlm6 were used to investigate the effects of temperature and leaf wetness duration on phenotypic expression of Rlm6-mediated resistance. Leaves were inoculated with ascospores or conidia of Leptosphaeria maculans carrying the effector gene AvrLm6. Incubation period to the onset of lesion development, number of lesions and lesion diameter were assessed. Symptomless growth of L. maculans from leaf lesions to stems was investigated using a green fluorescent protein (GFP) expressing isolate carrying AvrLm6. L. maculans produced large grey lesions on Darmor (lacking Rlm6) at 5-25 degrees C and DarmorMX (carrying Rlm6) at 25 degrees C, but small dark spots and 'green islands' on DarmorMX at 5-20 degrees C. With increasing temperature/wetness duration, numbers of lesions/spots generally increased. GFP-expressing L. maculans grew from leaf lesions down leaf petioles to stems on DarmorMX at 25 degrees C but not at 15 degrees C. We conclude that temperature and leaf wetness duration affect the phenotypic expression of Rlm6-mediated resistance in leaves and subsequent L. maculans spread down petioles to produce stem cankers.

  6. [Effects of precipitation and interspecific competition on Quercus mongolica and pinus koraiensis seedlings growth].

    PubMed

    Wu, Jing-Lian; Wang, Miao; Lin, Fei; Hao, Zhan-Qing; Ji, Lan-Zhu; Liu, Ya-Qin

    2009-02-01

    Aiming at the variation of precipitation pattern caused by global warming, a field simulation experiment was conducted to study the effects of 30% increase (+W) and decrease (-W) of precipitation on the morphology, growth, and biomass partitioning of mono- and mixed cultured seedlings of Quercus mongolica and Pinus koraiensis, the two dominant tree species in temperate broad-leaved Korean pine mixed forest in Changbai Mountains. Comparing with monoculture, mixed culture increased the canopy width and main root length of Q. mongolica seedlings, but decreased the basal diameter, plant height, leaf number, and dry masses of root, stem, leaf and whole plant of P. koraiensis seedlings significantly. Treatment (-W) increased the stem/mass ratio while decreased the main root length of Q. mongolica seedlings, and decreased the main root length, leaf number, dry masses of leaf and whole plant, and leaf/mass ratio, while increased the stem/mass ratio of P. koraiensis seedlings significantly, compared with treatment CK. Treatment (+W) had no significant effect on these indices of the two species. At early growth stage, interspecific competition and precipitation pattern had significant effects on the morphology and growth of the seedlings, and the responses were much stronger for P. koraiensis than for Q. mongolica.

  7. Ginseng leaf-stem: bioactive constituents and pharmacological functions

    PubMed Central

    Wang, Hongwei; Peng, Dacheng; Xie, Jingtian

    2009-01-01

    Ginseng root is used more often than other parts such as leaf stem although extracts from ginseng leaf-stem also contain similar active ingredients with pharmacological functions. Ginseng's leaf-stems are more readily available at a lower cost than its root. This article reviews the pharmacological effects of ginseng leaf-stem on some diseases and adverse effects due to excessive consumption. Ginseng leaf-stem extract contains numerous active ingredients, such as ginsenosides, polysaccharides, triterpenoids, flavonoids, volatile oils, polyacetylenic alcohols, peptides, amino acids and fatty acids. The extract contains larger amounts of the same active ingredients than the root. These active ingredients produce multifaceted pharmacological effects on the central nervous system, as well as on the cardiovascular, reproductive and metabolic systems. Ginseng leaf-stem extract also has anti-fatigue, anti-hyperglycemic, anti-obesity, anti-cancer, anti-oxidant and anti-aging properties. In normal use, ginseng leaf-stem extract is quite safe; adverse effects occur only when it is over dosed or is of poor quality. Extracts from ginseng root and leaf-stem have similar multifaceted pharmacological activities (for example central nervous and cardiovascular systems). In terms of costs and source availability, however, ginseng leaf-stem has advantages over its root. Further research will facilitate a wider use of ginseng leaf-stem. PMID:19849852

  8. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  9. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  10. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  11. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  12. Clonal propagation of Stevia rebaudiana Bertoni by stem-tip culture.

    PubMed

    Tamura, Y; Nakamura, S; Fukui, H; Tabata, M

    1984-10-01

    Clonal propagation of Stevia rebaudiana has been established by culturing stem-tips with a few leaf primordia on an agar medium supplemented with a high concentration (10 mg/l) of kinetin. Anatomical examination has suggested that these multiple shoots originate from a number of adventitious buds formed on the margin of the leaf. Innumerable shoots can be obtained by repeating the cycle of multiple-shoot formation from a single stem-tip of Stevia. These shoots produce roots when transferred to a medium containing NAA (0.1 mg/l) without kinetin. The regenerated plantlets can be transplanted to soil.

  13. Gastroprotective Effect of Combination of Hot Water Extracts of Licorice (Glycyrrhiza glabra), Pulasari Stem Bark (Alyxia reinwardtii), and Sembung Leaf (Blumea balsamifera) Against Aspirin-Induced Gastric Ulcer Model Rats.

    PubMed

    Nugroho, Agung Endro; Wijayanti, Agustin; Mutmainah, Mutmainah; Susilowati, Rina; Rahmawati, Nuning

    2016-10-01

    Licorice (Glycyrrhiza glabra), Pulasari stem bark (Alyxia reinwardtii) and Sembung leaf (Blumea balsamifera) are traditionally used to treat gastrointestinal disorders. The aim of the study was to investigate gastroprotective effect of hot water extracts combination of those herbal against aspirin-induced gastric ulcer model in rats. The combination consisted of fixed doses of Licorice 273 mg/kg BW and Sembung leaf 457.5 mg/kg BW, and also consisted of Pulasari stem in various doses i.e. 100 mg/kg BW (first group), 200 mg/kg BW (second and sixth group) and 300 mg/kg BW (third group). The fourth grup rats received sucralfate 360 mg/kg BW. Ten minute after seven consecutive days of drug administration, the rats were induced with aspirin 450 mg/kg BW except sixth group rats. The fifth group rats only received aspirin without any protective agents. The number and area of gastric ulcers were evaluated macroscopically. Whereas, histopatological observation was used for evaluation of mucosal damage score, and the number of eosinophils and mast cells. In the study, herbal extracts combination markedly exhibited protective effects indicated by less number and smaller area of gastric ulcers in comparison to those of aspirin group (P < 0.05). The score of mucosal damages were also decreased in herbal extracts combination groups. The number of eosinophils and mast cells of herbal combination groups were observed to be smaller than those of aspirin group (P < 0.05). In conclusion, herbal combination of Licorice (Glycyrrhiza glabra), Pulasari stem bark (Alyxia reinwardtii) and Sembung leaf (Blumea balsamifera) is potential to develop as a gastroprotective agent. © The Author(s) 2016.

  14. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

    PubMed

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin

    2017-12-15

    The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems

    NASA Technical Reports Server (NTRS)

    Dougher, Tracy A. O.; Bugbee, Bruce

    2004-01-01

    Blue light (320 to 496 nm) alters hypocotyl and stem elongation and leaf expansion in short-term, cell-level experiments, but histological effects of blue light in long-term studies of whole plants have not been described. We measured cell size and number in stems of soybean (Glycine max L.) and leaves of soybean and lettuce (Lactuca sativa L.), at two blue light fractions. Short-term studies have shown that cell expansion in stems is rapidly inhibited when etiolated tissue is exposed to blue light. However, under long-term light exposure, an increase in the blue light fraction from less than 0.1% to 26% decreased internode length, specifically by inhibiting soybean cell division in stems. In contrast, an increase in blue light fraction from 6% to 26% reduced soybean leaf area by decreasing cell expansion. Surprisingly, lettuce leaf area increased with increasing blue light fraction (0% to 6%), which was attributed to a 3.1-fold increase in cell expansion and a 1.6-fold increase in cell division.

  16. Effect of tree shelters on above-ground stem biomass leaf numbers and size, and height growth

    Treesearch

    Douglas O. Lantagne; Gregory Kowalewski

    1997-01-01

    Tree shelters have been tested and shown to be effective in several circumstances regarding hardwood regeneration, especially with northern red oak (Quercus rubra L.). A study was initiated to quantify how tree shelters affected quantity, size and biomass of leaves, the number of growth flushes, and the above ground stem biomass of planted northern...

  17. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest

    PubMed Central

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-01-01

    Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930

  18. Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density

    PubMed Central

    Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki

    2015-01-01

    Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476

  19. Molecular Cytogenetic Characterization of two Triticum-Secale-Thinopyrum Trigeneric Hybrids Exhibiting Superior Resistance to Fusarium Head Blight, Leaf Rust, and Stem Rust Race Ug99.

    PubMed

    Dai, Yi; Duan, Yamei; Liu, Huiping; Chi, Dawn; Cao, Wenguang; Xue, Allen; Gao, Yong; Fedak, George; Chen, Jianmin

    2017-01-01

    Fusarium head blight (FHB), leaf rust, and stem rust are the most destructive fungal diseases in current world wheat production. The diploid wheatgrass, Thinopyrum elongatum (Host) Dewey (2 n = 2 x = 14, EE) is an excellent source of disease resistance genes. Two new Triticum-Secale-Thinopyrum trigeneric hybrids were derived from a cross between a hexaploid triticale (X Triticosecale Wittmack, 2 n = 6 x = 42, AABBRR) and a hexaploid Triticum trititrigia (2 n = 6 x = 42, AABBEE), were produced and analyzed using genomic in situ hybridization and molecular markers. The results indicated that line RE21 contained 14 A-chromosomes, 14 B-chromosomes, three pairs of R-chromosomes (4R, 6R, and 7R), and four pairs of E-chromosomes (1E, 2E, 3E, and 5E) for a total chromosome number of 2 n = 42. Line RE62 contained 14 A-chromosomes, 14 B-chromosomes, six pairs of R-chromosomes, and one pair of translocation chromosomes between chromosome 5R and 5E, for a total chromosome number of 2 n = 42. At the seedling and adult growth stages under greenhouse conditions, line RE21 showed high levels of resistance to FHB, leaf rust, and stem rust race Ug99, and line RE62 was highly resistant to leaf rust and stem rust race Ug99. These two lines (RE21 and RE62) display superior disease resistance characteristics and have the potential to be utilized as valuable germplasm sources for future wheat improvement.

  20. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    PubMed Central

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  1. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    NASA Astrophysics Data System (ADS)

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  2. Histological study of some Echium vulgare, Pulmonaria officinalis and Symphytum officinale populations.

    PubMed

    Papp, Nóra; Bencsik, Tímea; Németh, Kitti; Gyergyák, Kinga; Sulc, Alexandra; Farkas, Agnes

    2011-10-01

    Plants living in different ecological habitats can show significant variability in their histological and phytochemical characters. The main histological features of various populations of three medicinal plants from the Boraginaceae family were studied. Stems, petioles and leaves were investigated by light microscopy in vertical and transverse sections. The outline of the epidermal cells, as well as the shape and cell number of trichomes was studied in leaf surface casts. Differences were measured among the populations of Echium vulgare in the width and height of epidermis cells in the stem, petiole and leaf, as well as in the size of palisade cells in the leaves. Among the populations of Pulmonaria officinalis significant differences were found in the length of trichomes and in the slightly or strongly wavy outline of epidermal radial cell walls. Populations of Symphytum officinale showed variance in the height of epidermal cells in leaves and stems, length of palisade cells and number of intercellular spaces in leaves, and the size of the central cavity in the stem. Boraginaceae bristles were found to be longer in plants in windy/shady habitats as opposed to sunny habitats, both in the leaves and stems ofP. officinalis and S. officinale, which might be connected to varying levels of exposure to wind. Longer epidermal cells were detected in the leaves and stems of both E. vulgare and S. officinale plants living in shady habitats, compared with shorter cells in sunny habitats. Leaf mesophyll cells were shorter in shady habitats as opposed to longer cells in sunny habitats, both in E. vulgare and S. officinale. This combination of histological characters may contribute to the plant's adaptation to various amounts of sunshine. The reported data prove the polymorphism of the studied taxa, as well as their ability to adapt to various ecological circumstances.

  3. Antimicrobial activity of aqueous extract of leaf and stem extract of Santalum album

    PubMed Central

    Kumar, M. Giriram; Jeyraaj, Indira A.; Jeyaraaj, R.; Loganathan, P.

    2006-01-01

    The antimicrobial activity of aqueous extract leaf and stem of Santalum album was performed against Escherichia coli, Staphylococcus aureus and Pseudomonas. S. album leaf extract showed inhibition to E.coli (0.8mm), Staphylococcus aureus (1.0mm) and Pseudomonas (1.4mm) were as stem extract showed inhibition on E.coli (0.6mm), Staphylococcus aureus (0.4mm) and seudomonas (1.0mm) respectively. However leaf extract showed significantly higher inhibition when compared to stem extract. This might be due to presence of higher amount of secondary metabolites in the aqueous leaf extract. PMID:22557199

  4. Leaf turnover and growth responses of shade-grown saplings of four Shorea rain forest species to a sudden increase in light.

    PubMed

    Shimizu, Michiru; Ishida, Atsushi; Tange, Takeshi; Yagi, Hisayoshi

    2006-04-01

    We tested the hypothesis that sapling growth following a sudden increase in solar irradiance is related to recovery from photoinhibition and the balance between rate of production of new leaves and rate of abscision of old leaves. Leaf gas exchange, chlorophyll fluorescence and relative growth rate (RGR) of stem basal area were measured following the sudden exposure of shade-grown (7% of full sunlight) saplings of four Shorea species to full sunlight. Sudden exposure to full sunlight resulted in an immediate and substantial reduction in dark-adapted quantum yield of photosystem II (Fv/Fm), followed by a gradual recovery in all species. Near light-saturated net assimilation rate (A max) and area-based leaf chlorophyll concentration ([Chl area]) also declined immediately after exposure. Eleven days after exposure, A max had recovered to pre-exposure values in all species, whereas [Chl area] had not recovered. Across species, RGR of stem basal area increased with increasing RGR of the number of leaves following exposure to full sunlight. The interspecific variations in RGR of stem basal area suggest that new leaf production is crucial for determining the potential growth of saplings following gap formation.

  5. Endophytic Ability of Different Isolates of Entomopathogenic Fungi Beauveria bassiana (Balsamo) Vuillemin in Stem and Leaf Tissues of Maize (Zea mays L.).

    PubMed

    Renuka, S; Ramanujam, B; Poornesha, B

    2016-06-01

    The present study was conducted to examine the ability of six promising indigenous isolates of Beauveria bassiana (NBAII-Bb-5a, 7, 14, 19, 23 and 45) as an endophyte in maize stem and leaf tissues. Maize seedlings (var. Nithyashree) were inoculated with conidial suspensions and were examined for endophytic establishment in leaf and stems at different intervals during 15-90 days after treatment. All six isolates showed colonization in stem and leaf tissues with varying abilities of colonization and persistence. The mean percent colonization ranged from 7.41 to 20.37 % in older stem tissues and 3.70 to 21.29 % in young stem tissues and in leaf, it ranged from 6.46 to 27.78 % in older leaf tissues and 11.11 to 26.85 % in young leaf tissues. Among six isolates tested, Bb-23 isolate recorded the maximum mean colonization in older stem (20.37 %), older leaf (27.78 %) and in young stem (21.29 %). Bb-5a isolate showed maximum mean colonization in young leaf tissues (26.85 %). Persistence of inoculated fungal isolates decreased with increase in age of the plant. No physical symptoms of damage were observed in any of the B. bassiana treated plants. No colonization of B. bassiana was observed in the untreated control maize plants. The results obtained in plating and PCR techniques were similar with regard to the confirmation of endophytic establishment of B. bassiana. This study indicated the possibility of using B. bassiana as an endophyte in maize for management of maize stem borer, Chilo partellus.

  6. [Effects of Cuscuta australis parasitism on the growth, reproduction and defense of Solidago canadensis].

    PubMed

    Yang, Bei-fen; Du, Le-shan; Li, Jun-min

    2015-11-01

    In order to find out how parasitic Cuscuta australis influences the growth and reproduction of Solidago canadensis, the effects of the parasitism of C. australis on the morphological, growth and reproductive traits of S. canadensis were examined and the relationships between the biomass and the contents of the secondary metabolites were analyzed. The results showed that the parasitism significantly reduced the plant height, basal diameter, root length, root diameter, root biomass, stem biomass, leaf biomass, total biomass, number of inflorescences branches, axis length of inflorescence, and number of inflorescence. In particular, plant height, number of inflorescence and the stem biomass of parasitized S. canadensis were only 1/2, 1/5 and 1/8 of non-parasitized plants, respectively. There was no significant difference of plant height, root length, stem biomass and total biomass between plants parasitized with high and low intensities. But the basal diameter, root volume, leaf biomass, root biomass, the number of inflorescences branches, axis length of inflorescence and number of inflorescence of S. canadensis parasitized with high intensity were significantly lower than those of plants parasitized with low intensity. The parasitism of C. australis significantly increased the tannins content in the root and the flavonoids content in the stem of S. canadensis. The biomass of S. canadensis was significantly negatively correlated with the tannin content in the root and the flavonoids content in the stem. These results indicated that the parasitism of C. australis could inhibit the growth of S. canadensis by changing the resources allocation patterns as well as reducing the resources obtained by S. canadensis.

  7. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species.

    PubMed

    Nolf, Markus; Creek, Danielle; Duursma, Remko; Holtum, Joseph; Mayr, Stefan; Choat, Brendan

    2015-12-01

    Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within-plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure-volume relations and in situ pre-dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50 ) was lost at -2.1 to -3.1 MPa in stems and at -1.7 to -2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 - stem P50 ) were very narrow at -0.4 to -1.4 MPa. Pressure-volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem. © 2015 John Wiley & Sons Ltd.

  8. Evidence of correlated evolution and adaptive differentiation of stem and leaf functional traits in the herbaceous genus, Helianthus.

    PubMed

    Pilote, Alex J; Donovan, Lisa A

    2016-12-01

    Patterns of plant stem traits are expected to align with a "fast-slow" plant economic spectrum across taxa. Although broad patterns support such tradeoffs in field studies, tests of hypothesized correlated trait evolution and adaptive differentiation are more robust when taxa relatedness and environment are taken into consideration. Here we test for correlated evolution of stem and leaf traits and their adaptive differentiation across environments in the herbaceous genus, Helianthus. Stem and leaf traits of 14 species of Helianthus (28 populations) were assessed in a common garden greenhouse study. Phylogenetically independent contrasts were used to test for evidence of correlated evolution of stem hydraulic and biomechanical properties, correlated evolution of stem and leaf traits, and adaptive differentiation associated with source habitat environments. Among stem traits, there was evidence for correlated evolution of some hydraulic and biomechanical properties, supporting an expected tradeoff between stem theoretical hydraulic efficiency and resistance to bending stress. Population differentiation for suites of stem and leaf traits was found to be consistent with a "fast-slow" resource-use axis for traits related to water transport and use. Associations of population traits with source habitat characteristics supported repeated evolution of a resource-acquisitive "drought-escape" strategy in arid environments. This study provides evidence of correlated evolution of stem and leaf traits consistent with the fast-slow spectrum of trait combinations related to water transport and use along the stem-to-leaf pathway. Correlations of traits with source habitat characteristics further indicate that the correlated evolution is associated, at least in part, with adaptive differentiation of Helianthus populations among native habitats differing in climate. © 2016 Botanical Society of America.

  9. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms.

    PubMed

    Ishida, Atsushi; Nakano, Takashi; Yazaki, Kenichi; Matsuki, Sawako; Koike, Nobuya; Lauenstein, Diego L; Shimizu, Michiru; Yamashita, Naoko

    2008-05-01

    We examined 15 traits in leaves and stems related to leaf C economy and water use for 32 co-existing angiosperms at ridge sites with shallow soil in the Bonin Islands. Across species, stem density was positively correlated to leaf mass per area (LMA), leaf lifespan (LLS), and total phenolics and condensed tannins per unit leaf N (N-based), and negatively correlated to leaf osmotic potential and saturated water content in leaves. LMA and LLS were negatively correlated to photosynthetic parameters, such as area-, mass-, and N-based assimilation rates. Although stem density and leaf osmotic potential were not associated with photosynthetic parameters, they were associated with some parameters of the leaf C economy, such as LMA and LLS. In the principal component (PCA) analysis, the first three axes accounted for 74.4% of total variation. Axis 1, which explained 41.8% of the total variation, was well associated with parameters for leaf C and N economy. Similarly, axis 2, which explained 22.3% of the total variation, was associated with parameters for water use. Axis 3, which explained 10.3% of the total variation, was associated with chemical defense within leaves. Axes 1 and 2 separated functional types relatively well, i.e., creeping trees, ruderal trees, other woody plants, C(3) shrubs and forbs, palms, and CAM plants, indicating that plant functional types were characterized by similar attributes of traits related to leaf C and N economy and water use. In addition, when the plot was extended by two unrelated traits, leaf mass-based assimilation rates and stem density, it also separated these functional types. These data indicate that differences in the functional types with contrasting plant strategies can be attributed to functional integration among leaf C economy, hydraulics, and leaf longevity, and that both leaf mass-based assimilation rates and stem density are key factors reflecting the different functions of plant species.

  10. Are trait-scaling relationships invariant across contrasting elevations in the widely distributed treeline species Nothofagus pumilio?

    PubMed

    Fajardo, Alex

    2016-05-01

    The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.

  11. A comparative pharmacognostical and preliminary physico-chemical analysis of stem and leaf of Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.BR.) Wettst.

    PubMed

    Gubbannavar, Jyoti S; Chandola, H M; Harisha, C R; Khanpara, Komal; Shukla, V J

    2013-01-01

    Brahmi is a well-known herbal drug having an effect on brain as a memory enhancer. Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.Br.) Wettst are both marketed in the name of Brahmi. The present study differentiates Bacopa monnieri and Bacopa floribunda in morphology, transverse section (T.S.) of root and leaf, powder microscopy, and chemical constituents. Morphological characters show color difference in flower, stem and leaf and differences in microscopic study, organoleptic study, and powder characteristics. Morphologically, Bacopa monnieri leaf is fleshy and more succulent than Bacopa floribunda leaf. There is also a difference in the interval of the stem internodes of the two. Physico-chemical analysis revealed presence of 26% bacoside A in Bacopa floribunda leaf and 27% in Bacopa floribunda stem, which is higher than the bacoside A content in leaf (22%) and stem (18%) of Bacopa monnieri. However due to the hemolytic action of bacoside A, which is the toxic effect of the chemical constituent, it seems likely that Bacopa monnieri is more popular in regular use than Bacopa floribunda.

  12. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species

    PubMed Central

    Gordanian, B.; Behbahani, M.; Carapetian, J.; Fazilati, M.

    2014-01-01

    The present study was carried out to investigate cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species against breast cancer cell line (MCF7) and human embryonic kidney normal cell line (HEK293). The studied Artemisia species were A. absinthium, A. vulgaris, A. incana, A. fragrans and A. spicigera. The cytotoxic activity was measured by MTT assay at different concentrations (62.5, 125, 250, 500 μg/ml). Among these five species, methanol extracts of flower, leaf, stem and root of A. absinthium and A. vulgaris exhibited considerable cytotoxic activity. The flower extracts of these two species were found to have higher cytotoxic effect on MCF7 cell with an IC50 value of 221.5 and >500 μg/ml, respectively. Leaf methanol extract of A. incana also showed cytotoxic activity. Cytotoxic activity of different extracts of A. absinthium, A. vulgaris and A. incana against MCF7 was 10%-40% more than HEK293 cells. Not only the extracts of A. spicigera and A. fragrans did not show any cytotoxic effect against both cell lines, but also increased the number of cells. This study revealed that A. absinthium and A. vulgaris may have a great potential to explore new anticancer drugs. PMID:25657777

  13. Limitation of Unloading in the Developing Grains Is a Possible Cause Responsible for Low Stem Non-structural Carbohydrate Translocation and Poor Grain Yield Formation in Rice through Verification of Recombinant Inbred Lines

    PubMed Central

    Li, Guohui; Pan, Junfeng; Cui, Kehui; Yuan, Musong; Hu, Qiuqian; Wang, Wencheng; Mohapatra, Pravat K.; Nie, Lixiao; Huang, Jianliang; Peng, Shaobing

    2017-01-01

    Remobilisation of non-structural carbohydrates (NSC) from leaves and stems and unloading into developing grains are essential for yield formation of rice. In present study, three recombinant inbred lines of rice, R91, R156 and R201 have been tested for source-flow-sink related attributes determining the nature of NSC accumulation and translocation at two nitrogen levels in the field. Compared to R91 and R156, R201 had lower grain filling percentage, harvest index, and grain yield. Meanwhile, R201 had significantly lower stem NSC translocation during grain filling stage. Grain filling percentage, harvest index, and grain yield showed the consistent trend with stem NSC translocation among the three lines. In comparison with R91 and R156, R201 had similarity in leaf area index, specific leaf weight, stem NSC concentration at heading, biomass, panicles m-2, spikelets per panicle, remobilization capability of assimilation in stems, sink capacity, sink activity, number and cross sectional area of small vascular bundles, greater number and cross sectional area of large vascular bundles, and higher SPAD, suggesting that source, flow, and sink were not the limiting factors for low stem NSC translocation and grain filling percentage of R201. However, R201 had significant higher stem and rachis NSC concentrations at maturity, which implied that unloading in the developing grains might result in low NSC translocation in R201. The results indicate that stem NSC translocation could be beneficial for enhancement of grain yield potential, and poor unloading into caryopsis may be the possible cause of low stem NSC translocation, poor grain filling and yield formation in R201. PMID:28848573

  14. Trait coordination, mechanical behaviour and growth form plasticity of Amborella trichopoda under variation in canopy openness

    PubMed Central

    Trueba, Santiago; Isnard, Sandrine; Barthélémy, Daniel; Olson, Mark E.

    2016-01-01

    Understanding the distribution of traits across the angiosperm phylogeny helps map the nested hierarchy of features that characterize key nodes. Finding that Amborella is sister to the rest of the angiosperms has raised the question of whether it shares certain key functional trait characteristics, and plastic responses apparently widespread within the angiosperms at large. With this in mind, we test the hypothesis that local canopy openness induces plastic responses. We used this variation in morphological and functional traits to estimate the pervasiveness of trait scaling and leaf and stem economics. We studied the architecture of Amborella and how it varies under different degrees of canopy openness. We analyzed the coordination of 12 leaf and stem structural and functional traits, and the association of this covariation with differing morphologies. The Amborella habit is made up of a series of sympodial modules that vary in size and branching pattern under different canopy openness. Amborella stems vary from self-supporting to semi-scandent. Changes in stem elongation and leaf size in Amborella produce distinct morphologies under different light environments. Correlations were found between most leaf and stem functional traits. Stem tissue rigidity decreased with increasing canopy openness. Despite substantial modulation of leaf size and leaf mass per area by light availability, branches in different light environments had similar leaf area-stem size scaling. The sympodial growth observed in Amborella could point to an angiosperm synapomorphy. Our study provides evidence of intraspecific coordination between leaf and stem economic spectra. Trait variation along these spectra is likely adaptive under different light environments and is consistent with these plastic responses having been present in the angiosperm common ancestor. PMID:27672131

  15. Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species.

    PubMed

    Johnson, D M; McCulloh, K A; Meinzer, F C; Woodruff, D R; Eissenstat, D M

    2011-06-01

    Adequate water transport is necessary to prevent stomatal closure and allow for photosynthesis. Dysfunction in the water transport pathway can result in stomatal closure, and can be deleterious to overall plant health and survival. Although much is known about small branch hydraulics, little is known about the coordination of leaf and stem hydraulic function. Additionally, the daily variations in leaf hydraulic conductance (K(leaf)), stomatal conductance and water potential (Ψ(L)) have only been measured for a few species. The objective of the current study was to characterize stem and leaf vulnerability to hydraulic dysfunction for three eastern U.S. tree species (Acer rubrum, Liriodendron tulipifera and Pinus virginiana) and to measure in situ daily patterns of K(leaf), leaf and stem Ψ, and stomatal conductance in the field. Sap flow measurements were made on two of the three species to compare patterns of whole-plant water use with changes in K(leaf) and stomatal conductance. Overall, stems were more resistant to hydraulic dysfunction than leaves. Stem P50 (Ψ resulting in 50% loss in conductivity) ranged from -3.0 to -4.2 MPa, whereas leaf P50 ranged from -0.8 to -1.7 MPa. Field Ψ(L) declined over the course of the day, but only P. virginiana experienced reductions in K(leaf) (nearly 100% loss). Stomatal conductance was greatest overall in P. virginiana, but peaked midmorning and then declined in all three species. Midday stem Ψ in all three species remained well above the threshold for embolism formation. The daily course of sap flux in P. virginiana was bell-shaped, whereas in A. rubrum sap flux peaked early in the morning and then declined over the remainder of the day. An analysis of our data and data for 39 other species suggest that there may be at least three distinct trajectories of relationships between maximum K(leaf) and the % K(leaf) at Ψ(min). In one group of species, a trade-off between maximum K(leaf) and % K(leaf) at Ψ(min) appeared to exist, but no trade-off was evident in the other two trajectories.

  16. MALDI-TOF MS analysis of condensed tannins with potent antioxidant activity from the leaf, stem bark and root bark of Acacia confusa.

    PubMed

    Wei, Shu-Dong; Zhou, Hai-Chao; Lin, Yi-Ming; Liao, Meng-Meng; Chai, Wei-Ming

    2010-06-15

    The structures of the condensed tannins from leaf, stem bark and root bark of Acacia confusa were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and their antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing/antioxidant power (FRAP) assays. The results showed that the condensed tannins from stem bark and root bark include propelargonidin and procyanidin, and the leaf condensed tannins include propelargonidin, procyanidin and prodelphinidin, all with the procyanidin dominating. The condensed tannins had different polymer chain lengths, varying from trimers to undecamers for leaf and root bark and to dodecamers for stem bark. The condensed tannins extracted from the leaf, stem bark and root bark all showed a very good DPPH radical scavenging activity and ferric reducing power.

  17. Using midday stem water potential to assess irrigation needs of landscape valley oaks

    Treesearch

    Ken Shackel; Rob Gross

    2002-01-01

    In a number of deciduous tree crops a reliable pressure chamber measurement of water stress (midday stem water potential or SWP) has been recently developed and found to be closely related to both irrigation regime and tree physiological responses to stress. A standard pressure chamber is used for the measurement of SWP, but prior to sampling, the leaf is enclosed in a...

  18. 7 CFR 30.4 - Stemmed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.4 Stemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have...

  19. 7 CFR 30.4 - Stemmed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.4 Stemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have...

  20. 7 CFR 30.4 - Stemmed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.4 Stemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have...

  1. 7 CFR 30.4 - Stemmed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.4 Stemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have...

  2. 7 CFR 30.4 - Stemmed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.4 Stemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have...

  3. Characterisation of odorants in roasted stem tea using gas chromatography-mass spectrometry and gas chromatography-olfactometry analysis.

    PubMed

    Sasaki, Tetsuya; Koshi, Erina; Take, Harumi; Michihata, Toshihide; Maruya, Masachika; Enomoto, Toshiki

    2017-04-01

    Roasted stem tea has a characteristic flavour, which is obtained by roasting tea stems, by-product of green tea production. This research aims to understand the characteristic odorants in roasted stem tea by comparing it to roasted leaf tea. We revealed potent odorants in commercial roasted stem tea using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry with aroma extract dilution analysis (AEDA). The difference between roasted stem and leaf tea derived from the same tea plants were investigated using GC-MS. Pyrazine compounds exhibited a roasted odour and high flavour dilution (FD) factors, as determined via AEDA. Roasted stem tea was richer in these pyrazines than roasted leaf tea. Geraniol and linalool exhibited high FD factors and a floral odour, and roasted stem tea was richer in these compounds than roasted leaf tea. These results may have a positive impact on the development of tea products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Inheritance and bulked segregant analysis of leaf rust and stem rust resistance genes in eight durum wheat genotypes

    USDA-ARS?s Scientific Manuscript database

    Leaf rust, caused by Puccinia triticina (Pt) and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to Pt-race BBBQJ and stem rust resistance (Sr) genes to Pg...

  5. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid prevents cerebral ischemia-reperfusion injury

    PubMed Central

    Zhao, Shumin; Kong, Wei; Zhang, Shufeng; Chen, Meng; Zheng, Xiaoying; Kong, Xiangyu

    2013-01-01

    Pretreatment with scutellaria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scutellaria baicalensis stem-leaf total flavonoid intragastrically at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutellaria baicalensis stem-leaf total flavonoid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutellaria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological functions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury. PMID:25206639

  6. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  7. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.

    PubMed

    Schuerger, A C; Brown, C S; Stryjewski, E C

    1997-03-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  8. A comparative pharmacognostical and preliminary physico-chemical analysis of stem and leaf of Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.BR.) Wettst

    PubMed Central

    Gubbannavar, Jyoti S.; Chandola, H. M.; Harisha, C. R.; Khanpara, Komal; Shukla, V. J.

    2013-01-01

    Brahmi is a well-known herbal drug having an effect on brain as a memory enhancer. Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.Br.) Wettst are both marketed in the name of Brahmi. The present study differentiates Bacopa monnieri and Bacopa floribunda in morphology, transverse section (T.S.) of root and leaf, powder microscopy, and chemical constituents. Morphological characters show color difference in flower, stem and leaf and differences in microscopic study, organoleptic study, and powder characteristics. Morphologically, Bacopa monnieri leaf is fleshy and more succulent than Bacopa floribunda leaf. There is also a difference in the interval of the stem internodes of the two. Physico-chemical analysis revealed presence of 26% bacoside A in Bacopa floribunda leaf and 27% in Bacopa floribunda stem, which is higher than the bacoside A content in leaf (22%) and stem (18%) of Bacopa monnieri. However due to the hemolytic action of bacoside A, which is the toxic effect of the chemical constituent, it seems likely that Bacopa monnieri is more popular in regular use than Bacopa floribunda. PMID:24049413

  9. Stem photosynthesis and hydraulics are coordinated in desert plant species.

    PubMed

    Ávila-Lovera, Eleinis; Zerpa, Antonio J; Santiago, Louis S

    2017-12-01

    Coordination between stem photosynthesis and hydraulics in green-stemmed desert plants is important for understanding the physiology of stem photosynthesis and possible drought responses. Plants with photosynthetic stems have extra carbon gain that can help cope with the detrimental effects of drought. We studied photosynthetic, hydraulic and functional traits of 11 plant species with photosynthetic stems from three California desert locations. We compared relationships among traits between wet and dry seasons to test the effect of seasonality on these relationships. Finally, we compared stem trait relationships with analogous relationships in the leaf economics spectrum. We found that photosynthetic and hydraulic traits are coordinated in photosynthetic stems. The slope or intercept of all trait relationships was mediated by seasonality. The relationship between mass-based stem photosynthetic CO 2 assimilation rate (A mass ) and specific stem area (SSA; stem surface area to dry mass ratio) was statistically indistinguishable from the leaf economics spectrum. Our results indicate that photosynthetic stems behave like leaves in the coordination of multiple traits related to carbon gain, water movement and water loss. Because of the similarity of the stem A mass -SSA relationship to the leaf A mass -specific leaf area relationship, we suggest the existence of a photosynthetic stem economic spectrum. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. [Construction and analysis of a forward and reverse subtractive cDNA library from leaves and stem of Polygonum sibiricum Laxm. under salt stress].

    PubMed

    Liu, Guan-Jun; Liu, Ming-Kun; Xu, Zhi-Ru; Yan, Xiu-Feng; Wei, Zhi-Gang; Yang, Chuan-Ping

    2009-04-01

    Using cDNAs prepared from the leaves and stems of Polygonum sibiricum Laxm. treated with NaHCO3 stress for 48 h as testers and cDNAs from unstressed P. sibiricum leaves and stems as drivers library, suppression subtractive hybridization (SSH) was employed to construct a cDNA subtracted library, which contained 2 282 valid sequences including 598 ESTs in the stems forward SSH library and 490 ESTs in the stem reverse SSH library, 627 ESTs in the leaf forward SSH library and 567 in the leaf reverse SSH library. According to the functional catalogue of MIPs and the comparison of the reverse and forward SSH libraries of the stem and leaf, the responses to NaHCO3 stress were different between leaf and stem, except for the same trend in cell rescue defense and transport facilitation. The trend in the metabolism, energy, photosynthesis, protein synthesis, transcription, and signal transduction was opposite. RT-PCR analysis demonstrated that the expression of 12 putative stress related genes in the NaHCO3-treated leaves and stems was different from that in the untreated leaves and stems. This indicated that different mechanisms might be responsible for reactions of leaf and stem in P. sibiricum. The results from this study are useful in understanding the molecular mechanism of saline-alkali tolerance in P. sibiricum.

  11. Research on Cleistogenes squarrosa's histocytic changing and determine method in the course of restoring succession in degradation community of the typical steppe

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Wei; Liu, Heping; Zhang, Zhi-jie; Liang, Cunzhu; Wang, Li xin; Bu Ren, Tuo Ya

    2007-09-01

    The micrograph and the geographical information system(GIS) technology are combined, and applied into histiocytic anatomy. Through studying histiocytic changes of Cleistogenes squarrosa's vegetation organs, namely leaf and stem, the steppe plants' inherent mechanism of miniaturization is revealed. In the course of restoring succession, Cleistogenes squarrosa's anatomy of leaf and stem demonstrate the same variation trend in the three different sample plots: the longer the resume time is, the more, its cells which make up the organ are. According to opposite course, miniaturization has all taken place in the leaf and stem. However, there is difference in the miniaturization mechanism of the leaf and stem. (1) According to dissection structure of the blade, the reduction of organizing the figure of the mesophyll has caused miniaturization. (2) The miniaturization mechanism of the stem is the reduction of different organization's cell's figure of the stem.

  12. [Application of SPSS orthogonal design in tissue culture of Anoectochilus roxburghii].

    PubMed

    Zhang, Fusheng; Guo, Shunxing

    2009-10-01

    To study the effect of the different constitutions of plant hormone on the development of Anoectochilus roxburghii. A. roxburghii were harvested after having been cultured for 60 days. An orthogonal design was used to study the effect of NAA and 6-BA on the leaf number, eustipe number, lateral branch number of the stem tip and stem section, and the height of the stem tips. All of the data were processed by SPSS. It is reported for the first time that NAA could make different development of A. roxburghii at low concentration ( < 1 mg L(-1)) and high concentration ( > 1 mg L(-1)). The optimum constitution of MS medium was NAA 0.5 mg L(-1) + 6-BA 1 mg L(-1) for the growth of the stem tip of A. roxburghii, and NAA 1 mg L(-1) + 6-BA 2 mg L(-1) for the differentiation of bud and the formation of lateral branch of the stem section. The different concentrations of NAA and 6-BA had different effects on the growth and differentiation of the stem tip and the stem section of A. roxburghii.

  13. Effect of lignin content and subunit composition on digestibility in clones of timothy (Phleum pratense L.).

    PubMed

    Kärkönen, Anna; Tapanila, Tarja; Laakso, Tapio; Seppänen, Mervi M; Isolahti, Mika; Hyrkäs, Maarit; Virkajärvi, Perttu; Saranpää, Pekka

    2014-07-02

    Lignin amount and subunit composition were analyzed from stems and leaf sheaths of timothy (Phleum pratense L.) clones of different in vitro digestibility. Lignin concentration in stems and leaf sheaths was higher in clones of low digestibility than those of high digestibility. No change in lignin concentration occurred in stems as digestibility decreased. Intriguingly, the lignin concentration was lower and the syringyl/guaiacyl (S/G) ratio was higher in stems compared to leaf sheaths at all developmental stages studied. The developmental-associated decrease in digestibility correlated with the increase in S units in lignin in stems and leaf sheaths and in the amounts of p-coumaric acid and ferulic acid residues in the cell wall of stems. Yields of copper oxidation products increased in stems during maturation indicating qualitative changes in the lignin structure. This correlated strongly with the developmentally linked decrease in digestibility. The information obtained is valuable for breeding and for DNA marker development.

  14. The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae).

    PubMed

    Skirvin, D J; Stavrinides, M C; Skirvin, D J

    2003-08-01

    The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.

  15. Assessing allometric models to predict vegetative growth of mango (Mangifera indica; Anacardiaceae) at the current-year branch scale.

    PubMed

    Normand, Frédéric; Lauri, Pierre-Éric

    2012-03-01

    Accurate and reliable predictive models are necessary to estimate nondestructively key variables for plant growth studies such as leaf area and leaf, stem, and total biomass. Predictive models are lacking at the current-year branch scale despite the importance of this scale in plant science. We calibrated allometric models to estimate leaf area and stem and branch (leaves + stem) mass of current-year branches, i.e., branches several months old studied at the end of the vegetative growth season, of four mango cultivars on the basis of their basal cross-sectional area. The effects of year, site, and cultivar were tested. Models were validated with independent data and prediction accuracy was evaluated with the appropriate statistics. Models revealed a positive allometry between dependent and independent variables, whose y-intercept but not the slope, was affected by the cultivar. The effects of year and site were negligible. For each branch characteristic, cultivar-specific models were more accurate than common models built with pooled data from the four cultivars. Prediction quality was satisfactory but with data dispersion around the models, particularly for large values. Leaf area and stem and branch mass of mango current-year branches could be satisfactorily estimated on the basis of branch basal cross-sectional area with cultivar-specific allometric models. The results suggested that, in addition to the heteroscedastic behavior of the variables studied, model accuracy was probably related to the functional plasticity of branches in relation to the light environment and/or to the number of growth units composing the branches.

  16. Growth promotion in plants by rice necrosis mosaic virus.

    PubMed

    Ghosh, S K

    1982-08-01

    Ludwigia perennis L. infected with rice necrosis mosaic virus (RNMV) showed an increase in both shoot growth and leaf size, along with characteristic chlorotic lesions on leaves. The promotion of growth over the controls extended over a considerable period of time (70 d). Inoculation with RNMV resulted in increased plant height, leaf size, stem diameter, and number and size of fiber bundles in Corchorus olitorius L., C. capsularis L., Hibiscus sabdariffa L. and H. cannabinus L.

  17. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.

    PubMed

    Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo

    2008-03-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.

  18. Modeling the leaf angle dynamics in rice plant.

    PubMed

    Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2017-01-01

    The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  19. [Responses of Cynodon dactylon population in hydro-fluctuation belt of Three Gorges Reservoir area to flooding-drying habitat change].

    PubMed

    Hong, Ming; Guo, Quan-Shu; Nie, Bi-Hong; Kang, Yi; Pei, Shun-Xiang; Jin, Jiang-Qun; Wang, Xiang-Fu

    2011-11-01

    This paper studied the population density, morphological characteristics, and biomass and its allocation of Cynodon dactylon at different altitudinal sections of the hydro-fluctuation belt in Three Gorges Reservoir area, based on located observations. At the three altitudinal sections, the population density of C. dactylon was in the order of shallow water section (165-170 m elevation) > non-flooded section (above 172 m elevation) > deep water section (145-150 m elevation), the root diameter and root length were in the order of deep water section > shallow water section > non-flooded section, the total biomass, root biomass, stem biomass, leaf biomass, and stem biomass allocation ratio were in the order of the shallow water section > non-flooded section > deep water section, and the root biomass allocation ratio, leaf biomass allocation ratio, and underground biomass/aboveground biomass were in the order of deep water section > shallow water section > non-flooded section. The unique adaption strategies of C. dactylon to the flooding-drying habitat change in the shallow water section were the accelerated elongation growth and the increased stem biomass allocation, those in the deep water section were the increased node number of primary and secondary branches, increased number of the branches, and increased leaf biomass allocation, whereas the common strategies in the shallow and deep water sections were the accelerated root growth and the increased tillering and underground biomass allocation for preparing nutrition and energy for the rapid growth in terrestrial environment.

  20. Tapak liman (Elephantopus scaber L) extract-induced CD4+ and CD8+ differentiation from hematopoietic stem cells and progenitor cell proliferation in mice (Mus musculus L)

    NASA Astrophysics Data System (ADS)

    Djati, Muhammad Sasmito; Habibu, Hindun; Jatiatmaja, Nabilah A.; Rifa'i, Muhaimin

    2017-11-01

    Tapak Liman (Elephantopus scaber L) is a traditional medicinal plant containing several active compounds that potentially affecting hematopoietic stem cells, such as epifrieelinol, lupeol, stigmasterol, triacontane-1-ol, dotriacontane-1-ol, lupeol acetate, deoxyelephan-topin, isodeoxyelephantopin, polyphenol luteolin-7, as well as various flavonoids and glucosides. The aim of this study was to elucidate the effect of leaf extract of Tapak Liman on hematopoietic stem cells in mice BALB/c, by observation of the relative number of cells expressing CD4/CD8, CD4/CD62L, and TER119/B220 in the spleen, and TER119/B220, TER119/VLA-4 and TER119/CD34 in bone marrow, after being administered leaf extract for 2 weeks. This experiment used 12 female mice, which were divided into three treatment groups, P1= 0.5 g.g bw-1.day-1, P2= 1.0 g.g bw-1.day-1 and P3=2.0 g.g bw-1.day-1 Tapak Liman leaf extract as well as a control. The relative numbers of cells expressing surface molecules were analyzed by flowcytometry and quantitative data were tested using one-way ANOVA. The results showed that the leaf extract of Tapak Liman has no significant effect on erythrocyte proliferation; on the other hand, it had a significant effect on both proliferation and differentiation of B lymphocytes (B220+) in bone marrow (p=0.044) and increased the expression of CD4+, CD8+ molecule in B cells (p=0.026) and erythroid cells in spleen and bone marrow, based on the estimation of cells that expressed TER119+VLA-4+, identified as important in the development pathway of erythrocytes. An increased cell percentage of TER11+VLA-4+ occurred for treatment P2, 12% higher than the control. The increased expression of TER119+VLA-4+ was assumed to be due to the iron content in Tapak Liman, which functioned to stimulate the progenitor hematopoietic cells to proliferate and differentiate into a precursor of erythroid cells (TER119+VLA-4+). There was an increasing number of cells expressing the surface molecules TER119+ and VLA-4+. This indicated that the Tapak Liman leaf extract with a dose of 1.0 g.g bw-1.day-1 could stimulate the proliferation of hematopoietic stem cells into the lymphoid and erythroid pathway, in spleen and bone marrow.

  1. Argentinean cultivars of Vitis vinifera grow better than European ones when cultured in vitro under salinity.

    PubMed

    Cavagnaro, Juan B; Ponce, María T; Guzmán, Javier; Cirrincione, Miguel A

    2006-04-01

    Argentinean Vitis vinifera cultivars although originated from Europe, have clear ampelographic and genotypic differences as compared with the European cultivars currently used in wine making. In vitro evaluation of salt tolerance has been used in many species. Our hypothesis was that Argentinean cultivars are more tolerant to salinity than European ones. Three European cultivars, Malbec, Cabernet Sauvignon and Chardonnay and four Argentincan cultivars, Cereza, Criolla Chica, Pedro Gimcnez and Torrontes Riojano were tested by in vitro culture. Treatments included: 1) Control, 2) 60 mEq/L of a mixture of three parts of NaCl and one part of CaCl2 and 3) 90 mEq/L of the salt mixture. Results from two experiments (I and II) are reported. No differences were found in plant survival, expressed as % of the respective control, among cultivars. Leaf area, leaf, stem and total dry matter (DM) in Experiment I and leaf area, leaf number and leaf, stem, root and total DM in Experiment II, were higher in Argentinean cultivars than in European ones. We conclude that Argentinean cultivars show better performance in growing under salinity, especially in the highest salt concentration. Differences among cultivars, inside each group, were found for most of the measured variables.

  2. Wheat productivity estimates using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Colwell, J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The electro-optical leaf area meter was the most accurate of the approaches tested on harvested wheat samples, but it is very time consuming. It was decided to infer leaf area from dry weight biomass after establishing a relationship between dry weight biomass and area as measured by the leaf area meter. There is a good correlation between leaf area as measured by the meter and dry leaf biomass. There is a less consistent relationship between stem area and stem biomass.

  3. Determination of chemical constituents of leaf and stem essential oils of Artemisia monosperma from central Saudi Arabia.

    PubMed

    Khan, Merajuddin; Mousa, Ahmad A; Syamasundar, Kodakandla V; Alkhathlan, Hamad Z

    2012-08-01

    The leaf and stem essential oils of Artemisia monosperma from the desert region of central Saudi Arabia were analysed by gas chromatography-based techniques (GC-FID, GC-MS, Co-GC, LRI determination, database and literature search) using polar as well as non-polar columns, which resulted in the identification of 130 components, of which 81 were common to both oils. In the leaf oil 120 compounds were identified, while 91 were identified in the stem oil accounting for 98.4% and 99.7% of the oil composition, respectively. The major constituents of the leaf oil were beta-pinene (50.3%), a-terpinolene (10.0%), limonene (5.4%) and a-pinene (4.6%), while the major constituents of the stem oil were beta-pinene (36.7%), a-terpinolene (6.4%), limonene (4.8%), beta-maaliene (3.7%), shyobunone (3.2%) and a-pinene (3.1%). The two oils showed an important qualitative similarity. However, some specific constituents (39 in the leaf oil and 10 in the stem oil) allow differentiation of the two essential oils.

  4. Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure.

    PubMed

    Yang, Shi-Jian; Zhang, Yong-Jiang; Sun, Mei; Goldstein, Guillermo; Cao, Kun-Fang

    2012-04-01

    Despite considerable investigations of diurnal water use characteristics in different plant functional groups, the research on daily water use strategies of woody bamboo grasses remains lacking. We studied the daily water use and gas exchange of Sinarundinaria nitida (Mitford) Nakai, an abundant subtropical bamboo species in Southwest China. We found that the stem relative water content (RWC) and stem hydraulic conductivity (K(s)) of this bamboo species did not decrease significantly during the day, whereas the leaf RWC and leaf hydraulic conductance (K(leaf)) showed a distinct decrease at midday, compared with the predawn values. Diurnal loss of K(leaf) was coupled with a midday decline in stomatal conductance (g(s)) and CO(2) assimilation. The positive root pressures in the different habitats were of sufficient magnitude to refill the embolisms in leaves. We concluded that (i) the studied bamboo species does not use stem water storage for daily transpiration; (ii) diurnal down-regulation in K(leaf) and gs has the function to slow down potential water loss in stems and protect the stem hydraulic pathway from cavitation; (iii) since K(leaf) did not recover during late afternoon, refilling of embolism in bamboo leaves probably fully depends on nocturnal root pressure. The embolism refilling mechanism by root pressure could be helpful for the growth and persistence of this woody monocot species.

  5. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.

    PubMed

    Vu, Joseph C V; Allen, Leon H

    2009-07-15

    Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially the outcome of an increase in whole plant leaf area. Such increase would enhance the ongoing and cumulative photosynthetic capability of the whole plant. The results indicate that a doubling of [CO2] would benefit sugarcane production more than the anticipated 10-15% increase for a C4 species.

  6. Pharmacognostic studies of the leaves and stem of Careya arborea Roxb.

    PubMed Central

    Gupta, Prakash Chandra; Sharma, Nisha; Rao, Ch V

    2012-01-01

    Objective To study detailed pharmacognostic profile of leaves and stem of Careya arborea (C. arborea) Roxb. (Lecthyidaceae), an important medicinal plant in the Indian system of medicine. Methods Leaf and stem samples of C. arborea were studied by macroscopical, microscopical, physicochemical, phytochemical, fluorescence analysis of powder of the plant and other methods for standardization recommended by WHO. Results Macroscopically, the leaves are simple, broadly obovate in shape, acuminate apex with crenate, dentate margin, petioles (0.1–1.8 cm) long. Microscopically, the leaf showed the presence of median large size vascular bundle covered with fibrous bundle sheath, arrangement of xylem in cup shape and presence of cortical vascular bundle, patches of sclerenchyma, phloem fibers in groups and brown pigment containing cells in stem are some of the diagnostic features noted from anatomical study. Powder microscopy of leaf revealed the presence of parenchyma cells, xylem with pitted vessels and epidermis with anisocytic stomata. The investigations also included leaf surface data; quantitative leaf microscopy and fluorescence analysis. Physiochemical parameters such as loss on drying, swelling index, extractive values and ash values were also determined and results showed that total ash of the stem bark was about two times higher than leaf and water soluble extractive value of leaf and stem bark was two times higher than alcohol soluble extractive value. Preliminary phytochemical screening showed the presence of triterpenoids, saponins, tannins and flavonoids. Conclusions The results of the study can serve as a valuable source of information and provide suitable standards for identification of this plant material in future investigations and applications. PMID:23569939

  7. Freezing resistance in Patagonian woody shrubs: the role of cell wall elasticity and stem vessel size.

    PubMed

    Zhang, Yong-Jiang; Bucci, Sandra J; Arias, Nadia S; Scholz, Fabian G; Hao, Guang-You; Cao, Kun-Fang; Goldstein, Guillermo

    2016-08-01

    Freezing resistance through avoidance or tolerance of extracellular ice nucleation is important for plant survival in habitats with frequent subzero temperatures. However, the role of cell walls in leaf freezing resistance and the coordination between leaf and stem physiological processes under subzero temperatures are not well understood. We studied leaf and stem responses to freezing temperatures, leaf and stem supercooling, leaf bulk elastic modulus and stem xylem vessel size of six Patagonian shrub species from two sites (plateau and low elevation sites) with different elevation and minimum temperatures. Ice seeding was initiated in the stem and quickly spread to leaves, but two species from the plateau site had barriers against rapid spread of ice. Shrubs with xylem vessels smaller in diameter had greater stem supercooling capacity, i.e., ice nucleated at lower subzero temperatures. Only one species with the lowest ice nucleation temperature among all species studied exhibited freezing avoidance by substantial supercooling, while the rest were able to tolerate extracellular freezing from -11.3 to -20 °C. Leaves of species with more rigid cell walls (higher bulk elastic modulus) could survive freezing to lower subzero temperatures, suggesting that rigid cell walls potentially reduce the degree of physical injury to cell membranes during the extracellular freezing and/or thaw processes. In conclusion, our results reveal the temporal-spatial ice spreading pattern (from stem to leaves) in Patagonian shrubs, and indicate the role of xylem vessel size in determining supercooling capacity and the role of cell wall elasticity in determining leaf tolerance of extracellular ice formation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Assessing Quantitative Resistance against Leptosphaeria maculans (Phoma Stem Canker) in Brassica napus (Oilseed Rape) in Young Plants

    PubMed Central

    Huang, Yong-Ju; Qi, Aiming; King, Graham J.; Fitt, Bruce D. L.

    2014-01-01

    Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases. PMID:24454767

  9. Tannins from Hamamelis virginiana: identification of proanthocyanidins and hamamelitannin quantification in leaf, bark, and stem extracts.

    PubMed

    Vennat, B; Pourrat, H; Pouget, M P; Gross, D; Pourrat, A

    1988-10-01

    The tannins in leaf, bark, and stem extracts of HAMAMELIS VIRGINIANA were analyzed. Four proanthocyanidins were isolated by HPLC. One was a procyanidin polymer containing only one type of flavanol unit; the other three were polymers of procyanidin and prodelphinidin containing two types of flavanol units. A method of assay of hamamelitannin showed the bark extract to be 31 times richer in hamamelitannin than the leaf extract and 87 times richer than the stem extract.

  10. Effect of an ozone injury retardant chemical on isozyme profiles from alfalfa callus in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rier, J.P. Jr.; Sood, V.K.; Whitaker, A.

    1983-01-01

    Plant ozone injury retardant N-(2-(2-oxo-1-imidazolidinyl)-ethyl)-N'-phenylurea (EDU or ethylenediurea) at 1.0 ppm inhibited growth of callus of alfalfa cultivars Williamsburg (ozone-sensitive) and MSB-CW5An2 (ozone-insensitive) germplasm of Medicago sativa. The presence of EDU (0.1 ppm)in the growth medium increased the number of protein and peroxidase isozyme bands in alfalfa cultivar Williamsburg stem callus and ozone modified their intensities. Protein profiles of MSB stem callus from media containing EDU or exposed to ozone were unchanged. Marked differences were observed between the peroxidase profiles of ozonated and control ozone-insensitive stem callus from media containing EDU. Protein profiles of ozonated ozone-sensitive leaf callus differed slightlymore » from controls. The peroxidase profile of ozonated ozone-sensitive leaf callus was not altered when its growth medium contained EDU, but when it was absent, changes were observed in these profiles.« less

  11. In vitro effects of Musa x paradisiaca extracts on four developmental stages of Haemonchus contortus.

    PubMed

    Marie-Magdeleine, C; Udino, L; Philibert, L; Bocage, B; Archimede, H

    2014-02-01

    This study was carried out to evaluate the in vitro effect of Musa x paradisiaca stem and leaf against the parasitic nematode of small ruminants Haemonchus contortus. Three extracts (aqueous, methanolic and/or dichloromethane) of Musa x paradisiaca stem and leaf were tested in vitro on four developmental stages of H. contortus using egg hatch assay (EHA), larval development assay (LDA), L3 migration inhibition assay (LMI) and adult worm motility assay (AWM). The highly significant (P<0.0001) ability to stop larval development (inhibition >67% for each extract) and the negative effect of the dichloromethane extract of leaf on adult worm motility (43% of inhibition of motility after 24h of incubation) compared to the negative controls, suggest anthelmintic properties of Musa x paradisiaca stem and leaf against H. contortus. The active principles responsible for the activity could be secondary metabolites such as terpenoid and flavonoid compounds present in the leaf and stem of the plant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; van Straaten, O.; Barus, H.

    2011-08-01

    A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia) exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae), we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots. There was no evidence of canopy dieback. However, the drought treatment led to a 30 % reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The δ13C and δ18O signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that pre-senescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant). The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress. We conclude that the extended drought prompted a number of medium- to long-term responses in the leaves, branches and the trunk, which may have reduced drought susceptibility. However, unlike a natural drought, our drought simulation experiment was carried out under conditions of high humidity, which may have dampened drought induced damages.

  13. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

    PubMed

    Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom

    2015-07-01

    Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved the performance of the generic equation only for stem biomass and had no apparent effect on aboveground, branch, leaf, and root biomass at the site level. The development of a generic allometric equation taking account of interspecific differences is an effective approach for accurately estimating aboveground and component biomass in boreal, temperate, and subtropical natural forests.

  14. Fusarium agapanthi sp. nov, a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to characterize a novel Fusarium species that caused leaf and stem spot on Agapanthus praecox (Agapanthus, African lily) in northern Italy and leaf rot and spot on the same host in Melbourne, Australia. Formally described as Fusarium agapanthi, this pathogen was analyzed usi...

  15. Comparison of somatic embryogenesis in Medicago sativa and Medicago truncatula.

    PubMed

    Hoori, F; Ehsanpour, A A; Mostajeran, A

    2007-02-01

    In this study, the regeneration through embryogenesis of two species of Medicago were studied. Seeds of Medicago sativa cv. Rehnani and M. truncatula line A17 were grown on MS medium. After 4-6 weeks, segments of leaf and stem from two species were transferred to MS medium containing 2 mg L(-1) NAA, 2,4-D and Kinetin. The results indicated that callus formation from leaf explants of M. sativa was higher than M. trancatula. In the next stage, media with different combinations of auxin, cytokinin or ethinyl estradiol were provided for regeneration. Then in two stages, explants of leaf and stem of two species were transferred on these media. Results after 3-6 weeks showed that in medium containing NAA and TDZ, stem pieces ofM. sativa produced shoots while leaf pieces on NAA and ethinyl estradiol formed roots. Leaf explants of M. truncatula in the medium containing NAA and BAP, produced somatic embryos. Also in media with auxin and ethinyl estradiol, somatic embryos were formed on calli of two species. Ethinyl estradiol and auxin together can induce somatic embryogenesis and root production on calli and stem or leaf explants.

  16. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    PubMed

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  17. Antioxidant compounds and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less

    PubMed Central

    Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara

    2017-01-01

    Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (−)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model. PMID:28243061

  18. Antioxidant compounds and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less.

    PubMed

    Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara

    2017-01-01

    Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (-)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model.

  19. Chemical compositions and antibacterial activity of the leaf and stem oils of Piper porphyrophyllum (Lindl.) N.E. Br.

    PubMed Central

    Salleh, Wan Mohd Nuzul Hakimi Wan; Ahmad, Farediah; Sirat, Hasnah Mohd; Yen, Khong Heng

    2012-01-01

    The essential oils obtained by hydrodistillation from the fresh leaf and stem of Piper porphyrophyllum N.E. Br. were analyzed by GC and GC/MS. Thirty four constituents were identified in the leaf oil, while thirty eight constituents were identified in the stems oil. The most abundant components in the leaf oil included bicyclogermacrene (14.7 %), α-copaene (13.2 %) and β-phellandrene (9.5 %) while sabinene (15.5 %), bicyclogermacrene (12.3 %) and α-copaene (8.1 %) were the main constituents in the stem oil. The evaluation of antibacterial activity by using micro-dilution method revealed that both oils were moderately active against all the Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas putida and Escherichia coli) with minimum inhibitory concentration (MIC) values in the range 125-1000 µg/ml. PMID:27418915

  20. The Ratio of Leaf to Total Photosynthetic Area Influences Shade Survival and Plastic Response to Light of Green‐stemmed Leguminous Shrub Seedlings

    PubMed Central

    VALLADARES, FERNANDO; HERNÁNDEZ, LIBERTAD G.; DOBARRO, IKER; GARCÍA‐PÉREZ, CRISTINA; SANZ, RUBÉN; PUGNAIRE, FRANCISCO I.

    2003-01-01

    Different plant species and organs within a plant differ in their plastic response to light. These responses influence their performance and survival in relation to the light environment, which may range from full sunlight to deep shade. Plasticity, especially with regard to physiological features, is linked to a greater capacity to exploit high light and is usually low in shade‐tolerant species. Among photosynthetic organs, green stems, which represent a large fraction of the total photosynthetic area of certain species, are hypothesized to be less capable of adjustment to light than leaves, because of biomechanical and hydraulic constraints. The response to light by leaves and stems of six species of leguminous, green‐stemmed shrubs from dry and high‐light environments was studied by growing seedlings in three light environments: deep shade, moderate shade and sun (3, 30 and 100 % of full sunlight, respectively). Survival in deep shade ranged from 2 % in Retama sphaerocarpa to 74 % in Ulex europaeus. Survival was maximal at moderate shade in all species, ranging from 80 to 98 %. The six species differed significantly in their ratio of leaf to total photosynthetic area, which influenced their light response. Survival in deep shade increased significantly with increasing ratio of leaf to total photosynthetic area, and decreased with increasing plasticity in net photosynthesis and dark respiration. Responses to light differed between stems and leaves within each species. Mean phenotypic plasticity for the variables leaf or stem specific mass, chlorophyll content, chlorophyll a/b ratio, and carotenoid to chlorophyll ratio of leaves, was inversely related to that of stems. Although mean plasticity of stems increased with the ratio of leaf to total photosynthetic area, the mean plasticity of leaves decreased. Shrubs with green stems and a low ratio of leaf to total photosynthetic area are expected to be restricted to well‐lit habitats, at least during the seedling stage, owing to their inefficient light capture and the low plasticity of their stems. PMID:12646502

  1. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna.

    PubMed

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2016-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia , drought-deciduous Terminthia paniculata , and winter-deciduous Lannea coromandelica , to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50 leaf-stem ) was positive in P. weinmanniifolia and L. coromandelica , whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies.

  2. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae).

    PubMed

    Edwards, Erika J

    2006-01-01

    Recent studies have demonstrated significant correlations between stem and leaf hydraulic properties when comparing across species within ecological communities. This implies that these traits are co-evolving, but there have been few studies addressing plant water relations within an explicitly evolutionary framework. This study tests for correlated evolution among a suite of plant water-use traits and environmental parameters in seven species of Pereskia (Cactaceae), using phylogenetically independent contrasts. There were significant evolutionary correlations between leaf-specific xylem hydraulic conductivity, Huber Value, leaf stomatal pore index, leaf venation density and leaf size, but none of these traits appeared to be correlated with environmental water availability; only two water relations traits - mid-day leaf water potentials and photosynthetic water use efficiency - correlated with estimates of moisture regime. In Pereskia, it appears that many stem and leaf hydraulic properties thought to be critical to whole-plant water use have not evolved in response to habitat shifts in water availability. This may be because of the extremely conservative stomatal behavior and particular rooting strategy demonstrated by all Pereskia species investigated. These results highlight the need for a lineage-based approach to understand the relative roles of functional traits in ecological adaptation.

  3. Regeneration of Solanum nigrum by somatic embryogenesis, involving frog egg-like body, a novel structure.

    PubMed

    Xu, Kedong; Chang, Yunxia; Liu, Kun; Wang, Feige; Liu, Zhongyuan; Zhang, Ting; Li, Tong; Zhang, Yi; Zhang, Fuli; Zhang, Ju; Wang, Yan; Niu, Wei; Jia, Shuzhao; Xie, Hengchang; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    A new protocol was established for the regeneration of Solanum nigrum by frog egg-like bodies (FELBs), which are novel somatic embryogenesis (SE) structures induced from the root, stem, and leaf explants. The root, stem, and leaf explants (93.33%, 85.10%, and 100.00%, respectively) were induced to form special embryonic calli on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid, under dark condition. Further, special embryonic calli from the root, stem, and leaf explants (86.97%, 83.30%, and 99.47%, respectively) were developed into FELBs. Plantlets of FELBs from the three explants were induced in vitro on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine and 0.1 mg/L gibberellic acid, and 100.00% plantlet induction rates were noted. However, plantlet induction in vivo on MS medium supplemented with 20 mg/L thidiazuron showed rates of 38.63%, 15.63%, and 61.30% for the root, stem, and leaf explants, respectively, which were lower than those of the in vitro culture. Morphological and histological analyses of FELBs at different development stages revealed that they are a novel type of SE structure that developed from the mesophyll (leaf) or cortex (stem and root) cells of S. nigrum.

  4. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.

    PubMed

    Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R

    1995-09-01

    We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.

  5. Transient changes in transpiration, and stem and soil CO2 efflux in longleaf pine (Pinus palustris Mill.) following fire-induced leaf area reduction

    Treesearch

    Barton Clinton; Chris Maier; Chelcy Ford; Robert Mitchell

    2011-01-01

    In 20-year-old longleaf pine, we examined short-term effects of reduced live leaf area (A L) via canopy scorching on sap flow (Q; kg H2O h−1), transpiration per unit leaf area (E L; mm day−1), stem CO2 efflux (R stem; μmol m−2 s−1) and soil CO2 efflux (R soil; μmol m−2 s−1) over a 2-week period during early summer. R stem and Q were measured at two positions (1.3-m or...

  6. Climate influences the leaf area/sapwood area ratio in Scots pine.

    PubMed

    Mencuccini, M; Grace, J

    1995-01-01

    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.

  7. A lower pH value benefits regeneration of Trichosanthes kirilowii by somatic embryogenesis, involving rhizoid tubers (RTBs), a novel structure.

    PubMed

    Xu, Ke-dong; Chang, Yun-xia; Zhang, Ju; Wang, Pei-long; Wu, Jian-xin; Li, Yan-yan; Wang, Xiao-wen; Wang, Wei; Liu, Kun; Zhang, Yi; Yu, De-shui; Liao, Li-bing; Li, Yi; Ma, Shu-ya; Tan, Guang-xuan; Li, Cheng-wei

    2015-03-06

    A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0-9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids.

  8. A Lower pH Value Benefits Regeneration of Trichosanthes kirilowii by Somatic Embryogenesis, Involving Rhizoid Tubers (RTBs), a Novel Structure

    PubMed Central

    Xu, Ke-dong; Chang, Yun-xia; Zhang, Ju; Wang, Pei-long; Wu, Jian-xin; Li, Yan-yan; Wang, Xiao-wen; Wang, Wei; Liu, Kun; Zhang, Yi; Yu, De-shui; Liao, Li-bing; Li, Yi; Ma, Shu-ya; Tan, Guang-xuan; Li, Cheng-wei

    2015-01-01

    A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0–9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids. PMID:25744384

  9. [Caloric value and energy allocation of Chloris virgata in northeast grassland].

    PubMed

    Guo, J; Wang, R; Wang, W

    2001-06-01

    The rules of seasonal changes in caloric values of individual plant, stem, and leaves of Chloris virgata were similar, which had two peak values from early July to early August, and then decreased gradually. Those of inflorescence assumed U shape, and had two peak values in early August and middle September, respectively. The seasonal changes in caloric values of dead standing were irregular, and the maximum value was appeared in early August. The seasonal changes in existent energy value of the aboveground parts in Chloris virgata population presented double peak curve. The two peak values were appeared in early August and early September respectively, and the maximum value was 7381.27 kJ.m-2 in early September. The energy allocation in different seasons was leaf > stem in early July, stem > leaf > dead standing in middle July, stem > leaf > inflorescence > dead standing in August, stem > inflorescence > leaf > dead standing in early September, and stem > inflorescence > dead standing > leaf in middle September. The vertical structure of energy in the aboveground parts was that the energy value gradually increased from the earth's surface to 20 cm high, and then decreased. The maximum value, which accounted for 25.75% of energy in the aboveground parts, was appeared in the layer of 10-20 cm high. In the underground parts, the energy value progressively decreased with the increase of depth, and the maximum value, which accounted for 74.21% of energy in the underground parts, was appeared in the layer of 0-10 cm depth.

  10. Effect of soil nursery mixtures and hormone on the growth of Tetrastigma rafflesiae (Miq.) planch

    NASA Astrophysics Data System (ADS)

    Arshad, Syamsurina; Talip, Noraini; Adam, Jumaat

    2018-04-01

    Tetrastigma rafflesiae (Miq.) Planch is one of the sole host species of parasitic plants in the family Rafflesiaceae. A study was conducted in order to propagate this species using vegetative propagation. This propagation technique was done using stem cuttings and was conducted in the nursery at the National University of Malaysia (UKM). The propagation medium were made using four types of soil nursery mixtures of topsoil, organic matter and sand (7:3:1, 3:2:1, 2:1:1 and 1:1:1), mixture of topsoil, organic matter, sand and three different hormones treatments (0:0:IAA, 0:0:IBA and 0:0:NAA) and without any hormone treatment in basic soil (1:0:0, 0:1:0 and 0:0:1) was treated as a control. Approximately, stem cutting was used in 15 cm length. The base of each cutting was treated with root powdered hormones before being planted in soil. After 180 days of planting, the high number of leaf quantity (>12 leaves) was produced from stem cutting planted in 3:2:1 soil mixtures and the same results was obtained from stem cutting more than 15 cm to 18.78 cm in length, significantly. Soil mixture with 7:3:1 has significantly increased the leaf chlorophyll contents (10.22 nm) and also increased in leaf area index (16.375 cm²). Treatment hormones do not have any significant result in this study. The study has showed that T. rafflesiae can be propagated using cuttings as alternative source of planting materials for conservation purposes.

  11. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed forms, consisting of loose and tangled portions of tobacco leaves, floor sweepings, and all other tobacco materials (except stems...

  12. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed forms, consisting of loose and tangled portions of tobacco leaves, floor sweepings, and all other tobacco materials (except stems...

  13. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed forms, consisting of loose and tangled portions of tobacco leaves, floor sweepings, and all other tobacco materials (except stems...

  14. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed forms, consisting of loose and tangled portions of tobacco leaves, floor sweepings, and all other tobacco materials (except stems...

  15. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed forms, consisting of loose and tangled portions of tobacco leaves, floor sweepings, and all other tobacco materials (except stems...

  16. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    PubMed

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  17. Baseline study of morphometric traits of wild Capsicum annuum growing near two biosphere reserves in the Peninsula of Baja California for future conservation management.

    PubMed

    Murillo-Amador, Bernardo; Rueda-Puente, Edgar Omar; Troyo-Diéguez, Enrique; Córdoba-Matson, Miguel Víctor; Hernández-Montiel, Luis Guillermo; Nieto-Garibay, Alejandra

    2015-05-10

    Despite the ecological and socioeconomic importance of wild Capsicum annuum L., few investigations have been carried out to study basic characteristics. The peninsula of Baja California has a unique characteristic that it provides a high degree of isolation for the development of unique highly diverse endemic populations. The objective of this study was to evaluate for the first time the growth type, associated vegetation, morphometric traits in plants, in fruits and mineral content of roots, stems and leaves of three wild populations of Capsicum in Baja California, Mexico, near biosphere reserves. The results showed that the majority of plants of wild Capsicum annuum have a shrub growth type and were associated with communities consisting of 43 species of 20 families the most representative being Fabaceae, Cactaceae and Euphorbiaceae. Significant differences between populations were found in plant height, main stem diameter, beginning of canopy, leaf area, leaf average and maximum width, stems and roots dry weights. Coverage, leaf length and dry weight did not show differences. Potassium, sodium and zinc showed significant differences between populations in their roots, stems and leaves, while magnesium and manganese showed significant differences only in roots and stems, iron in stems and leaves, calcium in roots and leaves and phosphorus did not show differences. Average fruit weight, length, 100 fruits dry weight, 100 fruits pulp dry weight and pulp/seeds ratio showed significant differences between populations, while fruit number, average fruit fresh weight, peduncle length, fruit width, seeds per fruit and seed dry weight, did not show differences. We concluded that this study of traits of wild Capsicum, provides useful information of morphometric variation between wild populations that will be of value for future decision processes involved in the management and preservation of germplasm and genetic resources.

  18. Leaf mass per area, not total leaf area, drives differences in above-ground biomass distribution among woody plant functional types.

    PubMed

    Duursma, Remko A; Falster, Daniel S

    2016-10-01

    Here, we aim to understand differences in biomass distribution between major woody plant functional types (PFTs) (deciduous vs evergreen and gymnosperm vs angiosperm) in terms of underlying traits, in particular the leaf mass per area (LMA) and leaf area per unit stem basal area. We used a large compilation of plant biomass and size observations, including observations of 21 084 individuals on 656 species. We used a combination of semiparametric methods and variance partitioning to test the influence of PFT, plant height, LMA, total leaf area, stem basal area and climate on above-ground biomass distribution. The ratio of leaf mass to above-ground woody mass (MF /MS ) varied strongly among PFTs. We found that MF /MS at a given plant height was proportional to LMA across PFTs. As a result, the PFTs did not differ in the amount of leaf area supported per unit above-ground biomass or per unit stem basal area. Climate consistently explained very little additional variation in biomass distribution at a given plant size. Combined, these results demonstrate consistent patterns in above-ground biomass distribution and leaf area relationships among major woody PFTs, which can be used to further constrain global vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Measurement of tree canopy architecture

    NASA Technical Reports Server (NTRS)

    Martens, S. N.; Ustin, S. L.; Norman, J. M.

    1991-01-01

    The lack of accurate extensive geometric data on tree canopies has retarded development and validation of radiative transfer models. A stratified sampling method was devised to measure the three-dimensional geometry of 16 walnut trees which had received irrigation treatments of either 100 or 33 per cent of evapotranspirational (ET) demand for the previous two years. Graphic reconstructions of the three-dimensional geometry were verified by 58 independent measurements. The distributions of stem- and leaf-size classes, lengths, and angle classes were determined and used to calculate leaf area index (LAI), stem area, and biomass. Reduced irrigation trees have lower biomass of stems, leaves and fruit, lower LAI, steeper leaf angles and altered biomass allocation to large stems. These data can be used in ecological models that link canopy processes with remotely sensed measurements.

  20. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  1. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...

  2. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...

  3. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...

  4. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...

  5. 7 CFR 30.2 - Leaf tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf... stemming, sweating or fermenting, and conditioning are not regarded as manufacturing processes. Leaf...

  6. Resistance of Brachystegia spiciformis to Carbohydrate and Phenological Manipulation

    NASA Astrophysics Data System (ADS)

    Richer, R. A.

    2006-12-01

    Despite the development of metabolic ecology, the role that carbohydrate stores play in regulating phenological events is unknown. Whole tree manipulation experiments in the common southern African tree species, Brachystegia spiciformis offer new insights into the physiological and environmental mechanisms controlling bud break. This experiment tested a novel hypothesis that decreasing Total Non-Structural Carbohydrates (TNC) in the stem could cue bud break in Brachystegia spiciformis. The experimental treatments included fertilization, canopy defoliation, shading and stem heating and were repeated over a two year period in the Kalahari sand savanna system of northwestern Zimbabwe. The treatments were designed to decrease stem carbohydrates and result in an earlier leaf flush. None of the treatments significantly decreased seasonal stem TNC. Likewise the heating, fertilization and defoliation treatments did not significantly affect the date of bud break from controls. However, shaded trees showed a significant delay in bud break. This delay in bud break could not be attributed to leaf level photosynthetic traits, stem water content, leaf pre-dawn water potential or delayed leaf fall. These results question widely accepted hypotheses about the mechanism controlling bud break in savanna ecosystems and may suggest a carbohydrate homeostatic mechanism.

  7. Effects of hayscented fern density and light on white ash seedling growth

    Treesearch

    Tracy E. Hippensteel; Todd W. Bowersox

    1995-01-01

    Communities of hayscented ferns [Dennstaedtia punctilobula (Michx.) Moore] are present in many forested areas of Pennsylvania. These ferns can reduce the number and height growth of desirable tree seedlings. A study was conducted to determine the effects of fern frond density on the stem growth and leaf development of bare-root planted white ash (...

  8. Effect of an ozone injury-retardant chemical on isozyme profiles from alfalfa callus in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rier, J.P.; Sood, V.K.; Whitaker, A.

    1983-01-01

    Plant ozone injury retardant (EDU or ethylenediurea) at 1.0 ppm inhibited growth of callus of alfalfa cultivars Williamsburg (ozone-sensitive) and MSB-CW5An2(ozone-insensitive) germplasm of Medicago sative. The presence of EDU(0.1 ppm) in growth medium increased the number of protein and peroxidase isozyme bands in alfalfa cultivar stem callus and ozone modified their intensities. Protein profiles of MSB stem callus from media containing EDU or exposed to ozone were unchanged. Marked differences were observed between the peroxidase profiles of ozonated and control ozone-insensitive stem callus from media containing EDU. Protein profiles of ozonated ozone-insensitive leaf callus differed slightly from controls.

  9. Observations on anatomical aspects of the fruit, leaf and stem tissues of four Citrullus spp.

    USDA-ARS?s Scientific Manuscript database

    Morphological characteristics of the fruit, stem and leaf tissues of four species of Citrullus (L.) Schrad. were examined using standard histological methods. Plant materials included the cultivated watermelon (C. lanatus (Thunb.) Matsum. & Nakai) and three of its related species; C. colocynthis (...

  10. Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes.

    PubMed

    Aoun, Meriem; Kolmer, James A; Rouse, Matthew N; Chao, Shiaoman; Bulbula, Worku Denbel; Elias, Elias M; Acevedo, Maricelis

    2017-12-01

    Leaf rust, caused by Puccinia triticina, and stem rust, caused by P. graminis f. sp. tritici, are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to P. triticina race BBBQJ and stem rust resistance (Sr) genes to P. graminis f. sp. tritici race TTKSK in durum accessions. Eight leaf-rust-resistant genotypes were used to develop biparental populations. Accessions PI 192051 and PI 534304 were also resistant to P. graminis f. sp. tritici race TTKSK. The resulting progenies were phenotyped for leaf rust and stem rust response at seedling stage. The Lr and Sr genes were mapped in five populations using single-nucleotide polymorphisms and bulked segregant analysis. Five leaf-rust-resistant genotypes carried single dominant Lr genes whereas, in the remaining accessions, there was deviation from the expected segregation ratio of a single dominant Lr gene. Seven genotypes carried Lr genes different from those previously characterized in durum. The single dominant Lr genes in PI 209274, PI 244061, PI387263, and PI 313096 were mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. The Sr gene in PI 534304 mapped to 6AL and is most likely Sr13, while the Sr gene in PI 192051 could be uncharacterized in durum.

  11. An acute toxicity study of Heliotropium scottae Rendle in mice.

    PubMed

    Wahome, W M; Muchiri, D J; Mugera, G M

    1994-08-01

    Twenty-four hour ip median lethal doses (LD50) of freeze-dried aqueous extracts of Heliotropium scottae Rendle leaves and stems in mice were determined and clinical signs noted. The LD50 of the leaf extract was 3.0 g/kg, while that of the stems was 3.5 g/kg. Clinical signs were excitement, prostration, rapid breathing, gasping for breath and death. The signs were the same for both the leaf and stem extracts. It was concluded that both the leaves and stems of H scottae have slight acute toxicity.

  12. Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes.

    PubMed

    Munganyinka, E; Ateka, E M; Kihurani, A W; Kanyange, M C; Tairo, F; Sseruwagi, P; Ndunguru, J

    2018-02-01

    Cassava brown streak disease (CBSD) was first observed on cassava ( Manihot esculenta ) in Rwanda in 2009. In 2014 eight major cassava-growing districts in the country were surveyed to determine the distribution and variability of symptom phenotypes associated with CBSD, and the genetic diversity of cassava brown streak viruses. Distribution of the CBSD symptom phenotypes and their combinations varied greatly between districts, cultivars and their associated viruses. The symptoms on leaf alone recorded the highest (32.2%) incidence, followed by roots (25.7%), leaf + stem (20.3%), leaf + root (10.4%), leaf + stem + root (5.2%), stem + root (3.7%), and stem (2.5%) symptoms. Analysis by RT-PCR showed that single infections of Ugandan cassava brown streak virus (UCBSV) were most common (74.2% of total infections) and associated with all the seven phenotypes studied. Single infections of Cassava brown streak virus (CBSV) were predominant (15.3% of total infections) in CBSD-affected plants showing symptoms on stems alone. Mixed infections (CBSV + UCBSV) comprised 10.5% of total infections and predominated in the combinations of leaf + stem + root phenotypes. Phylogenetic analysis and the estimates of evolutionary divergence, using partial sequences (210 nt) of the coat protein gene, revealed that in Rwanda there is one type of CBSV and an indication of diverse UCBSV. This study is the first to report the occurrence and distribution of both CBSV and UCBSV based on molecular techniques in Rwanda.

  13. Stripe rust and leaf rust resistance QTL mapping, epistatic interactions, and co-localization with stem rust resistance loci in spring wheat evaluated over three continents.

    PubMed

    Singh, A; Knox, R E; DePauw, R M; Singh, A K; Cuthbert, R D; Campbell, H L; Shorter, S; Bhavani, S

    2014-11-01

    In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies. Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT(®) and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.

  14. Influence of Shoot Structure on Light Interception and Photosynthesis in Conifers

    PubMed Central

    Carter, Gregory A.; Smith, William K.

    1985-01-01

    The influence of shoot structure on net photosynthesis was evaluated under field conditions for the central Rocky Mountain (United States) conifers Picea engelmannii (Parry ex Engelm.), Abies lasiocarpa ([Hook] Nutt.), and Pinus contorta (Engelm.). In all species, the greater number of needles per unit stem length on sun shoots correlated with a smaller silhouette leaf area to total leaf area ratio (STAR). Decreased STAR was due primarily to greater needle inclination toward the vertical, plus some needle mutual shading. However, photosynthesis expressed on a total leaf area basis did not decrease in sun shoots (lower STAR) but remained nearly constant at approximately 3 micromoles per square meter per second over a wide range of STAR (0.1 to 0.3). Relatively low light saturation levels of 200 to 1400 microeinsteins per square meter per second and diffuse light to 350 microeinsteins per meter per second maintained photosynthetic flux densities in inclined and/or shaded needles at levels comparable to those in unshaded needles oriented perpendicular to the solar beam. As a result, net CO2 uptake per unit stem length increased as much as 2-fold in sun shoots (low STAR) in direct proportion to increasing needle density. PMID:16664525

  15. Phenology, growth and physiological adjustments of oil palm (Elaeis guineensis) to sink limitation induced by fruit pruning

    PubMed Central

    Legros, S.; Mialet-Serra, I.; Caliman, J.-P.; Siregar, F. A.; Clement-Vidal, A.; Fabre, D.; Dingkuhn, M.

    2009-01-01

    Background and Aims Despite its simple architecture and small phenotypic plasticity, oil palm has complex phenology and source–sink interactions. Phytomers appear in regular succession but their development takes years, involving long lag periods between environmental influences and their effects on sinks. Plant adjustments to resulting source–sink imbalances are poorly understood. This study investigated oil palm adjustments to imbalances caused by severe fruit pruning. Methods An experiment with two treatments (control and complete fruit pruning) during 22 months in 2006–2008) and six replications per treatment was conducted in Indonesia. Phenology, growth of above-ground vegetative and reproductive organs, leaf morphology, inflorescence sex differentiation, dynamics of non-structural carbohydrate reserves and light-saturated net photosynthesis (Amax) were monitored. Key Results Artificial sink limitation by complete fruit pruning accelerated development rate, resulting in higher phytomer, leaf and inflorescence numbers. Leaf size and morphology remained unchanged. Complete fruit pruning also suppressed the abortion of male inflorescences, estimated to be triggered at about 16 months before bunch maturity. The number of female inflorescences increased after an estimated lag of 24–26 months, corresponding to time from sex differentiation to bunch maturity. The most important adjustment process was increased assimilate storage in the stem, attaining nearly 50 % of dry weight in the stem top, mainly as starch, whereas glucose, which in controls was the most abundant non-structural carbohydrate stored in oil palm, decreased. Conclusions The development rate of oil palm is in part controlled by source–sink relationships. Although increased rate of development and proportion of female inflorescences constituted observed adjustments to sink limitation, the low plasticity of plant architecture (constant leaf size, absence of branching) limited compensatory growth. Non-structural carbohydrate storage was thus the main adjustment process. PMID:19748908

  16. Chromosome mapping, molecular cloning and expression analysis of a novel gene response for leaf width in rice.

    PubMed

    Wu, Yahui; Luo, Lixin; Chen, Likai; Tao, Xingxing; Huang, Ming; Wang, Hui; Chen, Zhiqiang; Xiao, Wuming

    2016-11-18

    Genetic analysis revealed that narrow leaf, small panicle, thin and slender stems as well as low fertility rate of an Indica rice variety were recessive traits and controlled by a single gene. Applying map-based cloning strategy, a novel narrow leaf gene, which was named nal11 was delimited to an interval of 58.3 kb between the InDel markers N10 and InD5016. There are 9 genes in the mapping interval, and only a heat shock DNAJ protein encode gene (Os07g09450) has a specific G to T SNP, which was occurred at the last base of the second exon of Os07g09450 in ZYX. 5' and 3' RACE result shown that there were two transcripts in NAL11, and the SNP in nal11 leads to a variable shear of mRNA. In addition, this type of mRNA alternative splicing together with a stop codon closely followed the SNP which caused termination of translation destroyed the DNAJ domain of nal11's product. These results suggested that the heat shock DNAJ gene was most likely to be the candidate gene of nal11. The results of RT-PCR and real-time PCR further verified that the SNP in the ZYX-nal11 gene affects mRNA splicing pattern. Phenotype of ZYX may be caused by a statistically significant reduction in the total number of small veins in leaf, size and number of small vascular bundles and cells in stems, similar to several previous reported mutations. The basic molecular information we provide here will be useful for further investigations of the physiological function of the heat shock DNAJ gene, which will be helpful in better understanding the role of the DNAJ family in regulation of plant type traits such as leaf width of rice. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of Different Parts (Leaf, Stem and Stalk) and Seasons (Summer and Winter) on the Chemical Compositions and Antioxidant Activity of Moringa oleifera

    PubMed Central

    Shih, Ming-Chih; Chang, Cheng-Ming; Kang, Sue-Ming; Tsai, Min-Lang

    2011-01-01

    Moringa oleifera, Lam. (Moringaceae) is grown world-wide in the tropics and sub-tropics of Asia and Africa and contains abundant various nutrients. This study describes the effect of different parts (leaf, stem and stalk) and seasons (summer and winter) on the chemical compositions and antioxidant activity of M. oleifera grown in Taiwan. The results showed that the winter samples of Moringa had higher ash (except the stalk part), calcium and phenolic compounds (except the leaf part) and stronger antioxidative activity than summer samples. The methanolic extract of Moringa showed strong scavenging effect of DPPH radicals and reducing power. The trend of antioxidative activity as a function of the part of Moringa was: leaf > stem > stalk for samples from both seasons investigated. The Moringa extract showed strong hydrogen peroxide scavenging activity and high Superoxide Dismutase (SOD) activity except the stalk part. PMID:22016645

  18. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees

    Treesearch

    Yong-Jiang Zhang; Frederick C. Meinzer; Qi Jin-Hua; Guillermo Goldstein; Cao Kun-Fang

    2012-01-01

    Midday depressions in stomatal conductance (gs/>) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday gs, the coordination between leaf and stem hydraulics and whether regulation of midday gs/> differed between...

  19. Coordination of leaf and stem water transport properties in tropical forest trees

    Treesearch

    Frederick C. Meinzer; David R. Woodruff; Jean-Christophe Domec; Guillermo Goldstein; Paula I. Campanello; Genoveva M. Gatti; Randol Villalobos-Vega

    2008-01-01

    Stomatal regulation of transpiration constrains leaf water potential (ψ l) within species-specific ranges that presumably avoid excessive tension and embolism in the stem xylem upstream. However, the hydraulic resistance of leaves can be highly variable over short time scales, uncoupling tension in the xylem of leaves from that in the...

  20. Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season.

    PubMed

    Chapotin, Saharah Moon; Razanameharizaka, Juvet H; Holbrook, N Michele

    2006-01-01

    Baobab trees (Adansonia, Bombacaceae) are widely thought to store water in their stems for use when water availability is low. We tested this hypothesis by assessing the role of stored water during the dry season in three baobab species in Madagascar. In the dry season, leaves are present only during and after leaf flush. We quantified the relative contributions of stem and soil water during this period through measures of stem water content, sap flow and stomatal conductance. Rates of sap flow at the base of the trunk were near zero, indicating that leaf flushing was almost entirely dependent on stem water. Stem water content declined by up to 12% during this period, yet stomatal conductance and branch sap flow rates remained very low. Stem water reserves were used to support new leaf growth and cuticular transpiration, but not to support stomatal opening before the rainy season. Stomatal opening coincided with the onset of sap flow at the base of the trunk and occurred only after significant rainfall.

  1. Green technology approach towards herbal extraction method

    NASA Astrophysics Data System (ADS)

    Mutalib, Tengku Nur Atiqah Tengku Ab; Hamzah, Zainab; Hashim, Othman; Mat, Hishamudin Che

    2015-05-01

    The aim of present study was to compare maceration method of selected herbs using green and non-green solvents. Water and d-limonene are a type of green solvents while non-green solvents are chloroform and ethanol. The selected herbs were Clinacanthus nutans leaf and stem, Orthosiphon stamineus leaf and stem, Sesbania grandiflora leaf, Pluchea indica leaf, Morinda citrifolia leaf and Citrus hystrix leaf. The extracts were compared with the determination of total phenolic content. Total phenols were analyzed using a spectrophotometric technique, based on Follin-ciocalteau reagent. Gallic acid was used as standard compound and the total phenols were expressed as mg/g gallic acid equivalent (GAE). The most suitable and effective solvent is water which produced highest total phenol contents compared to other solvents. Among the selected herbs, Orthosiphon stamineus leaves contain high total phenols at 9.087mg/g.

  2. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    PubMed

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.

    PubMed

    Liu, Yan-Yan; Song, Jia; Wang, Miao; Li, Na; Niu, Cun-Yang; Hao, Guang-You

    2015-12-01

    Hydraulic segmentation between proximal and distal organs has been hypothesized to be an important protective mechanism for plants to minimize the detrimental effects of drought-induced hydraulic failure. Uncertainties still exist regarding the degree of segmentation and the role of stomatal regulation in keeping hydraulic integrity of organs at different hierarchies. In the present study, we measured hydraulic conductivity and vulnerability in stems, compound leaf petioles and leaflet laminas of Fraxinus mandshurica Rupr. and Juglans mandshurica Maxim. growing in Changbai Mountain of Northeast China to identify the main locality where hydraulic segmentation occurs along the shoot water transport pathway. Stomatal conductance in response to leaf water potential change was also measured to investigate the role of stomatal regulation in avoiding extensive transpiration-induced embolism. No major contrasts were found between stems and compound leaf petioles in either hydraulic conductivity or vulnerability to drought-induced embolism, whereas a large difference in hydraulic vulnerability exists between compound leaf petioles and leaflet laminas. Furthermore, in contrast to the relatively large safety margins in stems (4.13 and 2.04 MPa) and compound leaf petioles (1.33 and 1.93 MPa), leaflet lamina hydraulic systems have substantially smaller or even negative safety margins (-0.17 and 0.47 MPa) in F. mandshurica and J. mandshurica. Under unstressed water conditions, gas exchange may be better optimized by allowing leaflet vascular system function with small safety margins. In the meantime, hydraulic safety of compound leaf petioles and stems are guaranteed by their large safety margins. In facing severe drought stress, larger safety margins in stems than in compound leaf petioles would allow plants to minimize the risk of catastrophic embolism in stems by sacrificing the whole compound leaves. A strong coordination between hydraulic and stomatal regulation appears to play a critical role in balancing the competing efficiency and safety requirements for xylem water transport and use in plants. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Shoot development in grapevine (Vitis vinifera) is affected by the modular branching pattern of the stem and intra- and inter-shoot trophic competition.

    PubMed

    Lebon, Eric; Pellegrino, Anne; Tardieu, Francois; Lecoeur, Jeremie

    2004-03-01

    Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre-existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0-P1-P2). Four experiments were carried out using the cultivar 'Grenache N': two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard. These experiments resulted in a broad diversity of environmental conditions, but none of the plants experienced soil water deficit. Development of the main axis was highly dependent on air temperature, being linearly related to thermal time for all stages of leaf development from budbreak to veraison. The stable progression of developmental stages along the main stem resulted in a thermal-time based programme of leaf development. Leaf expansion rate varied with trophic competition (shoot and cluster loads) and environmental conditions (solar radiation, VPD), accounting for differences in final leaf area. Branching pattern was highly variable. Classification of the branches according to ternary modular structure increased the accuracy of the quantitative analysis of branch development. The rate and duration of leaf production were higher for branches derived from P0 phytomers than for branches derived from P1 or P2 phytomers. Rates of leaf production, expressed as a -function of thermal time, were not stable and depended on trophic competition and environmental conditions such as solar radiation or VPD. The application to grapevine of a generic model developed in annual plants made it possible to identify constants in main stem development and to determine the hierarchical structure of branches with respect to the modular structure of the stem in response to intra- and inter-shoot trophic competition.

  5. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits

    PubMed Central

    Pecetti, Luciano; Brummer, E. Charles; Palmonari, Alberto; Tava, Aldo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3–0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits (by genomic selection or MAS) and forage yield. PMID:28068350

  6. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits.

    PubMed

    Biazzi, Elisa; Nazzicari, Nelson; Pecetti, Luciano; Brummer, E Charles; Palmonari, Alberto; Tava, Aldo; Annicchiarico, Paolo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3-0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits (by genomic selection or MAS) and forage yield.

  7. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  8. [Effects of water level fluctuation on the inter- and intra-specific relationships between Wedelia trilobata and W. chinensis].

    PubMed

    Bu, Xiang Qi; Liu, Lin; Mu, Ya Nan; Guan, Yu Ting; Li, Hong Li; Yu, Fei Hai

    2017-03-18

    A controlled greenhouse experiment was designed with the invasive Wedelia trilobata and native W. chinensis. Three water level fluctuation treatments (no fluctuation, change pattern by 15 cm-0 cm-15 cm, change pattern by 0 cm-15 cm-0 cm) were crossed with five plant arrangement treatments (an individual invasive plant per pot, an individual native plant per pot, 6 invasive plants per pot, 6 native plants per pot, six plants per pot with three invasive and three native plants) to explore the effects of water level fluctuation on inter- and intra-specific relationships between W. trilobata and W. chinensis. The results showed that water level fluctuation decreased signifi-cantly the total biomass, stem biomass, leaf biomass, root biomass, stem length, number of nodes, number of leaves and leaf area of W. trilobata and W. chinensis. Meantime it had significant effects on the inter- and intra-specific competition between W. trilobata and W. chinensis. Water level fluctuation changed the inter- and intra-specific competition of W. trilobata. It indicated that W. trilobata was more sensitive to water level fluctuation with stronger adaptability.

  9. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  10. Comparative effects of plant growth regulators on leaf and stem explants of Labisia pumila var. alata

    PubMed Central

    Ling, Anna Pick Kiong; Tan, Kinn Poay; Hussein, Sobri

    2013-01-01

    Objective: Labisia pumila var. alata, commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila. Methods: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L. Results: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34±19.55)% and (70.40±14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture. Conclusions: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs. PMID:23825148

  11. A Guide to Alaskan Black Spruce Wetland Bryophytes: Species Specific to Delineation for Interior and South Central Regions

    DTIC Science & Technology

    2008-01-01

    spread far apart, all around the stem or more or less in one flattened plane, etc.) are useful key identifying characters. Stems may bear rhizoids ...hair-like filaments) at the base, all along the stem, or as clusters, and the rhizoids may be dense or sparse, colored or colorless (appearing white...colorless rhizoids . They will only be present on the ventral side. The leaf arrangement is called succubous when the forward edge of a leaf (as

  12. Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash

    Treesearch

    James S. Meadows; John D. Hodges

    2002-01-01

    The relationships between foliar weight/leaf area and four stem dimensions (d.b.h., total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the Southern United States, cherrybark oak (Quercus falcata var. pagodifolia ...

  13. Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements

    USDA-ARS?s Scientific Manuscript database

    Background: Wheat leaf rust (Puccinia triticina Eriks; Pt) and stem rust (P. graminis f.sp. tritici; Pgt) are significant economic pathogens having similar host ranges and life cycles, but different alternate hosts. The Pt genome, currently estimated at 135 Mb, is significantly larger than Pgt, at ...

  14. Students' Misconceptions in Interpreting Center and Variability of Data Represented via Histograms and Stem-and-Leaf Plots

    ERIC Educational Resources Information Center

    Cooper, Linda L.; Shore, Felice S.

    2008-01-01

    This paper identifies and discusses misconceptions that students have in making judgments of center and variability when data are presented graphically. An assessment addressing interpreting center and variability in histograms and stem-and-leaf plots was administered to, and follow-up interviews were conducted with, undergraduates enrolled in…

  15. Variation in Septoria musiva and Implications for Disease Resistance Screening

    Treesearch

    K.T. Ward; M.E. Ostry

    2005-01-01

    A set of isolates of Septoria musiva differed in aggressiveness in hybrid poplar leaf disk and stem assays and culture growth in vitro. Clone x isolate interactions were observed in one of the stem assay experiments, but not in the leaf disk assay experiments. Random amplified polymorphic DNA (RAPD) analyses were performed using 52 isolates of

  16. Canopy architecture of a walnut orchard

    NASA Technical Reports Server (NTRS)

    Ustin, Susan L.; Martens, Scott N.; Vanderbilt, Vern C.

    1991-01-01

    A detailed dataset describing the canopy geometry of a walnut orchard was acquired to support testing and comparison of the predictions of canopy microwave and optical inversion models. Measured canopy properties included the quantity, size, and orientation of stems, leaves, and fruit. Eight trees receiving 100 percent of estimated potential evapotranspiration water use and eight trees receiving 33 percent of potential water use were measured. The vertical distributions of stem, leaf, and fruit properties are presented with respect to irrigation treatment. Zenith and probability distributions for stems and leaf normals are presented. These data show that, after two years of reduced irrigation, the trees receiving only 33 percent of their potential water requirement had reduced fruit yields, lower leaf area index, and altered allocation of biomass within the canopy.

  17. Hydraulic resistance components of mature apple trees on rootstocks of different vigours.

    PubMed

    Cohen, Shabtai; Naor, Amos; Bennink, John; Grava, Avraham; Tyree, Melvin

    2007-01-01

    Dwarfing of fruit trees is often achieved through the use of dwarfing rootstocks. Dwarf trees are characterized by sustained reductions in vegetative growth during the lifetime of the tree. The dwarfing mechanism is not well understood, but it has been hypothesized that hydraulic properties of the rootstock and the graft union are involved. It is hypothesized here that leaf- or stem-specific resistance of at least one hydraulic component of the water transport system would be negatively correlated with rootstock 'vigour', and this could be useful for selection of rootstocks. Hydraulic resistance (R) of fully grown apple trees on a variety of rootstocks of different 'vigours' was measured. Most measurements were with the evaporative flux (EF) method, where water uptake measured with sap flow sensors was related to the pressure gradient from soil (taken as pre-dawn leaf) and midday root (taken as covered root-sucker), stem (from covered leaf), and exposed and shaded leaf water potentials (Psi(l)). R of trees on dwarfing M9 rootstock was compared with that of more vigorous MM106 and MM111 rootstocks in Israel and Vermont, USA. In Israel, M9 consistently had higher leaf-specific hydraulic resistance (R(l)) in the soil to scion stem pathway, but this difference was only significant for one summer. R was larger in M9 between the root and stem, implicating the graft union as the site of increased resistance. In Vermont, R(l) of 9- and 10-year-old trees on six rootstocks of various vigours was not consistently related to vigour, and stem-specific resistance (R(s)) increased with increasing vigour. High pressure flow meter (HPFM) measurements gave a lower R than the EF method in all but one case, perhaps indicating a significant amount of xylem dysfunction in these trees, and demonstrated the increased resistivity of stem sections that included dwarf graft unions as compared with non-graft stem sections. It is concluded that stem- and leaf-specific R are not consistently positively correlated with dwarfing, although the increased resistivity of the graft union in dwarfing rootstocks may influence the transport of water and other elements across the graft union, and therefore be involved in the dwarfing mechanism.

  18. Changes in chemical composition and digestibility of three maize stover components digested by white-rot fungi.

    PubMed

    Lynch, J P; O'Kiely, P; Murphy, R; Doyle, E M

    2014-08-01

    Maize stover (total stem and leaves) is not considered a ruminant feed of high nutritive value. Therefore, an improvement in its digestibility may increase the viability of total forage maize production systems in marginal growth regions. The objective of this study was to describe the changes in chemical composition during the storage of contrasting components of maize stover (leaf, upper stem and lower stem) treated with either of two lignin degrading white-rot fungi (WRF; Pleurotus ostreatus, Trametes versicolor). Three components of maize stover (leaf, upper stem and lower stem), harvested at a conventional maturity for silage production, were digested with either of two WRF for one of four digestion durations (1-4 months). Samples taken prior to fungal inoculation were used to benchmark the changes that occurred. The degradation of acid detergent lignin was observed in all sample types digested with P. ostreatus; however, the loss of digestible substrate in all samples inoculated with P. ostreatus was high, and therefore, P. ostreatus-digested samples had a lower dry matter digestibility than samples prior to inoculation. Similarly, T. veriscolor-digested leaf underwent a non-selective degradation of the rumen-digestible components of fibre. The changes in chemical composition of leaf, upper stem and lower stem digested with either P. ostreatus or T. veriscolor were not beneficial to the feed value of the forage, and incurred high DM losses. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  19. Is the WBE model appropriate for semi-arid shrubs subjected to clear cutting?

    PubMed

    Issoufou, Hassane Bil-Assanou; Rambal, Serge; Le Dantec, Valérie; Oï, Monique; Laurent, Jean-Paul; Saadou, Mahamane; Seghieri, Josiane

    2015-02-01

    It is crucial to understand the adaptive mechanisms of woody plants facing periodic drought to assess their vulnerability to the increasing climate variability predicted in the Sahel. Guiera senegalensis J.F.Gmel is a semi-evergreen Combretaceae commonly found in Sahelian rangelands, fallows and crop fields because of its value as an agroforestry species. We compared canopy leafing, and allometric measurements of leaf area, stem area and stem length and their relationships with leaf water potential, stomatal conductance (gs) and soil-to-leaf hydraulic conductance (KS-L), in mature and current-year resprouts of G. senegalensis in Sahelian Niger. In mature shrubs, seasonal drought reduced the ratio of leaf area to cross-sectional stem area (AL : AS), mainly due to leaf shedding. The canopy of the current-year resprouts remained permanently leafed as the shrubs produced leaves and stems continuously, and their AL : AS ratio increased throughout the dry season. Their KS-L increased, whereas gs decreased. West, Brown and Enquist's (WBE) model can thus describe allometric trends in the seasonal life cycle of undisturbed mature shrubs, but not that of resprouts. Annual clear cutting drives allometric scaling relationships away from theoretical WBE predictions in the current-year resprouts, with scaling exponents 2.5 times greater than those of mature shrubs. High KS-L (twice that of mature shrubs) supports this intensive regeneration process. The adaptive strategy described here is probably common to many woody species that have to cope with both severe seasonal drought and regular disturbance over the long term. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.).

    PubMed

    Zajączkowska, U; Barlow, P W

    2017-07-01

    Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India).

    PubMed

    Rana, Vivek; Maiti, Subodh Kumar

    2018-04-01

    Opencast bituminous coal mining invariably generates huge amount of metal-polluted waste rocks (stored as overburden (OB) dumps) and reclaimed by planting fast growing hardy tree species which accumulate metals in their tissues. In the present study, reclaimed OB dumps located in Jharia coal field (Jharkhand, India) were selected to assess the accumulation of selected metals (Pb, Zn, Mn, Cu and Co) in tissues (leaf, stem bark, stem wood, root bark and root wood) of two commonly planted tree species (Acacia auriculiformis A.Cunn. ex Benth. and Melia azedarach L.). In reclaimed mine soil (RMS), the concentrations of pseudo-total and available metals (DTPA-extractable) were found 182-498 and 196-1877% higher, respectively, than control soil (CS). The positive Spearman's correlation coefficients between pseudo-total concentration of Pb and Cu (r = 0.717; p < 0.05), Pb and Co (r = 0.650; p < 0.05), Zn and Mn (0.359), Cu and Co (r = 0.896; p < 0.01) suggested similar sources for Pb-Cu-Co and Mn-Zn. Among the five tree tissues considered, Pb selectively accumulated in root bark, stem bark and leaves; Zn and Mn in leaves; and Cu in root wood and stem wood. These results suggested metal accumulation to be "tissue-specific". The biological indices (BCF, TF leaf , TF stem bark and TF stem wood ) indicated variation in metal uptake potential of different tree tissues. The study indicated that A. auriculiformis could be employed for Mn phytoextraction (BCF, TF leaf , TF stem bark and TF stem wood  > 1). The applicability of both the trees in Cu phytostabilization (BCF > 1; TF leaf , TF stem bark and TF stem wood  < 1) was suggested. The study enhanced knowledge about the selection of tree species for the phytoremediation of coal mine OB dumps and specific tree tissues for monitoring metal pollution.

  2. Chemical composition, angiotensin-converting enzyme-inhibitory activity and antioxidant activities of few-flower wild rice (Zizania latifolia Turcz.).

    PubMed

    Qian, Bingjun; Luo, Yali; Deng, Yun; Cao, Linkui; Yang, Hongshun; Shen, Yongpei; Ping, Jian

    2012-01-15

    The chemical compositions of the stem and leaf sheath of few-flower wild rice were analysed. In addition, their extracts were evaluated for diphenylpicrylhydrazyl (DPPH) free radical-scavenging activity, ferric-reducing antioxidant power and angiotensin-converting enzyme (ACE)-inhibitory activity, since these are important properties of sources of nutraceuticals or functional foods. The stems contained more ascorbic acid (0.06 g kg(-1) fresh weight), protein (28.18 g kg(-1) dry weight (DW)), reducing sugars (308.54 g kg(-1) DW), water-soluble pectin (20.63 g kg(-1) DW), Na(2) CO(3) -soluble pectin (44.14 g kg(-1) DW), K (8 g kg(-1) dry matter (DM), S (6 g kg(-1) DM) and P (5 g kg(-1) DM) but less starch, total dietary fibre, Si, Na and Ca than the leaf sheaths. The DPPH free radical-scavenging IC(50) values of the stem and leaf sheath extracts were 19.28 and 21.22 mg mL(-1) respectively. In addition, the ACE-inhibitory IC(50) value of the stem extracts was 38.54 mg mL(-1). Both the stem and leaf sheath extracts exhibited good antioxidant properties, while good ACE-inhibitory activity was detected only in the phosphate buffer solution extracts of the stem. Few-flower wild rice could be processed into formula feeds for fish, poultry, etc. or functional foods for persons with high blood pressure. Copyright © 2011 Society of Chemical Industry.

  3. Leaf gas exchange performance and the lethal water potential of five European species during drought.

    PubMed

    Li, Shan; Feifel, Marion; Karimi, Zohreh; Schuldt, Bernhard; Choat, Brendan; Jansen, Steven

    2016-02-01

    Establishing physiological thresholds to drought-induced mortality in a range of plant species is crucial in understanding how plants respond to severe drought. Here, five common European tree species were selected (Acer campestre L., Acer pseudoplatanus L., Carpinus betulus L., Corylus avellana L. and Fraxinus excelsior L.) to study their hydraulic thresholds to mortality. Photosynthetic parameters during desiccation and the recovery of leaf gas exchange after rewatering were measured. Stem vulnerability curves and leaf pressure-volume curves were investigated to understand the hydraulic coordination of stem and leaf tissue traits. Stem and root samples from well-watered and severely drought-stressed plants of two species were observed using transmission electron microscopy to visualize mortality of cambial cells. The lethal water potential (ψlethal) correlated with stem P99 (i.e., the xylem water potential at 99% loss of hydraulic conductivity, PLC). However, several plants that were stressed beyond the water potential at 100% PLC showed complete recovery during the next spring, which suggests that the ψlethal values were underestimated. Moreover, we observed a 1 : 1 relationship between the xylem water potential at the onset of embolism and stomatal closure, confirming hydraulic coordination between leaf and stem tissues. Finally, ultrastructural changes in the cytoplasm of cambium tissue and mortality of cambial cells are proposed to provide an alternative approach to investigate the point of no return associated with plant death. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. 7 CFR 30.3 - Unstemmed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.3 Unstemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have not been removed, including leaf-scrap. ...

  5. 7 CFR 30.3 - Unstemmed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.3 Unstemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have not been removed, including leaf-scrap. ...

  6. 7 CFR 30.3 - Unstemmed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.3 Unstemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have not been removed, including leaf-scrap. ...

  7. 7 CFR 30.3 - Unstemmed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.3 Unstemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have not been removed, including leaf-scrap. ...

  8. 7 CFR 30.3 - Unstemmed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.3 Unstemmed. A form of leaf tobacco consisting of a collection of leaves from which the stems or midribs have not been removed, including leaf-scrap. ...

  9. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes

    PubMed Central

    Duan, T.; Chapman, S.C.; Holland, E.; Rebetzke, G.J.; Guo, Y.; Zheng, B.

    2016-01-01

    Early vigour is an important physiological trait to improve establishment, water-use efficiency, and grain yield for wheat. Phenotyping large numbers of lines is challenging due to the fast growth and development of wheat seedlings. Here we developed a new photo-based workflow to monitor dynamically the growth and development of the wheat canopy of two wheat lines with a contrasting early vigour trait. Multiview images were taken using a ‘vegetation stress’ camera at 2 d intervals from emergence to the sixth leaf stage. Point clouds were extracted using the Multi-View Stereo and Structure From Motion (MVS-SFM) algorithm, and segmented into individual organs using the Octree method, with leaf midribs fitted using local polynomial function. Finally, phenotypic parameters were calculated from the reconstructed point cloud including: tiller and leaf number, plant height, Haun index, phyllochron, leaf length, angle, and leaf elongation rate. There was good agreement between the observed and estimated leaf length (RMSE=8.6mm, R 2=0.98, n=322) across both lines. Significant contrasts of phenotyping parameters were observed between the two lines and were consistent with manual observations. The early vigour line had fewer tillers (2.4±0.6) and larger leaves (308.0±38.4mm and 17.1±2.7mm for leaf length and width, respectively). While the phyllochron of both lines was quite similar, the non-vigorous line had a greater Haun index (more leaves on the main stem) on any date, as the vigorous line had slower development of its first two leaves. The workflow presented in this study provides an efficient method to phenotype individual plants using a low-cost camera (an RGB camera is also suitable) and could be applied in phenotyping for applications in both simulation modelling and breeding. The rapidity and accuracy of this novel method can characterize the results of specific selection criteria (e.g. width of leaf three, number of tillers, rate of leaf appearance) that have been or can now be utilized to breed for early leaf growth and tillering in wheat. PMID:27312669

  10. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.

    PubMed

    Duan, T; Chapman, S C; Holland, E; Rebetzke, G J; Guo, Y; Zheng, B

    2016-08-01

    Early vigour is an important physiological trait to improve establishment, water-use efficiency, and grain yield for wheat. Phenotyping large numbers of lines is challenging due to the fast growth and development of wheat seedlings. Here we developed a new photo-based workflow to monitor dynamically the growth and development of the wheat canopy of two wheat lines with a contrasting early vigour trait. Multiview images were taken using a 'vegetation stress' camera at 2 d intervals from emergence to the sixth leaf stage. Point clouds were extracted using the Multi-View Stereo and Structure From Motion (MVS-SFM) algorithm, and segmented into individual organs using the Octree method, with leaf midribs fitted using local polynomial function. Finally, phenotypic parameters were calculated from the reconstructed point cloud including: tiller and leaf number, plant height, Haun index, phyllochron, leaf length, angle, and leaf elongation rate. There was good agreement between the observed and estimated leaf length (RMSE=8.6mm, R (2)=0.98, n=322) across both lines. Significant contrasts of phenotyping parameters were observed between the two lines and were consistent with manual observations. The early vigour line had fewer tillers (2.4±0.6) and larger leaves (308.0±38.4mm and 17.1±2.7mm for leaf length and width, respectively). While the phyllochron of both lines was quite similar, the non-vigorous line had a greater Haun index (more leaves on the main stem) on any date, as the vigorous line had slower development of its first two leaves. The workflow presented in this study provides an efficient method to phenotype individual plants using a low-cost camera (an RGB camera is also suitable) and could be applied in phenotyping for applications in both simulation modelling and breeding. The rapidity and accuracy of this novel method can characterize the results of specific selection criteria (e.g. width of leaf three, number of tillers, rate of leaf appearance) that have been or can now be utilized to breed for early leaf growth and tillering in wheat. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. The effect of leaf presence on the rooting of stem cutting of bitter melon and on changes in polyamine levels

    USDA-ARS?s Scientific Manuscript database

    The study was conducted to investigate the optimal hormone treatment for rooting in bitter melon and the effect of defoliation on rooting and polyamine levels. Commercial preparation (diluted 1:10 and 1: 20) gave extensive rooting within five days after treatment. The presence of leaf with the stem ...

  12. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems

    Treesearch

    Guang You Hao; William A. Hoffmann; Fabian G. Scholz; Sandra J. Bucci; Frederick C. Meinzer; Augusto C. Franco; Kun Fang Cao; Guillermo Goldstein

    2008-01-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna...

  13. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens.

    PubMed

    Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy

    2014-01-01

    Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7-50 nm and 9-30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.

  14. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Bucci, Sandra J; Goldstein, Guillermo

    2013-12-01

    Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation. The lack of rainfall seasonality in the subtropical forest studied probably does not act as a selective pressure to enhance hydraulic segmentation between leaves and stems.

  15. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna

    PubMed Central

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2017-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a “safety valve” to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia, drought-deciduous Terminthia paniculata, and winter-deciduous Lannea coromandelica, to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50leaf−stem) was positive in P. weinmanniifolia and L. coromandelica, whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies. PMID:28149302

  16. Growth reponses of eggplant and soybean seedlings to mechanical stress in greenhouse and outdoor environments

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Pappas, T.; Mitchell, C. A.

    1986-01-01

    Eggplant (Solanum melongena L. var. esculentum 'Burpee's Black Beauty') and soybean [Glycine max (L.) Merr. 'Wells II'] seedlings were assigned to a greenhouse or a windless or windy outdoor environment. Plants within each environment received either periodic seismic (shaking) or thigmic (flexing or rubbing) treatment, or were left undisturbed. Productivity (dry weight) and dimensional (leaf area and stem length) growth parameters generally were reduced more by mechanical stress in the greenhouse (soybean) or outdoor-windless environment (eggplant) than in the outdoor windy environment. Outdoor exposure enhanced both stem and leaf specific weights, whereas mechanical stress enhanced only leaf specific weight. Although both forms of controlled mechanical stress tended to reduce node and internode diameters of soybean, outdoor exposure increased stem diameter.

  17. Path analysis of phenotypic traits in young cacao plants under drought conditions.

    PubMed

    Santos, Emerson Alves Dos; Almeida, Alex-Alan Furtado de; Branco, Marcia Christina da Silva; Santos, Ivanildes Conceição Dos; Ahnert, Dario; Baligar, Virupax C; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant.

  18. Path analysis of phenotypic traits in young cacao plants under drought conditions

    PubMed Central

    dos Santos, Emerson Alves; de Almeida, Alex-Alan Furtado; Branco, Marcia Christina da Silva; dos Santos, Ivanildes Conceição; Ahnert, Dario; Baligar, Virupax C.; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant. PMID:29408854

  19. Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades

    USGS Publications Warehouse

    Lee, J.K.; Roig, L.C.; Jenter, H.L.; Visser, H.M.

    2004-01-01

    Hydraulic data collected in a flume fitted with pans of sawgrass were analyzed to determine the vertically averaged drag coefficient as a function of vegetation characteristics. The drag coefficient is required for modeling flow through emergent vegetation at low Reynolds numbers in the Florida Everglades. Parameters of the vegetation, such as the stem population per unit bed area and the average stem/leaf width, were measured for five fixed vegetation layers. The vertically averaged vegetation parameters for each experiment were then computed by weighted average over the submerged portion of the vegetation. Only laminar flow through emergent vegetation was considered, because this is the dominant flow regime of the inland Everglades. A functional form for the vegetation drag coefficient was determined by linear regression of the logarithmic transforms of measured resistance force and Reynolds number. The coefficients of the drag coefficient function were then determined for the Everglades, using extensive flow and vegetation measurements taken in the field. The Everglades data show that the stem spacing and the Reynolds number are important parameters for the determination of vegetation drag coefficient. ?? 2004 Elsevier B.V. All rights reserved.

  20. [Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata].

    PubMed

    Zou, Ying-Ning; Wu, Qiang-Sheng; Li, Yan; Huang, Yong-Ming

    2014-04-01

    The effects of inoculation with Glomus mosseae, G. versiforme, and their mixture on plant growth, root system morphology, and sucrose and glucose contents of trifoliate orange (Poncirus trifoliata L.) were studied by pot culture. The results showed that all the inoculated treatments significantly increased the plant height, stem diameter, leaf number, and shoot and root biomass. In addition, the mycorrhizal treatments significantly increased the number of 1st, 2nd, and 3rd lateral roots. Inoculation with arbuscular mycorrhizal fungi significantly increased the root projected area, surface area, volume, and total root length (mainly 0-1 cm root length), but decreased the root average diameter. Meanwhile, G. versiforme showed the best effects. Mycorrhizal inoculation significantly increased the leaf sucrose and root glucose contents, but decreased the leaf glucose and root sucrose contents. Owing to the 'mycorrhizal carbon pool' in roots, inoculation with arbuscular mycorrhizal fungi resulted in high glucose content and low sucrose content of roots, which would facilitate the root growth and development, thereby the establishment of better root system morphology of host plants.

  1. Linking Xylem Hydraulic Conductivity and Vulnerability to the Leaf Economics Spectrum—A Cross-Species Study of 39 Evergreen and Deciduous Broadleaved Subtropical Tree Species

    PubMed Central

    Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge

    2014-01-01

    While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance. PMID:25423316

  2. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum--a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species.

    PubMed

    Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge

    2014-01-01

    While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance.

  3. Species-Specific Effects on Throughfall Kinetic Energy in Subtropical Forest Plantations Are Related to Leaf Traits and Tree Architecture

    PubMed Central

    Bruelheide, Helge; Härdtle, Werner; Kröber, Wenzel; Li, Ying; von Oheimb, Goddert

    2015-01-01

    Soil erosion is a key threat to many ecosystems, especially in subtropical China where high erosion rates occur. While the mechanisms that induce soil erosion on agricultural land are well understood, soil erosion processes in forests have rarely been studied. Throughfall kinetic energy (TKE) is influenced in manifold ways and often determined by the tree’s leaf and architectural traits. We investigated the role of species identity in mono-specific stands on TKE by asking to what extent TKE is species-specific and which leaf and architectural traits account for variation in TKE. We measured TKE of 11 different tree species planted in monocultures in a biodiversity-ecosystem-functioning experiment in subtropical China, using sand-filled splash cups during five natural rainfall events in summer 2013. In addition, 14 leaf and tree architectural traits were measured and linked to TKE. Our results showed that TKE was highly species-specific. Highest TKE was found below Choerospondias axillaris and Sapindus saponaria, while Schima superba showed lowest TKE. These species-specific effects were mediated by leaf habit, leaf area (LA), leaf pinnation, leaf margin, stem diameter at ground level (GD), crown base height (CBH), tree height, number of branches and leaf area index (LAI) as biotic factors and throughfall as abiotic factor. Among these, leaf habit, tree height and LA showed the highest effect sizes on TKE and can be considered as major drivers of TKE. TKE was positively influenced by LA, GD, CBH, tree height, LAI, and throughfall amount while it was negatively influenced by the number of branches. TKE was lower in evergreen, simple leaved and dentate leaved than in deciduous, pinnated or entire leaved species. Our results clearly showed that soil erosion in forest plantations can be mitigated by the appropriate choice of tree species. PMID:26079260

  4. Species-Specific Effects on Throughfall Kinetic Energy in Subtropical Forest Plantations Are Related to Leaf Traits and Tree Architecture.

    PubMed

    Goebes, Philipp; Bruelheide, Helge; Härdtle, Werner; Kröber, Wenzel; Kühn, Peter; Li, Ying; Seitz, Steffen; von Oheimb, Goddert; Scholten, Thomas

    2015-01-01

    Soil erosion is a key threat to many ecosystems, especially in subtropical China where high erosion rates occur. While the mechanisms that induce soil erosion on agricultural land are well understood, soil erosion processes in forests have rarely been studied. Throughfall kinetic energy (TKE) is influenced in manifold ways and often determined by the tree's leaf and architectural traits. We investigated the role of species identity in mono-specific stands on TKE by asking to what extent TKE is species-specific and which leaf and architectural traits account for variation in TKE. We measured TKE of 11 different tree species planted in monocultures in a biodiversity-ecosystem-functioning experiment in subtropical China, using sand-filled splash cups during five natural rainfall events in summer 2013. In addition, 14 leaf and tree architectural traits were measured and linked to TKE. Our results showed that TKE was highly species-specific. Highest TKE was found below Choerospondias axillaris and Sapindus saponaria, while Schima superba showed lowest TKE. These species-specific effects were mediated by leaf habit, leaf area (LA), leaf pinnation, leaf margin, stem diameter at ground level (GD), crown base height (CBH), tree height, number of branches and leaf area index (LAI) as biotic factors and throughfall as abiotic factor. Among these, leaf habit, tree height and LA showed the highest effect sizes on TKE and can be considered as major drivers of TKE. TKE was positively influenced by LA, GD, CBH, tree height, LAI, and throughfall amount while it was negatively influenced by the number of branches. TKE was lower in evergreen, simple leaved and dentate leaved than in deciduous, pinnated or entire leaved species. Our results clearly showed that soil erosion in forest plantations can be mitigated by the appropriate choice of tree species.

  5. Microscopic diagnosis of the leaf and stem of Piper solmsianum C.DC.

    PubMed

    Bertocco, A R P; Migacz, I P; Santos, V L P; Franco, C R C; Silva, R Z; Yunes, R A; Cechinel-Filho, V; Budel, J M

    2017-08-01

    Piper solmsianum C.DC., which is popularly known as pariparoba, is a shrub that measures 1-3 m in height and it inhabits areas with wet tropical soils. The objective of this study was to analyze the leaf and stem anatomy using light microscopy, scanning electron micrographs, and energy-dispersive X-ray spectroscopy in order to provide information for species identification. The anatomical profile showed the following main microscopic markers: hypostomatic leaf; hypodermis layer on both sides; pearl glands; biconvex midrib shape; five collateral vascular bundles in open arc with the central bundle larger than the others; circular stem shape; collateral vascular bundles arranged in two rings; sinuous sclerenchymatic sheath in the pith; secretory idioblasts; and starch grains in the mesophyll, in the ground parenchyma of the midrib, petiole, and in the stem; and six morphotypes of calcium oxalate crystals (styloids, cuneiform, tabular crystal rosettes, cuneiform crystal rosettes, elongated square dipyramids, as well as very elongated square dipyramids). © 2017 Wiley Periodicals, Inc.

  6. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage.

    PubMed

    Tomlinson, Kyle W; van Langevelde, Frank; Ward, David; Bongers, Frans; da Silva, Dulce Alves; Prins, Herbert H T; de Bie, Steven; Sterck, Frank J

    2013-08-01

    Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species. Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g). Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits. Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant allometry could arise due to selection for different types of biomass allocation in response to different environmental stressors (e.g. fire vs. herbivory).

  7. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  8. Comparison of total phenolic content, scavenging activity and HPLC-ESI-MS/MS profiles of both young and mature leaves and stems of Andrographis paniculata.

    PubMed

    Chua, Lee Suan; Yap, Ken Choy; Jaganath, Indu Bala

    2013-12-01

    The total phenolic content and radical scavenging activity of Andrographis paniculata has been investigated to estimate the amount of phenolic compounds and diterpene lactones, respectively in the plant extracts. The stem extracts exhibited higher total phenolic content and scavenging activity than those of the leaf extracts from both young and mature plants. A range of 19.6-47.8 mg extract of A. paniculata from different parts of the plant is equivalent to the scavenging activity exhibited by one mg of standard Trolox. HPLC-ESI-MS/MS was also used to identify simultaneously the phytochemicals from the leaves and stems of both young and mature plant samples. Of the identified compounds, seven of the sixteen diterpene lactones, three of the six flavonoids, five of the six phenolic acids and two cyclic acids are reported here for the first time for this species. Multivariate statistical approaches such as Hierarchiral Component Analysis (HCA) and Principle Component Analysis (PCA) have clustered the plant extracts into the leaf and stem groups, regardless of plant age. Further classification based on the phytochemical profiles revealed that mostly phenolic acids and flavonoids were from the young leaf extracts, and diterpenoids and their glycosides from the mature leaf extracts. However, the phytochemical profiles for the stems of both young and mature plants were not significantly different as presented in the dendrogram of HCA and the score plot of PCA. The marker for mature plants might be the m/z 557 ion (dihydroxyl dimethyl 19-[(beta-D-glucopyranosyl)oxy]-19-oxo-ent-labda-8(17),13-dien-16,15-olide), whereas the m/z 521 ion (propyl neoandrographolide) could be the marker for leaf extracts.

  9. Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging

    PubMed Central

    Tanoi, Keitaro

    2013-01-01

    Participation of the intervascular transport system within the rice stem during cadmium (Cd) partitioning was investigated by characterizing 109Cd behaviour in the shoot. In addition, 45Ca, 32P, and 35S partitioning patterns were analysed for comparison with that of 109Cd. Each tracer was applied to the seedling roots for 15min, and the shoots were harvested either at 15min (i.e. immediately after tracer application) or at 48h. Distribution patterns of each element at 15min were studied to identify the primary transport pathway before remobilization was initiated. 32P was preferentially transported to completely expanded leaf blades having the highest transpiration rate. The newest leaf received minimal amounts of 32P. In contrast, the amount of 35S transported to the newest leaf was similar to that transported to the other mature leaf blades. Preferential movement towards the newest leaf was evident for 109Cd and 45Ca. These results directly indicate that elemental transport is differentially regulated in the vegetative stem as early as 15min before the elements are transported to leaves. Cd behaviour in the stem was investigated in detail by obtaining serial section images from the bottom part of shoots after 109Cd was applied to a single crown root. At 30min, the maximum amount of 109Cd was distributed in the peripheral cylinder of the longitudinal vascular bundles (PV) and, interestingly, some amount of 109Cd was transported downwards along the PV. This transport manner of 109Cd provides evidence that Cd can be loaded on the phloem at the stem immediately after Cd is transported from the root. PMID:23202130

  10. The Analysis of Leaf Shape Using Fractal Geometry.

    ERIC Educational Resources Information Center

    Hartvigsen, Gregg

    2000-01-01

    Describes ways to examine leaf structure and shape using fractal geometry. Students can test hypotheses using the leaves of replicated plants to look for non-linear trends in leaf shape along the stems of plants, across species, and under different environmental growth conditions. (SAH)

  11. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.

    PubMed

    Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C

    2007-01-01

    The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.

  12. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transformmore » mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass.« less

  13. Accumulation and Transfer of Cadmium, by Indica Rice Cultivars Fujian Province of China

    NASA Astrophysics Data System (ADS)

    James, B.; Wang, G.

    2016-12-01

    This study was designed to evaluate the accumulating ability of cadmium (Cd) by different Indica rice varieties and to understand the differences in transfer factor in the soil-to-rice grain. A total of 189 crop samples and 189 corresponding soil samples were collected for treatment and chemical analysis. Sixteen (16) Indica rice varieties were selected for this study. Our preliminary results showed that there exist significant differences (p<0.05) in the grain Cd concentrations of the variety studied. A regression method was adopted to calculate the representative soil-to-grain (TF0.1) of each cultivar. The accumulating ability of cadmium of the 16 cultivars varied greatly.Yi-xiang 2292 had the highest TFsoil-grain (2.91), which was 22 times higher than the lowest cultivar Pei- za-tai- fen (0.13). However, no significant difference in TFsoil-grain was observed between conventional and hybrid cultivars. A further study was carried out to understand the transfer characteristics and accumulating ability of cadmium using four (4) selected cultivars (both of hybrid and conventional indica rice cultivars).The TFstem-grain among the variety revealed that significant differences (p<0.05) exist in the stem of the selected variety in the translocation of Cd among indica rice variety and cadmium decreases in the pattern: root>stem>leaf>grain in the four cultivars except Te -you 009 that showed similar cadmium content in root and stem. Among the hybrid cultivars Yi -you 673 accumulated the most Cadmium in root, stem, leaf and grain, while Te- you 009 accumulated the least Cadmium in root, whereas the conventional cultivar Jia-fu-zhan accumulated the lowest Cadmium in leaf and grain. Our findings also revealed that the Cadmium concentrations in rice grains were more significantly correlated with the Cadmium in stem, followed by leaf, which reveals that the transfer from stem and leaf to grain may be the determinant steps for Cadmium accumulation in the grains.

  14. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    DOE PAGES

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.; ...

    2014-04-15

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transformmore » mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass.« less

  15. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

    PubMed

    da Costa, Ricardo M F; Lee, Scott J; Allison, Gordon G; Hazen, Samuel P; Winters, Ana; Bosch, Maurice

    2014-10-01

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Leaf δ18O of remaining trees is affected by thinning intensity in a semiarid pine forest.

    PubMed

    Moreno-Gutiérrez, Cristina; Barberá, Gonzalo G; Nicolás, Emilio; DE Luis, Martín; Castillo, Víctor M; Martínez-Fernández, Faustino; Querejeta, José I

    2011-06-01

    Silvicultural thinning usually improves the water status of remaining trees in water-limited forests. We evaluated the usefulness of a dual stable isotope approach (δ¹³C, δ¹⁸O) for comparing the physiological performance of remaining trees between forest stands subjected to two different thinning intensities (moderate versus heavy) in a 60-year-old Pinus halepensis Mill. plantation in semiarid southeastern Spain. We measured bulk leaf δ¹³C and δ¹⁸O, foliar elemental concentrations, stem water content, stem water δ¹⁸O (δ¹⁸O(stem water)), tree ring widths and leaf gas exchange rates to assess the influence of forest stand density on tree performance. Remaining trees in low-density stands (heavily thinned) showed lower leaf δ¹⁸O, and higher stomatal conductance (g(s)), photosynthetic rate and radial growth than those in moderate-density stands (moderately thinned). By contrast, leaf δ¹³C, intrinsic water-use efficiency, foliar elemental concentrations and δ¹⁸O(stem water) were unaffected by stand density. Lower foliar δ¹⁸O in heavily thinned stands reflected higher g(s) of remaining trees due to decreased inter-tree competition for water, whereas higher photosynthetic rate was largely attributable to reduced stomatal limitation to CO₂ uptake. The dual isotope approach provided insight into the early (12 months) effects of stand density manipulation on the physiological performance of remaining trees. © 2011 Blackwell Publishing Ltd.

  17. Bud development and shoot morphology in relation to crown location

    PubMed Central

    Kukk, Maarja; Sõber, Anu

    2015-01-01

    Plant architecture is shaped by endogenous growth processes interacting with the local environment. The current study investigated crown development in young black alder trees, assessing the effects of local light conditions and branch height on individual bud mass and contents. In addition, we examined the characteristics of parent shoots [the cross-sectional area (CSA) of stem and total leaf area, shoot length, the number of nodes, the number and total mass of buds per shoot] and leaf–stem as well as bud–stem allometry, as several recent studies link bud development to hydraulic architecture. We sampled shoots from top branches and two lower-crown locations: one subjected to deep shade and the other resembling the upper branches in light availability. Sampling was carried out three times between mid-July and late October, spanning from the early stages of bud growth to dormancy. Individual bud mass and shoot characteristics varied in response to light conditions, whereas leaf–stem allometry depended on branch height, most likely compensating for the increasing length of hydraulic pathways. Despite the differences in individual bud mass, the number of preformed leaves varied little across the crown, indicating that the plasticity in shoot characteristics was mainly achieved by neoformation. The relationship between total bud mass and stem CSA scaled similarly across crown locations. However, scaling slopes gradually decreased throughout the sampling period, driven by bud rather than by stem growth. This suggests that the allometry of total bud mass and CSA of stem is regulated locally, instead of resulting from crown-level processes. PMID:26187607

  18. Growth and physiological responses of beech seedlings to long-term exposure of acid fog.

    PubMed

    Shigihara, Ado; Matsumoto, Kiyoshi; Sakurai, Naoki; Igawa, Manabu

    2008-02-25

    Seven-year-old beech seedlings (Fagus crenata) were exposed to simulated acid fog (SAF) at pH 3 or pH 5 (as control) prepared by adding a 2:1:1 mixture (molar ratio) of nitric acid, ammonium sulfate, and sodium chloride to ultrapure water from September 2004 to July 2006 in a mobile fog chamber. In comparison to control seedlings, seedlings from the pH 3 treatment displayed inferior plant height, stem diameter, number of leaves, and dry matter production, but greater leaf area. Furthermore, exposure to SAF induced early falling of leaves with a nearly two-times-greater normalized leaf number index than control. The starch levels in the stems of seedlings of the pH 3 treatment were much lower than those of control at the harvest. The acid fog-induced reduction of the starch accumulation is considered to occur mainly because of fewer leaves during the growth phase. Results of laboratory experiments demonstrate that the amount of base cations leached from the beech leaves increased with decreasing pH of SAF; the leaching amount of calcium ion from the beech was high relative to that of conifers such as fir and cedar. These results imply that chronic acid fog exposure suppresses growth and physiological activity of beech seedlings.

  19. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  20. Acclimation of leaf water status and stem hydraulics to drought and tree neighbourhood: alternative strategies among the saplings of five temperate deciduous tree species.

    PubMed

    Lübbe, Torben; Schuldt, Bernhard; Leuschner, Christoph

    2017-04-01

    Adjustment in leaf water status parameters and modification in xylem structure and functioning can be important elements of a tree's response to continued water limitation. In a growth trial with saplings of five co-occurring temperate broad-leaved tree species (genera Fraxinus, Acer, Carpinus, Tilia and Fagus) conducted in moist or dry soil, we compared the drought acclimation in several leaf water status and stem hydraulic parameters. Considering the extremes in the species responses, Fraxinus excelsior L. improved its leaf tissue hydration in the dry treatment through osmotic, elastic and apoplastic adjustment while Fagus sylvatica L. solely modified its xylem anatomy, which resulted in increased embolism resistance at the cost of hydraulic efficiency. Our results demonstrate the contrasting response strategies of coexisting tree species and how variable trait plasticity among species can be. The comparison of plants grown either in monoculture or in five-species mixture showed that the neighbouring species diversity can significantly influence a tree's hydraulic architecture and leaf water status regulation. Droughted Carpinus betulus L. (and to a lesser extent, Acer pseudoplatanus L.) plants developed a more efficient stem hydraulic system in heterospecific neighbourhoods, while that of F. sylvatica was generally more efficient in conspecific than heterospecific neighbourhoods. We conclude that co-occurring tree species may develop a high diversity of drought-response strategies, and exploring the full diversity of trait characteristics requires synchronous study of acclimation at the leaf and stem (and possibly also the root) levels, and consideration of physiological as well as morphological and anatomical modifications. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    PubMed

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. In vitro antioxidant and antimicrobial activity of extracts from Morus alba L. leaves, stems and fruits.

    PubMed

    Wang, Wei; Zu, Yuangang; Fu, Yujie; Efferth, Thomas

    2012-01-01

    In this study, the aqueous and ethanolic extracts (leaves, stems and fruits) from Morus alba L., a traditional Chinese medicine, were evaluated for their antioxidant and antimicrobial properties. Ethanolic extracts showed higher contents of both total phenolics and flavonoids than aqueous extracts. The total phenolic content was in the order of: leaf extracts > fruit extracts > stem extracts, whereas the total flavonoids was: leaf extracts > stem extracts > fruit extracts. Using DPPH assays, the concentrations providing 50% inhibition (IC(50)) values of aqueous extracts from leaves, stems and fruits were 7.11 ± 1.45 mg/ml, 86.78 ± 3.21 mg/ml and 14.38 ± 2.83 mg/ml, respectively, whereas the IC(50) values of ethanolic extracts were 3.11 ± 0.86 mg/ml, 14.62 ± 2.45 mg/ml and 12.42 ± 2.76 mg/ml, respectively. In sum, the antioxidant activities of ethanolic extracts from M. alba L. were stronger than the aqueous extracts, and in the order of: leaf extracts > fruit extracts > stem extracts. The ethanolic extracts exhibited moderate antimicrobial activities, whereas the aqueous extracts showed poor antimicrobial properties in our test system. This study validated the medicinal potential of M. alba L.

  3. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development.

    PubMed

    Keller, Thomas; Abbott, Jessica; Moritz, Thomas; Doerner, Peter

    2006-03-01

    Shoot branching is a major determinant of variation in plant stature. Branches, which form secondary growth axes, originate from stem cells activated in leaf axils. The initial steps by which axillary meristems (AMs) are specified and their stem cells organized are still poorly understood. We identified gain- and loss-of-function alleles at the Arabidopsis thaliana REGULATOR OF AXILLARY MERISTEMS1 (RAX1) locus. RAX1 is encoded by the Myb-like transcription factor MYB37 and is an Arabidopsis homolog of the tomato (Solanum lycopersicum) Blind gene. RAX1 is transiently expressed in a small central domain within the boundary zone separating shoot apical meristem and leaf primordia early in leaf primordium development. RAX1 genetically interacts with CUP-SHAPED COTYLEDON (CUC) genes and is required for the expression of CUC2 in the RAX1 expression domain, suggesting that RAX1 acts through CUC2. We propose that RAX1 functions to positionally specify a stem cell niche for AM formation. RAX1 also affects the timing of developmental phase transitions by negatively regulating gibberellic acid levels in the shoot apex. RAX1 thus defines a novel activity that links the specification of AM formation with the modulation of the rate of progression through developmental phases.

  4. Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens

    PubMed Central

    Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy

    2014-01-01

    Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology. PMID:24558336

  5. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  6. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  7. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  8. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  9. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  10. Can Meristematic Activity Determine Variation in Leaf Size and Elongation Rate among Four Poa Species? A Kinematic Study1

    PubMed Central

    Fiorani, Fabio; Beemster, Gerrit T.S.; Bultynck, Lieve; Lambers, Hans

    2000-01-01

    We studied inherent variation in final leaf size among four Poa spp. that live at different elevations. The average final length of leaf 7 of the main stem of the smallest species (Poa alpina) was only one-half that of the largest species (Poa trivialis); it was correlated with leaf elongation rate, but not with the duration of leaf elongation. A faster rate of leaf elongation rate was associated with (a) larger size of the zone of cell expansion, and (b) faster rates of cell production (per cell file) in the meristem, which in turn were due to greater numbers of dividing cells, whereas average cell division rates were very similar for all species (except Poa annua). Also we found that the proliferative fraction equaled 1 throughout the meristem in all species. It was remarkable that rates of cell expansion tended to be somewhat higher in the species with slower growing leaves. We discuss the results by comparing the spatial and material viewpoints, which lead to different interpretations of the role of cell division. Although the presented data do not strictly prove it, they strongly suggest a regulatory role for cell division in determining differences in growth rate among the present four Poa spp. PMID:11027732

  11. Leaf proteomic analysis in cassava (Manihot esculenta, Crantz) during plant development, from planting of stem cutting to storage root formation.

    PubMed

    Mitprasat, Mashamon; Roytrakul, Sittiruk; Jiemsup, Surasak; Boonseng, Opas; Yokthongwattana, Kittisak

    2011-06-01

    Tuberization in cassava (Manihot esculenta Crantz) occurs simultaneously with plant development, suggesting competition of photoassimilate partitioning between the shoot and the root organs. In potato, which is the most widely studied tuber crop, there is ample evidence suggesting that metabolism and regulatory processes in leaf may have an impact on tuber formation. To search for leaf proteins putatively involved in regulating tuber generation and/or development in cassava, comparative proteomic approaches have been applied to monitor differentially expressed leaf proteins during root transition from fibrous to tuberous. Stringent cross comparison and statistical analysis between two groups with different plant ages using Student's t test with 95% significance level revealed a number of protein spots whose abundance were significantly altered (P < 0.05) during week 4 to week 8 of growth. Of these, 39 spots were successfully identified by ion trap LC-MS/MS. The proteins span various functional categories from antioxidant and defense, carbohydrate metabolism, cyanogenesis, energy metabolism, miscellaneous and unknown proteins. Results suggested possible metabolic switches in the leaf that may trigger/regulate storage root initiation and growth. This study provides a basis for further functional characterization of differentially expressed leaf proteins, which can help understand how biochemical processes in cassava leaves may be involved in storage root development.

  12. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    PubMed

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  13. Population status, demography and habitat preferences of the threatened lipstick palm Cyrtostachys renda Blume in Kerumutan Reserve, Sumatra

    NASA Astrophysics Data System (ADS)

    Widyatmoko, Didik; Burgman, Mark A.; Guhardja, Edi; Mogea, Johanis P.; Walujo, Eko B.; Setiadi, Dede

    2005-09-01

    Population status and demography of a population of the threatened lipstick palm Cyrtostachys renda in a peat swamp ecosystem of Kerumutan Reserve, Sumatra (one of the largest remaining populations) was documented at 16 different sites, covering a wide range of forest and habitat types, vegetation associations, and population sizes. Population sizes were dominated by suckers comprising 89% of the total population. Individuals with stem heights between 0 and 4 m (47.5%), stem diameters between 4 and 10 cm (82.0%), and leaf scar numbers between 0 and 60 (69.2%) dominated. Ages of individuals were estimated and used to fit a curvilinear relationship between age and stem height. Wild plants reach reproductive maturity within 25-30 years, or when they have stem heights in excess of 2.0 m, or when they have 15-25 leaf scars. They can survive more than 80 years. Cultivated plants appear to reproduce earlier and produce more seeds than wild plants. Individual growth was plant size-dependent with the adult stage being the most productive. Higher mortality was experienced by suckers, especially in continuously waterlogged conditions and locations with dense canopies. Sucker growth was faster than seedling growth, an adaptation that may allow the species to cope with periodically waterlogged conditions. Population abundances varied with habitat types; well-drained areas were the most suitable habitat. To conserve the most important remaining populations of the lipstick palm, it is crucial to protect well-drained sites in Kerumutan Reserve.

  14. [Effect of different organic fertilizers on bioavailability of soil Cd and Zn].

    PubMed

    Xie, Yun-he; Ji, Xiong-hui; Wu, Jia-mei; Huang, Juan; Guan, Di; Zhu, Jian

    2015-03-01

    The active effect of soil Cd and Zn and their interaction was studied in typical paddy field in south China by monitoring the contents of Cd and Zn in soil and rice in rice fields applied with pig manure, chicken manure or rice straw for 4 years continuously. The results showed that applying pig manure, chicken manure or rice straw had no significant impact on the soil total Cd content, soil available Cd content and soil Cd activity, but tended to increase the soil total Cd content and increased the soil total Zn content, soil available Zn content and Zn activity significantly. Applications of pig manure, chicken manure and rice straw all reduced the Cd content of brown rice, in order of pig manure > chicken manure > rice straw. The Cd contents of brown rice, stem and leaf in the treatment applied with pig manure were lower than in the control by 37.5%, 44.0% and 36.4%, respectively; the Cd contents of brown rice, stem and leaf in the treatment applied with chicken manure were lower than in the control by 22.5%, 33.8%, and 22.7%, respectively; the Cd content of brown rice in the treatment applied with rice straw was lower than in the control by 7.5% but its contents in stem and leaf increased by 8.2% and 22.7% , respectively. The reduction in the brown rice Cd content was mainly due to the reduction of Cd enrichment from soil to brown rice after application of pig or chicken manure, but mainly due to the reduction of Cd transportation from stem to brown rice after straw application. Applications of pig manure, chicken manure and rice straw increased Zn contents in rice stem by 53.4%, 53.4% and 13.9%, respectively, but all had no significant effect on brown rice and leaf' s Zn contents. Zn and Cd had the significant antagonistic effects in the soil and rice stem. The increase of Zn content in soil and rice stem inhibited the adsorption and accumulation of Cd in the brown rice, stem and leaf significantly, and with the increase of the proportion of Zn/Cd, the competitive absorption between Cd and Zn by rice was the main control factor affecting the Cd absorption by rice than their competitive adsorption by soil.

  15. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    PubMed

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  16. Effects of hawthorn ( Crataegus pentagyna) leaf extract on electrophysiologic properties of cardiomyocytes derived from human cardiac arrhythmia-specific induced pluripotent stem cells.

    PubMed

    Pahlavan, Sara; Tousi, Marziyeh Shalchi; Ayyari, Mahdi; Alirezalu, Abolfazl; Ansari, Hassan; Saric, Tomo; Baharvand, Hossein

    2018-03-01

    Cardiac arrhythmias are major life-threatening conditions. The landmark discovery of induced pluripotent stem cells has provided a promising in vitro system for modeling hereditary cardiac arrhythmias as well as drug development and toxicity testing. Nowadays, nutraceuticals are frequently used as supplements for cardiovascular therapy. Here we studied the cardiac effects of hawthorn ( Crataegus pentagyna) leaf extract using cardiomyocytes (CMs) differentiated from healthy human embryonic stem cells, long QT syndrome type 2 (LQTS2), and catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) patient-specific induced pluripotent stem cells. The hydroalcoholic extract resulted in a dose-dependent negative chronotropic effect in all CM preparations leading to a significant reduction at 1000 µg/ml. This was accompanied by prolongation of field potential durations, although with different magnitudes in CMs from different human embryonic stem cell and iPSC lines. Hawthorn further prolonged field potential durations in LQTS2 CMs but reduced the beating frequencies and occurrence of immature field potentials triggered by β 1 -adrenergic stimulation in CPVT1 CMs at 300 and 1000 µg/ml. Furthermore, isoquercetin and vitexin flavonoids significantly slowed down isoproterenol (5 µM)-induced beating frequencies at 3 and 10 µg/ml. Therefore, C. pentagyna leaf extract and its isoquercetin and vitexin flavonoids may be introduced as a novel nutraceutical with antiarrhythmic potential for CPVT1 patients.-Pahlavan, S., Tousi, M. S., Ayyari, M., Alirezalu, A., Ansari, H., Saric, T., Baharvand, H. Effects of hawthorn ( Crataegus pentagyna) leaf extract on electrophysiologic properties of cardiomyocytes derived from human cardiac arrhythmia-specific induced pluripotent stem cells.

  17. Inherent and environmental patterns in biomass allocation and allometry among higher plants

    NASA Astrophysics Data System (ADS)

    Poorter, Hendrik

    2017-04-01

    It is well-known that plants may adjust the distribution of biomass over leaves, stems and roots depending on environmental conditions. It is also clear that size is an important factor as well. However, good quantitative insights are lacking. In this talk I analyse biomass allocation patterns to leaves, stems and roots of herbs and woody species. A database was compiled with 11.000 records of leaf, stem and root biomass for 1200 species. First, I'll derive general dose-response curves that describe the relationship between biomass allocation and the 12 most important a-biotic environmental factors and compare them with the changes in leaf, stem and root morphology. Second, I'll focus on allometric relationships between the various organs and test to what extent they comply with models like that for Metabolic Scaling Theory, where the slope of the log-log relationship between leaf and root biomass is expected to have a value of ¾. Third, I analyse how leaf, stem and root mass fractions change as a function of total plant size. This offers a great opportunity to test to what extent there are systematic differences in allocation patterns related to phylogeny (e.g. Gymnosperms vs. Angiosperms, grasses vs. herbaceous dicots) and functional group (e.g. deciduous vs. evergreens). Poorter et al. (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193: 30-50. Poorter & Sack (2012) Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3: 259. Poorter et al. (2015) How does biomass distribution change with size and differ among species? New Phytol. 208: 736-749

  18. Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species?

    PubMed

    Hukin, D; Cochard, H; Dreyer, E; Le Thiec, D; Bogeat-Triboulot, M B

    2005-08-01

    Populus euphratica is a poplar species growing in arid regions of Central Asia, where its distribution remains nevertheless restricted to river-banks or to areas with an access to deep water tables. To test whether the hydraulic architecture of this species differs from that of other poplars with respect to this ecological distribution, the vulnerability to cavitation of P. euphratica was compared with that of P. alba and of P. trichocarpa x koreana. The occurrence of a potential hydraulic segmentation through cavitation was also investigated by assessing the vulnerability of roots, stems, and leaf mid-rib veins. Cryo-scanning electron microscopy (cryo-SEM) was used to assess the level of embolism in fine roots and leaf mid-ribs and a low pressure flowmeter (LPFM) was used for stems and main roots. The cryo-SEM technique was validated against LPFM measurements on paired samples. In P. alba and P. trichocarpa x koreana, leaf mid-ribs were more vulnerable to cavitation than stems and roots. In P. euphratica, leaf mid-ribs and stems were equally vulnerable and, contrary to what has been observed in other species, roots were significantly less vulnerable than shoots. P. euphratica was by far the most vulnerable. The water potential inducing 50% loss of conductivity in stems was close to -0.7 MPa, against approximately -1.45 MPa for the two others species. Such a large vulnerability was confirmed by recording losses of conductivity during a gradual drought. Moreover, significant stem embolism was recorded before stomatal closure, indicating the lack of an efficient safety margin for hydraulic functions in this species. Embolism was not reversed by rewatering. These observations are discussed with respect to the ecology of P. euphratica.

  19. Growth and development of tomato plants Lycopersicon Esculentum Mill. under different saline conditions by fertirrigation with pretreated cheese whey wastewater.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-01-01

    Pretreated cheese whey wastewater (CWW) has been used at different salinity levels: 1.75, 2.22, 3.22, 5.02 and 10.02 dS m(-1) and compared with fresh water (1.44 dS m(-1)). Two cultivars (cv.) of the tomato plant Lycopersicon Esculentum Mill. (Roma and Rio Grande) were exposed to saline conditions for 72 days. Salinity level (treatment) had no significant effects on the fresh weight and dry matter of the leaves, stems and roots. Similar results were found when specific leaf area, leaflet area, ramifications number of 1st order/plant, stem diameter and length, nodes number/stem and primary root length were considered. Conversely, the salinity level significantly influenced the Soil Plant Analysis Development (SPAD) index and the distance between nodes in the plant stem. In the first case, an increase of 21% was obtained in the salinity levels of 5.02 and 10.02 dS m(-1) for cv. Rio Grande, compared with the control run. The results showed that the pretreated CWW can be a source of nutrients for tomato plants, with reduced effects on growth and development.

  20. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    NASA Astrophysics Data System (ADS)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  1. The effect of cutting origin and organic plant growth regulator on the growth of Daun Ungu (Graptophyllum pictum) through stem cutting method

    NASA Astrophysics Data System (ADS)

    Pratama, S. P.; Yunus, A.; Purwanto, E.; Widyastuti, Y.

    2018-03-01

    Graptophyllum pictum is one of medical plants which has important chemical content to treat diseases. Leaf, bark and flower can be used to facilitate menstruation, treat hemorrhoid, constipation, ulcers, ulcers, swelling, and earache. G. pictum is difficult to propagated by seedling due to the long duration of seed formation, thusvegetative propagation is done by stem cutting. The aims of this study are to obtain optimum combination of cutting origin and organic plant growth regulator in various consentration for the growth of Daun Ungu through stem cutting method. This research was conducted at Research center for Medicinal Plant and Traditional DrugTanjungsari, Tegal Gede, Karanganyar in June to August 2016. Origin of cuttings and organic plant growth regulator were used as treatments factor. A completely randomized design (RAL) is used and data were analyzed by F test (ANOVA) with a confidence level of 95%. Any significant differences among treatment followed with Duncan test at a = 5%. The research indicates that longest root was resulted from the treatment of 0,5 ml/l of organic plant growth regulator. The treatment of 1 ml/l is able to increase the fresh and dry weight of root, treatment of 1,5 ml/l of organic plant growth regulator was able to increase the percentage of growing shoots. Treatment of base part as origin of cuttings increases the length, fresh weight and and dry weight of shoot, increase the number of leaves. Interaction treatment between 1 ml/l consentration of organic plant growth regulator and central part origin of cuttings is capable of increasing the leaf area, whereas treatment without organic plant growth regulator and base part as planting material affects the smallest leaf area.

  2. 7 CFR 51.578 - Branch.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...

  3. 7 CFR 51.578 - Branch.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...

  4. [Phytoremediation of mercury and cadmium polluted wetland by Arundo donax].

    PubMed

    Han, Zhiping; Hu, Xiaobin; Hu, Zhenghai

    2005-05-01

    With a pot culture of simulated mercury (Hg) and cadmium (Cd)-polluted wetland, this paper studied the capability of Arundo donax in accumulating these heavy metals, and their distribution in the plant. The results showed that after grown in a 101 mg.kg(-1) Hg-polluted wetland for 8 months, the Hg-concentrating capability of Arundo donax was in order of root > stem > leaf, and the Hg concentration in its aboveground parts was 200 +/- 20 mg.kg(-1) (DW); while in the case of 115 mg.kg(-1) Cd-pollution, the Cd-concentrating capability was in order of leaf > root > stem, and the Cd concentration in leaf was 160 +/- 26 mg.kg(-1) (DW). The heavy metals concentration in Arundo donax organs increased with its growth time, being 30%-50% higher for 8 months than for 4 months. The BCF (Bio-concentration factor) decreased with increasing heavy metals concentration. In polluted wetland, the BCFs of Hg by the leaf and stem were 1.9 and 2.1, and those of Cd were 1.5 and 0.3, respectively; while in unpolluted wetland, the concentration of Hg and Cd was 6.8 and 8.5 mg.kg(-1), the BCFs of Hg by the leaf and stem were 6.8 and 12.2, and those of Cd were 7.0 and 2.7, respectively. It was indicated that Arundo donax not only had the characters of large biomass, exuberant root, and good adaptability, but also exhibited high tolerance and concentrating capability to Cd and Hg.

  5. Stem sapwood permeability in relation to crown dominance and site quality in self-thinning fire-origin lodgepole pine stands.

    PubMed

    Reid, Douglas E B; Silins, Uldis; Lieffers, Victor J

    2003-08-01

    Stem sapwood hydraulic permeability, tree leaf area, sapwood basal area, earlywood to latewood ratio of annual rings, radial variation in hydraulic permeability and stem hydraulic capacity were examined in dominant (D), codominant (CD) and suppressed (SP) lodgepole pine (Pinus contorta Dougl. ex Loud.) trees growing on medium and poor sites. Hydraulic permeability on a sapwood area basis (ks) was lower in suppressed trees (0.71 x 10(-12) m2) compared to dominants (1.97 x 10(-12) m2) and codominants (1.79 x 10(-12) m2), and higher on medium than on poor sites. The leaf/sapwood area ratio (S) varied with crown dominance position (D > CD > SP) but not by site type. Leaf specific conductivity (kL) did not vary between crown classes or site types. The relationship between leaf area and stem hydraulic supply capacity (Q*) was strong, but differed among crown classes. Dominant trees and trees from the medium sites had a greater proportion of earlywood in outer rings of sapwood than suppressed trees. Sapwood permeability declined from the cambium to the sapwood-heartwood boundary in all samples, but the decline was more gradual in dominant trees compared to codominant and suppressed trees; differences in the radial variation in sapwood permeability may be related to differences in S. Sapwood permeability is positively related to crown dominance, whereas subdominant (CD and SP) trees have greater Q* in relation to leaf area, leading us to propose that this may give subdominant trees a survival advantage, slowing self-thinning.

  6. Potential effect of stand structure on belowground allocation

    Treesearch

    Thomas J. Dean

    2001-01-01

    Stand structure affects two key variables that affect biomass allocation to the stem: leaf area and height to the center of the crown. By translating wind forces into bending moment, these variables generate bending stress within a stem. The uniform stress axiom of stem formation can be used to calculate current stem mass for a given bending moment and stem allocation...

  7. Anti-Inflammatory Activity and Changes in Antioxidant Properties of Leaf and Stem Extracts from Vitex mollis Kunth during In Vitro Digestion

    PubMed Central

    Morales-Del-Rio, Juan Alfredo; Gutiérrez-Lomelí, Melesio; Robles-García, Miguel Angel; Aguilar, Jose Antonio; Lugo-Cervantes, Eugenia; Guerrero-Medina, Pedro Javier; Ruiz-Cruz, Saul; Cinco-Moroyoqui, Francisco J.; Wong-Corral, Francisco J.; Del-Toro-Sánchez, Carmen Lizette

    2015-01-01

    Vitex mollis is used in traditional Mexican medicine for the treatment of some ailments. However, there are no studies on what happens to the anti-inflammatory activity or antioxidant properties and total phenolic content of leaves and stem extracts of Vitex mollis during the digestion process; hence, this is the aim of this work. Methanolic, acetonic, and hexanic extracts were obtained from both parts of the plant. Extract yields and anti-inflammatory activity (elastase inhibition) were measured. Additionally, changes in antioxidant activity (DPPH and ABTS) and total phenols content of plant extracts before and after in vitro digestion were determined. The highest elastase inhibition to prevent inflammation was presented by hexanic extracts (leaf = 94.63% and stem = 98.30%). On the other hand, the major extract yield (16.14%), antioxidant properties (ABTS = 98.51% and DPPH = 94.47% of inhibition), and total phenols (33.70 mg GAE/g of dried sample) were showed by leaf methanolic extract. Finally, leaf and stem methanolic extracts presented an antioxidant activity increase of 35.25% and 27.22%, respectively, in comparison to their initial values after in vitro digestion process. All samples showed a decrease in total phenols at the end of the digestion. These results could be the basis to search for new therapeutic agents from Vitex mollis. PMID:26451153

  8. Evaluation of drought response of two poplar clones (Populus x canadensis Monch 'I-214' and P. deltoides Marsh. 'Dvina') through high resolution analysis of stem growth.

    PubMed

    Giovannelli, Alessio; Deslauriers, Annie; Fragnelli, Giuseppe; Scaletti, Luciano; Castro, Gaetano; Rossi, Sergio; Crivellaro, Alan

    2007-01-01

    Different irrigation effects on stem radius variation (DeltaR) and maximum daily shrinkage (MDS) in Populus deltoides 'Dvina' and Populusxcanadensis 'I-214' were studied to assess differences in drought tolerance between clones. One-year-old trees growing in concrete tanks were submitted to two irrigation regimes (natural rainfall and irrigation) from 24 June to 10 August, and DeltaR was monitored by automatic point dendrometers. Independently of the irrigation regime, 'Dvina' showed a higher stem radial increment than 'I-214'. In both clones, the first response to changed soil water content was a significant increase in MDS, whilst DeltaR decreased about 20 d later when pre-dawn leaf water potential (Psipd) dropped below -0.4 MPa. However, they displayed different strategies to overcome drought. 'Dvina' maintained a positive DeltaR for longer than 'I-214', which had lower leaf Psipd and greater leaf abscission at the end of the drought period. After irrigation resumed, 'Dvina' showed a higher capacity to restore stem growth. 'I-214' was probably unable to recover secondary growth because of higher leaf abscission during drought stress and the production of newly expanded leaves during recovery. It is concluded that the larger radial growth of 'Dvina' derived from a better water use (carbon uptake versus water loss) than 'I-214' under limited water availability.

  9. Effect of wind-induced drag on leaf shapes

    NASA Astrophysics Data System (ADS)

    Louf, Jean-Francois; Ntoh Song, Pierre; Zehnbauer, Tim; Jung, Sunghwan

    2016-11-01

    Under windy conditions everyone can see leaves bending and twisting. From a geometrical point of view, a leaf is composed of two parts: a large flat plate called the lamina, and a small beam called the petiole, connecting the lamina to the branch/stem. While the wind is exerting forces (e.g. drag) on the lamina, the petiole undergoes twisting and bending stresses. To survive in harsh abiotic conditions, leaves might have evolved to form in many different shapes, resulting from a coupling between the lamina and the petiole. In this study we measure the twisting modulus (G) of the petiole using a twisting setup, and its Young modulus (E) by performing tensile tests. Micro-CT scan is used to precisely measure the cross section of the petiole allowing us to calculate the second moment of inertia (I) and the second moment of area (J). We then use the non-dimensional number EI/GJ and compare it to a geometrical non-dimensional number (Lpetiole +Llamina/2)/W, where Lpetiole is the length of the petiole, Llamina the length of the lamina, and W the width of the lamina. We found a linear relation between the ratio of the bending to twisting rigidity and the leaf geometry.

  10. 7 CFR 29.6037 - Stem.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Stem. 29.6037 Section 29.6037 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6037 Stem. The midrib or large central vein of a tobacco leaf. ...

  11. 7 CFR 29.6037 - Stem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Stem. 29.6037 Section 29.6037 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6037 Stem. The midrib or large central vein of a tobacco leaf. ...

  12. 7 CFR 29.6037 - Stem.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Stem. 29.6037 Section 29.6037 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6037 Stem. The midrib or large central vein of a tobacco leaf. ...

  13. 7 CFR 29.6037 - Stem.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Stem. 29.6037 Section 29.6037 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6037 Stem. The midrib or large central vein of a tobacco leaf. ...

  14. 7 CFR 29.6037 - Stem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Stem. 29.6037 Section 29.6037 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6037 Stem. The midrib or large central vein of a tobacco leaf. ...

  15. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat.

    PubMed

    Herrera-Foessel, Sybil A; Singh, Ravi P; Lillemo, Morten; Huerta-Espino, Julio; Bhavani, Sridhar; Singh, Sukhwinder; Lan, Caixia; Calvo-Salazar, Violeta; Lagudah, Evans S

    2014-04-01

    We demonstrate that Lr67/Yr46 has pleiotropic effect on stem rust and powdery mildew resistance and is associated with leaf tip necrosis. Genes are designated as Sr55, Pm46 and Ltn3 , respectively. Wheat (Triticum aestivum) accession RL6077, known to carry the pleiotropic slow rusting leaf and yellow rust resistance genes Lr67/Yr46 in Thatcher background, displayed significantly lower stem rust (P. graminis tritici; Pgt) and powdery mildew (Blumeria graminis tritici; Bgt) severities in Kenya and in Norway, respectively, compared to its recurrent parent Thatcher. We investigated the resistance of RL6077 to stem rust and powdery mildew using Avocet × RL6077 F6 recombinant inbred lines (RILs) derived from two photoperiod-insensitive F3 families segregating for Lr67/Yr46. Greenhouse seedling tests were conducted with Mexican Pgt race RTR. Field evaluations were conducted under artificially initiated stem rust epidemics with Pgt races RTR and TTKST (Ug99 + Sr24) at Ciudad Obregon (Mexico) and Njoro (Kenya) during 2010-2011; and under natural powdery mildew epiphytotic in Norway at Ås and Hamar during 2011 and 2012. In Mexico, a mean reduction of 41 % on stem rust severity was obtained for RILs carrying Lr67/Yr46, compared to RILs that lacked the gene, whereas in Kenya the difference was smaller (16 %) but significant. In Norway, leaf tip necrosis was associated with Lr67/Yr46 and RILs carrying Lr67/Yr46 showed a 20 % reduction in mean powdery mildew severity at both sites across the 2 years of evaluation. Our study demonstrates that Lr67/Yr46 confers partial resistance to stem rust and powdery mildew and is associated with leaf tip necrosis. The corresponding pleiotropic, or tightly linked, genes, designated as Sr55, Pm46, and Ltn3, can be utilized to provide broad-spectrum durable disease resistance in wheat.

  16. Variations of the chemical composition and bioactivity of essential oils from leaves and stems of Liquidambar styraciflua (Altingiaceae).

    PubMed

    El-Readi, Mahmoud Z; Eid, Hanaa H; Ashour, Mohamed L; Eid, Safaa Y; Labib, Rola M; Sporer, Frank; Wink, Michael

    2013-11-01

    This study aimed to evaluate the variations of the chemical composition and bioactivity of essential oils of Liquidambar styraciflua L. (Altingiaceae) collected in different seasons. The oils were analysed by GLC/FID and GLC/MS. The antioxidant activity was investigated by diphenylpicrylhydrazyl (DPPH) and superoxide anion radical scavenging assays and the deoxyribose degradation assay. Inhibition of both 5-lipoxygenase (5-LOX) and prostaglandin E2 (PGE2) production in hepatic cancer (HepG-2) cells were used to assess the anti-inflammatory activity. The cytotoxic activity was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Altogether, 64 volatile secondary metabolites were identified. The major components of the leaf oil were d-limonene, α-pinene and β-pinene, and of the stem oil were germacrine D, α-cadinol, d-limonene, α-pinene, and β-pinene. Leaf and stem oils collected in spring could reduce DPPH● (IC50 = 3.17 and 2.19 mg/ml) and prevent the degradation of the deoxyribose sugar (IC50 = 17.55 and 14.29 μg/ml). The stem oil exhibited a higher inhibition of both 5-LOX and PGE2 than the leaf oil. The cytotoxic activity of leaf and stem oils was low in cancer cell lines (IC50 = 136.27 and 119.78 μg/ml in cervical cancer (HeLa) cells). Essential oils of L. styraciflua exhibited an interesting anti-inflammatory activity with low cytotoxicity, supporting its traditional use to treat inflammation. © 2013 Royal Pharmaceutical Society.

  17. Becoming less tolerant with age: sugar maple, shade, and ontogeny.

    PubMed

    Sendall, Kerrie M; Lusk, Christopher H; Reich, Peter B

    2015-12-01

    Although shade tolerance is often assumed to be a fixed trait, recent work suggests ontogenetic changes in the light requirements of tree species. We determined the influence of gas exchange, biomass distribution, and self-shading on ontogenetic variation in the instantaneous aboveground carbon balance of Acer saccharum. We quantified the aboveground biomass distributions of 18 juveniles varying in height and growing in low light in a temperate forest understory in Minnesota, USA. Gas exchange rates of leaf and stem tissues were measured, and the crown architecture of each individual was quantified. The YPLANT program was used to estimate the self-shaded fraction of each crown and to model net leaf-level carbon gain. Leaf respiration and photosynthesis per gram of leaf tissue increased with plant size. In contrast, stem respiration rates per gram of stem tissue declined, reflecting a shift in the distribution of stem diameter sizes from smaller (with higher respiration) to larger diameter classes. However, these trends were outweighed by ontogenetic increases in self-shading (which reduces the net photosynthesis realized) and stem mass fraction (which increases the proportion of purely respiratory tissue) in terms of influence on net carbon exchange. As a result, net carbon gain per gram of aboveground plant tissue declined with increasing plant size, and the instantaneous aboveground light compensation point increased. When estimates of root respiration were included to model whole-plant carbon gain and light compensation points, relationships with plant size were even more pronounced. Our findings show how an interplay of gas exchange, self-shading, and biomass distribution shapes ontogenetic changes in shade tolerance.

  18. Combining Metabolic Profiling and Gene Expression Analysis to Reveal the Biosynthesis Site and Transport of Ginkgolides in Ginkgo biloba L.

    PubMed Central

    Lu, Xu; Yang, Hua; Liu, Xinguang; Shen, Qian; Wang, Ning; Qi, Lian-wen; Li, Ping

    2017-01-01

    The most unique components of Ginkgo biloba extracts are terpene trilactones (TTLs) including ginkgolides and bilobalide. Study of TTLs biosynthesis has been stagnant in recent years. Metabolic profiling of 40 compounds, including TTLs, flavonoids, and phenolic acids, were globally analyzed in leaf, fibrous root, main root, old stem and young stem extracts of G. biloba. Most of the flavonoids were mainly distributed in the leaf and old stem. Most of phenolic acids were generally distributed among various tissues. The total content of TTLs decreased in the order of the leaf, fibrous root, main root, old stem and young stem. The TTLs were further analyzed in different parts of the main root and old stem. The content of TTLs decreases in the order of the main root periderm, the main root cortex and phloem and the main root xylem. In old stems, the content of TTLs in the cortex and phloem was much higher than both the old stem periderm and xylem. The expression patterns of five key genes in the ginkgolide biosynthetic pathway were measured by real-time quantitative polymerase chain reaction (RT-Q-PCR). Combining metabolic profiling and RT-Q-PCR, the results showed that the fibrous root and main root periderm tissues were the important biosynthesis sites of ginkgolides. Based on the above results, a model of the ginkgolide biosynthesis site and transport pathway in G. biloba was proposed. In this putative model, ginkgolides are synthesized in the fibrous root and main root periderm, and these compounds are then transported through the old stem cortex and phloem to the leaves. PMID:28603534

  19. 7 CFR 29.3059 - Stem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Stem. 29.3059 Section 29.3059 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Stem. The midrib or large central vein of a tobacco leaf. [24 FR 8771, Oct. 29, 1959. Redesignated at...

  20. 7 CFR 29.3059 - Stem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Stem. 29.3059 Section 29.3059 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Stem. The midrib or large central vein of a tobacco leaf. [24 FR 8771, Oct. 29, 1959. Redesignated at...

  1. 7 CFR 29.3059 - Stem.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Stem. 29.3059 Section 29.3059 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Stem. The midrib or large central vein of a tobacco leaf. [24 FR 8771, Oct. 29, 1959. Redesignated at...

  2. 7 CFR 29.3059 - Stem.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Stem. 29.3059 Section 29.3059 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Stem. The midrib or large central vein of a tobacco leaf. [24 FR 8771, Oct. 29, 1959. Redesignated at...

  3. 7 CFR 29.3059 - Stem.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Stem. 29.3059 Section 29.3059 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Stem. The midrib or large central vein of a tobacco leaf. [24 FR 8771, Oct. 29, 1959. Redesignated at...

  4. Volatile Constituents of Three Piper Species from Vietnam.

    PubMed

    Hieua, Le D; Hoic, Tran M; Thangda, Tran D; Ogunwande, Isiaka A

    2015-11-01

    The chemical compositions of the essential oils obtained by hydrodistillation of three Piper plants grown in Vietnam are reported. The analysis was achieved by means of gas chromatography with flame ionization detection (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). The main constituents of the leaf oil of Piper majusculum Blume were β-caryophyllene (20.7%), germacrene D (18.6%) and β-elemene (11.3%). The quantitatively significant compounds of the volatile oils of P. harmandii C. DC were sabinene (leaves, 14.5%; stems, 16.2%), benzyl benzoate (leaves, 20.0%; stems, 29.40%) and benzyl salicylate (leaves, 14.1%; stems, 24.3%). Also, α-cadinol (17.0%) was identified in large proportion in the leaf oil. However, sabinene (leaves, 17.9%; stems, 13.5%), benzyl benzoate (leaves, 20.5%; stems, 32.5%) and β-eudesmol (leaves, 13.8%; stems, 8.4%) were the main constituents of P. brevicaule C. DC. This is the first report on the volatile constituents of both P. harmandii and P. brevicaule.

  5. Antixenosis and Antibiosis Resistance in Rice Cultivars against Chilo suppressalis (Walker) (Lepidoptera: Crambidae).

    PubMed

    Tabari, M A; Fathi, S A A; Nouri-Ganbalani, G; Moumeni, A; Razmjou, J

    2017-08-01

    The striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), is an important pest afflicting rice in most rice-growing countries in the world. Deliniating the categories of resistance in rice genotypes under field conditions could be helpful in managment of this pest. Two categories of resistance, antixenosis and antibiosis, were examined in ten popular and diverse rice genotypes of different origin that had been selected for their resistance to the striped stem borer in a previous study. Significant differences were found between genotypes for the number of egg masses, number of eggs, preference index, larval and pupal weight, larval development time, larval survival rate, larval mine length, and leaf trichome density. It was found that the rice genotypes Novator, A7801, and Nemat had the more pronounced antixenosis-type resistance, whereas AB1 and Shirodi had better antiobiosis-type resistance. Interestingly, the rice genotype AN-74 for which Nemat is the parental line showed both types of resistance and could be effectively used in an integrated pest management of the rice striped stem borer.

  6. [Effect of silicon on translocation and morphology distribution of lead in soil-tobacco system].

    PubMed

    Yan, Yi-Hua; Zheng, Zi-Cheng; Li, Ting-Xuan; Zhang, Xi-Zhou; Wang, Yong

    2014-10-01

    Taking tobacco as test material, a pot experiment was conducted to study the effect of silicon on translocation of lead (Pb) form soil to tobacco in order to explore effective measures for reducing Pb concentration in tobacco leaf. The results showed that silicon application promoted the transformation of exchangeable Pb into Fe-Mn oxide-bound Pb in non-rhizospheric soil, and into Fe-Mn oxide-bound Pb and residual Pb in rhizospheric soil, which decreased the availability and mobility of Pb in the soil. Silicon application significantly reduced the Pb uptake of tobacco, with the content of Pb being decreased by 6.5% to 44.0% in tobacco, and 3.1% to 60.4% in leaf. Silicon application promoted the transformation of ethanol-extractable, H2O-extractable Pb and NaCl-extractable Pb into HCl-extractable Pb and residual Pb in root, stem and leaf of tobacco, which reduced the toxicity and mobility of Pb in tobacco. Silicon restricted the transportation of Pb from soil to tobacco leaf by reducing the mobility index of Pb from soil to root and the mobility index of Pb from root to stem in soil-tobacco system. Meanwhile, the mobility index of Pb from stem to leaf in soil-tobacco system showed a rising-and-falling trend with the increase of Pb application. Silicon inhibited the Pb migration from soil to tobacco leaf by reducing availability of Pb, mitigating toxicity of Pb to tobacco, and changing the distribution of Pb forms in tobacco, consequently reducing Pb concentration of tobacco leaf. These results demonstrated silicon application could be effective in reducing translocation of Pb from soil to tobacco.

  7. Thigmomorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation.

    PubMed

    Telewski, F W; Jaffe, M J

    1986-01-01

    Twenty-three open pollinated families (half-sibs) and four controlled pollinated families (full-sibs) of Pinus taeda L. (loblolly pine) were grown in a greenhouse and analyzed for changes induced by mechanical perturbation (MP). These changes included inhibition of stem and needle elongation, bracing of branch nodes, and increased radial growth in the direction of the MP. Inhibition of stem elongation was the least variable feature measured. Leaf extension and stem diameter were highly variable between half-sibs. MP induced increased drag in greenhouse grown P. taeda in wind-tunnel tests. In P. taeda, MP induced decreased flexibility and increased elasticity and plasticity of the stem. The increased radial growth of the stems overrode the increase in elasticity, resulting in an overall decrease in flexibility. MP trees had a higher rupture point than non-MP controls. Increased radial growth is a result of more rapid cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decreased leader growth is partly due to a decreased tracheid length in response to MP.

  8. Thigmomorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation

    NASA Technical Reports Server (NTRS)

    Telewski, F. W.; Jaffe, M. J.

    1986-01-01

    Twenty-three open pollinated families (half-sibs) and four controlled pollinated families (full-sibs) of Pinus taeda L. (loblolly pine) were grown in a greenhouse and analyzed for changes induced by mechanical perturbation (MP). These changes included inhibition of stem and needle elongation, bracing of branch nodes, and increased radial growth in the direction of the MP. Inhibition of stem elongation was the least variable feature measured. Leaf extension and stem diameter were highly variable between half-sibs. MP induced increased drag in greenhouse grown P. taeda in wind-tunnel tests. In P. taeda, MP induced decreased flexibility and increased elasticity and plasticity of the stem. The increased radial growth of the stems overrode the increase in elasticity, resulting in an overall decrease in flexibility. MP trees had a higher rupture point than non-MP controls. Increased radial growth is a result of more rapid cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decreased leader growth is partly due to a decreased tracheid length in response to MP.

  9. Resistance to Septoria Leaf Spot in Eastern Cottonwood

    Treesearch

    D. T. Cooper; T. H. Filer

    1976-01-01

    Septoria leaf spot, which is caused by Septoria musiva Peck, is a potentially serious dis ease of eastern cottonwood (Populus deltoides) in nuseries and plantations in the lower Miss issippi Valley. Lesions reduce photosynthetic area of leaves and cause premature leaf fall; the fungus also causes cankers on the stem (l). During late summer 1975. incidence of Septoria...

  10. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees.

    PubMed

    Meinzer, Frederick C; Campanello, Paula I; Domec, Jean-Christophe; Genoveva Gatti, M; Goldstein, Guillermo; Villalobos-Vega, Randol; Woodruff, David R

    2008-11-01

    This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (A(L):A(S)) and wood density (rho(w)). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETR(max)) per unit leaf area declined sharply with increasing A(L):A(S), as did the ratio of ETR(max) to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing rho(w). At the branch scale, A(L):A(S) and total leaf N content per unit sapwood area increased with rho(w), resulting in a 30% increase in ETR(max) per unit sapwood area with a doubling of rho(w). These compensatory adjustments in A(L):A(S), N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing rho(w) on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in rho(w).

  11. Essential Oils of Echinophora lamondiana (Apiales: Umbelliferae): A Relationship Between Chemical Profile and Biting Deterrence and Larvicidal Activity Against Mosquitoes (Diptera: Culicidae).

    PubMed

    Ali, Abbas; Tabanca, Nurhayat; Ozek, Gulmira; Ozek, Temel; Aytac, Zeki; Bernier, Ulrich R; Agramonte, Natasha M; Baser, K Husnu Can; Khan, Ikhlas A

    2015-01-01

    The essential oils from the flower, leaf, and stem of Echinophora lamondiana B.Yildiz et Z.Bahcecioglu were analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. In total, 41, 37, and 44 compounds were identified, which accounted for 98.0, 99.1, and 97.0% of flower, leaf, and stem essential oils, respectively. The monoterpenic hydrocarbons were found to be high in all samples of the essential oils. The major components of essential oils from flower, leaf, and stem of E. lamondiana were δ-3-carene (61.9, 75.0, and 65.9%, respectively), α-phellandrene (20.3, 14.1, and 12.8%, respectively), and terpinolene (2.7, 3.3, and 2.9%, respectively). Flower and leaf essential oils and terpinolene produced biting deterrence similar to 25 nmol/cm(2) N, N-diethyl-meta-toluamide (DEET; 97%) against Aedes aegypti (L.) and Anopheles quadrimaculatus Say. Compounds (+)-δ-3-carene, (R)-(-)-α-phellandrene, and water-distilled essential oils were significantly less repellent than DEET. Among essential oils, leaf oil was the least toxic of the oils, with an LC50 value of 138.3 ppm, whereas flower essential oil killed only 32% larvae, and no mortality of stem oil at highest tested dosages against Ae aegypti was observed. Terpinolene and α-phellandrene showed higher toxicity than δ-3-carene in both the species. In contrast to Ae. aegypti, all the essential oils showed toxicity in An. quadrimaculatus, and toxicity was higher in leaf oil than the other two oils. These results could be useful in finding new, safe, and more effective natural biopesticides and biting deterrent or repellents against Ae. aegypti. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.For Permissions, please e-mail: journals.permissions@oup.com.

  12. Stem cell activation by light guides plant organogenesis.

    PubMed

    Yoshida, Saiko; Mandel, Therese; Kuhlemeier, Cris

    2011-07-01

    Leaves originate from stem cells located at the shoot apical meristem. The meristem is shielded from the environment by older leaves, and leaf initiation is considered to be an autonomous process that does not depend on environmental cues. Here we show that light acts as a morphogenic signal that controls leaf initiation and stabilizes leaf positioning. Leaf initiation in tomato shoot apices ceases in the dark but resumes in the light, an effect that is mediated through the plant hormone cytokinin. Dark treatment also affects the subcellular localization of the auxin transporter PIN1 and the concomitant formation of auxin maxima. We propose that cytokinin is required for meristem propagation, and that auxin redirects cytokinin-inducible meristem growth toward organ formation. In contrast to common wisdom over the last 150 years, the light environment controls the initiation of lateral organs by regulating two key hormones: auxin and cytokinin.

  13. Stem cell activation by light guides plant organogenesis

    PubMed Central

    Yoshida, Saiko; Mandel, Therese; Kuhlemeier, Cris

    2011-01-01

    Leaves originate from stem cells located at the shoot apical meristem. The meristem is shielded from the environment by older leaves, and leaf initiation is considered to be an autonomous process that does not depend on environmental cues. Here we show that light acts as a morphogenic signal that controls leaf initiation and stabilizes leaf positioning. Leaf initiation in tomato shoot apices ceases in the dark but resumes in the light, an effect that is mediated through the plant hormone cytokinin. Dark treatment also affects the subcellular localization of the auxin transporter PIN1 and the concomitant formation of auxin maxima. We propose that cytokinin is required for meristem propagation, and that auxin redirects cytokinin-inducible meristem growth toward organ formation. In contrast to common wisdom over the last 150 years, the light environment controls the initiation of lateral organs by regulating two key hormones: auxin and cytokinin. PMID:21724835

  14. 7 CFR 29.1061 - Stem.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Stem. 29.1061 Section 29.1061 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1061 Stem. The midrib or large central vein of a tobacco leaf. [42 FR 21092, Apr. 25...

  15. 7 CFR 29.1061 - Stem.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Stem. 29.1061 Section 29.1061 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1061 Stem. The midrib or large central vein of a tobacco leaf. [42 FR 21092, Apr. 25...

  16. 7 CFR 29.1061 - Stem.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Stem. 29.1061 Section 29.1061 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1061 Stem. The midrib or large central vein of a tobacco leaf. [42 FR 21092, Apr. 25...

  17. 7 CFR 29.1061 - Stem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Stem. 29.1061 Section 29.1061 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1061 Stem. The midrib or large central vein of a tobacco leaf. [42 FR 21092, Apr. 25...

  18. 7 CFR 29.1061 - Stem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Stem. 29.1061 Section 29.1061 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1061 Stem. The midrib or large central vein of a tobacco leaf. [42 FR 21092, Apr. 25...

  19. Change in hydraulic properties and leaf traits of a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; Barus, H.

    2010-11-01

    In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae) by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10-33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area), which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i) we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii) the exposed upper canopy was not more drought susceptible than the shade canopy.

  20. Influence of sewage sludge, as a substrate, in the plasticity of functional characteristics of plants.

    PubMed

    da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes

    2018-04-24

    This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.

  1. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-01

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (<1.0 mg/L) the root tissue of Arundo donax uses osmosis of organic substances (e.g. carbohydrates and amino acids) to improve cadmium tolerance. Organic substances (e.g. carbohydrates) that contain a lot of Osbnd H in leaf were transported to the root firstly and then could chelate cadmium, but no obvious changes in stems were noted. The cadmium in the shoots (stem and leaf) usually increased with increasing cadmium concentration. These studies demonstrate the potential of Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland.

  2. [Comparative analysis of agronomic and qualitative characters in different lines of Dendrobium denneanum].

    PubMed

    He, Tao; Deng, Li; Lin, Yuan; Li, Bo; Yang, Xiaofan; Wang, Fang; Chun, Ze

    2010-08-01

    To provide theoretical basis for breeding good variety of Dendrobium denneanum, agronomic and qualitative characters of 4 different lines and relationships among them were studied. The stem length, stem diameter, leaf length, leaf width, length/ width ratio and leaf area were measured. The single fresh and dry stem was weighed and drying rate was calculated. The contents of polysaccharides and total alkaloids were determined by sulfuric acid-phenol colorimetry and acid-dye colorimetry, respectively. The correlations between characters were analyzed. The results showed that differences in major agronomic characters between four lines were significant. The plant types of dq-1 and dq-2 were higher, dq-3 was medium and dq-4 was lower. The fresh weigh of stem and content of polysaccharides were the highest in dq-2, 7.81 g and 14.33%. While the highest content of total alkaloids and was 0. 486% in dq-3. There were significant correlations between agronomic characters, but these characters had low or non correlations with qualitative characters such as polysaccharides and total alkaloids. It was shown that the content of polysaccharides and total alkaloids were significantly different among 4 lines of D. denneanum, which could be selected for different uses.

  3. 7 CFR 29.3549 - Stem.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Stem. 29.3549 Section 29.3549 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3549 Stem. The midrib or large central vein of a tobacco leaf. [30 FR 9207, July 23, 1965...

  4. 7 CFR 29.3549 - Stem.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Stem. 29.3549 Section 29.3549 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3549 Stem. The midrib or large central vein of a tobacco leaf. [30 FR 9207, July 23, 1965...

  5. 7 CFR 29.3549 - Stem.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Stem. 29.3549 Section 29.3549 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3549 Stem. The midrib or large central vein of a tobacco leaf. [30 FR 9207, July 23, 1965...

  6. 7 CFR 29.3549 - Stem.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Stem. 29.3549 Section 29.3549 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3549 Stem. The midrib or large central vein of a tobacco leaf. [30 FR 9207, July 23, 1965...

  7. 7 CFR 29.3549 - Stem.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Stem. 29.3549 Section 29.3549 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3549 Stem. The midrib or large central vein of a tobacco leaf. [30 FR 9207, July 23, 1965...

  8. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  9. Investigation of the Spectroscopic Information on Functional Groups Related to Carbohydrates in Different Morphological Fractions of Corn Stover and Their Relationship to Nutrient Supply and Biodegradation Characteristics.

    PubMed

    Xin, Hangshu; Ding, Xue; Zhang, Liyang; Sun, Fang; Wang, Xiaofan; Zhang, Yonggen

    2017-05-24

    The objectives of this study were to investigate (1) nutritive values and biodegradation characteristics and (2) mid-IR spectroscopic features within the regions associated with carbohydrate functional groups (including cellulosic component (CELC), structural carbohydrate (STCHO), and total carbohydrate (CHO)) in different morphological fractions of corn stover. Furthermore, correlation and regression analyses were also applied to determine the relationship between nutritional values and spectroscopic parameters. The results showed that different morphological sections of corn stover had different nutrient supplies, in situ biodegradation characteristics, and spectral structural features within carbohydrate regions. The stem rind and ear husk were both high in fibrous content, which led to the lowest effective degradabilities (ED) among these stalk fractions. The ED values of NDF were ranked ear husk > stem pith > leaf blade > leaf sheath > whole plant > stem rind. Intensities of peak height and area within carbohydrate regions were relatively more stable compared with spectral ratio profiles. Significant difference was found only in peak area intensity of CELC, which was at the highest level for stem rind, followed by stem pith, leaf sheath, whole plant, leaf blade, and ear husk. Correlation results showed that changes in some carbohydrate spectral ratios were highly associated with carbohydrate chemical profiles and in situ rumen degradation kinetics. Among the various carbohydrate molecular spectral parameters that were tested in multiple regression analysis, CHO height ratios, and area ratios of CELC:CHO and CELC:STCHO as well as CELC area were mostly sensitive to nutrient supply and biodegradation characteristics in different morphological fractions of corn stover.

  10. Zeatin and Thidiazuron Induced Embryogenic Calli From In Vitro Leaf and Stem of Jojoba (Simmondsia chinensis).

    PubMed

    El-Ashry, Amal Abd El-Latif; Gabr, Ahmed Mohamed Magdy; Bekheet, Shawky Abd El-Hamid

    2017-01-01

    Jojoba is a promising industrial plant, which recommended with pharmaceutical benefits. The present study was conducted to stimulate embryogenic calli formation from jojoba using zeatin and thidiazuron (TDZ), as well as determination of the antioxidant activity of proliferated calli. For callus induction, leaf and stem explants derived from in vitro grown shootlets, were cultured on Murashige and Skoog (MS) medium with different combinations of 0.5 mg L-1 benzyl adenine (BA) or kinetin with 2,4-Dichlorophenoxyacetic acid (2,4-D), Naphthalene acetic acid (NAA) and picloram at 0.5 or 1mg L-1. To stimulate embryogenic calli, friable callus were transferred to woody plant medium (WPM) supplemented with different concentrations of zeatin or TDZ. Antioxidant activity of different treatments was determined using hexane or petroleum ether extraction. Data was analyzed as mean±standard deviation (SD). The MS medium supplemented with 0.5 mg L-1 BA+0.5 or 1 mg L-1 picloram was the best treatment to obtain friable calli from both explants types. WPM medium supplemented with 2 mg L-1 zeatin gave the highest percentage of embryogenic calli derived from leaf explants. While the highest percentage of embryogenic calli derived from stem explants was registered using 1 or 4 mg L-1 TDZ containing medium. Embryogenic calli originated from leaves explants on 1.5 mg L-1 zeatin showed promising activity of antioxidant with hexane extraction. However, embryogenic calli originated from stem explants on 1 mg L-1 TDZ showed the highest antioxidant activity with petroleum ether extraction. TDZ has promising effect on embryogenic callus induction from stem explants. While, zeatin has promising effect on embryogenic callus induction from leaf explants.

  11. Leaf rolling and stem fasciation in grass pea (Lathyrus sativus L.) mutant are mediated through glutathione-dependent cellular and metabolic changes and associated with a metabolic diversion through cysteine during phenotypic reversal.

    PubMed

    Talukdar, Dibyendu; Talukdar, Tulika

    2014-01-01

    A Lathyrus sativus L. mutant isolated in ethylmethane sulfonate-treated M2 progeny of mother variety BioL-212 and designated as rlfL-1 was characterized by inwardly rolled-leaf and stem and bud fasciations. The mutant exhibited karyomorphological peculiarities in both mitosis and meiosis with origin of aneuploidy. The mitosis was vigorous with high frequency of divisional cells and their quick turnover presumably steered cell proliferations. Significant transcriptional upregulations of cysteine and glutathione synthesis and concomitant stimulations of glutathione-mediated antioxidant defense helped rlfL-1 mutant to maintain balanced reactive oxygen species (ROS) metabolisms, as deduced by ROS-imaging study. Glutathione synthesis was shut down in buthionine sulfoximine- (BSO-) treated mother plant and mutant, and leaf-rolling and stems/buds fasciations in the mutant were reversed, accompanied by normalization of mitotic cell division process. Antioxidant defense was downregulated under low glutathione-redox but cysteine-desulfurations and photorespiratory glycolate oxidase transcripts were markedly overexpressed, preventing cysteine overaccumulation but resulted in excess H2O2 in BSO-treated mutant. This led to oxidative damage in proliferating cells, manifested by severe necrosis in rolled-leaf and fasciated stems. Results indicated vital role of glutathione in maintaining abnormal proliferations in plant organs, and its deficiency triggered phenotypic reversal through metabolic diversions of cysteine and concomitant cellular and metabolic modulations.

  12. 7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...

  13. 7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...

  14. 7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...

  15. 7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...

  16. 7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...

  17. Xylem Cavitation in the Leaf of Prunus laurocerasus and Its Impact on Leaf Hydraulics1

    PubMed Central

    Nardini, Andrea; Tyree, Melvin T.; Salleo, Sebastiano

    2001-01-01

    This paper reports how water stress correlates with changes in hydraulic conductivity of stems, leaf midrib, and whole leaves of Prunus laurocerasus. Water stress caused cavitation-induced dysfunction in vessels of P. laurocerasus. Cavitation was detected acoustically by counts of ultrasonic acoustic emissions and by the loss of hydraulic conductivity measured by a vacuum chamber method. Stems and midribs were approximately equally vulnerable to cavitations. Although midribs suffered a 70% loss of hydraulic conductance at leaf water potentials of −1.5 MPa, there was less than a 10% loss of hydraulic conductance in whole leaves. Cutting and sealing the midrib 20 mm from the leaf base caused only a 30% loss of conduction of the whole leaf. A high-pressure flow meter was used to measure conductance of whole leaves and as the leaf was progressively cut back from tip to base. These data were fitted to a model of hydraulic conductance of leaves that explained the above results, i.e. redundancy in hydraulic pathways whereby water can flow around embolized regions in the leaf, makes whole leaves relatively insensitive to significant changes in conductance of the midrib. The onset of cavitation events in P. laurocerasus leaves correlated with the onset of stomatal closure as found recently in studies of other species in our laboratory. PMID:11299351

  18. Anatomical investigations on root, stem, and leaf of Gentiana olivieri Griseb

    PubMed Central

    Tüzün, Canan Yağci; Toker, Mehmet Cihat; Toker, Gülnur

    2011-01-01

    Background: Gentiana olivieri Griseb. (Afat) (Gentianaceae), which has many bioactive compounds is used as antidiabetic, hepatoprotective, digestive aid, antidepressant, and antianemic in traditional medicine. Materials and Methods: Root, stem, and leaf sections of G. olivieri were taken free hand or by sliding microtome and examined on light microscope. Results: Anatomical characters of the species were observed to be similar to the usual features of Gentianaceae anatomy. Conclusion: Intraxylary phloem, which was primarily the distinguishing feature between Gentianoideae and Menyanthoideae sub-families was observed in G. olivieri roots. PMID:21472072

  19. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed Central

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821

  20. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.).

    PubMed

    Wuytack, Tatiana; Verheyen, Kris; Wuyts, Karen; Kardel, Fatemeh; Adriaenssens, Sandy; Samson, Roeland

    2010-12-01

    In this study, we assess the potential of white willow (Salix alba L.) as bioindicator for monitoring of air quality. Therefore, shoot biomass, specific leaf area, stomatal density, stomatal pore surface, and stomatal resistance were assessed from leaves of stem cuttings. The stem cuttings were introduced in two regions in Belgium with a relatively high and a relatively low level of air pollution, i.e., Antwerp city and Zoersel, respectively. In each of these regions, nine sampling points were selected. At each sampling point, three stem cuttings of white willow were planted in potting soil. Shoot biomass and specific leaf area were not significantly different between Antwerp city and Zoersel. Microclimatic differences between the sampling points may have been more important to plant growth than differences in air quality. However, stomatal pore surface and stomatal resistance of white willow were significantly different between Zoersel and Antwerp city. Stomatal pore surface was 20% lower in Antwerp city due to a significant reduction in both stomatal length (-11%) and stomatal width (-14%). Stomatal resistance at the adaxial leaf surface was 17% higher in Antwerp city because of the reduction in stomatal pore surface. Based on these results, we conclude that stomatal characteristics of white willow are potentially useful indicators for air quality.

  1. Effectiveness of a detached‐leaf assay as a proxy for stem inoculations in backcrossed chestnut (Castanea) blight resistance breeding populations

    Treesearch

    N. R. LaBonte; J.R. McKenna; K. Woeste

    2016-01-01

    A recently developed detached-leaf blight resistance assay has generated interest because it could reduce the amount of time needed to evaluate backcrossed hybrid trees in the American chestnut blight resistance breeding programme. We evaluated the leaf inoculation technique on a sample of advanced progeny from the Indiana state chapter American Chestnut Foundation...

  2. 78 FR 62560 - Endangered and Threatened Wildlife and Plants; Endangered Status for Agave eggersiana and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... 2005, p. 227). The leaves are simple, alternate, entire, and coriaceous (leathery). The leaf blade is... green and shiny. The petiole (the stalk attaching the leaf blade to the stem) is approximately 0.07 to 0...

  3. Phytophthora ramorum disease transmission from artificially infested potting media

    Treesearch

    Jennifer L. Parke; Melody L. Roth; Carrie Lewis; Caroline J. Choquette

    2006-01-01

    Potted rhododendrons grown in potting media amended with inoculum of Phytophthora ramorum became infected and showed symptoms of stem necrosis, leaf wilting, and death. P. ramorum was isolated from roots and stems of infected plants.

  4. Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers.

    PubMed

    Briñez, Boris; Perseguini, Juliana Morini Küpper Cardoso; Rosa, Juliana Santa; Bassi, Denis; Gonçalves, João Guilherme Ribeiro; Almeida, Caléo; Paulino, Jean Fausto de Carvalho; Blair, Matthew Ward; Chioratto, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Valdisser, Paula Arielle Mendes Ribeiro; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2017-01-01

    The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean.

  5. Effect of route of introduction and host cultivar on the colonization, internalization, and movement of the human pathogen Escherichia coli O157:H7 in spinach.

    PubMed

    Mitra, R; Cuesta-Alonso, E; Wayadande, A; Talley, J; Gilliland, S; Fletcher, J

    2009-07-01

    Human pathogens can contaminate leafy produce in the field by various routes. We hypothesized that interactions between Escherichia coli O157:H7 and spinach are influenced by the route of introduction and the leaf microenvironment. E. coli O157:H7 labeled with green fluorescent protein was dropped onto spinach leaf surfaces, simulating bacteria-laden raindrops or sprinkler irrigation, and survived on the phylloplane for at least 14 days, with increasing titers and areas of colonization over time. The same strains placed into the rhizosphere by soil infiltration remained detectable on very few plants and in low numbers (10(2) to 10(6) CFU/g fresh tissue) that decreased over time. Stem puncture inoculations, simulating natural wounding, rarely resulted in colonization or multiplication. Bacteria forced into the leaf interior survived for at least 14 days in intercellular spaces but did not translocate or multiply. Three spinach cultivars with different leaf surface morphologies were compared for colonization by E. coli O157:H7 introduced by leaf drop or soil drench. After 2 weeks, cv. Bordeaux hosted very few bacteria. More bacteria were seen on cv. Space and were dispersed over an area of up to 0.3 mm2. The highest bacterial numbers were observed on cv. Tyee but were dispersed only up to 0.15 mm2, suggesting that cv. Tyee may provide protected niches or more nutrients or may promote stronger bacterial adherence. These findings suggest that the spinach phylloplane is a supportive niche for E. coli O157:H7, but no conclusive evidence was found for natural entry into the plant interior. The results are relevant for interventions aimed at minimizing produce contamination by human pathogens.

  6. Effects of irrigation moisture regimes on yield and quality of paprika ( Capsicum annuum L)

    NASA Astrophysics Data System (ADS)

    Shongwe, Victor D.; Magongo, Bekani N.; Masarirambi, Michael T.; Manyatsi, Absalom M.

    Although paprika ( Capsicum annuum L) is not widely grown in Swaziland it is becoming increasingly popular as a spice and food colourant. It is a crop that requires irrigation at specific stages of growth as this affects not only the yield but most importantly the quality of the crop. Yield of paprika has been found to increase with relative increase in moisture whereas the quality of fruits has not followed the same trend. The objective of this study was to find the effect of varying irrigation water regimes on the yield and quality of paprika at uniform fertiliser levels. The study was carried out in the 2006/2007 cropping season at the Luyengo campus of the University of Swaziland in a greenhouse. A randomised complete block design was used with four water treatments (0.40, 0.60, 0.80, and 1.00 × Field Capacity). Parameters measured included leaf number per plant, plant height, chlorophyll content, canopy size, leaf width, leaf length, stem girth, dry mass, fresh mass, fruit length, and brix content. There were significant ( P < 0.05) increases in leaf number, plant height, chlorophyll content, canopy size, fresh and dry mass tops and fruit length at the highest moisture level (1.00 × FC) followed by the second highest regime (0.80 × FC) whilst the lower water regimes resulted in lower increases in each of the parameters. Leaf area index did not differ significantly across all treatments. In increasing order the treatments 0.80 × FC and 1.00 × FC gave higher yields but in decreasing order lower brix and thus subsequent lower paprika quality. It is recommended that growers who are aiming for optimum yield and high quality of paprika may use the 0.8 × FC treatment when irrigating.

  7. Data Mining Feature Subset Weighting and Selection Using Genetic Algorithms

    DTIC Science & Technology

    2002-03-01

    seed-stain, anthracnose, phyllosticta-leaf-spot, alternarialeaf-spot, frog-eye-leaf- spot, diaporthe-pod-&-stem-blight, cyst - nematode , 2-4-d-injury...seed-discolor: absent,present,?. 33. seed-size: norm,lt-norm,?. 34. shriveling: absent,present,?. 35. roots: norm,rotted,galls- cysts

  8. Pepper injury and partitioning response to ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J.P.; Oshima, R.J.; Lippert, L.F.

    Pepper plants (Capsicum annuum L.) grown in containers and exposed intermittently to 0.12 or 0.20 ppm ozone (O/sub 3/) while they grew to final yield, increased in plant height and total number of leaves in spite of the formation of chlorotic leaves. On an absolute basis, root, stem and leaf dry weights were not significantly affected by O/sub 3/, but fruit dry matter fell by as much as 54%. However, on a relative basis, dry matter partitioning to fruit was not constant and a significant alteration of the expected dry matter distribution was observed in the O/sub 3/ treatment. O/submore » 3/ also significantly accentuated the inverse relationship between crown fruit and leaf production. A conceptual model for whole plant response to O/sub 3/ was developed.« less

  9. Shade-Induced Action Potentials in Helianthus annuus L. Originate Primarily from the Epicotyl

    PubMed Central

    Stephens, Nicholas R; Cleland, Robert E; Van Volkenburgh, Elizabeth

    2006-01-01

    Repeated observations that shading (a drastic reduction in illumination rate) increased the generation of spikes (rapidly reversed depolarizations) in leaves and stems of many cucumber and sunflower plants suggests a phenomenon widespread among plant organs and species. Although shaded leaves occasionally generate spikes and have been suggested to trigger systemic action potentials (APs) in sunflower stems, we never found leaf-generated spikes to propagate out of the leaf and into the stem. On the contrary, our data consistently implicate the epicotyl as the location where most spikes and APs (propagating spikes) originate. Microelectrode studies of light and shading responses in mesophyll cells of leaf strips and in epidermis/cortex cells of epicotyl segments confirm this conclusion and show that spike induction is not confined to intact plants. 90% of the epicotyl-generated APs undergo basipetal propagation to the lower epicotyl, hypocotyl and root. They propagate with an average rate of 2 ± 0.3 mm s−1 and always undergo a large decrement from the hypocotyl to the root. The few epicotyl-derived APs that can be tracked to leaf blades (< 10%) undergo either a large decrement or fail to be transmitted at all. Occasionally (5% of the observations) spikes were be generated in hypocotyl and lower epicotyl that moved towards the upper epicotyl unaltered, decremented, or amplified. This study confirms that plant APs arise to natural, nontraumatic changes. In simultaneous recordings with epicotyl growth, AP generation was found to parallel the acceleration of stem growth under shade. The possible relatedness of both processes must be further investigated. PMID:19521471

  10. Chemical composition and antibacterial activity of the essential oils from flower, leaf and stem of Ferula cupularis growing wild in Iran.

    PubMed

    Alipour, Ziba; Taheri, Poroshat; Samadi, Nasrin

    2015-04-01

    Ferula cupularis (Boiss.) Spalik et S. R. Downie (Apiaceae) is a common plant in Iran that grows in the foothills of Dena Mountain. In traditional folk medicine, this plant has different applications, but there are no studies proving their uses. This study is the first attempt to investigate the chemical composition and antibacterial effect of the essential oils of F. cupularis. The essential oils from flower, leaf, and stem of F. cupularis were analyzed by using GC and GC-MS. Antibacterial activity of essential oils was determined by microdilution method against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The essential oil from flower of F. cupularis contained 15 monoterpene, 13 oxygenated monoterpene, and 2 sesquiterpene hydrocarbons. The leaf essential oil contained 12 monoterpene, 13 oxygenated monoterpene, 2 sesquiterpene, 6 oxygenated sesquiterpene hydrocarbons, and 3 non-terpenoid components. Stem essential oil contained one monoterpene, 23 oxygenated monoterpene, 2 sesquiterpene, and 6 oxygenated sesquiterpene hydrocarbons. The MIC value of stem essential oil was 2.85 mg/mL against both Gram-positive bacteria and Gram-negative bacteria except P. aeruginosa which was inhibited at 22.75 mg/mL. The MIC values of leaf and flower essential oils were higher than 5.69 and 22.75 mg/mL, respectively. This study highlighted the strong antibacterial effect of Ferula cupularis's essential oil which might be due to its high content of oxygenated monoterpene hydrocarbons. Our results suggested that this plant may be a good candidate for further biological and pharmacological investigations.

  11. Differences in the response of wheat, soybean and lettuce to reduced blue radiation

    NASA Technical Reports Server (NTRS)

    Dougher, T. A.; Bugbee, B.

    2001-01-01

    Although many fundamental blue light responses have been identified, blue light dose-response curves are not well characterized. We studied the growth and development of soybean, wheat and lettuce plants under high-pressure sodium (HPS) and metal halide (MH) lamps with yellow filters creating five fractions of blue light. The blue light fractions obtained were < 0.1, 2 and 6% under HPS lamps, and 6, 12 and 26% under MH lamps. Studies utilizing both lamp types were done at two photosynthetic photon flux levels, 200 and 500 mumol m-2 s-1 under a 16 h photoperiod. Phytochrome photoequilibria was nearly identical among treatments. The blue light effect on dry mass, stem length, leaf area, specific leaf area and tillering/branching was species dependent. For these parameters, wheat did not respond to blue light, but lettuce was highly sensitive to blue light fraction between 0 and 6% blue. Soybean stem length decreased and leaf area increased up to 6% blue, but total dry mass was unchanged. The blue light fraction determined the stem elongation response in soybean, whereas the absolute amount of blue light determined the stem elongation response in lettuce. The data indicate that lettuce growth and development requires blue light, but soybean and wheat may not.

  12. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis.

    PubMed

    Pérez-Amador, M A; Abler, M L; De Rocher, E J; Thompson, D M; van Hoof, A; LeBrasseur, N D; Lers, A; Green, P J

    2000-01-01

    Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.

  13. Apoplastic infusion of sucrose into stem internodes during female flowering does not increase grain yield in maize plants grown under nitrogen-limiting conditions.

    PubMed

    Peng, Yunfeng; Li, Chunjian; Fritschi, Felix B

    2013-08-01

    Nitrogen (N) limitation reduces leaf growth and photosynthetic rates of maize (Zea mays), and constrains photosynthate translocation to developing ears. Additionally, the period from about 1 week before to 2 weeks after silking is critical for establishing the reproductive sink capacity necessary to attain maximum yield. To investigate the influence of carbohydrate availability in plants of differing N status, a greenhouse study was performed in which exogenous sucrose (Suc) was infused around the time of silking into maize stems grown under different N regimes. N deficiency significantly reduced leaf area, leaf longevity, leaf chlorophyll content and photosynthetic rate. High N-delayed leaf senescence, particularly of the six uppermost leaves, compared to the other two N treatments. While N application increased ear leaf soluble protein concentration, it did not influence glucose and suc concentrations. Interestingly, ear leaf starch concentration decreased with increasing N application. Infusion of exogenous suc tended to increase non-structural carbohydrate concentrations in the developing ears of all N treatments at silking and 6 days after silking. However, leaf photosynthetic rates were not affected by suc infusion, and suc infusion failed to increase grain yield in any N treatment. The lack of an effect of suc infusion on ear growth and the high ear leaf starch concentration of N-deficient maize, suggest that yield reduction under N deficiency may not be due to insufficient photosynthate availability to the developing ear during silking, and that yield reduction under N deficiency may be determined at an earlier growth stage. Copyright © Physiologia Plantarum 2012.

  14. Seasonal changes in plant-water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies.

    PubMed

    Vinya, Royd; Malhi, Yadvinder; Brown, Nick D; Fisher, Joshua B; Brodribb, Timothy; Aragão, Luiz E O C

    2018-06-15

    Water availability has frequently been linked to seasonal leaf display in seasonally dry ecosystems, but there have been few ecohydrological investigations of this link. Miombo woodland is a dominant seasonally dry tropical forest ecosystem type in southern Africa; however, there are few data on the relationship between seasonal dynamics in plant-water relations and patterns of leaf display for Miombo woodland. Here we investigate this relationship among nine key Miombo woodland tree species differing in drought tolerance ability and leaf phenology. Results of this study showed that seasonal patterns of leaf phenology varied significantly with seasonal changes in stem water relations among the nine species. Leaf shedding coincided with the attainment of seasonal minimum stem water potential. Leaf flush occurred following xylem rehydration at the peak of the dry season suggesting that endogenous plant factors play a pivotal role in seasonal leaf display in this forest type. Drought-tolerant deciduous species suffered significantly higher seasonal losses in xylem hydraulic conductivity than the drought-intolerant semi-evergreen tree species (P < 0.05). There was a significant and positive correlation between species drought tolerance index and species' seasonal loss in hydraulic conductivity (P < 0.05), confirming the ecological role of long-distance xylem transport in this seasonally dry tropical forest. Our results reveal that water stress in seasonally dry tropical forests selects for water conservative traits that protect the vulnerable xylem transport system. Therefore, seasonal rhythms in xylem transport dictate patterns of leaf display in seasonally dry tropical forests.

  15. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Treesearch

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  16. The impact of application of biocar on peanuts growing

    NASA Astrophysics Data System (ADS)

    Gao, Mengyu; Liu, Xiaohua; Li, Na; Luo, Peiyu; Han, Xiaori; Yang, Jinfeng

    2017-12-01

    The object of this study was to investigate the impact of application biocar on peanuts growing. It was based on a long-term fertilization experiment which researched the effect of applying different amounts of biochar and BBF when continuously cropping peanuts for 5 years. There were five treatments: no fertilizer, low level of biochar (C15), high level of biochar (C50), chemical nitrogen-phosphorus-potassium (NPK) fertilizer and biochar-based fertilization (BBF).We determined peanuts stem and leaf weight, root weight, plant and the relative content of chlorophyll at every growth stages in 2016. The results showed that all fertilization can increase these indexes and in application of NPK improve them the most which close to BBF. The peanuts stem and leaf weight, root weight, plant and the relative content of chlorophyll was higher than the same level carbon treatment (C15) 62.85%, 6.67%, 18.73% and 25.58%, respectively. Expect stem and leaf weight, plant height, root weight and chlorophyll were higher when high level biochar (C50) applied than the low one (C15).

  17. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy.

    PubMed

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-05

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (<1.0mg/L) the root tissue of Arundo donax uses osmosis of organic substances (e.g. carbohydrates and amino acids) to improve cadmium tolerance. Organic substances (e.g. carbohydrates) that contain a lot of OH in leaf were transported to the root firstly and then could chelate cadmium, but no obvious changes in stems were noted. The cadmium in the shoots (stem and leaf) usually increased with increasing cadmium concentration. These studies demonstrate the potential of Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

    PubMed Central

    Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner

    2014-01-01

    Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0.99 for the leaf area and R2 = 0.98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored. PMID:25029283

  19. Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance

    USDA-ARS?s Scientific Manuscript database

    The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inocula...

  20. Impact of Meloidogyne incognita on Physiological Efficiency of Vitis vinifera.

    PubMed

    Melakeberhan, H; Ferris, H

    1989-01-01

    Four-week-old French Colombard plants rooted from green cuttings were inoculated with 0, 1,000, 2,000, 4,000, or 8,000 Meloidogyne incognita second-stage juveniles and maintained at 25 C night and 30 C day. Leaf area and dry weight and the rates of photosynthesis, stomatal conductance, and internal leaf CO concentration were measured at intervals up to 59 days after inoculation. Nematode stress dosage, measured as the product of cumulative number of juveniles and females and their total energy (calories) demand, was up to 3.4 kcal and accounted for up to 15% of the energy assimilated by the plants. There was a decline in the rate of leaf area expansion and leaf, stem, shoot, root (excluding nematode weight), and total plant dry weight with increasing nematode stress. Root weight including nematodes was not affected. Total respiration, plant photosynthesis, energy assimilated into plant tissue and respiration, and gross production efficiency decreased significantly with nematode stress. Photosynthetic rate, transpiration rate, stomatal conductance, and internal CO concentration were not affected. This study demonstrates that the energy demand for growth and reproduction of M. incognita accounts for a significant portion of the total energy entering the plant system. As a result, less energy is partitioned into leaf area expansion which, in turn, affects the energy entering the system and results in decreased productivity of nematode-infected grape vines.

  1. Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta.

    PubMed

    Wakayama, Masataka; Ohnishi, Jun-ichi; Ueno, Osamu

    2006-05-01

    In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades--namely, the leaf sheath, stem, scale leaf, and constituents of the spike--also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.

  2. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    PubMed

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Common allometric response of open-grown leader shoots to tree height in co-occurring deciduous broadleaved trees

    PubMed Central

    Miyata, Rie; Kubo, Takuya; Nabeshima, Eri; Kohyama, Takashi S.

    2011-01-01

    Background and Aims Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns. Methods Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan. Key Results Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height. Conclusions In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain. PMID:21914698

  4. Study of electrical properties and gas sensing phenomenon of the latex of Calotropis

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Pradhan, S. S.; Sarkar, A.

    2018-05-01

    Calotropis commonly known as `Madar' is a medicinal plant. It is very famous in the name of milkweeds as it contains latex in its leaf and stem. The electro-active nature of the dry latex from the leaf and stem of the plant is like that of a super cooled ionic liquid. The electro-active material potential can be used as a low cost green synthesis agent to develop nano particles of metallic compound. The material in solidified pellet form shows sensitivity towards ammonia gas with faster response and recovery time.

  5. Suppression of elongation and growth of tomato seedlings by auxin biosynthesis inhibitors and modeling of the growth and environmental response.

    PubMed

    Higashide, Tadahisa; Narukawa, Megumi; Shimada, Yukihisa; Soeno, Kazuo

    2014-04-02

    To develop a growth inhibitor, the effects of auxin inhibitors were investigated. Application of 30 μM L-α-aminooxy-β-phenylpropionic acid (AOPP) or (S)-methyl 2-((1,3-dioxoisoindolin-2-yl)oxy)-3-phenylpropanoate (KOK1101), decreased the endogenous IAA levels in tomato seedlings at 8 days after sowing. Then, 10-1200 μM AOPP or KOK1101 were sprayed on the leaves and stem of 2-3 leaf stage tomato plants grown under a range of environmental conditions. We predicted plant growth and environmental response using a model based on the observed suppression of leaf enlargement. Spraying AOPP or KOK1101 decreased stem length and leaf area. Concentration-dependent inhibitions and dose response curves were observed. Although the effects of the inhibitors on dry weight varied according to the environmental conditions, the net assimilation rate was not influenced by the inhibitors. Accordingly, the observed decrease in dry weight caused by the inhibitors may result from decreased leaf area. Validation of the model based on observed data independent of the dataset showed good correlations between the observed and predicted values of dry weight and leaf area index.

  6. Holistic and component plant phenotyping using temporal image sequence.

    PubMed

    Das Choudhury, Sruti; Bashyam, Srinidhi; Qiu, Yumou; Samal, Ashok; Awada, Tala

    2018-01-01

    Image-based plant phenotyping facilitates the extraction of traits noninvasively by analyzing large number of plants in a relatively short period of time. It has the potential to compute advanced phenotypes by considering the whole plant as a single object (holistic phenotypes) or as individual components, i.e., leaves and the stem (component phenotypes), to investigate the biophysical characteristics of the plants. The emergence timing, total number of leaves present at any point of time and the growth of individual leaves during vegetative stage life cycle of the maize plants are significant phenotypic expressions that best contribute to assess the plant vigor. However, image-based automated solution to this novel problem is yet to be explored. A set of new holistic and component phenotypes are introduced in this paper. To compute the component phenotypes, it is essential to detect the individual leaves and the stem. Thus, the paper introduces a novel method to reliably detect the leaves and the stem of the maize plants by analyzing 2-dimensional visible light image sequences captured from the side using a graph based approach. The total number of leaves are counted and the length of each leaf is measured for all images in the sequence to monitor leaf growth. To evaluate the performance of the proposed algorithm, we introduce University of Nebraska-Lincoln Component Plant Phenotyping Dataset (UNL-CPPD) and provide ground truth to facilitate new algorithm development and uniform comparison. The temporal variation of the component phenotypes regulated by genotypes and environment (i.e., greenhouse) are experimentally demonstrated for the maize plants on UNL-CPPD. Statistical models are applied to analyze the greenhouse environment impact and demonstrate the genetic regulation of the temporal variation of the holistic phenotypes on the public dataset called Panicoid Phenomap-1. The central contribution of the paper is a novel computer vision based algorithm for automated detection of individual leaves and the stem to compute new component phenotypes along with a public release of a benchmark dataset, i.e., UNL-CPPD. Detailed experimental analyses are performed to demonstrate the temporal variation of the holistic and component phenotypes in maize regulated by environment and genetic variation with a discussion on their significance in the context of plant science.

  7. Interpreting plant responses to clinostating. I - Mechanical stresses and ethylene

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Wheeler, Raymond M.

    1981-01-01

    The possibility that the clinostat mechanical stresses (leaf flopping) induces ethylene production and, thus, the development of epinasty was tested by stressing vertical plants by constant gentle horizontal or vertical shaking or by a quick back-and-forth rotation (twisting). Clinostat leaf flopping was closely approximated by turning plants so that their stems were horizontal, rotating them quickly about the stem axis, and returning them to the vertical, with the treatment repeated every four minutes. It was found that horizontal and vertical shaking, twisting, intermittent horizontal rotating, and gentle hand shaking failed to induce epinasties that approached those observed on the slow clinostat. Minor epinasties were generated by vigorous hand-shaking (120 sec/day) and by daily application of Ag(+). Reducing leaf displacements by inverting plants did not significantly reduce the minor epinasty generated by vigorous hand-shaking.

  8. Relationship between leaf functional traits and productivity in Aquilaria crassna (Thymelaeaceae) plantations: a tool to aid in the early selection of high-yielding trees.

    PubMed

    López-Sampson, Arlene; Cernusak, Lucas A; Page, Tony

    2017-05-01

    Physiological traits are frequently used as indicators of tree productivity. Aquilaria species growing in a research planting were studied to investigate relationships between leaf-productivity traits and tree growth. Twenty-eight trees were selected to measure isotopic composition of carbon (δ13C) and nitrogen (δ15N) and monitor six leaf attributes. Trees were sampled randomly within each of four diametric classes (at 150 mm above ground level) ensuring the variability in growth of the whole population was represented. A model averaging technique based on the Akaike's information criterion was computed to identify whether leaf traits could assist in diameter prediction. Regression analysis was performed to test for relationships between carbon isotope values and diameter and leaf traits. Approximately one new leaf per week was produced by a shoot. The rate of leaf expansion was estimated as 1.45 mm day-1. The range of δ13C values in leaves of Aquilaria species was from -25.5‰ to -31‰, with an average of -28.4 ‰ (±1.5‰ SD). A moderate negative correlation (R2 = 0.357) between diameter and δ13C in leaf dry matter indicated that individuals with high intercellular CO2 concentrations (low δ13C) and associated low water-use efficiency sustained rapid growth. Analysis of the 95% confidence of best-ranked regression models indicated that the predictors that could best explain growth in Aquilaria species were δ13C, δ15N, petiole length, number of new leaves produced per week and specific leaf area. The model constructed with these variables explained 55% (R2 = 0.55) of the variability in stem diameter. This demonstrates that leaf traits can assist in the early selection of high-productivity trees in Aquilaria species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities.

    PubMed

    Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J

    1999-12-15

    Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.

  10. Phenotypic plasticity of Vaccinium meridionale (Ericaceae) in wild populations of mountain forests in Colombia.

    PubMed

    Ligarreto, Gustavo A; Patiño, Maria del Pilar; Magnitskiy, Stanislav V

    2011-06-01

    Vaccinium meridionale is a promising crop for the Andean region of South America and is currently available only in the wild. Spontaneous populations of this plant are found across the Colombian mountains, but very few published records on this plant morphology are available. A zonification study of V. meridionale was conducted in four principal areas of a low mountain forest of Colombia (Provinces of Boyacá, Cundinamarca, Santander and Nariño) in 2007. A total of 20 populations and 100 plants of V. meridionale were individually characterized and surveyed, using a list of 26 characters of morphological variables (9 quantitative and 17 qualitative characters). Our results indicated that natural populations of V. meridionale might be found in the tropical forest under a highly heterogeneous climate and microclimate conditions, at different mountain regions between 2 357 and 3 168masl. The shrubs of V. meridionale exhibited a high level of intra-population variation in several quantitative (plant height, stem diameter) and qualitative (growth habit, ramification density, presence of anthocyanins in stems) morphological characters, suggesting an environmentally induced phenotypic plasticity. Plant height, stem diameter and foliar density were the most variable morphological traits, with coefficients of variation higher than 50%. However, several quantitative characters of its reproductive potential, such as berry dimensions, rachis length and number of flowers per inflorescence, resulted with low plasticity with coefficients of variation lower than 30.2%, indicating that these characters were genetically determined. The highest correlation coefficients (p < 0.05) resulted to be between fruit length and fruit width (0.90), leaf length and leaf width (0.78), plant height and stem diameter (0.60), and inflorescence length and flowers number per inflorescence (0.57). The results suggest that an important genetic resource exists for this species in the wild. Low variation in fruit size, which constitutes a target trait for plant breeders, could be useful for selection of cultivars of V. meridionale. The results of this study could also be applied in conservation programs aimed to protect these diverse populations in the mountain forests of Colombia.

  11. Brachypodium as an experimental system for the study of stem parenchyma biology in grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Jacob Kruger; Wilkerson, Curtis Gene; Ma, Wujun

    Stem parenchyma is a major cell type that serves key metabolic functions for the plant especially in large grasses, such as sugarcane and sweet sorghum, where it serves to store sucrose or other products of photosynthesis. It is therefore desirable to understand the metabolism of this cell type as well as the mechanisms by which it provides its function for the rest of the plant. Ultimately, this information can be used to selectively manipulate this cell type in a controlled manner to achieve crop improvement. In this study, we show that Brachypodium distachyon is a useful model system for stemmore » pith parenchyma biology. Brachypodium can be grown under condition where it resembles the growth patterns of important crops in that it produces large amounts of stem material with the lower leaves senescing and with significant stores of photosynthate located in the stem parenchyma cell types. We further characterize stem plastid morphology as a function of tissue types, as this organelle is central for a number of metabolic pathways, and quantify gene expression for the four main classes of starch biosynthetic genes. Notably, we find several of these genes differentially regulated between stem and leaf. Furthermore, these studies show, consistent with other grasses, that the stem functions as a specialized storage compartment in Brachypodium.« less

  12. Brachypodium as an experimental system for the study of stem parenchyma biology in grasses

    DOE PAGES

    Jensen, Jacob Kruger; Wilkerson, Curtis Gene; Ma, Wujun

    2017-03-01

    Stem parenchyma is a major cell type that serves key metabolic functions for the plant especially in large grasses, such as sugarcane and sweet sorghum, where it serves to store sucrose or other products of photosynthesis. It is therefore desirable to understand the metabolism of this cell type as well as the mechanisms by which it provides its function for the rest of the plant. Ultimately, this information can be used to selectively manipulate this cell type in a controlled manner to achieve crop improvement. In this study, we show that Brachypodium distachyon is a useful model system for stemmore » pith parenchyma biology. Brachypodium can be grown under condition where it resembles the growth patterns of important crops in that it produces large amounts of stem material with the lower leaves senescing and with significant stores of photosynthate located in the stem parenchyma cell types. We further characterize stem plastid morphology as a function of tissue types, as this organelle is central for a number of metabolic pathways, and quantify gene expression for the four main classes of starch biosynthetic genes. Notably, we find several of these genes differentially regulated between stem and leaf. Furthermore, these studies show, consistent with other grasses, that the stem functions as a specialized storage compartment in Brachypodium.« less

  13. Balanced cell proliferation and expansion is essential for flowering stem growth control.

    PubMed

    Ferjani, Ali; Hanai, Kenya; Gunji, Shizuka; Maeda, Saori; Sawa, Shinichiro; Tsukaya, Hirokazu

    2015-01-01

    The postembryonic development of aboveground plant organs relies on a continuous supply of cells from the shoot apical meristem. Previous studies of developmental regulation in leaves and flowers have revealed the crucial role of coordinated cell proliferation and differentiation during organogenesis. However, the importance of this coordination has not been examined in flowering stems. Very recently, we attempted to identify regulatory factors that maintain flowering stem integrity. We found that the increased cell number in clavata (clv) mutants and the decreased cell size in de-etiolated (det)3-1 resulted in flowering stems that were thicker and thinner, respectively, than in wild-type (WT) plants. Interestingly, in the cell proliferation- and cell expansion-defective double mutant clv det3-1, the flowering stems often exhibited severe cracking, resulting in exposure of their inner tissues. In this study, further quantification of the cellular phenotypes in the cotyledons and leaves revealed no differences between det3-1 and clv3 det3-1. Together, the above findings suggest that the clv3 mutation in a det3-1 background primarily affects flowering stems, while its effect on other organs is likely negligible. We propose that the coordination between cell proliferation and differentiation is not only important during leaf development, but also plays a role in the growth control of Arabidopsis flowering stems.

  14. Growth stimulation ofTamarindus indica by selected VA mycorrhizal fungi.

    PubMed

    Reena, J; Bagyaraj, D J

    1990-03-01

    Efficient vesicular arbuscular mycorrhizal (VAM) fungi were screened and selected for a slow-growing forest tree species,Tamarindus indica L., important in tropical forestry. Seedlings were inoculated with 13 different VAM fungi, obtained from various sources around the world. Inoculated plants had greater plant height, leaf number, stem girth, biomass, phosphate and Zn(2+) content. They also had higher amounts of mycorrhizal spores, per cent root colonization and external hyphae, as measured by per cent soil aggregation.Tamarindus indica seedlings responded best to inoculation withGigaspora margarita (ICRISAT) followed byGlomus fasciculatum.

  15. [Changes of transport sugar content in different organs of Rehmannia glutinosa].

    PubMed

    Wang, Dong-Hui; Liao, Na; Sun, Peng; Ji, Xue-Qi; Li, Xian-En; Qin, Min-Jian

    2018-04-01

    Raffinose series oligosaccharides are the transport and storage sugars of many plants, Rehmannia glutinosa is one of the commonly used Chinese herbal medicines, medicinal parts ist he roots. Root and tuber of R. glutinosa contains stachyose, raffinose and other oligosaccharides, but the study about the process of growth and development of other organs in the non-structural changes in sugar content is rare.In this study, leaves, stems and roots of R. glutinosa were used as materials to analyze the diurnal variation and the changes of sugar content of sucrose, raffinose and stachyose in different organs of R. glutinosa. The results showed that the content of sucrose in R. glutinosa leaves gradually increased from seedling stage.However, the content of stachyose did not change much at the early stage of growth, and the stachyose rapidly increased at the later stage of growth. The raffinose content gradually decreased throughout the growing season, young leaves of R. glutinosa have higher ability to sucrose synthesis than mature leaves, while mature leaf has higher raffinose and stachyose synthesis ability than young leaves. Sucrose and stachyose content in stem gradually increased, while there was little change in raffinose content. The content of raffinose and stachyose in root increased rapidly from the beginning of fast growing period, while the content of sucrose did not change much. The content of sucrose in leaves of R. glutinosa did not change much at day and night, while the daily changes of raffinose and stachyose contents were very obvious. The contents of raffinose and stachyose in daytime were higher than those at night. The content of raffinose in root and stem was not changed much, but the change of stachyose in root, stem and leaf was very obvious, especially in stem and leaf. In summary, the leaf is the main synthetic organ of raffinose, leaves, stems and roots are stachyose synthesis organ. Sucrose, raffinose and stachyose are the major transport forms of carbohydrates in R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.

  16. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea.

    PubMed

    Nwidu, Lucky Legbosi; Elmorsy, Ekramy; Thornton, Jack; Wijamunige, Buddhika; Wijesekara, Anusha; Tarbox, Rebecca; Warren, Averil; Carter, Wayne Grant

    2017-12-01

    There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC 50  = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC 50  = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC 50  = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.

  17. Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China.

    PubMed

    Hu, Junli; Wu, Fuyong; Wu, Shengchun; Sun, Xiaolin; Lin, Xiangui; Wong, Ming Hung

    2013-05-01

    Five random vegetable farms were selected to investigate the bioaccumulation risk of heavy metals (HMs) by different type of vegetables around the Pearl River Delta (PRD), China. The concentration order of four major HMs in the surface soil samples was Cd

  18. [Determination of myclobutanil 25% WG degradation dynamics in ginseng root, stem, leaf and soil by HPLC-MS/MS].

    PubMed

    Wang, Yan; Wang, Chun-Wei; Gao, Jie; Cui, Li-Li; Xu, Yun-Cheng

    2014-07-01

    A high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed for determining degradation dynamics and final residues of myclobutanil 25% WG in ginseng root, stem, leaf and soil. The samples were extracted with acetonitrile, cleaned-up with primary secondary amine (PSA) solid phase extraction cartridge, separated by Kromasil Eternity-5-C18 (2.1 mm x 150 mm, 5 microm) column with a gradient of acetonitrile and 0.1% formate in water as mobile phases, and analyzed with the multiple reaction monitoring (MRM) in positive ion mode by employing the external standard method. The average recoveries and the relative standard derivations (RSDs) of myclobutanil at the spiked level of 0.01-0.20 mg x kg(-1) were 80.9%-90.7% and 5.54%-9.29%, respectively, and the limit of quantification (LOQ) was 0.005 mg x kg(-1). The method with good reproducible, high precision and low detection limit could meet the requirements of residual analysis on ginseng production. The half-lives of myclobutanil were from 6.25 days to 9.94 days in ginseng root, stem, leaf and soil at spraying dosage of 1 152 g x hm(-2) The final residues were below 0.060 1 mg x kg(-1) in root, below 0.081 7 mg x kg(-1) in stem, 0.006 0-0.102 2 mg x kg(-1) in leaf and below 0.037 6 mg x kg(-1) in soil at spraying dosage range from 576 to 1 152 g x hm(-2). It is recommended that the MRLs of myclobutanil in dried ginseng may be suggested to be 0.10 mg x kg(-1) temporarily, and the preharvest interval was set at 35 days.

  19. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    PubMed

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  20. Aesculus pavia foliar saponins: defensive role against the leafminer Cameraria ohridella.

    PubMed

    Ferracini, Chiara; Curir, Paolo; Dolci, Marcello; Lanzotti, Virginia; Alma, Alberto

    2010-07-01

    Recently, the leafminer Cameraria ohridella Deschka & Dimic has caused heavy damage to the white-flowering horse chestnut in Europe. Among the Aesculus genus, A. pavia L. HBT genotype, characterised by red flowers, showed an atypical resistance towards this pest. Its leaves, shaken in water, originated a dense foam, indicating the presence of saponins, unlike the common horse chestnut tree. The aim was to isolate and identify these leaf saponins and test their possible defensive role against C. ohridella. Spectroscopic analyses showed that A. pavia HBT genotype leaves contained a mixture of saponins, four of which were based on the same structure as commercial escin saponins, the typical saponin mixture produced by A. hippocastanum and accumulated only within bark and fruit tissues. The mixture showed a repellent effect on C. ohridella moth. The number of mines detected on the leaves of A. hippocastanum plants treated with A. pavia HBT saponins through watering and stem brushing was significantly lower than the control, and in many cases no mines were ever observed. The results showed that the exogenous saponins were translocated from roots/stem to the leaf tissues, and their accumulation seemed to ensure an appreciable degree of protection against the leafminer. Copyright (c) 2010 Society of Chemical Industry.

  1. Consequences of transforming narrow leafed lupin (Lupinus angustifolius [L.]) with an ipt gene under control of a flower-specific promoter.

    PubMed

    Atkins, Craig A; Emery, R J Neil; Smith, Penelope M C

    2011-12-01

    Phenotypes of five transgenic lines of narrow-leafed lupin (Lupinus angustifolius [L] cv Merrit) stably transformed with the isopentenyl pyrophosphate transferase (ipt) gene from Agrobacterium tumefaciens coupled to a flower-specific promoter (TP12) from Nicotiana tabacum [L.] are described. Expression of the transgene was detected in floral tissues and in shoot apical meristems on all orders of inflorescence. In each transgenic line there was significant axillary bud outgrowth at all nodes on the main stem with pronounced branch development from the more basal nodes in three of the lines. The lowest basal branches developed in a manner similar to the upper stem axillary branches on cv Merrit and bore fruits, which, in two lines, contained a significant yield of filled seeds at maturity. Senescence of the cotyledons was delayed in all lines with green cotyledons persisting beyond anthesis in one case. IPT expression increased cytokinin (CK) levels in flowers, meristem tissues and phloem exudates in a form specific manner, which was suggestive of localized flower and meristem production with significant long-distance re-distribution in phloem. The total number of fruits formed (pod set) on some transgenic lines was increased compared to cv Merrit. Grain size compared to cv Merrit was not significantly altered in transgenic lines.

  2. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening.

    PubMed

    Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel

    2013-05-01

    Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower. Copyright © Physiologia Plantarum 2012.

  3. Effects of phyllotaxy on biomechanical properties of stems of Cercis occidentalis (Fabaceae).

    PubMed

    Caringella, Marissa A; Bergman, Brett A; Stanfield, Ryan C; Ewers, Madeleine M; Bobich, Edward G; Ewers, Frank W

    2014-01-01

    Phyllotaxy, the arrangement of leaves on a stem, may impact the mechanical properties of woody stems several years after the leaves have been shed. We explored mechanical properties of a plant with alternate distichous phyllotaxy, with a row of leaves produced on each side of the stem, to determine whether the nodes behave as spring-like joints. Flexural stiffness of 1 cm diameter woody stems was measured in four directions with an Instron mechanical testing system; the xylem of the stems was then cut into node (former leaf junction) and nonnode segments for measurement of xylem density. Stems had 20% greater flexural stiffness in the plane perpendicular to the original leaf placement than in the parallel plane. The xylem in the node region was more flexible, but it had significantly greater tissue density than adjacent regions, contradicting the usual correlation between wood density and stiffness. Nodes can behave as spring-like joints in woody plants. For plagiotropic shoots, distichous phyllotaxy results in stems that resist up-and-down bending more than lateral back-and-forth movement. Thus, they may more effectively absorb applied loads from fruits, animals, wind, rain, and snow and resist stresses due to gravity without cracking and breaking. Under windy conditions, nodes may improve damping by absorbing vibrational energy and thus reducing oscillation damage. The effect of plant nodes also has biomimetic design implications for architects and material engineers.

  4. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf.

    PubMed

    Dutta, Sangita; Bhattacharyya, Debasish

    2013-11-25

    Various parts of the plant pineapple (Ananas comosus) are used in traditional medicine worldwide for treatment of a number of diseases and disorders. In folk medicine, pineapple leaf extract was used as an antimicrobial, vermicide, purgative, emmenagoogue, abortifacient, anti-oedema and anti-inflammatory agent. Compared to the fruit and stem extracts of pineapple, information about its leaf extract is limited. The potential of pineapple crown leaf extract as an ethno-medicine has been evaluated in terms of its enzymatic activities related to wound healing, antimicrobial property and toxicity. Major protein components of the extract were revealed by 2-D gel electrophoresis followed by MS/MS analysis. Zymography, DQ-gelatin assay were performed to demonstrate proteolytic, fibrinolytic, gelatinase and collagenase activities. DNase and RNase activities were revealed from agarose gel electrophoresis. Antimicrobial activity was evaluated spectrophotometrically from growth inhibition. Sprague-Dawley rat model was used to measure acute and sub-acute toxicity of the extract by analyzing blood markers. The extract contains several proteins that were clustered under native condition. Proteomic studies indicated presence of fruit bromelain as major protein constituent of the extract. It showed nonspecific protease activity, gelatinolytic, collagenase, fibrinolytic, acid and alkaline phosphatase, peroxidase, DNase and RNase activities along with considerable anti-microbial property. The leaf extract did not induce any toxicity in rats after oral administration of acute and sub-acute doses. Pineapple leaf extract is nontoxic, contains enzymes related to damage tissue repairing, wound healing and possibly prevents secondary infections from microbial organisms. © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees

    Treesearch

    Frederick C. Meinzer; Paula I. Campanello; Jean-Christophe Domec; M. Genoveva Gatti; Guillermo Goldstein; Randol Villalobos-Vega; David R. Woodruff

    2008-01-01

    This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (AL:AS) and wood density (W). We studied the upper crowns of individuals of 15 tropical forest...

  6. Leaf, woody, and root biomass of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; D.R. Coyle; R.B. Hall

    2007-01-01

    Poplar (Populus spp.) trees can be utilized for ecological leachate disposal when applied as an irrigation source for managed tree systems. Our objective was to evaluate differences in tree height, diameter, volume, and biomass of leaf, stem, branch, and root tissues of Populus trees after two seasons of irrigation with municipal...

  7. Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers

    PubMed Central

    Briñez, Boris; Perseguini, Juliana Morini Küpper Cardoso; Rosa, Juliana Santa; Bassi, Denis; Gonçalves, João Guilherme Ribeiro; Almeida, Caléo; Paulino, Jean Fausto de Carvalho; Blair, Matthew Ward; Chioratto, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Valdisser, Paula Arielle Mendes Ribeiro; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Abstract The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean. PMID:29064511

  8. [Effects of acid rain stress on Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth].

    PubMed

    Yin, Xiu-Min; Yu, Shu-Quan; Jiang, Hong; Liu, Mei-Hu

    2010-06-01

    A pot experiment was conducted to study the Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth in different seasons under simulated acid rain stress (heavy, pH = 2. 5; moderate, pH = 4.0; and control, pH = 5.6). In the same treatments, the leaf relative chlorophyll content (SPAD), maximum PS II photochemical efficiency (F(v)/F(m)), actual PSII photochemical quantum yield (phi(PS II)), plant height, and stem diameter in different seasons were all in the order of October > July > April > January. In the same seasons, all the parameters were in the order of heavy acid rain > moderate acid rain > control. The interactions between different acid rain stress and seasons showed significant effects on the SPAD, F(v)/F(m), plant height, and stem diameter, but lesser effects on phi(PS II), qp and qN.

  9. Basal area increment and growth efficiency as functions of canopy dynamics and stem mechanics

    Treesearch

    Thomas J. Dean

    2004-01-01

    Crown and canopy structurecorrelate with growth efficiency and also determine stem size and taper as described by the uniform stress principle of stem formation. A regression model was derived from this principle that expresses basal area increment in terms of the amount and vertical distribution of leaf area and change in these variables during a growth period. This...

  10. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics

    NASA Astrophysics Data System (ADS)

    Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  11. [Effects of applying tea seed meal and EDTA on the speciation transformation and phyto-availability of nickel and zinc in soil].

    PubMed

    Yu, Bin; Xia, Hui-Long

    2013-06-01

    A pot experiment with sugarcane was conducted to study the effects of applying tea seed meal and EDTA on the speciation transformation and phyto-availability of nickel (Ni) and zinc (Zn) in soil. With the increasing application rate of tea seed meal, the biomass of sugarcane root, stem, and leaf increased gradually, but no significant difference was observed in the stem and leaf biomass between EDTA treatments and the control. Applying tea seed meal and EDTA increased the acid-soluble Ni and Zn contents in soil, and promoted the bioconcentration and translocation of Ni and Zn in sugarcane. Meanwhile, the strengthening effect increased gradually with the increasing application rate of tea seed meal. As compared with EDTA, tea seed meal was more efficient in improving the accumulation of Ni and Zn in sugarcane, and thus, made the sugarcane remove more Ni and Zn from soil. The Ni and Zn contents in sugarcane stem and leaf had significant positive correlations with the application rate of tea seed meal, while the Ni and Zn contents in sugarcane root were significantly negatively correlated with the application rate of tea seed meal.

  12. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.

    PubMed

    Wong, Min Hao; Giraldo, Juan P; Kwak, Seon-Yeong; Koman, Volodymyr B; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors-single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal-embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm -1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  13. Microscopic characters of the leaf and stem of Lavandula dentata L. (Lamiaceae).

    PubMed

    do Rocio Duarte, Márcia; Carvalho de Souza, Danielle

    2014-08-01

    Lavandula dentata L. is an aromatic plant used in folk medicine for different purposes and, for this reason, phytochemical surveys have been carried out in the search for bioactive substances aiming to support its uses. Since there is little knowledge on the structural aspects of L. dentata, this work has studied the anatomical characters of the leaf and stem using light and scanning electron microscopy, in order to assist the species identification. As a result, there are different types of trichomes: capitate glandular with uni- or bicellular head, peltate glandular with multicellular head, and branched non-glandular. The leaf is hypostomatic showing diacytic stomata. The epidermis is uniseriate and coated with striate cuticle. The mesophyll is dorsiventral and the midrib is concave-convex and traversed by a single collateral vascular bundle. The stem is quadrangular and has alternating strands of collenchyma and cortical parenchyma as well as a typical endodermis in the cortex. The phloem and xylem cylinders are traversed by narrow rays and there is an incomplete sclerenchymatic sheath adjoining the phloem. These results are a novelty for the species and contribute to distinguish it from other lavenders. © 2014 Wiley Periodicals, Inc.

  14. Comparative proteomics of leaves found at different stem positions of maize seedlings.

    PubMed

    Chen, Yi-Bo; Wang, Dan; Ge, Xuan-Liang; Zhao, Biligen-Gaowa; Wang, Xu-Chu; Wang, Bai-Chen

    2016-07-01

    To better understand the roles of leaves at different stem positions during plant development, we measured the physiological properties of leaves 1-4 on maize seedling stems, and performed a proteomics study to investigate the differences in protein expression in the four leaves using two-dimensional difference gel electrophoresis and tandem mass spectrometry in conjunction with database searching. A total of 167 significantly differentially expressed protein spots were found and identified. Of these, 35% are involved in photosynthesis. By further analysis of the data, we speculated that in leaf 1 the seedling has started to transition from a heterotroph to an autotroph, development of leaf 2 is the time at which the seedling fully transitions from a heterotroph to an autotroph, and leaf maturity was reached only with fully expanded leaves 3 and 4, although there were still some protein expression differences in the two leaves. These results suggest that the different leaves make different contributions to maize seedling growth via modulation of the expression of the photosynthetic proteins. Together, these results provide insight into the roles of the different maize leaves as the plant develops from a heterotroph to an autotroph. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. A Model-Data Intercomparison of Carbon Fluxes, Pools, and LAI in the Community Land Model (CLM) and Alternative Carbon Allocation Schemes

    NASA Astrophysics Data System (ADS)

    Montane, F.; Fox, A. M.; Arellano, A. F.; Alexander, M. R.; Moore, D. J.

    2016-12-01

    Carbon (C) allocation to different plant tissues (leaves, stem and roots) remains a central challenge for understanding the global C cycle, as it determines C residence time. We used a diverse set of observations (AmeriFlux eddy covariance towers, biomass estimates from tree-ring data, and Leaf Area Index measurements) to compare C fluxes, pools, and Leaf Area Index (LAI) data with the Community Land Model (CLM). We ran CLM for seven temperate forests in North America (including evergreen and deciduous sites) between 1980 and 2013 using different C allocation schemes: i) standard C allocation scheme in CLM, which allocates C to the stem and leaves as a dynamic function of annual net primary productivity (NPP); ii) two fixed C allocation schemes, one representative of evergreen and the other one of deciduous forests, based on Luyssaert et al. 2007; iii) an alternative C allocation scheme, which allocated C to stem and leaves, and to stem and coarse roots, as a dynamic function of annual NPP, based on Litton et al. 2007. At our sites CLM usually overestimated gross primary production and ecosystem respiration, and underestimated net ecosystem exchange. Initial aboveground biomass in 1980 was largely overestimated for deciduous forests, whereas aboveground biomass accumulation between 1980 and 2011 was highly underestimated for both evergreen and deciduous sites due to the lower turnover rate in the sites than the one used in the model. CLM overestimated LAI in both evergreen and deciduous sites because the Leaf C-LAI relationship in the model did not match the observed Leaf C-LAI relationship in our sites. Although the different C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, one of the alternative C allocation schemes used (iii) gave more realistic stem C/leaf C ratios, and highly reduced the overestimation of initial aboveground biomass, and accumulated aboveground NPP for deciduous forests by CLM. Our results would suggest using different C allocation schemes for evergreen and deciduous forests. It is crucial to improve CLM in the near future to minimize data-model mismatches, and to address some of the current model structural errors and parameter uncertainties.

  16. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana.

    PubMed

    Vadde, Batthula Vijaya Lakshmi; Challa, Krishna Reddy; Nath, Utpal

    2018-01-01

    Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Organ-coordinated response of early post-germination mahogany seedlings to drought.

    PubMed

    Horta, Lívia P; Braga, Márcia R; Lemos-Filho, José P; Modolo, Luzia V

    2014-04-01

    Water deficit tolerance during post-germination stages is critical for seedling recruitment. In this work, we studied the effect of water deficit on morphological and biochemical responses in different organs of newly germinated mahogany (Swietenia macrophylla King) seedlings, a woody species that occurs in the Amazon rainforest. The root : shoot ratio increased under water deficit. The leaf number and water potential were not altered, although reductions in leaf area and stomatal conductance were observed. Osmotic potential became more negative in leaves of seedlings under severe stress. Water deficit increased fructose, glucose, sucrose and myo-inositol levels in leaves. Stems accumulated fructose, glucose and l-proline. Nitric oxide (NO) levels increased in the vascular cylinder of roots under severe stress while superoxide anion levels decreased due to augmented superoxide dismutase activity in this organ. Water deficit induced glutathione reductase activity in both roots and stems. Upon moderate or severe stress, catalase activity decreased in leaves and remained unaffected in the other seedling organs, allowing for an increase of hydrogen peroxide (H2O2) levels in leaves. Overall, the increase of signaling molecules in distinct organs-NO in roots, l-proline in stems and H2O2 and myo-inositol in leaves-contributed to the response of mahogany seedlings to water deficit by triggering biochemical processes that resulted in the attenuation of oxidative stress and the establishment of osmotic adjustment. Therefore, this body of evidence reveals that the development of newly germinated mahogany seedlings may occur in both natural habitats and crop fields even when water availability is greatly limited.

  18. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    NASA Astrophysics Data System (ADS)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; Fyllas, Nikolaos M.; Galbraith, David R.; Baker, Timothy R.; Kruijt, Bart; Rowland, Lucy; Fisher, Rosie A.; Binks, Oliver J.; Sevanto, Sanna; Xu, Chonggang; Jansen, Steven; Choat, Brendan; Mencuccini, Maurizio; McDowell, Nate G.; Meir, Patrick

    2016-11-01

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait-trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.

  19. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    PubMed

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  20. Triple oxygen isotope composition of leaf waters in Mpala, central Kenya

    NASA Astrophysics Data System (ADS)

    Li, Shuning; Levin, Naomi E.; Soderberg, Keir; Dennis, Kate J.; Caylor, Kelly K.

    2017-06-01

    Variations in triple oxygen isotopes have been used in studies of atmospheric photochemistry, global productivity and increasingly in studies of hydroclimate. Understanding the distribution of triple oxygen isotopes in plant waters is critical to studying the fluxes of oxygen isotopes between the atmosphere and hydrosphere, in which plants play an important role. In this paper we report triple oxygen isotope data for stem and leaf waters from Mpala, Kenya and explore how Δ17 O, the deviation from an expected relationship between 17O /16O and 18O /16O ratios, in plant waters vary with respect to relative humidity and deuterium excess (d-excess). We observe significant variation in Δ17 O among waters in leaves and stems from a single plant (up to 0.16‰ range in Δ17 O in leaf water in a plant over the course of a signal day), which correlates to changes in relative humidity. A steady state model for evaporation in leaf water reproduces the majority of variation in Δ17 O and d-excess we observed in leaf waters, except for samples that were collected in the morning, when relative humidity is high and the degree of fractionation in the system is minimal. The data and the steady state model indicate that the slope, λtransp, that links δ17 O and δ18 O values of stem and leaf waters and characterizes the fractionation during transpiration, is strongly influenced by the isotopic composition of ambient vapor when relative humidity is high. We observe a strong, positive relationship between d-excess and Δ17 O, with a slope 2.2 ± 0.2 per meg ‰-1, which is consistent with the observed relationship in tropical rainfall and in water in an evaporating open pan. The strong linear relationship between d-excess and Δ17 O should be typical for any process involving evaporation or any other fractionation that is governed by kinetic effects.

  1. Variation in species-level plant functional traits over wetland indicator status categories

    USGS Publications Warehouse

    McCoy-Sulentic, Miles E.; Kolb, Thomas E.; Merritt, David M.; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.

    2017-01-01

    Wetland indicator status (WIS) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species-level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species-level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA), stem specific gravity (SSG), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species-level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG, seed mass, % leaf carbon and height, and for woody species occurred for height, SSG, and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low-density stem tissue. Adaptations to drier habitats in the riparian zone include short, high-density cavitation-resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.

  2. A technique system for the measurement, reconstruction and character extraction of rice plant architecture

    PubMed Central

    Li, Xumeng; Wang, Xiaohui; Wei, Hailin; Zhu, Xinguang; Peng, Yulin; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    This study developed a technique system for the measurement, reconstruction, and trait extraction of rice canopy architectures, which have challenged functional–structural plant modeling for decades and have become the foundation of the design of ideo-plant architectures. The system uses the location-separation-measurement method (LSMM) for the collection of data on the canopy architecture and the analytic geometry method for the reconstruction and visualization of the three-dimensional (3D) digital architecture of the rice plant. It also uses the virtual clipping method for extracting the key traits of the canopy architecture such as the leaf area, inclination, and azimuth distribution in spatial coordinates. To establish the technique system, we developed (i) simple tools to measure the spatial position of the stem axis and azimuth of the leaf midrib and to capture images of tillers and leaves; (ii) computer software programs for extracting data on stem diameter, leaf nodes, and leaf midrib curves from the tiller images and data on leaf length, width, and shape from the leaf images; (iii) a database of digital architectures that stores the measured data and facilitates the reconstruction of the 3D visual architecture and the extraction of architectural traits; and (iv) computation algorithms for virtual clipping to stratify the rice canopy, to extend the stratified surface from the horizontal plane to a general curved surface (including a cylindrical surface), and to implement in silico. Each component of the technique system was quantitatively validated and visually compared to images, and the sensitivity of the virtual clipping algorithms was analyzed. This technique is inexpensive and accurate and provides high throughput for the measurement, reconstruction, and trait extraction of rice canopy architectures. The technique provides a more practical method of data collection to serve functional–structural plant models of rice and for the optimization of rice canopy types. Moreover, the technique can be easily adapted for other cereal crops such as wheat, which has numerous stems and leaves sheltering each other. PMID:28558045

  3. Alfalfa weevil (Coleoptera:Curculionidae) management in alfalfa by spring grazing with cattle.

    PubMed

    Buntin, G D; Bouton, J H

    1996-12-01

    The effect of continuous, intensive grazing by cattle in the 1st alfalfa growth cycle on larval densities of the alfalfa weevil, Hyera postica (Gyllenhal), was evaluated in "Alfagraze' and "Apollo' alfalfa, which are tolerant and not tolerant to grazing, respectively. In small-cage exclusion trials, grazing reduced larval numbers in 1991 by 65% in Alfagraze and by 32% in Apollo. Larval numbers in 1992 were low (< or = 0.6 larvae per stem) and were not reduced significantly by grazing. Grazing and use of early insecticide treatments of permethrin or carbofuran at low rates with < or = 7-d grazing restrictions to suppress larval numbers before grazing also were examined in large-plot exclusion trails in 1993 and 1994. Grazing reduced larval densities by 60% in 1993 and 45% in 1994 during a 3-wk period beginning 3 wk after grazing was initiated. However, alfalfa weevil larvae caused moderate leaf injury in 1993 and severe injury in 1994 before grazing reduced larval numbers. Use of permethrin at 0.11 kg (AI)/ha or carbofuran or chlorpyrifos at 0.28 kg (AI)/ha effectively reduced larval numbers and prevented leaf injury before grazing began. Therefore, a combination of an early application of an insecticide treatment with a short grazing restriction followed by continuous grazing will control alfalfa weevil larvae while allowing cattle to graze and directly use forage of grazing-tolerant alfalfa.

  4. Organization and evolution of mating-type genes in three Stagonosporopsis species causing gummy stem blight of cucurbits and leaf spot and dry rot of papaya.

    PubMed

    Li, Hao-Xi; Gottilla, Thomas M; Brewer, Marin Talbot

    2017-10-01

    Population divergence and speciation of closely related lineages can result from reproductive differences leading to genetic isolation. An increasing number of fungal diseases of plants and animals have been determined to be caused by morphologically indistinguishable species that are genetically distinct, thereby representing cryptic species. We were interested in identifying if mating systems among three Stagonosporopsis species (S. citrulli, S. cucurbitacearum, and S. caricae) causing gummy stem blight (GSB) of cucurbits or leaf spot and dry rot of papaya differed, possibly underlying species divergence. Additionally, we were interested in identifying evolutionary pressures acting on the genes controlling mating in these fungi. The mating-type loci (MAT1) of three isolates from each of the three species were identified in draft genome sequences. For the three species, MAT1 was structurally identical and contained both mating-type genes necessary for sexual reproduction, which suggests that all three species are homothallic. However, both MAT1-1-1 and MAT1-2-1 were divergent among species showing rapid evolution with a much greater number of amino acid-changing substitutions detected for the reproductive genes compared with genes flanking MAT1. Positive selection was detected in MAT1-2-1, especially in the highly conserved high mobility group (MATA_HMG-box) domain. Thus, the mating-type genes are rapidly evolving in GSB fungi, but a difference in mating systems among the three species does not underlie their divergence. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade-tolerant broadleaves. The results of our study suggest that the combinations of plant attributes enhancing growth under high light vary with shade tolerance, but differ between leaf habit groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Genetic and morphologic variation in 'Phyllodoce empetriformis' and 'P. glanduliflora' (Ericaceae) in Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Rochefort, Regina M.; Peterson, D.L.

    2001-01-01

    Genetic and morphological diversity of Phyllodoce empetriformis (Sw.) D. Don and Phyllodoce glanduliflora (hook.) Cov. were surveyed in Mount Rainier National Park in the Cascade Mountains of Washington State. Paired populations at high and low elevations were sampled at three study areas between 1720- and 2451-m elevation. Allozyme analysis of four polymorphic loci indicates high levels of genetic diversity within populations (P. empetriformis = 94.2% and P. glanduliflora = 93.4% of total diversity) and significant differences in allele frequencies among populations and study areas. Individual populations are composed of multiple clones with high ratios of local to widespread genotypes. The proportion of distinguishable clones ranges from 32 to 83% within individual populations. Within individual populations, 18-67% of genotypes were restricted to one population. Patterns of morphologic variation, estimated through measurements of leaf width, leaf length, stem extension, and plant height paralleled those displayed by allozyme analysis. Significant differences were found in leaf width and stem length for P. empetriformis and among greenhouse populations for leaf width (P. empetriformis) and leaf length (P. glanduliflora). Species conservation strategies for Phyllodoce should concentrate on the maintenance of within-population levels of diversity, protection of adjacent populations, and protection of safe sites for recruitment of new populations.

  7. OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress.

    PubMed

    Suzuki, Kei; Yamaji, Naoki; Costa, Alex; Okuma, Eiji; Kobayashi, Natsuko I; Kashiwagi, Tatsuhiko; Katsuhara, Maki; Wang, Cun; Tanoi, Keitaro; Murata, Yoshiyuki; Schroeder, Julian I; Ma, Jian Feng; Horie, Tomoaki

    2016-01-19

    Na(+) exclusion from leaf blades is one of the key mechanisms for glycophytes to cope with salinity stress. Certain class I transporters of the high-affinity K(+) transporter (HKT) family have been demonstrated to mediate leaf blade-Na(+) exclusion upon salinity stress via Na(+)-selective transport. Multiple HKT1 transporters are known to function in rice (Oryza sativa). However, the ion transport function of OsHKT1;4 and its contribution to the Na(+) exclusion mechanism in rice remain to be elucidated. Here, we report results of the functional characterization of the OsHKT1;4 transporter in rice. OsHKT1;4 mediated robust Na(+) transport in Saccharomyces cerevisiae and Xenopus laevis oocytes. Electrophysiological experiments demonstrated that OsHKT1;4 shows strong Na(+) selectivity among cations tested, including Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4 (+), in oocytes. A chimeric protein, EGFP-OsHKT1;4, was found to be functional in oocytes and targeted to the plasma membrane of rice protoplasts. The level of OsHKT1;4 transcripts was prominent in leaf sheaths throughout the growth stages. Unexpectedly however, we demonstrate here accumulation of OsHKT1;4 transcripts in the stem including internode II and peduncle in the reproductive growth stage. Moreover, phenotypic analysis of OsHKT1;4 RNAi plants in the vegetative growth stage revealed no profound influence on the growth and ion accumulation in comparison with WT plants upon salinity stress. However, imposition of salinity stress on the RNAi plants in the reproductive growth stage caused significant Na(+) overaccumulation in aerial organs, in particular, leaf blades and sheaths. In addition, (22)Na(+) tracer experiments using peduncles of RNAi and WT plants suggested xylem Na(+) unloading by OsHKT1;4. Taken together, our results indicate a newly recognized function of OsHKT1;4 in Na(+) exclusion in stems together with leaf sheaths, thus excluding Na(+) from leaf blades of a japonica rice cultivar in the reproductive growth stage, but the contribution is low when the plants are in the vegetative growth stage.

  8. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China.

    PubMed

    Zhang, Yun; Luo, Xiao-Jun; Mo, Ling; Wu, Jiang-Ping; Mai, Bi-Xian; Peng, Yong-Hong

    2015-10-01

    The bioaccumulation and translocation of polyhalogenated compounds (PHCs) in rice planted in the paddy soils of an electronic waste (e-waste) recycling site were investigated, along with the effect of contaminated soils on rice growth. The PHCs included polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and dechlorane plus (DPs). The morphological development and all measured physiological parameters of rice plants except for peroxidase were significantly inhibited by e-waste contaminated soils. Specifically, soil-root bioaccumulation factors (RCFs) increased with increasing logarithm of octanol-water partition coefficient (logKow) for PCBs, but decreased for PBDEs. During translocation from root to stem, translocation factors (TFs) and logKow were positively correlated. However, the accumulation mechanism in the leaf was concentration-dependent. In the high concentration exposure group, translocation play more important role in determination PHCs burden in leaf than atmospheric uptake, with logTF (from stem to leaf) being positively correlated with logKow. In contrast, in the low exposure and control groups, logTF (from stem to leaf) was negatively correlated with logKow. In addition, Syn-DP was selectively accumulated in plant tissues. In conclusion, this study demonstrates that e-waste contaminated soils affect rice growth, revealed the rule of the bioaccumulation and translocation of PHCs in rice plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Response to stem bending in forest shrubs: stem or shoot reorientation and shoot release.

    PubMed

    Wilson, B F

    1997-10-01

    Shrubs in the forest understory may be bent by their own weight or by overstory debris. To maintain height growth they must respond to bending by vertical growth of new shoots, reorientation of older axes, or by releasing preventitious buds to form epicormic shoots. I tested for these responses in Ilex verticillata L., Cornus amomum Mill., Gaylussacia baccata (Wang.) K. Koch, Viburnum cassinoides L., Hamamelis virginiana L., and Kalmia latifolia L. For each species, I removed potentially supporting vegetation adjacent to 20 stems, left 10 stems untreated to test for bending by self weight, and bent the remaining 10 stems to 45 degrees to simulate effects of fallen debris. Stem angles and curvatures were measured from before leaf out until just before leaf fall to detect either sagging from self weight or upward bending from tension wood action. Control stems initially leaned out of vertical and five of six species sagged further into a cantilever form. Several control stems failed and bent to the ground. Stems of H. virginiana, I. verticillata, and C. amomum formed tension wood, but only the first two species bent upward. Viburnum cassinoides, G. baccata, and K. latifolia formed no tension wood and sagged further down after being bent. Epicormic shoots formed with varying frequencies in all species except K. latifolia. Epicormic shoots were the major response in C. amomum, V. cassinoides, and G. baccata. New terminal shoots on bent stems recovered toward vertical in I. verticillata and K. latifolia. Negative gravitropic response of shoots was the only recovery mechanism for K. latifolia.

  10. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci

    USDA-ARS?s Scientific Manuscript database

    Wheat is grown around the world and has been plagued by three rust fungi for centuries. Leaf rust, stripe rust, and stem rust each cause significant damage and can adapt quickly to overcome resistance that is present in wheat cultivars. Using advanced DNA sequencing technology, the genomes of leaf ...

  11. Comparative evaluation of successive extracts of leaf and stem bark of Albizzia lebbeck for mast cell stabilization activity.

    PubMed

    Shashidhara, S; Bhandarkar, Anant V; Deepak, M

    2008-06-01

    Successive chloroform, methanol and water extracts of bark and leaves of Albizzia lebbeck were tested for its in vitro mast cell stabilizing effect against compound 48/80. Methanolic extract of leaf and methanolic and water extracts of bark have shown maximum activity comparable to that of disodium chromoglycate.

  12. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii).

    Treesearch

    J.B. St. Clair

    1993-01-01

    Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...

  13. Somaclonal variation in hybrid poplars for resistance to Septoria leaf spot

    Treesearch

    M.E. Ostry; D. D. Skilling

    1987-01-01

    Tissue culture techniques have been used to obtain hybrid poplars with putative resistance to leaf spot caused by Septoria musiva from clones previously susceptible to the disease. Stem internode explants were used to obtain proliferating callus cultures. Adventitious bud formation and shoot proliferation were then induced. Elongated shoots were excised and rooted in a...

  14. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species.

    Treesearch

    Sandra Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer; Jose A. Hinojosa; William A. Hoffman; Augusto C. Franco

    2004-01-01

    The impact of nocturnal water loss and recharge of stem water storage on predawn disequilibrium between leaf (ΨL) and soil (Ψ S) water potentials was studied in three dominant tropical savanna woody species in central Brazil (Cerrado). Sap flow continued throughout the night during the dry season and...

  15. Antibacterial and antifungal activities of Dracontomelon dao.

    PubMed

    Khan, M R; Omoloso, A D

    2002-07-01

    The crude methanolic extracts of the leaves, stem and root barks of Drancantomelon dao and their subsequent partitioning (petrol, dichloromethane, ethyl acetate, butanol) gave fractions which demonstrated a very good level of broad spectrum antibacterial activity. The dichloromethane and butanol fractions of the leaf were the most active. Only the leaf fractions had antifungal activity, particularly the dichloromethane and butanol.

  16. Plant Trait-Species Abundance Relationships Vary with Environmental Properties in Subtropical Forests in Eastern China

    PubMed Central

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X.; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114

  17. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?

    PubMed

    Hodgson, John G; Santini, Bianca A; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J; Band, Stuart R; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Díez, Angel; de Torres Espuny, Lluis; Warham, Gemma

    2017-11-10

    While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL. 1974. Flowering plants: evolution above the species level . Cambridge, MA: Belknap Press) is perhaps associated with both seed and leaf development, and major taxa appear routinely specialized with respect to ecologically important size-related traits. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Understanding the effect of carbon status on stem diameter variations

    PubMed Central

    De Swaef, Tom; Driever, Steven M.; Van Meulebroek, Lieven; Vanhaecke, Lynn; Marcelis, Leo F. M.; Steppe, Kathy

    2013-01-01

    Background Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. Methods A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the ‘one common assimilate pool’ concept for tomato. Key Results Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. Conclusions Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing conditions. PMID:23186836

  19. Tree Species Traits but Not Diversity Mitigate Stem Breakage in a Subtropical Forest following a Rare and Extreme Ice Storm

    PubMed Central

    Nadrowski, Karin; Pietsch, Katherina; Baruffol, Martin; Both, Sabine; Gutknecht, Jessica; Bruelheide, Helge; Heklau, Heike; Kahl, Anja; Kahl, Tiemo; Niklaus, Pascal; Kröber, Wenzel; Liu, Xiaojuan; Mi, Xiangcheng; Michalski, Stefan; von Oheimb, Goddert; Purschke, Oliver; Schmid, Bernhard; Fang, Teng; Welk, Erik; Wirth, Christian

    2014-01-01

    Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level. PMID:24879434

  20. Participation of Green Organs to Grain Filling in Triticum turgidum var durum Grown under Mediterranean Conditions

    PubMed Central

    Monneveux, Philippe

    2017-01-01

    In wheat, flag leaf, stem, chaff and awns contribute to grain filling through photosynthesis and/or re-mobilization. Environmental and genetic effects on the relative contribution of each organ were examined by analyzing the consequences of sink-source manipulations (shading and excision) and by comparing carbon isotope discrimination (Δ) values in dry matter (at maturity) and sap (two weeks after anthesis) in six durum wheat genotypes grown in two contrasting seasons. The contribution of flag leaf, stem, chaff and awns to grain filling, estimated by sink-source manipulations, highly varied with the season. The contribution of ear photosynthesis and re-mobilization from the stem increased with post-anthesis water stress. They showed a large genetic variation that was, however, not clearly associated to morphological characteristics of ear and stem. Isotopic imprints of chaff on grain Δ were identified as a possible surrogate of the destructive and cumbersome sink-source manipulations to evaluate the contribution of carbon assimilated in ears or re-mobilized from stem. This might facilitate screening of genetic resources and allow the combining of favourable drought tolerance mechanisms in wheat. PMID:29295600

  1. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants.

    PubMed

    Kim, K J; Kim, H J; Khalekuzzaman, M; Yoo, E H; Jung, H H; Jang, H S

    2016-04-01

    This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m(-3)·m(-2) leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m(-3)·m(-2) leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7% in S. actinophylla, and 46.9 and 53.1% in F. benghalensis, for an average of 47 and 53% for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5% in S. actinophylla, and 60.7 and 39.3% in F. benghalensis, for an average of 60 and 40% for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39%. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.

  2. Changes in hydraulic conductance cause the difference in growth response to short-term salt stress between salt-tolerant and -sensitive black gram (Vigna mungo) varieties.

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Ookawa, Taiichiro; Kanekatsu, Motoki; Hirasawa, Tadashii

    2016-04-01

    Black gram (Vigna mungo) is an important crop in Asia, However, most black gram varieties are salt-sensitive. The causes of varietal differences in salt-induced growth reduction between two black gram varieties, 'U-Taung-2' (salt-tolerant; BT) and 'Mut Pe Khaing To' (salt-sensitive; BS), were examined the potential for the first step toward the genetic improvement of salt tolerance. Seedlings grown in vermiculite irrigated with full-strength Hoagland solution were treated with 0mM NaCl (control) or 225 mM NaCl for up to 10 days. In the 225 mM NaCl treatment, plant growth rate, net assimilation rate, mean leaf area, leaf water potential, and leaf photosynthesis were reduced more in BS than in BT plants. Leaf water potential was closely related to leaf photosynthesis, net assimilation rate, and increase in leaf area. In response to salinity stress, hydraulic conductance of the root, stem, and petiole decreased more strongly in BS than in BT plants. The reduction in stem and petiole hydraulic conductance was caused by cavitation, whereas the reduction in root hydraulic conductance in BS plants was caused by a reduction in root surface area and hydraulic conductivity. We conclude that the different reduction in hydraulic conductance is a cause of the differences in the growth response between the two black gram varieties under short-term salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae).

    PubMed

    Noodén, L D; Penney, J P

    2001-11-01

    Like most monocarpic plants, longevity of Arabidopsis thaliana plants is controlled by the reproductive structures; however, they appear to work differently from most dicots studied. Neither male- and female-sterility mutations (ms1-1 and bell1, respectively) nor surgical removal of the stems with inflorescences (bolts) at various stages significantly increased the longevity of individual rosette leaves, yet the mutants and treated plants lived 20-50 d longer, measured by the death of the last rosette and/or the last cauline leaf. A series of growth mutations (clv2-4, clv3-2, det3, vam1 enh, and dark green) also increased plant longevity by 20-30 d but did not delay the overall development of the plants. The mutations prolonged plant life through the production of new leaves and stems with inflorescences (bolts) rather than by extending leaf longevity. In growing stems, the newly-formed leaves may induce senescence in the older leaves; however, removal of the younger leaves did not significantly increase the life of the older leaves on the compressed stems of Arabidopsis. Since plants that produce more bolts also live longer, the reproductive load (dry weight) of the bolts did not seem to drive leaf or whole plant senescence here. The developing reproductive structures caused the death of the plant by preventing regeneration of leaves and bolts, which are green and presumably photosynthetic. They also exerted a correlative control (repression) on the development of additional reproductive structures.

  4. Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn.

    PubMed

    Liu, Jie; Zhang, Xuehong; Mo, Lingyun; Yao, Shiyin; Wang, Yixuan

    2017-08-01

    The effect of decapitation on enhancing plant growth and Cd accumulation in Celosia argentea Linn. was evaluated using a pot experiment. Decapitation significantly enhanced the growth of C. argentea. The numbers of branch and leaf in the decapitated plants (DP) were significantly higher than those in undecapitated plants (UDP, p < 0.05). Decapitation increased the biomass by 75%-105% for roots, 108%-152% for stems, and 80%-107% for leaves. Although the transpiration and photosynthesis rates were not significantly different between DP and UPD, decapitation significantly increased the total leaf area and total transpiration per plant (p < 0.05). The higher total transpiration per plant resulted in a higher leaf Cd concentration in DP. DP accumulated Cd in shoots (197, 275, and 425 μg plant -1 ) that were 2.5-2.8 times higher than UDP (78, 108, and 152 μg plant -1 ), with the soils containing 1, 5, and 10 mg kg -1 Cd. Results suggested that decapitation is a novel and convenient method to improve the phytoextraction efficiency of C. argentea in Cd contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, W. C.; Brown, C. S.

    1995-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional SDS PAGE and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  6. Willow water uptake and shoot extension growth in response to nutrient and moisture on a clay landfill cap soil.

    PubMed

    Martin, Peter J; Stephens, William

    2008-09-01

    Extension growth of willow (Salix viminalis L.) and changes in soil water were measured in lysimeters containing clay and sandy loam soils with different amendment and watering treatments. No water uptake was found below 0.3m in the nutritionally poor unamended clay; amendment with organic matter to 0.4m depth resulted in water extraction down to 0.5m depth whereas in the sandy loam, there was greater extraction from all depths down to 0.6m. With water stress, wilting of plants occurred when the volumetric soil water content at 0.1m was about 31% in the clay and 22% in the sandy loam. Compared with shoots on plants in the amended clay, those in the unamended treatment showed reduced extension growth, little increase in stem basal area (SBA) and a small shoot leaf area, resulting from a reduced number of leaves shoot(-1) and a small average area leaf(-1). Water stress also reduced shoot extension growth, SBA gain and the leaf area on extension growth. Shoot growth rates were significantly correlated with air temperature and base temperatures between 2.0 and 7.6 degrees C were indicated for the different treatments. These studies have helped to explain some of the large treatment effects described previously on biomass production and plant leaf area.

  7. Light Spectral Quality Effects on the Growth of Potato (Solanum Tuberosum L.) Nodal Cuttings in Vitro

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah A.; Weigel, Russell C.; Wheeler, Raymond M.; Sager, John C.

    1993-01-01

    The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For cultivars, stem lengths after 4 wks were longest under LPS, follow by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred iwth LPS or LPS/cwf lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.

  8. Biomass Estimation for some Shrubs from Northeastern Minnesota

    Treesearch

    David F. Grigal; Lewis F. Ohmann

    1977-01-01

    Biomass prediction equations were developed for 23 northeastern Minnesota shrub species. The allowmetric function was used to predict leaf, current annual woody twig, stem, and total woody biomass (dry grass), using stem diameter class estimated to the nearest 0.25 cm class at 15 cm above ground level as the independent variable.

  9. Using DNA Markers to Distinguish Among Chestnut Species and Hybrids

    Treesearch

    Thomas L. Kubisiak

    1999-01-01

    Identification of American chestnut trees in the wild for inclusion in breeding programs is currently done using morphological traits. Distinguishing traits include leafshape, stipule size, presence or absence of leaf and stem trichomes, and stem color. Application of these traits is reasonably clear if the trees are pure American chestnut, but identitication of...

  10. MINERAL AND BIOCHEMICAL ANALYSIS OF VARIOUS PARTS OF CISSUS QUADRANGULARIS LINN

    PubMed Central

    Udayakumar, R.; Sundaran, M.; Krishna, Raghuram

    2004-01-01

    Ash, minerals and biochemical contents were determined in various parts of root, stem and leaf of Cissus quadrangularis. The maximum ash content was observed in the root. The maximum concentration of carbohydrate and protein in the root and phosphorus, iron, calcium and lipids in the stem were observed. PMID:22557157

  11. Wheat Rusts in the United States in 2007

    USDA-ARS?s Scientific Manuscript database

    In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...

  12. Cryotherapy by encapsulation-dehydration is effective for in vitro eradication of latent viruses from ‘Marubakaido’ apple rootstock

    USDA-ARS?s Scientific Manuscript database

    Apple stem pitting virus (ASPV), Apple chlorotic leaf spot virus (ACLSV) and Apple stem grooving virus (ASGV) are several major viral pathogens of apple trees, responsible for substantial damage to the world's apple industry. This study aimed to evaluate the effectiveness of encapsulation-dehydratio...

  13. Relationship Between Canopy Dynamics and Stem Volume Production of Four Species Receiving Irrigation and Fertilization

    Treesearch

    Chrisopher B Allen; Rodney E. Will; Terry Sarigumba; Marshall A. Jacobson; Richard F. Daniels; Stephen A. Kennerly

    2004-01-01

    We measured the effects of irrigation and varying levels of fertilization on intercepted photosynthetically active radiation (IPAR), projected leaf area index (LAI), and foliar nitrogen concentration ([N]) in order to determine the relationship between resource availability, canopy size, and stem-volume growth. Stands of sycamore (Platanus occidentalis...

  14. Chemical composition of the leaf and stem essential oil of Adenophorae Radix

    NASA Astrophysics Data System (ADS)

    Lan, Weijie; Lin, Shang; Li, Xindan; Zhang, Qing; Qin, Wen

    2017-03-01

    The chemical composition of the essential oil extracted from leaves and stems of Adenophorae Radix was determined for the first time in this study. Twenty-six compounds were identified by gas chromatography coupled to mass spectrometry (GC-MS). n-Hexadecanoic acid (29.14%), 9,12-octadecadienoic acid (Z,Z)- (17.22%), hexadecanoic acid, methyl ester(8.98%), 9-octadecenoic acid, methyl ester, (E)- (7.03%), 9,12-octadecadienoic acid (Z,Z)-, methyl ester (5.93%), phytol (5.50%), and estradiol (4.43%) were measured as the major compounds in stem oil. The leaf essential oil was dominated by n-hexadecanoic acid (50.78%), 9-octadecenoic acid, methyl ester, (E)- (9.04%), phytol (8.47%), d-mannitol (5.81%), 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (4.31%), hexadecanoic acid, methyl ester (2.19%) and 9,12-octadecadienoic acid (Z,Z)-(1.7%). The leaves yield was 0.12% (v/w) and the stems yield showed only 0.073% (v/w). The results might provide reference basis for further exploration of its application value.

  15. Milling the Mistletoe: Nanotechnological Conversion of African Mistletoe (Loranthus micranthus) Intoantimicrobial Materials.

    PubMed

    Sarfraz, Muhammad; Griffin, Sharoon; Gabour Sad, Tamara; Alhasan, Rama; Nasim, Muhammad Jawad; Irfan Masood, Muhammad; Schäfer, Karl Herbert; Ejike, Chukwunonso E C C; Keck, Cornelia M; Jacob, Claus; Ebokaiwe, Azubuike P

    2018-04-20

    Nanosizing represents a straight forward technique to unlock the biological activity of complex plant materials. The aim of this study was to develop herbal nanoparticles with medicinal value from dried leaves and stems of Loranthus micranthus with the aid of ball-milling, high speed stirring, and high-pressure homogenization techniques. The milled nanoparticles were characterized using laser diffraction analysis, photon correlation spectroscopy analysis, and light microscopy. The average size of leaf nanoparticles was around 245 nm and that of stem nanoparticles was around 180 nm. The nanoparticles were tested for their antimicrobial and nematicidal properties against a Gram-negative bacterium Escherichia coli , a Gram-positive bacterium Staphylococcus carnosus , fungi Candida albicans and Saccharomyces cerevisiae , and a nematode Steinernemafeltiae . The results show significant activities for both leaf and (particularly) stem nanoparticles of Loranthus micranthus on all organisms tested, even at a particle concentration as low as 0.01% ( w / w ). The results observed indicate that nanoparticles (especially of the stem) of Loranthus micranthus could serve as novel antimicrobial agents with wide-ranging biomedical applications.

  16. Hydraulic Function in Australian Tree Species during Drought-Induced Mortality

    NASA Astrophysics Data System (ADS)

    Tissue, D.; Maier, C.; Creek, D.; Choat, B.

    2016-12-01

    Drought induced tree mortality and decline are key issues facing forest ecology and management. Here, we primarily investigated the hydraulic limitations underpinning drought-induced mortality in three Australian tree species. Using field-based large rainout shelters, three angiosperm species (Casuarina cunninghamiana, Eucalyptus sideroxylon, Eucalyptus tereticornis) were subjected to two successive drought and recovery cycles, prior to a subsequent long and extreme drought to mortality; total duration of experiment was 2.5 years. Leaf gas exchange, leaf and stem hydraulics, and carbon reserves were monitored during the experiment. Trees died as a result of failure in the hydraulic transport system, primarily related to water stress induced embolism. Stomatal closure occurred prior to the induction of significant embolism in the stem xylem of all species. Nonetheless, trees suffered a rapid decline in xylem water potential and increase in embolism during the severe drought treatment. Trees died at water potentials causing greater than 90% loss of hydraulic conductivity in the stem, providing support for the theory that lethal water potential is correlated with complete loss of hydraulic function in the stem xylem of angiosperms.

  17. 78 FR 47109 - Endangered and Threatened Wildlife and Plants; Endangered Status for Physaria globosa (Short's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... portion of the leaf blade beyond the middle) in shape, with a smooth or slightly wavy margin, and gray... distinguished it from the related H. giganteus by its smooth and hairless stems; narrow, entire leaf blades; and...-meter-wide transect run through the largest patch of whorled sunflower in that area. These 100 stalks...

  18. Episodic growth and relative shoot:root balance in loblolly pine seedlings

    Treesearch

    A.P. Drew; F. Thomas Ledig

    1980-01-01

    Leaf, root and stem systems of loblolly pine seedlings are characterized by a seasonal periodicity in growth, during which they alternate in spurts of activity. Despite this periodicity, the allometric coefficient describing the ratio of the relative growth rates of leaf to root remains constant for at least the first two years of development. In part, constancy...

  19. Development and plasticity of endangered shrub Lindera melissifolia (Lauraceae) seedlings under contrasting light regimes

    Treesearch

    Brian R Lockhart; Emile S Gardiner; Theran Stautz; Theodor D. Leininger

    2012-01-01

    Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf...

  20. A novel pattern of leaf movement: the case of Capparis spinosa L.

    PubMed

    Levizou, Efi; Kyparissis, Aris

    2016-09-01

    A novel type of heliotropic leaf movement is presented for Capparis spinosa L., a summer perennial shrub of Mediterranean and arid ecosystems. In contrast to plants that demonstrate uniform diaheliotropic and/or paraheliotropic movement for all their foliage, the alternate leaves of C. spinosa follow different movement patterns according to their stem azimuth and the side of the stem that they come from (cluster). Additionally, leaf movement for each cluster may not be uniform throughout the day, showing diaheliotropic characteristics during half of the day and paraheliotropic characteristics during the rest of the day. In an attempt to reveal the adaptive significance of this differential movement pattern, the following hypotheses were tested: (i) increase of the intercepted solar radiation and photosynthesis, (ii) avoidance of photoinhibitory conditions, (iii) amelioration of water-use efficiency and (iv) adjustment of the leaf temperature microenvironment. No evidence was found in support of the first two hypotheses. A slight difference toward a better water use was found for the moving compared with immobilized leaves, in combination with a better cooling effect. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A new species of Brevianthus (Brevianthaceae, Marchantiophyta) from New Caledonia with unusual underleaf production.

    PubMed

    Renner, Matt A M; Engel, John J; Patzak, Simon D F; Heinrichs, Jochen

    2015-01-01

    Brevianthus is a distinctive genus of leafy liverwort in its succubously inserted, entire leaves, lack of underleaves, restriction of sexual organs to lateral-intercalary branches, scattered rhizoids and dense leaf-surface ornamentation. The sole species, Brevianthusflavus, is divided into two subspecies, one in Tasmania the other in New Zealand. A second species, Brevianthushypocanthidium, is described as new and is the first record of the genus for New Caledonia. Among its distinguishing characters are its shallowly bilobed leaves, and triangular underleaves present on small to medium-sized shoot sectors, the lack of a hyaline leaf margin, and the crenulate leaf margin formed by heavily thickened external cell walls. The most unusual features of the new species are the presence of underleaves between lateral leaf insertion lines that reach the ventral stem mid-line, and the absence of underleaves from larger shoots. To explain these features we propose a competitive model of shoot formation wherein the ventral merophyte progressively loses vigor as its relative stature decreases, and its derivative cells become discontinuous and isolated along the ventral stem surface, with intervening areas occupied by derivatives of the more vigorous lateral merophytes.

  2. Spatially resolved investigation of systemic and contact pesticides in plant material by desorption electrospray ionization mass spectrometry imaging (DESI-MSI).

    PubMed

    Gerbig, Stefanie; Brunn, Hubertus E; Spengler, Bernhard; Schulz, Sabine

    2015-09-01

    Distribution of pesticides both on the surface of leaves and in cross sections of plant stem and leaves was investigated using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with a spatial resolution of 50-100 μm. Two commercially available insecticide sprays containing different contact pesticides were applied onto leaves of Cotoneaster horizontalis, and the distributions of all active ingredients were directly analyzed. The first spray contained pyrethrins and rapeseed oil, both known as natural insecticides. Each component showed an inhomogeneous spreading throughout the leaf, based on substance polarity and solubility. The second spray contained the synthetic insecticides imidacloprid and methiocarb. Imidacloprid accumulated on the border of the leaf, while methiocarb was distributed more homogenously. In order to investigate the incorporation of a systemically acting pesticide into Kalanchoe blossfeldiana, a commercially available insecticide tablet containing dimethoate was spiked to the soil of the plant. Cross sections of the stem and leaf were obtained 25 and 60 days after application. Dimethoate was mainly detected in the transport system of the plant after 25 days, while it was found to be homogenously distributed in a leaf section after 60 days.

  3. Larvicidal effect of aqueous and ethanolic extracts of Senna alata on Anopheles gambiae, Culex quinquefasciatus and Aedes aegypti.

    PubMed

    Edwin, Ubulom Peace Mayen; Nyiutaha, Imandeh Godwin; Essien, Akpabio Eno; Nnamdi, Opara Kenneth; Sunday, Ekanem Mfon

    2013-05-01

    Senna alata is locally used in South Eastern Nigeria in the treatment of several infections which include ringworm and other parasitic skin diseases.The larvicidal activities of aqueous and ethanolic leaf and stem extracts of S. alata were evaluated in static bioassays, on fourth instar larvae of Anopheles gambiae, Culex quinquefasciatus and Aedes aegypti, at extract concentrations of 0.15, 0.30, 0.45, 0.60 and 0.75% w/v, for 72 hours. Mortality of larvae exposed to the different extracts increased with increase in extract concentration and time of exposure. This study revealed a differential potency of the extracts used and a difference in susceptibility of larvae to the extracts as evident by the 72hLC₅₀ values obtained. The leaf extract proved to be more lethal to the larvae than the stem extract as judged by the 72hLC₅₀ values obtained both for the aqueous as well as the ethanolic extracts assayed. Phytochemical screening of the plant parts investigated revealed the presence of some plant metabolites, which have been reported in separate studies to be lethal to mosquito larvae. Results obtained from this study suggest that the leaf and stem extracts of S. alata possess a promising larvicidal potential which can be exploited in mosquito vector control.

  4. Chemical composition and biological activities of Tunisian Cupressus arizonica Greene essential oils.

    PubMed

    Ismail, Amri; Mancini, Emilia; De Martino, Laura; Hamrouni, Lamia; Hanana, Mohsen; Jamoussi, Bassem; Gargouri, Samia; Scognamiglio, Mariarosa; De Feo, Vincenzo

    2014-01-01

    The chemical composition of the essential oils obtained by hydrodistillation of leaves, stems, and female cones of Cupressus arizonica Greene, grown in Tunisia, was studied by GC-FID and GC/MS analyses. Altogether, 62 compounds were identified, 62 in the leaf oil, 19 in the cone oil, and 24 in the stem oil. The cone and stem oils were mainly composed by monoterpene hydrocarbons (96.6 and 85.2%, resp.). In the leaf oil, the total sesquiterpene fraction constituted 36.1% and that of the monoterpene hydrocarbons 33.8% of the total oil composition. The three oils were evaluated for their in vitro herbicidal activity by determining their influence on the germination and the shoot and root growth of the four weed species Sinapis arvensis L., Lolium rigidum Gaudin, Trifolium campestre Schreb., and Phalaris canariensis L. At the highest doses tested (0.8 and 1.0 mg/ml), the leaf essential oil inhibited either totally or almost completely the seed germination and the shoot and root growth of S. arvensis and T. campestre. The oils were also tested for their antifungal activity; however, their effects on the fungal growth were statistically not significant. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Use of Chitosan-PVA Hydrogels with Copper Nanoparticles to Improve the Growth of Grafted Watermelon.

    PubMed

    González Gómez, Homero; Ramírez Godina, Francisca; Ortega Ortiz, Hortensia; Benavides Mendoza, Adalberto; Robledo Torres, Valentín; Cabrera De la Fuente, Marcelino

    2017-06-22

    Modern agriculture requires alternative practices that improve crop growth without negatively affecting the environment, as resources such as water and arable land grow scarcer while the human population continues to increase. Grafting is a cultivation technique that allows the plant to be more efficient in its utilization of water and nutrients, while nanoscale material engineering provides the opportunity to use much smaller quantities of consumables compared to conventional systems but with similar or superior effects. On those grounds, we evaluated the effects of chitosan-polyvinyl alcohol hydrogel with absorbed copper nanoparticles (Cs-PVA-nCu) on leaf morphology and plant growth when applied to grafted watermelon cultivar 'Jubilee' plants. Stomatal density (SD), stomatal index (SI), stoma length (SL), and width (SW) were evaluated. The primary stem and root length, the stem diameter, specific leaf area, and fresh and dry weights were also recorded. Our results demonstrate that grafting induces modifications to leaf micromorphology that favorably affect plant growth, with grafted plants showing better vegetative growth in spite of their lower SD and SI values. Application of Cs-PVA-nCu was found to increase stoma width, primary stem length, and root length by 7%, 8% and 14%, respectively. These techniques modestly improve plant development and growth.

  6. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest

    PubMed Central

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-01-01

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169

  7. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation

    PubMed Central

    Xue, Yan; Xiao, Shi; Kim, Juyoung; Lung, Shiu-Cheung; Chen, Liang; Tanner, Julian A.; Suh, Mi Chung; Chye, Mee-Len

    2014-01-01

    The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)–flame ionization detector (FID) and GC–mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs. PMID:25053648

  8. Metabolic dependence of green tea on plucking positions revisited: a metabolomic study.

    PubMed

    Lee, Jang-Eun; Lee, Bum-Jin; Hwang, Jeong-Ah; Ko, Kwang-Sup; Chung, Jin-Oh; Kim, Eun-Hee; Lee, Sang-Jun; Hong, Young-Shick

    2011-10-12

    The dependence of global green tea metabolome on plucking positions was investigated through (1)H nuclear magnetic resonance (NMR) analysis coupled with multivariate statistical data set. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), were employed for a finding metabolic discrimination among fresh green tea leaves plucked at different positions from young to old leaves. In addition to clear metabolic discrimination among green tea leaves, elevations in theanine, caffeine, and gallic acid levels but reductions in catechins, such as epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG), glucose, and sucrose levels were observed, as the green tea plant grows up. On the other hand, the younger the green tea leaf is, the more theanine, caffeine, and gallic acid but the lesser catechins accumlated in the green tea leaf, revealing a reverse assocation between theanine and catechins levels due to incorporaton of theanine into catechins with growing up green tea plant. Moreover, as compared to the tea leaf, the observation of marked high levels of theanine and low levels of catechins in green tea stems exhibited a distinct tea plant metabolism between the tea leaf and the stem. This metabolomic approach highlights taking insight to global metabolic dependence of green tea leaf on plucking position, thereby providing distinct information on green tea production with specific tea quality.

  9. Neuroprotection of the leaf and stem of Vitis amurensis and their active compounds against ischemic brain damage in rats and excitotoxicity in cultured neurons.

    PubMed

    Kim, Joo Youn; Jeong, Ha Yeon; Lee, Hong Kyu; Kim, SeungHwan; Hwang, Bang Yeon; Bae, KiHwan; Seong, Yeon Hee

    2012-01-15

    Vitis amurensis (Vitaceae) has been reported to have anti-oxidant and anti-inflammatory activities. The present study investigated a methanol extract from the leaf and stem of V. amurensis for neuroprotective effects on cerebral ischemic damage in rats and on excitotoxicity induced by glutamate in cultured rat cortical neurons. Transient focal cerebral ischemia was induced by 2h middle cerebral artery occlusion followed by 24h reperfusion (MCAO/reperfusion) in rats. Orally administered V. amurensis (25-100 mg/kg) reduced MCAO/reperfusion-induced infarct and edema formation, neurological deficits, and neuronal death. Depletion of glutathione (GSH) level and lipid peroxidation induced by MCAO/reperfusion was inhibited by administration of V. amurensis. The increase of phosphorylated mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and pro-apoptotic proteins and the decrease of anti-apoptotic protein in MCAO/reperfusion rats were significantly inhibited by treatment with V. amurensis. Exposure of cultured cortical neurons to 500 μM glutamate for 12h induced neuronal cell death. V. amurensis (1-50 μg/ml) and (+)-ampelopsin A, γ-2-viniferin, and trans-ε-viniferin isolated from the leaf and stem of V. amurensis inhibited glutamate-induced neuronal death, the elevation of intracellular calcium ([Ca(2+)](i)), the generation of reactive oxygen species (ROS), and changes of apoptosis-related proteins in cultured cortical neurons, suggesting that the neuroprotective effect of V. amurensis may be partially attributed to these compounds. These results suggest that the neuroprotective effect of V. amurensis against focal cerebral ischemic injury might be due to its anti-apoptotic effect, resulting from anti-excitotoxic, anti-oxidative, and anti-inflammatory effects and that the leaf and stem of V. amurensis have possible therapeutic roles for preventing neurodegeneration in stroke. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Downregulation of the CpSRP43 gene expression confers a truncated light-harvesting antenna (TLA) and enhances biomass and leaf-to-stem ratio in Nicotiana tabacum canopies.

    PubMed

    Kirst, Henning; Shen, Yanxin; Vamvaka, Evangelia; Betterle, Nico; Xu, Dongmei; Warek, Ujwala; Strickland, James A; Melis, Anastasios

    2018-04-06

    Downregulation in the expression of the signal recognition particle 43 (SRP43) gene in tobacco conferred a truncated photosynthetic light-harvesting antenna (TLA property), and resulted in plants with a greater leaf-to-stem ratio, improved photosynthetic productivity and canopy biomass accumulation under high-density cultivation conditions. Evolution of sizable arrays of light-harvesting antennae in all photosynthetic systems confers a survival advantage for the organism in the wild, where sunlight is often the growth-limiting factor. In crop monocultures, however, this property is strongly counterproductive, when growth takes place under direct and excess sunlight. The large arrays of light-harvesting antennae in crop plants cause the surface of the canopies to over-absorb solar irradiance, far in excess of what is needed to saturate photosynthesis and forcing them to engage in wasteful dissipation of the excess energy. Evidence in this work showed that downregulation by RNA-interference approaches of the Nicotiana tabacum signal recognition particle 43 (SRP43), a nuclear gene encoding a chloroplast-localized component of the photosynthetic light-harvesting assembly pathway, caused a decrease in the light-harvesting antenna size of the photosystems, a corresponding increase in the photosynthetic productivity of chlorophyll in the leaves, and improved tobacco plant canopy biomass accumulation under high-density cultivation conditions. Importantly, the resulting TLA transgenic plants had a substantially greater leaf-to-stem biomass ratio, compared to those of the wild type, grown under identical agronomic conditions. The results are discussed in terms of the potential benefit that could accrue to agriculture upon application of the TLA-technology to crop plants, entailing higher density planting with plants having a greater biomass and leaf-to-stem ratio, translating into greater crop yields per plant with canopies in a novel agronomic configuration.

  11. Unraveling carbohydrate transport mechanisms in young beech trees (Fagus sylvatica f. purpurea) by 13CO2 efflux measurements from stem and soil

    NASA Astrophysics Data System (ADS)

    Thoms, Ronny; Muhr, Jan; Keitel, Claudia; Kayler, Zachary; Gavrichkova, Olga; Köhler, Michael; Gessler, Arthur; Gleixner, Gerd

    2016-04-01

    Transport mechanisms of soluble carbohydrates and diurnal CO2 efflux from tree stems and surrounding soil are well studied. However, the effect of transport carbohydrates on respiration and their interaction with storage processes is largely unknown. Therefore, we performed a set of 13CO2 pulse labeling experiments on young trees of European beech (Fagus sylvatica f. purpurea). We labeled the whole tree crowns in a closed transparent plastic chamber with 99% 13CO2 for 30 min. In one experiment, only a single branch was labeled and removed 36 hours after labeling. In all experiments, we continuously measured the 13CO2 efflux from stem, branch and soil and sampled leaf and stem material every 3 h for 2 days, followed by a daily sampling of leaves in the successive 5 days. The compound specific δ 13C value of extracted soluble carbohydrates from leaf and stem material was measured by high-performance liquid chromatography linked with an isotope ratio mass spectrometer (HPLC-IRMS). The 13CO2 signal from soil respiration occurred only few hours after labeling indicating a very high transport rate of carbohydrates from leaf to roots and to the rhizosphere. The label was continuously depleted within the next 5 days. In contrast, we observed a remarkable oscillating pattern of 13CO2 efflux from the stem with maximum 13CO2 enrichment at noon and minima at night time. This oscillation suggests that enriched carbohydrates are respired during the day, whereas in the night the enriched sugars are not respired. The observed oscillation in stem 13CO2 enrichment remained unchanged even when only single branches were labelled and cut right afterwards. Thus, storage and conversion of carbohydrates only occurred within the stem. The δ13C patterns of extracted soluble carbohydrates showed, that a transformation of transitory starch to carbohydrates and vice versa was no driver of the oscillating 13CO2 efflux from the stem. Carbohydrates might have been transported in the phloem to the location of biosynthesis further to a storage pool from which they are respired during the day. Keywords: 13CO2 efflux, oscillating pattern, carbohydrates, transitory starch

  12. Influence of arbuscular mycorrhizal fungi and treated wastewater on water relations and leaf structure alterations of Viburnum tinus L. plants during both saline and recovery periods.

    PubMed

    Gómez-Bellot, María José; Nortes, Pedro Antonio; Ortuño, María Fernanda; Romero, Cristina; Fernández-García, Nieves; Sánchez-Blanco, María Jesús

    2015-09-01

    Nowadays, irrigation with low quality water is becoming an alternative to satisfy the needs of crops. However, some plant species have to deal with high salinity of reclaimed water, by adapting their physiological behaviour during both saline and recovery periods and developing morphological changes in their leaves. The application of arbuscular mycorrhizal fungi (AMF) could also be a suitable option to mitigate the negative effects of this kind of water, although the effectiveness of plant-AMF association is influenced by many factors. In this work, during forty weeks, the combined effect of Glomus iranicum var. tenuihypharum and two types of water: control, C, EC<0.9 dS m(-1) and reclaimed water, RW (with EC: 4 dS m(-1) during a first saline period and EC: 6 dS m(-1) during a second saline period) was evaluated for laurustinus plants (Viburnum tinus L.) transplanted in soil. This was followed by a recovery period of eight weeks, when all the plants were irrigated in the control irrigation conditions. Seasonal and daily changes in stem water potential (Ψstem), stomatal conductance (gs), photosynthesis (Pn) and leaf internal CO2 concentration (Ci) of laurustinus plants were evaluated. Leaf structure alterations, nutrient imbalance, height and leaf hydraulic conductivity (Kleaf) were also determined. Due to the high difficulty of absorbing water from the soil, RW plants showed a high volumetric water content (θv) in soil. The stem water potential and the stomatal conductance (gs) values were reduced in RW plants throughout the second saline period. These decreases were also found during the day. Leaf Ca(2+)/Na(+) and K(+)/Na(+) ratios diminished in RW plants respect to the C plants due to the Na(+) accumulation, although height and chlorophyll content values did not show statistical differences. Leaves from RW plants showed a significantly thicker mesophyll than Control leaves as a consequence of high EC. The area of palisade parenchyma (PP) increased while the area of spongy parenchyma (SP) decreased in RW leaves with respect to the C leaves. These structural changes could be considered as a strategy to maximize photosynthesis potential in saline conditions. Mycorrhizal inoculation improved the water status of both C and RW plants by increasing their Ψstem and gs values. As regards leaf structure, AMF showed an opposite effect to salinity for PP and SP. At the end of the recovery period, hardly any statistical differences of physiological parameters were found between treatments, although a tendency to improve them was observed in inoculated plants. In any case, the leaf structural changes and the great reduction in Kleaf observed at Ψleaf below -1.5 MPa would constitute an important mechanism for laurustinus plants to reduce the water loses produced by salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Micropropagation and non-steroidal anti-inflammatory and anti-arthritic agent boswellic acid production in callus cultures of Boswellia serrata Roxb.

    PubMed

    Nikam, Tukaram D; Ghorpade, Ravi P; Nitnaware, Kirti M; Ahire, Mahendra L; Lokhande, Vinayak H; Chopra, Arvind

    2013-01-01

    Micropropagation through cotyledonary and leaf node and boswellic acid production in stem callus of a woody medicinal endangered tree species Boswellia serrata Roxb. is reported. The response for shoots, roots and callus formation were varied in cotyledonary and leafy nodal explants from in vitro germinated seeds, if inoculated on Murshige and Skoog's (MS) medium fortified with cytokinins and auxins alone or together. A maximum of 8.0 ± 0.1 shoots/cotyledonary node explant and 6.9 ± 0.1 shoots/leafy node explants were produced in 91 and 88 % cultures respectively on medium with 2.5 μM 6-benzyladenine (BA) and 200 mg l(-1) polyvinylpyrrolidone (PVP). Shoots treated with 2.5 μM IBA showed the highest average root number (4.5) and the highest percentage of rooting (89 %). Well rooted plantlets were acclimatized and 76.5 % of the plantlets showed survival upon transfer to field conditions. Randomly amplified polymorphic DNA (RAPD) analysis of the micropropagated plants compared with mother plant revealed true-to-type nature. The four major boswellic acid components in calluses raised from root, stem, cotyledon and leaf explants were analyzed using HPLC. The total content of four boswellic acid components was higher in stem callus obtained on MS with 15.0 μM IAA, 5.0 μM BA and 200 mg l(-1) PVP. The protocol reported can be used for conservation and exploitation of in vitro production of medicinally important non-steroidal anti-inflammatory metabolites of B. serrata.

  14. Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath.

    PubMed

    Feild, Taylor S; Brodribb, Tim

    2001-05-01

    The effect of freezing on stem xylem hydraulic conductivity and leaf chlorophyll a fluorescence was measured in 12 tree and shrub species from a treeline heath in Tasmania, Australia. Reduction in stem hydraulic conductivity after a single freeze-thaw cycle was minimal in conifers and the vessel-less angiosperm species Tasmannia lanceolata (Winteraceae), whereas mean loss of conductivity in vessel-forming angiosperms fell in the range 17-83%. A positive linear relationship was observed between percentage loss of hydraulic conductivity by freeze-thaw and the average conduit diameter across all 12 species. This supports the hypothesis that large-diameter vascular conduits have a greater likelihood of freeze-thaw cavitation because larger bubbles are produced, which are more likely to expand under tension. Leaf frost tolerances, as measured by a 50% loss of maximum PSII quantum yield, varied from -6 to -13°C, indicating that these species were more frost-sensitive than plants from northern hemisphere temperate forest and treeline communities. There was no evidence of a relationship between frost tolerance of leaves and the resilience of stem water transport to freezing, suggesting that low temperature survival and the resistance of stem water transport to freezing are independently evolving traits. The results of this study bear on the ecological importance of stem freezing in the southern hemisphere treeline zones.

  15. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  16. Fertilization intensifies drought stress: water use and stomatal conductance of Pinus taeda in a midrotation fertilization and throughfall reduction experiment

    Treesearch

    Eric J. Ward; Jean-Christophe Domec; Marshall A. Laviner; Thomas R. Fox; Ge Sun; Steve McNulty; John King; Asko Noormets

    2015-01-01

    While mid-rotation fertilization increases productivity in many southern pine forests, it remains unclear what impact such management may have on stand water use. We examined the impact of nutrient and water availability on stem volume, leaf area, transpiration per unit ground area (EC) and canopy conductance per unit leaf area (GS...

  17. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China

    PubMed Central

    Li, Hailiang; C. Crabbe, M. James; Wang, Weiling; Ma, Lihui; Niu, Ruilong; Gao, Xing; Li, Xingxing; Zhang, Pei; Ma, Xin; Chen, Haikui

    2017-01-01

    Understanding how concentrations of elements and their stoichiometry change with plant growth and age is critical for predicting plant community responses to environmental change. We used long-term field experiments to explore how the leaf, stem and root carbon (C), nitrogen (N) and phosphorous (P) concentrations and their stoichiometry changed with growth and stand age in a L. principis-rupprechtii Mayr. plantation from 2012–2015 in the Qinling Mountains, China. Our results showed that the C, N and P concentrations and stoichiometric ratios in different tissues of larch stands were affected by stand age, organ type and sampling month and displayed multiple correlations with increased stand age in different growing seasons. Generally, leaf C and N concentrations were greatest in the fast-growing season, but leaf P concentrations were greatest in the early growing season. However, no clear seasonal tendencies in the stem and root C, N and P concentrations were observed with growth. In contrast to N and P, few differences were found in organ-specific C concentrations. Leaf N:P was greatest in the fast-growing season, while C:N and C:P were greatest in the late-growing season. No clear variations were observed in stem and root C:N, C:P and N:P throughout the entire growing season, but leaf N:P was less than 14, suggesting that the growth of larch stands was limited by N in our study region. Compared to global plant element concentrations and stoichiometry, the leaves of larch stands had higher C, P, C:N and C:P but lower N and N:P, and the roots had greater P and C:N but lower N, C:P and N:P. Our study provides baseline information for describing the changes in nutritional elements with plant growth, which will facilitates plantation forest management and restoration, and makes a valuable contribution to the global data pool on leaf nutrition and stoichiometry. PMID:28938020

  18. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  19. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE PAGES

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; ...

    2016-11-24

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  20. Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species.

    PubMed

    De Guzman, Mark E; Santiago, Louis S; Schnitzer, Stefan A; Álvarez-Cansino, Leonor

    2017-10-01

    In tropical forest canopies, it is critical for upper shoots to efficiently provide water to leaves for physiological function while safely preventing loss of hydraulic conductivity due to cavitation during periods of soil water deficit or high evaporative demand. We compared hydraulic physiology of upper canopy trees and lianas in a seasonally dry tropical forest to test whether trade-offs between safety and efficiency of water transport shape differences in hydraulic function between these two major tropical woody growth forms. We found that lianas showed greater maximum stem-specific hydraulic conductivity than trees, but lost hydraulic conductivity at less negative water potentials than trees, resulting in a negative correlation and trade-off between safety and efficiency of water transport. Lianas also exhibited greater diurnal changes in leaf water potential than trees. The magnitude of diurnal water potential change was negatively correlated with sapwood capacitance, indicating that lianas are highly reliant on conducting capability to maintain leaf water status, whereas trees relied more on stored water in stems to maintain leaf water status. Leaf nitrogen concentration was related to maximum leaf-specific hydraulic conductivity only for lianas suggesting that greater water transport capacity is more tied to leaf processes in lianas compared to trees. Our results are consistent with a trade-off between safety and efficiency of water transport and may have implications for increasing liana abundance in neotropical forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Growth and physiological responses of isohydric and anisohydric poplars to drought

    DOE PAGES

    Attia, Ziv; Domec, Jean-Christophe; Oren, Ram; ...

    2015-05-07

    Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (g s), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Undermore » drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (K leaf) and E: isohydric plants reduced K leaf, g s, and E, whereas anisohydric genotypes maintained high K leaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (K plant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO 2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Lastly, we discuss implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions.« less

  2. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling

    PubMed Central

    López, Rosana; Brossa, Ricard; Gil, Luis; Pita, Pilar

    2015-01-01

    The photosynthesis source–sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of abscisic acid found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN) and stomatal conductance (gS) in the short term, but later (gS below 0.07 mol m-2 s-1) AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM) and the operating quantum efficiency of photosystem II (ΦPSII) in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant. PMID:25972884

  3. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling.

    PubMed

    López, Rosana; Brossa, Ricard; Gil, Luis; Pita, Pilar

    2015-01-01

    The photosynthesis source-sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of abscisic acid found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN) and stomatal conductance (gS) in the short term, but later (gS below 0.07 mol m(-2) s(-1)) AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM) and the operating quantum efficiency of photosystem II (ΦPSII) in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant.

  4. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    NASA Astrophysics Data System (ADS)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  5. Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces.

    PubMed

    Sarabi, Behrooz; Bolandnazar, Sahebali; Ghaderi, Nasser; Ghashghaie, Jaleh

    2017-10-01

    Melon (Cucumis melo L.) is one of the most important horticultural crops in Iran often cultivated in arid and semiarid regions of the country with salinity problems. The objective of this work was to better understand the mechanisms of physiological and biochemical responses to salinity stress of five Iranian melon landraces "Samsuri", "Kashan", "Khatouni", "Suski-e-Sabz", and "Ghobadlu" from different geographical origins, and "Galia" F1 cultivar. Plants were grown under greenhouse conditions and irrigated with half-strength Hoagland solution containing 0, 30, 60, or 90 mM NaCl for 60 days. Increase in the external salt concentration was accompanied by an obvious depression in leaf relative water content, membrane stability index, chlorophyll a and b and carotenoid contents, stomata and trichome density, leaf area, specific leaf area, biomass, leaf and stem K + concentrations as well as leaf and stem K + /Na + ratios in all landraces studied. In contrast, hydrogen peroxide, lipid peroxidation, proline and soluble carbohydrate contents, activity of antioxidant enzymes as well as leaf and stem Na + and Cl - concentrations, all increased significantly with increasing stress over all plants. Moreover, carbon isotope discrimination (Δ 13 C), determined on leaf organic matter, was found to be associated with evaluated traits. For example, a highly positive correlation between Δ 13 C and both biomass production and salt tolerance index was notable when all saline treatments were averaged (r = 0.998 and 0.998, respectively). Also, scatter plot and clustering analysis showed that "Suski-e-Sabz" and "Ghobadlu" were placed close to "Galia" F1, a salt tolerant cultivar, indicating that their similar behavior under salinity. Overall, the present results indicated a significant genetic variability for most of the traits studied, suggesting that "Suski-e-Sabz" and "Ghobadlu" could be introduced as the superior landraces and the most promising tolerant parents in the future melon breeding programs due to their suitable performance, in terms of responses to salt stress as compared with other landraces. Also, Δ 13 C can be used as a powerful criterion in melon breeding programs aimed at selection of salt tolerant landraces. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Down-regulation of SlIAA15 in tomato altered stem xylem development and production of volatile compounds in leaf exudates.

    PubMed

    Deng, Wei; Yan, Fang; Liu, Minchun; Wang, Xinyu; Li, Zhengguo

    2012-08-01

    The Aux/IAA family genes encode short-lived nuclear proteins that function as transcriptional regulators in auxin signal transduction. Aux/IAA genes have been reported to control many processes of plant development. Our recent study showed that down-regulation of SlIAA15 in tomato reduced apical dominance, altered pattern of axillary shoot development, increased lateral root formation and leaves thickness. The SlIAA15 suppressed lines display strong reduction of trichome density, suggesting that SlIAA15 is involved in trichome formation. Here, we reported that SlIAA15-suppressed transgenic lines display increased number of xylem cells compared to wild-type plants. Moreover, the monoterpene content in trichome exudates are significantly reduced in SlIAA15 down-regulated leaves. The results provide the roles of SlIAA15 in production of volatile compounds in leaf exudates and xylem development, clearly indicating that members of the Aux/IAA gene family can play distinct and specific functions. 

  7. Potato leaf explants as a spaceflight plant test system

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.

    1986-01-01

    The use of explant tissues or organs may circumvent limitations facing whole-plant experimentation during spaceflight. In the case of potato, a crop currently being studied for application to bioregenerative life support systems, excised leaves and their subtended axillary buds can be used to test a variety of stem growth and development phases ranging from tubers through stolons (horizontal stems) to upright leafy shoots. The leaves can be fit well into small-volume test packages and sustained under relatively low irradiance levels using light-weight growing media. Tubers formed on potato leaf cuttings can yield up from 0.5 to 1.0 g fresh mass 10 days after excision and up to 2.0 g or more, 14 days from excision.

  8. Allelopathic effects of water extracts ofArtemisia princeps var.orientalis on selected plant species.

    PubMed

    Kil, B S; Yun, K W

    1992-01-01

    The allelopathic effects of wormwood plants (Artemisia princeps var.orientalis) and their possible phytotoxicity on receptor species were investigated. The aqueous extracts of mature leaf, stem, and root of wormwood plants caused significant inhibition in germination and decreased seedling elongation of receptor plants, whereas germination of some species was not inhibited by extracts of stems and roots. Dry weight growth was slightly increased at lower concentrations of the extract, whereas it was proportionally inhibited at higher concentrations. The calorie value of the organic matter in receptor plants measured by bomb calorimeter was reduced proportionally to the extract concentration. However, results with extracts of juvenile leaf did not correlate with inhibition or promotion of elongation and dry weight.

  9. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, William C.; Brown, Christopher S.

    1994-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional sodium doedocyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  10. Leaf Dynamics of Panicum maximum under Future Climatic Changes

    PubMed Central

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. ‘Mombaça’ (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day-1) and leaf elongation rate (LER, cm day-1) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change. PMID:26894932

  11. ALAMEDA, a Structural–Functional Model for Faba Bean Crops: Morphological Parameterization and Verification

    PubMed Central

    RUIZ-RAMOS, MARGARITA; MÍNGUEZ, M. INÉS

    2006-01-01

    • Background Plant structural (i.e. architectural) models explicitly describe plant morphology by providing detailed descriptions of the display of leaf and stem surfaces within heterogeneous canopies and thus provide the opportunity for modelling the functioning of plant organs in their microenvironments. The outcome is a class of structural–functional crop models that combines advantages of current structural and process approaches to crop modelling. ALAMEDA is such a model. • Methods The formalism of Lindenmayer systems (L-systems) was chosen for the development of a structural model of the faba bean canopy, providing both numerical and dynamic graphical outputs. It was parameterized according to the results obtained through detailed morphological and phenological descriptions that capture the detailed geometry and topology of the crop. The analysis distinguishes between relationships of general application for all sowing dates and stem ranks and others valid only for all stems of a single crop cycle. • Results and Conclusions The results reveal that in faba bean, structural parameterization valid for the entire plant may be drawn from a single stem. ALAMEDA was formed by linking the structural model to the growth model ‘Simulation d'Allongement des Feuilles’ (SAF) with the ability to simulate approx. 3500 crop organs and components of a group of nine plants. Model performance was verified for organ length, plant height and leaf area. The L-system formalism was able to capture the complex architecture of canopy leaf area of this indeterminate crop and, with the growth relationships, generate a 3D dynamic crop simulation. Future development and improvement of the model are discussed. PMID:16390842

  12. Fusarium agapanthi sp. nov., a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy.

    PubMed

    Edwards, Jacqueline; Auer, Desmond; de Alwis, Sri-Kanthi; Summerell, Brett; Aoki, Takayuki; Proctor, Robert H; Busman, Mark; O'Donnell, Kerry

    2016-09-01

    This study was conducted to characterize a novel Fusarium species that caused leaf and stem spot on Agapanthus praecox (Agapanthus, African lily) in northern Italy and leaf rot and spot on the same host in Melbourne, Australia. Formally described as Fusarium agapanthi, this pathogen was analyzed using phenotypic, phytopathogenic, secondary metabolite, molecular phylogenetic and genomic data. Five strains were characterized, including one isolated in 1999 from symptomatic A. praecox in Saluzzo, Italy, and four in 2010 from diseased leaf tissue from the same host exhibiting leaf rot and spot symptoms in the Melbourne Gardens, Royal Botanic Gardens Victoria, Australia. Maximum parsimony and maximum likelihood molecular phylogenetic analyses of portions of six individual genes and the combined dataset all strongly supported F. agapanthi either as the earliest diverging genealogically exclusive lineage in the American Clade of the F. fujikuroi species complex, or alternatively a novel monotypic lineage sister to the American Clade. Koch's postulates were completed on dwarf blue- and large white-flowering varieties of A. praecox, where two isolates of F. agapanthi produced slowly spreading necrotic lesions when inoculated onto leaves and flower stems. Fusarium agapanthi is distinguished from other fusaria by the production of densely branched aerial conidiophores with polyphialides throughout the aerial mycelium on synthetic nutrient-poor agar. BLASTn searches of the F. agapanthi NRRL 31653 and NRRL 54464 (= VPRI 41787) genome sequences were conducted to predict sexual reproductive mode and mycotoxin potential. Results indicated that they possessed MAT1-2 and MAT1-1 idiomorphs, respectively, indicating that this species might be heterothallic. Furthermore, based on the presence of homologs of the bikaverin and fusarubin biosynthetic gene clusters in the F. agapanthi genomes, liquid chromatography-mass spectrometry analysis was conducted and confirmed production of these secondary metabolites in rice and corn kernel cultures of the fungus. © 2016 by The Mycological Society of America.

  13. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna.

    PubMed

    Cernusak, Lucas A; Hutley, Lindsay B; Beringer, Jason; Tapper, Nigel J

    2006-04-01

    We measured stem CO2 efflux and leaf gas exchange in a tropical savanna ecosystem in northern Australia, and assessed the impact of fire on these processes. Gas exchange of mature leaves that flushed after a fire showed only slight differences from that of mature leaves on unburned trees. Expanding leaves typically showed net losses of CO2 to the atmosphere in both burned and unburned trees, even under saturating irradiance. Fire caused stem CO2 efflux to decline in overstory trees, when measured 8 weeks post-fire. This decline was thought to have resulted from reduced availability of C substrate for respiration, due to reduced canopy photosynthesis caused by leaf scorching, and to priority allocation of fixed C towards reconstruction of a new canopy. At the ecosystem scale, we estimated the annual above-ground woody-tissue CO2 efflux to be 275 g C m(-2) ground area year(-1) in a non-fire year, or approximately 13% of the annual gross primary production. We contrasted the canopy physiology of two co-dominant overstory tree species, one of which has a smooth bark on its branches capable of photosynthetic re-fixation (Eucalyptus miniata), and the other of which has a thick, rough bark incapable of re-fixation (Eucalyptus tetrodonta). Eucalyptus miniata supported a larger branch sapwood cross-sectional area in the crown per unit subtending leaf area, and had higher leaf stomatal conductance and photosynthesis than E. tetrodonta. Re-fixation by photosynthetic bark reduces the C cost of delivering water to evaporative sites in leaves, because it reduces the net C cost of constructing and maintaining sapwood. We suggest that re-fixation allowed leaves of E. miniata to photosynthesize at higher rates than those of E. tetrodonta, while the two invested similar amounts of C in the maintenance of branch sapwood.

  14. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings

    PubMed Central

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N-containing compounds (methionine, threonine, histidine, and proline). As a result, application of Funneliformis mosseae or A. scrobiculata in mulberry plantation could be a promising management strategy to promote silkworm cultivation and relevant textile industry. PMID:27446063

  15. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings.

    PubMed

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N-containing compounds (methionine, threonine, histidine, and proline). As a result, application of Funneliformis mosseae or A. scrobiculata in mulberry plantation could be a promising management strategy to promote silkworm cultivation and relevant textile industry.

  16. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance.

    PubMed

    Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua

    2006-06-01

    Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.

  17. Phytochemical screening and chemical variability in volatile oils of aerial parts of Morinda morindoides.

    PubMed

    Kiazolu, J Boima; Intisar, Azeem; Zhang, Lingyi; Wang, Yun; Zhang, Runsheng; Wu, Zhongping; Zhang, Weibing

    2016-10-01

    Morinda morindoides is an important Liberian traditional medicine for the treatment of malaria, fever, worms etc. The plant was subjected to integrated approaches including phytochemical screening and gas chromatography mass spectrometry (GC-MS) analyses. Phytochemical investigation of the powdered plant revealed the presence of phenolics, tannins, flavonoids, saponins, terpenes, steroidal compounds and volatile oil. Steam distillation followed by GC-MS resulted in the identification of 47 volatiles in its aerial parts: 28 were in common including various bioactive volatiles. Major constituents of leaves were phytol (43.63%), palmitic acid (8.55%) and geranyl linalool (6.95%) and stem were palmitic acid (14.95%), eicosane (9.67%) and phytol (9.31%), and hence, a significant difference in the percentage composition of aerial parts was observed. To study seasonal changes, similarity analysis was carried out by calculating correlation coefficient (r) and vector angle cosine (z) that were more than 0.91 for stem-to-stem and leaf-to-leaf batches indicating considerable consistency.

  18. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.

    PubMed

    Romero, Pascual; Botía, Pablo; Keller, Markus

    2017-09-01

    Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather quickly following restoration of Ψ s , although gas exchange recovery did not directly depend on recovery of K canopy . In field-grown vines, recovery of water status, gas exchange and hydraulic functionality was slower than in pot-grown plants, and low g s after rewatering was related to sustained decreased K plant , K canopy and K shoot and lower water transport to leaves. These results suggest that caution should be exercised when scaling up conclusions from experiments with small pot-grown plants to field conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Hydraulic patterns and safety margins, from stem to stomata, in three eastern US tree species

    Treesearch

    D.M. Johnson; K.A. McCulloh; F.C. Meinzer; D.R. Woodruff; D.M. Eissenstat

    2011-01-01

    Adequate water transport is necessary to prevent stomatal closure and allow for photosynthesis. Dysfunction in the water transport pathway can result in stomatal closure, and can be deleterious to overall plant health and survival. Although much is known about small branch hydraulics, little is known about the coordination of leaf and stem hydraulic function....

  20. Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves.

    PubMed

    Yan, Zhengbing; Li, Peng; Chen, Yahan; Han, Wenxuan; Fang, Jingyun

    2016-02-05

    Allocation of limited nutrients, such as nitrogen (N) and phosphorus (P), among plant organs reflects the influences of evolutionary and ecological processes on functional traits of plants, and thus is related to functional groups and environmental conditions. In this study, we tested this hypothesis by exploring the stoichiometric scaling of N and P concentrations between twig stems and leaves of 335 woody species from 12 forest sites across eastern China. Scaling exponents of twig stem N (or P) to leaf N (or P) varied among functional groups. With increasing latitude, these scaling exponents significantly decreased from >1 at low latitude to <1 at high latitude across the study area. These results suggested that, as plant nutrient concentration increased, plants at low latitudes showed a faster increase in twig stem nutrient concentration, whereas plants at high latitudes presented a faster increase in leaf nutrient concentration. Such shifts in nutrient allocation strategy from low to high latitudes may be controlled by temperature. Overall, our findings provide a new approach to explore plant nutrient allocation strategies by analysing the stoichiometric scaling of nutrients among organs, which could broaden our understanding of the interactions between plants and their environments.

  1. Leaf litter bags as an index to populations of northern two-lined salamanders (Eurycea bislineata)

    USGS Publications Warehouse

    Chalmers, R.J.; Droege, S.

    2002-01-01

    Concern about recent amphibian declines has led to research on amphibian populations, but few statistically tested, standardized methods of counting amphibians exist. We tested whether counts of northern two-lined salamander larvae (Eurycea bislineata) sheltered in leaf litter bags--a relatively new, easily replicable survey technique--had a linear correlation to total number of larvae. Using experimental enclosures placed in streams, we compared number of salamanders found in artificial habitat (leaf litter bags) with total number of salamanders in each enclosure. Low numbers of the animals were found in leaf litter bags, and the relative amount of variation in the index (number of animals in leaf litter bags compared to total number of animals in stream enclosures) was high. The index of salamanders in leaf litter bags was not significantly related to total number of salamanders in enclosures for two-thirds of the replicates or with pooled replicates (P= 0.066). Consequently, we cannot recommend using leaf litter bags to index populations of northern two-lined salamanders.

  2. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape.

    PubMed

    Gervais, Julie; Plissonneau, Clémence; Linglin, Juliette; Meyer, Michel; Labadie, Karine; Cruaud, Corinne; Fudal, Isabelle; Rouxel, Thierry; Balesdent, Marie-Hélène

    2017-10-01

    Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  3. Differential responses of invasive Celastrus orbiculatus (Celastraceae) and native C. scandens to changes in light quality.

    PubMed

    Leicht, Stacey A; Silander, John A

    2006-07-01

    When plants are subjected to leaf canopy shade in forest understories or from neighboring plants, they not only experience reduced light quantity, but light quality in lowered red : far red light (R : FR). Growth and other developmental responses of plants in reduced R : FR can vary and are not consistent across species. We compared how an invasive liana, Celastrus orbiculatus, and its closely related native congener, C. scandens, responded to changes in the R : FR under controlled, simulated understory conditions. We measured a suite of morphological and growth attributes under control, neutral shading, and low R : FR light treatments. Celastrus orbiculatus showed an increase in height, aboveground biomass, and total leaf mass in reduced R : FR treatments as compared to the neutral shade, while C. scandens had increased stem diameter, single leaf area, and leaf mass to stem mass ratio. These differences provide a mechanistic understanding of the ability of C. orbiculatus to increase height and actively forage for light resources in forest understories, while C. scandens appears unable to forage for light and instead depends upon a light gap forming. The plastic growth response of C. orbiculatus in shaded conditions points to its success in forested habitats where C. scandens is largely absent.

  4. Differential responses of invasive Celastrus orbiculatus (Celastraceae) and native C. scandens to changes in light quality

    USGS Publications Warehouse

    Leicht, S.A.; Silander, J.A.

    2006-01-01

    When plants are subjected to leaf canopy shade in forest understories or from neighboring plants, they not only experience reduced light quantity, but light quality in lowered red:far red light (R:FR). Growth and other developmental responses of plants in reduced R:FR can vary and are not consistent across species. We compared how an invasive liana, Celastrus orbiculatus, and its closely related native congener, C. scandens, responded to changes in the R:FR under controlled, simulated understory conditions. We measured a suite of morphological and growth attributes under control, neutral shading, and low R:FR light treatments. Celastrus orbiculatus showed an increase in height, aboveground biomass, and total leaf mass in reduced R:FR treatments as compared to the neutral shade, while C. scandens had increased stem diameter, single leaf area, and leaf mass to stem mass ratio. These differences provide a mechanistic understanding of the ability of C. orbiculatus to increase height and actively forage for light resources in forest understories, while C. scandens appears unable to forage for light and instead depends upon a light gap forming. The plastic growth response of C. orbiculatus in shaded conditions points to its success in forested habitats where C. scandens is largely absent.

  5. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species

    PubMed Central

    2013-01-01

    Background Jatropha curcas L. is an oil seed producing non-leguminous tropical shrub that has good potential to be a fuel plant that can be cultivated on marginal land. Due to the low nutrient content of the targeted plantation area, the requirement for fertilizer is expected to be higher than other plants. This factor severely affects the commercial viability of J. curcas. Results We explored the feasibility to use endophytic nitrogen-fixing bacteria that are native to J. curcas to improve plant growth, biomass and seed productivity. We demonstrated that a novel N-fixing endophyte, Enterobacter sp. R4-368, was able to colonize in root and stem tissues and significantly promoted early plant growth and seed productivity of J. curcas in sterilized and non-sterilized soil. Inoculation of young seedling led to an approximately 57.2% increase in seedling vigour over a six week period. At 90 days after planting, inoculated plants showed an average increase of 25.3%, 77.7%, 27.5%, 45.8% in plant height, leaf number, chlorophyll content and stem volume, respectively. Notably, inoculation of the strain led to a 49.0% increase in the average seed number per plant and 20% increase in the average single seed weight when plants were maintained for 1.5 years in non-sterilized soil in pots in the open air. Enterobacter sp. R4-368 cells were able to colonize root tissues and moved systemically to stem tissues. However, no bacteria were found in leaves. Promotion of plant growth and leaf nitrogen content by the strain was partially lost in nifH, nifD, nifK knockout mutants, suggesting the presence of other growth promoting factors that are associated with this bacterium strain. Conclusion Our results showed that Enterobacter sp. R4-368 significantly promoted growth and seed yield of J. curcas. The application of the strains is likely to significantly improve the commercial viability of J. curcas due to the reduced fertilizer cost and improved oil yield. PMID:24083555

  6. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula)

    PubMed Central

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees’ resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem–wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (KR) to increase, while KR (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation. PMID:26528318

  7. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens).

    PubMed

    Sterck, Frank J; Zweifel, Roman; Sass-Klaassen, Ute; Chowdhury, Qumruzzaman

    2008-04-01

    Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.

  8. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    PubMed Central

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  9. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit.

    PubMed

    de Freitas, Sergio Tonetto; Shackel, Kenneth A; Mitcham, Elizabeth J

    2011-05-01

    Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.

  10. Informing tree-ring reconstructions with automated dendrometer data: the case of single-leaf pinyon (Pinus monophylla) from Great Basin National Park, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Biondi, F.

    2012-12-01

    One of the most pressing issues in modern tree-ring science is to reduce uncertainty of reconstructions while emphasizing that the composition and dynamics of modern ecosystems cannot be understood from the present alone. I present here the latest results from research on the environmental factors that control radial growth of single-leaf pinyon (Pinus monophylla) in the Great Basin of North America using dendrometer data collected at half-hour intervals during two full growing season, 2010 and 2011. Automated (solar-powered) sensors at the site consisted of 8 point dendrometers installed on 7 trees to measure stem size, together with environmental probes that recorded air temperature, soil temperature and soil moisture. Additional meteorological variables at hourly timesteps were available from the EPA-CASTNET station located within 100 m of the dendrometer site. Daily cycles of stem expansion and contraction were quantified using the approach of Deslauriers et al. 2011, and the amount of daily radial stem increment was regressed against environmental variables. Graphical and numerical results showed that tree growth is relatively insensitive to surface soil moisture during the growing season. This finding corroborates empirical dendroclimatic results that showed how tree-ring chronologies of single-leaf pinyon are mostly a proxy for the balance between winter-spring precipitation supply and growing season evapotranspiration demand, thereby making it an ideal species for drought reconstructions.

  11. Protection of wheat against leaf and stem rust and powdery mildew diseases by inhibition of polyamine metabolism

    NASA Technical Reports Server (NTRS)

    Weinstein, L. H.; Osmeloski, J. F.; Wettlaufer, S. H.; Galston, A. W.

    1987-01-01

    In higher plants, polyamines arise from arginine by one of two pathways: via ornithine and ornithine decarboxylase or via agmatine and arginine decarboxylase but in fungi, only the ornithine decarboxylase pathway is present. Since polyamines are required for normal growth of microorganisms and plants and since the ornithine pathway can be irreversibly blocked by alpha-difluoromethylornithine (DFMO) which has no effect on arginine decarboxylase, fungal infection of green plants might be controlled by the site-directed use of such a specific metabolic inhibitor. DFMO at relatively low concentrations provided effective control of the three biotrophic fungal pathogens studied, Puccinia recondita (leaf rust), P. graminis f. sp. tritici (stem rust), and Erysiphe graminis (powdery mildew) on wheat (Triticum aestivum L.) Effective control of infection by leaf or stem rust fungi was obtained with sprays of DFMO that ranged from about 0.01 to 0.20 mM in experiments where the inhibitor was applied after spore inoculation. The powdery mildew fungus was somewhat more tolerant of DFMO, but good control of the pathogen was obtained at less than 1.0 mM. In general, application of DFMO after spore inoculation was more effective than application before inoculation. Less control was obtained following treatment with alpha-difluoromethylarginine (DFMA) but the relatively high degree of control obtained raises the possibility of a DFMA to DFMO conversion by arginase.

  12. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    PubMed

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  13. Care and Maintenance.

    ERIC Educational Resources Information Center

    Hampton, Carolyn H.; Hampton, Carol D.

    1981-01-01

    Techniques are described for using living plants in the elementary science classroom including the germination and planting of seeds, transplanting seedlings, vegetative propagation, stem and leaf cuttings, and other plant studies. (DS)

  14. Olea europaea leaf extract and bevacizumab synergistically exhibit beneficial efficacy upon human glioblastoma cancer stem cells through reducing angiogenesis and invasion in vitro.

    PubMed

    Tezcan, Gulcin; Taskapilioglu, Mevlut Ozgur; Tunca, Berrin; Bekar, Ahmet; Demirci, Hilal; Kocaeli, Hasan; Aksoy, Secil Ak; Egeli, Unal; Cecener, Gulsah; Tolunay, Sahsine

    2017-06-01

    Patients with glioblastoma multiforme (GBM) that are cancer stem-cell-positive (GSC [+]) essentially cannot benefit from anti-angiogenic or anti-invasive therapy. In the present study, the potential anti-angiogenic and anti-invasive effects of Olea europaea (olive) leaf extract (OLE) were tested using GSC (+) tumours. OLE (2mg/mL) caused a significant reduction in tumour weight, vascularisation, invasiveness and migration (p=0.0001, p<0.001, p=0.004; respectively) that was associated with reducing the expression of VEGFA, MMP-2 and MMP-9. This effect was synergistically increased in combination with bevacizumab. Therefore, our current findings may contribute to research on drugs that inhibit the invasiveness of GBM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi.

    PubMed

    Choi, N H; Choi, G J; Min, B-S; Jang, K S; Choi, Y H; Kang, M S; Park, M S; Choi, J E; Bae, B K; Kim, J-C

    2009-06-01

    To characterize antifungal principles from the methanol extract of Magnolia obovata and to evaluate their antifungal activities against various plant pathogenic fungi. Four neolignans were isolated from stem bark of M. obovata as antifungal principles and identified as magnolol, honokiol, 4-methoxyhonokiol and obovatol. In mycelial growth inhibition assay, both magnolol and honokiol displayed more potent antifungal activity than 4-methoxyhonokiol and obovatol. Both magnolol and honokiol showed similar in vivo antifungal spectrum against seven plant diseases tested; both compounds effectively suppressed the development of rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. 4-Methoxyhonokiol and obovatol were highly active to only rice blast and wheat leaf rust respectively. The extract of M. obovata and four neolignans had potent in vivo antifungal activities against plant pathogenic fungi. Neolignans from Magnolia spp. can be used and suggested as a novel antifungal lead compound for the development of new fungicide and directly as a natural fungicide for the control of plant diseases such as rice blast and wheat leaf rust.

  16. Antibacterial activity-guided purification and identification of a novel C-20 oxygenated ent-kaurane from Rabdosia serra (MAXIM.) HARA.

    PubMed

    Lin, Lianzhu; Zhu, Dashuai; Zou, Linwu; Yang, Bao; Zhao, Mouming

    2013-08-15

    The objective of this work was to conduct an activity-guided isolation of antibacterial compounds from Rabdosia serra. The ethanol extracts of R. serra leaf and stem were partitioned sequentially into petroleum ether, ethyl acetate, butanol and water fractions, respectively. The ethanol extract of leaf evidenced broad-spectrum antibacterial activity against gram-positive bacterial, including Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. The ethyl acetate fractions of leaf and stem exhibited strong inhibition against gram-positive bacteria, and were then purified further. On the basis of antibacterial assay-guided purification, three phenolic compounds (rosmarinic acid, methyl rosmarinate and pedalitin) and four C-20 oxygenated ent-kauranes (effusanin E, lasiodin, rabdosichuanin D and a new compound namely effusanin F) were obtained, whose contents were determined by HPLC analysis. The broth microdilution method confirmed the important inhibition potential of C-20 oxygenated ent-kauranes with low minimum inhibitory concentration (MIC) values. Effusanin E, lasiodin and effusanin F could be useful for the development of new antibacterial agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. [Effects of applying nitrogen fertilizer at different stages in ploughed furrow on dry matter production and yield of rice].

    PubMed

    Shi, Kun; Hao, Shufeng; Xie, Hongtu; Zhang, Xudong

    2002-12-01

    The effects of applying nitrogen fertilizer in ploughed furrow at different stages on dry matter production and yield of rice were studied in a field experiment in 1999. The results showed that applying N fertilizer at booting stage (BS) had better effects on dry weight (2.9 g.hill-1) of leaf, stem and whole plant than at panicle primordia formation stage (PPFS), tillering stage (TS) and regular N fertilization (RF). Meanwhile, the dry weight of leaf and sheath as well as the leaf area index (LAI, 8.9) could be maintained at a high level for a relative long time in BS treatment, compared with PPFS, TS and RF treatments. Similar phenomenon was observed in the growth velocity (0.73 g.d-1.hill-1) of stem and whole plant, and the dry weight (10434 kg.hm-2) of seed. The grain yield of rice followed the sequence of BS > or = PPFS > TS > or = RF. Thus, the optimum stage of applying N fertilizer in ploughed furrow was the booting stage.

  18. General unknown screening, antioxidant and anti-inflammatory potential of Dendrobium macrostachyum Lindl.

    PubMed

    Sukumaran, Nimisha Pulikkal; Yadav, R Hiranmai

    2016-01-01

    D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a potential source of bioactive compounds.

  19. General unknown screening, antioxidant and anti-inflammatory potential of Dendrobium macrostachyum Lindl.

    PubMed Central

    Sukumaran, Nimisha Pulikkal; Yadav, R. Hiranmai

    2016-01-01

    Context: D. macrostachyum is an epiphytic orchid abundant in Southern India and is reported for pain relief in folklore. Aims: The objective of the present study was to determine in vitro free radical scavenging and anti-inflammatory activity of D. macrostachyum and to perform LCMS based metabolic profiling of the plant. Settings and Design: Sequential stem and leaf extracts were assessed for its antioxidant and anti-inflammatory activity by in vitro methods. Materials and Methods: The antioxidant activity determined by assays based on the decolourization of the radical monocation of DPPH, ABTS and reducing power. Total amount of phenolics for quantitative analysis of antioxidative components was estimated. In vitro anti-inflammatory activity was evaluated using protein denaturation assay, membrane stabilization assay and proteinase inhibitory activity. Methanolic extract of plant was subjected to LCMS. Results: The stem ethanolic extracts exhibited significant IC50 value of 10.21, 31.54 and 142.97 μg/ml respectively for DPPH, ABTS radical scavenging and reducing power activity. The ethanol and water extract was highly effective as albumin denaturation inhibitors (IC50 = 114.13 and 135.818 μg/ml respectively) and proteinase inhibitors (IC50 = 72.49 and 129.681 μg/ml respectively). Membrane stabilization was also noticeably inhibited by the stem ethanolic extract among other extracts (IC50 = 89.33 μg/ml) but comparatively lower to aspirin standard (IC50 = 83.926 μg/ml). The highest total phenol content was exhibited by ethanolic stem and leaf extracts respectively at 20 and 16 mg of gallic acid equivalents of dry extract. On LCMS analysis 20 constituents were identified and it included chemotaxonomic marker for Dendrobium species. Conclusions: The results showed a relatively high concentration of phenolics, high scavenger activity and high anti-inflammatory activity of the stem extract compared to the leaf extract. The results indicate that the plant can be a potential source of bioactive compounds. PMID:27621524

  20. Distribution of withaferin A, an anticancer potential agent, in different parts of two varieties of Withania somnifera (L.) Dunal. grown in Sri Lanka.

    PubMed

    Siriwardane, A S; Dharmadasa, R M; Samarasinghe, Kosala

    2013-02-01

    Withania somnifera (L.) Dunal. (Family: Solanaceae) is a therapeutically important medicinal plant in traditional and Ayurveda systems of medicine in Sri Lanka. Witheferin A, is a potential anticancer compound found in W. somnifera. In the present study, attempts have been made to compare witheferin A content, in different parts of (root, stem, bark, leaf) two varieties of (LC1 and FR1) W. somnifera grown in same soil and climatic conditions. Ground sample (1g) of leaves, bark, stem and roots of two W. somnifera varieties were extracted with CHCl3 three times. Thin Layer Chromatographic analysis (TLC) of withaferin A in both plant extracts were performed on pre-coated Silica gel 60 GF254 plates in hexane: ethyl acetate: methanol (2: 14: 1) mobile phase. Densitometer scanning was performed at lambda(max) = 215 nm. HPLC of W. somnifera extracts was performed using Kromasil C18 reverse phase column. Both varieties of W. somnifera differed in withaferin A. After visualizing TLC plates with vanillin-sulphuric acid leaf and bark extracts of both varieties showed high intensity purple colour spots (R(f) 0.14) than in stem and roots. The highest amount of withaferin A (3812 ppm) was observed in leaves of variety LC1 while the lowest amount was observed in roots of variety FR1 (5 ppm). According to the results it could be concluded that content of Witheferin A was vary leaf > bark > stem > roots in both varieties. Therefore, there is a high potential of incorporation of leaves and bark of W. somnifera for the preparation of Ayurveda drug leading to anticancer activity instead of roots.

  1. Phylogeny in Defining Model Plants for Lignocellulosic Ethanol Production: A Comparative Study of Brachypodium distachyon, Wheat, Maize, and Miscanthus x giganteus Leaf and Stem Biomass

    PubMed Central

    Meineke, Till; Manisseri, Chithra; Voigt, Christian A.

    2014-01-01

    The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat) with the C4 grasses Zea mays (maize) and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108–117 mg ethanol·g−1 dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type. PMID:25133818

  2. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of (60)Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration.

    PubMed

    Bala, Madhu; Gupta, Manish; Saini, Manu; Abdin, M Z; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body (60)Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain 'A' mice demonstrated that SBL-1 treatment before (60)Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration.

  3. Quantification of Stemflow in Three Shrub Species in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Rakestraw, E.; Montalto, F. A.

    2015-12-01

    As precipitation falls on vegetated areas, it is partitioned into throughfall, stemflow and vapor. Stemflow has often been neglected in hydrologic budgeting of both trees and shrubs due to the small volume, and limited number of quantitative studies conducted. Studies of stemflow in shrub species are especially rare, and this study intends to decrease uncertainty of its occurrence. Six shrubs of species Prunus laurocerasus 'Otto Luyken', Hydrangea quercifolia 'Alice' , and Itea virginica 'Little Henry' were studied in an urban environment in Philadelphia, PA. During the 2015 growing season, total incident rainfall and measured stemflow were recorded. Stemflow was collected using aluminum collars attached to four stems of each individual. Vinyl tubing transported stemflow from the collars into collection bottles that were weighed after each rain event. Canopy areas of each collared branch were calculated. Impact of branch and leaf attachment angles, leaf area index, stem diameter, and bark properties on stemflow were analyzed. In addition to species characteristics, rain depth, rain intensity and wind speed were considered. Stemflow averages were found to be 12 %, 4 %, and 3 % for P. laurocerasus, H. quercifolia, and I. virginica respectively, with values up to 24 % in certain P. laurocerasus branches during some storms. The results show that although in some shrub species stemflow may be negligible, in others it can be high enough to be considered substantial in hydrologic budget calculations. By examining how the quantity of stemflow is affected by both meteorological and species characteristics, the partitioning of rainfall can be more accurately calculated.

  4. 7 CFR 52.780 - Defects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1... means any vegetable substance (including, but not being limited to, a leaf or a stem, and any portions...

  5. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.

    PubMed

    Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai

    2016-09-01

    Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. [The structure of vegetative organs, and saponins histochemical localization and content comparization in Polygala sibirica L].

    PubMed

    Teng, Hong Mei; Fang, Min Feng; Hu, Zheng Hai

    2009-02-01

    Anatomical, histochemical and phytochemistry methods were used to investigate the structure of vegetative organs, and saponins localization and dynamic changes in Polygala sibirica L. The root consisted of developed periderm and secondary vascular. The secondary phloem was thick, and mainly composed of parenchyma. There were well-developed vessels and fibers in the secondary xylem. The stem was composed of epidermis, cortex and vascular bundle. The ring of sclerenchymatous cells lied between cortex and phloem might be the apoplastic protective screen which could protect the stem from drought. The leaf was bifacial one. The root and stem possessed characteristics adapting to arid environment. Histochemical localization results showed that saponins distributed in secondary phloem and phelloderm of root, in epidermis, cortex and phloem of stem, mainly in mesophyll of leaf. It displayed that saponins accumulated mainly in parenchyma cells of vegetative organs, among of which, the secondary phloem was the main storage site. The HPLC results also showed that the saponins accumulated in all the vegetative organs of Polygala sibirica L., with higher content in roots and lower content in the aerial part that included stems and leaves. The study indicated the aerial part of Polygala sibirica L. also had medicinal value. The saponins content had dynamic variance at the developmental stage, the crude drug should be gathered at period from April to May.

  7. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree.

    PubMed

    Xu, Liang; Yu, Fei-Hai; van Drunen, Elles; Schieving, Feike; Dong, Ming; Anten, Niels P R

    2012-04-01

    Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation. In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits. Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection. Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.

  8. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops.

    PubMed

    Udayanga, Dhanushka; Castlebury, Lisa A; Rossman, Amy Y; Chukeatirote, Ekachai; Hyde, Kevin D

    2015-05-01

    Phytopathogenic species of Diaporthe are associated with a number of soybean diseases including seed decay, pod and stem blight and stem canker and lead to considerable crop production losses worldwide. Accurate morphological identification of the species that cause these diseases has been difficult. In this study, we determined the phylogenetic relationships and species boundaries of Diaporthe longicolla, Diaporthe phaseolorum, Diaporthe sojae and closely related taxa. Species boundaries for this complex were determined based on combined phylogenetic analysis of five gene regions: partial sequences of calmodulin (CAL), beta-tubulin (TUB), histone-3 (HIS), translation elongation factor 1-α (EF1-α), and the nuclear ribosomal internal transcribed spacers (ITS). Phylogenetic analyses revealed that this large complex of taxa is comprised of soybean pathogens as well as species associated with herbaceous field crops and weeds. Diaporthe arctii, Diaporthe batatas, D. phaseolorum and D. sojae are epitypified. The seed decay pathogen D. longicolla was determined to be distinct from D. sojae. D. phaseolorum, originally associated with stem and leaf blight of Lima bean, was not found to be associated with soybean. A new species, Diaporthe ueckerae on Cucumis melo, is introduced with description and illustrations. Published by Elsevier Ltd.

  9. Evaluation of ash from some tropical plants of Nigeria for the control of Sclerotium rolfsii Sacc. on wheat (Triticum aestivum L.).

    PubMed

    Enikuomehin, O A; Ikotun, T; Ekpo, E J

    1998-01-01

    Eleven ash samples, from organs of nine tropical plants, were screened for their abilities to inhibit mycelial growth and sclerotial germination of a Nigerian isolate of Sclerotium rolfsii on agar and in the soil. Ten ash samples showed some activity against mycelial growth of S. rolfsii in vitro. Ash samples from Delonix regia stem wood, Mangifera indica leaf and Vernonia amygdalina leaf were most effective as each totally inhibited mycelial growth of S. rolfsii in vitro. Ocimum gratissimum leaf ash, D. regia wood ash and Musa paradisiaca flower bract ash inhibited sclerotial germination on agar. Nine ash samples protected seeds against pre-emergence rot. Ash from M. indica leaf, V. amygdalina leaf and Azadirachta indica leaf protected seedlings against post-emergence infection. Eichornia crassipes ash, which was ineffective in vitro, offered some protection to seeds in soil against pre-emergence rot. The study demonstrates potentials of ash samples from tropical plants in control of S. rolfsii on wheat.

  10. Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture[OPEN

    PubMed Central

    Briggs, Sarah; Bradbury, Peter J.

    2017-01-01

    Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize. PMID:28698237

  11. Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer

    PubMed Central

    Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan

    2015-01-01

    Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant. PMID:26198410

  12. Poinsettia plant exposure

    MedlinePlus

    Christmas flower poisoning; Lobster plant poisoning; Painted leaf poisoning ... Leaves, stem, sap of the poinsettia plant ... Poinsettia plant exposure can affect many parts of the body. EYES (IF DIRECT CONTACT OCCURS) Burning Redness STOMACH AND ...

  13. Dry Season Impact on Physiological Functioning of Two Tropical Tree Species in the Daintree Rainforest, Northeast Australia

    NASA Astrophysics Data System (ADS)

    Cernusak, L. A.; Dempsey, R.; Cheesman, A.; Meir, P.; Laurance, S.

    2016-12-01

    We measured leaf gas exchange, leaf biochemistry, and stem growth in two tropical tree species in the Daintree rainforest. The site experiences an average dry season length of three months, with global climate change predictions indicating that this could increase. Of the two studied species, Elaeocarpus angustifolius is wide-spread and early-successional, whereas Endiandra microneura is locally endemic and late-successional. Measurements started in 2014 and ended in 2015, thus encompassing the 2014 dry season. Upper canopy foliage was accessed from a 48 m tall canopy crane. Photosynthetic rates were higher during the wet season in Elaeocarpus than in Endiandra, consistent with its pioneering habit. Elaeocarpus showed larger reductions in both photosynthesis and stomatal conductance in response to the dry season than did Endiandra. Dry season depression of photosynthesis was associated with reduced intercellular carbon dioxide concentrations in Endiandra, but not in Elaeocarpus, indicating a role for photo-inhibition in restricting photosynthesis during the dry season in the early successional species, but not in the late successional species. Consistently, Endiandra invested more heavily in photoprotective and anti-oxidative compounds in its upper canopy foliage than did Elaeocarpus. Stem growth rates were four-fold higher in Elaeocarpus than in Endiandra during the wet season, reflecting the successional status of the two species. Stem growth slowed in both species in response to the dry season, and all but ceased by the late dry season. With the onset of the early wet season, stem growth increased markedly, and Elaeocarpus again maintained much faster growth than Endiandra. Overall, our results indicate that at the leaf level, biochemical and physiological processes associated with photosynthesis were more vulnerable to dry season stress in Elaeocarpus than in Endiandra; however, at the whole-plant level, our measurements and the geographic distribution of Elaeocarpus suggest that its overall performance is robust in the face of the dry season. The difference between insights at the leaf-level and those at the whole-plant level presumably reflects a strategy in Elaeocarpus of investing in cheaper, shorter lived, and more easily replaced leaves than does the late successional species, Endiandra.

  14. Spatiotemporal patterns of plant water isotope values from a continental-scale sample network in Europe as a tool to improve hydroclimate proxies

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2016-12-01

    The hydrogen and oxygen isotopic composition of water available for biosynthetic processes in vascular plants plays an important role in shaping the isotopic composition of organic compounds that these organisms produce, including leaf waxes and cellulose in leaves and tree rings. Characterizing changes in large scale spatial patterns of precipitation, soil water, stem water, and leaf water isotope values over time is therefore useful for evaluating how plants reflect changes in the isotopic composition of these source waters in different environments. This information can, in turn, provide improved calibration targets for understanding the environmental signals that plants preserve. The pathway of water through this continuum can include several isotopic fractionations, but the extent to which the isotopic composition of each of these water pools varies under normal field conditions and over space and time has not been systematically and concurrently evaluated at large spatial scales. Two season-long sampling campaigns were conducted at nineteen sites throughout Europe over the 2014 and 2015 growing seasons to track changes in the isotopic composition of plant-relevant waters. Samples of precipitation, soil water, stem water, and leaf water were collected over more than 200 field days and include more than 500 samples from each water pool. Measurements were used to validate continent-wide gridded estimates of leaf water isotope values derived from a combination of mechanistic and statistical modeling conducted with temperature, precipitation, and relative humidity data. Data-model comparison shows good agreement for summer leaf waters, and substantiates the incorporation of modeled leaf waters in evaluating how plants respond to hydroclimate changes at large spatial scales. These results also suggest that modeled leaf water isotope values might be used in future studies in similar ecosystems to improve the coverage density of spatial or temporal data.

  15. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  16. [Feasibility study for whole plant medicinal use of Tribulus terrestris].

    PubMed

    Yang, Li; Wang, Chunyu; Han, Meiw; Yang, Limin

    2009-09-01

    The content differences of leaf, plant and fruit of Tribulus terrestris was compared to study the feasibility of whole plant medicinal use. The samples were collected in three typical habitats and six different production areas of T. terrestris. The main medicinal ingredients saponins and flavonoids were determined in root, stem, leaf and fruit during the harvest time. The two ingredients were abounded in leaf and more than 2.61 times as in other parts of the plant. The results showed that there were no differences between the whole plant and the fruit. It should pay more attentions on the collection, preservation and utilization of the leaf of T. terrestris in the harvesting and processing stage. The whole plant for medical use was feasibility based on the content of the ingredients.

  17. A tillering inhibition gene influences root–shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments

    PubMed Central

    Hendriks, P.W.; Kirkegaard, J.A.; Lilley, J.M.; Gregory, P.J.; Rebetzke, G.J.

    2016-01-01

    Genetic modification of shoot and root morphology has potential to improve water and nutrient uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering inhibition (tin) gene and representing multiple genetic backgrounds were phenotyped in contrasting, controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar until tillering, whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 145%. Together, the root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed greater root-to-shoot ratios with regular tiller removal in non-tin-containing genotypes. In validating these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but was associated with significantly (P<0.05) reduced tiller number (–37%), leaf area index (–26%), and spike number (–35%) to reduce plant biomass (–19%) at anthesis. Root biomass, root-to-shoot ratio at early stem elongation, and root depth at maturity were all increased in tin-containing NILs. Soil water use was slowed in tin-containing NILs, resulting in greater water availability, greater stomatal conductance, cooler canopy temperatures, and maintenance of green leaf area during grain-filling. Together these effects contributed to increases in harvest index and grain yield. In both the controlled and field environments, the tin gene was commonly associated with increased root length and biomass, but the significant influence of genetic background and environment suggests careful assessment of tin-containing progeny in selection for genotypic increases in root growth. PMID:26494729

  18. Specificity of a Rust Resistance Suppressor on 7DL in the Spring Wheat Cultivar Canthatch.

    PubMed

    Talajoor, Mina; Jin, Yue; Wan, Anmin; Chen, Xianming; Bhavani, Sridhar; Tabe, Linda; Lagudah, Evans; Huang, Li

    2015-04-01

    The spring wheat 'Canthatch' has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. However, it is unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe rust. In this study, we investigated the specificity of the resistance suppression. To determine whether the suppression is genome origin specific, chromosome location specific, or rust species or race specific, we introduced 11 known rust resistance genes into the Canthatch background, including resistance to leaf, stripe, or stem rusts, originating from A, B, or D genomes and located on different chromosome homologous groups. F1 plants of each cross were tested with the corresponding rust race, and the infection types were scored and compared with the parents. Our results show that the Canthatch 7DL suppressor only suppressed stem rust resistance genes derived from either the A or B genome, and the pattern of the suppression is gene specific and independent of chromosomal location.

  19. Effects of planting density on the Biomass partitioning of intensively managed loblolly pine stands on the Piedmont and upper Coastal plain of Georgia

    Treesearch

    Rodney E. Will; Nikhil Narahari; Robert O. Teskey; Barry D. Shiver; Matthew Wosotowsky

    2006-01-01

    Increased planting density enhances overall stand growth by increasing resource capture and use. However, planting density also may affect the proportion of biomass partitioned to stem growth, a main factor controlling stand growth and yield. During the fourth growing season, we determined the biomass partitioned to leaf, branch, stem, and fine root (> 0.5mm) of...

  20. Single-crystalline twinned ZnO nanoleaf structure via a facile hydrothermal process.

    PubMed

    Qiu, Jijun; Lil, Xiaomin; Gao, Xiangdong; Gan, Xiaoyan; He, Weizhen; Kim, Hyung-Kook; Hwang, Yoon-Hwae

    2011-03-01

    A single-crystalline twinned ZnO nanostructure with a 2-dimensional leaf-like morphology (nanoleaves) was synthesized using a facile hydrothermal strategy. The ZnO nanoleaves had 2-fold symmetric branches, which were identified by the existence of an inversion domain boundary (IDB) along the [2110] growth direction of the ribbon-like stems with both side surfaces of the stems terminated with a chemically active Zn-(0001) plane. A proposed growth mechanism suggested that the formation of IDB and the leaf-like shape are related to the dissolution of seed particles on the substrate surfaces and an OH- shielding effect in solution, respectively. Optical measurements revealed visible emission, suggesting the possession of defects in the as-grown and annealed ZnO nanoleaves. In addition, various ZnO nanostructures were synthesized by simply controlling the fabrication conditions.

  1. EFFECTS OF SINGLE, BINARY AND TERTIARY COMBINATIONS WITH Jatropha gossypifolia AND OTHER PLANT-DERIVED MOLLUSCICIDES ON REPRODUCTION AND SURVIVAL OF THE SNAIL Lymnaea acuminata

    PubMed Central

    Yadav, Ram P.; Singh, Ajay

    2014-01-01

    The effect of sub-lethal doses (40% and 80% of LC50/24h) of plant derived molluscicides of singly, binary (1:1) and tertiary (1:1:1) combinations of the Rutin, Ellagic acid, Betulin and taraxerol with J. gossypifolia latex, leaf and stem bark powder extracts and their active component on the reproduction of freshwater snail Lymnaea acuminata have been studied. It was observed that the J. gossypifolia latex, stem bark, individual leaf and their combinations with other plant derived active molluscicidal components caused a significant reduction in fecundity, hatchability and survival of young snails. It is believed that sub-lethal exposure of these molluscicides on snail reproduction is a complex process involving more than one factor in reducing the reproductive capacity. PMID:25229223

  2. New data on the stem and leaf anatomy of two conifers from the Lower Cretaceous of the Araripe Basin, northeastern Brazil, and their taxonomic and paleoecological implications

    PubMed Central

    Batista, Maria Edenilce Peixoto; Silva, Delmira da Costa; Sales, Marcos A. F.; Sá, Artur A.; Saraiva, Antônio A. F.; Loiola, Maria Iracema Bezerra

    2017-01-01

    Pseudofrenelopsis and Brachyphyllum are two conifers that were part of the Lower Cretaceous (Aptian) taphoflora of the Crato Formation, Araripe Basin, northeastern Brazil. The former genus includes, so far, P. capillata and indeterminate species, whilst the latter is mainly represented by B. obesum, the most common plant megafossil recovered from that stratigraphic unit. Here, the stem and leaf anatomy of Pseudofrenelopsis sp. and B. obesum specimens is revisited, including the first report of some epidermal and vascular traits for both taxa from the Crato Formation. Along with its paleoecological significance, the new data suggest the presence of more than one Pseudofrenelopsis species in the Aptian taphoflora of the Araripe Basin and further support the taxonomic placement of B. obesum within Araucariaceae. PMID:28257466

  3. Contrasting hydraulic strategies in two tropical lianas and their host trees.

    PubMed

    Johnson, Daniel M; Domec, Jean-Christophe; Woodruff, David R; McCulloh, Katherine A; Meinzer, Frederick C

    2013-02-01

    Tropical liana abundance has been increasing over the past 40 yr, which has been associated with reduced rainfall. The proposed mechanism allowing lianas to thrive in dry conditions is deeper root systems than co-occurring trees, although we know very little about the fundamental hydraulic physiology of lianas. To test the hypothesis that two abundant liana species would physiologically outperform their host tree under reduced water availability, we measured rooting depth, hydraulic properties, plant water status, and leaf gas exchange during the dry season in a seasonally dry tropical forest. We also used a model to compare water use by one of the liana species and the host tree during drought. All species measured were shallowly rooted. The liana species were more vulnerable to embolism than host trees and experienced water potentials that were predicted to result in substantial hydraulic losses in both leaves and stems. Water potentials measured in host trees were not negative enough to result in significant hydraulic losses. Model results predicted the liana to have greater gas exchange than its host tree during drought and nondrought conditions. The host tree species had a more conservative strategy for maintenance of the soil-to-leaf hydraulic pathway than the lianas it supported. The two liana species experienced embolism in stems and leaves, based on vulnerability curves and water potentials. These emboli were presumably repaired before the next morning. However, in the host tree species, reduced stomatal conductance prevented leaf or stem embolism.

  4. Chemical composition and antioxidant activities of essential oils from different parts of the oregano.

    PubMed

    Han, Fei; Ma, Guang-Qiang; Yang, Ming; Yan, Li; Xiong, Wei; Shu, Ji-Cheng; Zhao, Zhi-Dong; Xu, Han-Lin

    This research was undertaken in order to characterize the chemical compositions and evaluate the antioxidant activities of essential oils obtained from different parts of the Origanum vulgare L. It is a medicinal plant used in traditional Chinese medicine for the treatment of heat stroke, fever, vomiting, acute gastroenteritis, and respiratory disorders. The chemical compositions of the three essential oils from different parts of the oregano (leaves-flowers, stems, and roots) were identified by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of each essential oil was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and reducing the power test. Among the essential oils from different parts of the oregano, the leaf-flower oils have the best antioxidant activities, whereas the stem oils are the worst. The results of the DPPH free radical scavenging assay showed that the half maximal inhibitory concentration (IC 50 ) values of the essential oils were (0.332±0.040) mg/ml (leaves-flowers), (0.357±0.031) mg/ml (roots), and (0.501±0.029) mg/ml (stems), respectively. Interestingly, the results of reducing the power test also revealed that when the concentration exceeded 1.25 mg/ml, the leaf-flower oils had the highest reducing power; however, the stem oils were the lowest.

  5. Effects of fire alone or combined with thinning on tissue nutrient concentrations and nutrient resorption in Desmodium nudiflorum.

    PubMed

    Huang, Jianjun; Boerner, Ralph E J

    2007-08-01

    This study examined tissue nutrient responses of Desmodium nudiflorum to changes in soil total inorganic nitrogen (TIN) and available phosphorus (P) that occurred as the result of the application of alternative forest management strategies, namely (1) prescribed low-intensity fire (B), (2) overstory thinning followed by prescribed fire (T + B), and (3) untreated control C), in two Quercus-dominated forests in the State of Ohio, USA. In the fourth growing season after a first fire, TIN was significantly greater in the control plots (9.8 mg/kg) than in the B (5.5 mg/kg) and T + B (6.4 mg/kg) plots. Similarly, available P was greater in the control sites (101 microg/g) than in the B (45 microg/kg) and T + B (65 microg/kg) sites. Leaf phosphorus ([P]) was higher in the plants from control site (1.86 mg/g) than in either the B (1.77 mg/g) or T + B plants (1.73 mg/g). Leaf nitrogen ([N]) and root [N] showed significant site-treatment interactive effects, while stem [N], stem [P], and root [P] did not differ significantly among treatments. During the first growing season after a second fire, leaf [N], stem [N], litter [P] and available soil [P] were consistently lower in plots of the manipulated treatments than in the unmanaged control plot, whereas the B and T + B plots did not differ significantly from each other. N resorption efficiency was positively correlated with the initial foliar [N] in the manipulated (B and T + B) sites, but there was no such relation in the unmanaged control plots. P resorption efficiency was positively correlated with the initial leaf [P] in both the control and manipulated plots. Leaf nutrient status was strongly influenced by soil nutrient availability shortly after fire, but became more influenced by topographic position in the fourth year after fire. Nutrient resorption efficiency was independent of soil nutrient availability. These findings enrich our understanding of the effects of ecosystem restoration treatments on soil nutrient availability, plant nutrient relations, and plant-soil interactions at different temporal scales.

  6. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Joseph, M., Jr.; Jones, Robert, H.

    2003-01-01

    Riley, J.M. Jr., and R.H.Jones. 2003. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina. For. Ecol., and Mgt. 177:571-586. To determine the extent that resources, conditions, and herbivoryy limit regeneration of Quercus alba L. and Cornus florida L. in formerly cultivated coastal plain uplands, we planted seedlings of the two species in two pine and one pine-hardwood forest understory and three adjacent clearcuts. Soil carbon and moisture, available nitrogen and phosphorous, and gap light index (GLI) were measured next to each seedling. Over two growing seasons, stem and leaf herbivory weremore » estimated and survival was recorded. At the end of 2 years, all surviving stems were harvested to determine total leaf area and 2-year biomass growth. Survival to the end of the study was not significantly different between clearcuts and understories. However, clearcuts led to significantly greater biomass growth and leaf area for both Q. alba and C. florida. Soil moisture and available nutrients were also greater in the clearcuts. Using separate multiple linear (growth) or logistic (survival) regressions for each combination of three sites, two cutting treatments and two species, we found that soil moisture significantly affected survival in 12.5% and biomass growth in 8.3% of the regressions. Light availability significantly impacted biomass growth in 16.7% of the regressions. Stem and leaf herbivory had very little impact on survival (8.3%), but when combined, these two factors significantly impacted leaf area or biomass growth in 33.3% of the regressions. Seedling responses were highly variable, and no regression model accounted for more that 70.0% of this variation. In our study, stand-scalevariation in seedling responses (especially the difference between clearcut and understory) was much greater than within-stand variation. Of the within stand factors measured, herbivory was clearly the most important. To establish these species in mesic upland coastal plain sites, we recommend planting immediately after clearcutting.« less

  7. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.

    PubMed

    Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire

    2012-08-01

    Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration and not by growth rate, which differs from previous studies. The observed between-species difference at the intra-annual scale is key information for anticipating suitability of future species in temperate forests.

  8. Physically-based modeling of drag force caused by natural woody vegetation

    NASA Astrophysics Data System (ADS)

    Järvelä, J.; Aberle, J.

    2014-12-01

    Riparian areas and floodplains are characterized by woody vegetation, which is an essential feature to be accounted for in many hydro-environmental models. For applications including flood protection, river restoration and modelling of sediment processes, there is a need to improve the reliability of flow resistance estimates. Conventional methods such as the use of lumped resistance coefficients or simplistic cylinder-based drag force equations can result in significant errors, as these methods do not adequately address the effect of foliage and reconfiguration of flexible plant parts under flow action. To tackle the problem, physically-based methods relying on objective and measurable vegetation properties are advantageous for describing complex vegetation. We have conducted flume and towing tank investigations with living and artificial plants, both in arrays and with isolated plants, providing new insight into advanced parameterization of natural vegetation. The stem, leaf and total areas of the trees confirmed to be suitable characteristic dimensions for estimating flow resistance. Consequently, we propose the use of leaf area index and leaf-to-stem-area ratio to achieve better drag force estimates. Novel remote sensing techniques including laser scanning have become available for effective collection of the required data. The benefits of the proposed parameterization have been clearly demonstrated in our newest experimental studies, but it remains to be investigated to what extent the parameter values are species-specific and how they depend on local habitat conditions. The purpose of this contribution is to summarize developments in the estimation of vegetative drag force based on physically-based approaches as the latest research results are somewhat dispersed. In particular, concerning woody vegetation we seek to discuss three issues: 1) parameterization of reconfiguration with the Vogel exponent; 2) advantage of parameterizing plants with the leaf area index and leaf-to-stem-area ratio, and 3) effect of plant scale (size from twigs to mature trees). To analyze these issues we use experimental data from the authors' research teams as well as from other researchers. The results are expected to be useful for the design of future experimental campaigns and developing drag force models.

  9. [Effects of perchlorate on growth and chlorophyll fluorescence parameters of Alternanthera philoxeroides].

    PubMed

    Xie, Yin-feng; Cai, Xian-lei; Liu, Wei-long; Deng, Wei

    2009-08-15

    Perchlorate is a new emerging persistent pollutant, while no studies about its effects on plants have been reported both home and abroad. In order to explore the effects of perchlorate on growth and physiology of aquatic plant, Alternanthera philoxeroides were treated by 1/20 Hoagland nutrient solution with different concentrations (0, 1, 5, 20, 100, 500 mg/L) of ClO4- under the controlled conditions. The results showed as follow. (1) Under perchlorate treatment, relative growth yield,dry weight of root,shoot and leaves were inhibited at different degrees, in which root biomass under different treatments showed significant difference to the control. After treatment for 40 d, relative growth yield of different treatments at concentration from 1 mg/L to 500 mg/L were about 61.6%, 60.8%, 53.1%, 20.4% and 3.3% separately of the control. And the order of variation coefficients of biomass in different organ were as follows: leaf > root biomass > stem; the relationship of biomass allocation in different organs of Alternanthera philoxeroides under perchlorate treatment changed, and the proportion of stem biomass increased,while leaf decreased, in which 100 and 500 mg/L ClO4- treatment showed significant difference to the control. (2) Under perchlorate treatment, young leaves of Alternanthera philoxeroides presented injury symptoms (such as parietal roiling reversely, leaf edge getting black and withered etc), and the damaged degree of Alternanthera philoxeroides increased with the increase of treatment concentration and time. (3) Under perchlorate treatment, the relative chlorophyll content (SPAD value), primary maximal PSII efficiency(Fv/Fm), efficiency of excitation capture by open PSII centre (F'v,/F'm), actual photochemical efficiency of PSII (phi(PS II)), electron transport rate (ETR), maximal electron transport rate(ETR ,) and other indexes were inhibited at different degrees. SPAD and chlorophyll fluorescence parameters (phi(PS II)) etc. could be used as sensitive physiological indexes to reflect the effects of perchlorate stress. The results suggest that perchlorate treatment can damage the photosynthetic system and leaf, decrease photochemical efficiency, and inhibit growth of Alternanthera philoxeroides. Leaf and root show a higher sensitivity to perchlorate,while stem with a lower sensitivity.

  10. The δ18O of Atmospheric Water Vapour is Recorded in the Oxygen Isotope Ratios of Leaf water and Organic Molecules at High Relative Humidity

    NASA Astrophysics Data System (ADS)

    Lehmann, M. M.; Goldsmith, G. R.; Schmid, L.; Siegwolf, R. T.; Gessler, A.; Saurer, M.

    2016-12-01

    The oxygen stable isotope ratios (δ18O) of water and organic molecules in plants hold information about plant physiology, ecohydrology, and environmental conditions. For instance, the δ18O ratio of leaf water reflects both the δ18O ratios of water in the soil and in the atmosphere. This water, which is incorporated into organic molecules at the time of synthesis, thus serves to record the environment in which the plant was growing. However, how δ18O of atmospheric water vapour affects the δ18O ratio of organic molecules remains poorly understood. In order to investigate the effects of fog and rain (e.g. high atmospheric water availability) on δ18O ratios of leaf water and organic molecules, we exposed oak tree saplings (Quercus robur) in wet and dry soil treatments to 18O-depleted water vapour at ca. 90% relative humidity for 5 h. We harvested plant material over 24 h to trace the movement of the isotopic label in water and organics throughout the plant from the leaves to the stem. The atmospheric water vapour caused a strong 18O-depletion in leaf and xylem water, as well as in leaf carbohydrates, with the most negative ratios observed at the end of the fogging. Moreover, the label was clearly observed in twig and stem phloem carbohydrates following a short delay. A detailed compound-specific isotope analysis of the leaf carbohydrates revealed that the label caused an 18O-depletion in fructose, glucose, and sucrose. Quercitol, an oak-specific alditol, did not show 18O-depletion. Clear soil moisture treatment effects were only observed for twig phloem carbohydrates, with a stronger 18O-depletion in wet plants than in dry plants, suggesting retarded leaf-to-phloem sugar export in trees under drought. We demonstrate that labelling with 18O-depleted water is a potential tool to trace the movement and incorporation of oxygen stable isotopes in plants. We clearly show that changes in δ18O of atmospheric water vapour are quickly imprinted on leaf water and ultimately incorporated into organic molecules.

  11. Distribution of Tomato spotted wilt virus in dahlia plants.

    PubMed

    Asano, S; Hirayama, Y; Matsushita, Y

    2017-04-01

    Tomato spotted wilt virus (TSWV) causes significant losses in the production of the ornamental plant Dahlia variabilis in Japan. The purpose of this study was to examine the distribution of TSWV in dahlia plants and identify plant parts that can be used in the selection of TSWV-free plants. The distribution of TSWV was investigated using reverse transcriptional polymerase chain reaction (RT-PCR) and tissue blot immunoassay. The detection rate of TSWV in latent infected compound leaves was the highest in the petiole, and it decreased from the veins and rachis to the lamina. The tissue blot immunoassays of the leaflets showed an uneven distribution of TSWV, especially along the edge of the leaf blade. In stems, the detection rate of TSWV was high partway up the stem compared to that in the upper and the lower parts of the stem during the vegetative growth stage. A highly uneven distribution was observed in the bulb. Our results indicated that middle parts of the stem as well as the petioles, rachis, and veins of compound leaves are suitable for detection of TSWV in dahlias. This study is the first to report uneven distribution of TSWV in dahlia plants. In this study, the distribution of Tomato spotted wilt virus (TSWV) in various parts of dahlia plants was investigated for the first time. The distribution of TSWV was uneven in compound leaves, leaflets, stems, and bulbs. The middle parts of the stem or the petiole and leaf veins should be sampled to detect TSWV when selecting healthy plants. © 2017 The Society for Applied Microbiology.

  12. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records.

    PubMed

    Biondi, Franco; Rossi, Sergio

    2015-08-01

    Water is the main limiting resource for natural and human systems, but the effect of hydroclimatic variability on woody species in water-limited environments at sub-monthly time scales is not fully understood. Plant-water relationships of single-leaf pinyon pine (Pinus monophylla) were investigated using hourly dendrometer and environmental data from May 2006 to October 2011 in the Great Basin Desert, one of the driest regions of North America. Average radial stem increments showed an annual range of variation below 1.0 mm, with a monotonic steep increase from May to July that yielded a stem enlargement of about 0.5 mm. Stem shrinkage up to 0.2 mm occurred in late summer, followed by an abrupt expansion of up to 0.5 mm in the fall, at the arrival of the new water year precipitation. Subsequent winter shrinkage and enlargement were less than 0.3 mm each. Based on 4 years with continuous data, diel cycles varied in both timing and amplitude between months and years. Phase shifts in circadian stem changes were observed between the growing season and the dormant one, with stem size being linked to precipitation more than to other water-related indices, such as relative humidity or soil moisture. During May-October, the amplitude of the phases of stem contraction, expansion, and increment was positively related to their duration in a nonlinear fashion. Changes in precipitation regime, which affected the diel phases especially when lasting more than 5-6 h, could substantially influence the dynamics of water depletion and replenishment in single-leaf pinyon pine.

  13. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records

    NASA Astrophysics Data System (ADS)

    Biondi, Franco; Rossi, Sergio

    2015-08-01

    Water is the main limiting resource for natural and human systems, but the effect of hydroclimatic variability on woody species in water-limited environments at sub-monthly time scales is not fully understood. Plant-water relationships of single-leaf pinyon pine ( Pinus monophylla) were investigated using hourly dendrometer and environmental data from May 2006 to October 2011 in the Great Basin Desert, one of the driest regions of North America. Average radial stem increments showed an annual range of variation below 1.0 mm, with a monotonic steep increase from May to July that yielded a stem enlargement of about 0.5 mm. Stem shrinkage up to 0.2 mm occurred in late summer, followed by an abrupt expansion of up to 0.5 mm in the fall, at the arrival of the new water year precipitation. Subsequent winter shrinkage and enlargement were less than 0.3 mm each. Based on 4 years with continuous data, diel cycles varied in both timing and amplitude between months and years. Phase shifts in circadian stem changes were observed between the growing season and the dormant one, with stem size being linked to precipitation more than to other water-related indices, such as relative humidity or soil moisture. During May-October, the amplitude of the phases of stem contraction, expansion, and increment was positively related to their duration in a nonlinear fashion. Changes in precipitation regime, which affected the diel phases especially when lasting more than 5-6 h, could substantially influence the dynamics of water depletion and replenishment in single-leaf pinyon pine.

  14. Larval feeding behavior and ant association in frosted elfin, Callophrys irus (Lycaenidae)

    USGS Publications Warehouse

    Albanese, G.; Nelson, M.W.; Vickery, P.D.; Sievert, P.R.

    2007-01-01

    Callophrys irus is a rare and declining lycaenid found in the eastern U.S., inhabiting xeric and open habitats maintained by disturbance. Populations are localized and monophagous. We document a previously undescribed larval feeding behavior in both field and lab reared larvae in which late instar larvae girdled the main stem of the host plant. Girdled stems provide a unique feeding sign that was useful in detecting the presence of larvae in the field. We also observed frequent association of field larvae with several species of ants and provide a list of ant species. We suggest two hypotheses on the potential benefits of stem-girdling to C. irus larvae: 1) Stem girdling provides phloem sap as a larval food source and increases the leaf nutrient concentration, increasing larval growth rates and providing high quality honeydew for attending ants; 2) Stem girdling reduces stem toxicity by inhibiting transport of toxins from roots to the stem.

  15. Clone lineages of grape phylloxera differ in their performance on Vitis vinifera.

    PubMed

    Herbert, K S; Umina, P A; Mitrovski, P J; Powell, K S; Viduka, K; Hoffmann, A A

    2010-12-01

    Grape phylloxera, Daktulosphaira vitifoliae Fitch, is an important pest of grapevines (Vitis vinifera L.) (Vitaceae). The distribution and frequency of phylloxera clone lineages vary within infested regions of Australia, suggesting the introduction of separate lineages of D. vitifoliae with host associations. Virulence levels of particular phylloxera clones may vary on V. vinifera, but much of this evidence is indirect. In this study, we directly tested the performance of phylloxera clones on V. vinifera using an established excised root assay and a new glasshouse vine assessment. In the root assay, grape phylloxera clones differed in egg production and egg to adult survivorship. In the vine assay, clones differed in the number of immature and adult life stages on roots. In addition vine characteristics, including mean stem weight, root weight, leaf chlorophyll and leaf area, were affected by different phylloxera clones. The two most widespread clones displayed high levels of virulence. These results point to only some phylloxera clones being highly virulent on V. vinifera, helping to explain patterns of field damage, phylloxera distributions and continued survival and production of V. vinifera vines in some infested areas.

  16. A taxonomic revision of three Chinese spurless species of genus Epimedium L. (Berberidaceae).

    PubMed

    Liu, Shaoxiong; Liu, Linjian; Huang, Xiaofang; Zhu, Yuye; Xu, Yanqin

    2017-01-01

    Due to some common or similar features (e.g., small leaf, spurless, yellow flower), three Chinese species of the genus Epimedium (Berberidaceae), E. ecalcaratum , E. platypetalum , and E. campanulatum , are controversial based on morphological characteristics. In the present study, the descriptions of morphological characteristics for the three species were revised based on extensive studies and observations both in field and in herbaria. In general, E. ecalcaratum has long creeping rhizomes 1-3 mm in diameter, two alternate or opposite trifoliolate leaves, 7-14 flowers, and petals obovate and apex subacute. Epimedium platypetalum has short or long-creeping rhizomes 1-3 mm in diameter, one trifoliolate leaf, 2-6 flowers, and petals oblong and apex rounded. Epimedium campanulatum has compact rhizomes 4-6 mm in diameter, two alternate or opposite trifoliolate leaves, 15-43 flowers, and petals obovate and apex rounded. Through comparison, we found that despite the close affinity of these three species, they can be distinguished by rhizome differences, stem-leaves, the morphology of flower (e.g., petals), and the number of per inflorenscence.

  17. A taxonomic revision of three Chinese spurless species of genus Epimedium L. (Berberidaceae)

    PubMed Central

    Liu, Shaoxiong; Liu, Linjian; Huang, Xiaofang; Zhu, Yuye; Xu, Yanqin

    2017-01-01

    Abstract Due to some common or similar features (e.g., small leaf, spurless, yellow flower), three Chinese species of the genus Epimedium (Berberidaceae), E. ecalcaratum, E. platypetalum, and E. campanulatum, are controversial based on morphological characteristics. In the present study, the descriptions of morphological characteristics for the three species were revised based on extensive studies and observations both in field and in herbaria. In general, E. ecalcaratum has long creeping rhizomes 1–3 mm in diameter, two alternate or opposite trifoliolate leaves, 7–14 flowers, and petals obovate and apex subacute. Epimedium platypetalum has short or long-creeping rhizomes 1–3 mm in diameter, one trifoliolate leaf, 2–6 flowers, and petals oblong and apex rounded. Epimedium campanulatum has compact rhizomes 4–6 mm in diameter, two alternate or opposite trifoliolate leaves, 15–43 flowers, and petals obovate and apex rounded. Through comparison, we found that despite the close affinity of these three species, they can be distinguished by rhizome differences, stem-leaves, the morphology of flower (e.g., petals), and the number of per inflorenscence. PMID:28781550

  18. [Morphological and anatomical characterization of a stripe mutant with abnormal floral organs in rice].

    PubMed

    Chen, De Xi; Ma, Bing Tian; Wang, Yu Ping; Li, Shi Gui; Hao, Ming

    2006-08-01

    A rice double mutant was derived from the transgenic process,but it does not carry the alien gene. The mutant showed white stripe on stem, leaf and spikelet. In some growing stage,the leaf started to produce fork or curliness. The floret number increased, showing multi-lemma/palea, palea-like or lemma-like lodicules or enlarged lodicules, additional pistil and stamen and the spited floret. With observation of cell ultra structure using electron microscope,the white tissue showed concaved cell wall and abnormal plastid which could not develop normal lamellae and thylakoid. The contents of chlorophyll and net photosynthesis rate in the mutant were obviously lower than those in the wild type. The cells in green sectors grow normally with the exception of the bigger cell volume. The morphogenesis of floral organ was observed by using the scanning electron microscopy (SEM). Results showed that the stamen development was not synchronal and the sizes of stamen primordium were different in mutant, and the carpel was smaller than that of wild type.

  19. Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number.

    PubMed

    Kubo, Fumika Clara; Yasui, Yukiko; Kumamaru, Toshihiro; Sato, Yutaka; Hirano, Hiro-Yuki

    2017-03-17

    Leaves are a major site for photosynthesis and a key determinant of plant architecture. Rice produces thin and slender leaves, which consist of the leaf blade and leaf sheath separated by the lamina joint. Two types of vasculature, the large and small vascular bundles, run in parallel, together with a strong structure, the midrib. In this paper, we examined the function of four genes that regulate the width of the leaf blade and the vein number: NARROW LEAF1 (NAL1), NAL2, NAL3 and NAL7. We backcrossed original mutants of these genes with the standard wild-type rice, Taichung 65. We then compared the effect of each mutation on similar genetic backgrounds and examined genetic interactions of these genes. The nal1 single mutation and the nal2 nal3 double mutation showed a severe effect on leaf width, resulting in very narrow leaves. Although vein number was also reduced in the nal1 and nal2 nal3 mutants, the small vein number was more strongly reduced than the large vein number. In contrast, the nal7 mutation showed a milder effect on leaf width and vein number, and both the large and small veins were similarly affected. Thus, the genes responsible for narrow leaf phenotype seem to play distinct roles. The nal7 mutation showed additive effects on both leaf width and vein number, when combined with the nal1 single or the nal2 nal3 double mutation. In addition, observations of inner tissues revealed that cell differentiation was partially compromised in the nal2 nal3 nal7 mutant, consistent with the severe reduction in leaf width in this triple mutant.

  20. Limitations on gas exchange recovery following natural drought in Californian oak woodlands.

    NASA Astrophysics Data System (ADS)

    Ackerly, D.; Skelton, R. P.; Dawson, T.; Thompson, S.; Feng, X.; Weitz, A.; McLaughlin, B.

    2017-12-01

    Abstract Background/Question/Methods Drought can cause major damage to plant communities, but species damage thresholds and post-drought recovery of forest productivity are not yet predictable. We asked the question how should forest net primary productivity recover following exposure to severe drought? We used a natural drought period to investigate whether drought responses and post-drought recovery of canopy health could be predicted by properties of the water transport system. We aimed to test the hypothesis that recovery of gas exchange and canopy health would be most severely limited by xylem embolism in stems. To do this we monitored leaf level gas exchange and water status for multiple individuals of two deciduous and two evergreen species for four years spanning a severe drought event and following subsequent rehydration. Results/Discussion Severe drought caused major declines in leaf water potential, reduced stomatal conductance and assimilation rates and increased canopy bareness in our four canopy species. Water potential surpassed levels associated with incipient embolism in leaves of most trees. In contrast, due to hydraulic segmentation, water potential only rarely surpassed critical thresholds in the stems of the study trees. Individuals that surpassed critical thresholds of embolism in the stem displayed significant canopy dieback and mortality. Thus, recovery of plant gas exchange and canopy health was predicted by xylem safety margin in stems, but not leaves, providing strong support for stem cavitation vulnerability as an index of damage under natural drought conditions.

  1. Water relations of baobab trees (Adansonia spp. L.) during the rainy season: does stem water buffer daily water deficits?

    PubMed

    Chapotin, Saharah Moon; Razanameharizaka, Juvet H; Holbrook, N Michele

    2006-06-01

    Baobab trees are often cited in the literature as water-storing trees, yet few studies have examined this assumption. We assessed the role of stored water in buffering daily water deficits in two species of baobabs (Adansonia rubrostipa Jum. and H. Perrier and Adansonia za Baill.) in a tropical dry forest in Madagascar. We found no lag in the daily onset of sap flow between the base and the crown of the tree. Some night-time sap flow occurred, but this was more consistent with a pattern of seasonal stem water replenishment than with diurnal usage. Intrinsic capacitance of both leaf and stem tissue (0.07-0.08 and 1.1-1.43 MPa(-1), respectively) was high, yet the amount of water that could be withdrawn before turgor loss was small because midday leaf and stem water potentials (WPs) were near the turgor-loss points. Stomatal conductance was high in the daytime but then declined rapidly, suggesting an embolism-avoidance strategy. Although the xylem of distal branches was relatively vulnerable to cavitation (P50: 1.1-1.7 MPa), tight stomatal control and minimum WPs near--1.0 MPa maintained native embolism levels at 30-65%. Stem morphology and anatomy restrict water movement between storage tissues and the conductive pathway, making stored-water usage more appropriate to longer-term water deficits than as a buffer against daily water deficits.

  2. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation.

    PubMed

    Mohanpuria, Prashant; Kumar, Vinay; Joshi, Robin; Gulati, Ashu; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2009-10-01

    To study caffeine biosynthesis and degradation, here we monitored caffeine synthase gene expression and caffeine and allantoin content in various tissues of four Camellia sinensis (L.) O. Kuntze cultivars during non-dormant (ND) and dormant (D) growth phases. Caffeine synthase expression as well as caffeine content was found to be higher in commercially utilized tissues like apical bud, 1st leaf, 2nd leaf, young stem, and was lower in old leaf during ND compared to D growth phase. Among fruit parts, fruit coats have higher caffeine synthase expression, caffeine content, and allantoin content. On contrary, allantoin content was found lower in the commercially utilized tissues and higher in old leaf. Results suggested that caffeine synthesis and degradation in tea appears to be under developmental and seasonal regulation.

  3. A Guide to Alaskan Black Spruce Wetland Bryophytes: Species Specific to Delineation for Interior and South Central Regions

    DTIC Science & Technology

    2008-06-01

    rhizoids (hair-like filaments) at the base, all along the stem, or as clusters, and the rhizoids may be dense or sparse, colored or colorless (appearing...colorless rhizoids . They will only be present on the ventral side. The leaf arrangement is called succubous when the forward edge of a leaf (as viewed...camouflaged by rhizoids . Leaves of Blepharostoma trichophyllum. The leaves of Blepharostoma are very small and in three rows, and they look like

  4. Improved immune responses to a bivalent vaccine of Newcastle disease and avian influenza in chickens by ginseng stem-leaf saponins.

    PubMed

    Yu, J; Shi, F S; Hu, S

    2015-10-15

    Our previous investigation demonstrated that ginseng stem-leaf saponins (GSLS) derived from the stems and leaves of Panax ginseng C.A. Meyer promoted humoral and gut mucosal immunity in chickens vaccinated with live infectious bursa disease vaccine. The present study was designed to evaluate the effect of GSLS on the immune response to a bivalent inactive vaccine of Newcastle disease (ND) and avian influenza (AI) in chickens immunosuppressed by cyclophosphamide (Cy). One hundred and sixty-eight specific-pathogen-free (SPF) chickens were randomly divided into 7 groups, each containing 24 birds. Chickens in groups 3-7 received intramuscular injection of Cy at 100mg/kg BW for 3 days to induce immunosuppression. Groups 1 and 2 were injected with saline solution in the same way as groups 3-7. Following injection of Cy, groups 4-7 were orally administrated GSLS (2.5, 5 and 10mg/kg BW) or astragalus polysaccharide (APS) (200mg/L) in drinking water for 7 days; groups 1-3 were not medicated and served as control birds. After administration of GSLS or APS, groups 2-7 were subcutaneously injected with a bivalent inactive vaccine of ND and AI. After that, serum was sampled for detecting antibody titers by HI, spleen was collected for lymphocyte proliferation assay, and duodenum tissues were collected for measurement of IgA-secreting (IgA+) cells and intestinal intraepithelial lymphocytes (iIELs). The results showed that injection of Cy significantly suppressed immunity in chickens; oral administration of GSLS before immunization recovered splenocyte proliferation induced by ConA and LPS, and the numbers of IgA+ cells and iIELs as well as the specific antibody response to a bivalent inactive vaccine of ND and AIin immunosuppressed chickens treated with Cy. Therefore, GSLS may be the potential agent to improve vaccination in immunosuppressed chickens. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Confirmation and mechanism of glyphosate resistance in tall windmill grass (Chloris elata) from Brazil.

    PubMed

    Brunharo, Caio Acg; Patterson, Eric L; Carrijo, Daniela R; de Melo, Marcel Sc; Nicolai, Marcelo; Gaines, Todd A; Nissen, Scott J; Christoffoleti, Pedro J

    2016-09-01

    Overreliance on glyphosate as a single tool for weed management in agricultural systems in Brazil has selected glyphosate-resistant populations of tall windmill grass (Chloris elata Desv.). Two C. elata populations, one glyphosate resistant (GR) and one glyphosate susceptible (GS), were studied in detail for a dose-response experiment and for resistance mechanism. The dose causing 50% reduction in dry weight was 620 g a.e. ha(-1) for GR and 114 g ha(-1) for GS, resulting in an R/S ratio of 5.4. GS had significantly higher maximum (14) C-glyphosate absorption into the treated leaf (51.3%) than GR (39.5%), a difference of 11.8% in maximum absorption. GR also retained more (14) C-glyphosate in the treated leaf (74%) than GS (51%), and GR translocated less glyphosate (27%) to other plant parts (stems, roots and root exudation) than GS (36%). There were no mutations at the Pro106 codon in the gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). There was no difference in EPSPS genomic copy number or EPSPS transcription between GS and GR populations. Based on these data, reduced glyphosate absorption and increased glyphosate retention in the treated leaf contribute to glyphosate resistance in this C. elata population from Brazil. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Regulation, overexpression, and target gene identification of Potato Homeobox 15 (POTH15) – a class-I KNOX gene in potato

    PubMed Central

    Mahajan, Ameya S.; Kondhare, Kirtikumar R.; Rajabhoj, Mohit P.; Kumar, Amit; Ghate, Tejashree; Ravindran, Nevedha; Habib, Farhat; Siddappa, Sundaresha; Banerjee, Anjan K.

    2016-01-01

    Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and stolons under tuber-inducing short-day conditions. POTH15 promoter activity was detected in apical and axillary meristems, stolon tips, tuber eyes, and meristems of tuber sprouts, indicating its role in meristem maintenance and leaf development. POTH15 overexpression altered multiple morphological traits including leaf and stem development, leaflet number, and number of nodes and branches. In particular, the rachis of the leaf was completely reduced and leaves appeared as a bouquet of leaflets. Comparative transcriptomic analysis of 35S::GUS and two POTH15 overexpression lines identified more than 6000 differentially expressed genes, including 2014 common genes between the two overexpression lines. Functional analysis of these genes revealed their involvement in responses to hormones, biotic/abiotic stresses, transcription regulation, and signal transduction. qRT-PCR of selected candidate target genes validated their differential expression in both overexpression lines. Out of 200 randomly chosen POTH15 targets, 173 were found to have at least one tandem TGAC core motif, characteristic of KNOX interaction, within 3.0kb in the upstream sequence of the transcription start site. Overall, this study provides insights to the role of POTH15 in controlling diverse developmental processes in potato. PMID:27217546

  7. Leaf water potentials measured with a pressure chamber.

    PubMed

    Boyer, J S

    1967-01-01

    Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within +/- 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements.The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer.

  8. Leaf Water Potentials Measured with a Pressure Chamber

    PubMed Central

    Boyer, J. S.

    1967-01-01

    Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within ± 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements. The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer. PMID:16656476

  9. [Effects of exogenous spermidine on lipid peroxidation and membrane proton pump activity of cucumber seedling leaves under high temperature stress].

    PubMed

    Tian, Jing; Guo, Shi-Rong; Sun, Jin; Wang, Li-Ping; Yang, Yan-Juan; Li, Bin

    2011-12-01

    Taking a relatively heat-resistant cucumber (Cucumis sativus) cultivar 'Jinchun No. 4' as test material, a sand culture experiment was conducted in growth chamber to investigate the effects of foliar spraying spermidine (Spd) on the lipid peroxidation, membrane proton pump activity, and corresponding gene expression of cucumber seedling leaves under high temperature stress. Compared with the control, foliar spraying Spd increased the plant height, stem diameter, dry and fresh mass, and leaf area significantly, and inhibited the increase of leaf relative conductivity, malondialdehyde (MDA) content, and lipoxygenase (LOX) activity effectively. Foliar spraying Spd also helped to the increase of leaf plasma membrane- and tonoplast H(+)-ATPase activity, but no significant difference was observed in the gene expression levels. These results suggested that exogenous Spd could significantly decrease the leaf lipid peroxidation and increase the proton pump activity, and thus, stabilize the leaf membrane structure and function, alleviate the damage induced by high temperature stress, and enhance the heat tolerance of cucumber seedlings.

  10. Modelling the structural response of cotton plants to mepiquat chloride and population density

    PubMed Central

    Gu, Shenghao; Evers, Jochem B.; Zhang, Lizhen; Mao, Lili; Zhang, Siping; Zhao, Xinhua; Liu, Shaodong; van der Werf, Wopke; Li, Zhaohu

    2014-01-01

    Background and Aims Cotton (Gossypium hirsutum) has indeterminate growth. The growth regulator mepiquat chloride (MC) is used worldwide to restrict vegetative growth and promote boll formation and yield. The effects of MC are modulated by complex interactions with growing conditions (nutrients, weather) and plant population density, and as a result the effects on plant form are not fully understood and are difficult to predict. The use of MC is thus hard to optimize. Methods To explore crop responses to plant density and MC, a functional–structural plant model (FSPM) for cotton (named CottonXL) was designed. The model was calibrated using 1 year's field data, and validated by using two additional years of detailed experimental data on the effects of MC and plant density in stands of pure cotton and in intercrops of cotton with wheat. CottonXL simulates development of leaf and fruits (square, flower and boll), plant height and branching. Crop development is driven by thermal time, population density, MC application, and topping of the main stem and branches. Key Results Validation of the model showed good correspondence between simulated and observed values for leaf area index with an overall root-mean-square error of 0·50 m2 m−2, and with an overall prediction error of less than 10 % for number of bolls, plant height, number of fruit branches and number of phytomers. Canopy structure became more compact with the decrease of leaf area index and internode length due to the application of MC. Moreover, MC did not have a substantial effect on boll density but increased lint yield at higher densities. Conclusions The model satisfactorily represents the effects of agronomic measures on cotton plant structure. It can be used to identify optimal agronomic management of cotton to achieve optimal plant structure for maximum yield under varying environmental conditions. PMID:24489020

  11. Plant-environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum.

    PubMed

    Zobayed, S M A; Afreen, F; Goto, E; Kozai, T

    2006-10-01

    Hypericum perforatum is a perennial herbaceous plant and an extract from this plant has a significant antidepressant effect when administered to humans. The plant is characterized by its secretory glands, also known as dark glands, which are mainly visible on leaves and flowers. The current study evaluates the influence of several environmental factors and developmental stages of the plant on the accumulation and synthesis of hypericin and pseudohypericin (Hy-G), the major bioactive constituents, in H. perforatum plants. The appearance of dark glands on different parts of the plant, under several environmental conditions, was monitored by microscopy. Hy-G concentrations were quantified by high-performance liquid chromatography. A significant presence of dark glands accompanying the highest concentrations of Hy-G was observed in the stamen tissues more than in any other organ of H. perforatum. A linear relationship between the number of dark glands and net photosynthetic rate of the leaf and Hy-G concentration in the leaf tissue was also established. A very high concentration of Hy-G was measured in the dark-gland tissues, but in the tissues without any dark glands it was almost absent. The presence of emodin, a precursor of Hy-G, at a high concentration in the dark-gland tissues, and its absence in the surrounding tissues was also observed, suggesting that the site of biosynthesis of Hy-G is in the dark-gland cells. A significantly low concentration of Hy-G (occasionally non-detectable) was measured in the xylem sap of the stem tissues. The dark-gland tissues collected from leaves, stems or flowers contained similar concentrations of Hy-G. The concentration of Hy-G in various organs of H. perforatum plants is dependent on the number of dark glands, their size or area, not on the location of the dark glands on the plant. The study provides the first experimental evidence that Hy-G is synthesized and accumulates in dark glands.

  12. Gravitropism in leaves of Arabidopsis thaliana (L.) Heynh.

    PubMed

    Mano, Eriko; Horiguchi, Gorou; Tsukaya, Hirokazu

    2006-02-01

    In higher plants, stems and roots show negative and positive gravitropism, respectively. However, current knowledge on the graviresponse of leaves is lacking. In this study, we analyzed the positioning and movement of rosette leaves of Arabidopsis thaliana under light and dark conditions. We found that the radial positioning of rosette leaves was not affected by the direction of gravity under continuous white light. In contrast, when plants were shifted to darkness, the leaves moved upwards, suggesting negative gravitropism. Analysis of the phosphoglucomutase and shoot gravitropism 2-1 mutants revealed that the sedimenting amyloplasts in the leaf petiole are important for gravity perception, as is the case in stems and roots. In addition, our detailed physiological analyses revealed a unique feature of leaf movement after the shift to darkness, i.e. movement could be divided into negative gravitropism and nastic movement. The orientation of rosette leaves is ascribed to a combination of these movements.

  13. Photomorphogenesis in Sinningia speciosa, cv. Queen Victoria I. Characterization of Phytochrome Control.

    PubMed

    Satter, R L; Wetherell, D F

    1968-06-01

    The morphological development of Sinningia speciosa plants that were exposed to supplementary far red light was very different from that of plants receiving dark nights. After several nights of such irradiation, stems and petioles were elongated, petioles were angulated, leaf blade expansion was inhibited, plants were chlorotic and the accumulation of shoot dry weight was retarded.Red reversibility of the morphological changes potentiated by far red light indicated control by the phytochrome system. A high P(FR) level during the last half of the night inhibited stem elongation and promoted leaf blade expansion, but both of these processes were hardly affected by the P(FR) level during the first half of the night. Thus sensitivity to P(FR) was cyclic.The interpretation of our experiments was complicated by quantitative morphological differences resulting from long, as compared to short, far red irradiations.

  14. Characterization of apple stem grooving virus and apple chlorotic leaf spot virus identified in a crab apple tree.

    PubMed

    Li, Yongqiang; Deng, Congliang; Bian, Yong; Zhao, Xiaoli; Zhou, Qi

    2017-04-01

    Apple stem grooving virus (ASGV), apple chlorotic leaf spot virus (ACLSV), and prunus necrotic ringspot virus (PNRSV) were identified in a crab apple tree by small RNA deep sequencing. The complete genome sequence of ACLSV isolate BJ (ACLSV-BJ) was 7554 nucleotides and shared 67.0%-83.0% nucleotide sequence identity with other ACLSV isolates. A phylogenetic tree based on the complete genome sequence of all available ACLSV isolates showed that ACLSV-BJ clustered with the isolates SY01 from hawthorn, MO5 from apple, and JB, KMS and YH from pear. The complete nucleotide sequence of ASGV-BJ was 6509 nucleotides (nt) long and shared 78.2%-80.7% nucleotide sequence identity with other isolates. ASGV-BJ and the isolate ASGV_kfp clustered together in the phylogenetic tree as an independent clade. Recombination analysis showed that isolate ASGV-BJ was a naturally occurring recombinant.

  15. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of 60Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration

    PubMed Central

    Gupta, Manish; Saini, Manu; Abdin, M. Z.; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body 60Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain ‘A' mice demonstrated that SBL-1 treatment before 60Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration. PMID:26421051

  16. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis.

    PubMed

    Pfanz, H; Aschan, G; Langenfeld-Heyser, R; Wittmann, C; Loose, M

    2002-04-01

    Below the outer peridermal or rhytidomal layers, most stems of woody plants possess greenish tissues. These chlorophyll-containing tissues (the chlorenchymes) within the stems are able to use the stem internal CO2 and the light penetrating the rhytidome to photoassimilate and produce sugars and starch. Although net photosynthetic uptake of CO2 is rarely found, stem internal re-fixation of CO2 in young twigs and branches may compensate for 60-90% of the potential respiratory carbon loss. Isolated chlorenchymal tissues reveal rather high rates of net photosynthesis (being up to 75% of the respective rates for leaf photosynthesis). Corticular photosynthesis is thus thought to be an effective mechanism for recapturing respiratory carbon dioxide before it diffuses out of the stem. Furthermore, chloroplasts of the proper wood or pith fraction also take part in stem internal photosynthesis. Although there has been no strong experimental evidence until now, we suggest that the oxygen evolved during wood or pith photosynthesis may play a decisive role in avoiding/reducing stem internal anaerobiosis.

  17. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis

    NASA Astrophysics Data System (ADS)

    Pfanz, H.; Aschan, G.; Langenfeld-Heyser, R.; Wittmann, C.; Loose, M.

    2002-03-01

    Below the outer peridermal or rhytidomal layers, most stems of woody plants possess greenish tissues. These chlorophyll-containing tissues (the chlorenchymes) within the stems are able to use the stem internal CO2 and the light penetrating the rhytidome to photoassimilate and produce sugars and starch. Although net photosynthetic uptake of CO2 is rarely found, stem internal re-fixation of CO2 in young twigs and branches may compensate for 60-90% of the potential respiratory carbon loss. Isolated chlorenchymal tissues reveal rather high rates of net photosynthesis (being up to 75% of the respective rates for leaf photosynthesis). Corticular photosynthesis is thus thought to be an effective mechanism for recapturing respiratory carbon dioxide before it diffuses out of the stem. Furthermore, chloroplasts of the proper wood or pith fraction also take part in stem internal photosynthesis. Although there has been no strong experimental evidence until now, we suggest that the oxygen evolved during wood or pith photosynthesis may play a decisive role in avoiding/reducing stem internal anaerobiosis.

  18. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer.

    PubMed

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Wang, Ke; Jiang, Ni; Feng, Hui; Chen, Guoxing; Liu, Qian; Xiong, Lizhong

    2015-09-01

    Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation.

    PubMed

    Wilkinson, Sally; Davies, William J

    2008-01-01

    The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.

  20. Influence of soil types and osmotic pressure on growth and 137Cs accumulation in blackgram (Vigna mungo L.).

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Bellingrath-Kimura, Sonoko Dorothea

    2017-04-01

    A pot experiment was conducted to study the effects of soil types and osmotic levels on growth and 137 Cs accumulation in two blackgram varieties differing in salinity tolerance grown in Fukushima contaminated soils. The contamination levels of the sandy clay loam and clay soil were 1084 and 2046 Bq kg -1 DW, respectively. The 137 Cs activity was higher in both plants grown on the sandy clay loam than on the clay soil regardless of soil 137 Cs activity concentration. No significant differences were observed in all measured growth parameters between the two varieties under optimal water conditions for both types of soil. However, the growth, leaf water contents and 137 Cs activity concentrations in both plants were lower in both soil types when there was water stress induced by addition of polyethylene glycol. Water stress-induced reduction in total leaf area and total biomass, in addition to leaf relative water content, were higher in salt sensitive 'Mut Pe Khaing To' than in salt tolerant 'U-Taung-2' plants for both soil types. Varietal difference in decreased 137 Cs uptake under water stress was statically significant in the sandy clay loam soil, however, it was not in the clay soil. The transfer of 137 Cs from soil to plants (i.e., root, stem and leaf) was higher for the sandy clay loam for both plants when compared with those of the clay soil. The decreased activity of 137 Cs in the above ground samples (leaf and stem) in both plants in response to osmotic stress suggested that plant available 137 Cs decreased when soil water is limited by osmotic stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Genetic and environmental effects on morphology and asexual reproduction in the moss, Bryum bicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, A.J.

    A distinctive form of Bryum bicolor, characterized by stoutly excurrent costae and abundant asexual gemmae, occurs on heavy metal-contaminated tailings of the Conrad Hill Mine in the Piedmont of North Carolina. Plants from two mine site populations, plus two other populations from Richmond, Virginia, were grown on three types of soil in order to determine the degree to which morphological traits, including the number of gemmae per plant, can be modified by substrate. All populations grew equally well in the mine soil, and there was no evidence that plants from the mine site populations were physiologically adapted for growth onmore » the contaminated tailings. Leaf dimensions, costa length, and number of gemmae per stem were strongly influenced by substrate, although some differences between populations were maintained under experimental conditions. Populations also differed in the efficacy with which plants regenerated from gametophytic fragments.« less

  2. Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of Calpurnia aurea

    PubMed Central

    Adedapo, Adeolu A; Jimoh, Florence O; Koduru, Srinivas; Afolayan, Anthony J; Masika, Patrick J

    2008-01-01

    Background In South Africa, Calpurnia aurea (Ait.) Benth is used to destroy lice and to relieve itches, to destroy maggots and to treat allergic rashes, particularly those caused by caterpillars. Antioxidants play an important role protecting against damage by reactive oxygen species. Plants containing flavonoids have been reported to possess strong antioxidant properties. Methods The antibacterial, antioxidant activities and phenolic contents of the methanol extracts of the leaves and stems of Calpurnia aurea were evaluated using in vitro standard methods. Spectrophotometry was the basis for the determinations of total phenol, total flavonoids, flavonols, and proanthocyanidins. Tannins, quercetin and catechin equivalents were used for these parameters. The antioxidant activities of the stem extract of Calpurnia aurea were determined by ABTS, DPPH, and ferrous reducing antioxidant property (FRAP) methods. Laboratory isolates of 10 bacteria species which included five Gram-positive and five Gram-negative strains were used to assay for antibacterial activity of this plant. Results The results from this study showed that the antioxidant activities of the stem extract of Calpurnia aurea as determined by the total phenol, flavonoids, and FRAP methods were higher than that of the leaves. On the other hand, the leaf extract of the plant has higher level of total flavonols and proanthocyanidins. The leaf extract also has higher radical scavenging activity as shown in 1, 1-Diphenyl-2-picrylhydrazyl (DPPH), and 2,2¿-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS) assay. The leaf extract showed activity against seven of the bacterial organisms. Conclusion The results from this study indicate that the leaves and stem extracts of Calpurnia aurea possess antioxidant properties and could serve as free radical inhibitors or scavenger or, acting possibly as primary antioxidants. Although, the antibacterial properties of Calpurnia aurea are not as effective as the standard drugs- Chloramphenicol and Streptomycin, they still possess some activity against bacterial strains used in this study. Calpurnia aurea may therefore be a good candidate for functional foods as well as pharmaceutical plant-based products. PMID:18803865

  3. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems.

    PubMed

    Dayan, Jonathan; Voronin, Nickolay; Gong, Fan; Sun, Tai-ping; Hedden, Peter; Fromm, Hillel; Aloni, Roni

    2012-01-01

    The gibberellins (GAs) are a group of endogenous compounds that promote the growth of most plant organs, including stem internodes. We show that in tobacco (Nicotiana tabacum) the presence of leaves is essential for the accumulation of bioactive GAs and their immediate precursors in the stem and consequently for normal stem elongation, cambial proliferation, and xylem fiber differentiation. These processes do not occur in the absence of maturing leaves but can be restored by application of C(19)-GAs, identifying the presence of leaves as a requirement for GA signaling in stems and revealing the fundamental role of GAs in secondary growth regulation. The use of reporter genes for GA activity and GA-directed DELLA protein degradation in Arabidopsis thaliana confirms the presence of a mobile signal from leaves to the stem that induces GA signaling.

  4. Leaf-Induced Gibberellin Signaling Is Essential for Internode Elongation, Cambial Activity, and Fiber Differentiation in Tobacco Stems[C][W

    PubMed Central

    Dayan, Jonathan; Voronin, Nickolay; Gong, Fan; Sun, Tai-ping; Hedden, Peter; Fromm, Hillel; Aloni, Roni

    2012-01-01

    The gibberellins (GAs) are a group of endogenous compounds that promote the growth of most plant organs, including stem internodes. We show that in tobacco (Nicotiana tabacum) the presence of leaves is essential for the accumulation of bioactive GAs and their immediate precursors in the stem and consequently for normal stem elongation, cambial proliferation, and xylem fiber differentiation. These processes do not occur in the absence of maturing leaves but can be restored by application of C19-GAs, identifying the presence of leaves as a requirement for GA signaling in stems and revealing the fundamental role of GAs in secondary growth regulation. The use of reporter genes for GA activity and GA-directed DELLA protein degradation in Arabidopsis thaliana confirms the presence of a mobile signal from leaves to the stem that induces GA signaling. PMID:22253226

  5. Antimicrobial activity of Carpolobia lutea extracts and fractions.

    PubMed

    Nwidu, Lucky L; Nwafor, Paul A; Vilegas, Wagner

    2012-01-01

    Carpolobia lutea (G. Don) (Polygalaceae) is a tropical medicinal plant putative in traditional medicines against gonorrhea, gingivitis, infertility, antiulcer and malaria. The present study evaluated the antimicrobial, antifungal and antihelicobacter effects of extracts C. lutea leaf, stem and root. The extracts were examined using the disc-diffusion and Microplates of 96 wells containing Muller-Hinton methods against some bacterial strains: Eschericia coli (ATCC 25922), E. coli (ATCC10418), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923), Staphyllococus aureus (ATCC 6571), Enterococcus faecalis (ATCC 29212) and Bacillus subtilis (NCTC 8853) and four clinical isolates: one fungi (Candida albican) and three bacteria (Salmonella, Sheigella and staphylococcus aureus). The Gram-positive bacteria: Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 19659) and the Gram-negative bacteria: Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Cândida albicans (ATCC 18804) and Helicobacter pylori (ATCC 43504). Some of these extracts were found to be active against some tested strains but activity against H. pylori was >1000mg/ml and good fungistatic activity against C. albican. The MIC against C. albican is in the order n-HF > CHF > ETF= EAF.The order of potency of fraction was the ethanol root > n-HF leaf > ethanol fraction stem > chloroform fraction leaf = ethyl acetate fraction leaf. Polyphenols were demonstrated in ethanol fraction, ethyl acetate fraction, crude ethyl acetate extract and ethanol extract, respectively. These polyphenols isolated may partly explain and support the use of C. lutea for the treatment of infectious diseases in traditional Ibibio medicine of Nigeria.

  6. Nodule activity and allocation of photosynthate of soybean during recovery from water stress

    NASA Technical Reports Server (NTRS)

    Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  7. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere.

    PubMed

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.

  8. Ontogeny of the sheathing leaf base in maize (Zea mays).

    PubMed

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Chemical composition and antioxidant activities of essential oils from different parts of the oregano* #

    PubMed Central

    Han, Fei; Ma, Guang-qiang; Yang, Ming; Yan, Li; Xiong, Wei; Shu, Ji-cheng; Zhao, Zhi-dong; Xu, Han-lin

    2017-01-01

    This research was undertaken in order to characterize the chemical compositions and evaluate the antioxidant activities of essential oils obtained from different parts of the Origanum vulgare L. It is a medicinal plant used in traditional Chinese medicine for the treatment of heat stroke, fever, vomiting, acute gastroenteritis, and respiratory disorders. The chemical compositions of the three essential oils from different parts of the oregano (leaves-flowers, stems, and roots) were identified by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of each essential oil was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and reducing the power test. Among the essential oils from different parts of the oregano, the leaf-flower oils have the best antioxidant activities, whereas the stem oils are the worst. The results of the DPPH free radical scavenging assay showed that the half maximal inhibitory concentration (IC50) values of the essential oils were (0.332±0.040) mg/ml (leaves-flowers), (0.357±0.031) mg/ml (roots), and (0.501±0.029) mg/ml (stems), respectively. Interestingly, the results of reducing the power test also revealed that when the concentration exceeded 1.25 mg/ml, the leaf-flower oils had the highest reducing power; however, the stem oils were the lowest. PMID:28071000

  10. Composition of the Essential Oil of Lomatium torreyi

    USGS Publications Warehouse

    Bedrossian, A.; Beauchamp, P.E.; Dev, Vasu; Kwan, S.; Munevar-Mendoza, Elsa; Okoreeh, E.K.; Moore, P.E.

    1998-01-01

    The stem and leaf as well as the fruit oils of Lomatium torreyi show myrcene, ??-phellandrene, (Z)-??-ocimene, (E)-??-ocimene and (Z)-ligustilide to be the major components. The root oil is primarily composed of R-(-)-falcarinol (88.0%).

  11. 75 FR 42659 - Standards for Pipe Tobacco and Roll-Your-Own Tobacco; Request for Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... flavoring and the use of blending components such as expanded stem, expanded leaf tobacco, or reconstituted... Pipe Tobacco, the consumer organization Campaign for Tobacco-Free Kids states that the proposed...

  12. Marsh canopy leaf area and orientation calculated for improved marsh structure mapping

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.; Bannister, Terri

    2015-01-01

    An approach is presented for producing the spatiotemporal estimation of leaf area index (LAI) of a highly heterogeneous coastal marsh without reliance on user estimates of marsh leaf-stem orientation. The canopy LAI profile derivation used three years of field measured photosynthetically active radiation (PAR) vertical profiles at seven S. alterniflora marsh sites and iterative transform of those PAR attenuation profiles to best-fit light extinction coefficients (KM). KM sun zenith dependency was removed obtaining the leaf angle distribution (LAD) representing the average marsh orientation and the LAD used to calculate the LAI canopy profile. LAI and LAD reproduced measured PAR profiles with 99% accuracy and corresponded to field documented structures. LAI and LAD better reflect marsh structure and results substantiate the need to account for marsh orientation. The structure indexes are directly amenable to remote sensing spatiotemporal mapping and offer a more meaningful representation of wetland systems promoting biophysical function understanding.

  13. Pathways of Leymus chinensis Individual Aboveground Biomass Decline in Natural Semiarid Grassland Induced by Overgrazing: A Study at the Plant Functional Trait Scale

    PubMed Central

    Wang, Zhen; Wu, Xinhong; Li, Xinle; Hu, Jing; Shi, Hongxiao; Guo, Fenghui; Zhang, Yong; Hou, Xiangyang

    2015-01-01

    Natural grassland productivity, which is based on an individual plant’s aboveground biomass (AB) and its interaction with herbivores, can obviously affect terrestrial ecosystem services and the grassland’s agricultural production. As plant traits have been linked to both AB and ecosystem success, they may provide a useful approach to understand the changes in individual plants and grassland productivity in response to grazing on a generic level. Unfortunately, the current lack of studies on how plant traits affect AB affected by herbivores leaves a major gap in our understanding of the mechanism of grassland productivity decline. This study, therefore, aims to analyze the paths of overgrazing-induced decline in the individual AB of Leymus chinensis (the dominant species of meadow-steppe grassland in northern China) on a plant functional trait scale. Using a paired-sampling approach, we compared the differences in the functional traits of L. chinensis in long-term grazing-excluded and experimental grazing grassland plots over a continuous period of approximately 20 years (located in meadow steppe lands in Hailar, Inner Mongolia, China). We found a highly significant decline in the individual height and biomass (leaf, stem, and the whole plant) of L. chinensis as a result of overgrazing. Biomass allocation and leaf mass per unit area were significantly affected by the variation in individual size. Grazing clearly enhanced the sensitivity of the leaf-to-stem biomass ratio in response to variation in individual size. Moreover, using a method of standardized major axis estimation, we found that the biomass in the leaves, stems, and the plant as a whole had highly significant allometric scaling with various functional traits. Also, the slopes of the allometric equations of these relationships were significantly altered by grazing. Therefore, a clear implication of this is that grazing promotes an asymmetrical response of different plant functional traits to variation in individual plant size, which influences biomass indirectly. Furthermore, we detected paths of individual AB decline in L. chinensis induced by grazing by fitting to a structural equation model. These results indicate that grazing causes AB decline primarily through a ‘bottom-up’ effect on plant height and stem traits. However, leaf traits, via the process of allometric scaling, affect plant AB indirectly. PMID:25942588

  14. Pathways of Leymus chinensis Individual Aboveground Biomass Decline in Natural Semiarid Grassland Induced by Overgrazing: A Study at the Plant Functional Trait Scale.

    PubMed

    Li, Xiliang; Liu, Zhiying; Wang, Zhen; Wu, Xinhong; Li, Xinle; Hu, Jing; Shi, Hongxiao; Guo, Fenghui; Zhang, Yong; Hou, Xiangyang

    2015-01-01

    Natural grassland productivity, which is based on an individual plant's aboveground biomass (AB) and its interaction with herbivores, can obviously affect terrestrial ecosystem services and the grassland's agricultural production. As plant traits have been linked to both AB and ecosystem success, they may provide a useful approach to understand the changes in individual plants and grassland productivity in response to grazing on a generic level. Unfortunately, the current lack of studies on how plant traits affect AB affected by herbivores leaves a major gap in our understanding of the mechanism of grassland productivity decline. This study, therefore, aims to analyze the paths of overgrazing-induced decline in the individual AB of Leymus chinensis (the dominant species of meadow-steppe grassland in northern China) on a plant functional trait scale. Using a paired-sampling approach, we compared the differences in the functional traits of L. chinensis in long-term grazing-excluded and experimental grazing grassland plots over a continuous period of approximately 20 years (located in meadow steppe lands in Hailar, Inner Mongolia, China). We found a highly significant decline in the individual height and biomass (leaf, stem, and the whole plant) of L. chinensis as a result of overgrazing. Biomass allocation and leaf mass per unit area were significantly affected by the variation in individual size. Grazing clearly enhanced the sensitivity of the leaf-to-stem biomass ratio in response to variation in individual size. Moreover, using a method of standardized major axis estimation, we found that the biomass in the leaves, stems, and the plant as a whole had highly significant allometric scaling with various functional traits. Also, the slopes of the allometric equations of these relationships were significantly altered by grazing. Therefore, a clear implication of this is that grazing promotes an asymmetrical response of different plant functional traits to variation in individual plant size, which influences biomass indirectly. Furthermore, we detected paths of individual AB decline in L. chinensis induced by grazing by fitting to a structural equation model. These results indicate that grazing causes AB decline primarily through a 'bottom-up' effect on plant height and stem traits. However, leaf traits, via the process of allometric scaling, affect plant AB indirectly.

  15. A new Late Devonian genus with seed plant affinities.

    PubMed

    Wang, Deming; Liu, Le

    2015-02-26

    Many ovules of Late Devonian (Famennian) seed plants have been well studied. However, because few taxa occur with anatomically preserved stems and/or petioles, the vascular system of these earliest spermatophytes is little understood and available data come mostly from Euramerica. There remains great controversy over the anatomical differentiation of Late Devonian and Carboniferous seed plant groups of Buteoxylonales, Calamopityales and Lyginopteridales. Protostele evolution of these early spermatophytes needs more research. A new taxon Yiduxylon trilobum gen. et sp. nov. with seed plant affinities has been discovered in the Upper Devonian (Famennian) Tizikou Formation of Hubei Province, China. It is represented by stems, helically arranged and bifurcate fronds with two orders of pinnae and planate pinnules. Both secondary pinnae and pinnules are borne alternately. Stems contain a small protostele with three primary xylem ribs possessing a single peripheral protoxylem strand. Thick secondary xylem displays multiseriate bordered pitting on the tangential and radial walls of the tracheids, and has biseriate to multiseriate and high rays. A narrow cortex consists of inner cortex without sclerotic nests and sparganum-type outer cortex with peripheral bands of vertically aligned sclerenchyma cells. Two leaf traces successively arise tangentially from each primary xylem rib and they divide once to produce four circular-oval traces in the stem cortex. Four vascular bundles occur in two C-shaped groups at each petiole base with ground tissue and peripheral bands of sclerenchyma cells. Yiduxylon justifies the assignment to a new genus mainly because of the protostele with protoxylem strands only near the periphery of primary xylem ribs, leaf trace origination and petiolar vascular supply structure. It shares many definitive characters with Calamopityales and Lyginopteridales, further underscoring the anatomical similarities among early seed plants. The primary vascular system, pycnoxylic-manoxylic secondary xylem with bordered pits on both tangential and radial walls of a tracheid and leaf trace divergence of Yiduxylon suggest transitional features between the early spermatophytes and ancestral aneurophyte progymnosperms.

  16. Comparison of nutritional compositions and antioxidant activities of building blocks in shinseoncho and kale green vegetable juices.

    PubMed

    Kim, Seong Yeong

    2012-12-01

    Shinseoncho and kale were divided into stem [shinseoncho stems (SS) and kale stems (KS)] and leaf parts [shinseoncho leaves (SL) and kale leaves (KL)] and made into green vegetable juices for analyses of nutritional compositions and antioxidant activities. Higher values of total acidity were observed in SL (0.736%) and KL (0.841%) than in SS (0.417%) and KS (0.335%) (p<0.05). Neutral sugar content showed higher values in SS (21.740 mg/mL) and SL (18.657 mg/mL) when compared with KS (1.497 mg/mL) and KL (1.452 mg/mL) (p<0.05). Protein content showed the highest value in SL (7.610 mg/mL) (p<0.05), while SS (0.403 mg/mL) and KS (0.403 mg/mL) showed similar lower values. Total polyphenol contents of SL (423.139 μg/mL) was significantly higher value (p<0.05) than those of other samples, which occurred in the following order: SL> KL (218.494 μg/mL)> KS (107.269 μg/mL)> SS (75.894 μg/mL). KL exerted the highest DPPH radical scavenging activity (84.834%) (p<0.05), which occurred in the following order: KL> SL (63.473%)> KS (52.894%)> SS (35.443%). ABTS radical scavenging activity showed that SL (66.088%) and KL (38.511%) had higher scavenging activities, whereas SS (7.695%) and KS (9.609%) demonstrated to be lower activities (p<0.05). In general, leaf parts had much higher antioxidant activities as well as total polyphenol contents than those of the stem parts. In conclusion, shinseoncho and kale, particularly their leaf parts, offer antioxidant properties in green vegetable juices and the consumption of them may be beneficial as a nutrition source and in health protection.

  17. Harvesting Duke FACE: improving estimates of productivity and biomass under elevated CO2

    NASA Astrophysics Data System (ADS)

    McCarthy, H. R.; Oren, R.; Kim, D.; Tor-ngern, P.; Johnsen, K. H.; Maier, C. A.

    2013-12-01

    Free air CO2 enrichment experiments (FACE) have greatly advanced our knowledge on the impacts of increasing atmospheric CO2 concentrations in developing and mature ecosystems. These experiments have provided years of data on changes in physiology and ecosystem functions, such as photosynthesis, water use, net primary productivity (NPP), ecosystem carbon storage, and nutrient cycling. As these experiments come to a close, there has also been the opportunity to add critically lacking biometric data, which can be obtained only through destructive measurements. After 15 years of CO2 elevation at the Duke Forest FACE, a 28 year old pine plantation with a hardwood understory, a vast array of biometric data was obtained through harvesting of >1150 trees in both elevated and ambient CO2 plots. Harvested trees included pines and hardwoods, understory and overstory trees. The harvest provided direct assessments of leaf, stem and branch biomass, as well as the vertical distribution of these masses. In combination with leaf and wood level properties (e.g. specific leaf area, wood density), it was possible to explore potential CO2 effects on allometric relationships between plant parts, and stem and canopy shape and distribution. Although stimulatory effects of elevated CO2 on NPP are well established in this forest (averaging 27%), harvest results thus far indicate few changes in basic allometric relationships, such as height-diameter relationships, proportion of mass contained in different plant parts (stems vs. leaves vs. branches), distribution of leaves within the canopy and stem shape. The coupling of site-specific biometric relationships with long-term data on tree growth and mortality will reduce current sources of uncertainty in estimates of NPP and carbon storage under future increased CO2 conditions. Recent efforts in data-model synthesis have demonstrated the critical need for such data as constraints and initial values in ecosystem and earth system models; these outcomes suggest that we are well positioned to represent future forest growth and function.

  18. Influence of Changes in Daylength and Carbon Dioxide on the Growth of Potato

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Tibbitts, Theodore W.

    1997-01-01

    Potatoes (Solanum tuberosum L.) are highly productive in mid- to high-latitude areas where photoperiods change significantly throughout the growing season. To study the effects of changes in photoperiod on growth and tuber development of potato cv. Denali, plants were grown for 112 d with 400 micromol/sq m/s photosynthetic photon flux (PPF) under a 12-h photoperiod (short days, SD), a 24-h photoperiod (long days, LD), and combinations where plants were moved between the two photoperiods 28, 56, or 84 d after planting. Plants given LD throughout growth received the greatest total daily PPF and produced the greatest tuber yields. At similar levels of total PPF, plants given SD followed by LD yielded greater tuber dry mass (DM) than plants given LD followed by SD. Stem DM per plant, leaf DM, and total plant DM all increased with an increasing proportion of LD and increasing daily PPF, regardless of the daylength sequence. When studies were repeated, but at an enriched (1000micromol/mol) CO2 concentration, overall growth trends were similar, with high CO2 resulting in greater stem length, stem DM, leaf DM, and total plant DM; but high CO2 did not increase tuber DM.

  19. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China.

    PubMed

    Yuan, Ming; Liu, Chang; Liu, Wen-Shen; Guo, Mei-Na; Morel, Jean Louis; Huot, Hermine; Yu, Hong-Jie; Tang, Ye-Tao; Qiu, Rong-Liang

    2018-04-16

    The widespread use of rare earth elements (REEs) has resulted in problems for soil and human health. Phytolacca americana L. is a herbaceous plant widely distributed in Dingnan county of Jiangxi province, China, which is a REE mining region (ion absorption rare earth mine) and the soil has high levels of REEs. An investigation of REE content of P. americana growing naturally in Dingnan county was conducted. REE concentrations in the roots, stems, and leaves of P. americana and in their rhizospheric soils were determined. Results showed that plant REEs concentrations varied among the sampling sites and can reach 1040 mg/kg in the leaves. Plant REEs concentrations decreased in the order of leaf > root > stem and all tissues were characterized by a light REE enrichment and a heavy REE depletion. However, P. americana exhibited preferential accumulation of light REEs during the absorption process (from soil to root) and preferential accumulation of heavy REEs during the translocation process (from stem to leaf). The ability of P. americana to accumulate high REEs in the shoot makes it a potential candidate for understanding the absorption mechanisms of REEs and for the phytoremediation of REEs contaminated soil.

  20. Refined pipe theory for mechanistic modeling of wood development.

    PubMed

    Deckmyn, Gaby; Evans, Sam P; Randle, Tim J

    2006-06-01

    We present a mechanistic model of wood tissue development in response to changes in competition, management and climate. The model is based on a refinement of the pipe theory, where the constant ratio between sapwood and leaf area (pipe theory) is replaced by a ratio between pipe conductivity and leaf area. Simulated pipe conductivity changes with age, stand density and climate in response to changes in allocation or pipe radius, or both. The central equation of the model, which calculates the ratio of carbon (C) allocated to leaves and pipes, can be parameterized to describe the contrasting stem conductivity behavior of different tree species: from constant stem conductivity (functional homeostasis hypothesis) to height-related reduction in stem conductivity with age (hydraulic limitation hypothesis). The model simulates the daily growth of pipes (vessels or tracheids), fibers and parenchyma as well as vessel size and simulates the wood density profile and the earlywood to latewood ratio from these data. Initial runs indicate the model yields realistic seasonal changes in pipe radius (decreasing pipe radius from spring to autumn) and wood density, as well as realistic differences associated with the competitive status of trees (denser wood in suppressed trees).

Top