Sample records for stem professional development

  1. STEM professional development: What's going on from the presenters' and participants' perspectives?

    NASA Astrophysics Data System (ADS)

    Williams, Randi

    This study was designed to explore elementary STEM professional development viewed from the presenters' and participants' perspectives. Numerous committees and educational organizations recommend investing in STEM professional development at the local, state, and national level. This investment must begin with research that inquires how STEM professional development is structured and what is needed for teacher and student success. Since there is a recent STEM education push in schools, elementary teachers need effective professional development in order to gain the necessary content, skills, confidence, and pedagogy required for those changing demands. This qualitative study embraced. Yin's case study methodology by observing short-duration STEM professional development for elementary teachers within a large metropolitan school system and an educational professional development agency. The study discussed the analysis and findings in the context of Bandura's sources of efficacy and Desimone's critical features of professional development. Data were gathered form professional development observations, presenter interviews, and participant interviews. The research questions for this study included: (a) based on Desimone's (2009) framework for professional development, what does content focused, active learning, coherence, duration, and collective participation look like in initial STEM professional development for elementary teachers? (b) are Bandura's (1997) four sources of self- efficacy: mastery experiences, vicarious experiences, social persuasion, and affective states evidenced within the short duration professional development? and (c) how do these two frameworks align between presenter and participant thoughts and actions? This study uncovered additional sources of efficacy are present in short-duration STEM professional development. These found sources include coherence, content, and active learning delivered in a definitive order. The findings of this study have implications for educators, policy makers, and developers of professional development. Future research is needed to add to the small body of literature about STEM professional development, specifically research to fully understand the structure of STEM professional development and how this differs for other areas of learning.

  2. SPARCT: A STEM Professional Academy to Reinvigorate the Culture of Teaching

    ERIC Educational Resources Information Center

    Frost, Laura; Greene, Jackie; Huffman, Tanya; Johnson, Brian; Kunberger, Tanya; Goodson, Ludwika

    2018-01-01

    In an attempt to address declining persistence rates of university STEM majors (Science, Teaching, Engineering, and Math), concerns regarding retention rates and waning STEM faculty participation in faculty development, we report on a year-long professional development program called the STEM Professional Academy to Reinvigorate the Culture of…

  3. Toward the design and implementation of stem professional development for middle school teachers: An interdisciplinary approach

    NASA Astrophysics Data System (ADS)

    Neil-Burke, Merah Bell

    The aim of this qualitative study was to determine how professional development might be designed to meet the needs of teachers delivering interdisciplinary STEM instruction in an urban middle school. This study was framed and guided by three bodies of literature: literature in support of the theory of change, adult learning theory, and effective STEM professional development. The study, designed to be collaborative in nature, employed an action research variation of participatory classroom action research, (CAR) to find out how STEM professional development could be designed to meet the needs of teachers delivering interdisciplinary STEM instruction. A sample of five middle school teachers from grades six through eight was interviewed using semi-structured, in-depth interview technique to identify their perceived needs. Observational techniques were utilized to determine how STEM teachers' instructional practices change as a result of exposure to STEM professional development for interdisciplinary instruction. Data from these interviews were used to design the professional development. Planning and implementation of the professional development were accomplished using the CAR model with data being collected in all phases of the CAR cycle for teaching interdisciplinary STEM. The findings suggest that interdisciplinary STEM professional development that is collaborative, along with a curriculum that supports the process of discipline integration, is an effective approach to meeting teachers' needs for the teaching of interdisciplinary STEM instruction. Lastly, the findings imply that certain barriers such as limited time to collaborate, plan, reflect, and practice could impede teachers' ability to use an interdisciplinary approach to classroom instructional practices. However, these barriers may become diminished when teachers, support each other through communication and collaboration. Thus, the essential elements included in the design and implementations of this interdisciplinary STEM professional development are the following: time to plan, to practice, to reflect, and to collaborate with other teachers. These findings reveal the need for support from school administration and curriculum writers.

  4. "It's Worth Our Time": A Model of Culturally and Linguistically Supportive Professional Development for K-12 STEM Educators

    ERIC Educational Resources Information Center

    Hudley, Anne H. Charity; Mallinson, Christine

    2017-01-01

    Professional development on issues of language and culture is often separate from professional development on issues related to STEM education, resulting in linguistic and cultural gaps in K-12 STEM pedagogy and practice. To address this issue, we have designed a model of professional development in which we work with educators to build cultural…

  5. i-STEM Summer Institute: An Integrated Approach to Teacher Professional Development in STEM

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Seifert, Anne; Moll, Amy J.; Coats, Bradley

    2012-01-01

    The importance of STEM education to societal developments provides justification for assuring K-12 teachers are prepared to teach the related content. Inservice teacher professional development is critical to achieving the goal of enhanced student knowledge of STEM. Combining the need for increased capacity to teach STEM and the extant literature…

  6. STEM Outreach Activities: An Approach to Teachers' Professional Development

    ERIC Educational Resources Information Center

    Aslam, Farzana; Adefila, Arinola; Bagiya, Yamuna

    2018-01-01

    STEM outreach programmes in secondary schools are mediated by STEM teachers who are responsible for organising, implementing and evaluating the activities with a view to promoting STEM subjects. However, research investigating teachers' STEM roles and professional development through participation in outreach activities is limited. This paper…

  7. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    ERIC Educational Resources Information Center

    Hardrict-Ewing, Gloria

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction…

  8. iSTEM Summer Institute: An Integrated Approach to Teacher Professional Development inSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anne Seifert; Louis Nadelson

    The importance of STEM education to our national prosperity and global competitiveness was recently reinforced by the Obama administration support for Change the Equation. Change the Equation is a multi-entity initiative formed in response to the rapidly increasing demand for STEM related careers and the potential lack of preparation by many Americans to be employed in these positions. To address the issue many are calling for increased emphasis on K-12 STEM education, as early preparation in STEM provides the foundation essential for further learning and competencies (National Research Council, 2007). Achieving and sustaining depth and breadth of K-12 STEM educationmore » is inextricably linked to ongoing professional development of K-12 educators. The need for teacher continuing education in STEM education and the link between teacher effectiveness and student preparation in STEM was the impetus behind our i- STEM professional development summer institute. The i-STEM initiative is a collaborative effort between business, industry, government, K-12, and higher education. Although the organization is working on a number of projects, including policy, research, communication, and collaborations, the i-STEM group has directed significant resources toward K-12 educator professional development opportunities in STEM. Our report focuses on the structure and impact of the intensive four-day i-STEM residential professional development institute which we designed to increase the capacity of grade 4-9 teachers to teach STEM content. We structured the summer institute using the outcome of a survey we conducted of grade 4-9 teachers’ to assess their STEM professional development needs, the extant literature on teacher development, the increasing need for a STEM informed society, and our desire to use evidence based practices to enhance teacher capacity to teach STEM content. We developed this investigation to determine if our summer institute influenced the participating teachers comfort with teaching STEM, efficacy for teaching STEM, content knowledge of STEM, inquiry implementation in STEM, and perceptions of STEM education. These parameters in-part have been gathered previously for specific areas of math or science education, but we are not aware of any study in which these variables have been attended to and assessed in the context of enhancing inservice teacher preparation to teach STEM. Therefore, our project provides a unique contribution to the literature because of our focus on STEM education and our adaptation and use of an array of assessment tools to measure the impact on our participants’ perceptions of teaching STEM, affective perspectives, and knowledge of the related content. Further, we are responding to the position of Putnam and Borko (2000) who contend there has been a dearth of attention paid toward creating teacher professional development experiences consistent with the teacher learning and investigations of the impact of the experience on the participating educators. Before we present our research and results, we discuss the relevant literature establishing the justification for our study. Following the presentation of our study results we discuss the related implications and directions for future research. We conclude with a discussion of study limitations and some closing remarks of our study contributions to the field of teacher professional development in STEM education.« less

  9. The Importance of MS PHD'S and SEEDS Mentoring and Professional Development Programs in the Retenion of Underrepresented Minorities in STEM Fields

    NASA Astrophysics Data System (ADS)

    Strickland, J.; Johnson, A.; Williamson Whitney, V.; Ricciardi, L.

    2012-12-01

    According to a recent study by the National Academy of Sciences, underrepresented minority (URM) participation in STEM disciplines represents approximately one third of the URM population in the U.S. Thus, the proportion of URM in STEM disciplines would need to triple in order to reflect the demographic makeup in the U.S. Individual programs targeting the recruitment and retention of URM students in STEM have demonstrated that principles of mentoring, community building, networking, and professional skill development are crucial in encouraging URM students to remain in STEM disciplines thereby reducing this disparity in representation. However, to paraphrase an old African proverb, "it takes a village to nurture and develop a URM student entering into the STEM community." Through programs such as the Institute for Broadening Participation's Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) Professional Development Program in Earth system science and the Ecological Society of America's Strategies for Ecology Education, Diversity and Sustainability (SEEDS), URM students are successfully identifying and benefitting from meaningful opportunities to develop the professional skills and strategies needed to achieve their academic and career goals. Both programs share a philosophy of professional development, reciprocal mentoring, field trips, internships, employment, research partnerships, collaborations, fellowships, scholarships, grants, and professional meeting travel awards to support URM student retention in STEM. Both programs share a mission to bring more diversity and inclusivity into STEM fields. Both programs share a history of success at facilitating the preparation and advancement of URM students. This success has been documented with the multitude of URM students that have matriculated through the programs and are now actively engaged in the pursuit of advanced degrees in STEM or entering the STEM workforce. Anonymous surveys from participants affirms that these programs provided an excellent environment for advancing interest in, and knowledge of STEM, and for influencing academic career goals for participants. These programs are models and reflect the importance of providing diversity, mentoring and professional development programs to broaden the participation and retention of URM students in STEM fields.

  10. Teacher Characteristics and School-Based Professional Development in Inclusive STEM-focused High Schools: A Cross-case Analysis

    NASA Astrophysics Data System (ADS)

    Spillane, Nancy Kay

    Within successful Inclusive Science, Technology, Engineering, and Mathematics (STEM)-focused High Schools (ISHSs), it is not only the students who are learning. Teachers, with diverse backgrounds, training, and experience, share and develop their knowledge through rich, embedded professional development to continuously shape their craft, improve their teaching, and support student success. This study of four exemplars of ISHSs (identified by experts in STEM education as highly successful in preparing students underrepresented in STEM for STEM majors in college and future STEM careers) provides a rich description of the relationships among the characteristics of STEM teachers, their professional development, and the school cultures that allow teachers to develop professionally and serve the needs of students. By providing a framework for the development of teaching staffs in ISHSs and contributing to the better understanding of STEM teaching in any school, this study offers valuable insight, implications, and information for states and school districts as they begin planning improvements to STEM education programs. A thorough examination of an existing data set that included site visits to four ISHSs along with pre- and post-visit data, provided the resource for this multiple case study with cross-case analysis of the teachers and their teacher professional development experiences. Administrators in these ISHSs had the autonomy to hire teachers with strong content backgrounds, philosophical alignment with the school missions, and a willingness to work collaboratively toward achieving the schools' goals. Ongoing teacher professional development began before school started and continued throughout the school day and year through intense and sustained, formal and informal, active learning experiences. Flexible professional development systems varied, but aligned with targeted school reforms and teacher and student needs. Importantly, collaborative teacher learning occurred within a school-wide culture of collaboration. Teachers were guided in establishing open lines of communication that supported regular engagement with others and the free flow of ideas, practices, and concerns. As a result of this collaboration, in conjunction with intentional pathways to teacher leadership, teacher professionalization was deliberately and successfully fostered creating an environment of shared mission and mutual trust, and a shared sense of responsibility for school-wide decision-making and school outcomes.

  11. Impacts of Professional Development in Integrated STEM Education on Teacher Self-Efficacy, Outcome Expectancy, and STEM Career Awareness

    ERIC Educational Resources Information Center

    Knowles, J. Geoff

    2017-01-01

    This research analyzed the effects of teacher professional development and lesson implementation in integrated Science, Technology, Engineering, and Math (STEM) on: (1.) Teacher self-efficacy and their confidence to teach specific STEM subjects; (2.) Teaching outcome expectancy beliefs concerning the impact of actions by teachers on student…

  12. "It's worth our time": a model of culturally and linguistically supportive professional development for K-12 STEM educators

    NASA Astrophysics Data System (ADS)

    Charity Hudley, Anne H.; Mallinson, Christine

    2017-09-01

    Professional development on issues of language and culture is often separate from professional development on issues related to STEM education, resulting in linguistic and cultural gaps in K-12 STEM pedagogy and practice. To address this issue, we have designed a model of professional development in which we work with educators to build cultural and linguistic competence and to disseminate information about how educators view the relevance of language, communication, and culture to STEM teaching and learning. We describe the design and facilitation of our model of culturally and linguistically responsive professional development, grounded in theories of multicultural education and culturally supportive teaching, through professional development workshops to 60 K-12 STEM educators from schools in Maryland and Virginia that serve African American students. Participants noted that culturally and linguistically responsive approaches had yet to permeate their K-12 STEM settings, which they identified as a critical challenge to effectively teaching and engaging African-American students. Based on pre-surveys, workshops were tailored to participants' stated needs for information on literacy (e.g., disciplinary literacies and discipline-specific jargon), cultural conflict and mismatch (e.g., student-teacher miscommunication), and linguistic bias in student assessment (e.g., test design). Educators shared feedback via post-workshop surveys, and a subset of 28 participants completed in-depth interviews and a focus group. Results indicate the need for further implementation of professional development such as ours that address linguistic and cultural issues, tailored for K-12 STEM educators. Although participants in this study enumerated several challenges to meeting this need, they also identified opportunities for collaborative solutions that draw upon teacher expertise and are integrated with curricula across content areas.

  13. Comparative Analysis of Participation of Teachers of STEM and Non-STEM Subjects in Professional Development

    ERIC Educational Resources Information Center

    Chiyaka, Edward T.; Kibirige, Joachim; Sithole, Alec; McCarthy, Peter; Mupinga, Davison M.

    2017-01-01

    School administrators continuously consider teacher professional development (PD) as one of the key strategies to improving teachers' pedagogical skills. Modern proposals for advancing education by improving student learning outcomes are centered on high quality professional development for teachers. However, teachers face a number of barriers…

  14. A Problem Based Learning Project Analyzing Rubrics Used to Evaluate Elementary STEM Immersion Programs

    NASA Astrophysics Data System (ADS)

    Pearson, Roxanne N.

    In 2010, the President's Council of Advisors on Science and Technology recommended that eight hundred new STEM focused elementary and middle schools be established. Unfortunately, districts may be slow to implement STEM at the elementary level because they do not understand how to do so effectively (Zimny, 2017). School administrators need a framework for decision-making and supervisory feedback related to the process of managing these programs (Zimny, 2017). To support administrators in implementing elementary STEM immersion programs, this project explored three questions: What criteria are common among existing STEM immersion program rubrics? What criteria should be included in a comprehensive rubric for managing elementary STEM immersion programs at the district level? What do district documents show about how elementary STEM immersion programs develop, implement, and evaluate those programs? The team developed a comprehensive STEM program review instrument including criteria for effective elementary STEM curriculum and the professional development and administrative support necessary to implement such curriculum. These criteria were organized into three stages, including the planning and development of elementary STEM immersion programs, the implementation of these programs, and the evaluation of these programs after they had been implemented for a significant period of time. The team synthesized best practice indicators relevant to elementary STEM programs from existing K-12 guides, then validated those indicators against current best practice research and feedback from STEM education experts. District documents from seven elementary STEM immersion programs in Missouri and Colorado were examined using the team's rubric. Scores were higher in the areas of program planning, content alignment, and ongoing refinement of curriculum, and lower in the areas of professional development for professional skills and STEM-specific pedagogy, two-way communication with stakeholders, and data collection for program refinement. Scores were lowest for those schools with inadequate documentation of their program management processes. The team recommended districts institute a more rigorous documentation process for managing innovative programs such as STEM immersion. Communication plans should include procedures for two-way communication with all stakeholders. Data collection and refinement efforts should increase, as should professional development opportunities related to professional skills and STEM-specific pedagogy; this should include administrators.

  15. Mathematics and Science Teachers Professional Development with Local Businesses to Introduce Middle and High School Students to Opportunities in STEM Careers

    ERIC Educational Resources Information Center

    Miles, Rhea; Slagter van Tryon, Patricia J.; Mensah, Felicia Moore

    2015-01-01

    TechMath is a professional development program that forms collaborations among businesses, colleges, and schools for the purpose of promoting Science, Technology, Engineering, and Mathematics (STEM) careers. TechMath has provided strategies for creating highquality professional development by bringing together teachers, students, and business…

  16. STEM and Model-Eliciting Activities: Responsive Professional Development for K-8 Mathematics Coaches

    ERIC Educational Resources Information Center

    Baker, Courtney; Galanti, Terrie; Birkhead, Sara

    2017-01-01

    This research highlights a university-school division collaboration to pilot a professional development framework for integrating STEM in K-8 mathematics classrooms. The university researchers worked with mathematics coaches to construct a realistic and reasonable vision of STEM integration built upon the design principles of model-eliciting…

  17. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    NASA Astrophysics Data System (ADS)

    Young-El, Christopher M.

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction into dynamic learning environments. The STEM Education Scholars (STEMES) is a Learning Community of Practice, housed in the College of Education, at a midsized mid-western public research university. The program of study focused on designing a professional development program for future Pre-K12 teachers. The iSTEM 2017 conference presented by the STEMES Community of Practice sought to inform pre-service teachers of STEM pedagogy and focused on innovative classroom resources, hands-on learning, and increasing content confidence when incorporating STEM into classroom instruction. iSTEM 2017 was held in February 2017 and offered twenty refereed presentations and workshop sessions, a keynote address, and a closing session to over 200 pre-service teachers. Conference participants chose sessions, participated in game-like experiences and shared their learning with each other as well as with conference organizers. Results from participant self-reported surveys were analyzed to measure the impact of the conference on improving participants' confidence in teaching STEM topics, and their attitudes about the instructional methods. These results were added to the conference proceedings, which also contain documentation of each iSTEM 2017 session. Findings suggest that the iSTEM 2017 conference had an overall positive impact on participants' familiarity with Academic Analysis of a STEM Education Professional Development Conference STEM education, their belief in the importance of STEM education, and their confidence to integrate STEM education into future instructional practices.

  18. Toward a Framework for Multicultural STEM-Focused Career Interventions.

    PubMed

    Byars-Winston, Angela

    2014-12-14

    Numerous federal and national commissions have called for policies, funds, and initiatives aimed at expanding the nation's science, technology, engineering, and mathematics (STEM) workforce and education investments to create a significantly larger, more diverse talent pool of individuals who pursue technical careers. Career development professionals are poised to contribute to the equity discourse about broadening STEM participation. However, few are aware of STEM-related career development matters, career opportunities and pathways, or strategies for promoting STEM pursuits. The author summarizes STEM education and workforce trends and articulates an equity imperative for broadening and diversifying STEM participation. The author then offers a multicultural STEM-focused career development framework to encourage career development professionals' knowledge and awareness of STEM education and careers and delineates considerations for practice aimed at increasing the attainment and achievement of diverse groups in STEM fields.

  19. Toward a Framework for Multicultural STEM-Focused Career Interventions

    PubMed Central

    Byars-Winston, Angela

    2015-01-01

    Numerous federal and national commissions have called for policies, funds, and initiatives aimed at expanding the nation's science, technology, engineering, and mathematics (STEM) workforce and education investments to create a significantly larger, more diverse talent pool of individuals who pursue technical careers. Career development professionals are poised to contribute to the equity discourse about broadening STEM participation. However, few are aware of STEM-related career development matters, career opportunities and pathways, or strategies for promoting STEM pursuits. The author summarizes STEM education and workforce trends and articulates an equity imperative for broadening and diversifying STEM participation. The author then offers a multicultural STEM-focused career development framework to encourage career development professionals' knowledge and awareness of STEM education and careers and delineates considerations for practice aimed at increasing the attainment and achievement of diverse groups in STEM fields. PMID:25750480

  20. Integrating STEM in Elementary Classrooms Using Model-Eliciting Activities: Responsive Professional Development for Mathematics Coaches and Teachers

    ERIC Educational Resources Information Center

    Baker, Courtney K.; Galanti, Terrie M.

    2017-01-01

    Background: This research highlights a school-university collaboration to pilot a professional development framework for integrating STEM in K-6 mathematics classrooms in a mid-Atlantic suburban school division. Because mathematics within STEM integration is often characterized as the calculations or the data representations in science classrooms,…

  1. Beyond Knowledge and Skills: Rethinking the Development of Professional Identity during the STEM Doctorate

    ERIC Educational Resources Information Center

    Hancock, Sally; Walsh, Elaine

    2016-01-01

    The science, technology, engineering, mathematics (STEM) doctorate is the established entry qualification for a scientific research career. However, contemporary STEM doctoral graduates assume increasingly diverse professional paths, with many forging non-academic careers. Using the UK as an example, the authors suggest that the STEM PhD fails to…

  2. Impacts of Professional Development in Integrated STEM Education on Teacher Self-Efficacy, Outcome Expectancy, and Stem Career Awareness

    NASA Astrophysics Data System (ADS)

    Knowles, J. Geoff

    This research analyzed the effects of teacher professional development and lesson implementation in integrated Science, Technology, Engineering, and Math (STEM) on: 1.) Teacher self-efficacy and their confidence to teach specific STEM subjects; 2.) Teaching outcome expectancy beliefs concerning the impact of actions by teachers on student learning; and 3.) Teacher awareness of STEM careers. High school science and technology education teachers participating in the Teachers and Researchers Advancing Integrated Lessons in STEM (TRAILS) project experimental group attended a ten-day summer professional development institute designed to educate teachers in using an integrated STEM education model to implement integrated STEM lessons. The research design utilized a quasi-experimental nonequivalent comparison group design that incorporated an experimental group and an untreated comparison group with both pretest, posttest, and delayed posttest assessments on non-randomized participants. Teacher self-efficacy has been identified as a key factor in effective teaching and student learning, and teacher awareness of STEM careers impacts students as they consider career choices. The T-STEM Survey for teachers was given for the pretest and posttest assessments to measure attitudes and beliefs toward the specific constructs of this study. Significant effects of the TRAILS professional development were found in the teacher group (experimental or comparison) and teacher subject (technology or science) in pretest and posttest scores using cumulative link models for the constructs of teacher self-efficacy and beliefs to teach STEM subjects, teacher outcome expectancy beliefs, and teacher awareness of STEM careers. Effect sizes ranged from small to large varying by construct and assessment time. Highly significant p-values and effect sizes revealed impacts on science teachers were greater when teacher subject groups were analyzed separately.

  3. Examining a math-science professional development program for teachers in grades 7-12 in an urban school district in New York State

    NASA Astrophysics Data System (ADS)

    Kaszczak, Lesia

    With the adoption of the Common Core State Standards in New York State and the Next Generation Science Standards, it is more important than ever for school districts to develop professional development programs to provide teachers with the resources that will assist them in incorporating the new standards into their classroom instruction. This study focused on a mathematics and science professional development program known as STEMtastic STEM. The two purposes of the study were: to determine if there is an increase in STEM content knowledge of the participants involved in year two of a three year professional development program and to examine the teachers' perceptions of the impact of the professional development program on classroom instruction. The sample included teachers of grades 7-12 from an urban school district in New York State. The scores of a content knowledge pre-test and post-test were analyzed using a paired sample t-test to determine any significant differences in scores. In order to determine mathematics and science teachers' perceptions of the impact of the professional development program, responses from a 22 item Likert-style survey were analyzed to establish patterns of responses and to determine positive and negative perceptions of participants of the professional development program. A single sample t-test was used to determine if the responses were significantly positive. The results of this study indicated that there was no significant increase in content knowledge as a result of participation in the STEMtastic STEM professional development program. Both mathematics and science teachers exhibited significant positive perceptions of items dealing with hands-on participation during the professional development; support provided by STEMtastic STEM specialists; and the support provided by the administration. It was concluded that both mathematics and science teachers responded positively to the training they received during the professional development sessions, but that their classroom practices did not change as a result of the professional development program.

  4. Teaching professional development of science and engineering professors at a research-extensive university: Motivations, meaningfulness, obstacles, and effects

    NASA Astrophysics Data System (ADS)

    Bouwma-Gearhart, Jana

    There is a national movement to improve undergraduate science, technology, engineering, and mathematics (STEM) education. Given the percentage of academics teaching and training at research institutions, there is a parallel movement to improve the quality of teaching-focused professional development for practicing and future STEM educators at these institutions. While research into the effectiveness of teaching professional development at the postsecondary level has increased over the last 40 years, little attention has been paid to understanding faculty perceptions regarding what constitutes effective teaching professional development. Less is known about how to best meet the needs of STEM faculty at research universities and why, given that they are seldom required to engage in teaching professional development, they bother to participate at all. The higher education research community must develop theory grounded in the knowledge and practical experiences of the faculty engaged in teaching professional development. I have studied what motivates twelve research university science and engineering faculty to engage in teaching professional development in light of local supports and barriers and the resulting value of their participation. I have interpreted the experiences of my research participants to indicate that they were motivated to engage in teaching professional development to fulfill a need to bring their teaching competencies in better concordance with their professional strengths as researchers. Once engaged, my research participants increased their teaching competence and achieved more autonomy with respect to their professional practice. As they continued to engage, they internalized the values and practices associated with effective teaching professional development and adopted the commitment to continually problematize their teaching practice as more of their own. My research participants attempted to transfer their revised stance regarding teaching and teaching professional development to their student mentees and colleagues. They found certain teaching professional development types and topics to be more meaningful and of interest than others. My research findings may inform those committed to the improvement of postsecondary STEM education at research universities, including teaching professional development advocates and implementers and participating faculty members themselves.

  5. Teacher Learning in the Digital Age: Online Professional Development in STEM Education

    ERIC Educational Resources Information Center

    Dede, Chris, Ed.; Eisenkraft, Arthur, Ed.; Frumin, Kim, Ed.; Hartley, Alex, Ed.

    2016-01-01

    With an emphasis on science, technology, engineering, and mathematics (STEM) training, "Teacher Learning in the Digital Age" examines exemplary models of online and blended teacher professional development, including information on the structure and design of each model, intended audience, and existing research and evaluation data. From…

  6. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  7. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities

    ERIC Educational Resources Information Center

    Mulnix, Amy B.

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice.…

  8. Measuring the utility of the Science, Technology, Engineering, Mathematics (STEM) Academy Measurement Tool in assessing the development of K-8 STEM academies as professional learning communities

    NASA Astrophysics Data System (ADS)

    Irish, Teresa J.

    The aim of this study was to provide insights addressing national concerns in Science, Technology, Engineering, and Mathematics (STEM) education by examining how a set of six perimeter urban K-12 schools were transformed into STEM-focused professional learning communities (PLC). The concept of a STEM Academy as a STEM-focused PLC emphasizes the development of a STEM culture where professional discourse and teaching are focused on STEM learning. The STEM Academies examined used the STEM Academy Measurement Tool and Rubric (Tool) as a catalyst for discussion and change. This Tool was developed with input from stakeholders and used for school-wide initiatives, teacher professional development and K-12 student engagement to improve STEM teaching and learning. Two primary goals of this study were to assess the levels of awareness and use of the tool by all stakeholders involved in the project and to determine how the Tool assisted in the development and advancement of these schools as STEM PLCs. Data from the STEM Academy Participant Survey was analyzed to determine stakeholders' perceptions of the Tool in terms of (i) how aware stakeholders were of the Tool, (ii) whether they participated in the use of the Tool, (iii) how the characteristics of PLCs were perceived in their schools, and finally (iv) how the awareness of the Tool influenced teachers' perceptions of the presence of PLC characteristics. Findings indicate that school faculty were aware of the Tool on a number of different levels and evidence exists that the use of the Tool assisted in the development of STEM Academies, however impact varied from school to school. Implications of this study suggest that the survey should be used for a longer period of time to gain more in-depth knowledge on teachers' perceptions of the Tool as a catalyst across time. Additional findings indicate that the process for using the Tool should be ongoing and involve the stakeholders to have the greatest impact on school culture. This research contributes to the knowledge base related to building STEM PLCs aimed at improving K-12 teacher content and pedagogical knowledge as well as student learning and achievement in STEM education.

  9. The implementation of an elementary STEM learning team and the effect on teacher self-efficacy: An action research study

    NASA Astrophysics Data System (ADS)

    Hernandez, Jennifer F.

    Science, technology, engineering, and math (STEM) education is part of a national movement to prepare students for the demands of a 21st century workforce. STEM uses an integrated, real-world problem solving approach to increase the levels of collaboration, communication, critical, and creative thinking in students. If expectations for students have increased to stay competitive in a global market, teachers must be equipped to meet the needs of the new 21st century learners in their classrooms. To that end, professional learning for educators is essential to ensure they are equipped with the tools necessary for success. While there are many approaches to teacher development, professional learning teams, based on the work of Garmston and Wellman, focus on teachers' instructional delivery, targeted student learning needs, planning, implementing new strategies, collaboration, and reflective dialogue. The purpose of the study is to improve instructional practice providing quality STEM instruction to students and increase teacher self-efficacy---a teachers' perception of his or her ability to instruct students in the STEM disciplines. Theoretical implications of a study on an elementary STEM learning team could affect the way schools deliver STEM professional learning opportunities to teachers and the way students are delivered a quality STEM education. Research has shown that Model I behavior would limit the change process of professional learning through a surface inspection of the issues; however model II behaviors would benefit the teachers, students and organization because teachers would be collaborating on specific objectives to develop a knowledge base and skill set to meet students' needs. Extending professional development by engaging stakeholders in a collaborative process to build model II behaviors will create an organizational structure that facilitates learning.

  10. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    NASA Astrophysics Data System (ADS)

    Hughes, Christina W.

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction into dynamic learning environments. The STEM Education Scholars (STEMES) is a Learning Community of Practice, housed in the College of Education, at a midsized mid-western public research university. The program of study focused on designing a professional development program for future Pre-K12 teachers. The iSTEM 2017 conference presented by the STEMES Community of Practice sought to inform pre-service teachers of STEM pedagogy, and focused on innovative classroom resources, hands-on learning and increasing content confidence when incorporating STEM into classroom instruction. iSTEM 2017 was held in February, 2017, and offered twenty refereed presentations and workshop sessions, a keynote address, and a closing session to over 200 pre-service teachers. Conference participants chose sessions, participated in game-like experiences and shared their learning with each other as well as with conference organizers. Results from participant self-reported surveys were analyzed to measure the impact of the conference on improving participants' confidence in teaching STEM topics, and their attitudes about the instructional methods. These results were added to the conference proceedings, which also contain documentation of each iSTEM 2017 session. Findings suggest that the iSTEM 2017 conference had an overall positive impact on participants' familiarity with STEM education, their belief in the importance of STEM education, and their confidence to integrate STEM education into future instructional practices.

  11. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    NASA Astrophysics Data System (ADS)

    Hardrict-Ewing, Gloria

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction into dynamic learning environments. The STEM Education Scholars (STEMES) is a Learning Community of Practice, housed in the College of Education, at a mid-sized mid-western public research university. The program of study focused on designing a professional development program for future Pre-K12 teachers. The iSTEM 2017 conference presented by the STEMES Community of Practice sought to inform pre-service teachers of STEM pedagogy, and focused on innovative classroom resources, hands-on learning and increasing content confidence when incorporating STEM into classroom instruction. iSTEM 2017 was held in February, 2017, and offered twenty refereed presentations and workshop sessions, a keynote address, and a closing session to over 200 pre-service teachers. Conference participants chose sessions, participated in game-like experiences and shared their learning with each other as well as with conference organizers. Results from participant self-reported surveys were analyzed to measure the impact of the conference on improving participants' confidence in teaching STEM topics, and their attitudes about the instructional methods. These results were added to the conference proceedings, which also contain documentation of each iSTEM 2017 session. Findings suggest that the iSTEM 2017 conference had an overall positive impact on participants' familiarity with STEM education, their belief in the importance of STEM education, and their confidence to integrate STEM education into future instructional practices.

  12. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development.

    PubMed

    Van Oosten, Ellen B; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women's leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  13. Developing and Sustaining an Educative Mentoring Model of STEM Teacher Professional Development through Collaborative Partnership

    ERIC Educational Resources Information Center

    Richmond, Gail; Dershimer, R. Charles; Ferreira, Maria; Maylone, Nelson; Kubitskey, Beth; Meriweather, Alycia

    2017-01-01

    In this paper, we present details of a partnership undertaken by four universities with field-based, alternative STEM teacher preparation programs and a large urban school district to provide ongoing professional support for teachers serving as mentors for individuals preparing for careers in high-poverty schools. We also present key findings…

  14. Northeast Tennessee Educators' Perception of STEM Education Implementation

    NASA Astrophysics Data System (ADS)

    Turner, Kristin Beard

    A quantitative nonexperimental survey study was developed to investigate Northeast Tennessee K-8 educators' perceptions of STEM education. This study was an examination of current perceptions of STEM education. Perceived need, current implementation practices, access to STEM resources, definition of STEM, and the current condition of STEM in Northeast Tennessee were also examined. The participating school districts are located in the Northeast Region of Tennessee: Bristol City Schools, Hamblen County Schools, Johnson City Schools, Johnson County Schools, Kingsport City Schools, Sullivan County Schools, and Washington County Schools. Educational professionals including both administrators and teachers in the elementary and/or middle school setting were surveyed. The closed and open form survey consisted of 20 research items grouped by 5 core research questions. Quantitative data were analyzed using single sample t tests. A 4 point Likert scale was used to measure responses with a 2.5 point of neutrality rating. The open-ended question was summarized and recorded for frequency. Research indicated that Northeast Tennessee K-8 educators perceive a need for STEM education to a significant extent. However, many do not feel prepared for implementation. Lack of professional development opportunities and STEM assets were reported as areas of need. Teachers reported implementation of inquiry-based, problem solving activities in their classrooms. The majority of participants reported that the current condition of STEM education in Northeast Tennessee is not meeting the needs of 21st century learners. Challenges facing STEM instruction include: funding designated for STEM is too low, professional development for STEM teacher is insufficient, and STEM Education in K-8 is lacking or inadequate.

  15. Building up STEM education professional learning community in school setting: Case of Khon Kaen Wittayayon School

    NASA Astrophysics Data System (ADS)

    Thana, Aduldej; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    The STEM education is new issue of teaching and learning in school setting. Building up STEM education professional learning community may provide some suggestions for further collaborative work of STEM Education from grounded up. This paper aimed to clarify the building up STEM education learning community in Khon Kaen Wittayayon (KKW) School setting. Participants included Khon Kaen University researchers, Khon Kaen Wittayayon School administrators and teachers. Methodology regarded interpretative paradigm. The tools of interpretation included participant observation, interview and document analysis. Data was analyzed to categories of condition for building up STEM education professional learning community. The findings revealed that the actions of developing STEM learning activities and research showed some issues of KKW STEM community of inquiry and improvement. The paper will discuss what and how the community learns about sharing vision of STEM Education, supportive physical and social conditions of KKW, sharing activities of STEM, and good things from some key STEM teachers' ambition. The paper may has implication of supporting STEM education in Thailand school setting.

  16. Effect of Makerspace Professional Development Activities on Elementary and Middle School Educator Perceptions of Integrating Technologies with STEM (Science, Technology, Engineering, Mathematics)

    ERIC Educational Resources Information Center

    Miller, Jennifer Renea

    2016-01-01

    This study investigated a Makerspace professional development program, the Makers' Guild, provided to teachers within north Texas over the course of a semester. The research employed a constructionist approach delivered via 2D and 3D technologies during STEM instructional activities within a creative space. Participants reported statistically…

  17. Undergraduate and Teaching Assistants' Perceptions of Classroom Community in Freshman Biological Sciences Laboratories and Implications for Persistence and Professional Development

    NASA Astrophysics Data System (ADS)

    Kardohely, Andrew

    The American economy hinges on the health and production of science, technology engineering and mathematics workforce (STEM). Although this sector of the American workforce represents a substantially fewer jobs the STEM workforce fuels job growth and sustainability in the other sectors of the American workforce. Unfortunately, over the next decade the U.S. will face an additional deficit of over a million STEM professionals, thus the need is here now to fill this deficit. STEM education should, therefore, dedicated to producing graduates. One strategy to produce more STEM graduates is through retention of student in STEM majors. Retention or persistence is highly related to student sense of belonging in academic environments. This study investigates graduate teaching assistants (GTAs) perceptions of their classrooms and the implications of those perceptions on professional development. Furthermore, correlations between classroom community and student desire to persist, as measured by Rovai's Classroom Community Index (CCI) were established (P=0.0311). The interactions are described and results are discussed. Using a framework of teaching for community, and a qualitative analytic case study with memo writing about codes and themes methodology supported several themes including passion to teach and dedication to student learning, innovation in teaching practices based on evidence, an intrinsic desire to seek a diverse set of feedback, and instructors can foster community in the classroom. Using the same methodology one emergent theme, a tacit rather than explicit understanding of reading the classroom, was also present in the current study. Based on the results and using a lens for professional development, strategies and suggestions are made regarding strategies to enhance instructors' use of feedback and professional development.

  18. Developing Effective STEM Professional Development Programs

    ERIC Educational Resources Information Center

    Avery, Zanj K.; Reeve, Edward M.

    2013-01-01

    To help the United States stay globally competitive in terms of innovation and invention, the teaching of science, technology, engineering, and mathematics (STEM) has become a priority in P-12 education today. As the need for students to become stronger in STEM grows, so does the need for well-qualified STEM teachers who understand what is needed…

  19. Technology-Supported Science Instruction through Integrated STEM Guitar Building: The Case for STEM and Non-STEM Instructor Success

    ERIC Educational Resources Information Center

    Hauze, Sean; French, Debbie

    2017-01-01

    With a national emphasis on integrated science, technology, engineering, and mathematics (STEM) education in K-16 courses, incorporating technology in a meaningful way is critical. This research examines whether STEM and non-STEM teachers were able to incorporate technology in STEM courses successfully with sufficient professional development. The…

  20. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development

    PubMed Central

    Van Oosten, Ellen B.; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women’s leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants. PMID:29326618

  1. STEM Curricula. Premiere PD

    ERIC Educational Resources Information Center

    Brown, Ryan, Ed.; Ernst, Jeremy, Ed.; Clark, Aaron, Ed.; DeLuca, Bill, Ed.; Kelly, Daniel, Ed.

    2017-01-01

    This professional development activity on STEM Education is designed to keep Technology and Engineering teachers up to date regarding current and important issues in the discipline. This article describes why there is a focus on STEM Education, defines STEM Education, and discusses curriculum integration and its elements.

  2. Perceptions, Engagement, and Practices of Teachers Seeking Professional Development in Place-Based Integrated STEM

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Seifert, Anne

    2013-01-01

    As science, technology, engineering, and mathematics (STEM) continue to grow in economic and social importance, it is critical that citizenry are prepared to be STEM literate. Furthermore, the workforce demands on STEM necessitate students seeking STEM degrees and pursuing STEM careers. Primary and secondary (K-12) teachers play an important role…

  3. The Arctic Climate Modeling Program: Professional Development for Rural Teachers

    ERIC Educational Resources Information Center

    Bertram, Kathryn Berry

    2010-01-01

    The Arctic Climate Modeling Program (ACMP) offered yearlong science, technology, engineering, and math (STEM) professional development to teachers in rural Alaska. Teacher training focused on introducing youth to workforce technologies used in Arctic research. Due to challenges in making professional development accessible to rural teachers, ACMP…

  4. Developing Non-Formal Education Competences as a Complement of Formal Education for STEM Lecturers

    ERIC Educational Resources Information Center

    Terrazas-Marín, Roy Alonso

    2018-01-01

    This paper focuses on a current practice piece on professional development for university lecturers, transformative learning, dialogism and STEM (Science, Technology, Engineering and Mathematics) education. Its main goals are to identify the key characteristics that allow STEM educators to experiment with the usage of non-formal education…

  5. Fitting the Framework: The STEM Institute and the 4-H Essential Elements

    ERIC Educational Resources Information Center

    Sallee, Jeff; Peek, Gina G.

    2014-01-01

    Extension and 4-H youth development programs are addressing a shortage of scientists, engineers, and other related professionals by promoting science, technology, engineering, and math (STEM). This case study illustrates how the Oklahoma 4-H Youth Development program trained youth-adult teams to design and implement STEM projects. The STEM…

  6. Geoscience Education Research, Development, and Practice at Arizona State University

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.

    2009-12-01

    Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional development for STEM teachers; Design and evaluation of innovative transdisciplinary and online curricula; and Visitor cognition of geologic time and basic principles in Southwestern National Parks.

  7. Computer Programming Effects in Elementary: Perceptions and Career Aspirations in STEM

    ERIC Educational Resources Information Center

    Tran, Yune

    2018-01-01

    The development of elementary-aged students' STEM and computer science (CS) literacy is critical in this evolving technological landscape, thus, promoting success for college, career, and STEM/CS professional paths. Research has suggested that elementary-aged students need developmentally appropriate STEM integrated opportunities in the classroom;…

  8. University Support of Secondary STEM Teachers through Professional Development

    ERIC Educational Resources Information Center

    Beaudoin, Colleen R.; Johnston, Pattie C.; Jones, Leslie B.; Waggett, Rebecca J.

    2013-01-01

    Problems associated with recruiting, supporting and retaining quality teachers in the STEM areas have been well documented in the literature. Specifically, findings suggest STEM teachers have indicated a need for pedagogy and increased content knowledge. These needs may be attributed to the fact that more STEM teachers have been alternatively…

  9. Urban Middle School Students, Twenty-First Century Skills, and STEM-ICT Careers: Selected Findings from a Front-End Analysis

    ERIC Educational Resources Information Center

    Cohen, Jonathan D.; Renken, Maggie; Calandra, Brendan

    2017-01-01

    As part of the design and development of an informal learning environment meant to increase urban middle school students' interest in technology-focused STEM careers, and to support their twenty-first century skill development, researchers developed and administered the ICT/Twenty-First Century Skills Questionnaire. Both STEM-ICT professionals and…

  10. A comparative case study of the characteristics of science, technology, engineering, and mathematics (STEM) focused high schools

    NASA Astrophysics Data System (ADS)

    Scott, Catherine Elizabeth

    This study examined the characteristics of 10 science, technology, engineering, and mathematics (STEM) focused high schools. A comparative case designed was used to identify key components of STEM school designs. Schools were selected from various regions across the United States. Data collected included websites, national statistics database, standardized test scores, interviews and published articles. Results from this study indicate that there is a variety of STEM high school programs designed to increase students' ability to pursue college degrees in STEM fields. The school mission statements influence the overall school design. Students at STEM schools must submit an application to be admitted to STEM high schools. Half of the STEM high schools used a lottery system to select students. STEM high schools have a higher population of black students and a lower population of white and Hispanic students than most schools in the United States. They serve about the same number of economically disadvantaged students. The academic programs at STEM high schools are more rigorous with electives focused on STEM content. In addition to coursework requirements, students must also complete internships and/or a capstone project. Teachers who teach in STEM schools are provided regularly scheduled professional development activities that focus on STEM content and pedagogy. Teachers provide leadership in the development and delivery of the professional development activities.

  11. Offering a Geoscience Professional Development Program to Promote Science Education and Provide Hands-on Experiences for K-12 Science Educators

    ERIC Educational Resources Information Center

    Fakayode, Sayo O.; Pollard, David A.; Snipes, Vincent T.; Atkinson, Alvin

    2014-01-01

    Development of an effective strategy for promoting science education and professional development of K-12 science educators is a national priority to strengthen the quality of science, technology, engineering, and mathematics (STEM) education. This article reports the outcomes of a Geoscience Professional Development Program (GPDP) workshop…

  12. Fermilab Science Education Office - Educators/Teachers

    Science.gov Websites

    , university faculty, pre-service students, home school educators, the Teacher Resource Center is a one-stop Pre-K-12 STEM instructional materials and professional development resources you may utilize onsite Standards for Professional Learning to design and guide customized professional development. Through our

  13. Leveling the Playing Field: Teacher Perception of Integrated STEM, Engineering, and Engineering Practices

    NASA Astrophysics Data System (ADS)

    Fincher, Bridgette Ann

    The purpose of this study was to describe the perceptions and approaches of 14 third-through-fifth grade Arkansan elementary teachers towards integrative engineering and engineering practices during 80 hours of integrated STEM professional development training in the summer and fall of 2014. This training was known as Project Flight. The purpose of the professional development was to learn integrated STEM content related to aviation and to write grade level curriculum units using Wiggins and McTighe's Understanding by Design curriculum framework. The current study builds upon on the original research. Using a mixed method exploratory, embedded QUAL[quan] case study design and a non-experimental convenience sample derived from original 20 participants of Project Flight, this research sought to answer the following question: Does professional development influence elementary teachers' perceptions of the curriculum and instruction of integrated STEM engineering and engineering practices in a 3-to-5 grade level setting? A series of six qualitative and one quantitative sub-questions informed the research of the mixed method question. Hermeneutic content analysis was applied to archival and current qualitative data sets while descriptive statistics, independent t-tests, and repeated measures ANOVA tests were performed on the quantitative data. Broad themes in the teachers' perceptions and understanding of the nature of integrated engineering and engineering practices emerged through triangulation. After the professional development and the teaching of the integrated STEM units, all 14 teachers sustained higher perceptions of personal self-efficacy in their understanding of Next Generation Science Standards (NGSS). The teachers gained understanding of engineering and engineering practices, excluding engineering habits of mind, throughout the professional development training and unit teaching. The research resulted in four major findings specific to elementary engineering, which included engineering as student social agency and empowerment and the emergence of the engineering design loop as a new heuristic, and three more general non-engineering specific findings. All seven, however, have implications for future elementary engineering professional development as teachers in adopting states start to transition into using the NGSS standards.

  14. Off to the Duck Races: Planning for Inquiry in STEM

    ERIC Educational Resources Information Center

    Stephan, Michelle

    2016-01-01

    Although most tasks that STEM professionals engage in--like identifying problems, making models, and testing those models--involve inquiry, many STEM classes still rely on direct instruction. Stephan argues that even as new resources for active learning are being developed for STEM instruction, many teachers aren't using these resources and tasks…

  15. Design-based online teacher professional development to introduce integration of STEM in Pakistan

    NASA Astrophysics Data System (ADS)

    Anwar, Tasneem

    In today's global society where innovations spread rapidly, the escalating focus on science, technology, engineering and mathematics (STEM) has quickly intensified in the United States, East Asia and much of Western Europe. Our ever-changing, increasingly global society faces many multidisciplinary problems, and many of the solutions require the integration of multiple science, technology, engineering, and mathematics (STEM) concepts. Thus, there is a critical need to explore the integration of STEM subjects in international education contexts. This dissertation study examined the exploration of integration of STEM in the unique context of Pakistan. This study used three-phase design-based methodological framework derived from McKenney and Reeves (2012) to explore the development of a STEM focused online teacher professional development (oTPD-STEM) and to identify the design features that facilitate teacher learning. The oTPD-STEM program was designed to facilitate eight Pakistani elementary school teachers' exploration of the new idea of STEM integration through both practical and theoretical considerations. This design-based study employed inductive analysis (Strauss and Corbin, 1998) to analyze multiple data sources of interviews, STEM perception responses, reflective learning team conversations, pre-post surveys and artifacts produced in oTPD-STEM. Findings of this study are presented as: (1) design-based decisions for oTPD-STEM, and (2) evolution in understanding of STEM by sharing participant teachers' STEM model for Pakistani context. This study advocates for the potential of school-wide oTPD for interdisciplinary collaboration through support for learner-centered practices.

  16. Science for All: Strengthening Pathways for Scientists and Engineers to Bring Real-World Relevancy to STEM Concepts During Just-in-Time Learning

    NASA Astrophysics Data System (ADS)

    Klug Boonstra, S.

    2017-12-01

    With the advent and widespread adoption of virtual connectivity, it is possible for scientists, engineers, and other STEM professionals to reach every place the youth of America learn! Arizona State University's School of Earth and Space Exploration, in planned collaboration with national STEM organizations, agencies, and education partners, are proposing a bold, collaborative, national model that will better enable STEM professionals of all disciplines to meet the needs of their audiences more effectively and efficiently. STEM subject matter experts (SMEs) can bring timely and authentic, real-world examples that engage and motivate learners in the conceptual learning journey presented through formal and informal curricula while also providing a personal face and story of their STEM journey and experience. With over 6.2 million scientists and engineers, 55.6 million PreK-12 students, and 6.3 million community college students in the US, the possible reach, long-term impact, and benefits of the virtual, just-in-time interactions between SMEs, teachers, and students has the potential to provide the missing links of relevancy and real-world application that will engage learners and enhance STEM understanding at a higher, deeper level while having the capacity to do this at a national scale. Providing professional development training for the SMEs will be an essential element in helping them to understand where their STEM work is relevant and appropriate within educational learning progressions. The vision for STEM Connect will be to prepare the STEM SMEs to share their expertise in a way that will show the dynamic and iterative nature of STEM research and design, helping them to bring their STEM expertise to formal and informal learners in a strategic and meaningful way. Discussions with possible STEM Connect collaborators (e.g., national STEM member-based organizations, technology providers, federal agencies, and professional educational organizations) are underway to bring together a national design and implementation vision, start to build a collaborative team, and to look for funding mechanisms. We hope to empower this national pathway for STEM professionals to impact the way the next generation will understand and appreciate STEM's impact on our everyday lives.

  17. Assessing the Interactivity and Prescriptiveness of Faculty Professional Development Workshops: The Real-Time Professional Development Observation Tool

    ERIC Educational Resources Information Center

    Olmstead, Alice; Turpen, Chandra

    2016-01-01

    Professional development workshops are one of the primary mechanisms used to help faculty improve their teaching, and draw in many STEM instructors every year. Although workshops serve a critical role in changing instructional practices within our community, we rarely assess workshops through careful consideration of how they engage faculty.…

  18. Adolescent Girls' STEM Identity Formation and Media Images of STEM Professionals: Considering the Influence of Contextual Cues.

    PubMed

    Steinke, Jocelyn

    2017-01-01

    Popular media have played a crucial role in the construction, representation, reproduction, and transmission of stereotypes of science, technology, engineering, and mathematics (STEM) professionals, yet little is known about how these stereotypes influence STEM identity formation. Media images of STEM professionals may be important sources of information about STEM and may be particularly salient and relevant for girls during adolescence as they actively consider future personal and professional identities. This article describes gender-stereotyped media images of STEM professionals and examines theories to identify variables that explain the potential influence of these images on STEM identity formation. Understanding these variables is important for expanding current conceptual frameworks of science/STEM identity to better determine how and when cues in the broader sociocultural context may affect adolescent girls' STEM identity. This article emphasizes the importance of focusing on STEM identity relevant variables and STEM identity status to explain individual differences in STEM identity formation.

  19. Adolescent Girls’ STEM Identity Formation and Media Images of STEM Professionals: Considering the Influence of Contextual Cues

    PubMed Central

    Steinke, Jocelyn

    2017-01-01

    Popular media have played a crucial role in the construction, representation, reproduction, and transmission of stereotypes of science, technology, engineering, and mathematics (STEM) professionals, yet little is known about how these stereotypes influence STEM identity formation. Media images of STEM professionals may be important sources of information about STEM and may be particularly salient and relevant for girls during adolescence as they actively consider future personal and professional identities. This article describes gender-stereotyped media images of STEM professionals and examines theories to identify variables that explain the potential influence of these images on STEM identity formation. Understanding these variables is important for expanding current conceptual frameworks of science/STEM identity to better determine how and when cues in the broader sociocultural context may affect adolescent girls’ STEM identity. This article emphasizes the importance of focusing on STEM identity relevant variables and STEM identity status to explain individual differences in STEM identity formation. PMID:28603505

  20. An exploration of the factors that contribute to the success of African American professionals in STEM-related careers

    NASA Astrophysics Data System (ADS)

    Alexander Nealy, Yolande Kristine

    This study examined factors that contribute to the success of African American professionals in STEM careers. Data were collected through a survey from 40 participants and in-depth interviews with eight of them. The survey was used to explore the participants' educational experiences from elementary school through college and on their STEM-related careers, whereas the individual interviews were used to gain insights into their perspectives as STEM professionals. The results of this study indicate that most of these African American STEM professionals attributed their choice of a STEM career to early exposure to and positive experiences in science and mathematics mediated by teachers and/or parents. Furthermore, the positive experiences and success in science and mathematics continued in high school and college, further solidifying their choice of a STEM career. However, for almost half of the participants, attending a HBCU seems to have played an important role in their enjoyment of and success in a STEM major. HBCUs provided them with role models and the necessary support and encouragement to succeed in their pursuit of a STEM degree. The results of this study illustrate the various factors that play a role in preventing leakage in the minority STEM pipeline: K-12 experiences mediated by parents and teachers; support systems in college and the workplace mediated by counselors, professors, peers, and administrators; and policies that facilitate integration and the development of such support systems. This study contributes to the current body of knowledge on minorities in STEM by focusing on what works, instead of focusing on the deficit model and what does not work. It is hoped that these results help validate the efforts of those who work towards a more equitable representation of the STEM fields.

  1. Developing Professional Skills in Undergraduate Engineering Students through Cocurricular Involvement

    ERIC Educational Resources Information Center

    Fisher, Dara R.; Bagiati, Aikaterini; Sarma, Sanjay

    2017-01-01

    As nations have sought to keep pace with rapid technological innovation, governments have renewed their focus on science, technology, engineering, and mathematics (STEM) education, with emphasis on developing both technical and non-technical skills in STEM students. This article examines which engineering-relevant skills may be developed by…

  2. The Effects of a Science-Focused STEM Intervention on Gifted Elementary Students' Science Knowledge and Skills

    ERIC Educational Resources Information Center

    Robinson, Ann; Dailey, Debbie; Hughes, Gail; Cotabish, Alicia

    2014-01-01

    To develop Science, Technology, Engineering, and Mathematics (STEM) talents, both researchers and policy developers recommend that educators begin early. In this randomized study, we document the efficacy of teacher professional development and a rich problem-based inquiry curriculum to develop the science talent of elementary students. The…

  3. Research University STEM Faculty Members' Motivation to Engage in Teaching Professional Development: Building the Choir through an Appeal to Extrinsic Motivation and Ego

    ERIC Educational Resources Information Center

    Bouwma-Gearhart, Jana

    2012-01-01

    This paper reports on a qualitative, grounded-theory-based study that explored the motivations of science and engineering faculty to engage in teaching professional development at a major research university. Faculty members were motivated to engage in teaching professional development due to extrinsic motivations, mainly a weakened professional…

  4. Development of Structural Components of Future Technicians' Professional Competencies during Their Studies of General Disciplines in College

    ERIC Educational Resources Information Center

    Kopilov, Sergey N.; Dorozhkin, Evgenij M.; Tarasyuk, Olga V.; Osipova, Irina V.; Lazareva, Natalia V.

    2016-01-01

    The relevance of the problem stems from the necessity to develop and implement the formation model for structural components of future technicians' professional competencies during their studies of general professional disciplines. The purpose of the article is to carry out a theoretical study, to develop and approbate a model that forms the…

  5. Business, Education Partnerships -- Bridging the Paradigm Divide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anne L. Seifert; Louis S. Nadelson

    2013-01-01

    The authors discuss the integrated science, technology, engineering, and mathematics (i-STEM) curriculum in business and industry comparing it with the traditional STEM K-12 curriculum in the U.S. Topics discussed includes limitations associated with the traditional STEM education, advantages of i-STEM such as enhancing professional development of educators to enhance their capacity to make youth capable for i-STEM careers, and i-STEM tools such as a project-based learning.

  6. Evaluating the Effectiveness of Integrative STEM Education: Teacher and Administrator Professional Development

    ERIC Educational Resources Information Center

    Havice, William; Havice, Pamela; Waugaman, Chelsea; Walker, Kristin

    2018-01-01

    The integration of science, technology, engineering, and mathematics (STEM) education, also referred to as integrative STEM education, is a relatively new interdisciplinary teaching technique that incorporates an engineering design-based learning approach with mathematics, science, technology, and engineering education (Sanders, 2010, 2012, 2013;…

  7. Improving School Psychologists' Knowledge and Confidence Pertinent to Suicide Prevention through Professional Development

    ERIC Educational Resources Information Center

    Suldo, Shannon; Loker, Troy; Friedrich, Allison; Sundman, Ashley; Cunningham, Jennifer; Saari, Bonnie; Schatzberg, Tracy

    2010-01-01

    This study evaluated a professional development intervention that stemmed from a university-district partnership and was developed through participatory action research. Baseline and postintervention survey items showed participating school psychologists' (n = 57) knowledge related to youth suicide improved reliably immediately after the…

  8. Science Teacher Efficacy and Extrinsic Factors toward Professional Development Using Video Games in a Design-Based Research Model: The Next Generation of STEM Learning

    ERIC Educational Resources Information Center

    Annetta, Leonard A.; Frazier, Wendy M.; Folta, Elizabeth; Holmes, Shawn; Lamb, Richard; Cheng, Meng-Tzu

    2013-01-01

    Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based…

  9. Teaching Assistant Professional Development in Biology: Designed for and Driven by Multidimensional Data

    ERIC Educational Resources Information Center

    Wyse, Sara A.; Long, Tammy M.; Ebert-May, Diane

    2014-01-01

    Graduate teaching assistants (TAs) are increasingly responsible for instruction in undergraduate science, technology, engineering, and mathematics (STEM) courses. Various professional development (PD) programs have been developed and implemented to prepare TAs for this role, but data about effectiveness are lacking and are derived almost…

  10. Curriculum and Practice of an Innovative Teacher Professional Development Program

    ERIC Educational Resources Information Center

    Horton, Akesha; Shack, Kyle; Mehta, Rohit

    2017-01-01

    The MSUrbanSTEM fellowship program provides exemplary urban STEM teachers the opportunity to engage in transformative instructional and leadership experiences that support the advancement of their teaching practice. In this chapter, we provide a foundational examination of the development and implementation of a curriculum for this innovative…

  11. Adaptation of the Science, Technology, Engineering, and Mathematics Career Interest Survey (STEM-CIS) into Turkish

    ERIC Educational Resources Information Center

    Koyunlu Unlu, Zeynep; Dokme, Ilbilge; Unlu, Veli

    2016-01-01

    Problem Statement: Science, technology, engineering, and mathematics (STEM) education has recently become a remarkable research topic, especially in developed countries as a result of the skilled workforce required in the fields of the STEM. Considering that professional tendencies are revealed at early ages, determining students' interest in STEM…

  12. Difference in Career Attitudes of Elementary Minority Female Students after Participation in a STEM Event

    ERIC Educational Resources Information Center

    Pumphrey, Karyn Christine

    2017-01-01

    Science, Technology, Engineering and Mathematics (STEM) professionals are responsible for the development of new technologies and breaking scientific discoveries. However, in the United States, racial minorities and females are vastly underrepresented in STEM professions. This problem is multiplied for individuals falling into both categories.…

  13. Project Kaleidoscope: Advancing What Works in Undergraduate STEM Education

    NASA Astrophysics Data System (ADS)

    Elrod, S.

    2011-12-01

    In 1989, Project Kaleidoscope (PKAL) published its first report, What Works: Building Natural Science Communities, on reforming undergraduate STEM (science, technology, engineering and mathematics) education. Since then, PKAL has grown into a national organization comprised of a diverse group of over 6500 STEM educators who are committed to advancing "what works." The PKAL mission is to be a national leader in catalyzing the efforts of people, institutions, organizations and networks to move from analysis to action in significantly improving undergraduate student learning and achievement in STEM (science, technology, engineering and mathematics). Specifically, PKAL's strategic goals are to: 1) Promote the development and wider use of evidence-based teaching, learning and assessment approaches, 2) Build individual and organizational capacity to lead change in STEM education, and 3) Engage the broader community of external stakeholders - professional and disciplinary societies, business and industry groups, accreditation organizations, educational associations, governmental agencies, philanthropic organizations - in achieving our mission. PKAL achieves these goals by serving as the nexus of an interconnected and multidisciplinary web of people, ideas, strategies, evidence and resources focused on systemic change in undergraduate STEM education. PKAL also provides resources on critical issues, such as teaching using pedagogies of engagement, and engages interested faculty, campuses and professional societies in national projects and programs focused on cutting edge issues in STEM education. One of these projects - Mobilizing Disciplinary Societies for a Sustainable Future - is engaging eleven disciplinary societies, including the National Association of Geoscience Teachers, in defining specific resources, faculty development programs and goals focused on promoting undergraduate STEM courses that: 1) provide more knowledge about real-world issues; 2) connect these real-world issues to the concepts of sustainability; 3) offer students opportunities to analyze and implement choices that can help solve societal problems so they are better able to act on their choices both immediately and as future citizens and professionals. PKAL has also been offering leadership institutes for STEM faculty members to develop their knowledge and skills as change agents who have the capacity to lead educational reform at their institutions. Since 1996, over 200 faculty members from across the STEM disciplines have attended the institutes. An analysis of leadership alumni indicates that nearly 40% have moved on to administrative leadership positions. Alumni of these institutes are now leading regional STEM reform networks in five locations around the U.S. Since 2007, PKAL networks have engaged nearly 650 STEM faculty and campus leaders from over 100 diverse institutions in professional development workshops focused on STEM reform teaching and learning to effect a wider reach of STEM education transformation on campuses where it matters most. Network expertise and resources are disseminated on PKAL's website and national meetings. These programs illustrate PKAL's efforts to build community and disseminate resources that have a national impact on advancing undergraduate STEM teaching, learning and success for all students.

  14. Preparing culturally responsive teachers of science, technology, engineering, and math using the Geophysical Institute Framework for Professional Development in Alaska

    NASA Astrophysics Data System (ADS)

    Berry Bertram, Kathryn

    2011-12-01

    The Geophysical Institute (GI) Framework for Professional Development was designed to prepare culturally responsive teachers of science, technology, engineering, and math (STEM). Professional development programs based on the framework are created for rural Alaskan teachers who instruct diverse classrooms that include indigenous students. This dissertation was written in response to the question, "Under what circumstances is the GI Framework for Professional Development effective in preparing culturally responsive teachers of science, technology, engineering, and math?" Research was conducted on two professional development programs based on the GI Framework: the Arctic Climate Modeling Program (ACMP) and the Science Teacher Education Program (STEP). Both programs were created by backward design to student learning goals aligned with Alaska standards and rooted in principles of indigenous ideology. Both were created with input from Alaska Native cultural knowledge bearers, Arctic scientists, education researchers, school administrators, and master teachers with extensive instructional experience. Both provide integrated instruction reflective of authentic Arctic research practices, and training in diverse methods shown to increase indigenous student STEM engagement. While based on the same framework, these programs were chosen for research because they offer distinctly different training venues for K-12 teachers. STEP offered two-week summer institutes on the UAF campus for more than 175 teachers from 33 Alaska school districts. By contrast, ACMP served 165 teachers from one rural Alaska school district along the Bering Strait. Due to challenges in making professional development opportunities accessible to all teachers in this geographically isolated district, ACMP offered a year-round mix of in-person, long-distance, online, and local training. Discussion centers on a comparison of the strategies used by each program to address GI Framework cornerstones, on methodologies used to conduct program research, and on findings obtained. Research indicates that in both situations the GI Framework for Professional Development was effective in preparing culturally responsive STEM teachers. Implications of these findings and recommendations for future research are discussed in the conclusion.

  15. Surveying the Landscape of Professional Development Research: Suggestions for New Perspectives in Design and Research

    ERIC Educational Resources Information Center

    Manduca, Cathryn A.

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) higher education is in need of improved teaching methods to increase learning for all students. Faculty professional development programs are a widespread strategy for fostering this improvement. Studies of faculty development programs have focused on program design and the impact of…

  16. Exploring Practice-Research Networks for Critical Professional Learning

    ERIC Educational Resources Information Center

    Appleby, Yvon; Hillier, Yvonne

    2012-01-01

    This paper discusses the contribution that practice-research networks can make to support critical professional development in the Learning and Skills sector in England. By practice-research networks we mean groups or networks which maintain a connection between research and professional practice. These networks stem from the philosophy of…

  17. Snapshots of Authentic Scientific Inquiry and Teacher Preparation: Undergraduate STEM Courses, Preservice and Inservice Teachers' Experiences

    ERIC Educational Resources Information Center

    French, Debbie Ann

    2016-01-01

    In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)--pedagogy closely modeling the…

  18. Choosing a STEM Path: "Course-Sequencing in High School and Postsecondary Outcomes"

    ERIC Educational Resources Information Center

    Lee, Jonghwan; Judy, Justina

    2011-01-01

    The College Ambition Program (CAP) model was developed to support high schools in preparing their students to enter STEM fields. CAP includes four programmatic components: mentoring, course counseling and advising, college-related activities and workshops, and teacher professional development and instructional support. This study is part of a…

  19. Exploring Teacher Design Team Endeavors While Creating an Elementary-Focused STEM-Integrated Curriculum

    ERIC Educational Resources Information Center

    McFadden, Justin R.; Roehrig, Gillian H.

    2017-01-01

    Background: This study presents two teacher design teams (TDTs) during a professional development experience centered on science, technology, engineering, and mathematics (STEM)-integrated curriculum development. The main activity of the study, curriculum design, was framed as a design problem in order to better understand how teachers engaged…

  20. Effect of Out-of-School Time STEM Education Programs: Implications for Policy

    NASA Astrophysics Data System (ADS)

    Talbot, Harry A.

    Today's world requires greater STEM knowledge for employment and understanding of emerging issues. A predicted 3 million jobs will be created in STEM-related fields but the percentage of earned STEM-related degrees is diminishing. A lack of progress in STEM education for American students is most pronounced among females who make up 48% of the workforce and 24% of STEM employees. A lack of STEM interest among students is compounded by limited time in the school day for STEM topics, lack of teacher confidence in teaching STEM, and a lack of professional development. This study examines the impact of Out-of-School-Time (OST) programs on knowledge acquisition and attitudes toward STEM topics by gender. Program content was delivered by undergraduate pre-teacher candidates and undergraduate STEM majors, using a structured, hands-on engineering program developed for the National Aeronautics and Space Administration (NASA). Monthly professional development was provided to OST staff by NASA content specialists and instructors from Fresno State University. A repeated-measures design analyzed group differences across three points in time: prior to the start of instruction (pretest), immediately following the end of instruction (posttest), and 60 days following (post posttest). A within-group comparison measured posttest and post-post-test changes for each gender. Program students included in the study participated for at least 12 of the 24 program hours offered and completed all three assessments. The findings showed that STEM knowledge acquisition advanced at similar levels for both genders. These results were consistent with the existing research. Findings related to attitudes toward STEM topics showed that female students did not change over time but males students' interest lessened over time. These findings did not support the current research in this area. Recommendations for practice include developing programs that focus on gender differentiated learning styles, linking pre-service teachers with undergraduate STEM majors in the delivery of OST STEM content and skill development, and creating an environment that links the regular day school programs, OST programs, family, media,and cultural institutions to support STEM education. Universities should also play a leading role in the training of future teachers and STEM-field practitioners.

  1. Integrating Professional Development into STEM Graduate Programs: Student-Centered Programs for Career Preparation

    NASA Astrophysics Data System (ADS)

    Lautz, L.; McCay, D.; Driscoll, C. T.; Glas, R. L.; Gutchess, K. M.; Johnson, A.; Millard, G.

    2017-12-01

    Recognizing that over half of STEM Ph.D. graduates are finding work outside of academia, a new, NSF-funded program at Syracuse University, EMPOWER (or Education Model Program on Water-Energy Research) is encouraging its graduate students to take ownership of their graduate program and design it to meet their anticipated needs. Launched in 2016, EMPOWER's goal is to prepare graduate students for careers in the water-energy field by offering targeted workshops, professional training coursework, a career capstone experience, a professional development mini-grant program, and an interdisciplinary "foundations" seminar. Through regular student feedback and program evaluation, EMPOWER has learned some important lessons this first year: career options and graduate students' interests are diverse, requiring individualized programs designed to meet the needs of prospective employers and employees; students need exposure to the range of careers in their field to provide a roadmap for designing their own graduate school experience; effective programs nurture a culture that values professional development thereby giving students permission to pursue career paths and professional development opportunities that meet their own needs and interests; and existing university resources support the effective and efficient integration of professional development activities into graduate programs. Many of the positive outcomes experienced by EMPOWER students may be achieved in departmental graduate programs with small changes to their graduate curricula.

  2. Situated Instructional Coaching: A Case Study of Faculty Professional Development

    ERIC Educational Resources Information Center

    Czajka, Charles Doug; McConnell, David

    2016-01-01

    Background: Barriers to reforming traditional lecture-based undergraduate STEM classes are numerous and include time constraints, lack of training, and instructor's beliefs about teaching and learning. This case study documents the use of a situated instructional coaching process as a method of faculty professional development. In this model, a…

  3. Competency Maps: an Effective Model to Integrate Professional Competencies Across a STEM Curriculum

    NASA Astrophysics Data System (ADS)

    Sánchez Carracedo, Fermín; Soler, Antonia; Martín, Carme; López, David; Ageno, Alicia; Cabré, Jose; Garcia, Jordi; Aranda, Joan; Gibert, Karina

    2018-05-01

    Curricula designed in the context of the European Higher Education Area need to be based on both domain-specific and professional competencies. Whereas universities have had extensive experience in developing students' domain-specific competencies, fostering professional competencies poses a new challenge we need to face. This paper presents a model to globally develop professional competencies in a STEM (science, technology, engineering, and mathematics) degree program, and assesses the results of its implementation after 4 years. The model is based on the use of competency maps, in which each competency is defined in terms of competency units. Each competency unit is described by a set of expected learning outcomes at three domain levels. This model allows careful analysis, revision, and iteration for an effective integration of professional competencies in domain-specific subjects. A global competency map is also designed, including all the professional competency learning outcomes to be achieved throughout the degree. This map becomes a useful tool for curriculum designers and coordinators. The results were obtained from four sources: (1) students' grades (classes graduated from 2013 to 2016, the first 4 years of the new Bachelor's Degree in Informatics Engineering at the Barcelona School of Informatics); (2) students' surveys (answered by students when they finished the degree); (3) the government employment survey, where former students evaluate their satisfaction of the received training in the light of their work experience; and (4) the Everis Foundation University-Enterprise Ranking, answered by over 2000 employers evaluating their satisfaction regarding their employees' university training, where the Barcelona School of Informatics scores first in the national ranking. The results show that competency maps are a good tool for developing professional competencies in a STEM degree.

  4. Opening the Classroom Door: Professional Learning Communities in the Math and Science Partnership Program

    ERIC Educational Resources Information Center

    Hamos, James E.; Bergin, Kathleen B.; Maki, Daniel P.; Perez, Lance C.; Prival, Joan T.; Rainey, Daphne Y.; Rowell, Ginger H.; VanderPutten, Elizabeth

    2009-01-01

    This article looks at how professional learning communities (PLCs) have become an operational approach for professional development with potential to de-isolate the teaching experience in the fields of science, technology, engineering, and mathematics (STEM). The authors offer a short synopsis of the intellectual origins of PLCs, provide multiple…

  5. NASA GSFC Opportunities for STEM Professionals Using the Vantage Point of Space

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.; Robbins, Geraldine B.

    2012-01-01

    NASA has a variety of learning opportunities for STEM professionals. Three opportunities at GSFC are examined in this chapter: 1) standard summer research and development internship for undergraduates, 2) senior internship for undergraduate and graduate students and 3) a workshop series for informal learning center professionals. We describe these programs, examine their evolution with respect to most effective education practices and their assessment and evaluation, and identify the similarities and differences between them. The internship programs highlight authentic project-based research and development experiences with the senior internship providing a richer, deeper, and more demanding experience that has greater professional value. The workshops for informal learning center professionals on-the-other hand, focus on building knowledge of GSFC s science and engineering strengths among these professionals, and on building enduring partnerships between individuals (participants and GSFC scientist, engineers and educators) and between organizations (GSFC and the informal learning center). Finally, we examine the characteristics of these programs from a design and management perspective. Through this examination we identify a general structure that provides insight into more effective design and management of similar education programs.

  6. Supporting Integrated STEM in the Elementary Classroom: A Professional Development Approach Centered on an Engineering Design Challenge

    ERIC Educational Resources Information Center

    Estapa, Anne T.; Tank, Kristina M.

    2017-01-01

    Background: Science, technology, engineering, and mathematics (STEM) education is becoming more prevalent at the elementary level, and there has been a push to focus on the integration between the STEM disciplines. Researchers within this study sought to understand the extent to which triads composed of a classroom teacher, student teacher, and an…

  7. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  8. Using Stems and Supported Inquiry to Help an Elementary Teacher Move toward Dialogic Reading Instruction

    ERIC Educational Resources Information Center

    McElhone, Dot

    2015-01-01

    Classroom talk patterns are notoriously resistant to change. This article examines changes in one fifth-grade teacher's discourse practices and beliefs as she and the author engaged in inquiry-driven professional development. Discourse analysis of class discussions and qualitative analysis of transcripts of professional development sessions…

  9. Innovative Uses of IT Applications in STEM Classrooms: A Preliminary Review of ITEST Teacher Professional Development

    ERIC Educational Resources Information Center

    Parker, Caroline E.; Stylinski, Cathlyn; Darrah, Marjorie; McAuliffe, Carla; Gupta, Preeti

    2010-01-01

    The National Science Foundation (NSF) Innovative Technology Experiences for Students and Teachers (ITEST) program provides a unique opportunity to assess a broad spectrum of professional development projects that share key characteristics but were designed to meet distinct local school and community contexts. To better understand how innovative…

  10. What's So Special about STEM? A Comparison of Women's Retention in STEM and Professional Occupations.

    PubMed

    Glass, Jennifer L; Sassler, Sharon; Levitte, Yael; Michelmore, Katherine M

    2013-01-01

    We follow female college graduates in the National Longitudinal Survey of Youth 1979 and compare the trajectories of women in science, technology, engineering, and mathematics (STEM)-related occupations to other professional occupations. Results show that women in STEM occupations are significantly more likely to leave their occupational field than professional women, especially early in their career, while few women in either group leave jobs to exit the labor force. Family factors cannot account for the differential loss of STEM workers compared to other professional workers. Few differences in job characteristics emerge either, so these cannot account for the disproportionate loss of STEM workers. What does emerge is that investments and job rewards that generally stimulate field commitment, such as advanced training and high job satisfaction, fail to build commitment among women in STEM.

  11. What Do Informal Educators Need To Be Successful In Teaching Planetary Science And Engineering?: Results From The PLANETS Out-Of-School Time Educator Needs Assessment (NASA NNX16AC53A)

    NASA Astrophysics Data System (ADS)

    Clark, J.; Bloom, N.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is five-year interdisciplinary and cross-institutional partnership to develop and disseminate out-of-school time curricular and professional development modules that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU), the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Museum of Science (MOS) Boston are partners in developing, piloting, and researching the impact of three out of school time planetary science and engineering curriculum and related professional development units over the life of the project. Critical to the success of out-of-school time curriculum implementation is to consider the needs of the informal education leaders. The CSTL at NAU is conducting a needs-assessment of OST educators nationwide to identify the gaps between current knowledge and abilities of OST educators and the knowledge and abilities necessary in order to facilitate effective STEM educational experiences for youth. The research questions are: a. What are current conditions of OST programs and professional development for OST educators? b. What do OST educators and program coordinators already know and think about facilitating meaningful and high quality STEM instruction? c. What are perceived needs of OST educators and program coordinators in order to implement meaningful and high quality STEM instruction? d. What design decisions will make professional development experiences more accessible, acceptable and useful to OST educators and program coordinators? In this presentation we will share the preliminary results of the national survey. The information about the needs of informal STEM educators can inform other NASA Science Mission Directorate educational partners in their program development in addition to AGU members designing informal education outreach.

  12. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities

    PubMed Central

    Mulnix, Amy B.

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice. This approach, which considers faculty as learners and STEM education reform as content, has the potential to better support faculty members because it promotes a deeper understanding of the reasons why a pedagogical change is effective. This depth of understanding is necessary for faculty members to successfully transfer new knowledge to their own contexts. A challenge ahead for the emergent learning sciences is to better integrate findings from across sister disciplines; DBER reports can take a step in that direction while improving their usefulness for instructors. PMID:27810872

  13. What’s So Special about STEM? A Comparison of Women’s Retention in STEM and Professional Occupations

    PubMed Central

    Sassler, Sharon; Levitte, Yael; Michelmore, Katherine M.

    2014-01-01

    We follow female college graduates in the National Longitudinal Survey of Youth 1979 and compare the trajectories of women in science, technology, engineering, and mathematics (STEM)-related occupations to other professional occupations. Results show that women in STEM occupations are significantly more likely to leave their occupational field than professional women, especially early in their career, while few women in either group leave jobs to exit the labor force. Family factors cannot account for the differential loss of STEM workers compared to other professional workers. Few differences in job characteristics emerge either, so these cannot account for the disproportionate loss of STEM workers. What does emerge is that investments and job rewards that generally stimulate field commitment, such as advanced training and high job satisfaction, fail to build commitment among women in STEM. PMID:25554713

  14. International Approaches to Renewable Energy Education--A Faculty Professional Development Case Study with Recommended Practices for STEM Educators

    ERIC Educational Resources Information Center

    Walz, Kenneth A.; Slowinski, Mary; Alfano, Kathleen

    2016-01-01

    Calls for increased international competency in U.S. college graduates and the global nature of the renewable energy industry require an exploration of how to incorporate a global perspective in STEM curricula, and how to best develop faculty providing them with global knowledge and skills necessary to update and improve existing teaching…

  15. Education for Professional Engineering Practice

    ERIC Educational Resources Information Center

    Bramhall, Mike D.; Short, Chris

    2014-01-01

    This paper reports on a funded collaborative large-scale curriculum innovation and enhancement project undertaken as part of a UK National Higher Education Science, Technology Engineering and Mathematics (STEM) programme. Its aim was to develop undergraduate curricula to teach appropriate skills for professional engineering practice more…

  16. Teacher Conceptions of Integrated STEM Education and How They Are Reflected in Integrated STEM Curriculum Writing and Classroom Implementation

    NASA Astrophysics Data System (ADS)

    Ring, Elizabeth A.

    There has been a nation-wide push for an increase in the use of integrated science, technology, engineering, and mathematics (STEM) education in the United States. With this shift in epistemological, pedagogical, and curricular content, there is a need to develop an understanding as to what integrated STEM education is, particularly among practitioners. In this dissertation, inservice science teacher conceptions of integrated STEM education were investigated to help understand what these conceptions are and how these conceptions influence curriculum writing and implementation of integrated STEM curricula in classrooms. Teacher conceptions and their influences were investigated through three separate but interrelated studies. First, K-12 inservice science teachers' conceptions of integrated STEM were investigated through the analysis of their sketched models of integrated STEM education. How these models changed throughout an intensive, three-week professional development was also explored. The goal of this first study was to identify conceptual models of integrated STEM education held by inservice science teachers and to understand how these conceptions might change over the course of a professional development. Second, photo elicitation interviews (PEIs) and curricular analysis were used to provide rich descriptions of the conceptual models of integrated STEM education held by inservice science teachers, determine what components of STEM inservice science teachers found fundamental to integrating STEM in the classroom based on their conceptions, and explore how teachers' conceptions of STEM were used in their development of integrated STEM curricula. The goal of this second study was to better understand inservice science teachers' conceptual models of integrated STEM and explore how these models were realized in the teachers' curriculum writing. Third, a multiple-case study was conducted with three teachers to investigate how the conceptual models held by inservice science teachers were enacted in their implementation of an integrated STEM curriculum unit in their classrooms. The goal of this third study was to determine how, if at all, teachers enact their conceptual models of integrated STEM education in the classroom when implementing a STEM curriculum. Together, these three studies helped to broaden the research related to integrated STEM education in the literature. The progressive nature of the studies in this dissertation, as well as the diverse use of methodologies and data analysis, helped to expand STEM education research.

  17. How Professional Development in Project Lead the Way: Changes High School STEM Teachers' Beliefs about Engineering Education

    ERIC Educational Resources Information Center

    Nathan, Mitchell J.; Atwood, Amy K.; Prevost, Amy; Phelps, L. Allen; Tran, Natalie A.

    2011-01-01

    This quasi-experimental study measured the impact of Project Lead the Way (PLTW) instruction and professional development training on the views and expectations regarding engineering learning, instruction and career success of nascent pre college engineering teachers. PLTW teachers' initial and changing views were compared to the views exhibited…

  18. The Effects of a STEM Professional Development Intervention on Elementary Teachers' Science Process Skills

    ERIC Educational Resources Information Center

    Cotabish, Alicia; Dailey, Deborah; Hughes, Gail D.; Robinson, Ann

    2011-01-01

    In order to increase the quality and quantity of science instruction, elementary teachers must receive professional development in science learning processes. The current study was part of a larger randomized field study of teacher and student learning in science. In two districts in a southern state, researchers randomly assigned teacher…

  19. Effects of Professional Development on Infusing Engineering Design into High School Science, Technology, Engineering, and Math (STEM) Curricula

    ERIC Educational Resources Information Center

    Avery, Zanj Kano

    2010-01-01

    The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…

  20. BioBridge Professional Development: Bringing Innovative Science into the Classroom

    ERIC Educational Resources Information Center

    Babendure, Jeremy; Thompson, Loren; Peterman, Karen; Teiper, Leanne; Gastil, Heather; Liwanag, Heather; Glenn-Lee, Shelley

    2011-01-01

    The BioBridge Professional Development model was created to bring current and relevant science into the high school classroom. The purpose of this intervention was to connect teachers with relevant science and to create innovative, hands-on activities that engage students, with the goal of increasing student interest in STEM careers. To this end,…

  1. Developing Professional Skills in STEM Students: Data Information Literacy

    ERIC Educational Resources Information Center

    Zilinski, Lisa D.; Sapp Nelson, Megan; Van Epps, Amy S.

    2014-01-01

    Undergraduate STEM students are increasingly expected to have some data use skills upon graduation, whether they pursue post-graduate education or move into industry. This project was an initial foray into the application of data information literacy competencies to training undergraduate students to identify markers of data and information…

  2. Examining the Quality of Technology Implementation in STEM Classrooms: Demonstration of an Evaluative Framework

    ERIC Educational Resources Information Center

    Parker, Caroline E.; Stylinski, Cathlyn D.; Bonney, Christina R.; Schillaci, Rebecca; McAuliffe, Carla

    2015-01-01

    Technology applications aligned with science, technology, engineering, and math (STEM) workplace practices can engage students in real-world pursuits but also present dramatic challenges for classroom implementation. We examined the impact of teacher professional development focused on incorporating these workplace technologies in the classroom.…

  3. Choice and Participation of Career by STEM Professionals with Sensory and Orthopedic Disabilities and the Roles of Assistive Technologies

    NASA Astrophysics Data System (ADS)

    Pacheco, Heather A.

    This is a qualitative study about sources of self-efficacy and roles of assistive technologies (AT) associated with the science, technology, engineering and mathematics (STEM) choice and participation of STEM professionals and graduate students with sensory and orthopedic disabilities. People with disabilities are underrepresented in STEM, which can be traced back along the STEM pipeline to early undergraduate participation in STEM. Little research exists, however, about pathways and factors associated with successful STEM participation for people with disabilities at any point along their trajectories. Eighteen STEM professionals and graduate students with sensory and orthopedic disabilities were interviewed for this study. Sources of self-efficacy were sought from interview transcripts, as were emergent themes associated with the types, uses and roles of AT. Findings suggest that people with sensory and orthopedic disabilities weigh sources of self-efficacy differently from white males without disabilities in STEM and more like other underrepresented minorities in STEM. Social persuasions were most frequently reported and in far more detail than other sources, suggesting that this source may be most impactful in the development of self-efficacy beliefs for this group. Additionally, findings indicate that AT is critical to the successful participation of people with sensory and orthopedic disabilities in STEM at all points along their STEM pathways. Barriers center around issues of access to full engagement in mainstream STEM classrooms and out of school opportunities as well as the impact of ill-informed perceptions about the capabilities of people with disabilities held by parents, teachers and college faculty who can act as gatekeepers along STEM pathways. Gaps in disability specialists' knowledge about STEM-specific assistive technologies, especially at the college level, are also problematic. The prevalence of mainstream public school attendance reported by participants indicates that classroom teachers and disability-related educators have important roles in providing access to STEM mastery experiences as well as providing positive support and high expectations for students with disabilities. STEM and disability-based networks served to provide participants with role models, out of school STEM learning experiences and important long-term social connections in STEM communities.

  4. Studying Teachers' Degree of Classroom Implementation, Teachers' Implementation Practices, and Students' Learning as Outcomes of K-12 STEM Professional Development

    ERIC Educational Resources Information Center

    Lin, Peiyi

    2013-01-01

    With a growing demand for an enhanced K-12 education for strengthening students' conceptual learning, interest, and career awareness in science, technology, engineering, and mathematics, teacher professional development projects have been viewed as an efficient approach. However, a variety of external and teacher factors may prevent such projects…

  5. The impact of the NASA Administrator's Fellowship Program on fellows' career choices

    NASA Astrophysics Data System (ADS)

    Graham, Eva M.

    Maintaining diversity in the technical workforce and in higher education has been identified as one way to increase the outreach, recruitment and retention of students and other faculty from underrepresented, underserved and minority populations, especially in Science, Technology, Engineering and Mathematics (STEM) courses of study and careers. The National Aeronautics and Space Administration (NASA) Administrator's Fellowship Program (NAFP) is a professional development program targeting faculty at Minority Serving Institutions and NASA civil servant employees for a two year work-based professional development experience toward increasing the likelihood of retaining them in STEM careers and supporting the recruitment and retention of minority students in STEM courses of study. This evaluation links the activities of the fellowship program to the impact on fellows' career choices as a result of participation through a series of surveys and interviews. Fellows' personal and professional perceptions of themselves and colleagues' and administrators' beliefs about their professional capabilities as a result of selection and participation were also addressed as they related to career outcomes. The findings indicated that while there was no direct impact on fellows' choice of careers, the exposure, direction and focus offered through travel, mentoring, research and teaching had an impact their perceptions of their own capabilities and, their colleagues' and administrators' beliefs about them as professionals and researchers. The career outcomes reported were an increase in the number publications, promotions, change in career and an increased awareness of the culture of science and engineering.

  6. Design-Based Online Teacher Professional Development to Introduce Integration of STEM in Pakistan

    ERIC Educational Resources Information Center

    Anwar, Tasneem

    2017-01-01

    In today's global society where innovations spread rapidly, the escalating focus on science, technology, engineering and mathematics (STEM) has quickly intensified in the United States, East Asia and much of Western Europe. Our ever-changing, increasingly global society faces many multidisciplinary problems, and many of the solutions require the…

  7. The Effects of a STEM Intervention on Elementary Students' Science Knowledge and Skills

    ERIC Educational Resources Information Center

    Cotabish, Alicia; Dailey, Debbie; Robinson, Ann; Hughes, Gail

    2013-01-01

    The purpose of the study was to assess elementary students' science process skills, content knowledge, and concept knowledge after one year of participation in an elementary Science, Technology, Engineering, and Mathematics (STEM) program. This study documented the effects of the combination of intensive professional development and the use of…

  8. Professional Development for the Integration of Engineering in High School STEM Classrooms

    ERIC Educational Resources Information Center

    Singer, Jonathan E.; Ross, Julia M.; Jackson-Lee, Yvette

    2016-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education in the U.S. is in transition. The recently published "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" as well as the "Next Generation Science Standards" are responsive to this call and clearly articulate a vision that…

  9. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    ERIC Educational Resources Information Center

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  10. Science Identity Construction through Extraordinary Professional Development Experiences

    ERIC Educational Resources Information Center

    McLain, Bradley David

    2012-01-01

    Despite great efforts and expenditures to promote science literacy and STEM career choices, the U.S. continues to lag behind other countries in science education, diminishing our capacity for STEM leadership and our ability to make informed decisions in the face of multiple looming global issues. I suggest that positive science identity…

  11. Generation SMH (shaking my head): Work-Life Balance and Generational Realities

    NASA Astrophysics Data System (ADS)

    Jones, M. B.

    2012-12-01

    Many Federal Agencies have 'workforce development' programs that focus on preparing the next generation of scientists and engineers at the graduate and undergraduate level. Several of the science Agencies (e.g., NASA, NOAA, EPA, etc.), have programs that support students in many of the diverse disciplines that are unique to those Agency missions. While financial support certainly is critical to assist students in the STEM and other fields, professional development is just as important to equip students with a balanced arsenal of tactics to be successful professionals in the STEM workforce of today. Finding life balance as one moves through a STEM career path poses unique challenges that require a certain skill set that is not always intuitive. Some of those challenges include: selecting grad or post doc positions (negotiating to a family's advantage); balancing work and family commitments; and dealing with employer/advisor perceptions and expectations. For current and future generations in STEM, many of the above mentioned challenges require additional skill in negotiating interactions with individuals from other generations. Understanding perceptions and managing expectations are learnable skills that do not necessarily come with project funding.

  12. Engineering Professional Development: Elementary Teachers' Self-efficacy and Sources of Self-efficacy

    NASA Astrophysics Data System (ADS)

    Webb, Donna Louise

    Currently, STEM (science, technology, engineering, and mathematics) is a popular buzz word in P-12 education as it represents a means to advance American competitiveness in the global economy. Proponents of the engineering component of STEM advocate additional benefits in teaching engineering, such as its capacity to engage students in collaboration, and to apply critical thinking, systems thinking, negotiation, and communication skills to solve real-life contextual problems. Establishing a strong foundation of engineering knowledge at a young age will provide students with internal motivation as it taps into their curiosity toward how things work, and it also prepares them for secondary science courses. Successful STEM education is often constrained by elementary teachers' low perception of self-efficacy to teach science and engineering. Elementary teachers with low self-efficacy in science are more likely to spend less instructional time teaching science, which suggests that teachers with little to no training in engineering might avoid teaching this topic. Therefore, the purpose of this study was twofold: (a) to examine the effects of engineering professional development on elementary (K-6) teachers' content and pedagogical content knowledge (PCK) and perceptions of self-efficacy to teach engineering, and (b) to identify and explain sources influencing self-efficacy. Professional development was conducted in a metropolitan area in the Pacific Northwest. Results revealed that after the engineering professional development, teachers experienced statistically significant gains in content, PCK, and self-efficacy to teach engineering. Increases in self-efficacy were mainly attributed to mastery experiences and cultivation of a growth mindset by embracing the engineering design process.

  13. Modeling Teacher Professional Development Through a Telescope Making Workshop

    NASA Astrophysics Data System (ADS)

    Meredith, J. T.; Schleigh, S. P.; Lee, T. D.

    2010-08-01

    The International Year of Astronomy (IYA2009) provides a springboard to develop innovative enduring educational programming directed toward astronomy education. We examine current professional development models focusing on astronomy and discuss the need for improvement. We propose a professional development design that follows the medical field philosophy using a low cost telescope making workshop as a vehicle to test and modify the model. The workshop promotes teacher content knowledge, pedagogical content knowledge and develops skills and confidence in an inquiry, integrative lesson. This model can be shared with professional development leaders, coordinators and teachers in any topic or level of education. Professional development designs such as the proposed promote excitement and interest in astronomy and makes it possible for underserved and economically depressed regions to have opportunities to promote the values of scientific investigation, STEM education, and public awareness of astronomy.

  14. In Search of Practitioner-Based Social Capital: A Social Network Analysis Tool for Understanding and Facilitating Teacher Collaboration in a US-Based STEM Professional Development Program

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira J.; Yoon, Susan A.

    2011-01-01

    This paper presents the first in a series of studies on the informal advice networks of a community of teachers in an in-service professional development program. The aim of the research was to use Social Network Analysis as a methodological tool to reveal the social networks developed by the teachers, and to examine whether these networks…

  15. Research University STEM Faculty Members' Motivation to Engage in Teaching Professional Development: Building the Choir Through an Appeal to Extrinsic Motivation and Ego

    NASA Astrophysics Data System (ADS)

    Bouwma-Gearhart, Jana

    2012-10-01

    This paper reports on a qualitative, grounded-theory-based study that explored the motivations of science and engineering faculty to engage in teaching professional development at a major research university. Faculty members were motivated to engage in teaching professional development due to extrinsic motivations, mainly a weakened professional ego, and sought to bring their teaching identities in better concordance with their researcher identities. The results pose a challenge to a body of research that has concluded that faculty must be intrinsically motivated to participate in teaching professional development. Results confirmed a pre-espoused theory of motivation, self-determination theory; a discussion of research literature consideration during grounded theory research is offered. A framework for motivating more faculty members at research universities to engage in teaching professional development is provided.

  16. Diversity: The Business Case?

    NASA Astrophysics Data System (ADS)

    Jones, B.

    2013-12-01

    Understanding perceptions and managing expectations are learnable skills that do not necessarily come with project funding. Finding life balance as one moves through a STEM career path poses unique challenges that require a certain skill set that is not always intuitive. Some of those challenges include: selecting grad or post doc positions; balancing work and family commitments; and dealing with employer/advisor perceptions and expectations. As in nature, the STEM enterprise requires multiple perspectives to flourish (necessity of peer review), and in a changing environment (e.g., budget, generations, technology, etc.), embracing diversity in thought and application may help drive the evolution of STEM in the U.S. Many Agencies and organizations have ';workforce development' programs that focus on preparing the next generation of scientists and engineers at the graduate and undergraduate level that focus on preparing students in the diverse disciplines that are unique to those Agency and organizational missions. While financial support certainly is critical to assist students in Science Technology Engineering and Mathematics (STEM) and other fields, professional development is just as important to equip students with a balanced arsenal of tactics to be successful professionals in the STEM workforce of today. Success in these efforts requires an honest look at the issue of inequality in the STEM ecosystem... meaning, what initiatives have been successful in addressing the imbalance in sources of thought and application, therefore promoting the importance of diversity.

  17. The National Science Foundation Strategic Framework for Investments in Graduate Education. FY 2016-FY 2020. Revised

    ERIC Educational Resources Information Center

    National Science Foundation, 2016

    2016-01-01

    Graduate education plays a central role in advancing the Nation's science and engineering research enterprise. It is also increasingly the means by which the Nation develops a diverse and highly technical Science Technology Engineering and Mathematics (STEM) professional workforce. The view that graduate education in STEM disciplines is an…

  18. Viewing How STEM Project-Based Learning Influences Students' Science Achievement through the Implementation Lens: A Latent Growth Modeling

    ERIC Educational Resources Information Center

    Erdogan, Niyazi; Navruz, Bilgin; Younes, Rayya; Capraro, Robert M.

    2016-01-01

    Recent studies on professional development programs indicate these programs, when sustained, have a positive impact on student achievement; however, many of these studies have failed to use longitudinal data. The purpose of this study is to understand how one particular instructional practice (STEM PBL) used consistently influences student…

  19. Math Is All around Us: Exploring the Teaching, Learning, and Professional Development of Three Urban Mathematics Teachers

    ERIC Educational Resources Information Center

    Cosby, Missy; Horton, Akesha; Berzina-Pitcher, Inese

    2017-01-01

    The MSUrbanSTEM fellowship program aims to support science, technology, engineering, and mathematics (STEM) educators teaching in an urban context. In this chapter, we used a multiple case studies methodology to examine the qualitatively different ways three urban mathematics educators implemented a yearlong project in their mathematics classrooms…

  20. STEM Development: A Study of 6th-12th Grade Girls' Interest and Confidence in Mathematics and Science

    ERIC Educational Resources Information Center

    Heaverlo, Carol Ann

    2011-01-01

    Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the…

  1. Increasing Student Interest and Attitudes in STEM: Professional Development and Activities to Engage and Inspire Learners

    ERIC Educational Resources Information Center

    Hayden, Katherine; Ouyang, Youwen; Scinski, Lidia; Olszewski, Brandon; Bielefeldt, Talbot

    2011-01-01

    The iQUEST (investigations for Quality Understanding and Engagement for Students and Teachers) project is designed to promote student interest and attitudes toward careers in science, technology, engineering, and mathematics (STEM). The project targets seventh- and eighth-grade science classrooms that serve high percentages of Hispanic students.…

  2. The effects of a STEM professional development intervention on elementary teachers

    NASA Astrophysics Data System (ADS)

    Dailey, Deborah D.

    To improve and sustain science teaching and learning in the elementary grades, experts recommended school districts afford time in the day for science instruction, secure the necessary resources for an investigative classroom, and provide teachers with increased professional development opportunities that target content knowledge, pedagogical skills, and confidence in teaching science (e.g. Buczynski & Hansen, 2010; Brand & Moore, 2011; NSB, 2010). In particular, researchers recommended teachers receive quality professional development that is sustained over time and embedded in the real world of the classroom (e.g. Buczynski & Hansen, 2010; Cotabish & Robinson, 2012). The purpose of this dissertation was to examine changes in elementary teachers' science teaching perceptions, concerns, and science process skills during and after participation in a STEM-focused professional development intervention involving embedded support using peer coaching. The positive effects of sustained, embedded professional development programs on science instruction have been documented by multiple research studies (e.g. Buczynski & Hansen, 2010; Cotabish, Dailey, Hughes, & Robinson, 2011; Duran & Duran, 2005; Levitt, 2011); however, few studies have investigated the effects after removal of the professional development support (Johnson, Kahle, & Fargo, 2007; Shymansky, Yore, & Anderson, 2004). By examining the changes across three years (including one year after the conclusion of the professional development intervention), the researcher in the present study considered the dosage of intervention needed to bring about and preserve significant changes in the participant teachers. To measure the impact of the intervention on teachers, the researcher used quantitative data supported by qualitative interviews. Results indicated that changes in science teaching perceptions were realized after one year or 60 hours of intervention; however, it took two years or 120 hours of intervention to see significant changes in teachers' science process skills. Of particular significance, the changes in teachers' science teaching perceptions, concerns, and science process skills held constant one year after removal of the professional development support.

  3. The Impact of the Design Process on Student Self-Efficacy and Content Knowledge

    ERIC Educational Resources Information Center

    Gess, Ashley J. H.

    2015-01-01

    The United States of America needs STEM trained workers, STEM faculty and STEM professionals to improve its technical and professional workforce in order to maintain leadership in a global economy. However, American students are not opting to remain in a STEM course of study, and this is especially so for women and minorities. Of the students who…

  4. The Development Officer Becomes a Professional.

    ERIC Educational Resources Information Center

    Chandler, John R., Jr.

    The responsibilities and skills of college development officers are discussed. The need for development officers has stemmed from financial problems that could only be solved through additional sources of revenue. In addition to understanding the concept and function of institutional development, the development officer must recognize that…

  5. Professional Regulation: A Potentially Valuable Tool in Responding to “Stem Cell Tourism”

    PubMed Central

    Zarzeczny, Amy; Caulfield, Timothy; Ogbogu, Ubaka; Bell, Peter; Crooks, Valorie A.; Kamenova, Kalina; Master, Zubin; Rachul, Christen; Snyder, Jeremy; Toews, Maeghan; Zoeller, Sonja

    2014-01-01

    The growing international market for unproven stem cell-based interventions advertised on a direct-to-consumer basis over the internet (“stem cell tourism”) is a source of concern because of the risks it presents to patients as well as their supporters, domestic health care systems, and the stem cell research field. Emerging responses such as public and health provider-focused education and national regulatory efforts are encouraging, but the market continues to grow. Physicians play a number of roles in the stem cell tourism market and, in many jurisdictions, are members of a regulated profession. In this article, we consider the use of professional regulation to address physician involvement in stem cell tourism. Although it is not without its limitations, professional regulation is a potentially valuable tool that can be employed in response to problematic types of physician involvement in the stem cell tourism market. PMID:25241736

  6. "Failure Is a Major Component of Learning Anything": The Role of Failure in the Development of STEM Professionals

    NASA Astrophysics Data System (ADS)

    Simpson, Amber; Maltese, Adam

    2017-04-01

    The term failure typically evokes negative connotations in educational settings and is likely to be accompanied by negative emotional states, low sense of confidence, and lack of persistence. These negative emotional and behavioral states may factor into an individual not pursuing a degree or career in science, technology, engineering, or mathematics (STEM). This is of particular concern considering the low number of women and underrepresented minorities pursing and working in a STEM field. Utilizing interview data with professionals across STEM, we sought to understand the role failure played in the persistence of individuals who enter and pursue paths toward STEM-related careers. Findings highlighted how participants' experiences with failure (1) shaped their outlooks or views of failure, (2) shaped their trajectories within STEM, and (3) provided them with additional skills or qualities. A few differences based on participants' sex, field, and highest degree also manifested in our analysis. We expect the results from this study to add research-based results to the current conversation around whether experiences with failure should be part of formal and informal educational settings and standards-based practices.

  7. Inspiring the Next Generation: Astronomy Catalyzes K12 STEM Education

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Thaller, Michelle; Winglee, Robert; Borders, Kyla

    2017-06-01

    K-12 educators need effective and relevant astronomy professional development. NASA's Mission Science provides innovative and accessible opportunities for K-12 teachers. Science questions involve scale and distance, including Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers can gain an understanding of basic telescopes, the history of telescopes, ground and satellite based telescopes, and models of JWST Telescope. An in-depth explanation of JWST and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. During teacher training, we taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of lenticulars and diagramming of infrared data, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars.We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development.Funding was provided by Washington STEM, NASA, and the Washington Space Grant Consortium.

  8. Borderless STEM education: A study of both American students and foreign students

    NASA Astrophysics Data System (ADS)

    Komura, Kiriko

    This study explores the current status of borderless education in STEM through surveys of two populations of STEM students: American students who studied abroad and foreign students who were studying in the U.S. It was undertaken in response to the U.S. government's desires to strengthen STEM education and to develop American students' global competencies. The purpose was to understand how international experiences can be enhanced in order to increase American STEM students' interest in study abroad programs and in earning advanced STEM degrees and to understand how to attract more foreign STEM students to study in the United States. Issues of particular focus were: the impacts of gender, race/ethnicity, and nationality on STEM students' motivation to participate in, and responses to study abroad programs, and the value of Information and Communication Technologies (ICTs) in borderless STEM education. Several different forms of multivariate analyses were performed on data from surveys at seven public and private colleges and universities in the Southern California area. The results indicated that among American students, greater value was placed on social and cultural experiences gained through studying abroad. In contrast, among foreign students greater value was placed on enhancement of their academic and professional development opportunities. American students whose study abroad included research experiences had a greater interest in international research and teaching in the future. Foreign graduate students majoring in computer science, engineering and biology are the most likely to seek opportunities to study and work in the US. Finally, ICTs were valued by American students as platforms for social interactions and by foreign students for facilitating professional networks. The analyses lead to several recommendations, including: STEM faculty should be made aware of the critical importance of their advising and mentoring in motivating students to choose to study abroad and, minority students gain more confidence about working in STEM fields and seeking advanced STEM degrees as a result of studying abroad.

  9. African-American Leaders in the Field of Science: A Template for Overcoming Obstacles

    NASA Astrophysics Data System (ADS)

    Schmidt, Waweise J.

    The purpose of this phenomenological multi-case study and three-person interview, was to discover what select prominent African-American scientists perceived were obstacles to overcome to be successful leaders in their professional lives, and the opportunities that aided in their professional growth. Through the addition of the three-person interview, the researcher discovered commonalities between the perceived obstacles and opportunities of current science, technology, engineering and mathematics (STEM) professionals and the perceptions of selected historically prominent scientists. This study examined documents of the period and relics of prominent African-Americans who were in STEM fields and lived from 1860 to 1968. A description of the setting that influenced how the scientists perceived the phenomenon was written with the approach being anchored in the social constructivist tradition. Commonalities emerged through coding experiences of the individuals, which yielded patterns to help explain the phenomenon. By investigating their perceptions, insight was gained into understanding the attributes, tools and skills, and tailored experiences that encouraged Thomas Burton, Kelly Miller, George Carver, Daniel Williams, Matthew Henson, Ernest Just, Charles Drew, Percy Julian, William Cobb, and Benjamin Peery to achieve success in STEM fields between 1860 and 1968. The significance of the study is multifaceted: understanding the obstacles that African-American scientists had to overcome in their professional lives can result in the development of science educators who are better informed regarding the appropriate types of assistance that can be provided to aid their students in overcoming obstacles. This can hopefully increase their opportunities to succeed within the science field. This study can result in the development of science educators who are more sensitive in addressing the needs of the developing minority student, and can encourage, educate, and enlist more individuals to enter into the dialogue regarding the disparity of minority representation in STEM fields.

  10. GE STEM Teacher's Conference

    NASA Image and Video Library

    2017-07-13

    Education Specialists Lynn Dotson, left, of the NASA Public Engagement Center, and Lester Morales, right, of Texas State University's NASA STEM Educator Professional Development Collaborative, explain the Rocketry Engineering Design Challenge to teachers participating in the 2017 GE Foundation High School STEM Integration Conference at the Center for Space Education at NASA's Kennedy Space Center. High school teachers from across the country took part in the week-long conference, which is designed to explore effective ways for teachers, schools and districts from across the country to integrate STEM throughout the curriculum. The conference is a partnership between GE Foundation and the National Science Teachers Association.

  11. Strategies, Use, and Impact of Social Media for Supporting Teacher Community within Professional Development: The Case of One Urban STEM Program

    ERIC Educational Resources Information Center

    Rosenberg, Joshua M.; Greenhalgh, Spencer P.; Wolf, Leigh Graves; Koehler, Matthew J.

    2017-01-01

    This paper examines the use of social media to foster community connections within the MSU Urban Science, Technology, Engineering, and Mathematics (STEM) program. We describe the strategies employed by the program and the technologies employed by instructors to provide support, build community, and showcase learning. We highlight three particular…

  12. Evaluation of a High-Engagement Teaching Program for STEM Graduate Students: Outcomes of the Future Academic Scholars in Teaching (FAST) Fellowship Program

    ERIC Educational Resources Information Center

    Prevost, Luanna B.; Vergara, Claudia E.; Urban-Lurain, Mark; Campa, Henry, III.

    2018-01-01

    Higher education institutions prepare future faculty members for multiple roles, including teaching. However, teaching professional development programs for graduate students vary widely. We present evaluation data from a high engagement program for STEM doctoral students. We analyzed the impact on three cohorts of participants over three academic…

  13. Toward Inclusive STEM Classrooms: What Personal Role Do Faculty Play?

    PubMed Central

    Killpack, Tess L.; Melón, Laverne C.

    2016-01-01

    Private and public policies are increasingly aimed at supporting efforts to broaden participation of a diverse body of students in higher education. Unfortunately, this increase in student diversity does not always occur alongside changes in institutional culture. Unexamined biases in institutional culture can prevent diverse students from thriving and persisting in science, technology, engineering, and mathematics (STEM) fields. Given the daily personal interactions that faculty have with students, we suggest that individual educators have the opportunity, and responsibility, to improve the retention and persistence of diverse students. However, in our experience, faculty professional development programs often limit discussions of diversity to “comfortable” topics (such as learning styles) and miss opportunities to explore deeper issues related to faculty privilege, implicit bias, and cues for stereotype threat that we all bring to the classroom. In this essay, we present a set of social science concepts that we can extend to our STEM courses to inform our efforts at inclusive excellence. We have recommended strategies for meaningful reflection and professional development with respect to diversity and inclusion, and aim to empower faculty to be change agents in their classrooms as a means to broadening participation in STEM fields. PMID:27496362

  14. Explore-create-share study: An evaluation of teachers as curriculum innovators in engineering education

    NASA Astrophysics Data System (ADS)

    Berry, Ayora

    The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and adopt it in their classrooms. In a CDB professional development model teachers actively design lessons, student resources, and assessments for their classroom instruction. In other science, technology, engineering and mathematics (STEM) disciplines, CDB professional development has been reported to (a) position teachers as architects of change, (b) provide a professional learning vehicle for educators to reflect on instructional practices and develop content knowledge, (c) inspire a sense of ownership in curriculum decision-making among teachers, and (d) use an instructional approach that is coherent with teachers' interests and professional goals. The CDB professional development program in this study used the Explore-Create-Share (ECS) framework as an instructional model to support teacher-led curriculum design and implementation. To evaluate the impact of the CDB professional development and associated ECS instructional model, three research studies were conducted. In each study, the participants completed a six-month CDB professional development program, the PTC STEM Certificate Program, that included sixty-two instructional contact hours. Participants learned about industry and education engineering concepts, tested engineering curricula, collaborated with K-12 educators and industry professionals, and developed project-based engineering curricula using the ECS framework. The first study evaluated the impact of the CDB professional development program on teachers' engineering knowledge, self-efficacy in designing engineering curriculum, and instructional practice in developing project-based engineering units. The study included twenty-six teachers and data was collected pre-, mid-, and post-program using teacher surveys and a curriculum analysis instrument. The second study evaluated teachers' perceptions of the ECS model as a curriculum authoring tool and the quality of the curriculum units they developed. The study included sixty-two participants and data was collected post-program using teacher surveys and a curriculum analysis instrument. The third study evaluated teachers' experiences implementing ECS units in the classroom with a focus on identifying the benefits, challenges and solutions associated with project-based engineering in the classroom. The study included thirty-one participants and data was collected using an open-ended survey instrument after teachers completed implementation of the ECS curriculum unit. Results of these three studies indicate that teachers can be prepared to integrate engineering in the classroom using a CDB professional development model. Teachers reported an increase in engineering content knowledge, improved their self-efficacy in curriculum planning, and developed high quality instructional units that were aligned to engineering design practices and STEM educational standards. The ECS instructional model was acknowledged as a valuable tool for developing and implementing engineering education in the classroom. Teachers reported that ECS curriculum design aligned with their teaching goals, provided a framework to integrate engineering with other subject-area concepts, and incorporated innovative teaching strategies. After implementing ECS units in the classroom, teachers reported that the ECS model engaged students in engineering design challenges that were situated in a real world context and required the application of interdisciplinary content knowledge and skills. Teachers also reported a number of challenges related to scheduling, content alignment, and access to resources. In the face of these obstacles, teachers presented a number of solutions that included optimization of one's teaching practice, being resource savvy, and adopting a growth mindset.

  15. NASA and Public Libraries: Enhancing STEM Literacy in Underserved Communities

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Harold, J. B.; Randall, C.

    2016-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, and defining the conditions necessary to support life beyond Earth. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was recently funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are developing new ways to engage their patrons in STEM learning, and NCIL's STAR Library Education Network (STAR_Net) has been supporting their efforts for the last eight years, including through a vibrant community of practice that serves both librarians and STEM professionals. Project stakeholders include public library staff, state libraries, the earth and space science education community at NASA, subject matter experts, and informal science educators. The project will leverage high-impact SMD and library events to catalyze partnerships through dissemination of SMD assets and professional development. It will also develop frameworks for public libraries to increase STEM interest pathways in their communities (with supports for reaching underserved audiences). This presentation will summarize the key activities and expected outcomes of the 5-year project.

  16. Diversity and Equity in the Lab: Preparing Scientists and Engineers for Inclusive Teaching in Courses and Research Environments

    NASA Astrophysics Data System (ADS)

    Hunter, L.; Seagroves, S.; Metevier, A. J.; Kluger-Bell, B.; Raschke, L.; Jonsson, P.; Porter, J.; Brown, C.; Roybal, G.; Shaw, J.

    2010-12-01

    Despite high attrition rates in college-level science, technology, engineering, and math (STEM) courses, with even higher rates for women and underrepresented minorities, not enough attention has been given to higher education STEM classroom practices that may limit the retention of students from diverse backgrounds. The Professional Development Program (PDP) has developed a range of professional development activities aimed at helping participants learn about diversity and equity issues, integrate inclusive teaching strategies into their own instructional units, and reflect on their own teaching practices. In the PDP, all participants develop and teach a STEM laboratory activity that enables their students to practice scientific inquiry processes as they gain an understanding of scientific concepts. In addition, they are asked to consider diversity and equity issues in their activity design and teaching. The PDP supports participants in this challenging endeavor by engaging them in activities that are aligned with a PDP-defined Diversity & Equity Focus Area that includes five emphases: 1) Multiple ways to learn, communicate and succeed; 2) Learners' goals, interests, motivation, and values; 3) Beliefs and perceptions about ability to achieve; 4) Inclusive collaboration and equitable participation; 5) Social identification within STEM culture. We describe the PDP Diversity & Equity focus, the five emphases, and the supporting activities that have been designed and implemented within the PDP, as well as future directions for our diversity and equity efforts.

  17. STEM development: A study of 6th--12th grade girls' interest and confidence in mathematics and science

    NASA Astrophysics Data System (ADS)

    Heaverlo, Carol Ann

    Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the STEM fields. In order to increase the representation of women in the STEM fields, it is important to understand the developmental factors that impact girls' interest and confidence in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). This study identifies factors that impact girls' interest and confidence in mathematics and science, defined as girls' STEM development. Using Bronfenbrenner's (2005) bioecological model of human development, several factors were hypothesized as having an impact on girls' STEM development; specifically, the macrosystems of region of residence and race/ethnicity, and the microsystems of extracurricular STEM activities, family STEM influence, and math/science teacher influence. Hierarchical regression analysis results indicated that extracurricular STEM involvement and math teacher influence were statistically significant predictors for 6--12th grade girls' interest and confidence in mathematics. Furthermore, hierarchical regression analysis results indicated that the only significant predictor for 6--12th grade girls' interest and confidence in science was science teacher influence. This study provides new knowledge about the factors that impact girls' STEM development. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of 6--12th grade girls.

  18. Similarities and Differences in the Academic Education of Software Engineering and Architectural Design Professionals

    ERIC Educational Resources Information Center

    Hazzan, Orit; Karni, Eyal

    2006-01-01

    This article focuses on the similarities and differences in the academic education of software engineers and architects. The rationale for this work stems from our observation, each from the perspective of her or his own discipline, that these two professional design and development processes share some similarities. A pilot study was performed,…

  19. Building Professional Social Media Communications Skills: A STEM-Originated Course with University-Wide Student Appeal

    ERIC Educational Resources Information Center

    Baim, Susan A.

    2016-01-01

    Routine correspondence with the author's business technology students indicated the need for increased skill and professionalism in social media communications as a key driver of successful career development strategies. A new course designed to assist students in transitioning from typical, casual social media use to the more rigorous and…

  20. Data Driven Professional Development Design for Out-of-School Time Educators Using Planetary Science and Engineering Educational Materials

    NASA Astrophysics Data System (ADS)

    Clark, J.; Bloom, N.

    2017-12-01

    Data driven design practices should be the basis for any effective educational product, particularly those used to support STEM learning and literacy. Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center, and the Museum of Science Boston are partners in developing, piloting, and researching the impact of three out of school time units. Two units are for middle grades youth and one is for upper elementary aged youth. The presentation will highlight the data driven development process of the educational products used to provide support for educators teaching these curriculum units. This includes how data from the project needs assessment, curriculum pilot testing, and professional support product field tests are used in the design of products for out of school time educators. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings. Examples of the tiers of support will be provided.

  1. NASA Astrophysics EPO Community: Enhancing STEM Instruction

    NASA Astrophysics Data System (ADS)

    Bartolone, L.; Manning, J.; Lawton, B.; Meinke, B. K.; Smith, D. A.; Schultz, G.; NASA Astrophysics EPO community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance Science, Technology, Engineering, and Math (STEM) instruction. In 2010, the Astrophysics EPO community identified online professional development for classroom educators and multiwavelength resources as a common interest and priority for collaborative efforts. The result is NASA's Multiwavelength Universe, a 2-3 week online professional development experience for classroom educators. The course uses a mix of synchronous sessions (live WebEx teleconferences) and asynchronous activities (readings and activities that educators complete on their own on the Moodle, and moderated by course facilitators). The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to K-12 Educators. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the K-12 education community in these ways, including associated metrics and evaluation findings.

  2. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivationmore » for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).« less

  3. A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2016-12-01

    The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.

  4. The effect of video interviews with STEM professionals on STEM-subject attitude and STEM-career interest of middle school students in conservative Protestant Christian schools

    NASA Astrophysics Data System (ADS)

    Alsup, Philip R.

    Inspiring learners toward career options available in STEM fields (Science, Technology, Engineering, and Mathematics) is important not only for economic development but also for maintaining creative thinking and innovation. Limited amounts of research in STEM education have focused on the population of students enrolled in religious and parochial schools, and given the historic conflict between religion and science, this sector of American education is worthy of examination. The purpose of this quantitative study is to extend Gottfredson's (1981) Theory of Circumscription and Compromise as it relates to occupational aspirations. Bem's (1981) Gender Schema Theory is examined as it relates to the role of gender in career expectations, and Crenshaw's (1989) Intersectionality Theory is included as it pertains to religion as a group identifier. Six professionals in STEM career fields were video recorded while being interviewed about their skills and education as well as positive and negative aspects of their jobs. The interviews were compiled into a 25-minute video for the purpose of increasing understanding of STEM careers among middle school viewers. The research questions asked whether middle school students from conservative, Protestant Christian schools in a Midwest region increased in STEM-subject attitude and STEM-career interest as a result of viewing the video and whether gender interacted with exposure to the video. A quasi-experimental, nonequivalent control groups, pretest/posttest factorial design was employed to evaluate data collected from the STEM Semantic Survey. A Two-Way ANCOVA revealed no significant differences in dependent variables from pretest to posttest. Implications of the findings are examined and recommendations for future research are made. Descriptors: STEM career interest, STEM attitude, STEM gender disparity, Occupational aspirations, Conservative Protestant education.

  5. Professional regulation: a potentially valuable tool in responding to "stem cell tourism".

    PubMed

    Zarzeczny, Amy; Caulfield, Timothy; Ogbogu, Ubaka; Bell, Peter; Crooks, Valorie A; Kamenova, Kalina; Master, Zubin; Rachul, Christen; Snyder, Jeremy; Toews, Maeghan; Zoeller, Sonja

    2014-09-09

    The growing international market for unproven stem cell-based interventions advertised on a direct-to-consumer basis over the internet ("stem cell tourism") is a source of concern because of the risks it presents to patients as well as their supporters, domestic health care systems, and the stem cell research field. Emerging responses such as public and health provider-focused education and national regulatory efforts are encouraging, but the market continues to grow. Physicians play a number of roles in the stem cell tourism market and, in many jurisdictions, are members of a regulated profession. In this article, we consider the use of professional regulation to address physician involvement in stem cell tourism. Although it is not without its limitations, professional regulation is a potentially valuable tool that can be employed in response to problematic types of physician involvement in the stem cell tourism market. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The Development of the STEM Career Interest Survey (STEM-CIS)

    NASA Astrophysics Data System (ADS)

    Kier, Meredith W.; Blanchard, Margaret R.; Osborne, Jason W.; Albert, Jennifer L.

    2014-06-01

    Internationally, efforts to increase student interest in science, technology, engineering, and mathematics (STEM) careers have been on the rise. It is often the goal of such efforts that increased interest in STEM careers should stimulate economic growth and enhance innovation. Scientific and educational organizations recommend that efforts to interest students in STEM majors and careers begin at the middle school level, a time when students are developing their own interests and recognizing their academic strengths. These factors have led scholars to call for instruments that effectively measure interest in STEM classes and careers, particularly for middle school students. In response, we leveraged the social cognitive career theory to develop a survey with subscales in science, technology, engineering, and mathematics. In this manuscript, we detail the six stages of development of the STEM Career Interest Survey. To investigate the instrument's reliability and psychometric properties, we administered this 44-item survey to over 1,000 middle school students (grades 6-8) who primarily were in rural, high-poverty districts in the southeastern USA. Confirmatory factor analyses indicate that the STEM-CIS is a strong, single factor instrument and also has four strong, discipline-specific subscales, which allow for the science, technology, engineering, and mathematics subscales to be administered separately or in combination. This instrument should prove helpful in research, evaluation, and professional development to measure STEM career interest in secondary level students.

  7. Examining the Impact of a Professional Development Course on STEM Teachers' Acceptance of and Intent to Implement Problem-Based Learning

    ERIC Educational Resources Information Center

    Mong, Christopher J.

    2013-01-01

    In order to improve STEM education, as well as incorporate 21st century skills, teacher education programs are in the process of finding better ways to address these areas (Trilling & Fadel, 2009). New teachers entering the workforce are prepared mostly to teach content the way they were taught (Alger, 2009; Eick & Reed, 2002; Goodnough…

  8. CUTTING BACK THE STEM: CULTIVATING LIBERAL ARTS IN OFFICER ACCESSIONS

    DTIC Science & Technology

    2016-06-01

    research demonstrates that creativity , innovation, and critical thinking are indeed important capabilities for the profession of arms. Additionally, a...Thinking and Action,” Infinity Journal Special Edition “ International Relations in Professional Military Education, Winter 2016, 10. 7 true...Developing Strategic-Minded Junior Officers,” Infinity Journal Special Edition “ International Relations in Professional Military Education, Winter 2016, 6

  9. Study of International Mentoring and Coaching Practices and Their Constructive Application in the Russian System of Corporate Education and Training

    ERIC Educational Resources Information Center

    Masalimova, Alfiya R.; Shaidullina, Almira R.

    2016-01-01

    The relevance of the research stems from dissimilarities between domestic and foreign experiences of mentoring and coaching in corporate education and training related to the methods and techniques aimed not only at transmitting mentor's professional experience to young professionals but also at identifying and developing mentees' potential, and…

  10. MS PHD'S: Bridging the Gap of Academic and Career Success Through Educational and Professional Development for Minorities

    NASA Astrophysics Data System (ADS)

    Brown, D.; Vargas, W.; Padilla, E.; Strickland, J.; Echols, E.; Johnson, A.; Williamson Whitney, V.; Ithier-Guzman, W.; Ricciardi, L.; Johnson, A.; Braxton, L.

    2011-12-01

    Historically, there has been a lack of ethnic and gender diversity in the geo-sciences. The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Professional Development Program provides a bridge to young scientists of diverse backgrounds who in turn will impact many. In a process of 3 phases, the program introduces the students to the scientific community through participation in professional and society meetings and networking with scientists and personnel within federal agencies, academic institutions and STEM-based industries. The program builds confidence, offers role models for professional development and provides students support during their education. Upon completion, students achieve a high level of self-actualization and self-esteem combined with individual growth. They become part of a community that continuously provides support and security to each other. This support is tangible through the mentor/mentee relationships which will help with individual growth throughout the mentoring cycle. Having role models and familiar faces to whom mentees can relate to will encourage our students to succeed in the STEM's field. To date, 159 students have participated in the program: 26 have successfully completed their PhD and 56 are currently enrolled in the PhD programs nationwide. The MS PHD'S Program creates a forum of diverse peoples by diverse peoples with diverse interest and strength, where the ongoing goal is to continually raise the bar for each individual. MS PHD'S establishes a nurturing goal-oriented environment for the geo scientist of the future who in turn will make profound contributions on a local, national and global scale. To conclude, MSPHD'S not only bridges the gap of unrepresented minorities in STEM careers, but also generates educational approaches to make the earth system sciences available to more, impacting all.

  11. An Exploration of the Factors That Contribute to the Success of African American Professionals in STEM-Related Careers

    ERIC Educational Resources Information Center

    Alexander Nealy, Yolande Kristine

    2017-01-01

    This study examined factors that contribute to the success of African American professionals in STEM careers. Data were collected through a survey from 40 participants and in-depth interviews with eight of them. The survey was used to explore the participants' educational experiences from elementary school through college and on their STEM-related…

  12. Hopes and fears for professional movement in the stem cell community.

    PubMed

    Longstaff, Holly; Khramova, Vera; Eijkholt, Marleen; Mizgalewicz, Ania; Illes, Judy

    2013-05-02

    We examine here how the issue of professional migration in stem cell research has been explored in news media, government documents, and the peer-reviewed literature. The results shed light on how patterns of and forces that motivate these movements are depicted and highlight issues of significance to the stem cell community. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A Case Study of URM Retention through IBP's Professional Development and Mentoring Activities

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Williamson Whitney, V.; Ricciardi, L.; Detrick, L.; Siegfried, D.; Fauver, A.; Ithier-Guzman, W.; Thomas, S. H.; Valaitis, S.

    2012-12-01

    As a free-standing not for profit organization, the Institute for Broadening Participation (IBP) hosts a variety of initiatives designed to increase the retention of underrepresented minority (URM) students pursuing pathways in STEM. Successful initiatives include virtual and face-to-face components that bring together URM students with established URM and other scientists in academia, government and industry. These connections provide URM students with supportive mentoring, networking opportunities, and professional skill development contributing to an overall improved retention rate of URM students majoring in STEM degrees. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science, Pathways to Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) Professional Development program in Earth System Science (ESS). The NASA OSSI initiative recruits and facilitates student engagement in NASA student education and employment opportunities. Through IBP's virtual and person-to-person communications, students learn how to identify, apply to, and participate in NASA programs. Pathways to Ocean Science connects and supports URM students with REU programs in the Ocean Sciences while serving as a resource for REU program directors. As one of IBP's newest initiatives, Pathways to Engineering has synthesized mentoring resources into an online mentoring manual for URM STEM students that has been extensively vetted by mentoring experts throughout the country. The manual which is organized by user groups serves as an e-forum providing undergraduates, graduates, postdocs, faculty members and project directors with valuable resources to facilitate a positive REU experience. This mentoring initiative also provides a mechanism for submitting new resources and inviting feedback in mentoring best practices throughout the STEM community. MS PHD'S, one of IBP's longest running and most successful initiatives, focuses on increasing the retention rate of URM students receiving advanced degrees in Earth system science. Through a three-phase structure of activities, the program addresses major barriers to retention in ESS including isolation, lack of preparation and professional development, and lack of mentoring. Program activities center on peer-to-peer community building, professional development exercises, networking experiences, one-on-one mentoring, and a facilitated virtual community. MS PHD'S participants report a reduced sense of isolation, an increased sense of community, and a higher level of confidence about their ability to succeed in their chosen field. As of August 2012, 189 students have participated in the program. 60 of those students are currently enrolled in a PhD. program. Another 35 have completed their PhD and are actively engaged in the ESS workforce.

  14. The Role of Non-Formal Contexts in Teacher Education for STEM: The Case of Horno[superscript 3] Science and Technology Interactive Centre

    ERIC Educational Resources Information Center

    Fernández-Limón, Claudia; Fernández-Cárdenas, Juan Manuel; Gómez Galindo, Alma Adrianna

    2018-01-01

    Teacher education can benefit directly from experiences in non-formal settings. This article presents a research study with elementary teachers who were teaching in public schools in the state of Nuevo León, México, and participated in a STEM Continuous Professional Development (CPD) workshop. The workshop provided a platform for teachers to…

  15. Moving Latino/a Students into STEM Majors in College: The Role of Teachers and Professional Communities in Secondary Schools

    ERIC Educational Resources Information Center

    Moller, Stephanie; Banerjee, Neena; Bottia, Martha Cecilia; Stearns, Elizabeth; Mickelson, Roslyn Arlin; Dancy, Melissa; Wright, Eric; Valentino, Lauren

    2015-01-01

    We argue that Latino/a students are more likely to major in science, technology, engineering, and math (STEM) in college if they were educated in high schools where they studied with satisfied teachers who worked in collaborative professional communities. Quantitative results demonstrate that collaborative professional communities in high school…

  16. Building a Mentorship-Based Research Program Focused on Individual Interests, Curiosity, and Professional Skills at the North Carolina School of Science and Mathematics

    ERIC Educational Resources Information Center

    Shoemaker, Sarah E.; Thomas, Christopher; Roberts, Todd; Boltz, Robin

    2016-01-01

    The North Carolina School of Science and Mathematics (NCSSM) offers students a wide variety of real-world opportunities to develop skills and talent critical for students to gain the essential professional and personal skills that lead to success in science, technology, engineering, and mathematics (STEM) careers. One of the key avenues available…

  17. Identities and motives of naturalist development program attendees and their relation to professional careers

    NASA Astrophysics Data System (ADS)

    Mraz, Jennifer Arin

    In recent years, there has been much concern over the decline of biologists who actually identify themselves to be naturalists, which negatively impacts the field of conservation and the study of biology as a whole. This could result in a decrease in individuals who participate in naturalist-like activities, such as informal environmental education and environmental volunteerism. The purpose of my study was to determine what discourse identities were held by naturalist development program participants, how these discourse identities related to their volunteer motives in environmental settings, and how discourse identity related to professional careers. I defined identity through the lens of discourse-identity, which describes a person's identity as being conveyed through that individual's communication and actions. I conducted individual interviews or used an online questionnaire to ask questions to naturalist development program attendees about their workshop experience, relationship with nature, volunteer motives and activities, as well as professional career or career aspiration. Volunteer motives were quantitatively measured in both types of program participants using the published Volunteer Motivation Questionnaire. Overall, I found that 100 study participants had six discourse identities: naturalist (n = 27), aspiring naturalist ( n = 32), nature steward (n = 5), outreach volunteer (n = 6), casual nature observer (n = 22), and recreational nature user (n = 8). Naturalist development programs should focus on developing more naturalist-like discourse identities in their participants to help encourage participation in naturalist activities. Volunteer motives were ranked by importance to participants in the following order: helping the environment, learning, user, project organization, values and esteem, social, and career. The majority of Master Naturalist Program study participants that stated a career were in non-STEM careers; however, the majority of individuals with a naturalist or aspiring naturalist discourse identity did have careers in STEM. The OUTSIDE NDP study participants all expressed their intention to pursue STEM careers. By focusing on hands-on outdoor professional development, the development of naturalist discourse identities, and on developing the volunteer motives that participants' value, more individuals could be retained to assist with naturalist activities.

  18. Redefining the potential applications of dental stem cells: An asset for future

    PubMed Central

    Rai, Shalu; Kaur, Mandeep; Kaur, Sandeep; Arora, Sapna Panjwani

    2012-01-01

    Recent exciting discoveries isolated dental stem cells from the pulp of the primary and permanent teeth, from the periodontal ligament, and from associated healthy tissues. Dental pulp stem cells (DPSCs) represent a kind of adult cell colony which has the potent capacity of self-renewing and multilineage differentiation. Stem cell-based tooth engineering is deemed as a promising approach to the making of a biological tooth (bio-tooth) or engineering of functional tooth structures. Dental professionals have the opportunity to make their patients aware of these new sources of stem cells that can be stored for future use as new therapies are developed for a range of diseases and injuries. The aim of this article is to review and understand how dental stem cells are being used for regeneration of oral and conversely nonoral tissues. A brief review on banking is also done for storing of these valuable stem cells for future use. PMID:23716933

  19. A Scholarship Model for Student Recruitment and Retention in STEM Disciplines

    ERIC Educational Resources Information Center

    Yelamarthi, Kumar; Mawasha, P. Ruby

    2010-01-01

    A scholarship program offers enrichment, support, higher recruitment and retention, improved professional development towards employment, and increased graduate opportunities for underrepresented groups. In this paper, it is postulated that the development of a successful and competitive scholarship program is dependent on several variables…

  20. Utilizing Model Eliciting Activities (MEA's) to engage middle school teachers and students in storm water management practices to mitigate human impacts of land development

    NASA Astrophysics Data System (ADS)

    Tazaz, A.; Wilson, R. M.; Schoen, R.; Blumsack, S.; King, L.; Dyehouse, M.

    2013-12-01

    'The Integrating STEM Project' engaged 6-8 grade teachers through activities incorporating mathematics, science and technology incorporating both Next Generation Science Standards (NGSS) and Common Core State Standards-Mathematics (CCSS-Math). A group of researchers from Oceanography, Mathematics, and Education set out to provide middle school teachers with a 2 year intensive STEM integration professional development with a focus on environmental topics and to monitor the achievement outcomes in their students. Over the course of 2 years the researchers created challenging professional development sessions to expand teacher knowledge and teachers were tasked to transform the information gained during the professional development sessions for classroom use. One lesson resource kit presented to the teachers, which was directly applicable to the classroom, included Model Eliciting Activities (MEA's) to explore the positive and negative effects land development has on climate and the environment, and how land development impacts storm water management. MEA's were developed to encourage students to create models to solve complex problems and to allow teachers to investigate students thinking. MEA's are a great curriculum technique used in engineering fields to help engage students by providing hands on activities using real world data and problems. We wish to present the Storm Water Management Resource toolkit including the MEA and present the outcomes observed from student engagement in this activity.

  1. Undergraduate Experiences of Division I Athlete Science, Technology, Engineering, and Mathematics (STEM) Graduates

    NASA Astrophysics Data System (ADS)

    Comeaux, Eddie; Bachman, Tina; Burton, Rena M.; Aliyeva, Aida

    2017-02-01

    Employing the conceptual model developed by Comeaux and Harrison (Coll Stud Aff J 30(1):75-87, 2011), this study explored the undergraduate experience of Division I athlete STEM graduates. Data collection involved 17 in-depth interviews with former athletes at two research-intensive, public institutions. Results revealed that pre-college characteristics, involvement in purposeful STEM-related activities, and sport participation, as well as academic support and guidance within athletic departments, play important roles in shaping the experiences of athletes who earn STEM degrees. Implications for student affairs professionals, faculty, and others who frequently interact with college athletes and are committed to creating more equitable educational environments are discussed.

  2. Building place-based collaborations to develop high school students' groundwater systems knowledge and decision-making capacity

    NASA Astrophysics Data System (ADS)

    Podrasky, A.; Covitt, B. A.; Woessner, W.

    2017-12-01

    The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.

  3. The Impact of STEM Outreach Programs in Addressing Teacher Efficacy and Broader Issues in STEM Education

    NASA Astrophysics Data System (ADS)

    Myszkal, Philip Ian

    This study explores the potential of the Outreach Workshops in STEM (OWS) to affect Science, Technology, Engineering, and Mathematics (STEM) teachers' content knowledge, self-efficacy, and pedagogical approaches, as well as its viability as a potential form of professional development (PD). The data for the thesis is taken from a larger longitudinal study looking at the potential of OWS to influence middle school students' and teachers' attitudes and beliefs around STEM. The study employs a mixed-methods design, utilizing surveys, open-ended questions, interviews, and observations. The findings show that there were no significant changes in teachers' content knowledge, confidence, or pedagogical approaches. However, the majority of participants reported that they learned new teaching ideas and considered the workshops to be an effective PD opportunity.

  4. The Introduction of Innovative Educational Technologies in the Personnel Training Process for Sport and Tourism Industries through the Application of Professional Standards

    ERIC Educational Resources Information Center

    Zaitseva, Natalia A.; ?ndryushchenko, Lilia ?.

    2016-01-01

    The relevance of the research stems from the importance of modernization of the system of training for sport and tourism, without which the intensive development of this kind of professional activity is not possible. The aim of the study was the generalization of the experience of introduction of the innovative educational technologies in the…

  5. Rare complications after second hematopoietic stem cell transplantation for thalassemia major.

    PubMed

    Yanir, Asaf; Yatsiv, Ido; Braun, Jacques; Zilkha, Amir; Brooks, Rebecca; Bouhanna, Dalia; Weintraub, Michael; Stepensky, Polina

    2012-07-01

    We describe an 11-year-old girl with thalassemia major who underwent a second hematopoietic stem cell transplantation from a matched related donor and who subsequently developed posttransplant lymphoproliferative disorder complicated by severe ascending paralysis resembling Guillian-Barré syndrome. Six months later she developed a massive pericardial effusion. She received a multimodal treatment for these complications and currently, 18 months after transplantation, she is in a good clinical condition, is transfusion independent, with no evidence of graft-versus-host disease and off all treatment. This case highlights the dilemma surrounding second hematopoietic stem cell transplantations in hemoglobinopathies and the need for a careful, well informed, and collaborative decision-making process by patients, families, and medical professionals.

  6. Are stem cells drugs? The regulation of stem cell research and development.

    PubMed

    Rosen, Michael R

    2006-10-31

    Stem cell research and its clinical application have become political, social, and medical lightning rods, polarizing opinion among members of the lay community and among medical/scientific professionals. A potpourri of opinion, near-anecdotal observation, and scientifically sound data has sown confusion in ways rarely seen in the medical arts and sciences. A major issue is regulation, with different aspects of stem cell research falling within the purview of different government agencies and local offices. An overarching clearinghouse to review the field and recommend policy is lacking. In the following pages, I touch on the societal framework for regulation, the known and potential risks and benefits of cardiovascular stem cell therapies, whether stem cells should be regulated as drugs or in analogy to drugs, and if there is to be regulation, then by whom. In so doing, I refer to the stem cell literature only as it relates to the discussion of regulation because this is not a review of stem cell research; it is an opinion regarding regulation.

  7. Inspiring the Next Generation of Naval Scientists and Engineers in Mississippi and Louisiana

    NASA Astrophysics Data System (ADS)

    Breland-Mensi, S.; Calantoni, J.

    2012-12-01

    In 2011, the American Institute of Physics ranked Mississippi 50th out of 50 states in preparing students for science, technology, engineering and math (STEM) careers. Louisiana placed 48th on the list. [1] The Naval Research Laboratory - Stennis Space Center detachment (NRL-SSC) is located on the Mississippi Gulf Coast, approximately 2 miles from the Louisiana state line. In response to a growing need for NRL-SSC to sustain recruitment and retention of the best and brightest scientists and engineers (S&Es), NRL-SSC became a National Defense Education Program (NDEP) site in August 2009. NDEP's mission is to support a new generation of S&Es who will apply their talents in U.S. Defense laboratories. As an NDEP site, NRL-SSC receives funding to promote STEM at K-12 institutions geographically local to NRL-SSC. NDEP funding allows present Department of Defense civilian S&Es to collaborate with teachers to enrich student learning in the classroom environment through various programs, events, training and activities. Since NRL-SSC's STEM program's inception, more than 30 S&Es have supported an array of STEM outreach activities in over 30 different local schools. An important part of the K-12 outreach from NRL-SSC is to provide professional development opportunities for local teachers. During the summer of 2012, in collaboration with STEM programs sponsored by the Office of Naval Research (ONR), we provided a series of professional development opportunities for 120 local science and mathematics teachers across K-12. The foundation of NRL-SSC STEM programs includes MATHCOUNTS, FIRST and SeaPerch—all nationally recognized, results-driven programs. We will discuss the breadth of participation in these programs and how these programs will support NRL-SSC future recruitment goals.

  8. Korean Students' Attitudes toward STEM Project-Based Learning and Major Selection

    ERIC Educational Resources Information Center

    Han, Sunyoung

    2017-01-01

    The trend of avoiding science, technology, engineering, and mathematics (STEM) majors has persisted resulting in a lack of professionals in STEM fields. Further, the current STEM education system in Korea does not meet domestic demands for STEM labor. To discover an educational approach encouraging students to choose STEM majors at the…

  9. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities.

    PubMed

    Mulnix, Amy B

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice. This approach, which considers faculty as learners and STEM education reform as content, has the potential to better support faculty members because it promotes a deeper understanding of the reasons why a pedagogical change is effective. This depth of understanding is necessary for faculty members to successfully transfer new knowledge to their own contexts. A challenge ahead for the emergent learning sciences is to better integrate findings from across sister disciplines; DBER reports can take a step in that direction while improving their usefulness for instructors. © 2016 A. B. Mulnix. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Diversity: The business case for and benefits of

    NASA Astrophysics Data System (ADS)

    Jones, M. B.

    2013-05-01

    Many Federal Agencies have 'workforce development' programs that focus on preparing the next generation of scientists and engineers at the graduate and undergraduate level. Several of the science Agencies (e.g., NASA, NOAA, EPA, etc.), have programs that support students in many of the diverse disciplines that are unique to those Agency missions. While financial support certainly is critical to assist students in the STEM and other fields, professional development is just as important to equip students with a balanced arsenal of tactics to be successful professionals in the STEM workforce of today. Understanding perceptions and managing expectations are learnable skills that do not necessarily come with project funding. Finding life balance as one moves through a STEM career path poses unique challenges that require a certain skill set that is not always intuitive. Some of those challenges include: selecting grad or post doc positions (negotiating to a family's advantage); balancing work and family commitments; and dealing with employer/advisor perceptions and expectations. Since the scientific enterprise requires multiple perspectives to flourish (e.g., peer review), many of the above mentioned challenges require additional skill in negotiating interactions with individuals from a variety of backgrounds… with as many perspectives.

  11. Simple Activities for Powerful Impact

    NASA Astrophysics Data System (ADS)

    LaConte, K.; Shupla, C. B.; Dusenbery, P.; Harold, J. B.; Holland, A.

    2016-12-01

    STEM education is having a transformational impact on libraries across the country. The STAR Library Education Network (STAR_Net) provides free Science-Technology Activities & Resources that are helping libraries to engage their communities in STEM learning experiences. Hear the results of a national 2015 survey of library and STEM professionals and learn what STEM programming is currently in place in public libraries and how libraries approach and implement STEM programs. Experience hands-on space science activities that are being used in library programs with multiple age groups. Through these hands-on activities, learners explore the nature of science and employ science and engineering practices, including developing and using models, planning and carrying out investigations, and engaging in argument from evidence (NGSS Lead States, 2013). Learn how STAR_Net can help you print (free!) mini-exhibits and educator guides. Join STAR_Net's online community and access STEM resources and webinars to work with libraries in your local community.

  12. Making a Difference in Science Education: The Impact of Undergraduate Research Programs

    PubMed Central

    Eagan, M. Kevin; Hurtado, Sylvia; Chang, Mitchell J.; Garcia, Gina A.; Herrera, Felisha A.; Garibay, Juan C.

    2014-01-01

    To increase the numbers of underrepresented racial minority students in science, technology, engineering, and mathematics (STEM), federal and private agencies have allocated significant funding to undergraduate research programs, which have been shown to students’ intentions of enrolling in graduate or professional school. Analyzing a longitudinal sample of 4,152 aspiring STEM majors who completed the 2004 Freshman Survey and 2008 College Senior Survey, this study utilizes multinomial hierarchical generalized linear modeling (HGLM) and propensity score matching techniques to examine how participation in undergraduate research affects STEM students’ intentions to enroll in STEM and non-STEM graduate and professional programs. Findings indicate that participation in an undergraduate research program significantly improved students’ probability of indicating plans to enroll in a STEM graduate program. PMID:25190821

  13. IBP's Four-Prong Approach for Broadening Participation in the STEM Community

    NASA Astrophysics Data System (ADS)

    Ricciardi, L.; Fauver, A.; Johnson, A.; Detrick, L.; Siegfried, D.; Thomas, S.; Valaitis, S.

    2013-12-01

    The goal of the Institute for Broadening Participation (IBP) is to increase diversity in the Science, Technology, Engineering and Mathematics (STEM) workforce. As a freestanding non-profit dedicated to this work IBP is uniquely positioned to provide resources to faculty and students that individual institutions and disciplinary based programs cannot. Through its initial work with the NSF Integrative Graduate Education and Research Traineeship (IGERT), Research Experiences for Undergraduates (REU), and Alliance for Graduate Education and the Professoriate (AGEP) programs, IBP developed a four-pronged approach open to all members of the STEM community nationally for addressing the problem of underrepresentation: Synthesizing information - compiling and translating best practices into materials and resources accessible and useful to a broad national audience; Creating and maintaining strategic web resources - making information on programs, best practices, and references easily available to a wide audience including students, faculty, and administrators; Extensive face-to-face and virtual outreach - drawing constituents to the resources available via IBP that support students and faculty through the entire STEM pathway; and Catalyzing partnerships - cultivating a community of practice and culture of diversity, to reduce isolation among diversity practitioners, and to increase information sharing. IBP is also home to several successful initiatives that use both virtual and face-to-face components to bring together underrepresented students with established underrepresented and other scientists in academia, government and industry. These connections provide underrepresented students with supportive mentoring, networking opportunities, and professional skill development contributing to an overall improved retention rate of underrepresented students majoring in STEM degrees. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science, Pathways to Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) Professional Development program in Earth System Science (ESS). NASA OSSI recruits and facilitates student engagement in NASA student education and employment opportunities. Pathways to Ocean Science connects and supports underrepresented students with REU programs in Ocean Sciences and serves as a resource for REU program directors. Pathways to Engineering synthesized mentoring resources into an online mentoring manual for underrepresented STEM students that has been extensively vetted by mentoring experts throughout the country. MS PHD'S, an award-winning professional development program for underrepresented students, focuses on increasing the retention rate of underrepresented students receiving advanced degrees in ESS. As of August 2013, 213 students have participated in the program. 67 of those students are currently enrolled in a PhD. program. Another 47 have completed their PhD and are actively engaged in the ESS workforce.

  14. International Librarianship: Developing Professional, Intercultural, and Educational Leadership

    ERIC Educational Resources Information Center

    Constantinou, Constantia, Ed.; Miller, Michael J., Ed.; Schlesinger, Kenneth, Ed.

    2017-01-01

    International librarianship stems from a desire to bring about political change, transcultural understanding, collaboration, and mutual respect. Historically, librarians have been deeply involved with challenging issues of information sharing, equity in information access, and bridging the digital divide between different socioeconomic…

  15. Professional Development for Biology Teachers in the Knowledge Economy

    ERIC Educational Resources Information Center

    Eiser, Simone; Knight, Bruce Allen

    2008-01-01

    Increasingly, the general media cover new advancements and research in the field of biology. Stem cell research, emerging diseases and bioethics are some of the issues gaining public attention. The rate of increase of these new developments creates additional challenges to teachers of biology as they try to remain abreast of new information and…

  16. Assessing Teacher and Student Effects of the Research Goes to School Project

    ERIC Educational Resources Information Center

    Kararo, Alex T.

    2017-01-01

    There have been calls by the Federal government and policymakers for improvements in science, technology, engineering and mathematics (STEM) education through the development of excellent teachers with the content knowledge and skills to teach and motivate students. A shared goal among teacher professional development (PD) programs is to improve…

  17. Bioinformatics Education in High School: Implications for Promoting Science, Technology, Engineering, and Mathematics Careers

    ERIC Educational Resources Information Center

    Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The…

  18. Cheyney University Curriculum and Infrastructure Enhamcement in STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eva, Sakkar Ara

    Cheyney University is the oldest historically Black educational institution in America. Initially established as a “normal” school emphasizing the matriculation of educators, Cheyney has become a comprehensive university, one of 14 state universities comprising the Pennsylvania State System of Higher Education (PASSHE). Cheyney University graduates still become teachers, but they also enter such fields as journalism, medicine, science, mathematics, law, communication and government. Cheyney University is a small state owned HBCU with very limited resource. At present the university has about a thousand students with 15% in STEM. The CUCIES II grant made significant contribution in saving the computer sciencemore » program from being a discontinued program in the university. The grant enabled the university to hire a temporary faculty to teach in and update the computer science program. The program is enhanced with three tracks; cyber security, human computer interaction and general. The updated and enhanced computer science program will prepare professionals in the area of computer science with the knowledge, skills, and professional ethic needed for the current market. The new curriculum was developed for a professional profile that would focus on the technologies and techniques currently used in the industry. With faculty on board, the university worked with the department to bring back the computer science program from moratorium. Once in the path of being discontinued and loosing students, the program is now growing. Currently the student number has increased from 12 to 30. University is currently in the process of hiring a tenure track faculty in the computer science program. Another product of the grant is the proposal for introductory course in nanotechnology. The course is intended to generate interest in the nanotechnology field. The Natural and Applied Science department that houses all of the STEM programs in Cheyney University, is currently working to bring back environmental science program from moratorium. The university has been working to improve minority participation in STEM and made significant stride in terms of progressing students toward graduate programs and into professoriate track. This success is due to faculty mentors who work closely with students to guiding them through the application processes for research internship and graduate programs; it is also due to the university forming collaborative agreements with research intensive institutions, federal and state agencies and industry. The grant assisted in recruiting and retaining students in STEM by offering tuition scholarship, research scholarship and travel awards. Faculty professional development was supported by the grant by funding travel to conferences, meetings and webinar. As many HBCU Cheyney University is also trying to do more with less. As the STEM programs are inherently expensive, these are the ones that suffer more when resources are scarce. One of the goals of Cheyney University strategic plan is to strengthen STEM programs that is coherent with the critical skill need of Department of Energy. All of the Cheyney University STEM programs are now located in the new science building funded by Pennsylvania state.« less

  19. Innovative Pedagogy: What Are the Best Practices of Professors in STEM, Leadership, or Professional Programs Who Integrate Literature?

    ERIC Educational Resources Information Center

    Cal, Anita Marie

    2017-01-01

    This phenomenological study examines innovative pedagogy and the integration of literature by professors in STEM, leadership, and professional programs to foster leadership. The study probes university professors' personal experiences integrating literature, focusing on pedagogical strategies and practices. Many studies exist on the use of…

  20. STEM Professional Volunteers in K-12 Competition Programs: Educator Practices and Impact on Pedagogy

    ERIC Educational Resources Information Center

    Zintgraff, Alfred Clifton

    2016-01-01

    This mixed methods dissertation study explored how secondary school educators in specific K-12 competition programs recruited and deployed STEM professional volunteers. The study explored which practices were viewed as most important, and how practices related to constructivist pedagogy, all from the viewpoint of educators. The non-positivist…

  1. Assessing faculty professional development in STEM higher education: Sustainability of outcomes.

    PubMed

    Derting, Terry L; Ebert-May, Diane; Henkel, Timothy P; Maher, Jessica Middlemis; Arnold, Bryan; Passmore, Heather A

    2016-03-01

    We tested the effectiveness of Faculty Institutes for Reforming Science Teaching IV (FIRST), a professional development program for postdoctoral scholars, by conducting a study of program alumni. Faculty professional development programs are critical components of efforts to improve teaching and learning in the STEM (Science, Technology, Engineering, and Mathematics) disciplines, but reliable evidence of the sustained impacts of these programs is lacking. We used a paired design in which we matched a FIRST alumnus employed in a tenure-track position with a non-FIRST faculty member at the same institution. The members of a pair taught courses that were of similar size and level. To determine whether teaching practices of FIRST participants were more learner-centered than those of non-FIRST faculty, we compared faculty perceptions of their teaching strategies, perceptions of environmental factors that influence teaching, and actual teaching practice. Non-FIRST and FIRST faculty reported similar perceptions of their teaching strategies and teaching environment. FIRST faculty reported using active learning and interactive engagement in lecture sessions more frequently compared with non-FIRST faculty. Ratings from external reviewers also documented that FIRST faculty taught class sessions that were learner-centered, contrasting with the teacher-centered class sessions of most non-FIRST faculty. Despite marked differences in teaching practice, FIRST and non-FIRST participants used assessments that targeted lower-level cognitive skills. Our study demonstrated the effectiveness of the FIRST program and the empirical utility of comparison groups, where groups are well matched and controlled for contextual variables (for example, departments), for evaluating the effectiveness of professional development for subsequent teaching practices.

  2. Assessing faculty professional development in STEM higher education: Sustainability of outcomes

    PubMed Central

    Derting, Terry L.; Ebert-May, Diane; Henkel, Timothy P.; Maher, Jessica Middlemis; Arnold, Bryan; Passmore, Heather A.

    2016-01-01

    We tested the effectiveness of Faculty Institutes for Reforming Science Teaching IV (FIRST), a professional development program for postdoctoral scholars, by conducting a study of program alumni. Faculty professional development programs are critical components of efforts to improve teaching and learning in the STEM (Science, Technology, Engineering, and Mathematics) disciplines, but reliable evidence of the sustained impacts of these programs is lacking. We used a paired design in which we matched a FIRST alumnus employed in a tenure-track position with a non-FIRST faculty member at the same institution. The members of a pair taught courses that were of similar size and level. To determine whether teaching practices of FIRST participants were more learner-centered than those of non-FIRST faculty, we compared faculty perceptions of their teaching strategies, perceptions of environmental factors that influence teaching, and actual teaching practice. Non-FIRST and FIRST faculty reported similar perceptions of their teaching strategies and teaching environment. FIRST faculty reported using active learning and interactive engagement in lecture sessions more frequently compared with non-FIRST faculty. Ratings from external reviewers also documented that FIRST faculty taught class sessions that were learner-centered, contrasting with the teacher-centered class sessions of most non-FIRST faculty. Despite marked differences in teaching practice, FIRST and non-FIRST participants used assessments that targeted lower-level cognitive skills. Our study demonstrated the effectiveness of the FIRST program and the empirical utility of comparison groups, where groups are well matched and controlled for contextual variables (for example, departments), for evaluating the effectiveness of professional development for subsequent teaching practices. PMID:27034985

  3. Changes in Science Teachers' Conceptions and Connections of STEM Concepts and Earthquake Engineering

    ERIC Educational Resources Information Center

    Cavlazoglu, Baki; Stuessy, Carol

    2017-01-01

    The authors find justification for integrating science, technology, engineering, and mathematics (STEM) in the complex problems that today's students will face as tomorrow's STEM professionals. Teachers with individual subject-area specialties in the STEM content areas have limited experience in integrating STEM. In this study, the authors…

  4. Modeling the Skills and Practices of Scientists through an “All-Inclusive” Comparative Planetology Student Research Investigation

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Bandfield, J.; Stefanov, W.; Vanderbloemen, L.; Willis, K.; Runco, S.

    2013-01-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an "allinclusive" comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting research. Designed as an entry level research engagement investigation, the activity introduces, illustrates, and teaches the skills involved in each step of the research process. Students use astronaut photos, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as well as remote sensing imagery of other planetary worlds. By including all the necessary tools to complete the investigation, students can focus on gaining experience in the process of science. Additionally, students are able to extend their experience of modeling the skills and practices of scientists through the opportunity to request new data of Earth from the ISS. Professional development offered through in-person and webinar trainings, along with the resources provided, enable educators to gain first-hand experience implementing a structured research investigation in the classroom. Through data and feedback collected from teachers, this type of "all-inclusive" investigation activity aims to become a model that can be utilized for other research topics and STEM disciplines.

  5. Modeling the Skills and Practices of Scientists through an 'All-Inclusive' Comparative Planetology Student Research Investigation

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Bandfield, J. L.; Stefanov, W. L.; Vanderbloemen, L.; Willis, K. J.; Runco, S.

    2013-12-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an 'all-inclusive' comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting research. Designed as an entry level research engagement investigation, the activity introduces, illustrates, and teaches the skills involved in each step of the research process. Students use astronaut photos, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as well as remote sensing imagery of other planetary worlds. By including all the necessary tools to complete the investigation, students can focus on gaining experience in the process of science. Additionally, students are able to extend their experience of modeling the skills and practices of scientists through the opportunity to request new data of Earth from the ISS. Professional development offered through in-person and webinar trainings, along with the resources provided, enable educators to gain first-hand experience implementing a structured research investigation in the classroom. Through data and feedback collected from teachers, this type of 'all-inclusive' investigation activity aims to become a model that can be utilized for other research topics and STEM disciplines.

  6. Point of View: Diversity in STEM: Doctor, Heal Thyself

    ERIC Educational Resources Information Center

    Nilsson, Melanie R.

    2017-01-01

    This column shares reflections or thoughtful opinions on issues of broad interest to the community. This month's issue calls on STEM professionals to take three simple steps toward diversifying the STEM workforce.

  7. Investigating the Interactions, Beliefs, and Practices of Teacher-Coach Teams in a STEM After-School Setting

    NASA Astrophysics Data System (ADS)

    Swanson Hoyle, Kylie Jayne

    After-school programs, such as a STEM Career Club, can promote student interest, engagement, and awareness of STEM majors and fields, as well as encourage teachers to become more knowledgeable and competent in STEM areas. In this dissertation study, two schools were selected from a larger NSF-funded project to participate in this study. Teacher- Coaches (T-Coaches) from two rural middle schools in the southeastern United States (U.S.) participated in teacher professional development (TPD) sessions and Professional Learning Community (PLC) meetings to prepare them to lead an after-school STEM Club. The Community of Practice (CoP) framework and Social Cognitive Theory are employed to investigate underlying factors that contribute to teacher interactions and preparations, and differing STEM program outcomes. Data from the Dimensions of Success (DoS) observation tool, the teacher belief interview (TBI), T-Coach participation and attendance at TPD, attendance and audio recordings from PLC meetings, and T-Coach card sorts were analyzed over approximately 6 meetings for 5 months. Findings are presented in two chapters. In Chapter Four, a comparative case study of the interactions of the teachers at two participating middle schools is analyzed. Results indicate that for each case, the club's T-Coaches interacted positively to prepare for club meetings and have a well-functioning CoP within their PLC. The first case (Northern Middle School) interacted in ways that aligned with the CoP framework (enterprise and repertoire), which led them to achieve, on average, desirable ratings on 7 of the 12 DoS dimensions. However, the other case (Southern Middle School), the T-Coaches interacted in ways that demonstrated more equal levels of enterprise, mutuality, and repertoire; this PLC had higher DoS ratings during the STEM Clubs in all dimensions (11/12 met desirable ratings). These findings suggest that high levels of all of the social learning characteristics within PLCs can support more exemplary STEM Club implementation. In Chapter Five, results from the two schools of teachers' beliefs and practices indicate that for STEM program success, the whole of the team is better than the sum of its parts. Since individuals' values on each team aligned with different DoS dimensions, it was more likely that each dimension would be represented during STEM Clubs. Findings suggest that it was necessary for two T-Coaches who valued a certain dimension to ensure a DoS dimension would be met on the DoS rating. However, it was not sufficient that T-Coaches only valued a certain dimension. The dimension was not met if the T-Coaches did not have the training and preparation to meaningfully act on their beliefs. Informed by factors from Bandura's Social Cognitive Theory, these T-Coaches carried out different behaviors at the STEM Clubs depending on their personal beliefs and values, and the environment. Five TPD participation scenarios, ranging from full to no TPD preparation, identified from the findings seemed to predict the quality of the STEM Club, based on DoS scores. The following conclusions can be drawn: 1) Professional learning community meetings aided in the development of T-Coaches' community of practice and preparation for STEM clubs; 2) A CoP with high levels of all of the social learning characteristics (enterprise, mutuality, and repertoire) led to more desirable club outcomes than a team with lower levels in any of these areas; 3) At least two people who have developed the content knowledge and relevant skills and who value club success were needed at club meetings to ensure STEM Club success; 4) Teacher-Coaches became more prepared to lead successful STEM Clubs through engaged attendance at TPD and PLC meetings; 5) Interdisciplinary teacher teams, including non-STEM teachers, can successfully lead STEM clubs if the individuals are able to learn the content/skills.

  8. The clinician-scientist: professional dynamics in clinical stem cell research.

    PubMed

    Wilson-Kovacs, Dana M; Hauskeller, Christine

    2012-05-01

    Clinical applications of biomedical research rely on specialist knowledge provided by professionals who straddle research and therapy, and possess both medical and scientific expertise. To date, this professional group remains under-explored in sociology. Our article presents a case study of clinician-scientists working in stem cell research for heart repair in the UK and Germany who are engaged in double-blind randomised clinical trials using patients' own stem cells. The analysis draws on sociological and medical literature, interviews and ethnographic fieldwork to analyse the experiences and self-rationalisations of a small number of clinician-scientists and the ways in which these professionals portray, explain and justify their role in the wider clinical research environment. We examine our participants' views on the clinical trials they conduct, the challenges they encounter and the ways through which they negotiate a complex disciplinary terrain, and argue that the recent clinical implementation of stem cell research brings clinician-scientists to the fore and provides a renewed platform for their professional legitimisation. The article helps increase our understanding of how randomised clinical trials are involved in consolidating the individual status of actors and the collective standing of clinician-scientists as leaders of change in translational medicine. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  9. The CIRTL Network: A Professional Development Network for Future STEM Faculty

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.

    2011-12-01

    The Center for the Integration of Research, Teaching, and Learning (CIRTL) is an NSF Center for Learning and Teaching in higher education using the professional development of graduate students and post-doctoral scholars as the leverage point to develop a national STEM faculty committed to implementing and advancing effective teaching practices for diverse student audiences as part of successful professional careers. The goal of CIRTL is to improve the STEM learning of all students at every college and university, and thereby to increase the diversity in STEM fields and the STEM literacy of the nation. The CIRTL network seeks to support change at a number of levels to support its goals: individual, classroom, institutional, and national. To bring about change, which is never easy, the CIRTL network has developed a conceptual model or change model that is thought to support the program objectives. Three central concepts, Teaching-as-Research, Learning Communities, and Learning-through-Diversity, underlie the design of all CIRTL activities. STEM faculty use research methods to systematically and reflectively improve learning outcomes. This work is done within a community of shared learning and discovery, and explicitly recognizes that effective teaching capitalizes on the rich array of experiences, backgrounds, and skills among the students and instructors to enhance the learning of all. This model is being refined and tested through a networked-design experiment, where the model is tested in diverse settings. Established in fall 2006, the CIRTL Network comprises the University of Colorado at Boulder (CU), Howard University, Michigan State University, Texas A&M University, Vanderbilt University, and the University of Wisconsin-Madison. The diversity of these institutions is by design: private/public; large/moderate size; majority-/minority-serving; geographic location. This talk will describe the theoretical constructs and efficacy of Teaching-as Research as a central design element of the CIRTL network model. Teaching-as-Research involves the deliberate, systematic, and reflective use of research methods to develop and implement teaching practices that advance the learning experiences and outcomes of students. CIRTL envision three types of learning outcomes for CIRTL participants: CIRTL Fellow, CIRTL Practitioner, and CIRTL Scholar. These three, tiered learning outcomes recognize the role of the CIRTL pillars in effective teaching (Fellow), scholarly teaching that builds on the CIRTL pillars to demonstrably improve learning and make the results public (Practitioner), and finally scholarship that advances teaching and learning under peer review (Scholar). CIRTL program outcomes conceived in this way permit anyone to enter the CIRTL Network learning community from a wide variety of disciplines, needs, and past experiences, and to achieve success as an instructor in diverse contexts.

  10. The Investigation of STEM Self-Efficacy and Professional Commitment to Engineering among Female High School Students

    ERIC Educational Resources Information Center

    Liu, Yi-hui; Lou, Shi-jer; Shih, Ru-chu

    2014-01-01

    This study employed social cognitive theory and social cognitive career theory (SCCT) as foundations to explore the influence of high school students' beliefs about female gender roles and female engineer role models on science, technology, engineering, and mathematics (STEM) self-efficacy and professional commitment to engineering. A total of 88…

  11. Professionalizing the Role of Peer Leaders in STEM

    ERIC Educational Resources Information Center

    Bowling, Bethany; Doyle, Maureen; Taylor, Jennifer; Antes, Alison

    2015-01-01

    Efforts to improve retention in science, technology, engineering, and mathematics (STEM) majors frequently utilize peer mentors and/or leaders. At Northern Kentucky University, the STEM Ambassador (SA) program involves students in the creation of a STEM community through multifaceted roles as mentors, peer-learning facilitators, and social…

  12. An Interdisciplinary Approach to Designing Online Learning: Fostering Pre-Service Mathematics Teachers' Capabilities in Mathematical Modelling

    ERIC Educational Resources Information Center

    Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian

    2018-01-01

    In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…

  13. Closing the Gaps and Filling the STEM Pipeline: A Multidisciplinary Approach

    ERIC Educational Resources Information Center

    Doerschuk, Peggy; Bahrim, Cristian; Daniel, Jennifer; Kruger, Joseph; Mann, Judith; Martin, Cristopher

    2016-01-01

    There is a growing demand for degreed science, technology, engineering and mathematics (STEM) professionals, but the production of degreed STEM students is not keeping pace. Problems exist at every juncture along the pipeline. Too few students choose to major in STEM disciplines. Many of those who do major in STEM drop out or change majors.…

  14. Jumping on the STEM Bandwagon: How Middle Grades Students and Teachers Can Benefit from STEM Experiences

    ERIC Educational Resources Information Center

    Lesseig, Kristin; Slavit, David; Nelson, Tamara Holmlund

    2017-01-01

    Given the current emphasis on science, technology, engineering, and math (STEM) education and its key attributes, middle school is an optimal time to implement STEM-based curricula. However, the interdisciplinary and open-ended nature of STEM projects often makes implementation difficult. In this article, we describe a professional development…

  15. The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science.

    PubMed

    Siew, Nyet Moi; Amir, Nazir; Chong, Chin Lu

    2015-01-01

    Whilst much attention has focused on project-based approaches to teaching Science, Technology, Engineering and Mathematics (STEM) subjects, little has been reported on the views of South-East Asian science teachers on project-based STEM approaches. Such knowledge could provide relevant information for education training institutions on how to influence innovative teaching of STEM subjects in schools. This article reports on a study that investigated the perceptions of 25 pre-service and 21 in-service Malaysian science teachers in adopting an interdisciplinary project-based STEM approach to teaching science. The teachers undertook an eight hour workshop which exposed them to different science-based STEM projects suitable for presenting science content in the Malaysian high school science syllabus. Data on teachers' perceptions were captured through surveys, interviews, open-ended questions and classroom discussion before and at the end of the workshop. Study findings showed that STEM professional development workshops can provide insights into the support required for teachers to adopt innovative, effective, project-based STEM approaches to teaching science in their schools.

  16. GOLD: Building capacity for broadening participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth

    2017-04-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering geoscientists as change agents for increasing diversity, but will also produce experiments that contribute to the research base regarding leader and leadership development.

  17. Excellence in Physics Education Award: Graduate Programs for Professional Development of Physics Teachers

    NASA Astrophysics Data System (ADS)

    Jackson, Jane

    2014-03-01

    The landscape for high school physics is changing rapidly, especially with the need to merge physics into a coherent STEM curriculum that smoothly integrates it with chemistry and biology. Accordingly, there is an urgent need for graduate professional development programs to help in-service teachers cope with these changes. One such program was created in 2001 by the physics department at Arizona State University after a decade of NSF funding for the Modeling Instruction Program. We discuss what has been learned from that experience with recommendations for creating similar programs at other universities.

  18. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    NASA Astrophysics Data System (ADS)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  19. The Factors that Affect Science Teachers' Participation in Professional Development

    NASA Astrophysics Data System (ADS)

    Roux, Judi Ann

    Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science teachers depend upon relevant professional development experiences to support their learning. In order to understand how to improve student learning in science, the learning of science teachers must also be understood. Previous research studies on teacher professional development have been conducted in other states, but Minnesota science teachers comprised a new and different population from those previously studied. The purpose of this two-phase mixed methods study was to identify the current types of professional development in which experienced, Minnesota secondary science teachers participated and the factors that affect their participation in professional development activities. The mixed-methods approach s utilized an initial online survey followed by qualitative interviews with five survey respondents. The results of the quantitative survey and the qualitative interviews indicated the quality of professional development experiences and the factors which affected the science teachers' participation in professional development activities. The supporting and inhibiting factors involved the availability of resources such as time and money, external relationships with school administrators, teacher colleagues, and family members, and personal intrinsic attributes such as desires to learn and help students. This study also describes implications for science teachers, school administrators, policymakers, and professional development providers. Recommendations for future research include the following areas: relationships between and among intrinsic and extrinsic factors, science-related professional development activities within local school districts, the use of formal and informal professional development, and the needs of rural science teachers compared to urban and suburban teachers.

  20. Monitoring the Pipeline: STEM Education in Rural U.S.

    ERIC Educational Resources Information Center

    Marksbury, Nancy

    2017-01-01

    Higher education institutions are charged with creating one million more STEM professionals over the next decade, a 34% increase in undergraduate STEM degrees annually (PCAST 2012). Examining why college STEM courses manifest high attrition rates, interdependencies emerge that begin in early childhood education. Those of us in higher education…

  1. Understanding STEM: Current Perceptions

    ERIC Educational Resources Information Center

    Brown, Ryan; Brown, Joshua; Reardon, Kristin; Merrill, Chris

    2011-01-01

    In many ways, the push for STEM (science, technology, engineering, and mathematics) education appears to have grown from a concern for the low number of future professionals to fill STEM jobs and careers and economic and educational competitiveness. The proponents of STEM education believe that by increasing math and science requirements in…

  2. Facilitating Teaching and Learning across STEM Fields

    ERIC Educational Resources Information Center

    Ejiwale, James A.

    2012-01-01

    The reformation of the contents for instruction across STEM fields has changed the role of STEM educators from being a "dictator" in the classroom/laboratory to a facilitator of students' activities. More important, this new paradigm and professional orientation for STEM educators is no more limited to delivering instruction intuitively, but with…

  3. The Perceptions of Elementary STEM Schools in Missouri

    ERIC Educational Resources Information Center

    Alumbaugh, Kelli Michelle

    2015-01-01

    Science, technology, engineering, and mathematics education, or STEM, is an area that is currently growing in popularity with educators (Becker & Park, 2011). A qualitative study consisting of interviews was conducted and data were gathered from three leaders in professional STEM organizations, four principals from elementary STEM schools, and…

  4. Where Did You Come From? Where Will You Go? Human Evolutionary Biology Education and American Students' Academic Interests and Achievements, Professional Goals, and Socioscientific Decision-making

    NASA Astrophysics Data System (ADS)

    Schrein, Caitlin M.

    In the United States, there is a national agenda to increase the number of qualified science, technology, engineering, and maths (STEM) professionals and a movement to promote science literacy among the general public. This project explores the association between formal human evolutionary biology education (HEB) and high school science class enrollment, academic achievement, interest in a STEM degree program, motivation to pursue a STEM career, and socioscientific decision-making for a sample of students enrolled full-time at Arizona State University. Given a lack of a priori knowledge of these relationships, the Grounded Theory Method was used and was the foundation for a mixed-methods analysis involving qualitative and quantitative data from one-on-one interviews, focus groups, questionnaires, and an online survey. Theory development and hypothesis generation were based on data from 44 students. The survey instrument, developed to test the hypotheses, was completed by 486 undergraduates, age 18--22, who graduated from U.S. public high schools. The results showed that higher exposure to HEB was correlated with greater high school science class enrollment, particularly for advanced biological science classes, and that, for some students, HEB exposure may have influenced their enrollment, because the students found the content interesting and relevant. The results also suggested that students with higher K--12 HEB exposure felt more prepared for undergraduate science coursework. There was a positive correlation between HEB exposure and interest in a STEM degree and an indirect relationship between higher HEB exposure and motivation to pursue a STEM career. Regarding a number of socioscientific issues, including but not limited to climate change, homosexuality, and stem cell research, students' behaviors and decision-making more closely reflected a scientific viewpoint---or less-closely aligned to a religion-based perspective---when students had greater HEB exposure, but this was sometimes contingent on students' lifetime exposure to religious doctrine and acceptance of general evolution or human evolution. This study has implications for K--12 and higher education and justifies a paradigm shift in evolution education research, such that more emphasis is placed on students' interests, perceived preparation for continued learning, professional goals and potential contributions to society rather than just their knowledge and acceptance.

  5. Communication and Shared Practices are Bringing NASA STEM Resources to Camp Youth

    NASA Astrophysics Data System (ADS)

    LaConte, K.; Shaner, A.; Shipp, S.; Garst, B.; Bialeschki, M. D.; Netting, R.; Erickson, K.

    2015-11-01

    In 2012, NASA and the American Camp Association (ACA) entered into an alliance to further both organizations' goals and objectives with regard to science, technology, engineering, and mathematics (STEM) education. This alliance is providing camp staff—and their young audiences—access to NASA's resources. NASA disseminates resources (e.g., pathways for requesting guest presenters, informal learning lesson plans), conducts ACA professional development (online and at ACA conferences), and coordinates efforts around key events (e.g., spacecraft launches). ACA promotes awareness of NASA resources through their communications and services. Together, the organizations are working to inspire a new generation of scientists, engineers, explorers, educators, and innovators to pursue STEM careers.

  6. Modules as Learning Tools in Linear Algebra

    ERIC Educational Resources Information Center

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio

    2014-01-01

    This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…

  7. Recommendations to Support Computational Thinking in the Elementary Classroom

    ERIC Educational Resources Information Center

    Estapa, Anne; Hutchison, Amy; Nadolny, Larysa

    2018-01-01

    Computational thinking is an important and necessary way of thinking for computer programmers and other professionals in science, technology, engineering, and mathematics (STEM). Research on emerging practices around computational thinking that is developed through coding initiatives in schools reports that elementary children typically learn how…

  8. An Integrated Model for Improving Undergraduate Geoscience Workforce Readiness

    NASA Astrophysics Data System (ADS)

    Keane, C. M.; Houlton, H. R.

    2017-12-01

    Within STEM fields, employers are reporting a widening gap in the workforce readiness of new graduates. As departments continue to be squeezed with new requirements, chasing the latest technologies and scientific developments and constrained budgets, formal undergraduate programs struggle to fully prepare students for the workforce. One major mechanisms to address gaps within formal education is in life-long learning. Most technical and professional fields have life-long learning requirements, but it is not common in the geosciences, as licensing requirements remain limited. By introducing the concept of career self-management and life-long learning into the formal education experience of students, we can build voluntary engagement and shift some of the preparation burden from existing degree programs. The Geoscience Online Learning Initiative (GOLI) seeks to extend professional life-long learning into the formal education realm. By utilizing proven, effective means to capture expert knowledge, the GOLI program constructs courses in the OpenEdX platform, where the content authors and society staff continuously refine the material into effective one- to two-hour long asynchronous modules. The topical focus of these courses are outside of the usual scope of the academic curriculum, but are aligned with applied technical or professional issues. These courses are provided as open education resources, but also qualify for CEUs as the ongoing professional microcredential in the profession. This way, interested faculty can utilize these resources as focused modules in their own course offerings or students can engage in the courses independently and upon passing the assessments and paying of a nominal fee, be awarded CEUs which count towards their professional qualifications. Establishing a continuum of learning over one's career is a critical cultural change needed for students to succeed and be resilient through the duration of a career. We will examine how this approach mimics successful efforts in other STEM fields and where it aligns with both ongoing evolution in professional geoscience employment and broader trends in STEM career management.

  9. The Chi-Sci Scholars Program: Developing Community and Challenging Racially Inequitable Measures of Success at a Minority-Serving Institution on Chicago's Southside1

    NASA Astrophysics Data System (ADS)

    Sabella, Mel S.; Mardis, Kristy L.; Sanders, Nicolette; Little, Angela

    2017-09-01

    Ensuring that all students who want to pursue degrees and careers in science can do so is an important goal of a number of undergraduate STEM equity programs throughout the United States. Many of these programs, which promote diversity and the importance of diversity in science, directly address the 2012 PCAST report, which notes that "1 million additional STEM Professionals will be needed within the next decade" and "women and members of minority groups now constitute approximately 70% of college students, but earn only 45 percent of STEM degrees." The PCAST report also indicates that these students "leave STEM majors at higher rates than others and offer an expanding pool of untapped talent." Many of these programs recognize that it is important to provide students with a variety of support: financial, mentoring, research-based instruction, cohort development, and specific activities tailored to target population strengths and needs.

  10. InsightSTEM Campus Ambassadors: Welcoming, Including, and Supporting All in STEM Careers Worldwide

    NASA Astrophysics Data System (ADS)

    Noel-Storr, J.

    2016-12-01

    Definitions of genders and, races, ethnicities, abilities and sexualities tend to exist on a binary scale (e.g. male/female, black/white) both for inclusiveness and evaluation of programs. This has the potential to be a schism for individuals who are choosing to enter STEM fields when if their self-identity does not fit this these predefined multi-polar templates. At InsightSTEM, in our Campus Ambassadors program (which has over 290 grassroots members in over 25 countries) we have been striving to nullify this effect... For example, on our application, we choose to not ask for any demographic data, in any spectrum, because those data make no sense on a global stage. We question that if race, gender, sexuality and ethnicity are all on a spectrum: is any program devoted to a particular group appropriate? Instead we deliver professional development to students worldwide to train them to become aware and inclusive STEM educators, involving everyone in their programs no matter what their background. We will present the ways we work with our Campus Ambassadors to create programs that, rather than focusing on particular groups, are truly inclusive, in developing their skills and empowering them to create inclusive programs worldwide for all. InsightSTEM Campus Ambassadors: Welcoming, Including, and & Supporting All in STEM Careers Worldwide

  11. What Experiences Help Students Become Scientists? A Comparative Study of Research and Other Sources of Personal and Professional Gains for STEM Undergraduates

    ERIC Educational Resources Information Center

    Thiry, Heather; Laursen, Sandra L.; Hunter, Anne-Barrie

    2011-01-01

    In this study of curricular and co-curricular learning in STEM disciplines at four liberal arts colleges, comparative analysis of 62 interviews with graduating seniors demonstrates that out-of-class experiences fostered many intellectual, personal, and professional gains. Undergraduate research, in particular, helped to shape science identities…

  12. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants

    PubMed Central

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor’s belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K–12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. PMID:26250562

  13. Motivating Young Native American Students to Pursue STEM Learning Through a Culturally Relevant Science Program

    NASA Astrophysics Data System (ADS)

    Stevens, Sally; Andrade, Rosi; Page, Melissa

    2016-12-01

    Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics (STEM) program, iSTEM, aimed at increasing engagement in STEM learning among Native American 3rd-8th grade students. A culturally relevant theoretical framework, Funds of Knowledge, informs the iSTEM program, a program based on the contention that the synergistic effect of a hybrid program combining two strategic approaches (1) in-school mentoring and (2) out-of-school informal science education experiences would foster engagement and interest in STEM learning. Students are paired with one of three types of mentors: Native American community members, university students, and STEM professionals. The iSTEM program is theme based with all program activities specifically relevant to Native people living in southern Arizona. Student mentees and mentors complete interactive flash STEM activities at lunch hour and attend approximately six field trips per year. Data from the iSTEM program indicate that the program has been successful in engaging Native American students in iSTEM as well as increasing their interest in STEM and their science beliefs.

  14. Empowering Effective STEM Role Models to Promote STEM Equity in Local Communities

    NASA Astrophysics Data System (ADS)

    Harte, T.; Taylor, J.

    2017-12-01

    Empowering Effective STEM Role Models, a three-hour training developed and successfully implemented by NASA Langley Research Center's Science Directorate, is an effort to encourage STEM professionals to serve as role models within their community. The training is designed to help participants reflect on their identity as a role model and provide research-based strategies to effectively engage youth, particularly girls, in STEM (science, technology, engineering, and mathematics). Research shows that even though girls and boys do not demonstrate a significant difference in their ability to be successful in mathematics and science, there is a significant difference in their confidence level when participating in STEM subject matter and pursuing STEM careers. The Langley training model prepares professionals to disrupt this pattern and take on the habits and skills of effective role models. The training model is based on other successful models and resources for role modeling in STEM including SciGirls; the National Girls Collaborative; and publications by the American Association of University Women and the National Academies. It includes a significant reflection component, and participants walk through situation-based scenarios to practice a focused suite of research-based strategies. These strategies can be implemented in a variety of situations and adapted to the needs of groups that are underrepresented in STEM fields. Underpinning the training and the discussions is the fostering of a growth mindset and promoting perseverance. "The Power of Yet" becomes a means whereby role models encourage students to believe in themselves, working toward reaching their goals and dreams in the area of STEM. To provide additional support, NASA Langley role model trainers are available to work with a champion at other organizations to facilitate the training. This champion helps recruit participants, seeks leadership buy-in, and helps provide valuable insights for needs and interests specific to the organization. After the in-person training experience, participants receive additional follow-up support by working with their local champions and the NASA Langley trainers. The goal is to share the role model training model in an effort to empower STEM role models and assist in promoting STEM Equity in all communities.

  15. Applying for Noyce

    NASA Astrophysics Data System (ADS)

    Stewart, Gay; Prival, Joan

    2012-02-01

    The NSF Robert Noyce Teacher Scholarship Program seeks to encourage talented STEM majors and STEM professionals to become mathematics and science teachers. The program also supports the development of Master Teachers in science and mathematics. There are key features in managing a Noyce program that often present difficulty and are vital to successful, sustainable, teacher preparation programs: mentoring, advising and recruiting, and working with school partners. In this workshop, we will help participants consider ways to alleviate existing difficulties or how to set up a program to reduce them. A sample proposal will be available for a mock review.

  16. NASA GISS Climate Change Research Initiative: A Multidisciplinary Vertical Team Model for Improving STEM Education by Using NASA's Unique Capabilities.

    NASA Astrophysics Data System (ADS)

    Pearce, M. D.

    2017-12-01

    CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and programing that improve STEM instruction, increase and sustain youth and public engagement in STEM, enhance STEM experience of undergraduate students, better serve groups under-represented groups in STEM fields and design graduate education for tomorrow's STEM workforce.

  17. Mobilizing the Forgotten Army: Improving Undergraduate Math and Science Education through Professional Development of Graduate Teaching Assistants

    NASA Astrophysics Data System (ADS)

    Gerton, Jordan

    Evidence-based best practices for improving undergraduate STEM education abound. Unfortunately, these practices have not been widely adopted, in part because typical dissemination efforts are mediated in a top-down fashion and fail to obtain critical buy-in from key local stakeholders. Here, we present a novel framework to increase nationwide uptake of STEM-education best practices through grassroots propagation of Professional Development programs for Graduate Teaching Assistants (GTA-PD). Our model pays special attention to overcoming resistance to change by soliciting, from the very start, critical buy-in from departmental chairs, faculty, and GTAs who have direct control over and responsibility for instruction. A key component of our approach involves an annual National GTA Workshop where faculty-GTA leadership teams from many different Physics and Chemistry departments come together to develop best-practices-based GTA-PD improvement plans for their own departments while guided by a core group of nationally recognized expert practitioners in GTA-PD and STEM education. As a pre-condition for participation, each department chair must pledge to facilitate implementation of their leadership team's plan; additional and ongoing support is provided by the core group of experts, together with other teams from the workshop cohort. Our initial pilot efforts point to success via enthusiastic buy-in within each STEM department due to the potential for immediate positive impacts on both undergraduate instruction and the long term research productivity of GTAs. In the future, longitudinal data on the progress of the GTA-PD programs will be gathered and analyzed to provide guidance for improving the success of future GTA-PD programs. Financial support provided by the Research Corporation for Science Advancement and the American Chemical Society.

  18. Critical Experiences for Field Geologists: Emergent Themes in Interest Development

    ERIC Educational Resources Information Center

    LaDue, Nicole D.; Pacheco, Heather A.

    2013-01-01

    Geoscience education researchers are working to understand how we can most effectively increase our overall geoscience workforce capacity. The present study employed an inductive approach to explore the critical experiences that led to the persistence of successful field geologists in this STEM field. Interviews with 29 professional field…

  19. Exploring How New Teaching Materials Influence the Beliefs and Practices of Instructors and Students' Attitudes about Geoscience

    ERIC Educational Resources Information Center

    Pelch, Michael Anthony

    2016-01-01

    STEM educational reform encourages a transition from instructor-centered passive learning classrooms to student-centered, active learning environments. Instructors adopting these changes incorporate research-validated teaching practices that improve student learning. Professional development that trains faculty to implement instructional reforms…

  20. Middle School to Professional Development: Interdisciplinary STEM for Multiple Stakeholders

    ERIC Educational Resources Information Center

    Suriel, Regina L.; Spires, Robert W.; Radcliffe, Barbara J.; Martin, Ellice P.; Paine, Deborah G.

    2018-01-01

    The STEMITL project is an interdisciplinary collaboration between a Southeastern University's middle grades education department and local PDS partner school districts incorporating six full-day immersive projects for seventh-grade students. During the 2016-2017 academic year, seventh-grade students were brought to the university's newly…

  1. The Factors That Affect Science Teachers' Participation in Professional Development

    ERIC Educational Resources Information Center

    Roux, Judi Ann

    2013-01-01

    Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science…

  2. Applications of Stem Cells in Interdisciplinary Dentistry and Beyond: An Overview

    PubMed Central

    Rai, S; Kaur, M; Kaur, S

    2013-01-01

    In medicine stem cell–based treatments are being used in conditions like Parkinson's disease, neural degeneration following brain injury, cardiovascular diseases, diabetes, and autoimmune diseases. In dentistry, recent exciting discoveries have isolated dental stem cells from the pulp of the deciduous and permanent teeth, from the periodontal ligament, and an associated healthy tooth structure, to cure a number of diseases. The aim of the study was to review the applications of stem cells in various fields of dentistry, with emphasis on its banking, and to understand how dental stem cells can be used for regeneration of oral and non-oral tissues conversely. A Medline search was done including the international literature published between 1989 and 2011. It was restricted to English language articles and published work of past researchers including in vitro and in vivo studies. Google search on dental stem cell banking was also done. Our understanding of mesenchymal stem cells (MSC) in the tissue engineering of systemic, dental, oral, and craniofacial structures has advanced tremendously. Dental professionals have the opportunity to make their patients aware of these new sources of stem cells that can be stored for future use, as new therapies are developed for a range of diseases and injuries. Recent findings and scientific research articles support the use of MSC autologously within teeth and other accessible tissue harvested from oral cavity without immunorejection. A future development of the application of stem cells in interdisciplinary dentistry requires a comprehensive research program. PMID:23919198

  3. Building Community and Fostering Success in STEM Through the Women in Science & Engineering (WiSE) Program at the University of Nevada, Reno

    NASA Astrophysics Data System (ADS)

    Langus, T. C.; Tempel, R. N.

    2017-12-01

    The Women in Science & Engineering (WiSE) program at the University of Nevada, Reno (UNR) aims to recruit and retain a diverse population of women in STEM fields. During the WiSE Program's 10 years in service, we have primarily functioned as a resource for 364 young women to expand their pre-professional network by building valuable relationships with like-minded women. More recently, we have introduced key changes to better benefit our WiSE scholars, establishing a new residence hall, the Living Learning Community (LLC). The introduction of the LLC, resident assistants, and academic mentors helped to provide support to a diverse culture of women with varying thoughts, values, attitudes, and identities. To evaluate the progress of our program, demographic data was statistically analyzed using SPSS to identify correlations between math preparation, performance in foundational courses, average time to graduation, and retention in STEM majors. Initial programmatic assessment indicates that students participating in WiSE are provided a more well-rounded experience while pursuing higher education. We have maintained a 90% retention rate of females graduating with bachelor's degrees in STEM disciplines (n=187), with many graduates completing advanced masters and doctoral degrees and seamlessly entering into post-graduate internships, professional, and industry careers. The success of the WiSE program is attributed to a focused initiative in fostering supportive classroom environments through common course enrollment, professional development, and engaging women in their community through service learning. As a continued focus, we aim to increase the inclusivity and representation of women at UNR in underrepresented fields such as physics, math, and the geosciences. Further program improvements will be based on ongoing research, including a qualitative approach to explore how providing gender equitable resources influences the persistence of women in STEM.

  4. Alignment of Hands-on STEM Engagement Activities with Positive STEM Dispositions in Secondary School Students

    NASA Astrophysics Data System (ADS)

    Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra

    2015-12-01

    This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in activities such as an after-school robotics program. Both groups are compared and contrasted with a third group of high school students admitted at the eleventh grade to an academy of mathematics and science. All students were assessed using the same science, technology, engineering and mathematics (STEM) dispositions instrument. Findings indicate that the after-school group whose participants self-selected STEM engagement activities, and the self-selected academy of mathematics and science group, each had highly positive STEM dispositions comparable to those of STEM professionals, while a subset of the middle school whole-classroom energy monitoring group that reported high interest in STEM as a career, also possessed highly positive STEM dispositions comparable to the STEM Professionals group. The authors conclude that several different kinds of hands-on STEM engagement activities are likely to foster or maintain positive STEM dispositions at the middle school and high school levels, and that these highly positive levels of dispositions can be viewed as a target toward which projects seeking to interest mainstream secondary students in STEM majors in college and STEM careers, can hope to aspire. Gender findings regarding STEM dispositions are also reported for these groups.

  5. Integrated STEM Curriculum: Improving Educational Outcomes for Head Start Children

    ERIC Educational Resources Information Center

    Aldemir, Jale; Kermani, Hengameh

    2017-01-01

    In this study, the researchers aimed to design, plan and implement a Science, Technology, Engineering and Math (STEM) model to support Pre-K children's skills and knowledge in STEM as well as to improve Pre-K teachers' attitudes and professional skills to plan and integrate STEM concepts in their daily classroom activities. Four classrooms from a…

  6. New educational tools to encourage high-school students' activity in stem

    NASA Astrophysics Data System (ADS)

    Mayorova, Vera; Grishko, Dmitriy; Leonov, Victor

    2018-01-01

    Many students have to choose their future profession during their last years in the high school and therefore to choose a university where they will get proper education. That choice may define their professional life for many years ahead or probably for the rest of their lives. Bauman Moscow State Technical University conducts various events to introduce future professions to high-school students. Such activity helps them to pick specialization in line with their interests and motivates them to study key scientific subjects. The paper focuses on newly developed educational tools to encourage high school students' interest in STEM disciplines. These tools include laboratory courses developed in the fields of physics, information technologies and mathematics. More than 2000 high school students already participated in these experimental courses. These activities are aimed at increasing the quality of STEM disciplines learning which will result in higher quality of training of future engineers.

  7. Toward Inclusive STEM Classrooms: What Personal Role Do Faculty Play?

    PubMed

    Killpack, Tess L; Melón, Laverne C

    2016-01-01

    Private and public policies are increasingly aimed at supporting efforts to broaden participation of a diverse body of students in higher education. Unfortunately, this increase in student diversity does not always occur alongside changes in institutional culture. Unexamined biases in institutional culture can prevent diverse students from thriving and persisting in science, technology, engineering, and mathematics (STEM) fields. Given the daily personal interactions that faculty have with students, we suggest that individual educators have the opportunity, and responsibility, to improve the retention and persistence of diverse students. However, in our experience, faculty professional development programs often limit discussions of diversity to "comfortable" topics (such as learning styles) and miss opportunities to explore deeper issues related to faculty privilege, implicit bias, and cues for stereotype threat that we all bring to the classroom. In this essay, we present a set of social science concepts that we can extend to our STEM courses to inform our efforts at inclusive excellence. We have recommended strategies for meaningful reflection and professional development with respect to diversity and inclusion, and aim to empower faculty to be change agents in their classrooms as a means to broadening participation in STEM fields. © 2016 T. L. Killpack and L. C. Melón. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. One-Two Punch: Utilizing Teacher Research Experiences and Related Classroom Activities to Increase Student Interest in STEM

    NASA Astrophysics Data System (ADS)

    Wold-Brennon, R.; Cooper, S. K.

    2014-12-01

    Through collaborations between scientists and educators, the Consortium for Ocean Leadership developed a series of marine geosciences classroom activities and lesson plans -- including the Adopt-a-Microbe project, a collection of hands-on science lessons that use the sub-seafloor microbiology topics to provide engaging pathways for K-12 students to learn about the world around them. The goal of these activities has been to introduce youth to deep ocean exploration, inspire interest in microbial oceanography, and foster higher education goals and career paths in related sciences for our youth. From the beginning, these lessons were developed in close working relationships between scientists and educators, and the lessons geared towards middle school have been recently piloted with the intent to maximize sustained student interest in STEM topics. While teaching these units, educators used surveys, polls, group discussions, and interviews to shed light on correlations between student interest in STEM and their close proximity to exemplary and enthusiastic educators and student leaders who are active in STEM activities such as research projects and expeditions. Educators continue to use Adopt-a-Microbe and related expedition science-based lessons to explore the broader impacts of their professional development in the Geosciences on their students' professed interest in STEM.

  9. The bench vs. the blackboard: learning to teach during graduate school.

    PubMed

    Ciaccia, Laura

    2011-09-01

    Many science, technology, engineering, and mathematics (STEM) graduate students travel through the academic career pipeline without ever learning how to teach effectively, an oversight that negatively affects the quality of undergraduate science education and cheats trainees of valuable professional development. This article argues that all STEM graduate students and postdoctoral fellows should undergo training in teaching to strengthen their resumes, polish their oral presentation skills, and improve STEM teaching at the undergraduate level. Though this may seem like a large undertaking, the author outlines a three-step process that allows busy scientists to fit pedagogical training into their research schedules in order to make a significant investment both in their academic career and in the continuing improvement of science education. Copyright © 2011.

  10. The Role of Stem Cells in Aesthetic Surgery: Fact or Fiction?

    PubMed Central

    McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G.; Hu, Michael; Atashroo, David A.; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C.; Wan, Derrick C.; Longaker, Michael T.

    2014-01-01

    Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. We review the potential, as well as drawbacks, for incorporation of stem cells in cosmetic procedures. A review of FDA-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a “snapshot” analysis of websites using the search terms “stem cell therapy” or “stem cell treatment” or “stem cell facelift” was performed. Despite the protective net cast by regulatory agencies such as the FDA and professional societies such as the American Society of Plastic Surgeons, we are witnessing worrying advertisements for procedures such as stem cell facelifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that we provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies. PMID:24732654

  11. The Impact of an Authentic Science Experience on STEM Identity: A Preliminary Analysis of YouthAstroNet and MicroObservatory Telescope Network Participant Data

    NASA Astrophysics Data System (ADS)

    Dussault, Mary E.; Wright, Erika A.; Sadler, Philip; Sonnert, Gerhard; ITEAMS II Team

    2018-01-01

    Encouraging students to pursue careers in science, technology, engineering, and mathematics (STEM) is a high priority for national K-12 education improvement initiatives in the United States. Many educators have claimed that a promising strategy for nurturing early student interest in STEM is to engage them in authentic inquiry experiences. “Authentic” refers to investigations in which the questions are of genuine interest and importance to students, and the inquiry more closely resembles the way real science is done. Science education researchers and practitioners at the Harvard-Smithsonian Center for Astrophysics have put this theory into action with the development of YouthAstroNet, a nationwide online learning community of middle-school aged students, educators, and STEM professionals that features the MicroObservatory Robotic Telescope Network, professional image analysis software, and complementary curricula for use in a variety of learning settings. This preliminary study examines factors that influence YouthAstroNet participants' Science Affinity, STEM Identity, and STEM Career Interest, using the matched pre/post survey results of 261 participants as the data source. The pre/post surveys included some 40 items measuring affinity, identity, knowledge, and career interest. In addition, the post intervention instrument included a number of items in which students reported the instructional strategies they experienced as part of the program. A simple analysis of pre-post changes in affinity and interest revealed very little significant change, and for those items where a small pre-post effect was observed, the average change was most often negative. However, after accounting for students' different program treatment experiences and for their prior attitudes and interests, a predictor of significant student gains in Affinity, STEM Identity, Computer/Math Identity, and STEM Career Interest could be identified. This was the degree to which students reported using and experiencing the primary "authentic" learning activities of the YouthAstroNet program.

  12. Who Is Doing the Engineering, the Student or the Teacher? The Development and Use of a Rubric to Categorize Level of Design for the Elementary Classroom

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Pfiester, Joshua; Callahan, Janet; Pyke, Patricia

    2015-01-01

    Science, technology, engineering, and mathematics (STEM) professional development for K-5 teachers often includes engineering design as a focus. Because engineering applications provide perspective to both teachers and their students in terms of how mathematic and scientific principles are employed to solve real-world problems (Baine, 2004; Roden,…

  13. Home health nursing: towards a professional practice model.

    PubMed

    Michaels, D B

    1994-04-01

    A rapidly growing caseload led this home healthcare agency in New England to develop and implement a new management structure built around the belief that 1) Professionals can manage their own practice and function as part of a self-directed work team; 2) Management's role is to foster an organizational culture which facilitates this; and 3) Total quality management is based on people-oriented service. A "flex-time" system, competitive compensation and empowerment stemming from responsible autonomy have begun to reduce turnover and enhance "word of mouth" advertising.

  14. Examining Teachers' Perspectives on an Implementation of Elementary Engineering Teacher Professional Development

    ERIC Educational Resources Information Center

    Boots, Nikki Kim

    2013-01-01

    The emphasis on engaging young learners in science, technology, engineering, and math (STEM) professions is driving calls for educational reform. One movement that is gaining momentum is exposing K-12 learners to engineering. With the advent of the "Next Generation Science Standards" (2012b), engineering is being more formally integrated…

  15. "Kahua A'o"--A Learning Foundation: Using Hawaiian Language Newspaper Articles for Earth Science Professional Development

    ERIC Educational Resources Information Center

    Chinn, Pauline W. U; Businger, Steven; Lance, Kelly; Ellinwood, Jason K.; Stone, J. Kapomaika'i; Spencer, Lindsey; McCoy, Floyd W.; Nogelmeier, M. Puakea; Rowland, Scott K.

    2014-01-01

    "Kahua A'o," a National Science Foundation Opportunities for Enhancing Diversity in the Geosciences project, seeks to prepare educators to address issues of underrepresentation of Native Hawaiian students in Earth and Space Science (ESS) and science, technology, engineering, and mathematics (STEM) fields. An interdisciplinary team…

  16. Improving Middle Grades STEM Teacher Content Knowledge and Pedagogical Practices through a School-University Partnership

    ERIC Educational Resources Information Center

    McCollough, Cherie; Jeffery, Tonya; Moore, Kim; Champion, Joe

    2016-01-01

    This paper outlines a University-School District partnership with the intent to increase the number of middle grades mathematics and science teachers. This externally funded initiative includes onsite, authentically situated professional development for pre- and in-service teachers at three different urban, low-socioeconomic schools with a…

  17. Fish Farm Challenge Provides STEM Design Experiences for Youth

    ERIC Educational Resources Information Center

    Horton , Robert L.; House, Patty L.

    2015-01-01

    In 2014, Monsanto Corporation partnered with National 4-H Council to help inspire and develop professional skills among young agriculturalists. The Ohio State University created Fish Farm Challenge, which engaged more than 8,000 youth across eight states. Youth were taught about worldwide food insecurity and the importance of aquaculture. They…

  18. MS PHD'S: A successful model for reaching underrepresented minorities (URM) students through virtual platforms

    NASA Astrophysics Data System (ADS)

    Scott, O.; Johnson, A.; Williamson, V.; Ricciardi, L.; Jearld, A., Jr.; Guzman, W. I.

    2014-12-01

    To successfully recruit and retain underrepresented minority (URM) students and early career scientists, many programs supplement traditional curricular activities with multiple online platforms, establishing "virtual communities" that are free and easily accessible. These virtual communities offer readily sustainable opportunities to facilitate communication across a wide range of cultural lines and socioeconomic levels thereby broadening participation and inclusivity in STEM. Established in 2003, the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Earth System Science Professional Development Program has successfully used virtual community tools such as a listserv, community forum, social media, and VoIP technologies, to extend the face-to-face activities of the program and support the advancement of URM students and early career scientists in STEM. The use of multiple facets of virtual community by MS PHD'S participants supports and encourages "real life" interactions and mentorship, facilitates networking and professional development, and maintains continuity of shared networks. The program is now in its ninth cohort and supports 213 participants. To date, 54 participants have completed their PhD and another 61 are currently enrolled in doctoral programs.

  19. AP® STEM Participation and Postsecondary STEM Outcomes: Focus on Underrepresented Minority, First-Generation, and Female Students

    ERIC Educational Resources Information Center

    Smith, Kara; Jagesic, Sanja; Wyatt, Jeff; Ewing, Maureen

    2018-01-01

    Projections by the President's Council of Advisors on Science and Technology (2012) point to a need for approximately one million more Science Technology Engineering and Mathematics (STEM) professionals than the U.S. will be able to produce considering the current rate of STEM postsecondary degree completions (Executive Office of the President of…

  20. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments focus on the benefits scientists received from networking with K-12 teachers. The classroom lessons resulting from STEP have been so popular among teachers, the Alaska Department of Education and Early Development recently contracted with the PI to create a website that will make the STEP database open to teachers across Alaska. When the Alaska Department of Education and Early Development launched the new website in August 2011, the name of the STEP program was changed to the Alaska K-12 Science Curricular Initiative (AKSCI). The STEP courses serving as the foundation to the new AKSCI site are located under the "History" tab of the new website.

  1. A social identification approach to the effects of religious disclosures in business communication.

    PubMed

    Carr, Caleb T

    2017-01-01

    This research expands on prior research into the effects of religious disclosures on interpersonal attraction by drawing from social identification theory to explain attributions stemming from religious disclosures in professionals' e-mail signature blocks. Participants (N = 268) were randomly exposed to one of three experimental conditions (a Christian, Islamic, or secular quotation in a signature block) and completed measures of social identification and perceptions of professionalism. Results indicate that, contrary to prior research, merely disclosing one's religion does not increase attributions; rather, attributions of a sender's professionalism are positively derived from the receiver's social identification with the sender's religion. Implications of these findings are discussed with regard to social identity theory, as well as for professional practice in developing signature blocks as a means of self-presentation.

  2. Professional development and teacher impacts: The NSF GK-12 experience

    NASA Astrophysics Data System (ADS)

    Camasta, Susan Fullett

    Professional development is a central piece in the continuing education of teachers. The purpose of this study was to examine professional development for teachers, in particular, the impact of one program that has the potential to positively influence educators as their careers evolve. Twenty-seven teachers who served as participants in the National Science Foundation (NSF) Graduate STEM (science, technology, engineering and mathematics) Fellows in K-12 Education Program (GK-12) volunteered to be interviewed about their experiences as teacher partners with graduate student Fellows who were considered experts in their content area and research methods. The teachers taught 1st through 12th grades in 22 different schools, and represented nine GK-12 programs in six states. The data collected in this qualitative study indicate enduring impacts on teachers and those included: affective impacts, as well as impacts on their practice, their colleagues and their professional involvement. In addition, Fellow and student impacts were reported. The teacher reports indicate that the design and goals of the GK-12 program---which is meant to impact graduate student Fellows, teachers and students---are consistent with the literature on best-practice professional development including facilitating teacher change. Thus, this program can serve as a model for designing effective professional development. A limitation of this study is that most of the data collected were from teacher reports.

  3. STEM | News

    Science.gov Websites

    the field. STEM Career Expo at Fermilab From NCTV17, April 20, 2018: The next generation of scientists Career Expo. Watch the 90-second segment. In photos: Dare to Dream shares joys of STEM with Latina middle Lab professionals discussed their work, shared their experiences in different career areas and

  4. STEM Education Summit: Summary of Key Themes

    ERIC Educational Resources Information Center

    Education Council, 2015

    2015-01-01

    The Science, Technology, Engineering, and Mathematics (STEM) Education Summit, held in Sydney on 5 November 2015, was hosted by the New South Wales (NSW) Minister for Education, Adrian Piccoli, on behalf of his Education Council colleagues. It was attended by just over 100 experts, thought leaders and STEM professionals from industry, government…

  5. How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices

    ERIC Educational Resources Information Center

    Fan, Szu-Chun; Yu, Kuang-Chao

    2017-01-01

    STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…

  6. Fostering Under-represented Minority Student Success and Interest in the Geosciences: Outcomes of the UNC-Chapel Hill Increasing Diversity and Enhancing Academia (IDEA) Program

    NASA Astrophysics Data System (ADS)

    Hughes, M. H.; Gray, K.; Drostin, M.

    2016-12-01

    For under-represented minority (URM) students, opportunities to meaningfully participate in academic communities and develop supportive relationships with faculty and peers influence persistence in STEM majors (Figueroa, Hurtado, & Wilkins, 2015; PCAST, 2012; Tsui, 2007). Creating such opportunities is even more important in the geosciences, where a lower percentage of post-secondary degrees are awarded to URM students than in other STEM fields (NSF, 2015; O'Connell & Holmes, 2011; NSF, 2011). Since 2011, Increasing Diversity and Enhancing Academia (IDEA), a program of the UNC-Chapel Hill Institute for the Environment (UNC-IE), has provided 39 undergraduates (predominantly URM and female students) with career-relevant research experiences and professional development opportunities, including a culminating experience of presenting their research at a campus-wide research symposium. External evaluation data have helped to characterize the effectiveness of the IDEA program. These data included pre- and post-surveys assessing students' interest in geosciences, knowledge of career pathways, and perceptions of their abilities related to a specific set of scientific research skills. Additionally, progress towards degrees and dissemination outcomes were tracked. In this presentation, we will share quantitative and qualitative data that demonstrate that participation in the IDEA program has influenced students' interest and persistence in geosciences research and careers. These data range from self-reported competencies in a variety of scientific skills (such as organizing and interpreting data and reading and interpreting science literature) to documentation of student participation in geoscience study and professions. About 69% of participants continued research begun during their internships beyond the internship; and about 38% pursued graduate degrees and secured jobs in geoscience and other STEM fields. (Nearly half are still in school.) Overall, these evaluation data have shown that the IDEA research experience, combined with program elements focused on professional development, reinforces students' sense of their science abilities, connects them to a network of supportive students and professionals and contributes to their sense of belonging within the geosciences.

  7. Difference in Career Attitudes of Elementary Minority Female Students after Participation in a STEM Event

    NASA Astrophysics Data System (ADS)

    Pumphrey, Karyn Christine

    Science, Technology, Engineering and Mathematics (STEM) professionals are responsible for the development of new technologies and breaking scientific discoveries. However, in the United States, racial minorities and females are vastly underrepresented in STEM professions. This problem is multiplied for individuals falling into both categories. Educators in must develop effective strategies to increase the number of minority females in STEM jobs. The purpose of this quantitative study was to investigate if there was a difference in attitudes about future STEM educational choices and career opportunities after participation in a theme-based STEM event. The significant points reflected in the literature are statistics that demonstrate the extreme underrepresentation of this population and the importance of having all segments of the population represented in these important jobs. A descriptive non-experimental design study utilizing survey data taken before and after a STEM day at a public school was employed. The analysis tool was the Hopes and Goals Survey which has been found valid and reliable with similar samples of students. The data sets were pre-event and post-event surveys from minority females in grades 3, 4, and 5. The two data sets were compared using descriptive statistics to investigate any differences in opinions before and after the event. The results showed a difference in minority female student's attitudes regarding future STEM educational opportunities and careers after participation in a theme-based STEM event. The results indicate a need for increasing the number of STEM events in public schools. Future research may explore the differences between the opinion changes of males versus females to ascertain which gender responded most positively to STEM day.

  8. Umbilical cord blood banking in the worldwide hematopoietic stem cell transplantation system: perspectives for Ukraine.

    PubMed

    Kalynychenko, T O

    2017-09-01

    Significant progress in the promotion of procedural technologies associated with the transplantation of hematopoietic stem cells caused a rapid increase in activity. The exchange of hematopoietic stem cells for unrelated donor transplantations is now much easier due to the relevant international professional structures and organizations established to support cooperation and standard setting, as well as rules for the functioning of both national donor registries and cord blood banks. These processes are increasing every year and are contributing to the outpacing rates of development in this area. Products within their country should be regulated by the competent government authorities. This study analyzes the work of international and national levels of support for transplantation activity in the field of unrelated hematopoietic stem cell transplantation, the standardization order of technologies, as well as data that justify the need to create a network of donated umbilical cord blood banks in Ukraine as a factor in the development of allogeneic transplantation. This will promote the accessibility of international standards for the treatment of serious diseases for Ukrainian citizens.

  9. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    NASA Astrophysics Data System (ADS)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-02-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of gain in science knowledge as measured by the Iowa Test of Basic Skills in Science (ITBS-S). The original BUGS participants and contrasts have now completed high school and entered college, allowing researchers to assess the long-term impact of the BUGS program. Fourteen former BUGS participants completed two instruments to assess their perceptions of science and science, technology, engineering, and mathematics (STEM) careers. Their results were compared to four contrast groups composed entirely of females: 12 former BUGS contrasts, 10 college science majors, 10 non-science majors, and 9 current STEM professionals. Results indicate that BUGS participants have higher perceptions of science careers than BUGS contrasts. There were no significant differences between BUGS participants, Science Majors, and STEM professionals in their perceptions of science and STEM careers, whereas the BUGS contrast group was significantly lower than BUGS participants, Science Majors, and STEM Professionals. Additional results and implications are discussed within.

  10. Race-Conscious Professionalism and African American Representation in Academic Medicine.

    PubMed

    Powers, Brian W; White, Augustus A; Oriol, Nancy E; Jain, Sachin H

    2016-07-01

    African Americans remain substantially less likely than other physicians to hold academic appointments. The roots of these disparities stem from different extrinsic and intrinsic forces that guide career development. Efforts to ameliorate African American underrepresentation in academic medicine have traditionally focused on modifying structural and extrinsic barriers through undergraduate and graduate outreach, diversity and inclusion initiatives at medical schools, and faculty development programs. Although essential, these initiatives fail to confront the unique intrinsic forces that shape career development. America's ignoble history of violence, racism, and exclusion exposes African American physicians to distinct personal pressures and motivations that shape professional development and career goals. This article explores these intrinsic pressures with a focus on their historical roots; reviews evidence of their effect on physician development; and considers the implications of these trends for improving African American representation in academic medicine. The paradigm of "race-conscious professionalism" is used to understand the dual obligation encountered by many minority physicians not only to pursue excellence in their field but also to leverage their professional stature to improve the well-being of their communities. Intrinsic motivations introduced by race-conscious professionalism complicate efforts to increase the representation of minorities in academic medicine. For many African American physicians, a desire to have their work focused on the community will be at odds with traditional paths to professional advancement. Specific policy options are discussed that would leverage race-conscious professionalism as a draw to a career in academic medicine, rather than a force that diverts commitment elsewhere.

  11. The role of stem cells in aesthetic surgery: fact or fiction?

    PubMed

    McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G; Hu, Michael; Atashroo, David A; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C; Wan, Derrick C; Longaker, Michael T

    2014-08-01

    Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. The authors review the potential and the drawbacks of incorporation of stem cells in cosmetic procedures. A review of U.S. Food and Drug Administration-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of Web sites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed. Despite the protective net cast by regulatory agencies such as the U.S. Food and Drug Administration and professional societies such as the American Society of Plastic Surgeons, the authors are witnessing worrying advertisements for procedures such as stem cell face lifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that they provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.

  12. Turning the STEM Tide: An Approach for Mentoring Young Women on How to Thrive in STEM Careers

    DTIC Science & Technology

    2014-08-01

    facilitating candid interactive discussions on trends, professional and personal life balance , and obstacles and opportunities for women in STEM fields...access to successful women in STEM with candid discussions focused on women and STEM careers, achieving balance between profession and personal life ...doctorate degrees were 11% less likely than single women to work in science. Another study by Mason and Goulden (2002) showed that the effect of

  13. Women in STEM hit by discrimination

    NASA Astrophysics Data System (ADS)

    Randall, Ian

    2016-02-01

    Almost a third of women in science, technology, engineering and mathematics (STEM) in Australia are considering leaving their job within the next five years, according to a survey by the employee association Professionals Australia.

  14. STEM professional volunteers in K-12 competition programs: Educator practices and impact on pedagogy

    NASA Astrophysics Data System (ADS)

    Zintgraff, Alfred Clifton

    This mixed methods dissertation study explored how secondary school educators in specific K-12 competition programs recruited and deployed STEM professional volunteers. The study explored which practices were viewed as most important, and how practices related to constructivist pedagogy, all from the viewpoint of educators. The non-positivist approach sought new knowledge without pursuing generalized results. Review of the literature uncovered extensive anecdotal information about current practices, and suggested that large investments are made in engaging volunteers. One National Science Foundation-sponsored study was identified, and its recommendations for a sustained research agenda were advanced. Three study phases were performed, one to explore practices and operationalize definitions, a second to rate practice's importance and their relation to pedagogy, and a third to seek explanations. Educators preferred recruiting local, meaning recruiting parents and former students, versus from industry or other employers. Most educators preferred volunteers with mentoring skills, and placing them in direct contact with students, versus deploying volunteers to help with behind-the-scenes tasks supporting the educator. Relationships were identified between the highest-rated practices and constructivism in programs. In STEM professional volunteers, educators see affordances, in the same way a classroom tool opens affordances. A model is proposed which shows educators considering practicality, pedagogy, knowledge and skills, and rapport when accessing the affordances opened by STEM professional volunteers. Benefits are maximized when programs align with strong industry clusters in the community.

  15. From Start to Finish: Retention of Physics Undergraduates

    NASA Astrophysics Data System (ADS)

    Hammer, Donna; Uher, Tim

    The University of Maryland Physics Department's NSF Scholarships in Science Technology, Engineering and Mathematics (S-STEM) project is a unique program that aims to reduce the attrition of students that occurs in the ``pre-major-to-major'' gap - i.e., students who begin at the university intending to study physics, but do not graduate with a physics degree. To increase the retention of admitted students, the UMD S-STEM program is designed to provide student with financial assistance, a strong sense of community, academic support, and career planning. We will discuss how the program has been integrated into the curriculum and culture of the physics department, and focus on developing key components of the program: a nurturing environment, dedicated mentorship, early research experience, and professional development.

  16. Professional Role Confidence and Gendered Persistence in Engineering

    ERIC Educational Resources Information Center

    Cech, Erin; Rubineau, Brian; Silbey, Susan; Seron, Caroll

    2011-01-01

    Social psychological research on gendered persistence in science, technology, engineering, and mathematics (STEM) professions is dominated by two explanations: women leave because they perceive their family plans to be at odds with demands of STEM careers, and women leave due to low self-assessment of their skills in STEM's intellectual tasks, net…

  17. Strategies to Increase Representation of Students with Disabilities in Science, Technology, Engineering and Mathematics (STEM)

    ERIC Educational Resources Information Center

    White, Jeffry L.; Massiha, G. H.

    2015-01-01

    As a nation wrestles with the need to train more professionals, persons with disabilities are undereducated and underrepresented in science, technology, engineering, and mathematics (STEM). The following project was proposed to increase representation of students with disabilities in the STEM disciplines. The program emphasizes an integrated…

  18. Creating an Atmosphere for STEM Literacy in the Rural South through Student-Collected Weather Data

    ERIC Educational Resources Information Center

    Clark, Lynn; Majumdar, Saswati; Bhattacharjee, Joydeep; Hanks, Anne Case

    2015-01-01

    This paper is an examination of a teacher professional development program in northeast Louisiana, that provided 30 teachers and their students with the technology, skills, and content knowledge to collect data and explore weather trends. Data were collected from both continuous monitoring weather stations and simple school-based weather stations…

  19. Mentor Preparation: A Qualitative Study of STEM Master Teacher Professional Development

    ERIC Educational Resources Information Center

    Click-Cuellar, Heather Lynn

    2014-01-01

    The No Child Left Behind Act of 2001 has required districts to staff all classrooms with highly qualified teachers. Yet, retaining certified teachers in the profession has been a national concern, especially among new teachers who leave at alarming rates within their first three years. This comes at a heavy cost to districts financially and in…

  20. Theory and Implementation of an Innovative Teacher Professional Development Program

    ERIC Educational Resources Information Center

    Seals, Christopher; Mehta, Swati; Wolf, Leigh Graves; Marcotte, Candace

    2017-01-01

    U.S. teachers have less time to plan, collaborate, and research related work in comparison to teachers in competing countries (NECTL) and time is needed for teachers to learn new skills, understand new concepts, and to integrate new ideas into their practice (Corcoran, 1995). The MSUrbanSTEM Teaching and Leadership Fellowship program is a…

  1. Assessing the interactivity and prescriptiveness of faculty professional development workshops: The real-time professional development observation tool

    NASA Astrophysics Data System (ADS)

    Olmstead, Alice; Turpen, Chandra

    2016-12-01

    Professional development workshops are one of the primary mechanisms used to help faculty improve their teaching, and draw in many STEM instructors every year. Although workshops serve a critical role in changing instructional practices within our community, we rarely assess workshops through careful consideration of how they engage faculty. Initial evidence suggests that workshop leaders often overlook central tenets of education research that are well established in classroom contexts, such as the role of interactivity in enabling student learning [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]. As such, there is a need to develop more robust, evidence-based models of how best to support faculty learning in professional development contexts, and to actively support workshop leaders in relating their design decisions to familiar ideas from other educational contexts. In response to these needs, we have developed an observation tool, the real-time professional development observation tool (R-PDOT), to document the form and focus of faculty engagement during workshops. In this paper, we describe the motivation and methodological considerations behind the development of the R-PDOT, justify our decisions to highlight particular aspects of workshop sessions, and demonstrate how the R-PDOT can be used to analyze three sessions from the Physics and Astronomy New Faculty Workshop. We also justify the accessibility and potential utility of the R-PDOT output as a reflective tool using preliminary data from interviews with workshop leaders, and consider the roles the R-PDOT could play in supporting future research on faculty professional development.

  2. Supply and Demand of STEM Workers: STEM Jobs Are Growing, but Are Enough Massachusetts Students Qualified? Education Research Brief. Issue 2

    ERIC Educational Resources Information Center

    Conaway, Carrie

    2007-01-01

    Jobs in science, technology, engineering, and mathematics (STEM) are the backbone of the Massachusetts economy. They comprise a substantial share of employment: about 13 percent of the state's jobs and one-third of its gross state product are related to STEM. And they also generate jobs in other fields, such as business and professional services,…

  3. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  4. Teacher Perceptions of Inquiry and STEM Education in Bangladesh

    NASA Astrophysics Data System (ADS)

    Shahidullah, Kazi K.

    This dissertation reports lower secondary science teachers perceptions of current practice in Dhaka, Bangladesh concerning inquiry and STEM Education in order to establish a baseline of data for reform of science education in Bangladesh. Bangladesh has been trying to incorporate inquiry-based science curricula since the 1970s. Over time, the science curricula also aligned with different international science education movements such as Science for All, Scientific Literacy, Science, Technology, and Society. Science, Technology, Engineering, and Mathematics (STEM) is the most recent science education movement in international science education. This study explored current practices and perceptions of lower secondary science teachers in order to establish a baseline of current practice so that future reform recommendations may be pursued and recommendations made for Bangladesh to overcome the inquiry-based challenges and to incorporate new STEM-based science education trends happening in the US and throughout the world. The study explored science teachers perceptions and readiness to transform their science classrooms based on self-reported survey. The survey utilized Likert-type scale with range 1 (very strongly disagree) to 6 (very strongly agree) among four hundred lower secondary science teachers, teacher training college faculty, and university faculty. The data is presented in four different categories: curriculum, instruction, assessment, and professional development. Results indicated that the participants understand and practice a certain level of inquiry in their science classrooms, though they do not have adequate professional development. Participants also stated that they do not have sufficient instructional materials and the curriculum is not articulated enough to support inquiry. On the other hand, the participants reported that they understand and practice a certain degree of inquiry and STEM-based science education, but they also state that the current curriculum and instructional materials are not sufficient to practice inquiry nor to integrate more than one or two disciplines with science as is required in STEM integrated teaching. Finally, this study recommends a framework for science education reform for Bangladesh based upon a combination of successful international science education reformation practices.

  5. Aquatic Sciences and Its Appeal for Expeditionary Research Science Education

    NASA Astrophysics Data System (ADS)

    Aguilar, C.; Cuhel, R. L.

    2016-02-01

    Our multi-program team studies aim to develop specific "hard" and "soft" STEM skills that integrate, literally, both disciplinary and socio-economic aspects of students lives to include peer mentoring, advisement, enabling, and professional mentorship, as well as honestly productive, career-developing hands-on research. Specifically, we use Interdependent, multidisciplinary research experiences; Development and honing of specific disciplinary skill (you have to have something TO network); Use of skill in a team to produce big picture product; Interaction with varied, often outside professionals; in order to Finish with self-confidence and a marketable skill. In a given year our umbrella projects involve linked aquatic science disciplines: Analytical Chemistry; Geology; Geochemistry; Microbiology; Engineering (Remotely Operated Vehicles); and recently Policy (scientist-public engagement). We especially use expeditionary research activities aboard our research vessel in Lake Michigan, during which (a dozen at a time, from multiple programs) students: Experience ocean-scale research cruise activities; Apply a learned skill in real time to characterize a large lake; Participate in interdisciplinary teamwork; Learn interactions among biology, chemistry, geology, optics, physics for diverse aquatic habitats; and, importantly, Experience leadership as "Chief Scientist-for-a-station". These team efforts achieve beneficial outcomes: Develop self-confidence in application of skills; Enable expression of leadership capabilities; Provide opportunity to assess "love of big water"; Produce invaluable long-term dataset for the studied region (our benefit); and they are Often voted as a top influence for career decisions. These collectively have led to some positive outcomes for "historical" undergraduate participants - more than half in STEM graduate programs, only a few not still involved in a STEM career at some level, or involved as for example a lawyer in environmental policy.

  6. An Informal Science Education Program's Impact on STEM Major and STEM Career Outcomes

    NASA Astrophysics Data System (ADS)

    Habig, Bobby; Gupta, Preeti; Levine, Brian; Adams, Jennifer

    2018-04-01

    While there is extensive evidence that STEM careers can be important pathways for augmenting social mobility and for increasing individual prestige, many youth perceive a STEM trajectory as an unattractive option. In the USA, women and members of historically marginalized racial and ethnic groups continue to be underrepresented across STEM disciplines. One vehicle for generating and sustaining interest in STEM is providing youth long-term access to informal science education (ISE) institutions. Here, we incorporate triangulation methods, collecting and synthesizing both qualitative and quantitative data, to examine how participation in a longitudinal ISE out-of-school time (OST) program facilitated by the American Museum of Natural History (AMNH) impacted the STEM trajectories of 66 alumni. Findings revealed that 83.2% of alumni engaged in a STEM major, and 63.1% in a STEM career, the majority whom were females and/or members of historically underrepresented racial and ethnic groups. Based on interviews with a purposeful sample of 21 AMNH alumni, we identified four program design principles that contributed to persistence in STEM: (1) affording multiple opportunities to become practitioners of science; (2) providing exposure to and repeated experiences with STEM professionals such as scientists, educators, and graduate students to build social networks; (3) furnishing opportunities for participants to develop shared science identities with like-minded individuals; and (4) offering exposure to and preparation for a variety of STEM majors and STEM careers so that youth can engage in discovering possible selves. These findings support our central thesis that long-term engagement in ISE OST programs fosters persistence in STEM.

  7. Insights on STEM Careers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, Joanne Roth

    2014-11-05

    This presentation will provide career advice for individuals seeking to go beyond just having a job to building a successful career in the areas of Science, Technology, Engineering, and Mathematics. Careful planning can be used to turn a job into a springboard for professional advancement and personal satisfaction. Topics to be addressed include setting priorities, understanding career ladders, making tough choices, overcoming stereotypes and assumptions by others, networking, developing a professional identify, and balancing a career with family and other personal responsibilities. Insights on the transition from individual technical work to leadership will also be provided. The author will drawmore » upon experiences gained in academic, industrial, and government laboratory settings, as well as extensive professional service and community involvement.« less

  8. PROFESSIONAL AND CLIENT CHOICES IN CRITICAL SITUATIONS.

    ERIC Educational Resources Information Center

    LEVITON, GLORIA L.

    THIS REPORT DESCRIBES A STUDY OF PROFESSIONAL--CLIENT RELATIONSHIPS IN THE REHABILITATION OF THE PHYSICALLY HANDICAPPED. THE PURPOSES WERE--(1) TO INVESTIGATE VIEWS HELD BY PROFESSIONALS AND CLIENTS ABOUT "CRITICAL SITUATIONS" STEMMING FROM A CLIENT'S DISABILITY, (2) TO DETERMINE CONDITIONS UNDERLYING THESE VIEWS, AND (3) TO PROVIDE HELPFUL…

  9. Critiquing Statistics in Student and Professional Worlds

    ERIC Educational Resources Information Center

    Jones, Ryan Seth; Lehrer, Richard; Kim, Min-Joung

    2017-01-01

    This article compares students' critiques within a class discussion about an invented statistic to STEM professionals' critiques from interviews to better understand how the situated meanings of a statistic are similar and different across student and professional worlds. We discuss similarities and differences in how participants constructed…

  10. Insights From the Development of an Environmental Science Professional Development Field Course for Undergraduates from Two-Year and Four-Year Colleges.

    NASA Astrophysics Data System (ADS)

    Schmidt, C. M.; Hall, S. R.; Walker, B.; Paul, J.

    2017-12-01

    Existing STEM retention and diversity programs have identified access to field and professional experiences as critical to helping students identify as scientists, form networks, and gain important skills necessary for employment. This program reimagines the traditional geology field course as a professional development experience for students at 2-year and 4-year institutions interested in environmental careers. Students participate in a summer field course in the Sierra Nevada of California, during which time they complete geology, geomorphology, hydrology, and ecology field projects designed to compliment the curriculum of Environmental Geoscience, Environmental Science, and Environmental Studies programs. During the course students interact with local professionals in the environmental sector and work to earn badges based on the skills demonstrated during field projects. Badges create transparent documentation of skill mastery for students and provide a new way for students to understand and market their skills and competencies to potential employers. We will report on the curriculum development, implementation and assessment of the first cohort of students to participate in the program. Preliminary results of formative and summative assessments and their implications for student success and program design will be addressed.

  11. Examining the Effects of a STEM Career Video Intervention on the Interests and STEM Professional Identities of Rural, Minority Middle School Students

    NASA Astrophysics Data System (ADS)

    Kier, Meredith Weaver

    National efforts to interest students in STEM careers are intensifying around the globe, due to a shortage of professionals to fill the growing demands in these fields. Although some US studies find high interest in STEM in K-12 students, longitudinal studies show a decline in interest following middle school. Many students, particularly females and minorities, feel that they do not fit the image of a STEM professional. Little is known about perceptions held by students in rural areas, who have limited access to diverse STEM careers. This dissertation study employed an in school STEM career video intervention with eighty-five rural, minority, eighth grade students in a high poverty district in the southeastern US. Research questions explore students' STEM career interests before and after the STEM career video intervention, and analyze how students in this population negotiate a potential identity in STEM. Applying aspects of Lent, Brown, & Hackett's social cognitive career theory (SCCT), students' exploration sheets and video planning sheets were coded to understand positive or negative contributors to STEM career interests. Students' initial explorations were limited to careers to which they had been previously exposed at home or in class, and were influenced by their personal dispositions Over the course of the intervention, increased knowledge of careers increased the diversity of careers selected, attention to educational level, and the influence of more sophisticated career outcomes on interest. Students selected careers based on personal interests and outcome expectations, but were able to identify how their academic strengths, dispositions, and family support systems related to their career goals. Post survey analyses found the presence of role models and high self-efficacy were new predictors of interest. Study results imply that similar interventions can help students gain more sophisticated understandings of careers, can motivate students without external rewards, and that with extensive exposure to new careers, students will begin to consider their own skill set when trying on careers. Case studies of four highlighted issues of race, access to resources, hands-on experiences and course access, teachers' perceptions of them, and parental support among others that impact their STEM experiences and negotiations of a STEM self.

  12. Education Model Program on Water-Energy Research: A New STEM Graduate Program from Development through Evaluation

    NASA Astrophysics Data System (ADS)

    McCay, D.; Fiorenza, P.; Lautz, L.

    2017-12-01

    More than half of Ph.D. scientists and engineers find employment in non-academic sectors. Recognizing the range of career options for graduate degree holders and the need to align graduate education with the expectations of prospective employers, the National Science Foundation (NSF) created the NSF Research Traineeship (NRT) program. To date, over 100 NRT programs have been funded. As these programs are implemented, it is important to assess their progress, successes, and challenges. This presentation describes the ongoing evaluation of one NRT program, "Education Model Program on Water-Energy Research" (or EMPOWER) at Syracuse University. Through seminars, mini-grants, professional development activities, field courses, internship opportunities, and coursework, EMPOWER's goal is to equip students with the skills needed for the range of career options in water and energy. In collaboration with an external evaluator, EMPOWER is examining the fidelity of the program to proposed goals, providing feedback to inform project improvement (formative assessment) and assessing the effectiveness of achieving program goals (summative assessment). Using a convergent parallel mixed method design, qualitative and quantitative data were collected to develop a full assessment of the first year of the program. Evaluation findings have resulted in several positive changes to the program. For example, EMPOWER students perceive themselves to have high technical skills, but the data show that the students do not believe that they have a strong professional network. Based on those findings, EMPOWER offered several professional development events focused on building one's professional network. Preliminary findings have enabled the EMPOWER leadership team to make informed decisions about the ways the program elements can be redesigned to better meet student needs, about how to the make the program more effective, and determine the program elements that may be sustained beyond the funding period. Evaluation of programs like EMPOWER provide essential information to support continual improvement of STEM graduate programs.

  13. Beyond Smash and Crash: Gender-Friendly Tech Ed

    ERIC Educational Resources Information Center

    McCarthy, Ray

    2009-01-01

    In order to increase participation in science, technology, engineering, and math (STEM) fields and careers, one of the problems that needs to be addressed is gender equity of study and careers in STEM fields. In general, women represent less than 30% of all STEM students in college. Furthermore, less than one third of professional engineers and…

  14. Cool Astronomy: Education and Public Outreach for the WISE mission

    NASA Astrophysics Data System (ADS)

    Mendez, Bryan J.

    2011-01-01

    The Education and Public Outreach (E/PO) program of the Wide-field Infrared Survey Explorer (WISE) aims to educate and engage students, teachers, and the general public in the endeavor of science. We bring a collection of accomplished professionals in formal and informal astronomy education from around the nation to create learning materials and experiences that appeal to broad audiences. Our E/PO program trains teachers in science, technology, engineering, and mathematics (STEM) topics related to WISE; creates standards-based classroom resources and lessons using WISE data and WISE-related STEM topics; develops interactive programming for museums and science centers; and inspires the public with WISE science and images.

  15. The Bayer Facts of Science Education XVI: US STEM Workforce Shortage— Myth or Reality? Fortune 1000 Talent Recruiters on the Debate

    NASA Astrophysics Data System (ADS)

    Bayer Corporation

    2014-10-01

    A major debate is currently underway in the USA about whether there is, in fact, a science, technology, engineering and mathematics (STEM) workforce shortage in the country or not. This is the subject of the Bayer Facts of Science Education XVI: US STEM Workforce Shortage—Myth or Reality? Fortune 1000 Talent Recruiters on the Debate. An ongoing public opinion research project commissioned by Bayer Corporation, the Bayer Facts surveys examine US STEM education, diversity and workforce issues. The 16th in the series, the newest survey asks talent recruiters at some of the country's largest employers—those included in the Fortune 1000—to weigh in on current and future demand for new hires with 2- and 4-year STEM degrees. As professionals responsible for scouting, recruiting and hiring talent at Fortune 1000 companies, both STEM and non-STEM alike, these individuals are on the frontlines, tasked with assessing and filling their companies' workforce needs. The survey asks the recruiters whether new hires with 2- and 4-year STEM degrees are as, more or less in demand than their peers without STEM degrees? Are more new STEM jobs being created at their companies than non-STEM jobs? Can they find adequate numbers of qualified candidates in a timely manner and how fierce is the competition for STEM degree holders? To answer these and other questions, the survey polled 150 talent recruiters at Fortune 1000 companies, both STEM and non-STEM alike. The survey also asks the recruiters about diversion in STEM, workforce diversity in the pipeline, the role of community colleges in developing the STEM pipeline and the desired skills and competencies of new hires.

  16. Identity development in upper-level physics students: transitions in and out of physics

    NASA Astrophysics Data System (ADS)

    Irving, Paul

    2016-03-01

    In this era of unprecedented attention from the White House and Congress, the STEM community must rise to the challenge of recruiting and retaining students to achieve the mandate of producing one million additional college graduates with degrees in STEM. However, the number of students choosing to pursue and persist with physics as a degree has had a stagnated growth rate when compared to other STEM fields, and some institutions are experiencing dramatic shifts in the demographics of the students entering their programs. The development of a subject-specific identity is a strong influence on students' persistence in a discipline and is a productive lens from which to understand the stagnated growth rate of physics majors and how to support a shift in student demographics. In this presentation, ongoing research is presented that aims to understand identity development in STEM with a focus on the transition from physics student to physicist. Community development and exposure to authentic practice are established as crucial factors that contribute to the development of a professional identity. How these findings can be implemented into course design is discussed with an outline of the P3 learning environment. The P3 learning environment blends the regular focus of reform-based teaching practices on deep conceptual understanding with a focus on students obtaining understanding through engagement with authentic scientific practices. By establishing and studying learning environments similar to P3 we can further explore the development of subject-specific identity while also developing effective teaching practices.

  17. Think 500, not 50! A scalable approach to student success in STEM.

    PubMed

    LaCourse, William R; Sutphin, Kathy Lee; Ott, Laura E; Maton, Kenneth I; McDermott, Patrice; Bieberich, Charles; Farabaugh, Philip; Rous, Philip

    2017-01-01

    UMBC, a diverse public research university, "builds" upon its reputation in producing highly capable undergraduate scholars to create a comprehensive new model, STEM BUILD at UMBC. This program is designed to help more students develop the skills, experience and motivation to excel in science, technology, engineering, and mathematics (STEM). This article provides an in-depth description of STEM BUILD at UMBC and provides the context of this initiative within UMBC's vision and mission. The STEM BUILD model targets promising STEM students who enter as freshmen or transfer students and do not qualify for significant university or other scholarship support. Of primary importance to this initiative are capacity, scalability, and institutional sustainability, as we distill the advantages and opportunities of UMBC's successful scholars programs and expand their application to more students. The general approach is to infuse the mentoring and training process into the fabric of the undergraduate experience while fostering community, scientific identity, and resilience. At the heart of STEM BUILD at UMBC is the development of BUILD Group Research (BGR), a sequence of experiences designed to overcome the challenges that undergraduates without programmatic support often encounter (e.g., limited internship opportunities, mentorships, and research positions for which top STEM students are favored). BUILD Training Program (BTP) Trainees serve as pioneers in this initiative, which is potentially a national model for universities as they address the call to retain and graduate more students in STEM disciplines - especially those from underrepresented groups. As such, BTP is a research study using random assignment trial methodology that focuses on the scalability and eventual incorporation of successful measures into the traditional format of the academy. Critical measures to transform institutional culture include establishing an extensive STEM Living and Learning Community to increase undergraduate retention, expanding the adoption of "active learning" pedagogies to increase the efficiency of learning, and developing programs to train researchers to effectively mentor a greater portion of the student population. The overarching goal of STEM BUILD at UMBC is to retain students in STEM majors and better prepare them for post baccalaureate, graduate, or professional programs as well as careers in biomedical and behavioral research.

  18. Title: The Impact of 2006-2012 CReSIS Summer Research Programs that Influence Student's Choice of a STEM Related Major in College Authors: Dr. Darnell Johnson Djohnson@mail.ecsu.edu Elizabeth City State University, Elizabeth City, North Carolina 27909 Dr. Linda Hayden Haydenl@mindspring.com Elizabeth City State University, Elizabeth City, North Carolina, 27909

    NASA Astrophysics Data System (ADS)

    Johnson, D.

    2013-12-01

    Abstract: Researchers, policymakers, business, and industry have indicated that the United States will experience a future shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this impending shortage, one of which includes increasing the representation of females and minorities in the STEM fields. In order to increase the representation of underrepresented students in the STEM fields, it is important to understand the motivational factors that impact underrepresented students' interest in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). In this paper, the mathematics research team examined the role of practical research experience during the summer for talented minority secondary students studying in STEM fields. An undergraduate research mathematics team focused on the link between summer research and the choice of an undergraduate discipline. A Chi Square Statistical Test was used to examine Likert Scale results on the attitude of students participating in the 2006-2012 Center for Remote Sensing of Ice Sheets (CReSIS) Summer Research Programs for secondary students. This research was performed at Elizabeth City State University located in northeastern North Carolina about the factors that impact underrepresented students' choices of STEM related majors in college. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of underrepresented students. Index Terms: Science, Technology, Engineering, and Mathematics (STEM), Underrepresented students

  19. Psychology of Working Narratives of STEM Career Exploration for Non-dominant Youth

    NASA Astrophysics Data System (ADS)

    Mark, Sheron L.

    2016-12-01

    Science, technology, engineering, and mathematics (STEM) is a domain of knowledge, skills, and practices that is pervasive and of critical importance in our highly technological, rapidly advancing, and increasingly connected world; however, non-dominant youth, namely from non-White, lower-income, non-English-speaking, and immigrant backgrounds, are disproportionately underrepresented in STEM careers in the USA. Professional STEM career participation can be especially valuable for non-dominant populations as these careers are high quality, in-demand, and can afford one social mobility and economic stability. It is, therefore, important that we understand the ways in which non-dominant youth explore STEM careers such that we can further support and expand these. As such, this exploratory study has applied a career development perspective known as a Psychology of Working (PoW; Blustein in The psychology of working: a new perspective for career development, counseling, and public policy, Lawrence Erlbaum Associates, Mahwah, 2006) which is aptly suited to interpreting the career narratives of diverse, non-dominant populations in order to understand the unique STEM career exploration experiences of a group of non-dominant youth. The PoW framework has been modified in response to the developmental context of the youth, specifically, a focus on career expectations as opposed to career experiences, as well as their formal and informal educational experiences, including a National Science Foundation grant-funded STEM program, in which all of the participants were involved. From this study, an understanding has been gained of a number of different universal human needs that, when addressed, were influential on these youth's STEM career exploration. In particular, social connectedness via STEM career mentorship was identified as most impactful for these youth.

  20. Tested Tools and Techniques for Promoting STEM Programming in Libraries: Fifteen Years of the Lunar and Planetary Institute's Explore Program

    NASA Astrophysics Data System (ADS)

    LaConte, K.; Shipp, S.; Shupla, C.; Shaner, A.; Buxner, S.; Canipe, M.; Jaksha, A.

    2015-11-01

    Libraries are evolving to serve the changing needs of their communities—and many now encompass science, technology, engineering, and mathematics (STEM) programming. For 15 years, the Lunar and Planetary Institute (LPI) has partnered with library staff to create over 100 hands-on Earth and space science and engineering activities. In-person and online librarian training has prepared a vibrant network of over 1000 informal educators. Program evaluation has shown that Explore! training increases participants' knowledge, and that participants actively use Explore! materials and feel more prepared to offer science and engineering experiences and more comfortable using related resources. Through training, participants become more committed to providing and advocating for science and engineering programming. Explore! serves as a model for effective product development and training practices for serving library staff, increasingly our partners in the advancement of STEM education. Specific approaches and tools that contributed to the success of Explore! are outlined here for adoption by community STEM experts—including professionals and hobbyists in STEM fields and STEM educators who are seeking to share their passion and experience with others through partnerships with libraries.

  1. Creating the next generation of transportation professionals.

    DOT National Transportation Integrated Search

    2011-11-01

    "The transportation industry, like every other profession that relies heavily on the science, technology, : engineering, and mathematics (STEM) fields, faces a growing shortage of professional engineers. The : purpose of this project was to investiga...

  2. Alternate Reality Games as an Informal Learning Tool for Generating STEM Engagement among Underrepresented Youth: a Qualitative Evaluation of the Source

    NASA Astrophysics Data System (ADS)

    Gilliam, Melissa; Jagoda, Patrick; Fabiyi, Camille; Lyman, Phoebe; Wilson, Claire; Hill, Brandon; Bouris, Alida

    2017-06-01

    This project developed and studied The Source, an alternate reality game (ARG) designed to foster interest and knowledge related to science, technology, engineering, and math (STEM) among youth from populations underrepresented in STEM fields. ARGs are multiplayer games that engage participants across several media such as shared websites, social media, personal communications, and real-world settings to complete activities and collaborate with team members. The Source was a five-week summer program with 144 participants from Chicago aged 13 to 18 years. The Source incorporated six socio-contextual factors derived from three frameworks: Chang's (ERIC Digest, 2002) recommendations for engaging underrepresented populations in STEM careers, Lave and Wenger's (Cambridge University Press, 1991) situated learning model, and Barron's (Human Development, 49(4); 193-224, 2006) learning ecology perspective. These factors aligned with the program's aims of promoting (1) social community and peer support, (2) collaboration and teamwork, (3) real-world relevance and investigative learning, (4) mentoring and exposure to STEM professionals, (5) hands-on activities to foster transferable skill building, and (6) interface with technology. This paper presents results from 10 focus groups and 10 individual interviews conducted with a subset of the 144 youth participants who completed the game. It describes how these six factors were realized through The Source and uses them as a lens for considering how The Source functioned pedagogically. Qualitative findings describe youth's perception of The Source's potential influence on STEM interest, engagement, and identity formation. Despite limitations, study results indicate that underrepresented youth can engage in an immersive, narrative, and game-based experience as a potential mechanism for piquing and developing STEM interest and skills, particularly among underrepresented youth.

  3. NASA Astrophysics EPO Community: Increasing and Sustaining Youth and Public Engagement in STEM

    NASA Astrophysics Data System (ADS)

    Lawton, B.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Schultz, G.; Manning, J.; NASA Astrophysics EPO Community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enable youth to engage directly in doing Science, Technology, Engineering, and Mathematics (STEM) inside and outside of school. The NASA SMD Astrophysics EPO community has proven expertise in providing student opportunities that reinforce research skills; exhibits, multimedia shows, and visualizations that inspire and engage; professional development for informal educators; and partnerships that provide local, regional, and national reach. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum support youth and public engagement in STEM in these ways, including associated metrics and evaluation findings.

  4. Genetic response and morphologic characterization of chicken bone-marrow derived dendritic cells during infection with high and low pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Dendritic cells (DC) are professional antigen-presenting cells of the immune system that function to initiate primary immune responses. Progenitors of DCs are derived from haematopoietic stem cells in the bone marrow (BM) that migrate in non-lymphoid tissues to develop into immature DCs. Here, they ...

  5. "Failure Is a Major Component of Learning Anything": The Role of Failure in the Development of STEM Professionals

    ERIC Educational Resources Information Center

    Simpson, Amber; Maltese, Adam

    2017-01-01

    The term failure typically evokes negative connotations in educational settings and is likely to be accompanied by negative emotional states, low sense of confidence, and lack of persistence. These negative emotional and behavioral states may factor into an individual not pursuing a degree or career in science, technology, engineering, or…

  6. A Task Type for Measuring the Representational Component of Quantitative Proficiency. GRE Board Professional Report No. 92-05P.

    ERIC Educational Resources Information Center

    Bennett, Randy Elliot; And Others

    Two computer-based categorization tasks were developed and pilot tested. In study 1, the task asked examinees to sort mathematical word problem stems according to prototypes. Results with 9 faculty members and 107 undergraduates showed that those who sorted well tended to have higher Graduate Record Examination General Test scores and college…

  7. The experiences of science teachers' particpation in an inquiry-based professional development

    NASA Astrophysics Data System (ADS)

    Jackson, Emily A.

    Once a leader in science, technology, engineering, and mathematics (STEM) education, the United States (U.S.) is now far behind many countries. There is growing concern that the U.S. is not preparing a sufficient number of students in the areas of STEM. Despite advancement of inquiry learning in science, the extent to which inquiry learning has been implemented on a classroom level falls short. The purpose of this study was to learn about the experiences of science teachers' participation in an inquiry-based professional development. A mixed method research design was used for this study to collect data from ten Project MISE participants. The qualitative data was collected using semi-structured, in-depth individual interviews, focus group interviews, observations, and document analysis of teacher portfolios and analyzed using constant comparative method. The quantitative data were collected through administration of a pretest and posttest instrument that measures the content knowledge of the science teachers and analyzed using descriptive statistics and paired t-test. The participants of this mixed methods study provided compelling evidence that Project MISE has a profound impact on their instructional practice, networking abilities, opportunities for reflection, and content knowledge.

  8. Pathway to STEM: Using Outreach Initiatives as a Method of Identifying, Educating and Recruiting the Next Generation of Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Ortiz-Arias, Deedee; Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon

    2017-10-01

    The Princeton Plasma Physics Laboratory (PPPL) uses a host of outreach initiatives to inform the general population: the Young Women's Conference, Science Bowl, Science Undergraduate Laboratory Internship, My Brother's Keeper, a variety of workshops for university faculty and undergraduate students, public and scheduled lab tours, school and community interactive plasma science demonstrations. In addition to informing and educating the public about the laboratory's important work in the areas of Plasma and Fusion, these outreach initiatives, are also used as an opportunity to identify/educate/recruit the next generation of the STEM workforce. These programs provide the laboratory with the ability to: engage the next generation at different paths along their development (K-12, undergraduate, graduate, professional), at different levels of scientific content (science demonstrations, remote experiments, lectures, tours), in some instances, targeting underrepresented groups in STEM (women and minorities), and train additional STEM educators to take learned content into their own classrooms.

  9. Successful ADVANCE Initiatives for Junior Women Faculty in STEM

    NASA Astrophysics Data System (ADS)

    Riskin, Eve

    2015-01-01

    The NSF ADVANCE program was designed to transform university policies, procedures, and practices so that women faculty could advance in STEM faculty careers, obtain tenure, and ultimately become academic leaders. The results have been impressive. The most recent data from the American Society of Engineering Education (Fall 2013) show that the average percentage of women faculty in U.S. Colleges of Engineering is now 14.5%; it was just 9% when ADVANCE started in 2001.This talk will describe programs to support and promote junior women faculty that have been successful in recruiting and retaining women in STEM. These programs include mentoring, professional development, and work/life balance initiatives. Suggestions will be made for ways to disseminate low-cost successful ADVANCE programs to other institutions so that they can successfully support their own women faculty in STEM. One effort is the University of Washington's LEAD-it-Yourself! online toolkit that will enable other universities to run their own leadership workshops for department chairs and deans.

  10. Professional attitudes to patient participation groups: an exploratory study

    PubMed Central

    Wood, J.; Metcalfe, D. H. H.

    1980-01-01

    An exploratory study of the development of patient participation groups in general practice and general practitioners' attitudes towards them suggests that many general practitioners may not yet be aware of this innovation and may at first react negatively to the idea. This response stems in part from misconceptions about the origins and functions of these groups, a failure to see their relevance to professional objectives, and a fear that they will threaten general practitioners' autonomy and status. In contrast, general practitioners who have formed groups believe they have an important contribution to make to their developing role and have been encouraged by their experience so far. Therefore, at present, patient participation groups should neither be rejected out of hand, nor welcomed as a panacea. PMID:7452590

  11. Teachers from Instructors to Designers of Inquiry-Based Science, Technology, Engineering, and Mathematics Education: How Effective Inquiry-Based Science Education Implementation Can Result in Innovative Teachers and Students

    ERIC Educational Resources Information Center

    Filippi, Alyssa; Agarwal, Dipali

    2017-01-01

    There is a need for individuals in science, technology, engineering, and mathematics (STEM) careers to drive the innovation and research potential of Europe. Yet, there is expected to be a decrease in the number of STEM professionals, as there is less student interest in STEM fields of the study. Studies show that STEM classes that focus on…

  12. NASA team hosts STEM-Ulate actvities

    NASA Image and Video Library

    2010-07-13

    Young visitors to NASA's John C. Stennis Space Center prepare to launch 'stomp rockets' during STEM-Ulate to Innovate activities at the facility July 13. The NASA Foundations of Influence, Relationships, Success and Teamwork (FIRST) Team sponsored STEM-Ulate to Innovate for more than 100 children ages 9-11. Children from area Boys & Girls Clubs participated in hands-on activities, presentations and demonstrations by professional engineers, all designed to promote the relevance of science, technology, engineering and mathematics (STEM).

  13. Syrinx of the Spinal Cord and Brain Stem

    MedlinePlus

    ... View The Professional Version For doctors and medical students Consumer Version Merck Manual Consumer Version × MERCK MANUAL - ... View The Professional Version For doctors and medical students Home Medical Topics Blood Disorders Bone, Joint, and ...

  14. Brain drain from developing countries: how can brain drain be converted into wisdom gain?

    PubMed Central

    Dodani, Sunita; LaPorte, Ronald E

    2005-01-01

    Brain drain is defined as the migration of health personnel in search of the better standard of living and quality of life, higher salaries, access to advanced technology and more stable political conditions in different places worldwide. This migration of health professionals for better opportunities, both within countries and across international borders, is of growing concern worldwide because of its impact on health systems in developing countries. Why do talented people leave their countries and go abroad? What are the consequences of such migrations especially on the educational sector? What policies can be adopted to stem such movements from developing countries to developed countries? This article seeks to raise questions, identify key issues and provide solutions which would enable immigrant health professionals to share their knowledge, skills and innovative capacities and thereby enhancing the economic development of their countries. PMID:16260795

  15. IPY STEM Polar Connections Links Teachers with the Global Relevance of the High Latitudes

    NASA Astrophysics Data System (ADS)

    Brigham-Grette, J.; Sternheim, M.; Bradley, R.; Caissie, B.; Snyder, R.; Devlin, K.; Silver, M.; Hargraves, H.

    2008-12-01

    IPY STEM Polar Connections is a curriculum development and professional development program involving a summer residential institute at UMass-Amherst and academic year, on-line communication for teachers involved in the professional development of colleagues. The project produces and disseminates a range of curriculum modules related to the Polar regions and climate change. The purpose of the summer institutes (2008 and 2009) is to test the modules and prepare teachers to disseminate selected materials in workshops in their districts, in their states and nationally. The institute agenda balanced content presentations with hands-on activities for use by teachers with diverse backgrounds and classroom settings. Power point presentations and accompanying flash videos are all posted on our website along with teacher guides and student handouts. Most of the materials were designed to be adaptable to a range of inquiry-based levels. The teachers shared their own experiences with dissemination in rounds of focus groups. Pre institute and post institute surveys confirmed our success in increasing the personal knowledge base of the teachers despite the fact that most were veteran teachers. The main outcomes of participation were the development of relationships with other teachers, enhanced knowledge of earth system science and inspiration for introducing the materials to their students. Many did see funding, time and state frameworks as potential barriers to including materials in their classrooms.

  16. A Study of Physics Faculty's Instructional Practices: Implications for Experiential STEM Faculty Development Model

    NASA Astrophysics Data System (ADS)

    Soto, Marissa; Suskavcevic, Miliana; Forrest, Rebecca; Cheung, Margaret; Kapral, Andrew; Khon, Lawrence

    When teaching physics, many factors determine the final impact the course will have on a student. Using STEP, a teacher content professional development program, we are studying the incorporation of inquiry-based teaching strategies in the professional development of university professors through an active engagement program. Through the professors' involvement in the program, they gain experience with inquiry-based instruction that can be put into effect in their own classrooms to possibly create a shift in understanding and success ratesat physics undergraduate courses. This model consists of faculty peer mentoring, facilitating instruction within a community of practice, and implementation of undergraduate inquiry-based physics teaching strategies. Here, professors are facilitating the physics lessons to in-service high school teachers while using inquiry strategies and interactive activities rather than traditional lecture. This project aided the creation of an undergraduate inquiry-based physics course at the University of Houston. It could lead to a new form of professor professional development workshop that does not only benefit the professor, but also highschoolteachers not properly trained in the field of physics.

  17. Sharing NASA's Scientific Explorations with Communities Across the Country: A Study of Public Libraries Collaborating with NASA STEM Experts

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Holland, A.; Harold, J. B.; Johnson, A.; Randall, C.; Fitzhugh, G.

    2017-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, how our Sun varies and impacts the heliosphere, and defining the conditions necessary to support life beyond Earth. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are also developing new ways to engage their patrons in STEM learning. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. NCIL's STAR Library Network (STAR_Net) is providing important leverage to expand its community of practice that serves both librarians and STEM professionals. Seventy-five libraries were selected through a competitive application process to receive NASA STEM Facilitation Kits, NASA STEM Backpacks for circulation, financial resources, training, and partnership opportunities. Initial survey data from the 75 NASA@ My Library partners showed that, while they are actively providing programming, few STEM programs connected with NASA science and engineering. With the launch of the initiative - including training, resources, and STEM-related event opportunities - all 75 libraries are engaged in offering NASA-focused programs, including with NASA subject matter experts. This talk will highlight the impacts the initiative is having on both public library partners and many others across the country.

  18. Snapshots of Authentic Scientific Inquiry and Teacher Preparation: Undergraduate STEM Courses, Preservice and Inservice Teachers' Experiences

    NASA Astrophysics Data System (ADS)

    French, Debbie Ann

    In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)-- pedagogy closely modeling the research practices of scientists--is at the forefront of national science, technology, engineering, and mathematics (STEM) initiatives and the Next Generation Science Standards (NGSS). In the first of three research articles, 42 students participated in an introductory astronomy course which employed inquiry-based pedagogy. The researcher administered the Test Of Astronomy STandards (TOAST) pre/post instruction. In the second article, 56 preservice secondary science teachers completed ideal lesson plan scenarios before and after 80 hours of methods instruction. The researcher scored the scenarios using a rubrirubric developedc according to the NGSS Science and Engineering Practices, and analyzed the components from the scenarios. The third article surveyed 63 inservice STEM teachers with prior research and industry experience. The researcher highlights teacher ASI perspectives. Overall, teachers incorporated opportunities for K-20 students to use scientific instrumentation and technology to collect and analyze data, work collaboratively, and develop evidence-based conclusions. Few teachers provided opportunities for students to ask scientific questions or disseminate results, suggesting the need that teachers (at all levels) need scaffolded instruction in these areas. The researcher argues that while ASI and STEM PDs are effective for teachers, developing similar interest, on-going communities of practice may provide support for teacher to implement the ASI practices in their classrooms.

  19. Working as a Team

    ERIC Educational Resources Information Center

    Brooks, Hannah

    2017-01-01

    In most STEM industries, teamwork is essential. Engineers, scientists, statisticians, and medical professionals, for example, must communicate with one another and work together. Someday, students may enter the STEM (science, technology, engineering, and math) workforce, where they also will need to collaborate effectively. This article describes…

  20. Alternative Certification Programs & Pre-Service Teacher Preparedness

    ERIC Educational Resources Information Center

    Koehler, Adrie; Feldhaus, Charles Robert; Fernandez, Eugenia; Hundley, Stephen

    2013-01-01

    This explanatory sequential mixed methods research study investigated motives and purpose exhibited by professionals transitioning from careers in science, technology, engineering and math (STEM) to secondary education. The study also analyzed personal perceptions of teaching preparedness, and explored barriers to successful teaching. STEM career…

  1. Childhood Brain Stem Glioma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Childhood brain stem glioma presents as a diffuse intrinsic pontine glioma (DIPG; a fast-growing tumor that is difficult to treat and has a poor prognosis) or a focal glioma (grows more slowly, is easier to treat, and has a better prognosis). Learn about the diagnosis, cellular classification, staging, treatment, and clinical trials for pediatric brain stem glioma in this expert-reviewed summary.

  2. The Social Construction of a Teacher Support Team: An Experience of University Lecturers' Professional Development in STEM

    ERIC Educational Resources Information Center

    Castro-Félix, Elvia; Daniels, Harry

    2018-01-01

    This paper focuses on understanding and exploring how a group of university engineering and science tutor educators learn and assimilate new conceptions about their role in the face of the forces of globalisation that are transforming the system of higher education. This research paper adopts the notion of the Teacher Support Team (TST) as…

  3. "Building up Speed", "Trying to Break Free", "Pushing It through the Pipe": Using Metaphor to Explore Early Career STEM Researchers' Grant Writing Capability

    ERIC Educational Resources Information Center

    Mackie, Sylvia Anne; McArthur, Sally

    2017-01-01

    This study demonstrates the use of metaphor analysis in needs assessment for developmental support and shows how it can be used to critically examine assumptions in the literature about the ways emerging researchers conceptualize their career trajectory. We investigated the professional development needs of a group of science, technology,…

  4. Professional Development as a Catalyst for Change in the Community College Science Classroom: How Active Learning Pedagogy Impacts Teaching Practices as Well as Faculty and Student Perceptions of Learning

    ERIC Educational Resources Information Center

    Harmon, Melissa Cameron

    2017-01-01

    Active learning, an engaging, student-centered, evidence-based pedagogy, has been shown to improve student satisfaction, engagement, and achievement in college classrooms. There have been numerous calls to reform teaching practices, especially in science, technology, engineering, and math (STEM); however, the utilization of active learning is…

  5. Teacher Research Programs: An Effective Form of Professional Development to Increase Student Achievement and Benefit the Economy

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2008-12-01

    U.S. high school students perform markedly less well in science, technology, engineering and math (STEM) than students in other economically advanced countries. This low level of STEM performance endangers our democracy and economy. The President's Council of Advisors in Science and Technology's 2004 report attributed the shortfall of students attracted to the sciences is a result of the dearth of teachers sufficiently conversant with science and scientists to enable them to communicate to their students the excitement of scientific exploration and discovery, and the opportunities science provides for highly rewarding and remunerative careers. Nonetheless, the United States has made little progress in correcting these deficiencies. Studies have shown that high-quality teaching matters more to student achievement than anything else schools do. This belief is buttressed by evidence from Columbia University's Summer Research Program for Science Teachers (SRP) that highly motivated, in-service science teachers require professional development to enable them and their students to perform up to their potential. Columbia's Summer Research Program is based on the premise that to teach science effectively requires experience in using the tools of contemporary science to answer unsolved questions. From its inception, SRP's goal has been to enhance interest and improve performance in science of students. It seeks to achieve this goal by increasing the professional competence of teachers. The reports of Elmore, Sanders and Rivers, and our own studies, show that professional development is a "key lever for improving student outcomes." While most middle and high school science teachers have taken college science courses that include cookbook laboratory exercises, the vast majority of them have never attempted to answer an unsolved question. Just as student learning depends on the expertise of teachers, the expertise of teachers depends on the quality of their professional development. Columbia University's teacher research program is a very effective form of professional development for pre- college science teachers and has a direct correlation to increased student motivation and achievement in science. The Program is premised on the beliefs that hands-on experience in the practice of science improves the quality and authenticity of science teaching, and that improved science teaching is correlated with increased student interest and achievement in science. The author will present the methodology of the program's evaluation citing statistically significant findings. The author will also show the economic benefits of teacher participation in a well-designed research program.

  6. Perception and knowledge about stem cell and tissue engineering research: a survey amongst researchers and medical practitioners in perinatology.

    PubMed

    Gucciardo, Léonardo; De Koninck, Philip; Verfaillie, Catherine; Lories, Rik; Deprest, Jan

    2014-08-01

    Stem cell and tissue engineering (SC&TE) research remain controversial. Polemics are potential hurdles for raising public funds for research and clinical implementation. In view of future applications of SC&TE in perinatal conditions, we aimed to measure the background knowledge, perceptions or beliefs on SC&TE research among clinicians and academic researchers with perinatal applications on the department's research agenda. We polled three professional categories: general obstetrician gynecologists, perinatologists and basic or translational researchers in development and regeneration. The survey included questions on demographics, work environment, educational background, general knowledge, expectations, opinions and ethical reflections of the respondent about SC&TE. The response rate was 39 %. Respondents were mainly female (54 %) and under 40 years (63 %). The general background knowledge about SC&TE is low. Respondents confirm that remaining controversies still arise from the confusion that stem cell research coincides with embryo manipulation. Clinicians assume that stem cell research has reached the level of clinical implementation, and accept the risks associated of purposely harvesting fetal amniotic cells. Researchers in contrast are more cautious about both implementation and risks. Professionals in the field of perinatology may benefit of a better background knowledge and information on current SC & TE research. Though clinicians may be less aware of the current state of knowledge, they are open to clinical implementation, whereas dedicated researchers remain cautious. In view of the clinical introduction of SC & TE, purposed designed informative action should be taken and safety studies executed, hence avoid sustaining needless polemics.

  7. Mission EarthFusing GLOBE with NASA Assets to Build SystemicInnovation in STEM Education

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Garik, P.; Padgett, D.; Darche, S.; Struble, J.; Adaktilou, N.

    2016-12-01

    Mission Earth is a project funded through the NASA CAN that is developing a systematic embedding of NASA assets that is being implemented by a partnership of organizations across the US. Mission Earth brings together scientists and science educators to develop a K-12 "Earth as a system" curriculum progression following research-based best practices. GLOBE and NASA assets will be infused into the curricula of schools along the K-12 continuum, leveraging existing partnerships and networks and supported through state departments of education and targeting underrepresented groups, as a systemic, effective, and sustainable approach to meeting NASA's science education objectives. This presentation will discuss plans for the Mission Earth project and successes and lessons learned in the first year. Mission Earth is developing curricular materials to support vertically integrated learning progressions. It develops models of professional development utilizing sustainable infrastructures. It will support STEM careers focusing on career technical education (CTE). And, it will engage undergraduate education majors through pre-service courses and engineering students through engineering challenges.

  8. The Investigation of Posttraumatic Growth's Relationship to Empathy and Hope in Professional Counselors

    ERIC Educational Resources Information Center

    Davis, Feona I.

    2017-01-01

    This research study explored possible relationships of professional mental health counselors who have experienced a phenomenon called posttraumatic growth (PTG), which is a positive cognitive and emotional change that stems from surviving a traumatic life crisis. The current study aimed to investigate a connection of PTG in professional counselors…

  9. Promoting professional identity, motivation, and persistence: Benefits of an informal mentoring program for female undergraduate students

    PubMed Central

    Bloodhart, Brittany; Barnes, Rebecca T.; Adams, Amanda S.; Clinton, Sandra M.; Pollack, Ilana; Godfrey, Elaine; Burt, Melissa; Fischer, Emily V.

    2017-01-01

    Women are underrepresented in a number of science, technology, engineering, and mathematics (STEM) disciplines. Limited diversity in the development of the STEM workforce has negative implications for scientific innovation, creativity, and social relevance. The current study reports the first-year results of the PROmoting Geoscience Research, Education, and SuccesS (PROGRESS) program, a novel theory-driven informal mentoring program aimed at supporting first- and second-year female STEM majors. Using a prospective, longitudinal, multi-site (i.e., 7 universities in Colorado/Wyoming Front Range & Carolinas), propensity score matched design, we compare mentoring and persistence outcomes for women in and out of PROGRESS (N = 116). Women in PROGRESS attended an off-site weekend workshop and gained access to a network of volunteer female scientific mentors from on- and off-campus (i.e., university faculty, graduate students, and outside scientific professionals). The results indicate that women in PROGRESS had larger networks of developmental mentoring relationships and were more likely to be mentored by faculty members and peers than matched controls. Mentoring support from a faculty member benefited early-undergraduate women by strengthening their scientific identity and their interest in earth and environmental science career pathways. Further, support from a faculty mentor had a positive indirect impact on women’s scientific persistence intentions, through strengthened scientific identity development. These results imply that first- and second- year undergraduate women’s mentoring support networks can be enhanced through provision of protégé training and access to more senior women in the sciences willing to provide mentoring support. PMID:29091969

  10. Promoting professional identity, motivation, and persistence: Benefits of an informal mentoring program for female undergraduate students.

    PubMed

    Hernandez, Paul R; Bloodhart, Brittany; Barnes, Rebecca T; Adams, Amanda S; Clinton, Sandra M; Pollack, Ilana; Godfrey, Elaine; Burt, Melissa; Fischer, Emily V

    2017-01-01

    Women are underrepresented in a number of science, technology, engineering, and mathematics (STEM) disciplines. Limited diversity in the development of the STEM workforce has negative implications for scientific innovation, creativity, and social relevance. The current study reports the first-year results of the PROmoting Geoscience Research, Education, and SuccesS (PROGRESS) program, a novel theory-driven informal mentoring program aimed at supporting first- and second-year female STEM majors. Using a prospective, longitudinal, multi-site (i.e., 7 universities in Colorado/Wyoming Front Range & Carolinas), propensity score matched design, we compare mentoring and persistence outcomes for women in and out of PROGRESS (N = 116). Women in PROGRESS attended an off-site weekend workshop and gained access to a network of volunteer female scientific mentors from on- and off-campus (i.e., university faculty, graduate students, and outside scientific professionals). The results indicate that women in PROGRESS had larger networks of developmental mentoring relationships and were more likely to be mentored by faculty members and peers than matched controls. Mentoring support from a faculty member benefited early-undergraduate women by strengthening their scientific identity and their interest in earth and environmental science career pathways. Further, support from a faculty mentor had a positive indirect impact on women's scientific persistence intentions, through strengthened scientific identity development. These results imply that first- and second- year undergraduate women's mentoring support networks can be enhanced through provision of protégé training and access to more senior women in the sciences willing to provide mentoring support.

  11. Evaluation Report III: The Robert Noyce Scholarship Program at CSUB

    ERIC Educational Resources Information Center

    Wang, Jianjun

    2013-01-01

    California State University, Bakersfield (CSUB) received funding from National Science Foundation's (NSF) Robert Noyce Teacher Scholarship Program to recruit Noyce Scholars from upper-division science, technology, engineering, and mathematics (STEM) majors, graduate students, and professionals switched to STEM teaching from other fields (NSF…

  12. STEAMakers- a global initiative to connect STEM career professionals with the public to inspire the next generation and nurture a creative approach to science, technology, maths & engineering

    NASA Astrophysics Data System (ADS)

    Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho

    2016-04-01

    STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.

  13. The successful implementation of STEM initiatives in lower income schools

    NASA Astrophysics Data System (ADS)

    Bakshi, Leena

    The purpose of this study was to examine the leadership strategies utilized by superintendents, district administrators and school principals and the impact of these identified strategies on implementing STEM initiatives specifically for lower-income students. This study set out to determine (a) What role does district leadership play in the implementation of STEM initiatives in lower income secondary schools; (b) What internal systems of accountability exist in successful lower income secondary schools' STEM programs; (c) What leadership strategies are used to implement STEM curriculum initiatives; (d) How do school and district leadership support staff in order to achieve student engagement in STEM Initiative curriculum. This study used a mixed-methods approach to determine the impact of leadership strategies utilized by superintendents, district administrators and school principals on implementing STEM initiatives. Quantitative data analyzed survey questionnaires to determine the degree of correlation between the school districts that have demonstrated the successful implementation of STEM initiatives at the school and district levels. Qualitative data was collected using highly structured participant interviews and purposeful sampling of four district superintendents, one district-level administrator and five school leaders to capture the key strategies in implementing STEM initiatives in lower income secondary schools. Through the process of triangulation, the results of the study revealed that superintendents and principals should consider the characteristics of effective STEM initiatives that have shown a considerable degree of correlation with positive outcomes for lower income students. These included the leadership strategies of personnel's making decisions about the district's and school's instructional direction and an emphasis on the conceptual development of scientific principles using the Next Generation Science Standards coupled with the Common Core State Standards across the grade levels. It also emphasized the importance of establishing community partnerships as a primary resource. This study highlighted the criteria district and school leadership should include in implementing STEM initiatives and designing professional development models that result in meaningful instructional practices of STEM curriculum for secondary lower income students. Overall, this study provides insight for superintendents, district leaders and school administrators that can play an integral role in implementing STEM initiatives with access for socioeconomically disadvantaged students.

  14. The C-MORE Scholars Program: Engaging minority students in STEM through undergraduate research

    NASA Astrophysics Data System (ADS)

    Gibson, B. A.; Bruno, B. C.

    2010-12-01

    There have been several studies that show how undergraduate research experiences (REU) have a positive impact on a student’s academic studies and career path, including being a positive influence toward improving the student's lab skills and ability to work independently. Moreover, minority students appear to relate to science, technology, engineering, and mathematics (STEM) concepts better when they are linked with (1) a service learning component, and (2) STEM courses that include a cultural and social aspect that engages the student in a way that does not distract from the student’s technical learning. It is also known that a “place-based” approach that incorporates traditional (indigenous) knowledge can help engage underrepresented minority groups in STEM disciplines and increase science literacy. Based on the methods and best practices used by other minority serving programs and described in the literature, the Center for Microbial Oceanography: Research and Education (C-MORE) has successfully developed an academic-year REU to engage and train the next generation of scientists. The C-MORE Scholars Program provides undergraduate students majoring in an ocean or earth science-related field, especially underrepresented students such as Native Hawaiians and Pacific Islanders, the opportunity to participate in unique and cutting edge hands-on research experiences. The program appoints awardees at one of three levels based on previous research and academic experience, and students can progress through the various tiers as their skills and STEM content knowledge develop. All awardees receive guidance on a research project from a mentor who is a scientist at the university and/or industry. A key component of the program is the inclusion of professional development activities to help the student continue towards post graduation education or prepare for career opportunities after they receive their undergraduate STEM degree.

  15. Place Based STEM: Leveraging Local Resources to Engage K-12 Teachers in Teaching Integrated STEM and for Addressing the Local STEM Pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Louis Nadelson; Anne Louise Seifert; Meagan McKinney

    Business, industry, parks, nature settings, government infrastructure, and people, can be invaluable resources for connecting STEM curriculum within context which results in conditions ideal for promoting purposeful learning of authentic STEM content. Thus, community-based STEM resources offer ideal context for teaching STEM content. A benefit of focusing teacher attention on these contextual, content aligned resources is that they are in every community; making place-based STEM education a possibility, regardless of the location of STEM teaching and learning. Further, associating STEM teaching and learning with local resources addresses workforce development and the STEM pipeline by exposing students to STEM careers andmore » applications in their local communities. The desire to align STEM teaching and learning with local STEM related resources guided the design of our week-long integrated STEM K-12 teacher professional development (PD) program, i-STEM. We have completed four years of our i-STEM PD program and have made place-based STEM a major emphasis of our curriculum. This report focuses on the data collected in the fourth year of our program. Our week-long i-STEM PD served over 425 educators last summer (2013), providing them with in depth theme-based integrated STEM short courses which were limited to an average of 15 participants and whole group plenary sessions focused around placed based integrated STEM, inquiry, engineering design, standards and practices of Common Core and 21st Century skills. This state wide PD was distributed in five Idaho community colleges and took place over two weeks. The STEM short courses included topics on engineering for sustainability, using engineering to spark interest in STEM, municipal water systems, health, agriculture, food safety, mining, forestry, energy, and others. Integral to these short courses were field trips designed to connect the K-12 educators to the resources in their local communities that could be leveraged for teaching integrated STEM and provide a relevant context for teaching STEM content. Workplace presentations made by place-based STEM experts and provided teachers field trips to place-base STEM industries and business such as manufacturing plants, waste water treatment systems, mines, nature parks, food processing plants, research, hospitals, and laboratory facilities. We researched the 425 participants’ conceptions of place-based STEM prior to and after their taking part in the summer institutes, which included fieldtrips. Our findings revealed substantial increase in our participants’ knowledge, interest, and plans to use place-based resources for teaching integrated STEM. We detail the data analysis and provide a theoretical foundation and justification for the importance of place-based STEM to address the STEM pipeline for the future workforce.« less

  16. An Undergraduate Research Experience that Integrates Traditional Field Mapping, LiDAR, and 3D Numerical Modeling: Applying Lessons from a Recent Report from the National Academies of Sciences, Engineering, and Medicine in an Intermediate-Level Tectonic Landscapes Course

    NASA Astrophysics Data System (ADS)

    Reinen, L. A.; Brenner, K.

    2017-12-01

    Ongoing efforts to improve undergraduate education in science, technology, engineering, and mathematics (STEM) fields focus on increasing active student participation and decreasing traditional lecture-based teaching. Undergraduate research experiences (UREs), which engage students in the work of STEM professionals, are an example of these efforts. A recent report from the National Academies of Sciences, Engineering and Medicine (Undergraduate Research Experiences for STEM Students: Successes, Challenges, and Opportunities; 2017) provides characteristics of UREs, and indicates that participation in UREs increases student interest and persistence in STEM as well as provides opportunities to broaden student participation in these fields. UREs offer an excellent opportunity to engage students in research using the rapidly evolving technologies used by STEM professionals. In the fall of 2016, students in the Tectonic Landscapes class at Pomona College participated in a course-based URE that combined traditional field mapping methods with analysis of high-resolution topographic data (LiDAR) and 3D numerical modeling to investigate questions of active local faulting. During the first ten weeks students developed skills in: creation of fault maps from both field observations (GPS included) and high-resolution digital elevation models (DEMs), assessment of tectonic activity through analyses of DEMs of hill slope diffusion models and geomorphic indices, and evaluation of fault geometry hypotheses via 3D elastic modeling. Most of these assignments were focused on a single research site. While students primarily used Excel, ArcMap, and Poly3D, no previous knowledge of these was required or assumed. Through this iterative approach, students used increasingly more complex methods as well as gained greater ownership of the research process with time. The course culminated with a 4-week independent research project in which each student investigated a question of their own choosing using skills developed earlier in the course. We will provide details of the course, scaffolding of the technical skills, growing the independence of students in the research process, and discuss early outcomes of student confidence, engagement and retention.

  17. A Campus-Wide Study of STEM Courses: New Perspectives on Teaching Practices and Perceptions

    PubMed Central

    Vinson, Erin L.; Smith, Jeremy A.; Lewin, Justin D.; Stetzer, MacKenzie R.

    2014-01-01

    At the University of Maine, middle and high school science, technology, engineering, and mathematics (STEM) teachers observed 51 STEM courses across 13 different departments and collected information on the active-engagement nature of instruction. The results of these observations show that faculty members teaching STEM courses cannot simply be classified into two groups, traditional lecturers or instructors who teach in a highly interactive manner, but instead exhibit a continuum of instructional behaviors between these two classifications. In addition, the observation data reveal that student behavior differs greatly in classes with varied levels of lecture. Although faculty members who teach large-enrollment courses are more likely to lecture, we also identified instructors of several large courses using interactive teaching methods. Observed faculty members were also asked to complete a survey about how often they use specific teaching practices, and we find that faculty members are generally self-aware of their own practices. Taken together, these findings provide comprehensive information about the range of STEM teaching practices at a campus-wide level and how such information can be used to design targeted professional development for faculty. PMID:25452485

  18. [The use of embryonic stem cells for medical-therapeutical purposes: a study of attitudes among Icelandic physicians, lawyers and clergymen.].

    PubMed

    Oskarsson, Trausti; Guðmundsson, Flóki; Sigurðsson, Jóhann Agúst; Getz, Linn; Arnason, Vilhjálmur

    2003-06-01

    To study the bioethical standpoints among three groups of Icelandic professionals in relation to the use of embryonic stem cells for medical-therapeutical purposes. In June 2002, a questionnaire was sent by mail to a random sample of 284 doctors and 293 lawyers, as well as all 168 practicing clergymen in Iceland. The participants' position in relation to the use of embryonic stem cells for therapeutical purposes was elicited through general questions as well as case examples. 290 questionnaires (39%) were returned. 62% of participants believed the embryo to have an ethical status superior to that of biologically comparable life forms. 20% of respondents considered its status as equal to that of a grown human being, whilst 18% considered it equal to biologically comparable primitive life forms. There was a difference between the respondent groups (p<0,05). A vast majority believed the use of embryonic stem cells for therapeutical purposes to be justifiable, although the origin of the stem cells appeared to make a difference to many respondents. 8% of participants took an unconditional position against the use of embryonic stem cells. Among those who considered the use of embryonic stem cells with a therapeutic aim to be justifiable, 71% believed that embryonic stem cells should only be utilized to treat diseases of a severe nature. 64% of participants defended the idea of therapeutic cloning with the intention to treat a patient with Parkinson's disease, but the case history elicited considerable difference between professional groups. Clergymen and lawyers tended to hold firmer attitudes, clergymen against and lawyers for the use of stem cells, whilst medical doctors as a group positioned themselves more towards the middle. Female respondents generally took a more modest stand whilst males were more likely to take a firmer stand in both directions. A vast majority (87%) of the participants believed there to be a need for public debate in relation to the use of embryonic stem cells for therapeutical purposes. Overall, participants views in relation to the use of embryonic stem cells for medical purposes were rather liberal. There were however significant differences between professional groups. The relatively high tolerance in regard to therapeutic cloning is interesting in view of the considerable controversy over this topic in many countries. There appears to be fertile ground for a public debate about the use of embryonic stem cells for medical purposes in Iceland.

  19. Rationale and Initial Design for a Virtual Undergraduate Internship in Astronomy

    NASA Astrophysics Data System (ADS)

    Berryhill, Katie; Slater, T. F.; Slater, S. J.

    2012-01-01

    In recent decades, research experiences for undergraduates (REUs) programs have provided students with opportunities to spend a summer working on a research project with a faculty mentor. The aim of these programs has generally been to take up the challenge of the Boyer-2 report to introduce research-based learning into the undergraduate experience (Boyer 1998). Recent efforts have been aimed at encouraging women and underrepresented minorities to pursue STEM careers. With the advent of successful models for online degree programs that can add to the STEM workforce pipeline, there is now the possibility of expanding these research experiences to include the new diverse demographic of previously untapped online learners. Many online learners are working adults, and therefore do not have the same flexibility as traditional undergraduates to attend a summer REU at another institution, nor do they have the opportunity for internships at their home institution. This project is intended to leverage significant developments in rapidly emerging social media; investments in Internet-accessible telescopes for professional and amateur use; and contemporary advances in the learning sciences to build pathways through long-term, collaborative, astronomy research projects. The first stage involves developing initial research protocols and online mentoring infrastructures for establishing an ongoing national program for virtual astronomy internships for undergraduate STEM majors. Underlying this project is a plan for students to work collaboratively alongside active professional and amateur astronomers to conduct original research using remotely controlled and robotic telescopes. We anticipate that by the start of this project, more than 100 robotic and remotely controlled telescopes will exist around the world (mo-www.harvard.edu/OWN, aavso.org/aavsonet, and lcogt.net among others) providing continuous world-wide coverage. We plan to test and iteratively build a successful infrastructure for students to take advantage of these and other rapidly emerging resources and support an expansion of the STEM career workforce.

  20. Place-based Pedagogy and Culturally Responsive Assessment in Hawai`i: Transforming Curriculum Development and Assessment by Intersecting Hawaiian and Western STEM

    NASA Astrophysics Data System (ADS)

    Chinn, P. W. U.

    2016-12-01

    Context/Purpose: The Hawaiian Islands span 1500 miles. Age, size, altitude and isolation produced diverse topographies, weather patterns, and unique ecosystems. Around 500 C.E. Polynesians arrived and developed sustainable social ecosystems, ahupua`a, extending from mountain-top to reef. Place-based ecological knowledge was key to personal identity and resource management that sustained 700,000 people at western contact. But Native Hawaiian students are persistently underrepresented in science. This two-year mixed methods study asks if professional development (PD) can transform teaching in ways that support K12 Native Hawaiian students' engagement and learning in STEM. Methods: Place-based PD informed by theories of structure and agency (Sewell, 1992) and cultural funds of knowledge (Moll, Amanti, Neff, & Gonzalez, 1992) explicitly intersected Hawaiian and western STEM knowledge and practices. NGSS and Nā Hopena A`o, general learner outcomes that reflect Hawaiian culture and values provided teachers with new schemas for designing curriculum and assessment through the lens of culture and place. Data sources include surveys, teacher and student documents, photographs. Results: Teachers' lessons on invasive species, water, soils, Hawaiian STEM, and sustainability and student work showed they learned key Hawaiian terms, understood the impact of invasive species on native plants and animals, felt stronger senses of responsibility, belonging, and place, and preferred outdoor learning. Survey results of 21 4th graders showed Native Hawaiian students (n=6) were more interested in taking STEM and Hawaiian culture/language courses, more concerned about invasive species and culturally important plant and animals, but less able to connect school and family activities than non-Hawaiian peers (n=15). Teacher agency is seen in their interest in collaborating across schools to develop ahupua`a based K12 STEM curricula. Interpretation and Conclusion: Findings suggest PD explicitly integrating Western and Hawaiian STEM systems contributes to teacher agency and place-based expertise. Future research with a new cohort of teachers will expand grades and numbers of students surveyed to validate first year findings and guide future PD oriented to STEM equity for Native Hawaiian students.

  1. Building a Course on Global Sustainability using the grand challenges of Energy-Water-Climate

    NASA Astrophysics Data System (ADS)

    Myers, J. D.

    2012-12-01

    GEOL1600: Global Sustainability: Managing the Earth's Resources is a lower division integrated science course at the University of Wyoming that fulfills the university's science requirement. Course content and context has been developed using the grand challenge nexus of energy-water-and climate (EWC). The interconnection of these issues, their social relevance and timeliness has provided a framework that gives students an opportunity to recognize why STEM is relevant to their lives regardless of their ultimate professional career choices. The EWC nexus provides the filter to sieve the course's STEM content. It also provides an ideal mechanism by which the non-STEM perspectives important in grand challenge solutions can be seamlessly incorporated in the course. Through a combination of content and context, the relevance of these issues engage students in their own learning. Development of the course followed the Grand Challenge Scientific Literacy (GCSL) model independently developed by the author and two colleagues at the University of Wyoming. This course model stresses science principles centered on the nature of science (e.g., fundamental premises, habits of mind, critical thinking) and unifying scientific concepts (e.g., methods and tools, experimentation, modeling). Grand challenge principles identify the STEM and non-STEM concepts needed to understand the grand challenges, drawing on multiple STEM and non-STEM disciplines and subjects (i.e., economics, politics, unintended consequences, roles of stakeholders). Using the EWC nexus filter and building on the Grand Challenge Principles, specific content included in the course is selected is that most relevant to understanding the Grand Challenges, thereby stressing content depth over breadth. Because quantitative data and reasoning is critical to effectively evaluating challenge solutions, QR is a component of nearly all class activities, while engineering and technology aspects of grand challenges are explicitly stressed. Running concurrently through the course is a consideration of personal perspectives and their influence on student learning, particularly for controversial subjects. Organizationally, the course consists of three one hour lectures and a two hour lab each week. The lectures are used to introduce content and prepare the knowledge base students need for lab. Complementing traditional lectures are lecture worksheets (short activities applying topics previously presented in lecture) and lecture activities (more involved exercises that present a problem the students need to solve using previously learned scientific content and QR skills and tools). Labs focus on case studies set in global social contexts that are timely and relevant. Labs stress scientific skills (modeling groundwater flow) and also consider political and environmental issues, e.g. developing a policy to manage SO2 emissions from copper smelting. The ideas, concepts, educational materials and content developed in this course have been used as the basis for two Math Science Partnerships that have provided professional development for middle and high school science and math teachers and K-12 social, math and science teachers. These programs have worked with teachers to break down the barriers between disciplines and foster collaborative learning centered on socially relevant grand challenges.

  2. Breaking Down the Door: A Nonprofit Model Creating Pathways for Non-Traditional STEM Student Engagement

    NASA Astrophysics Data System (ADS)

    Pelaez, C.; Pelaez, J.

    2015-12-01

    Blueprint Earth was created as a nonprofit scientific research organization dedicated to conducting micro-scale interdisciplinary environmental investigations to generate macroscopic, system-level environmental understanding. The field data collection and analysis process was conceived to be dependent on student participation and collaboration with more senior scientists, effecting knowledge transfer and emphasizing the critical nature of interdisciplinary research in investigating complex, macroscopic questions. Recruiting for student volunteer researchers is conducted in academic institutions, and to date has focused primarily on the Los Angeles area. Self-selecting student participation has run contrary to traditional STEM demographics. The vast majority of research participants in Blueprint Earth's work are female and/or from a minority (non-white) background, and most are first-generation college students or from low-income, Pell grant-eligible households. Traditional field research programs for students often come at a high cost, creating barriers to access for field-based STEM opportunities. The nonprofit model employed by Blueprint Earth provides zero-cost access to opportunity for students that the STEM world is currently targeting for future professional development.

  3. The National Astronomy Consortium - An Adaptable Model for OAD?

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik

    2015-08-01

    The National Astronomy Consortium (NAC) is a program led by the National Radio Astronomy Observatory (NRAO) and Associated Universities Inc., (AUI) in partnership with the National Society of Black Physicists (NSBP), and a number of minority and majority universities to increase the numbers of students from underrepresented groups and those otherwise overlooked by the traditional academic pipeline into STEM or STEM-related careers. The seed for the NAC was a partnership between NRAO and Howard University which began with an exchange of a few summer students five years ago. Since then the NAC has grown tremendously. Today the NAC aims to host between 4 to 5 cohorts nationally in an innovative model in which the students are mentored throughout the year with multiple mentors and peer mentoring, continued engagement in research and professional development / career training throughout the academic year and throughout their careers.The NAC model has already shown success and is a very promising and innovative model for increasing participation of young people in STEM and STEM-related careers. I will discuss how this model could be adapted in various countries at all levels of education.

  4. The experiences of female high school students and interest in STEM: Factors leading to the selection of an engineering or computer science major

    NASA Astrophysics Data System (ADS)

    Genoways, Sharon K.

    STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough young scientists entering into the STEM professional pathways to replace all of the retiring professionals (Brown, Brown, Reardon, & Merrill, 2011; Harsh, Maltese, & Tai, 2012; Heilbronner, 2011; Scott, 2012). The problem is not necessarily due to a lack of STEM skills and concept proficiency. There also appears to be a lack of interest in these fields. Recent evidence suggests that many of the most proficient students, especially minority students and women, have been gravitating away from science and engineering toward other professions. (President's Council of Advisors on Science and Technology, 2010). The purpose of this qualitative research study was an attempt to determine how high schools can best prepare and encourage young women for a career in engineering or computer science. This was accomplished by interviewing a pool of 21 women, 5 recent high school graduates planning to major in STEM, 5 college students who had completed at least one full year of coursework in an engineering or computer science major and 11 professional women who had been employed as an engineer or computer scientist for at least one full year. These women were asked to share the high school courses, activities, and experiences that best prepared them to pursue an engineering or computer science major. Five central themes emerged from this study; coursework in physics and calculus, promotion of STEM camps and clubs, teacher encouragement of STEM capabilities and careers, problem solving, critical thinking and confidence building activities in the classroom, and allowing students the opportunity to fail and ask questions in a safe environment. These themes may be implemented by any instructor, in any course, who wishes to provide students with the means to success in their quest for a STEM career.

  5. Community Colleges Giving Students a Framework for STEM Careers

    ERIC Educational Resources Information Center

    Musante, Susan

    2012-01-01

    Over the coming decade, America will need one million more science, technology, engineering, and mathematics (STEM) professionals than was originally projected. This is the conclusion of a February 2012 report, "Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics".…

  6. Graduate STEM-Based Agriculture Education and Women Agriculturalists: An Agency Perspective

    ERIC Educational Resources Information Center

    Mars, Matthew M.; Hart, Jeni

    2017-01-01

    In this paper, we explored the academic and professional aspirations, experiences, and perspectives of 11 women pursuing graduate degrees based in the science, technology, engineering, and mathematics (STEM) fields within research-intensive agriculture colleges at three land grant research universities in the United States (U.S.). Using principles…

  7. STEM Education Related Dissertation Abstracts: A Bounded Qualitative Meta-Study

    ERIC Educational Resources Information Center

    Banning, James; Folkestad, James E.

    2012-01-01

    This article utilizes a bounded qualitative meta-study framework to examine the 101 dissertation abstracts found by searching the ProQuest Dissertation and Theses[TM] digital database for dissertations abstracts from 1990 through 2010 using the search terms education, science, technology, engineer, and STEM/SMET. Professional search librarians…

  8. Science identity construction through extraordinary professional development experiences

    NASA Astrophysics Data System (ADS)

    McLain, Bradley David

    Despite great efforts and expenditures to promote science literacy and STEM career choices, the U.S. continues to lag behind other countries in science education, diminishing our capacity for STEM leadership and our ability to make informed decisions in the face of multiple looming global issues. I suggest that positive science identity construction (the integration of science into one's sense of self so that it becomes a source of inspiration and contributes to lifelong learning) is critical for promoting durable science literacy and pro-science choices. Therefore, the focus of this study was extraordinary professional development experiences for science educators that may significantly impact their sense of self. My hypothesis was that such experiences could positively impact educators' science and science educator identities, and potentially enhance their capacities to impact student science identities. The first part of this hypothesis is examined in this study. Further, I suggest that first-person narratives play an important role in science identity construction. Presenting a new conceptual model that connects experiential learning theory to identity theory through the narrative study of lives, I explored the impacts of subjectively regarded extraordinary professional development experiences on the science identity and science educator identity construction processes for a cohort of fifteen K-12 science teachers during a science-learning-journey to explore the volcanoes of Hawaii. I used a case study research approach under the broader umbrella of a hermeneutic phenomenology to consider four individual cases as lived experiences and to consider the journey as a phenomenon unto itself. Findings suggest science and science educator identities are impacted by such an experience but with marked variability in magnitude and nature. Evidence also suggests important impacts on their other identities. In most instances, science-related impacts were secondary to and/or embedded within the more holistic physical, intellectual, and emotional impacts. Rather than only targeting specific learning goals, as traditional professional development programs often do, this immersive experiential learning program integrated a wide range of human experience that were important factors, most notably, risk, social connections, permission and agency, and emotions in connection with more targeted science learning. Implications for future research and practice are discussed.

  9. Teaching Assistant Professional Development in Biology: Designed for and Driven by Multidimensional Data

    PubMed Central

    Long, Tammy M.; Ebert-May, Diane

    2014-01-01

    Graduate teaching assistants (TAs) are increasingly responsible for instruction in undergraduate science, technology, engineering, and mathematics (STEM) courses. Various professional development (PD) programs have been developed and implemented to prepare TAs for this role, but data about effectiveness are lacking and are derived almost exclusively from self-reported surveys. In this study, we describe the design of a reformed PD (RPD) model and apply Kirkpatrick's Evaluation Framework to evaluate multiple outcomes of TA PD before, during, and after implementing RPD. This framework allows evaluation that includes both direct measures and self-reported data. In RPD, TAs created and aligned learning objectives and assessments and incorporated more learner-centered instructional practices in their teaching. However, these data are inconsistent with TAs’ self-reported perceptions about RPD and suggest that single measures are insufficient to evaluate TA PD programs. PMID:26086654

  10. Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars)

    NASA Astrophysics Data System (ADS)

    DeVore, Edna; Harman, Pamela; Girl Scouts of the USA; Girl Scouts of Northern California; University of Arizona; Astronomical Society of the Pacific; Aires Scientific

    2017-01-01

    Girl Scout Stars aims to enhance STEM experiences for Girl Scouts in grades K-12. New space science badges are being created for every Girl Scout level. Using best practices, we engage girls and volunteers with the fundamental STEM concepts that underpin our human quest to explore the universe. Through early and sustained exposure to the people and assets of NASA and the excitement of NASA’s Mission, they explore STEM content, discoveries, and careers. Today’s tech savvy Girl Scout volunteers prefer just-in-time materials and asynchronous learning. The Volunteer Tool Kit taps into the wealth of NASA's online materials for the new space science badges. Training volunteers supports troop activities for the younger girls. For older girls, we enhance Girl Scout summer camp activities, support in-depth experiences at Univ. of Arizona’s Astronomy Camp, and “Destination” events for the 2017 total solar eclipse. We partner with the Night Sky Network to engage amateur astronomers with Girl Scouts. Univ. of Arizona also leads Astronomy Camp for Girl Scout volunteers. Aires Scientific leads eclipse preparation and summer sessions at NASA Goddard Space Flight Center for teams of volunteers, amateur astronomers and older Girl Scouts.There are 1,900,000 Girl Scouts and 800,000 volunteers in the USA. During development, we work with the Girl Scouts of Northern California (50,000 girl members and 31,000 volunteers) and expand across the USA to 121 Girl Scout councils over five years. SETI Institute leads the space science educators and scientists at Astronomical Society of the Pacific, Univ. of Arizona, and Aires Scientific. Girl Scouts of the USA leads dissemination of Girl Scout Stars with support of Girl Scouts of Northern California. Through professional development of Girl Scout volunteers, Girl Scout Stars enhances public science literacy. Girl Scout Stars supports the NASA Science Mission Directorate Science Education Objectives and NASA’s STEM Engagement and Educator Professional Development lines of business. The Girl Scout Research Institute at GSUSA leads program evaluation with Rockman, et al, external evaluators. Funded by NASA: NNX16AB90A.

  11. Reaching for the Stars: NASA Space Science for Girl Scouts (Girl Scout Stars)

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.; Harman, P. K.; Berg, J.; Friedman, W.; Fahy, J.; Henricks, J.; Chin, W.; Hudson, A.; Grissom, C.; Lebofsky, L. A.; McCarthy, D.; Gurton, S. P.; White, V.; Summer, T.; Mayo, L.; Patel, R.; Bass, K.

    2016-12-01

    Girl Scout Stars aims to enhance science, technology, engineering and mathermatics (STEM) experiences for Girl Scouts in grades K-12 through the national Girl Scout Leadership Experience. New space science badges are being created for every Girl Scout level. Using best practices, we engage girls and volunteers with the fundamental STEM concepts that underpin our human quest to explore the universe. Through early and sustained exposure to the people and assets of NASA and the excitement of NASA's Mission, they explore STEM content, discoveries, and careers. Today's tech savvy Girl Scout volunteers prefer just-in-time materials and asynchronous learning. The Girl Scout Volunteer Tool Kit taps into the wealth of online materials provided by NASA for the new space science badges. Training volunteers supports troop activities for the younger girls. For older girls, we enhance Girl Scout summer camp activities, support in-depth experiences at University of Arizona's Astronomy Camp, and "Destination" events for the 2017 total solar eclipse. We partner with the Night Sky Network to engage amateur astronomers with Girl Scouts. Univeristy of Arizona also leads Astronomy Camp for Girl Scout volunteers. Aires Scientific leads eclipse preparation and summer sessions at NASA Goddard Space Flight Center for teams of volunteers, amateur astronomers and older Girl Scouts. There are 1,900,000 Girl Scouts and 800,000 volunteers in the USA. During development, we work with the Girl Scouts of Northern California (50,000 girl members and 31,000 volunteers) and expand across the USA to 121 Girl Scout councils over five years. SETI Institute leads the experienced space science educators and scientists at Astronomical Society of the Pacific, University of Arizona, and Aires Scientific. Girl Scouts of the USA leads dissemination of Girl Scout Stars to Councils across the USA with support of Girl Scouts of Northern California. Through professional development of Girl Scout volunteers, Girl Scout Stars enhances public science literacy. Girl Scout Stars supports the NASA Science Mission Directorate Science Education Objectives and NASA's STEM Engagement and Educator Professional Development lines of business. The Girl Scout Research Institute at GSUSA leads program evaluation with Rockman, et al, external evaluators.

  12. NASA Astrophysics EPO Community: Enhancing STEM Experience of Undergraduates

    NASA Astrophysics Data System (ADS)

    Manning, J.; Meinke, B. K.; Lawton, B.; Smith, D. A.; Bartolone, L.; Schultz, G.; NASA Astrophysics EPO Community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance the Science, Technology, Engineering, and Math (STEM) experience of undergraduates. The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to faculty at two- and four-year institutions and in offering internships and student collaboration opportunities. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the higher education community in these ways, including associated metrics and evaluation findings.

  13. Experiences of African American Young Women in Science, Technology, Engineering, and Mathematics (STEM) Education

    NASA Astrophysics Data System (ADS)

    Kolo, Yovonda Ingram

    African American women are underrepresented in science, technology, engineering, and mathematics (STEM) fields throughout the United States. As the need for STEM professionals in the United States increases, it is important to ensure that African American women are among those professionals making valuable contributions to society. The purpose of this phenomenological study was to describe the experiences of African American young women in relation to STEM education. The research question for this study examined how experiences with STEM in K-10 education influenced African American young women's academic choices in their final years in high school. The theory of multicontextuality was used to provide the conceptual framework. The primary data source was interviews. The sample was composed of 11 African American young women in their junior or senior year in high school. Data were analyzed through the process of open coding, categorizing, and identifying emerging themes. Ten themes emerged from the answers to research questions. The themes were (a) high teacher expectations, (b) participation in extra-curricular activities, (c) engagement in group-work, (d) learning from lectures, (e) strong parental involvement, (f) helping others, (g) self-efficacy, (h) gender empowerment, (i) race empowerment, and (j) strategic recruitment practices. This study may lead to positive social change by adding to the understanding of the experiences of African American young women in STEM. By doing so, these findings might motivate other African American young women to pursue advanced STEM classes. These findings may also provide guidance to parents and educators to help increase the number of African American women in STEM.

  14. Youth for Astronomy and Engineering - Engaging Local Families and Partners

    NASA Astrophysics Data System (ADS)

    Anderson, Tania; Eisenhamer, B.; Ryer, H.

    2013-06-01

    Youth for Astronomy and Engineering (YAE) is a program in the Space Telescope Science Institute’s Office of Public Outreach. It is designed to engage the local community in science, technology, engineering, and mathematics (STEM). This is accomplished through a series of yearly events such as astronomy and engineering clubs for students, family nights, and professional development for local educators. These events leverage SMD mission science to expose participants to the latest science discoveries (Hubble), new developments in space technology (James Webb), STEM career information, and activities that are representative of the work done by individuals in the astronomical and engineering fields. The YAE program helps provide a progression of opportunities for audiences by attracting and identifying highly-engaged individuals for participation in more intensive experiences. It also helps increase our impact by creating a network for piloting E/PO products and initiatives at the local level before nationwide release. This poster will highlight the YAE program.

  15. Youth for Astronomy & Engineering Program: Engaging Local Families and Partners

    NASA Astrophysics Data System (ADS)

    Anderson, Tania; Eisenhamer, B.; Ryer, H.

    2014-01-01

    Youth for Astronomy and Engineering (YAE) is a program in the Space Telescope Science Institute's Office of Public Outreach. It is designed to engage the local community in science, technology, engineering, and mathematics (STEM). This is accomplished through a series of yearly events such as astronomy and engineering clubs for students, family nights, and professional development for local educators. These events leverage SMD mission science to expose participants to the latest science discoveries (Hubble), new developments in space technology (James Webb), STEM career information, and activities that are representative of the work done by individuals in the astronomical and engineering fields. The YAE program helps provide a progression of opportunities for audiences by attracting and identifying highly-engaged individuals for participation in more intensive experiences. It also helps increase our impact by creating a network for piloting E/PO products and initiatives at the local level before nationwide release. This poster will highlight the YAE program.

  16. STEMing the tide: using ingroup experts to inoculate women's self-concept in science, technology, engineering, and mathematics (STEM).

    PubMed

    Stout, Jane G; Dasgupta, Nilanjana; Hunsinger, Matthew; McManus, Melissa A

    2011-02-01

    Three studies tested a stereotype inoculation model, which proposed that contact with same-sex experts (advanced peers, professionals, professors) in academic environments involving science, technology, engineering, and mathematics (STEM) enhances women's self-concept in STEM, attitudes toward STEM, and motivation to pursue STEM careers. Two cross-sectional controlled experiments and 1 longitudinal naturalistic study in a calculus class revealed that exposure to female STEM experts promoted positive implicit attitudes and stronger implicit identification with STEM (Studies 1-3), greater self-efficacy in STEM (Study 3), and more effort on STEM tests (Study 1). Studies 2 and 3 suggested that the benefit of seeing same-sex experts is driven by greater subjective identification and connectedness with these individuals, which in turn predicts enhanced self-efficacy, domain identification, and commitment to pursue STEM careers. Importantly, women's own self-concept benefited from contact with female experts even though negative stereotypes about their gender and STEM remained active. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  17. Does Gender and Professional Experience Influence Students' Perceptions of Professors?

    ERIC Educational Resources Information Center

    Tindall, Natalie T. J.; Waters, Richard D.

    2017-01-01

    Grounded in literature stemming from higher education research, this study examines how students evaluate public relations educators by gauging their perceptions of the professors' professional competency, professorial warmth, course difficulty, and industry connectivity. Using an experimental design, students (N = 303) from four U.S. universities…

  18. A study of female students enrollment in engineering technology stem programs

    NASA Astrophysics Data System (ADS)

    Habib, Ihab S.

    The problem studied in this research project was the enrollment of female STEM Engineering Technology students and the impact of professional mentoring and financial incentives on their enrollment, retention, and completion of engineering curriculum. Several tasks were presented in researchers' professional position; to recruit more students to the program, especially female as a minority in the Engineering Technology Department, make appropriate changes to the curriculum, and make improvements in mentoring students to improve rates of enrollment, retention, and completion of the program. A survey was created to study the effects of Science Engineering Technology and Mathematics for Engineering Technology (STEM ENGT) students' perceptions, mentorship, and scholarships availability, enrollment, retention, and program completion by enrolled student gender. Other studies have discovered that more scholarship and faculty mentorship support provided for female students resulted in improved diversity within engineering curricula student bodies (Sorcinelli, 2007).

  19. The Nautilus Exploration Program: Utilizing Live Ocean Exploration as a Platform for STEM Education and Outreach

    NASA Astrophysics Data System (ADS)

    Fundis, A.; Cook, M.; Sutton, K.; Garson, S.; Poulton, S.; Munro, S.

    2016-02-01

    By sparking interest in scientific inquiry and engineering design at a young age through exposure to ocean exploration and innovative technologies, and building on that interest throughout students' educational careers, the Ocean Exploration Trust (OET) aims to motivate more students to be lifelong learners and pursue careers in STEM fields. Utilizing research conducted aboard Exploration Vessel Nautilus, the ship's associated technologies, and shore-based facilities at the University of Rhode Island — including the Graduate School of Oceanography and the Inner Space Center — we guide students to early career professionals through a series of educational programs focused on STEM disciplines and vocational skills. OET also raises public awareness of ocean exploration and research through a growing online presence, live streaming video, and interactions with the team aboard the ship 24 hours a day via the Nautilus Live website (www.nautiluslive.org). Annually, our outreach efforts bring research launched from Nautilus to tens of millions worldwide and allow the public, students, and scientists to participate in expeditions virtually from shore. We share the Nautilus Exploration Program's strategies, successes, and lessons learned for a variety of our education and outreach efforts including: 1) enabling global audiences access to live ocean exploration online and via social media; 2) engaging onshore audiences in live and interactive conversations with scientists and engineers on board; 3) engaging young K-12 learners in current oceanographic research via newly developed lessons and curricula; 4) onshore and offshore professional development opportunities for formal and informal educators; 5) programs and authentic research opportunities for high school, undergraduate, and graduate students onshore and aboard Nautilus; and 6) collaborative opportunities for early career and seasoned researchers to participate virtually in telepresence-enabled, interdisciplinary expeditions.

  20. Mentor preparation: A qualitative study of STEM master teacher professional development

    NASA Astrophysics Data System (ADS)

    Click-Cuellar, Heather Lynn

    The No Child Left Behind Act of 2001 has required districts to staff all classrooms with highly qualified teachers. Yet, retaining certified teachers in the profession has been a national concern, especially among new teachers who leave at alarming rates within their first three years. This comes at a heavy cost to districts financially and in trying to maintain highly qualified status, but also to the continuity and effective education of students. Mentoring has been identified by many researchers as a plausible solution to reducing attrition rates for beginning teachers. In this dissertation, I conducted qualitative research to explore and understand the perceptions of STEM (science, technology, engineering, and mathematics) Master Teachers' mentoring professional development in the context of the Master Teacher Academies program situated at Desert State University (pseudonym), a large institution located on the Texas-Mexico border. Additionally, I examined the reported teaching self-efficacy of STEM Master Teachers (mentors), as well as that of their novice teachers (mentees). Another purpose of the study was to investigate the forms and elements of interactions between these mentors and their mentees. Participants of this study were Texas certified Master Mathematics or Master Science Teachers, and their novice mathematics or science teacher mentees; all of whom teach in a high need U.S. Mexico border city school district serving a student population that is over 93% Hispanic. A grounded theory approach was used in examining and analyzing mentor and mentee perceptions and experiences through case studies. A constructivist framework was utilized to derive findings from interviews and the review of documents and contribute a diverse context and population to the literature. The study reveals conclusions and recommendations that will benefit educators, universities, school districts, and policy makers in regard to teacher mentor preparation.

  1. Imagining STEM Higher Education Futures: Advancing Human Well-Being

    ERIC Educational Resources Information Center

    Walker, Melanie

    2015-01-01

    The paper explores a conceptual approach to the question of what it means to provide a university education that addresses equity, and encourages the formation of STEM graduates oriented to public-good values and with commitments to making professional contributions to society which will advance human well-being. It considers and rejects…

  2. Astronomy Week: An Investigation of the Implementation and Identity Formation of Participants

    ERIC Educational Resources Information Center

    Dewitt, Carl

    2013-01-01

    Our society has a great need for Science, Technology, Engineering, and Mathematics (STEM) professionals and educational institutions are currently having difficulty keeping up with society's demand (Carnevale, 2011). Outreach efforts are a key strategy to encouraging young people to pursue STEM careers and evaluation methods need to be used to…

  3. A case study of healthcare professional views on the meaning of data produced by hand hygiene auditing.

    PubMed

    Dawson, Carolyn H

    2015-11-01

    Measurement of hand hygiene (HH), crucial for patient safety, has acknowledged flaws stemming from methods available. Even direct observation, the World Health Organization gold standard, may lead to behaviour changes which can affect outcome validity. However, it remains important to understand current levels of HH to allow targeted interventions to be developed. This has resulted in wider adoption of auditing processes. This study addressed how healthcare professionals perceive data generated by HH auditing processes. Qualitative study involving participatory observation and semi-structured interviews with 30 healthcare professionals recruited from a large National Health Service (NHS) two-hospital site in England. Healthcare professionals perceived two main problems with HH measurement, both associated with feedback: (1) lack of clarity with regard to feedback; and (2) lack of association between training and measurement. In addition, concerns about data accuracy led the majority of participants (22/30) to conclude audit feedback is often 'meaningless'. Healthcare professionals require meaningful data on compliance with HH to engender change, as part of a multimodal strategy. Currently healthcare professionals perceive that data lack meaning, and are not seen as drivers to improve HH performance. Potential opportunities to change practice and improve HH are being missed.

  4. Stem cell research and therapies in Argentina: the legal and regulatory approach.

    PubMed

    de Arzuaga, Fabiana C

    2013-12-01

    Argentina has a significant number of researchers in public and private institutions conducting research in regenerative medicine and stem cells. There is not specific legislation in this area; however, the National Ministry of Health has issued regulations under the scope of the Transplant Act and the Medicines Act. Alongside the groups doing research, it is possible to find professionals offering experimental stem cell therapies to patients. These professionals take refuge in the term "medical practice" and sell experimental treatment to patients with no guarantee of safety and security given that they were not tested in clinical research. These practices offered to patients in a scheme, apparently legal, are generating an important number of judicial actions requesting the payment of said treatments. The decisions of the courts ordering payment in most cases are generating a transfer of funds from patients, social welfare systems, and the state to medical centers offering stem cell experimental therapies. This article describes the current regulations as well as the course of action to solve the emerging problems of these new technologies at legislative level.

  5. Embryo futures and stem cell research: the management of informed uncertainty

    PubMed Central

    Ehrich, Kathryn; Williams, Clare; Farsides, Bobbie; Scott, Rosamund

    2012-01-01

    In the social worlds of assisted conception and stem cell science, uncertainties proliferate and particular framings of the future may be highly strategic. In this article we explore meanings and articulations of the future using data from our study of ethical and social issues implicated by the donation of embryos to human embryonic stem cell research in three linked assisted conception units and stem cell laboratories in the UK. Framings of the future in this field inform the professional management of uncertainty and we explore some of the tensions this involves in practice. The bifurcation of choices for donating embryos into accepting informed uncertainty or not donating at all was identified through the research process of interviews and ethics discussion groups. Professional staff accounts in this study contained moral orientations that valued ideas such as engendering patient trust by offering full information, the sense of collective ownership of the National Heath Service and publicly funded science and ideas for how donors might be able to give restricted consent as a third option. PMID:21812792

  6. Negotiating the Inclusion of Nanoscience Content and Technology in Science Curriculum: An Examination of Secondary Teachers' Thinking in a Professional Development Project

    NASA Astrophysics Data System (ADS)

    Wells, Jennifer Gayle

    The Next Generation Science Standards represent a significant challenge for K--12 school reform in the United States in the science, technology, engineering and mathematics (STEM) disciplines (NSTA, 2012). One important difference between the National Science Education Standards (NRC, 1996) and the Next Generation Science Standards (Achieve, 2013) is the more extensive inclusion of nanoscale science and technology. Teacher PD is a key vehicle for implementing this STEM education reform effort (NRC, 2012; Smith, 2001). The context of this dissertation study is Project Nanoscience and Nanotechnology Outreach (NANO), a secondary level professional development program for teachers that provides a summer workshop, academic year coaching and the opportunity for teacher participants to borrow a table-top Phenom scanning electron microscope and a research grade optical microscope for use in their classrooms. This designed-based descriptive case study examined the thinking of secondary teachers in the 2012 Project NANO cohort as they negotiated the inclusion of novel science concepts and technology into secondary science curriculum. Teachers in the Project NANO 2012 summer workshop developed a two-week, inquiry-based unit of instruction drawing upon one or more of nine big ideas in nanoscale science and technology as defined by Stevens, Sutherland, and Krajcik (2011). This research examined teacher participants' metastrategic thinking (Zohar, 2006) which they used to inform their pedagogical content knowledge (Shulman, 1987) by focusing on the content knowledge teachers chose to frame their lessons, their rationales for such choices as well as the teaching strategies that they chose to employ in their Project NANO unit of instruction. The study documents teachers various entry points on a learning progression as teachers negotiated the inclusion of nanoscale science and technology into the curriculum for the first time. Implications and recommendations for teacher professional development are offered.

  7. The Flagstaff Festival of Science: Over 25 years of connecting research professionals with the people of Northern Arizona

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Ranney, W.; Stevens, B.; Farretta, K.

    2015-12-01

    The annual Flagstaff Festival of Science, established in 1990, is the longest running, entirely free, public science festival in the USA. It has evolved into a 10-day-long festival with >90 events, including interactive science and technology exhibits, daily public lectures, open houses, star parties, local field trips, and an in-school speaker program. The Festival events reach an estimated 17,000 people every year in Northern Arizona, including students from pre-K through college, parents, teachers, tourists, and lifelong learners. Flagstaff, AZ, "America's First STEM Community" and the "World's First International Dark Sky City," has a uniquely rich community of organizations engaged in science and engineering research and innovation, including the Flagstaff Arboretum, Flagstaff Dark Skies Coalition, Coconino Community College, W. L. Gore & Associates, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship and Technology, U.S. Geological Survey, U.S. Naval Observatory, and Willow Bend Environmental Education Center. As such, the Festival has tremendous support from the local community, which is evidenced by its financial support (via grants and donations), attendance, and awards it has received. Public STEM events are an increasingly popular way for scientists to reach underserved populations, and the Flagstaff Festival of Science provides local scientists and other research professionals with many diverse opportunities to foster public support of science and inspire students to study STEM disciplines. The goal of this presentation is to share information, ideas, and our experiences with anyone wishing to initiate or expand his or her current public STEM offerings; and to celebrate the rewards (for both learners and research professionals) of engaging in science education and communication at public STEM events.

  8. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants.

    PubMed

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor's belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K-12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. © 2015 S. E. DeChenne et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Assessment of Pragmatic Difficulties and Socioemotional Adjustment in Practice

    ERIC Educational Resources Information Center

    Farmer, Marion; Oliver, Alice

    2005-01-01

    Background: In professional practice, psychologists and other professionals such as therapists and teachers receive referrals of many children who present with social, emotional and behavioural difficulties that are difficult to understand and assess. The problems of some of these children may stem from pragmatic difficulties in communication.…

  10. Negotiating a Team Identity through Collaborative Self-Study

    ERIC Educational Resources Information Center

    Tuval, Smadar; Barak, Judith; Gidron, Ariela

    2011-01-01

    This study presents our emerging understanding of the meaning of collaborative self-study as one of the mechanisms that facilitates effective, productive collaboration. Stemming from our experience of collaborative professional life over eight years, we explore the crisis we confronted as a professional learning community, the tensions underlying…

  11. Looking the Tiger in the Eye: Overcoming Fear-Based Teacher Identities

    ERIC Educational Resources Information Center

    Wegwert, Joseph C.

    2014-01-01

    There has been a growing interest in and research on the construction of teachers' professional identity and parameters of practice among researchers worldwide. This piece examines the nature of teachers' perceptions about their professionalism and practice. It also explores teacher isolation stemming from assumptions related to…

  12. Collaboration as a Strategy to Transform the Impact of EPO Efforts in the New York Center for Astrobiology

    NASA Astrophysics Data System (ADS)

    Svirsky, A.; Rogers, K. L.; Meissner, M.; Busby, G.; Roberge, W.

    2014-12-01

    The New York Center for Astrobiology (NYCA) EPO effort is a collaboration combining expertise in evaluation and assessment of STEM educational modules with disciplinary expertise in astrobiology. In practice, the NYCA partners with external experts in professional development, informal education and evaluation to assist in developing and implementing certain programs of the NYCA EPO activities. Two specific program initiatives of the NYCA EPO effort offer excellent examples of programs with strong science content knowledge as well as using effective tools to address the NSF impact categories. These are the ExxonMobil Bernard Harris Summer Science Camp (EMBHSSC, in conjunction with RPI's STEM Pipeline Initiative) and the Astrobiology Teachers Academy (ATA). The EMBHSSC for middle school students focuses on NASA astrobiology initiatives around the "Quest for Life" theme. The Camp has a comprehensive evaluation component and uses pre-and post- assessment of student knowledge and interest in STEM. Recent data suggest that every student has shown a measurable gain in these areas. The ATA is a weeklong summer intensive professional development program for P-12 STEM teachers that combines discipline scientists in the NYCA with an external evaluation organization, the Association for the Cooperative Advancement of Science and Education (ACASE). The goal is for teachers to develop a new learning module for a course they teach that uses astrobiology as a content focus to engage students. The Academy has scientists collaborating with teachers in this effort, providing content and assistance in designing instructional activities. Assessments are woven into the fabric of the work in a few ways: 1. There is a purposeful focus on assessment as part of the learning module, and the content of the ATA; 2. ACASE offers teachers a tool for tracking their students' attainment of the learning goals identified in their learning module; 3. There are daily evaluations of the teachers' experiences to enable mid-course corrections, and a final evaluation of the ATA at the end of the experience. NYCA scientists support the approach of working collaboratively with external experts in evaluation as a paradigm for EPO activities sponsored by NASA. Our presentation will highlight the myriad of tools used to measure outcomes of these activities.

  13. Creating Future Stem Leaders: The National Astronomy Consortium:

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Mills, Elisabeth A. C.; Boyd, Patricia T.; Strolger, Louis-Gregory; Benjamin, Robert A.; Brisbin, Drew; Giles, Faye; National Astronomy Consortium

    2016-01-01

    The National Astronomy Consortium (NAC) is a program led by the National Radio Astronomy Observatory (NRAO) and Associated Universities Inc., (AUI) in partnership with the National Society of Black Physicists (NSBP), and a number of minority and majority universities to increase the numbers of students from underrepresented groups and those otherwise overlooked by the traditional academic pipeline into STEM or STEM-related careers. The seed for the NAC was a partnership between NRAO and Howard University which began with an exchange of a few summer students five years ago. Since then the NAC has grown tremendously. Today the NAC aims to host between 4 to 5 cohorts nationally in an innovative model in which the students are mentored throughout the year with multiple mentors and peer mentoring, continued engagement in research and professional development / career training throughout the academic year and throughout their careers. We will summarize the results from this innovative and highly succesful program and provide lessons learned.

  14. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    PubMed Central

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these approaches for researchers who study diversity and inclusion issues in the life sciences through examples from two critical mixed-methods studies of prominent issues in science, technology, engineering, and mathematics (STEM) participation and recognition. The first study pairs critical discourse analysis of the STEM workforce literature, data, and underlying surveys with quantitative analyses of STEM pathways into the workforce. This example illustrates the necessity of questioning popular models of retention. It also demonstrates the importance of intersecting demographic categories to reveal patterns of experience both within and between groups whose access to and participation in STEM we aim to improve. The second study’s critical approach applies research on inequities in prizes awarded by STEM professional societies toward organizational change. This example uses data from the life sciences professional societies to show the importance of placing data within context to broaden participation and understand challenges in creating sustainable change. PMID:27521238

  15. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III

    2015-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.

  16. The Start-Up of the first Hematopoietic Stem Cell Transplantation Center in the Iraqi Kurdistan: a Capacity-Building Cooperative Project by the Hiwa Cancer Hospital, Sulaymaniyah, and the Italian Agency for Development Cooperation: an Innovative Approach.

    PubMed

    Majolino, Ignazio; Othman, Dosti; Rovelli, Attilio; Hassan, Dastan; Rasool, Luqman; Vacca, Michele; Abdalrahman, Nigar; Abdullah, Chra; Ahmed, Zhalla; Ali, Dlir; Ali, Kosar; Broggi, Chiara; Calabretta, Cinzia; Canesi, Marta; Ciabatti, Gloria; Del Fante, Claudia; De Sapio, Elisabetta; Dore, Giovanna; Frigato, Andrea; Gabriel, Marcela; Ipsevich, Francesco; Kareem, Harem; Karim, Dana; Leone, Rosa; Mahmood, Tavan; Manna, Annunziata; Massei, Maria Speranza; Mastria, Andrea; Mohammed, Dereen; Mohammed, Rebar; Najmaddin, Khoshnaw; Noori, Diana; Ostuni, Angelo; Palmas, Angelo; Possenti, Marco; Qadir, Ali; Real, Giorgio; Shrif, Rebwar; Valdatta, Caterina; Vasta, Stefania; Verna, Marta; Vittori, Mariangela; Yousif, Awder; Zallio, Francesco; Calisti, Alessandro; Quattrocchi, Sergio; Girmenia, Corrado

    2017-01-01

    We describe the entire process leading to the start-up of a hematopoietic stem cell transplantation center at the Hiwa Cancer Hospital, in the city of Sulaymaniyah, Kurdistan Iraqi Region. This capacity building project was funded by the Italian Development Cooperation Agency and implemented with the support of the volunteer work of Italian professionals, either physicians, nurses, biologists and technicians. The intervention started in April 2016, was based exclusively on training and coaching on site, that represent a significant innovative approach, and led to a first autologous transplant in June 2016 and to the first allogeneic transplant in October. At the time of reporting, 9 months from the initiation of the project, 18 patients have been transplanted, 15 with an autologous and 3 with an allogeneic graft. The center at the HCH represents the first transplantation center in Kurdistan and the second in wide Iraq. We conclude that international development cooperation may play an important role also in the field of high-technology medicine, and contribute to improved local centers capabilities through country to country scientific exchanges. The methodology to realize this project is innovative, since HSCT experts are brought as volunteers to the center(s) to be started, while traditionally it is the opposite, i.e. the local professionals to be trained are brought to the specialized center(s).

  17. The Start-Up of the first Hematopoietic Stem Cell Transplantation Center in the Iraqi Kurdistan: a Capacity-Building Cooperative Project by the Hiwa Cancer Hospital, Sulaymaniyah, and the Italian Agency for Development Cooperation: an Innovative Approach

    PubMed Central

    Majolino, Ignazio; Othman, Dosti; Rovelli, Attilio; Hassan, Dastan; Rasool, Luqman; Vacca, Michele; Abdalrahman, Nigar; Abdullah, Chra; Ahmed, Zhalla; Ali, Dlir; Ali, Kosar; Broggi, Chiara; Calabretta, Cinzia; Canesi, Marta; Ciabatti, Gloria; Del Fante, Claudia; De Sapio, Elisabetta; Dore, Giovanna; Frigato, Andrea; Gabriel, Marcela; Ipsevich, Francesco; Kareem, Harem; Karim, Dana; Leone, Rosa; Mahmood, Tavan; Manna, Annunziata; Massei, Maria Speranza; Mastria, Andrea; Mohammed, Dereen; Mohammed, Rebar; Najmaddin, Khoshnaw; Noori, Diana; Ostuni, Angelo; Palmas, Angelo; Possenti, Marco; Qadir, Ali; Real, Giorgio; Shrif, Rebwar; Valdatta, Caterina; Vasta, Stefania; Verna, Marta; Vittori, Mariangela; Yousif, Awder; Zallio, Francesco; Calisti, Alessandro; Quattrocchi, Sergio; Girmenia, Corrado

    2017-01-01

    We describe the entire process leading to the start-up of a hematopoietic stem cell transplantation center at the Hiwa Cancer Hospital, in the city of Sulaymaniyah, Kurdistan Iraqi Region. This capacity building project was funded by the Italian Development Cooperation Agency and implemented with the support of the volunteer work of Italian professionals, either physicians, nurses, biologists and technicians. The intervention started in April 2016, was based exclusively on training and coaching on site, that represent a significant innovative approach, and led to a first autologous transplant in June 2016 and to the first allogeneic transplant in October. At the time of reporting, 9 months from the initiation of the project, 18 patients have been transplanted, 15 with an autologous and 3 with an allogeneic graft. The center at the HCH represents the first transplantation center in Kurdistan and the second in wide Iraq. We conclude that international development cooperation may play an important role also in the field of high-technology medicine, and contribute to improved local centers capabilities through country to country scientific exchanges. The methodology to realize this project is innovative, since HSCT experts are brought as volunteers to the center(s) to be started, while traditionally it is the opposite, i.e. the local professionals to be trained are brought to the specialized center(s). PMID:28512560

  18. Funding Student Scholarships to the Richard Tapia Celebration of Diversity in Computing Conference 2013, February 7-10, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tapia, Richard

    This Basic Award allowed for the funding of student scholarships to the Richard Tapia Celebration of Diversity in Computing Conference which took place in Washington, D.C. from February 7-10, 2013. The conference was the seventh in a series and included a stellar array of invited speakers, compelling panel discussions, a student poster competition, a daylong Doctoral Consortium, a session featuring a choice of attractions unique to Washington, D.C., a gala banquet and dance, and many exciting networking opportunities. The conference created a welcoming environment for STEM students, especially underrepresented minority and female students, who were provided the highest quality ofmore » learning, networking, and social experiences to empower their educational experience and enhance their ability to succeed with a rigorous STEM degree. The networking and mentoring opportunities available at the conference were also designed to empower students to succeed in STEM careers and ultimately serve in leadership in industry and the professoriate. A key step in attracting underrepresented students into STEM fields and paving the way for their success in influential positions is to create a nurturing and supportive network and community for them to rely upon. It is also critical to educate leaders in corporations, government and academia about the benefits to be gained from increasing the percentage of STEM professionals from underrepresented groups. To this end, The Tapia Conference serves both functions, as it connects STEM students with STEM professionals, leaders, and academics who share the vision of a STEM workforce and community that is truly representative of the community in which we live.« less

  19. STEM Pilot Project Grant Program: Report to the Legislature, December 2016

    ERIC Educational Resources Information Center

    Noahr, Lorrell; Black, Scott; Rogers, Justin

    2016-01-01

    As our world becomes more and more steeped in technology, educating our students in that and related areas becomes crucial. Science, technology, engineering and math (STEM) education focuses on helping students become the next generation of professionals who will create the new ideas, new products and new industries of the future. Teaching STEM…

  20. Moving beyond Cultural Barriers: Successful Strategies of Female Technology Education Teachers

    ERIC Educational Resources Information Center

    McCarthy, Raymond R.; Berger, Joseph

    2008-01-01

    Women are underrepresented in Science, Technology, Engineering, and Math (STEM) fields of study and careers with a subset of STEM--Technology Education--possibly one of the least integrated fields for women as students and as professionals. What accounts for this situation and what are potential remedies? The purpose of this study was to learn…

  1. STEM Professionals Entering Teaching: Navigating Multiple Identities

    ERIC Educational Resources Information Center

    Grier, Jeanne M.; Johnston, Carol C.

    2012-01-01

    In this qualitative study, we identify the complexity of the transitioning identities of four STEM career changers to better inform teacher education programs on how to be more mindful of the needs of this population as they return to the life of a student again on their path toward a new career in teaching. Findings suggest the career changers…

  2. Elementary teachers past experiences: A narrative study of the past personal and professional experiences of elementary teachers who use science to teach math and reading

    NASA Astrophysics Data System (ADS)

    Acre, Andrea M.

    This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of high-stakes tests is of the upmost importance given that science is being eliminated from the elementary curriculum and it is during the elementary years that students' nurture and develop their interest in science. Additionally, the United States is failing to produce enough college graduates in STEM areas to fill the thousands of STEM jobs each year. Through a review of the literature, the past trends and current trends of elementary science education were explored as well as teacher training. Furthermore, the literature reviewed inquiry teaching which is considered to be the most effective teaching method when teaching science at any level. Using John Dewey's Interest and Effort Relationship Theory and the Self-Determination Motivation Theory to guide this study, there were five prominent themes which emerged from the reconstructed stories of the four teachers: positive experiences with science, neutral/negative experiences with science, seeks meaningful professional development, influence and support from others, and regret/wants to do more.

  3. Science Teacher Efficacy and Extrinsic Factors Toward Professional Development Using Video Games in a Design-Based Research Model: The Next Generation of STEM Learning

    NASA Astrophysics Data System (ADS)

    Annetta, Leonard A.; Frazier, Wendy M.; Folta, Elizabeth; Holmes, Shawn; Lamb, Richard; Cheng, Meng-Tzu

    2013-02-01

    Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based curricula was employed to determine how science teacher's attitudes and efficacy where impacted while designing science-based video games. The study's mixed-method design ascertained teacher efficacy on five factors (General computer use, Science Learning, Inquiry Teaching and Learning, Synchronous chat/text, and Playing Video Games) related to technology and gaming using a web-based survey). Qualitative data in the form of online blog posts was gathered during the project to assist in the triangulation and assessment of teacher efficacy. Data analyses consisted of an Analysis of Variance and serial coding of teacher reflective responses. Results indicated participants who used computers daily have higher efficacy while using inquiry-based teaching methods and science teaching and learning. Additional emergent findings revealed possible motivating factors for efficacy. This professional development project was focused on inquiry as a pedagogical strategy, standard-based science learning as means to develop content knowledge, and creating video games as technological knowledge. The project was consistent with the Technological Pedagogical Content Knowledge (TPCK) framework where overlapping circles of the three components indicates development of an integrated understanding of the suggested relationships. Findings provide suggestions for development of standards-based science education software, its integration into the curriculum and, strategies for implementing technology into teaching practices.

  4. Full STEAM Ahead with the NASA Opportunities in Visualization, Art, and Science (NOVAS) Program

    NASA Astrophysics Data System (ADS)

    Zevin, D.; Croft, S.; Thrall, L.; Fillingim, M.; Cook, L. R.

    2015-11-01

    There has been increasing interest in the use of art as a new tool in the teaching of Science, Technology, Engineering, and Mathematics (STEM). The concept has received major consideration by our federal government, design colleges, art institutes, and leading universities. Many have, in fact, fully embraced this concept, and it's not unusual today to see “Art” added to STEM to get STEAM. On August 5, 2014, the NASA-funded NASA Opportunities in Visualization, Art, and Science (NOVAS) program team provided a professional development workshop at the Astronomical Society of the Pacific's 2014 Annual Meeting. In this two-hour workshop, participants learned about the rise of STEAM and were shown valuable skills and techniques used by the NOVAS program for the application of STEAM in a variety of out-of-school time (OST) settings. The workshop highlighted how OST and other informal educators can use art and digital media to help teach about current, cutting-edge STEM investigations, and why scientists need artists to help visualize and communicate their research. Although NASA science and project outcomes from the NOVAS program were emphasized, participants also discussed how NOVAS' methodologies could be applied to other STEM subjects and OST formats.

  5. The Significance of Critical Incidents and Voice to Identity and Agency

    ERIC Educational Resources Information Center

    Sisson, Jamie Huff

    2016-01-01

    Human agency is significant to the understanding of professional identities and actions. It is through human agency that individuals can become powerful in changing or authoring their own identities. Stemming from a larger narrative inquiry focused on understanding the professional identities of public preschool teachers, this paper draws on…

  6. Aligning Higher Education STEM Production with Workforce Demand through Professional Master's Degrees. BHEF Issue Brief

    ERIC Educational Resources Information Center

    Business-Higher Education Forum (NJ1), 2011

    2011-01-01

    Graduate education in the natural sciences has traditionally emphasized doctoral training for academic or research careers. This training, however, is not meeting the demand for professionals in business, industry, and the public sector, where individuals with a combination of scientific, technical, and managerial skills will be required.…

  7. The Impact of the Design Process on Student Self-Efficacy and Content Knowledge

    NASA Astrophysics Data System (ADS)

    Gess, Ashley J. H.

    The United States of America needs STEM trained workers, STEM faculty and STEM professionals to improve its technical and professional workforce in order to maintain leadership in a global economy. However, American students are not opting to remain in a STEM course of study, and this is especially so for women and minorities. Of the students who pursue postsecondary education, the majority of movement away from STEM majors occurs in the first two years. Thus, educators are concerned with investigating factors that may influence students' persistence and success when in a STEM track of learning. To that end, this quasi-experimental mixed-method study was concerned with investigating the effects of participation in the design process on student self-efficacy and content knowledge gains in an undergraduate anatomy and physiology laboratory. Over fifty students participated in a design task that paralleled the topic being studied in a given semester and were given efficacy surveys along with lab practicums. Qualitative efficacy data, quantitative efficacy data and quantitative practicum results were analyzed and triangulated to produce a meta-inference as to the effect of participation in the design project had on student learning. Preliminary results indicate that the design process makes statistically significant impacts on both self-efficacy and content knowledge in the given context. The author follows with a discussion of the impact of design-based learning in the undergraduate biology classroom and implications for further research are considered.

  8. Expanding girls' horizons in physics and other sciences: A successful strategy since 1976

    NASA Astrophysics Data System (ADS)

    Spencer, Cherrill M.

    2015-12-01

    To start on the path to a career in science, technology, engineering, or mathematics (STEM), girls must take appropriate prerequisite-to-college mathematics and science courses when they are 15 to 18 years old. The Expanding Your Horizons in Science, Engineering, and Mathematics (EYH) conferences are one-day conferences for girls aged 12 to 18, designed to encourage girls towards a STEM career. These conferences engage schoolgirls in enjoyable hands-on STEM activities, created and led by women STEM professionals. This paper describes the history of EYH conferences, what happens at one, the impact of an EYH conference on the girls, and how to start one.

  9. Cybersecurity Implications for Industry, Academia, and Parents: A Qualitative Case Study in NSF STEM Education

    NASA Astrophysics Data System (ADS)

    Stevenson, Gregory V.

    Rationale: Former President Barack Obama's 3.9 trillion for the 2015 fiscal year budget request included a 2.9 billion investment in Science, Technology, Engineering and Math (STEM) education. Research then showed that the national spending for cybersecurity has exceeded $10.7 billion in the 2015 fiscal year. Nonetheless, the number of cyberattacks has risen year after year since 2012, potentially due to the lack of education and training in cybersecurity. Methodology: A qualitative case study research was conducted to explore and investigate the lived professional experiences of experts from San Antonio Texas whose efforts were aligned to increase the number of qualified cybersecurity professionals. To qualify the organizational needs for cybersecurity professionals, the study gathered expert opinions by surveying human resource managers pertaining to the needs of cybersecurity education. To refine and further validate data collection efforts, the study involved researcher observations and a survey of a narrow cohort to perform analytic induction to eliminate bias and exhaust the exploratory research (Maxwell, 2005). Result: The findings of the case study will: 1) help augment the importance of cybersecurity education in pre-kindergarten through 12th grade, 2) be utilized as a single guide for school leaders in the process of developing cybersecurity education strategies, and 3) in the longer term, be used by the National Sciences Foundation (NSF) as an effective model to institute cybersecurity education practices nationwide and thereby reduce the existing trouble of the nation by criminal cyber actors.

  10. Impacts and Feedbacks in a Warming Arctic: Engaging Diverse Learners in Geoscience Education and Research

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Spellman, Katie; Fabbri, Cindy; Verbyla, David; Yoshikawa, Kenji; Fochesatto, Gilberto; Comiso, Josefino; Chase, Malinda; Jones, Debra; Bacsujlaky, Mara

    2016-04-01

    A warming climate has changed the timing of the seasons in the Arctic and elsewhere. Our project will engage learners in the investigation of the shifting seasons' impacts on vegetation, soils, hydrology, infrastructure, livelihoods, and communities and the feedbacks between these factors. Primary and secondary students, pre- and in-service teachers and lifelong learners will use historical and current National Aeronautics and Space Agency (NASA) data, NASA experts, and the Global Learning and Observations to Benefit the Environment (GLOBE) methods to help uncover the surprises from and consequences of earlier springs, warmer and later falls, changing ice cover, later freeze-up and earlier break-up of rivers and lakes. Key objectives are to: 1) provide new opportunities to bring NASA assets to learners of all ages, 2) enhance Science, Technology, Engineering and Mathematics (STEM) learning and understanding of the Earth system, 3) improve STEM instruction, 4) enhance STEM experience of undergraduate students, and 5) increase participation of groups historically underrepresented in STEM such as Native Americans who are also more vulnerable to climate change impacts. Incorporating issues of local importance with national and global implications, into educational experiences will make learning relevant which may be helpful to communities in developing strategies for adaptation. We intend to use NASA assets (e.g. MODIS snow data, NDVI, Cloudsat, and SMAP data), GLOBE methodologies (classic and new ground observations and measurements) to develop and deliver curriculum materials including culturally responsive learning activities, course/modules, professional development workshops, and educational experiences using best practices in pedagogy such as constructivism, inquiry- and place- based, interdisciplinary and systems approach, and cutting-edge technology to reach a variety of target audiences, while improving STEM education. Audiences include K-12 teachers and their students, home-schooled students, pre-service teachers, undergraduate students, and community members as citizen scientists. Those served will include groups historically under-represented in STEM fields (e.g. Alaska Natives). Learners will be engaged using face-to-face, online, and mobile technologies. Formative and summative assessments as well as outcome-based metrics will be developed to evaluate the success of program efforts. To accomplish objectives and leverage efforts, this project brings together subject matter experts, educational professionals, and practitioners in a teaming arrangement as well as leveraged partnerships that include the GLOBE Program, NASA Langley Education Program, NASA Goddard Space Flight Center, International Arctic Research Institute, School of Education, School of Natural Resources and Extension, Geophysical Institute, Institute of Arctic Biology, University of Alaska Fairbanks, Association of Interior Native Educators, Kenaitze Tribe Environmental Education Program, Urban and Rural School Districts, 4-H Program, Goldstream Group, Inc., National Science Foundation (NSF) Alaska Experimental Program to Stimulate Competitive Research, NSF Bonanza Creek Long Term Ecological Research and the NSF Polar Learning and Responding Climate Change Education Partnership.

  11. The Underrepresentation of Women in the Engineering Element of STEM Occupations and Influencers Contributing to the Persistent Gap

    ERIC Educational Resources Information Center

    Holl, David

    2017-01-01

    Within Science, Technology, Engineering, and Mathematics (STEM) careers fields, the representation of women remains at an inequitable level when compared to men and to women's representation in other professions. Given the current state of women representing 52% of the professional and management-related workforce (U.S. Bureau of Labor and…

  12. Addressing the STEM Gender Gap by Designing and Implementing an Educational Outreach Chemistry Camp for Middle School Girls

    ERIC Educational Resources Information Center

    Levine, Mindy; Serio, Nicole; Radaram, Bhasker; Chaudhuri, Sauradip; Talbert, William

    2015-01-01

    There continues to be a persistent, widespread gender gap in multiple STEM disciplines at all educational and professional levels: from the self-reported interest of preschool aged students in scientific exploration to the percentages of tenured faculty in these disciplines, more men than women express an interest in science, a confidence in their…

  13. GOLD (GEO Opportunities for Leadership in Diversity): Building capacity for broadening participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Jones, B.; Patino, L. C.; Rom, E. L.; Adams, A.

    2017-12-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved groups, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in this area. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies to achieve success must be developed. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering geoscientists as change agents for increasing diversity, but will also produce experiments that contribute to the research base regarding leader and leadership development.

  14. Enlarging the STEM pipeline working with youth-serving organizations

    NASA Astrophysics Data System (ADS)

    Porro, I.

    2005-12-01

    The After-School Astronomy Project (ASAP) is a comprehensive initiative to promote the pursuit of science learning among underrepresented youth. To this end ASAP specifically aims at building the capacity of urban community-based centers to deliver innovative science out-of-school programming to their youth. ASAP makes use of a modular curriculum consisting of a combination of hands-on activities and youth-led explorations of the night sky using MicroObservatory. Through project-based investigations students reinforce learning in astronomy and develop an understanding of science as inquiry, while also develop communication and computer skills. Through MicroObservatory students gain access to a network of educational telescopes, that they control over the Internet, software analysis tools and an online community of users. An integral part of ASAP is to provide professional development opportunities for after-school workers. This promotes a self-sustainable implementation of ASAP long-term and fosters the creation of a cadre of after-school professionals dedicated to facilitating science-based programs.

  15. STEM integration in middle school career and technical education programs: A Delphi design study

    NASA Astrophysics Data System (ADS)

    Wu-Rorrer, Billy Ray

    The purpose of this qualitative method study with a Delphi research design sought to determine how STEM programs can be effectively integrated into middle school career and technical education programs by local, state, and national educators, administrators, directors, specialists, and curriculum writers. The significance of the study is to provide leaders in CTE with a greater awareness, insight, and strategies about how CTE programs can more effectively integrate academics into career and technical education programs through STEM-related programming. The findings will increase the limited amount of available literature providing best practice strategies for the integration of STEM curriculum into middle school CTE programs. One basic question has guided this research: How can STEM programs be effectively integrated into middle school career and technical education programs? A total of twelve strategies were identified. The strategies of real-world applications and administrative buy-in were the two predominant strategies consistently addressed throughout the review of literature and all three sub-questions in the research study. The Delphi design study consisted of pilot round and three rounds of data collection on barriers, strategies, and professional development for STEM integration in middle school career and technical education programs. Four panelists participated in the pilot round, and 16 panel members not involved in the pilot round participated in the three rounds of questioning and consensus building. In the future, more comprehensive studies can build upon this foundational investigation of middle school CTE programs.

  16. A case study of healthcare professional views on the meaning of data produced by hand hygiene auditing

    PubMed Central

    2015-01-01

    Background: Measurement of hand hygiene (HH), crucial for patient safety, has acknowledged flaws stemming from methods available. Even direct observation, the World Health Organization gold standard, may lead to behaviour changes which can affect outcome validity. However, it remains important to understand current levels of HH to allow targeted interventions to be developed. This has resulted in wider adoption of auditing processes. Aim: This study addressed how healthcare professionals perceive data generated by HH auditing processes. Methods: Qualitative study involving participatory observation and semi-structured interviews with 30 healthcare professionals recruited from a large National Health Service (NHS) two-hospital site in England. Findings: Healthcare professionals perceived two main problems with HH measurement, both associated with feedback: (1) lack of clarity with regard to feedback; and (2) lack of association between training and measurement. In addition, concerns about data accuracy led the majority of participants (22/30) to conclude audit feedback is often ‘meaningless’. Conclusion: Healthcare professionals require meaningful data on compliance with HH to engender change, as part of a multimodal strategy. Currently healthcare professionals perceive that data lack meaning, and are not seen as drivers to improve HH performance. Potential opportunities to change practice and improve HH are being missed. PMID:28989439

  17. Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)

    NASA Astrophysics Data System (ADS)

    Klima, K.; Hoss, F.; Welle, P.; Larkin, S.

    2013-12-01

    Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form 2011-2013 as base material, we have been developing online publically available Pennsylvania lesson plans meeting Next Generation Science Standards or Common Core Math Standards. The teacher curricula database will greatly increase our ability to correct misconceptions and fill gaps in lessons taught to thousands of students. This talk will share more about the SUCCEED program and the teacher curricula database efforts.

  18. History of the child health and development book. Part 1: 1920 to 1945.

    PubMed

    Clendon, Jill; McBride-Henry, Karen

    2014-03-01

    The New Zealand child health and development record book (also known as the Well Child/Tamariki Ora Health Book or Plunket book) has recorded the history of infant-rearing practices in New Zealand for almost 100 years. Since its initial publication it has been used by mothers and health professionals to track the health and development of children under the age of five years. The book also provides insight on the development of mothering practices and provides commentary on the medicalisation of mothering and the emergence of mothering as a science from the time of its inception. This article, part one of two, explores the history of the Plunket book during the years of 1920 to 1945. Information for this article stems from both primary and secondary sources, including an extensive collection of Plunket books from across New Zealand. The findings chronicle the development of a medicalised relationship between mothers and health professionals. The exploration reveals that the rise of scientific mothering coincided with the devaluing of women-centred mothering knowledge, and as a result the language that described women's mothering experiences was silenced.

  19. Spaceflight-relevant stem education and outreach: Social goals and priorities

    NASA Astrophysics Data System (ADS)

    Caldwell, Barrett S.

    2015-07-01

    This paper is based on a presentation and conference proceedings paper given at the 65th International Astronautical Congress. The paper addresses concerns in education and public outreach (EPO) in science, technology, engineering and mathematics (STEM). The author serves as a Director of a US statewide NASA-funded Space Grant Consortium, with responsibilities to coordinate funding for undergraduate scholarships, graduate fellowships, and program awards. Space Grant is a national NASA network of STEM EPO programs including over 1000 higher education, outreach center, science museum, local government, and corporate partners. As a Space Grant Director, the author interacts with a variety of levels of STEM literacy and sophistication among members of the public. A number of interactions highlight the need for STEM EPO leaders to speak directly to a variety of social goals and priorities. Spaceflight is largely seen as an appealing and potentially desirable STEM application. However, members of the public are often unclear and ill-informed regarding relative expense, relative benefit, and relative breadth of domains of expertise that are relevant to the spaceflight enterprise. In response (and resulting in further disconnects between STEM specialists and the public), focused STEM professionals frequently over-emphasize their own technical specialty and its priority in general because of its importance to that professional. These potential divides in the attempt to share and connect STEM related goals and priorities are discussed as an elaboration of invitations to discuss spacefaring in "futures forum" contexts. Spaceflight can be seen as addressing a combination of "actualization" and "aspirational" goals at social and societal levels. Maslow's hierarchy of needs distinguishes between "basic needs" and "actualization" as a higher-order need. Another aspect of spaceflight is aspirational-it speaks to hopes and desires for levels of flexibility and capability at the societal level. One analogy is the marketing of premium brand luxury items, at lower cost and larger volumes, to larger segments of the population. STEM EPO activities should not be directed solely at the "rocket science" applications of technology and engineering capabilities. Additional effort is needed to connect spaceflight experiences and examples to broader STEM needs, social priorities, and local contexts.

  20. Science learning and teaching in a Creole-speaking environment

    NASA Astrophysics Data System (ADS)

    Lodge, Wilton

    2017-09-01

    The focus of this response to Charity Hudley and Christine Mallinson's article, `"Its worth our time": A model of culturally and linguistically responsive professional development for K-12 STEM educators', is to underpin a pedagogy that encourages and provides opportunities for the use of non-standard language in the description and practice of science. I discuss this within the context of Jamaica and provide an alternative way of science teaching, one which promotes Jamaican Creole as a mode of instruction for classroom talk and printed material.

  1. Understanding the Factors that Support the Use of Active Learning Teaching in STEM Undergraduate Courses: Case Studies in the Field of Geoscience

    NASA Astrophysics Data System (ADS)

    Iverson, Ellen A. Roscoe

    The purpose of this study was to understand the factors that support the adoption of active learning teaching strategies in undergraduate courses by faculty members, specifically in the STEM disciplines related to geoscience. The focus of the study centered on the context of the department which was identified as a gap in evaluation and educational research studies of STEM faculty development. The study used a mixed-method case study methodology to investigate the influences of departmental context on faculty members' adoption of active-learning teaching practices. The study compared and contrasted the influence of two faculty development strategies initiated in the field of geoscience. Six university geoscience departments were selected that had participated in two national geoscience professional development programs. Data were generated from 19 faculty interviews, 5 key informant interviews, and documents related to departmental and institutional context. The study concluded that two main factors influenced the degree to which faculty who participated in geoscience faculty development reported adoption of active learning pedagogies. These conclusions are a) the opportunity to engage in informal, regular conversations with departmental colleagues about teaching promoted adoption of new teaching approaches and ideas and b) institutional practices regarding the ways in which teaching practices were typically measured, valued, and incentivized tended to inhibit risk taking in teaching. The conclusions have implications related to institutional policy, faculty development, and the role of evaluation.

  2. Challenges Confronting Career-Changing Beginning Teachers: A Qualitative Study of Professional Scientists Becoming Science Teachers

    ERIC Educational Resources Information Center

    Watters, James J.; Diezmann, Carmel M.

    2015-01-01

    Recruitment of highly qualified science and mathematics graduates has become a widespread strategy to enhance the quality of education in the field of STEM. However, attrition rates are very high suggesting preservice education programs are not preparing them well for the career change. We analyse the experiences of professionals who are…

  3. A New Equation: How Encore Careers in Math and Science Education Equal More Success for Students

    ERIC Educational Resources Information Center

    Foster, Elizabeth

    2010-01-01

    Shifts in the work force (both in education and more broadly) provide an opportunity to apply other creative approaches in the quest for more effective STEM (science, technology, engineering, and mathematics) teaching. Increasingly, professionals change careers and explore new and varied professional opportunities, rather than remain in a single…

  4. Why (and how) they decide to leave: A grounded theory analysis of STEM attrition at a large public research university

    NASA Astrophysics Data System (ADS)

    Minutello, Michael F.

    A grounded theory investigation of STEM attrition was conducted that describes and explains why undergraduates at a large Mid-Atlantic research university decided to leave their initial STEM majors to pursue non-STEM courses of study. Participants ultimately decided to leave their initial STEM majors because they were able to locate preferable non-STEM courses of study that did not present the same kinds of obstacles they had encountered in their original STEM majors. Grounded theory data analysis revealed participants initially enrolled in STEM majors with tenuous motivation that did not withstand the various obstacles that were present in introductory STEM coursework. Obstacles that acted as demotivating influences and prompted participants to locate alternative academic pathways include the following: (1.) disengaging curricula; (2.) competitive culture; (3.) disappointing grades; (4.) demanding time commitments; and (5.) unappealing career options. Once discouraged from continuing along their initial STEM pathways, participants then employed various strategies to discover suitable non-STEM majors that would allow them to realize their intrinsic interests and extrinsic goals. Participants were largely satisfied with their decisions to leave STEM and have achieved measures of personal satisfaction and professional success.

  5. Longitudinal Study of Career Cluster Persistence from 8th Grade to 12th Grade with a Focus on the Science, Technology, Engineering, & Math Career Cluster

    NASA Astrophysics Data System (ADS)

    Wagner, Judson

    Today's technology driven global economy has put pressure on the American education system to produce more students who are prepared for careers in Science, Technology, Engineering, and Math (STEM). Adding to this pressure is the demand for a more diverse workforce that can stimulate the development of new ideas and innovation. This in turn requires more female and under represented minority groups to pursue future careers in STEM. Though STEM careers include many of the highest paid professionals, school systems are dealing with exceptionally high numbers of students, especially female and under represented minorities, who begin but do not persist to STEM degree completion. Using the Expectancy-Value Theory (EVT) framework that attributes student motivation to a combination of intrinsic, utility, and attainment values, this study analyzed readily available survey data to gauge students' career related values. These values were indirectly investigated through a longitudinal approach, spanning five years, on the predictive nature of 8 th grade survey-derived recommendations for students to pursue a future in a particular career cluster. Using logistic regression analysis, it was determined that this 8 th grade data, particularly in STEM, provides significantly high probabilities of a 12th grader's average grade, SAT-Math score, the math and science elective courses they take, and most importantly, interest in the same career cluster.

  6. The Meyerhoff Way: How the Meyerhoff Scholarship Program Helps Black Students Succeed in the Sciences

    NASA Astrophysics Data System (ADS)

    Stolle-McAllister, Kathy; Sto. Domingo, Mariano R.; Carrillo, Amy

    2011-02-01

    The Meyerhoff Scholarship Program (MSP) is widely recognized for its comprehensive approach of integrating students into the science community. The supports provided by the program aim to develop students, primarily Blacks, into scientists by offering them academic, social, and professional opportunities to achieve their academic and career goals. The current study allowed for a rich understanding of the perceptions of current Meyerhoff students and Meyerhoff alumni about how the program works. Three groups of MSP students were included in the study: (1) new Meyerhoff students participating in Summer Bridge ( n = 45), (2) currently enrolled Meyerhoff students ( n = 92), and (3) graduates of the MSP who were currently enrolled in STEM graduate studies or had completed an advanced STEM degree ( n = 19). Students described the importance of several key aspects of the MSP: financial support, the Summer Bridge Program, formation of Meyerhoff identity, belonging to the Meyerhoff family, and developing networks—all of which serve to integrate students both academically and socially.

  7. The Meyerhoff Way: How the Meyerhoff Scholarship Program Helps Black Students Succeed in the Sciences

    PubMed Central

    Stolle-McAllister, Kathy; Sto. Domingo, Mariano R.; Carrillo, Amy

    2011-01-01

    The Meyerhoff Scholarship Program (MSP) is widely recognized for its comprehensive approach of integrating students into the science community. The supports provided by the program aim to develop students, primarily Blacks, into scientists by offering them academic, social, and professional opportunities to achieve their academic and career goals. The current study allowed for a rich understanding of the perceptions of current Meyerhoff students and Meyerhoff alumni about how the program works. Three groups of MSP students were included in the study: 1) new Meyerhoff students participating in Summer Bridge (n=45), 2) currently enrolled Meyerhoff students (n=92), and 3) graduates of the MSP who were currently enrolled in STEM graduate studies or had completed an advanced STEM degree (n=19). Students described the importance of several key aspects of the Meyerhoff Scholars Program: financial support, the Summer Bridge Program, formation of Meyerhoff identity, belonging to the Meyerhoff family, and developing networks - all of which serve to integrate students both academically and socially. PMID:21850153

  8. Case studies of tenure-track science professors: Exploring the relationship between teaching and research

    NASA Astrophysics Data System (ADS)

    Robert, Jenay

    Current STEM workforce issues and retention problems faced by postsecondary STEM education have renewed educational research efforts in this arena. A review of literature on STEM professors indicates that although this population reports difficulties integrating teaching and research responsibilities, there have not yet been any qualitative studies conducted to deeply investigate the complexities of the relationship between teaching and research. This study utilized a set of four phenomenological case studies to address the following research questions: (1) What is the relationship between the teaching and research roles for individuals in a sample of tenure-track science professors at an RU/VH institution? (2) What types of activities and experiences (particularly professional development) do participants engage in to support their roles as teachers? What types of activities and experiences impede their roles as teachers? In what ways do these activities support or impede participants' roles as teachers? (3) What connections can be made between the participants' personal, cultural, and professional histories and the way they are currently experiencing the relationship between teaching and research? The results of this study suggest that science professors might make decisions about the way they allocate limited time in an unlimited work environment based on their intrinsic, personal career goals and desire to help students. Furthermore, all of the participants in the study indicated that other than research training, they received little to no preparation for their jobs. These findings provide the field with points of interest for further study as well as the design of educational support and interventions.

  9. Women in STEM Research: Federal Agencies Differ in the Data They Collect on Grant Applicants. GAO-15-291R STEM Research

    ERIC Educational Resources Information Center

    US Government Accountability Office, 2015

    2015-01-01

    Since the enactment of Title IX in 1972--which prohibits discrimination on the basis of sex in education programs and activities receiving any federal financial assistance--women have made significant gains in many academic fields. However, recent research shows that women continue to lag behind men in academic and professional advancement in…

  10. From "Mentor" to "Role Model": Scaling the Involvement of STEM Professionals through Role Model Videos

    ERIC Educational Resources Information Center

    Ware, Jennifer; Stein, Sarah

    2013-01-01

    Mentors and role models can play a significant role in high school students' motivation to pursue specific careers later in life. Although the use of role models in the classroom is an important research topic, little research has been conducted on scaling up STEM role models reach through the use of video vignettes. This essay outlines a series…

  11. Ensuring Success for Veterans with Disabilities in STEM Degree Programs: Recommendations from a Workshop and Case Study of an Evidence-Based Transition Program

    ERIC Educational Resources Information Center

    Goldberg, Mary; Cooper, Rory; Milleville, Maria; Barry, Anne; Schein, Michelle L.

    2015-01-01

    This article describes a workshop with academic professionals and military leaders and includes the case study of a veterans' transition program that served as a resource for identifying best practices for programs for Veterans with Disabilities in STEM Degree Programs. The information collected during this workshop, along with the theoretical…

  12. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Kim Stratton, at left, with Caterpillar, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  13. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Gioia Massa, at left, a NASA payload scientist, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  14. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Kennedy Space Center Deputy Director Janet Petro speaks to students during a Women in STEM mentoring breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  15. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  16. Lessons learned using a values-engaged approach to attend to culture, diversity, and equity in a STEM program evaluation.

    PubMed

    Boyce, Ayesha S

    2017-10-01

    Evaluation must attend meaningfully and respectfully to issues of culture, race, diversity, power, and equity. This attention is especially critical within the evaluation of science, technology, engineering, and mathematics (STEM) educational programming, which has an explicit agenda of broadening participation. The purpose of this article is to report lessons learned from the implementation of a values-engaged, educative (Greene et al., 2006) evaluation within a multi-year STEM education program setting. This meta-evaluation employed a case study design using data from evaluator weekly systematic reflections, review of evaluation and program artifacts, stakeholder interviews, and peer review and assessment. The main findings from this study are (a) explicit attention to culture, diversity, and equity was initially challenged by organizational culture and under-developed evaluator-stakeholder professional relationship and (b) evidence of successful engagement of culture, diversity, and equity emerged in formal evaluation criteria and documents, and informal dialogue and discussion with stakeholders. The paper concludes with lessons learned and implications for practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fostering Creativity through Collaboration: Polar Learning and Responding Climate Change Education Partnership

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Brunacini, J.; Hernandez, T.; Bachrach, E.

    2014-12-01

    Blueprint Earth was created as a nonprofit scientific research organization dedicated to conducting micro-scale interdisciplinary environmental investigations to generate macroscopic, system-level environmental understanding. The field data collection and analysis process was conceived to be dependent on student participation and collaboration with more senior scientists, effecting knowledge transfer and emphasizing the critical nature of interdisciplinary research in investigating complex, macroscopic questions. Recruiting for student volunteer researchers is conducted in academic institutions, and to date has focused primarily on the Los Angeles area. Self-selecting student participation has run contrary to traditional STEM demographics. The vast majority of research participants in Blueprint Earth's work are female and/or from a minority (non-white) background, and most are first-generation college students or from low-income, Pell grant-eligible households. Traditional field research programs for students often come at a high cost, creating barriers to access for field-based STEM opportunities. The nonprofit model employed by Blueprint Earth provides zero-cost access to opportunity for students that the STEM world is currently targeting for future professional development.

  18. The Legacy of NASA Astrophysics E/PO: Conducting Professional Development, Developing Key Themes & Resources, and Broadening E/PO Audiences

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, Denise A.; Meinke, Bonnie K.; Bartolone, Lindsay; Manning, Jim; Schultz, Gregory R.; NASA Astrophysics E/PO Community

    2016-01-01

    For the past six years, NASA's Science Mission Directorate (SMD) has coordinated the work of its mission- and program-embedded education and public outreach (E/PO) efforts through four forums representing its four science divisions. The Astrophysics Forum, as the others, has built on SMD's long-standing principle of partnering scientists and educators and embedding E/PO in its missions to encourage and coordinate collaborative efforts to make the most efficient and effective use of NASA resources, personnel, data and discoveries in leveraged ways, in support of the nation's science education. Three priorities established early in the Forum's period of activity were to collaboratively enhance professional development for formal and informal educators, develop key themes & resources centered on astrophysics topics, and broaden the reach of astrophysics E/PO to traditionally underserved audiences in STEM subjects. This presentation will highlight some of the achievements of the Astrophysics E/PO community and Forum in these priority areas. This work constitutes an ongoing legacy--a firm foundation on which the new structure of NASA SMD education efforts will go forward.

  19. Professional Engagement in Child Protection: Promoting Reflective Practice and Deeper Connection with the Lived Reality for Children

    ERIC Educational Resources Information Center

    Jones, Jocelyn

    2015-01-01

    This paper uses first person inquiry and presentational form to argue the case for a sensory approach to understanding professional connection and disconnection with children who may be being abused. The approach is underpinned by an epistemology or theory of knowledge which stems from a participatory world-view where appearances are not permanent…

  20. Women in STEM Majors and Professional Outcome Expectations: The Role of Living-Learning Programs and Other College Environments

    ERIC Educational Resources Information Center

    Szelényi, Katalin; Denson, Nida; Inkelas, Karen Kurotsuchi

    2013-01-01

    Using data from the 2004-2007 National Study of Living Learning Programs, the only national dataset offering longitudinal information on outcomes associated with living-learning (L/L) program participation, this study investigated the role of L/L programs and other college environments in the professional outcome expectations of women in science,…

  1. Looking through the Glass Ceiling: A Qualitative Study of STEM Women’s Career Narratives

    PubMed Central

    Amon, Mary J.

    2017-01-01

    Although efforts have been directed toward the advancement of women in science, technology, engineering, and mathematics (STEM) positions, little research has directly examined women’s perspectives and bottom-up strategies for advancing in male-stereotyped disciplines. The present study utilized Photovoice, a Participatory Action Research method, to identify themes that underlie women’s experiences in traditionally male-dominated fields. Photovoice enables participants to convey unique aspects of their experiences via photographs and their in-depth knowledge of a community through personal narrative. Forty-six STEM women graduate students and postdoctoral fellows completed a Photovoice activity in small groups. They presented photographs that described their experiences pursuing leadership positions in STEM fields. Three types of narratives were discovered and classified: career strategies, barriers to achievement, and buffering strategies or methods for managing barriers. Participants described three common types of career strategies and motivational factors, including professional development, collaboration, and social impact. Moreover, the lack of rewards for these workplace activities was seen as limiting professional effectiveness. In terms of barriers to achievement, women indicated they were not recognized as authority figures and often worked to build legitimacy by fostering positive relationships. Women were vigilant to other people’s perspectives, which was costly in terms of time and energy. To manage role expectations, including those related to gender, participants engaged in numerous role transitions throughout their day to accommodate workplace demands. To buffer barriers to achievement, participants found resiliency in feelings of accomplishment and recognition. Social support, particularly from mentors, helped participants cope with negative experiences and to envision their future within the field. Work-life balance also helped participants find meaning in their work and have a sense of control over their lives. Overall, common workplace challenges included a lack of social capital and limited degrees of freedom. Implications for organizational policy and future research are discussed. PMID:28265251

  2. Early Opportunities Research Partnership Between Howard University, University of Maryland Baltimore County and NASA Goddard for Engaging Underrepresented STEM Students in Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Misra, P.; Venable, D. D.; Hoban, S.; Demoz, B.; Bleacher, L.; Meeson, B. W.; Farrell, W. M.

    2017-12-01

    Howard University, University of Maryland Baltimore County and NASA Goddard Space Flight Center (GSFC) are collaborating to engage underrepresented STEM students and expose them to an early career pathway in NASA-related Earth & Space Science research. The major goal is to instill interest in Earth and Space Science to STEM majors early in their academic careers, so that they become engaged in ongoing NASA-related research, motivated to pursue STEM careers, and perhaps become part of the future NASA workforce. The collaboration builds on a program established by NASA's Dynamic Response of the Environments of Asteroids, the Moon and the moons of Mars (DREAM2) team to engage underrepresented students from Howard in summer internships. Howard leveraged this program to expand via NASA's Minority University Research and Education Project (MUREP) funding. The project pairs Howard students with GSFC mentors and engages them in cutting-edge Earth and Space Science research throughout their undergraduate tenure. The project takes a multi-faceted approach, with each year of the program specifically tailored to each student's strengths and addressing their weaknesses, so that they experience a wide array of enriching research and professional development activities that help them grow both academically and professionally. During the academic year, the students are at Howard taking a full load of courses towards satisfying their degree requirements and engaging in research with their GSFC mentors via regular telecons, e-mail exchanges, video chats & on an average one visit per semester to GSFC for an in-person meeting with their research mentor. The students extend their research with full-time summer internships at GSFC, culminating in a Capstone Project and Senior Thesis. As a result, these Early Opportunities Program students, who have undergone rigorous training in the Earth and Space Sciences, are expected to be well-prepared for graduate school and the NASA workforce.

  3. Looking through the Glass Ceiling: A Qualitative Study of STEM Women's Career Narratives.

    PubMed

    Amon, Mary J

    2017-01-01

    Although efforts have been directed toward the advancement of women in science, technology, engineering, and mathematics (STEM) positions, little research has directly examined women's perspectives and bottom-up strategies for advancing in male-stereotyped disciplines. The present study utilized Photovoice, a Participatory Action Research method, to identify themes that underlie women's experiences in traditionally male-dominated fields. Photovoice enables participants to convey unique aspects of their experiences via photographs and their in-depth knowledge of a community through personal narrative. Forty-six STEM women graduate students and postdoctoral fellows completed a Photovoice activity in small groups. They presented photographs that described their experiences pursuing leadership positions in STEM fields. Three types of narratives were discovered and classified: career strategies, barriers to achievement, and buffering strategies or methods for managing barriers. Participants described three common types of career strategies and motivational factors, including professional development, collaboration, and social impact. Moreover, the lack of rewards for these workplace activities was seen as limiting professional effectiveness. In terms of barriers to achievement, women indicated they were not recognized as authority figures and often worked to build legitimacy by fostering positive relationships. Women were vigilant to other people's perspectives, which was costly in terms of time and energy. To manage role expectations, including those related to gender, participants engaged in numerous role transitions throughout their day to accommodate workplace demands. To buffer barriers to achievement, participants found resiliency in feelings of accomplishment and recognition. Social support, particularly from mentors, helped participants cope with negative experiences and to envision their future within the field. Work-life balance also helped participants find meaning in their work and have a sense of control over their lives. Overall, common workplace challenges included a lack of social capital and limited degrees of freedom. Implications for organizational policy and future research are discussed.

  4. Long-term Academic and Career Impacts of Undergraduate Research: Diverse Pathways to Geoscience Careers Following a Summer Atmospheric Science Research Internship

    NASA Astrophysics Data System (ADS)

    Trott, C. D.; Sample McMeeking, L. B.; Boyd, K.; Bowker, C.

    2015-12-01

    Research experiences for undergraduates (REU) have been shown to support the success of STEM undergraduates through improving their research skills, ability to synthesize knowledge, and personal and professional development, all while socializing them into the nature of science. REUs are further intended to support STEM career choice and professional advancement, and have thus played a key role in diversity efforts. Recruiting and retaining diverse students in STEM through REUs is of particular importance in the geosciences, where women and ethnic minorities continue to be significantly underrepresented. However, few studies have examined the long-term impacts of these REUs on students' academic and career trajectories. Further, those that do exist primarily study the experiences of current graduate students, scientists, and faculty members—that is, those who have already persisted—which overlooks the multiple academic and career paths REU students might follow and may preclude a thorough examination of REUs' diversity impacts. In this long-term retrospective study of the academic and career impacts of a REU program at a large Western U.S. research university, we interviewed 17 former REU participants on their expectations prior to their REU participation, their experiences during the REU, the immediate outcomes from the experience, and its long-term impacts on their academic and career choices. To address gaps in the existing literature on REU impacts, we purposively sampled students who have taken a variety of educational and career paths, including those not engaged in science research. Despite varied trajectories, the majority of the students we interviewed have persisted in the geosciences and attest to the REU's profound impact on their career-related opportunities and choices. This presentation describes students' diverse STEM pathways and discusses how students' REU expectations, experiences, and immediate outcomes continued to make an impact long-term.

  5. Difficult reputations and the social reality of occupational medicine.

    PubMed

    Draper, Elaine

    2008-01-01

    This response to Tee Guidotti's (2008) critique of Elaine Draper's 'The Company Doctor: Risk, Responsibility, and Corporate Professionalism' (2003) argues that a forthright examination of the conflicts of those working in the field of occupational medicine is essential to maintaining the health of the profession and to promoting constructive policies. Research for 'The Company Doctor' reveals how doctors walk a tightrope of professional demands on them. The author describes how corporate employment affects medicine and science and how professionals working in corporations are subject to the decisions of company managers and to economic and legal imperatives stemming from their status as corporate employees. Analyzing company doctors' role in confronting toxics and responding to liability fears in corporations, the author argues that problems of lost credibility, stigmatization, and tarnished reputation that company doctors describe largely stem from the organizational constraints, economic interests, and other aspects of the social context of their work. These social forces exert powerful pressure on the ethical framework and daily work lives of these professionals as well as on the reputation of their field. The author discusses ways in which the conflicting demands from being both a corporate employee and a physician are a social and structural problem beyond individual ethics.

  6. Bioinformatics education in high school: implications for promoting science, technology, engineering, and mathematics careers.

    PubMed

    Kovarik, Dina N; Patterson, Davis G; Cohen, Carolyn; Sanders, Elizabeth A; Peterson, Karen A; Porter, Sandra G; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre-post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers.

  7. Bioinformatics Education in High School: Implications for Promoting Science, Technology, Engineering, and Mathematics Careers

    PubMed Central

    Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre–post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers. PMID:24006393

  8. The Navigator: Role of the Cultural Mentor in Ensuring the Evolution of Diverse STEM Scientists and Researchers in the 21st Century and Beyond.

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2012-12-01

    Have you ever been lost? Knowing where you want to go yet unsure how to get there? In today's contemporary society you deploy the use of a navigator or navigation system. This is also one role of the cultural mentor in ensuring diverse students complete with excellence and success their route to research and education. The responsibilities of the cultural mentor are broad and the opportunity to expand one's own personal and professional success in science and society is immense. There remains a critical need and challenge to increase the representation of underrepresented people in the sciences. To address this challenge a navigational mentoring approach was developed centered on the incorporation of traditional knowledge into modern research and education. The approach incorporates defining cultural/personal choices for a STEM vocation, developing science research with a "purpose", and refining leadership. The model incorporates a mentor's personal oral histories and experiences in education, research and life. The goal is to ensure the next generation of scientists and researchers are more diverse, highly educated, experienced and leadership orientated by the time they complete STEM programs - then by the time they are our age, have our level of education and experience.

  9. American Indian and Indigenous Geoscience Program: Ensuring the Evolution of Diverse STEM Scientists and Researchers in the 21st Century and Beyond

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2013-05-01

    Have you ever been lost? Knowing where you want to go yet unsure how to get there? In today's contemporary society you deploy the use of a navigator or navigation system. This is also one component of a cultural geoscience program in ensuring diverse students complete with excellence and success their route to research and education. The critical components of a cultural geoscience program and the role of cultural mentors are broad and the opportunity to expand one's own personal and professional success in science and society is immense. There remains a critical need and challenge to increase the representation of underrepresented people in the sciences. To address this challenge a navigational geoscience program approach was developed centered on the incorporation of traditional knowledge into modern research and education. The approach incorporates defining cultural/personal choices for a STEM vocation, developing science research with a "purpose", and refining leadership. The program model incorporates a mentor's personal oral histories and experiences in education, research and life. The goal is to ensure the next generation of scientists and researchers are more diverse, highly educated, experienced and leadership orientated by the time they complete STEM programs - then by the time they are our age, have our level of education and experience.

  10. At the Elbows of Scientists: Shaping Science Teachers' Conceptions and Enactment of Inquiry-Based Instruction

    NASA Astrophysics Data System (ADS)

    McLaughlin, Cheryl A.; MacFadden, Bruce J.

    2014-12-01

    This study stemmed from concerns among researchers that reform efforts grounded in promoting inquiry as the basis for teaching science have not achieved the desired changes in American science classrooms. Many science teachers assume that they are employing inquiry-based strategies when they use cookbook investigations with highly structured step-by-step instructions. Additionally, most science teachers equate hands-on activities with classroom inquiry and, as such, repeatedly use prepackaged, disconnected activities to break the monotony of direct instruction. Despite participation in numerous professional development activities, many science teachers continue to hold misconceptions about inquiry that influence the way they design and enact instruction. To date, there is very limited research exploring the role of inquiry-based professional development in facilitating desired changes in science teachers' conceptions of inquiry. This qualitative study of five high school science teachers explores the ways in which authentic inquiry experiences with a team of scientists in Panama shaped their conceptions and reported enactments of inquiry-based instruction. Our findings suggest that professional development experiences engaging science teachers in authentic research with scientists have the potential to change teachers' naïve conceptions of inquiry, provided that necessary supports are provided for reflection and lesson design.

  11. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III

    2014-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.

  12. Effective Recruiting and Intrusive Retention Strategies for Diversifying the Geosciences through a Research Experiences for Undergraduate Program

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Yuen-Lau, L.; Ikramova, M.

    2016-12-01

    Worse than in most Science, Technology, Engineering, and Mathematics (STEM) fields, underrepresented minority (URM) groups in the geosciences are reported to be farthest beneath the national benchmarks. Even more alarming, the geosciences have the lowest diversity of all the STEM disciplines at all three levels of higher education. In order to increase the number of underrepresented groups in the geosciences, a National Science Foundation funded Research Experiences for Undergraduates (REU) program at the New York City College of Technology has implemented effective recruitment strategies to attract and retain diverse student cohorts. Recruitment efforts include: 1) establishing partnership with the local community colleges; 2) forging collaborations with scientists of color; 3) reaching out to the geoscience departments; and 4) forming relationships with STEM organizations. Unlike the other REU programs which primarily provide a summer-only research experience, this REU program engages students in a year-long research experience. Students begin their research in the summer for nine weeks, and they continue their research one day a week in the fall and spring semesters. During the academic year, they present their projects at conferences. They also serve as STEM ambassadors to community and high school outreach events. This one-year triad connection of 1) professional organizations/conferences, 2) continual research experience, and 3) service constituent has resulted in higher retention and graduation rates of URMs in the STEM disciplines. Both formative and summative program assessment have uncovered and shown that strong recruitment efforts accompanied by intrusive retention strategies are essential to: a) sustain and support STEM URMs in developing confidence as scientists; b) create formal and informal STEM communities; and c) provide a clear pathway to advanced degrees and to the geoscience workforce. This project is supported by NSF REU Grant #1560050.

  13. Building the Next Generation of Scientific Explorers through Active Engagement with STEM Experts and International Space Station Resources

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Vanderbloemen, L.; Higgins, M.; Stefanov, W. L.; Rampe, E.

    2015-01-01

    Connecting students and teachers in classrooms with science, technology, engineering, and mathematics (STEM) experts provides an invaluable opportunity for all. These experts can share the benefits and utilization of resources from the International Space Station (ISS) while sharing and "translating" exciting science being conducted by professional scientists. Active engagement with these STEM experts involves students in the journey of science and exploration in an enthralling and understandable manner. This active engagement, connecting classrooms with scientific experts, helps inspire and build the next generation of scientific explorers in academia, private industry, and government.

  14. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses Informal Educators' Preferences for PD and Materials

    NASA Astrophysics Data System (ADS)

    Bartolone, Lindsay; Nelson, Andi; Smith, Denise A.; NASA SMD Astrophysics E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects. These teams work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to support educators in Science, Technology, Engineering, and Math (STEM) and to enable youth to engage in doing STEM inside and outside of school. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO, which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise, and makes SMD E/PO resources and expertise accessible to the science and education communities. Informal educators participated in a recent nationally-distributed survey from the NASA SMD SEPOF Informal Education Working Group. The results show the preferences of staff from museums, parks, public libraries, community/afterschool centers, and others with regard to professional development and material resources. The results of the survey will be presented during this session.In addition, we present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in K-12 Formal Education, Informal Science Education, and Outreach. These efforts focus on enhancing instruction, as well as youth and public engagement, in STEM via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences. The Forums' efforts for the Formal, Informal Science Education and Outreach communities include a literature review, appraisal of informal educators' needs, coordination of audience-based NASA resources and opportunities, professional development, plus support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K-12 Formal Education community and to reach the informal science education and outreach communities based upon mutual needs and interests.

  15. Retinoblastoma—Health Professional Version

    Cancer.gov

    Retinoblastoma is a pediatric cancer. For patients with extraocular retinoblastoma, intensive chemotherapy is required, including high-dose chemotherapy and autologous hematopoietic stem cell rescue. Find evidence-based information on retinoblastoma treatment.

  16. STEm Minority Graduate Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas, Kaen E

    ABSTRACT The state of science, technology, engineering and math (STEM) education in the United States has seen some unfavorable assessments over the past decade. In early February, 2010 the House of Representatives heard testimony on undergraduate and graduate education. The message from the panel, which included experts from academia, STEM-based industries, and the National Science Foundation (NSF) was dire and required an urgent response. The experts along with the committee's chairperson, U. S. Representative Daniel Lipinski (D-IL) cited that the complexity of Science, Technology, Engineering, and Mathematics applications and coursework and the methodology utilized to teach these subjects are forcingmore » students out of these disciplines. As the National Academies described in its 2007 report Rising Above the Gathering Storm, successful STEM education is not just an academic pursuit it's a necessity for competing in the knowledge-based economy that the United States had a key role in creating. The potential for action is being made available again as the America COMPETES Act of 2007 is up for reauthorization. Its initial focus was on STEM education at the K-12 levels, but efforts at the undergraduate and graduate levels are needed to retain students to fill the jobs left vacant as baby boomers retire. The Educational Advancement Alliance, Inc. (EAA) has for two decades created programs that have not only addressed the issues of ensuring that students are aptly prepared for college but have focused its efforts over the past decade on increasing the number of students who pursue degrees in STEM disciplines. For the EAA, the introduction of the wonders of science begins at the elementary and middle school level via the Learning Lab, a state-of-the-art mobile science laboratory that visits students in grades 4-6 at the various schools throughout Philadelphia and The Math/Tech Academy which meets on Saturdays for students in grades 5-7. For the past two years the EAA has assisted college graduates in their quest to attain advanced degrees in STEM by providing fellowships. The EAA continued this effort by recruiting and providing fellowships to students who aspired to continue their education at the graduate level. The fellowships provided funding for tuition, fees, books, technology, and stipends to assist with room, board, and living expenses during the academic year and salary, transportation, and living expenses to those students who secured internships with the Department of Energy. Additionally the EAA designed and implemented needed support systems to ensure successful completion of the Masters degree programs, including but not limited to membership in professional associations, attendance at industry and academic conferences, and professional development workshops, and tutorial assistance if needed. This program assisted over 80 students directly and society-at-large by helping to educate and develop future physicists, engineers, biostatisticians, and researchers who will have the necessary skillsets to fill the increasing numbers of positions that require such expertise.« less

  17. Strategies for Success of Women Faculty in Science: The ADVANCE Program at the University of Rhode Island

    NASA Astrophysics Data System (ADS)

    Wishner, K.; Silver, B.; Boudreaux-Bartels, F.; Harlow, L.; Knickle, H.; Mederer, H.; Peckham, J.; Roheim, C.; Trubatch, J.; Webster, K.

    2004-12-01

    The NSF-funded ADVANCE program seeks to increase the recruitment and retention of women faculty in science, technology, engineering, and mathematics (STEM) disciplines as part of a national goal of creating a broad-based scientific workforce able to effectively address societal demands. The University of Rhode Island, a recipient of an Institutional Transformation ADVANCE grant in 2003, has begun a campus-wide initiative. The 5 goals are (1) to increase the numbers of women STEM faculty, (2) to provide faculty development opportunities, (3) to improve networks of professional and social support, (4) to assess the academic work environment for all faculty, and (5) to implement long-term changes throughout the university that promote a supportive work environment for women STEM faculty. Accomplishments during the first year include (1) hiring several ADVANCE Assistant Professors, (2) developing workshops on critical skills for junior faculty (grant writing, negotiations, mentoring), (3) initiating a series of lunch meetings where pertinent topical and work-family issues are discussed informally, (4) awarding small Incentive grants for research and other projects that enhance the careers of women STEM faculty, (5) developing and modifying university policies on family leave and dual career couple recruitment, (6) developing and implementing quantitative and qualitative assessment tools for baseline and ongoing campus-wide work climate surveys within the context of a theoretical model for change, and (7) offering directed self-study workshops for entire departments using a trained facilitator. The ADVANCE Assistant Professor position, unique to URI's program, allows a new hire to spend the first 2-3 years developing a research program without teaching obligations. ADVANCE pays their salary during this time, at which point they transition to a regular faculty position. During this first of five years of NSF funding, the ADVANCE program has been met with campus wide enthusiasm and interest from both faculty and administration. Further, the program has the potential for invigorating not only STEM departments, but also the wider university, in offering innovative and engaging workshops and policies, as well as providing an opportunity for ongoing self-study through bi-annual surveys across the university.

  18. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Jonette Stecklein (in the blue shirt), a flight systems engineer from Johnson Space Center in Houston, talks to students during a Women in STEM mentoring breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  19. STEM Education as a Gateway to Future Astronomy: the Case of Ethiopian Universities

    NASA Astrophysics Data System (ADS)

    Adhana Teklr, Kelali

    2015-08-01

    Over last two decades education sector in Ethiopia has got due attention. To meet the education deficit of the nation number of universities has been increased from two to thirty eight and twelve more are coming soon. The proliferation has brought a spillover effect that universities have to compete for center excellence in research and education. Convincingly, government’s support is geared towards knowledge-based and innovation-driven system of education to back up the green economic development plan.In an effort to build inclusive economic development emphasis is given to innovative competency building through science and technology fields. The universities in the nation have establish laboratories to educate school boys and girls at early stage of their schooling in STEM (Science, Technology, Engineering and Mathematics) subjects as means to paving future destiny. Though most of the astronomy and space science labs are virtual ones; more and more student have been inspired and want astronomy and space science as their future career fields. Assessment study carried out in universities running STEM education showed that there is a mismatch between the capacity of the labs and number of students wanted to study astronomy and space sciences. The universities have endorsed that STEM education is the gateway to future astronomy and strongly advised concerned bodies and partnering institutions to collaboratively work to intensify the teaching-learning of STEM subjects.The assessment study compiled astronomic and space science exercises carried out by instructors and students and the document is ready to be disseminated to universities and middle and secondary schools to promote the science nationwide. The results have motivated university instructors, science and technology professionals, researchers and policy makers to be more involved in shaping future destiny of the young generation and have their shown determination to support the STEM education so that it will serve as a gateway for future astronomy education and research in the nation.

  20. Cardiovascular medicine at face value: a qualitative pilot study on clinical axiology.

    PubMed

    de Hoyos, Adalberto; Nava-Diosdado, Rodrigo; Mendez, Jorge; Ricco, Sergio; Serrano, Ana; Flores Cisneros, Carmen; Macías-Ojeda, Carlos; Cisneros, Héctor; Bialostozky, David; Altamirano-Bustamante, Nelly; Altamirano-Bustamante, Myriam M

    2013-03-27

    Cardiology is characterized by its state-of-the-art biomedical technology and the predominance of Evidence-Based Medicine. This predominance makes it difficult for healthcare professionals to deal with the ethical dilemmas that emerge in this subspecialty. This paper is a first endeavor to empirically investigate the axiological foundations of the healthcare professionals in a cardiology hospital. Our pilot study selected, as the target population, cardiology personnel not only because of their difficult ethical deliberations but also because of the stringent conditions in which they have to make them. Therefore, there is an urgent need to reconsider clinical ethics and Value-Based Medicine. This study proposes a qualitative analysis of the values and the virtues of healthcare professionals in a cardiology hospital in order to establish how the former impact upon the medical and ethical decisions made by the latter. We point out the need for strengthening the roles of healthcare personnel as educators and guidance counselors in order to meet the ends of medicine, as well as the need for an ethical discernment that is compatible with our results, namely, that the ethical values developed by healthcare professionals stem from their life history as well as their professional education. We establish the kind of actions, communication skills and empathy that are required to build a stronger patient-healthcare professional relationship, which at the same time improves prognosis, treatment efficiency and therapeutic adhesion.

  1. The Airborne Astronomy Ambassadors (AAA) Program and NASA Astrophysics Connections

    NASA Astrophysics Data System (ADS)

    Backman, Dana Edward; Clark, Coral; Harman, Pamela

    2018-01-01

    The NASA Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content delivery, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong’s B703 science research aircraft facility in Palmdale, California, including interactions with NASA astrophysics & planetary science Subject Matter Experts (SMEs) during science flights on SOFIA, and (3) continuing post-flight opportunities for teacher & student connections with SMEs.

  2. Increasing Access for Economically Disadvantaged Students: The NSF/CSEM & S-STEM Programs at Louisiana State University

    NASA Astrophysics Data System (ADS)

    Wilson, Zakiya S.; Iyengar, Sitharama S.; Pang, Su-Seng; Warner, Isiah M.; Luces, Candace A.

    2012-10-01

    Increasing college degree attainment for students from disadvantaged backgrounds is a prominent component of numerous state and federal legislation focused on higher education. In 1999, the National Science Foundation (NSF) instituted the "Computer Science, Engineering, and Mathematics Scholarships" (CSEMS) program; this initiative was designed to provide greater access and support to academically talented students from economically disadvantaged backgrounds. Originally intended to provide financial support to lower income students, this NSF program also advocated that additional professional development and advising would be strategies to increase undergraduate persistence to graduation. This innovative program for economically disadvantaged students was extended in 2004 to include students from other disciplines including the physical and life sciences as well as the technology fields, and the new name of the program was Scholarships for Science, Technology, Engineering and Mathematics (S-STEM). The implementation of these two programs in Louisiana State University (LSU) has shown significant and measurable success since 2000, making LSU a Model University in providing support to economically disadvantaged students within the STEM disciplines. The achievement of these programs is evidenced by the graduation rates of its participants. This report provides details on the educational model employed through the CSEMS/S-STEM projects at LSU and provides a path to success for increasing student retention rates in STEM disciplines. While the LSU's experience is presented as a case study, the potential relevance of this innovative mentoring program in conjunction with the financial support system is discussed in detail.

  3. A campus-wide study of STEM courses: new perspectives on teaching practices and perceptions.

    PubMed

    Smith, Michelle K; Vinson, Erin L; Smith, Jeremy A; Lewin, Justin D; Stetzer, MacKenzie R

    2014-01-01

    At the University of Maine, middle and high school science, technology, engineering, and mathematics (STEM) teachers observed 51 STEM courses across 13 different departments and collected information on the active-engagement nature of instruction. The results of these observations show that faculty members teaching STEM courses cannot simply be classified into two groups, traditional lecturers or instructors who teach in a highly interactive manner, but instead exhibit a continuum of instructional behaviors between these two classifications. In addition, the observation data reveal that student behavior differs greatly in classes with varied levels of lecture. Although faculty members who teach large-enrollment courses are more likely to lecture, we also identified instructors of several large courses using interactive teaching methods. Observed faculty members were also asked to complete a survey about how often they use specific teaching practices, and we find that faculty members are generally self-aware of their own practices. Taken together, these findings provide comprehensive information about the range of STEM teaching practices at a campus-wide level and how such information can be used to design targeted professional development for faculty. © 2014 M. K. Smith et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development.

    PubMed

    Chang, Amy L; Pribbenow, Christine M

    2016-05-01

    The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists' leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants ("scholars") from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP's long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program's 2010-2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and helps catalyze biology education reform efforts.

  5. The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development

    PubMed Central

    Chang, Amy L.; Pribbenow, Christine M.

    2016-01-01

    The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists’ leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants (“scholars”) from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP’s long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program’s 2010–2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and helps catalyze biology education reform efforts. PMID:27158300

  6. Female STEM majors wanted: The impact of certain factors on choice of a college major

    NASA Astrophysics Data System (ADS)

    Conrad, Walter Michael

    Although females have made significant strides in educational achievements and substantial inroads into academic majors, such as business and medicine, they have made considerably less progress in the science, technology, engineering, and math (STEM) fields. This translates into a smaller number of female graduates prepared to work in the science career fields and results in American industry looking to other countries for its educated workforce. A mixed-methods research design was used to explore and understand the lived experiences and perceptions of faculty members and working STEM professionals in Northern and Central Virginia. Results indicated that although females are attaining STEM degrees and entering STEM fields in record numbers, obstacles such as a challenging STEM curriculum, bias, feelings of insecurity, lack of female role models, and inadequate preparation for the STEM workforce could impede the progress females have made. This research makes recommendations to the academic community and industry which may be used as retention and recruitment strategies for females considering a career in STEM. The ultimate goal is to significantly increase the number of highly skilled female graduates entering STEM fields, leading the U.S. to regain its previous position atop the world in technological innovation and leadership.

  7. Astronomy in Denver: Effects of a summer camp on girls’ preconceived notions of careers in STEM

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; Fetrow, Kirsten J.; Broder, Dale E.; Murphy, Shannon M.; Tinghitella, Robin; Hart, Quyen N.

    2018-06-01

    Despite gains in recent years, gender disparities persist in fields related to science, technology, engineering, and mathematics (STEM). Although young women can perform as well as their male peers in STEM courses and tests, they are less likely to pursue higher education and careers in STEM. Our study examined the effectiveness of a STEM-focused summer camp at increasing middle-school girls’ career aspirations in STEM and self-confidence with respect to scientific topics. The 15 participants were Denver-area girls ages 10 to 13 years old from groups underrepresented in STEM fields. During the weeklong DU SciTech camp, these girls built telescopes and computers, collected and classified insects, completed inquiry activities, and interacted with female STEM professionals from a variety of scientific fields and racial backgrounds. We hypothesized that camp attendance would expand girls’ perceptions of who does science, increase their awareness of and interest in STEM careers, and increase their scientific self-efficacy, or belief in their ability to succeed at STEM tasks. We found that DU SciTech improved the girls’ scientific self-efficacy and awareness of STEM careers, but it did not increase their (already high) interest in pursuing their own careers in STEM. We will present our results and discuss their implications for future summer camps and efforts to broaden STEM participation by young women from underrepresented groups.

  8. Elements of Success in Chicago Botanic Garden's Science Career Continuum.

    PubMed

    Johnson, Katherine A

    2016-03-01

    The Science Career Continuum at the Chicago Botanic Garden is a model program for successfully encouraging youth from diverse backgrounds into STEM careers. This program has shown that when students are given an opportunity to participate in real scientific research under the mentorship of a caring professional over multiple years, they are more likely to go to college and pursue STEM careers than their peers. Journal of Microbiology & Biology Education.

  9. Elements of Success in Chicago Botanic Garden’s Science Career Continuum

    PubMed Central

    Johnson, Katherine A.

    2016-01-01

    The Science Career Continuum at the Chicago Botanic Garden is a model program for successfully encouraging youth from diverse backgrounds into STEM careers. This program has shown that when students are given an opportunity to participate in real scientific research under the mentorship of a caring professional over multiple years, they are more likely to go to college and pursue STEM careers than their peers. Journal of Microbiology & Biology Education PMID:27047595

  10. QR-STEM: Energy and Environment as a Context for Improving QR and STEM Understandings of 6-12 Grade Teachers I. The Science

    NASA Astrophysics Data System (ADS)

    Lyford, M. E.; Myers, J. D.; Mayes, R. L.

    2009-12-01

    Numerous educational studies have documented serious shortcomings in student's quantitative reasoning (QR), understanding of science and ability to connect these to their daily lives. These have driven many reform efforts in teacher professional development. Historically, most of these efforts have focused on science or math and rarely on the science-society connection. For the past two years, a Wyoming Department of Education funded Math-Science Partnership (MSP) professional development program has created a collaboration of university and community college faculty and middle and high school teachers to address QR, science and social relevance in the context of energy and the environment. This professional development project is designed to: 1) improve teacher content knowledge (both in the sciences and math); 2) demonstrate the many social contexts in which science and QR are relevant and can be taught; 3) model effective science and QR classroom activities for teachers; 4) provide teachers with the opportunity to develop and test their own classroom materials; 5) foster the development of professional learning communities across the state; and 6) initiate discussions about curriculum across disciplinary boundaries. Over the course of four summer meetings, participants investigate a series of issues centered on energy and the environment, including transportation, electricity, biogeochemical cycles, Peak Oil, carbon sequestration and climate change. Each issue is approached in an interdisciplinary manner, where relevant aspects from the life sciences, earth sciences, chemistry and physics are addressed. An introductory presentation on the general theme kicks off each meeting to introduce the problem. Subsequent sessions are lead by faculty from the various scientific disciplines as well as math. During their sessions, university and community college faculty model active learning exercises for each issue. These activities weave together the relevant disciplinary scientific concepts, societal connections, and the quantitative skills students need to understand the issues from the perspective of an engaged but questioning citizen of a democracy. The project encourages multidisciplinary teams of teachers (science and math) from a school or district to work together to develop curricula that may span across courses and across grade levels within a school. During the meetings, teachers work in teams to develop activities tied to energy and the environment which they present to the entire group for feedback. During the course of the school year, teachers implement their activities and share their experiences with the whole group through online-meetings. To date, the program has worked with three teacher cohorts of 25-30 teachers each. Teachers in the program are drawn from both the math and science areas thereby initiating cross-disciplinary discourses that are rarely accommodated by current school organizational structures.

  11. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    PubMed

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  12. Pathways to URM Retention: IBP's Professional Development and Mentoring Activities

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Williamson Whitney, V.; Ricciardi, L.; Detrick, L.; Siegfried, D.; Fauver, A.; Ithier-Guzman, W.; Thomas, S. H.; Valaitis, S.

    2013-05-01

    As a not for profit organization, the Institute for Broadening Participation (IBP) hosts a variety of initiatives designed to increase the retention of underrepresented minority (URM) students pursuing pathways in STEM. IBP also assists with formative program evaluation design and implementation to help strengthen URM recruitment and retention elements. Successful initiatives include virtual and face-to-face components that bring together URM students with established URM and other scientists in academia, government and industry. These connections provide URMs with mentoring, networking opportunities, and professional skill development contributing to an improved retention rate of URM students. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science and Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Earth System Science (ESS) Professional Development Program. The NASA OSSI recruits and facilitates student engagement in NASA education and employment opportunities. Pathways to Ocean Science connects and supports URM students with Ocean Science REU programs and serves as a resource for REU program directors. Pathways to Engineering has synthesized mentoring resources into an online mentoring manual for URM students that has been extensively vetted by mentoring experts throughout the country. The mentoring manual, which is organized by roles, provides undergraduates, graduates, postdocs, faculty and project directors with valuable resources. MS PHD'S, one of IBP's longest running and most successful initiatives, focuses on increasing the retention rate of URM students receiving advanced degrees in ESS. The program addresses barriers to retention in ESS including isolation, lack of preparation and professional development, and lack of mentoring. Program activities center on peer-to-peer community building, professional development exercises, networking experiences, one-on-one mentoring, and a facilitated virtual community. MS PHD'S students report a reduced sense of isolation, an increased sense of community, and a higher level of confidence about their ability to succeed in their chosen field. 42 MS PHD'S alumni have completed their PhD and are actively engaged in the ESS workforce.

  13. Untested, unproven, and unethical: the promotion and provision of autologous stem cell therapies in Australia.

    PubMed

    McLean, Alison K; Stewart, Cameron; Kerridge, Ian

    2015-02-09

    An increasing number of private clinics in Australia are marketing and providing autologous stem cell therapies to patients. Although advocates point to the importance of medical innovation and the primacy of patient choice, these arguments are unconvincing. First, it is a stark truth that these clinics are flourishing while the efficacy and safety of autologous stem cell therapies, outside of established indications for hematopioetic stem cell transplantation, are yet to be shown. Second, few of these therapies are offered within clinical trials. Third, patients with chronic and debilitating illnesses, who are often the ones who take up these therapies, incur significant financial burdens in the expectation of benefiting from these treatments. Finally, the provision of these stem cell therapies does not follow the established pathways for legitimate medical advancement. We argue that greater regulatory oversight and professional action are necessary to protect vulnerable patients and that at this time the provision of unproven stem cell therapies outside of clinical trials is unethical.

  14. Creating a More Inclusive Talent Pool for the GeoSciences in NOAA Mission Fields:

    NASA Astrophysics Data System (ADS)

    Rousseau, J.; Trotman, A. A.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Educational Partnership Program (EPP) with Minority Serving Institutions (MSI) is recognized as a model federal Science, Technology, Engineering, and Mathematics, (STEM) education investment. The EPP has a premier goal of increasing the numbers of students, especially from underrepresented communities, who are trained and awarded degrees in NOAA mission-relevant STEM fields. This goal is being achieved through awards to support undergraduate and graduate level student scholarships and to enhance NOAA mission-relevant education, research and internships at EPP Cooperative Science Centers located at MSIs. The internships allow undergraduate students to gain technical experience in STEM fields while gaining an understanding of a science mission agency such as NOAA. EPP has built evidence supporting the value of internships with its Undergraduate Scholarship Program (USP). Program metrics are used to refine and improve the internship to ensure student success. Scholarships are competitively awarded and requires applicants to submit a personal statement detailing the NOAA-relevant professional experience the applicant seeks to acquire, and gauges the depth of understanding of the work of NOAA.A focus is the EPP USP Student Internship at NOAA, which has two training phases. The first occurs at NOAA HQ in Maryland and incorporates exposure to NOAA professional culture including mentoring and professional development for scholarship recipients. The second occurs at NOAA facilities in the 50 states and US Territories. The internship projects are conducted under the supervision of a NOAA mentor and allow the scholars to: acquire increased science and technology skills: be attached to a research group and participate in a research activity as part of the team; and, acquire practical experience and knowledge of the day-to-day work of the NOAA facility. EPP has recently initiated the Experiential Research and Training Opportunities (NERTO) for students from the CSCs. The NERTO is a longer term immersion at NOAA facilities, with a NOAA mentor working collaboratively with their academic advisor on a NOAA science priority. Consequently, the NERTO is strengthening the undergraduate to graduate education and workforce pipeline.

  15. Medical societies, patient education initiatives, public debate and marketing of unproven stem cell interventions.

    PubMed

    Weiss, Daniel J; Turner, Leigh; Levine, Aaron D; Ikonomou, Laertis

    2018-02-01

    Businesses marketing unproven stem cell interventions proliferate within the U.S. and in the larger global marketplace. There have been global efforts by scientists, patient advocacy groups, bioethicists, and public policy experts to counteract the uncontrolled and premature commercialization of stem cell interventions. In this commentary, we posit that medical societies and associations of health care professionals have a particular responsibility to be an active partner in such efforts. We review the role medical societies can and should play in this area through patient advocacy and awareness initiatives. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Mentorship: The Education-Research Continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    2008-05-29

    Mentoring of science students stems naturally from the intertwined link between science education and science research. In fact, the mentoring relationship between a student and a scientist may be thought of analogically as a type of double helix forming the 'DNA' that defines the blueprint for the next generation of scientists. Although this analogy would not meet the rigorous tests commonly used for exploring the natural laws of the universe, the image depicted does capture how creating and sustaining the future science workforce benefits greatly from the continuum between education and research. The path science students pursue from their educationmore » careers to their research careers often involves training under an experienced and trusted advisor, i.e., a mentor. For many undergraduate science students, a summer research internship at a DOE National Laboratory is one of the many steps they will take in their Education-Research Continuum. Scientists who choose to be mentors share a commitment for both science education and science research. This commitment is especially evident within the research staff found throughout the Department of Energy's National Laboratories. Research-based internship opportunities within science, technology, engineering and mathematics (STEM) exist at most, if not all, of the Laboratories. Such opportunities for students are helping to create the next generation of highly trained professionals devoted to the task of keeping America at the forefront of scientific innovation. 'The Journal of Undergraduate Research' (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. The theme of this issue of the JUR (Vol. 8, 2008) is 'Science for All'. Almost 20 years have passed since the American Association for the Advancement of Science published its 1989 report, 'Science for All Americans-Project 2061'. The first recommendation for learning science stated: 'The Nature of Science includes the scientific world view, scientific methods of inquiry, and the nature of the scientific enterprise'. All three elements of the 'Nature of Science' are pivotal aspects of a research internship under the mentorship of an experienced and trusted advisor. In addition to internships for undergraduates, an important ingredient in realizing 'Science for All' is collaboration involving educators and scientists as they engage science students and the public at large to promote science literacy and to develop the next generation of STEM professionals. The DOE National Laboratories, individually and collectively, form an ideal nexus for nurturing these complementary collaborations. My 'Science for All' experiences at Lawrence Livermore National Laboratory (LLNL) over the last 30 years have spanned pre-college, college, and postdoctoral activities, including mentoring of undergraduate students. Early in my mentoring career, I became aware that undergraduates in particular needed help in answering the question 'what path (or paths) will lead to a challenging and rewarding STEM career'? For many, a successful path included a research internship that would result in expanded skills and training in addition to those received from their academic education. These internship skills were helpful whether the student's next Education-Research Continuum decision was graduate school or STEM employment. My experience at LLNL mirrors that of my colleagues at other DOE National Laboratories--internships with a dedicated mentor provide undergraduates with a unique set of skills that can underpin their future options and serve to improve the number, quality, and successful outcomes of students who enter STEM careers. 'Science for All' can also be found in the goals of 'The America COMPETES Act', which call for renewed efforts to increase investments in scientific research and development, strengthen education, and encourage entrepreneurship. Mentoring is an important ingredient in reaching these goals because the success of future endeavors will require a diverse workforce of scientists, technicians, engineers, mathematicians, and STEM educators. A small, but not insignificant, metric of how well the nation is doing to create the next STEM generation can be measured by the abstracts and articles published in the 'Journal of Undergraduate Research'. At the 'heart' of the JUR is the professional commitment of the DOE National Laboratory workforce to mentor the next STEM generation and to realize 'Science for All'.« less

  17. The California State University Louis Stokes Alliance for Minority Participation (CSU-LSAMP): A Collaborative, Comprehensive Approach to Broadening Participation in STEM.

    NASA Astrophysics Data System (ADS)

    Hammersley, L. C.

    2016-12-01

    The National Science Foundation's Louis Stokes Alliances for Minority Participation (LSAMP) program supports alliances of institutions in their efforts to broaden participation in STEM and diversify the STEM workforce. There are currently 42 LSAMP alliances across the nation. Formed in 1993, the California State University LSAMP program (CSU-LSAMP) is an alliance of all 23 campuses of the CSU system and serves over 3,000 students per year. The primary goals of CSU-LSAMP are to increase persistence and graduation rates for URM participants, increase the number of STEM degrees awarded by the CSU to URM students, and increase the number of CSU-LSAMP students who advance to STEM graduate study. CSU-LSAMP activities are focused on four objectives - academic support (e.g. supplemental instruction & peer mentoring), support at transition points (e.g. first time freshmen & transfer students), research experiences (including international research experiences), and professional development (e.g. conference presentations & graduate school preparation activities). Financial support is offered in the form of textbook assistance, research stipends, and travel awards. We maintain a structure that allows campuses to tailor their programs to meet the needs of their own student populations but that also ties the Alliance together with a set of common activities, goals and policies. External evaluation of the program shows that our approach has been highly successful and can provide useful lessons for other programs focused on broadening participation. Since 1994, the number of URM students enrolled in STEM disciplines at CSU campuses has more than doubled and the number of STEM degrees to URM students has almost tripled. Persistence and graduation rates for URM students who participate in CSU-LSAMP are almost twice those of URM non-participants and equal to those of non-URM students. Of the students who participated in the past 15 years, 42 percent either earned a post-baccalaureate degree or are currently enrolled in a graduate STEM program.

  18. NASA y Tú (NASA and You) - NASA's partnership with UNIVISION to promote Science, Technology, Engineering, and Math (STEM) careers among Hispanic youth

    NASA Astrophysics Data System (ADS)

    Colon-Robles, M.; Gilman, I.; Verstynen, S.; Jaramillo, R.; Bednar, S.; Shortridge, T.; Bravo, J.; Bowers, S.

    2010-12-01

    NASA is working with Univision Communications Inc. in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. A total of 52 Public Service Announcements (PSAs) named “Visión NASA” or “Vision: NASA” are being developed by NASA centered on current innovative technologies from all four NASA mission directorates (Science, Exploration Systems, Space Operations, and Aerodynamics). Public service announcements are being produced from scratch in both English and Spanish for a total of 26 announcements in each language. Interviews were conducted with NASA Hispanic Scientists or Engineers on the selected PSAs topics to both supply information on their subject matter and to serve as role models for Hispanic youth. Each topic selected for the PSAs has an accompanying website which includes the announcements, interviews with a Hispanic scientists or engineers, background information on the topic, and educational resources for students, parents and teachers. Products developed through this partnership will be presented including the websites of each PSA and their accompanying educational resources. The use of these educational resources for professional development, outreach and informal events, and for in-classroom uses will also be presented. This collaboration with Univision complements NASA's current education efforts to engage underrepresented and underserved students in the critical STEM fields.

  19. Psychosocial Pathways to STEM Engagement among Graduate Students in the Life Sciences

    PubMed Central

    Clark, Sheri L.; Dyar, Christina; Maung, Nina; London, Bonita

    2016-01-01

    Despite growing diversity among life sciences professionals, members of historically underrepresented groups (e.g., women) continue to encounter barriers to academic and career advancement, such as subtle messages and stereotypes that signal low value for women, and fewer opportunities for quality mentoring relationships. These barriers reinforce the stereotype that women’s gender is incompatible with their science, technology, engineering, and mathematics (STEM) field, and can interfere with their sense of belonging and self-efficacy within STEM. The present work expands this literature in two ways, by 1) focusing on a distinct period in women’s careers that has been relatively understudied, but represents a critical period when career decisions are made, that is, graduate school; and 2) highlighting the buffering effect of one critical mechanism against barriers to STEM persistence, that is, perceived support from advisors. Results of the present study show that perceived support from one’s advisor may promote STEM engagement among women by predicting greater gender–STEM identity compatibility, which in turn predicts greater STEM importance among women (but not men). STEM importance further predicts higher sense of belonging in STEM for both men and women and increased STEM self-efficacy for women. Finally, we describe the implications of this work for educational policy. PMID:27562961

  20. The Effects of Mentored Problem-Based STEM Teaching on Pre-Service Elementary Teachers: Scientific Reasoning and Attitudes Toward STEM Subjects

    NASA Astrophysics Data System (ADS)

    Caliendo, Julia C.

    Problem-based learning in clinical practice has become an integral part of many professional preparation programs. This quasi-experimental study compared the effect of a specialized 90-hour field placement on elementary pre-service teachers' scientific reasoning and attitudes towards teaching STEM (science, technology, engineering, and math) subjects. A cohort of 53 undergraduate elementary education majors, concurrent to their enrollment in science and math methods classes, were placed into one of two clinical practice experiences: (a) a university-based, problem-based learning (PBL), STEM classroom, or (b) a traditional public school classroom. Group gain scores on the Classroom Test of Scientific Reasoning (CTSR) and the Teacher Efficacy and Attitudes Toward STEM Survey-Elementary Teachers (T-STEM) survey were calculated. A MANCOVA revealed that there was a significant difference in gain scores between the treatment and comparison groups' scientific reasoning (p = .011) and attitudes towards teaching STEM subjects (p = .004). The results support the hypothesis that the pre-service elementary teachers who experienced STEM mentoring in a PBL setting will have an increase in their scientific reasoning and produce positive attitudes towards teaching STEM subjects. In addition, the results add to the existing research suggesting that elementary pre-service teachers require significant academic preparation and mentored support in STEM content.

  1. Where Did You Come From? Where Will You Go? Human Evolutionary Biology Education and American Students' Academic Interests and Achievements, Professional Goals, and Socioscientific Decision-Making

    ERIC Educational Resources Information Center

    Schrein, Caitlin M.

    2014-01-01

    In the United States, there is a national agenda to increase the number of qualified science, technology, engineering, and maths (STEM) professionals and a movement to promote science literacy among the general public. This project explores the association between formal human evolutionary biology education (HEB) and high school science class…

  2. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Barbara Brown, center at the table, strategic implementation manager with the Exploration Research and Technology Programs at NASA's Kennedy Space Center in Florida, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  3. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Hortense Diggs, at right, the deputy director of the Communication and Public Engagement Directorate at NASA's Kennedy Space Center in Florida, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  4. Adult Non-Hodgkin Lymphoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Non-Hodgkin lymphoma treatment options include chemotherapy, radiation, targeted therapy, plasmapheresis, surveillance, stem cell transplant, and surgery. Get comprehensive information on Non-Hodgkin classification and treatment in this clinician summary.

  5. Myelodysplastic Syndromes Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Myelodysplastic syndromes (MDS) treatment options include supportive care, disease-modifying agents, and allogeneic stem cell transplantation. Get detailed information about the treatment of newly diagnosed and recurrent MDS in this summary for clinicians.

  6. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation.

    PubMed

    Metcalf, Heather

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these approaches for researchers who study diversity and inclusion issues in the life sciences through examples from two critical mixed-methods studies of prominent issues in science, technology, engineering, and mathematics (STEM) participation and recognition. The first study pairs critical discourse analysis of the STEM workforce literature, data, and underlying surveys with quantitative analyses of STEM pathways into the workforce. This example illustrates the necessity of questioning popular models of retention. It also demonstrates the importance of intersecting demographic categories to reveal patterns of experience both within and between groups whose access to and participation in STEM we aim to improve. The second study's critical approach applies research on inequities in prizes awarded by STEM professional societies toward organizational change. This example uses data from the life sciences professional societies to show the importance of placing data within context to broaden participation and understand challenges in creating sustainable change. © 2016 H. Metcalf. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Wayfinding as a concept for understanding success among Native Americans in STEM: " learning how to map through life"

    NASA Astrophysics Data System (ADS)

    Page-Reeves, Janet; Marin, Ananda; Moffett, Maurice; DeerInWater, Kathy; Medin, Douglas

    2018-03-01

    This paper discusses findings from 40 ethnographically inspired interviews with 21 Native science professionals conducted in two iterative phases (21 in Phase I and 19 in Phase II), and a structured dialogue workgroup session with a six-member subset of the interviewees. Interview and group questions were open-ended to allow the participants to drive the conversation. We approached our interpretation of the data as an opportunity for deriving insights into the nature and meanings of participant narratives and experiences, why they present their stories in a particular way, and what this can tell us about the research questions we are exploring. We identify how the way they view themselves and the way they engage with the world has been transformed through their experience in obtaining a STEM degree at historically white institutions and working as a STEM professional. We argue that these changes allow for repurposing of STEM content knowledge to (re)connect with culturally defined values and goals. We discuss this transformative process as involving wayfinding and the accumulation of what we call experiential wisdom. We contend that the dimensions of this process are not sufficiently captured in concepts widely used to discuss situations of intercultural encounter. Our research builds on research of indigenous scholars who have provided a new way of thinking about Native Americans and science education.

  8. Nuclear thermal source transfer unit, post-blast soil sample drying system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ralph S.; Valencia, Matthew J

    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in toolmore » design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.« less

  9. Collaboratory=Collaborate+Laboratory: The Mid-Columbia STEM Education Collaboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willcuts, Meredith H.; Kennedy, Cathleen A.

    Pacific Northwest National Laboratory created a network focused on collaboration in STEM education to design and deliver projects, resources, and professional learning opportunities in a testbed environment. How do you uncover and fill gaps in equitable access to high-quality science, technology, engineering, and math (STEM) education offerings in your local region? Where might you deploy strategies to improve STEM workforce preparation and increase public understanding of STEM-oriented issues? And how can you help to ensure that students, educators, parents, and the community are aware of these programs and know how to access them in schools, colleges, and community venues? Ifmore » you are the Pacific Northwest National Laboratory (PNNL), you take on the huge goal of designing and implementing an innovative STEM education collaboration project that impacts all levels of local education, both inside and outside of school settings. PNNL is one of the 17 national laboratories funded by the U.S. Department of Energy. Operated by Battelle, PNNL has a vested interest in preparing the next generation of scientists and engineers for their future careers, thus building a STEM-capable workforce and creating a STEM-literate community. One of Battelle’s core principles is a commitment to STEM education and its role in business competitiveness and quality of life. PNNL has been active in STEM education for decades, providing internships for future scientists, giving educators in-house lab experiences, and engaging its researchers in STEM outreach activities in classrooms and the community. The Collaboratory is a relatively recent outcome of Battelle’s longstanding efforts in STEM education. The original Collaboratory planning documents, developed by PNNL’s Office of STEM Education (OSE), state the objective to “design, implement, and mature a local STEM education collaboration zone that highlights the power of PNNL and Battelle to impact the educational ecosystem and serve as a model for amplifying and accelerating progress in addressing our STEM education and workforce challenges” (PNNL 2013). In other words, we (the OSE) sought to create a zone of collaboration in which members co-design and deliver STEM education programs, share findings and lessons learned from their experiences, and co-manage and sustain the organization. We started by identifying possible collaborators located nearby in the largely rural southeast corner of Washington State. Recognizing that our potential collaborators had differing norms, values, and relationships within the community, as well as their own areas of expertise and purpose, we convened representatives from K–12 public and private schools, higher education, community-based learning providers, and local business and industry to brainstorm a unified vision to resolve gaps in local STEM education needs. Through discussions with these collaborators, we started hunting for gaps where STEM efforts were lacking but a desire to improve existed. We gave ourselves permission to try things out and built a testbed space where we could experiment with new ideas, gather evidence of feasibility, and treat failures as constructive learning opportunities. Through this generative process and with seed funding from Battelle, inter-organizational teams now work together, both virtually and in real time, to develop, test, and deploy resources to support student success, educators’ effectiveness, and community engagement in STEM. Thus, the Mid-Columbia STEM Education Collaboratory (Collaboratory) was born. This is the story of our beginnings: our challenges, our lessons learned, and emerging indicators of success. For those interested in launching an education–business–community STEM learning ecosystem, we share our story.« less

  10. THE MEYERHOFF SCHOLARS PROGRAM: A STRENGTHS-BASED, INSTITUTION-WIDE APPROACH TO INCREASING DIVERSITY IN SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS

    PubMed Central

    Maton, Kenneth I.; Pollard, Shauna A.; McDougall Weise, Tatiana V.; Hrabowski, Freeman A.

    2012-01-01

    The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering and mathematics (STEM) PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are five times more likely than comparison students to pursue a STEM PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development and emphasizing the importance of academic skills. Among Meyerhoff students, several pre-college and college factors have emerged as predictors of successful entrance into a PhD program in the STEM fields, including pre-college research excitement, pre-college intrinsic math/science motivation, number of summer research experiences during college, and college GPA. Limitations of the research to date are noted, and directions for future research are proposed. PMID:22976367

  11. MS PHD'S PDP: Vision, Design, Implementation, and Outcomes of a Minority-Focused Earth System Sciences Program

    NASA Astrophysics Data System (ADS)

    Habtes, S. Y.; Mayo, M.; Ithier-Guzman, W.; Pyrtle, A. J.; Williamson Whitney, V.

    2007-05-01

    As minorities are predicted to comprise at least 33% of the US population by the year 2010, their representation in the STEM fields, including the ocean sciences, is still poorly established. In order to advance the goal of better decision making, the Ocean Sciences community must achieve greater levels of diversity in membership. To achieve this objective of greater diversity in the sciences, the Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science® Professional Development Program (MS PHD'S PDP), which was launched in 2003, is supported via grants from NASA's Office of Earth Science, and NSF's Directorate for Geosciences. The MS PHD'S PDP is designed to provide professional and mentoring experiences that facilitate the advancement of minorities committed to achieving outstanding Earth System Science careers. The MS PHD'S PDP is structured in three phases, connected by engagement in a virtual community, continuous peer and mentor to mentee interactions, and the professional support necessary for ensuring the educational success of the student participants. Since the pilot program in 2003, the MSPHD'S PDP, housed at the University of South Florida's College of Marine Science, has produced 4 cohorts of students. Seventy-five have completed the program; of those 6 have earned their doctoral degrees. Of the 45 current participants 10 are graduate students in Marine Science and 15 are still undergraduates, the remaining 10 participants are graduate students in other STEM fields. Since the implementation of the MSPHD'S PDP a total of 87 students and 33 scientist mentors have become part of the MSPHD'S virtual community, helping to improve the learning environment for current and future participants as well as build a community of minority students that encourages each other to pursue their academic degrees.

  12. Āwhina Revolution: A Bayesian Analysis of Undergraduate and Postgraduate Completion Rates from a Program for Māori and Pacific Success in STEM Disciplines.

    PubMed

    Richardson, Ken; Clark, Zaramasina; Gaines, Michael; Kingi, Hautahi; Miller, Sonja; Pearson, Willie; Richardson, Liz

    2018-01-01

    Māori and Pacific students generally do not attain the same levels of tertiary success as New Zealanders of European descent, particularly in science, technology, engineering, and mathematics (STEM) subjects. Te Rōpū Āwhina (Āwhina), an equity initiative at Victoria University of Wellington in New Zealand between 1999 and 2015, aimed to produce Māori and Pacific professionals in STEM disciplines who contribute to Māori and Pacific community development and leadership. A hierarchical Bayesian approach was used to estimate posterior standardized completion rates for 3-year undergraduate and 2-year postgraduate degrees undertaken by non-Māori-Pacific and Māori-Pacific students. Results were consistent with an Āwhina effect, that is, Āwhina's positive influence on (combined) Māori and Pacific success. © 2018 K. Richardson et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Perceptions of the Veterinary Profession among Human Health Care Students before an Inter-Professional Education Course at Midwestern University.

    PubMed

    Englar, Ryane E; Show-Ridgway, Alyssa; Noah, Donald L; Appelt, Erin; Kosinski, Ross

    2017-11-03

    Conflicts among health care professionals often stem from misperceptions about each profession's role in the health care industry. These divisive tendencies impede progress in multidisciplinary collaborations to improve human, animal, and environmental health. Inter-professional education (IPE) may repair rifts between health care professions by encouraging students to share their professional identities with colleagues in unrelated health care disciplines. An online survey was conducted at Midwestern University (MWU) to identify baseline perceptions about veterinary medicine among entry-level human health care students before their enrollment in an inter-professional course. Participation was anonymous and voluntary. The survey included Likert-type scales and free-text questions. Survey participants expressed their interest in and respect for the discipline of veterinary medicine, but indicated that their unfamiliarity with the profession hindered their ability to collaborate. Twenty percent of human health care students did not know the length of a Doctor of Veterinary Medicine (DVM) program and 27.6% were unaware that veterinarians could specialize. Although 83.2% of participants agreed that maintaining the human-animal bond is a central role of the veterinary profession, veterinary contributions to stem cell research, food and water safety, public health, environmental conservation, and the military were infrequently recognized. If IPE is to successfully pave the way for multidisciplinary collaboration, it needs to address these gaps in knowledge and broaden the definition of veterinary practice for future human health care providers.

  14. GLOBE Cornerstones: Advancing Student Research Worldwide through Virtual and Regional Symposia

    NASA Astrophysics Data System (ADS)

    Bourgeault, J.; Malmberg, J. S.; Murphy, T.; Darche, S.; Ruscher, P.; Jabot, M.; Odell, M. R. L.; Kennedy, T.

    2016-12-01

    The GLOBE Program, an international science and education program, encourages students from around the world to participate in authentic scientific research of the Earth system. Students use scientific protocols to explore their local environments, compare their findings with other GLOBE schools both in the U.S. and in other participating countries, and then share their findings via the GLOBE.gov website. In order to facilitate this scientific communication, GLOBE held an international virtual science fair in 2016. The science fair included 105 research projects submitted from GLOBE students in various countries, 37 mentoring scientists, and 24 judges. Mentors and judges were members of the GLOBE International STEM Professionals Network and located around the world. On a national level, NSF funded six face-to-face U.S. regional student research symposia where 164 students presented 67 research projects to scientists for review. The 1.5 day events included student activities, teacher professional development, tours of NASA centers, and opportunities for students to engage with scientists to discover both traditional and non-traditional STEM career pathways. To support teachers, the leadership team offered and archived webinars on science practices; from field investigation basics to creating a poster and GLOBE partners provided guidance along the way. This presentation will include the framework for the regional and international science symposia , the scoring rubrics and evaluation, recruitment of judges and mentors, and lessons learned.

  15. Engaged Learning and Youth Interest in STEM Careers: A Science Museum Exhibit on Air Pollution and Urban Sustainability

    NASA Astrophysics Data System (ADS)

    Stuart, A. L.

    2012-12-01

    Enrollments in science, technology, engineering, and mathematics (STEM) curricula currently lag workforce needs. Participation of women and minorities in STEM careers also remains low despite efforts to improve their representation in these fields. We discuss the development and evaluation of a science museum exhibit aimed at stimulating interest of middle school children (particularly girls) in STEM careers. The exhibit was designed to teach science, while addressing two factors identified as limiting the interest of girls in STEM fields — perceived lack of social relevance and lack of female role models. Further, it was designed to apply best practices in science education, including inquiry-based learning and interdisciplinary content. The exhibit was developed through collaboration between students and faculty researchers at the University of South Florida and science education and evaluation specialists at the Museum of Science and Industry of Tampa. A few stages of formative and summative assessment, including focus group discussions, visitor observation, and surveys were used to evaluate the effectiveness of the exhibit to educational project goals. The installed exhibit is focused on teaching content related to interactions between air pollution, urban design, and human health. The approximately 25 square foot exhibit space involves four different types of components. A three-dimensional model of a city, with underlying dynamic computer simulations, allows visitors to interactively explore relationships between city design, air pollution and exposures. A computer game, with quiz questions requiring user decisions on personal to community behavior, provides visual feedback regarding impacts on air pollution. Traditional panels with graphics and text, including results of current research, display integrative scientific content with open-ended questions to stimulate discussion. Finally, personal profiles highlight the diverse family, work, and social lives of a few STEM professionals from childhood to mid-career. Current results of the educational evaluation suggest that the quiz game and three-dimensional interactive model were particularly effective at engaging and interesting visitors in the science content. The personal profiles appear to have helped to interest visitors in STEM careers, regardless of gender or age. The methods and results demonstrated through this exhibit should inform improvements to informal science education toward increased engagement of the next generation in science content and STEM careers.

  16. Adult Acute Myeloid Leukemia Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Acute myeloid (myelogenous) leukemia (AML) treatment options include chemotherapy, radiation therapy, stem cell transplant, and other medications. Cytogenetic analysis helps predict treatment outcomes. Get detailed information about AML in this summary for clinicians.

  17. Contributions of the NOAA Hollings Undergraduate Scholarship Program to the Geosciences Pipeline

    NASA Astrophysics Data System (ADS)

    Kaplan, M.

    2016-12-01

    Since 2005, the NOAA Ernest F. Hollings Undergraduate Scholarship Program has provided tuition support and paid summer internship opportunities at NOAA to exceptional students majoring in the geosciences. The purpose of the scholarship program is to train students in NOAA mission fields. Multiple methods were used to track the career trajectories of Hollings alumni, including mining LinkedIn data, conducting an impact analysis based on a professionally developed web-based evaluation survey, and a web-based alumni update system. At least one postgraduate record was recorded for 80% of Hollings Scholarship alumni. Of the alumni reached, more than 75% continued on to graduate school in a NOAA mission field, and 86% of those graduate degrees were in a NOAA mission field or other STEM field. More than 60% of alumni had at least one professional record, with the most alumni working in private industry, followed by nongovernmental organizations and federal, state and local government.

  18. Cultural competence: a constructivist definition.

    PubMed

    Blanchet Garneau, Amélie; Pepin, Jacinthe

    2015-01-01

    In nursing education, most of the current teaching practices perpetuate an essentialist perspective of culture and make it imperative to refresh the concept of cultural competence in nursing. The purpose of this article is to propose a constructivist definition of cultural competence that stems from the conclusions of an extensive critical review of the literature on the concepts of culture, cultural competence, and cultural safety among nurses and other health professionals. The proposed constructivist definition is situated in the unitary-transformative paradigm in nursing as defined by Newman and colleagues. It makes the connection between the field of competency-based education and the nursing discipline. Cultural competence in a constructivist paradigm that is oriented toward critical, reflective practice can help us develop knowledge about the role of nurses in reducing health inequalities and lead to a comprehensive ethical reflection about the social mandate of health care professionals. © The Author(s) 2014.

  19. Cardiovascular medicine at face value: a qualitative pilot study on clinical axiology

    PubMed Central

    2013-01-01

    Introduction Cardiology is characterized by its state-of-the-art biomedical technology and the predominance of Evidence-Based Medicine. This predominance makes it difficult for healthcare professionals to deal with the ethical dilemmas that emerge in this subspecialty. This paper is a first endeavor to empirically investigate the axiological foundations of the healthcare professionals in a cardiology hospital. Our pilot study selected, as the target population, cardiology personnel not only because of their difficult ethical deliberations but also because of the stringent conditions in which they have to make them. Therefore, there is an urgent need to reconsider clinical ethics and Value-Based Medicine. This study proposes a qualitative analysis of the values and the virtues of healthcare professionals in a cardiology hospital in order to establish how the former impact upon the medical and ethical decisions made by the latter. Results We point out the need for strengthening the roles of healthcare personnel as educators and guidance counselors in order to meet the ends of medicine, as well as the need for an ethical discernment that is compatible with our results, namely, that the ethical values developed by healthcare professionals stem from their life history as well as their professional education. Conclusion We establish the kind of actions, communication skills and empathy that are required to build a stronger patient-healthcare professional relationship, which at the same time improves prognosis, treatment efficiency and therapeutic adhesion. PMID:23531271

  20. Evaluating the Effectiveness of Project ReCharge: A STEM Based Energy Efficiency Curriculum

    NASA Astrophysics Data System (ADS)

    Pozarski Connolly, Catherine J.

    This research evaluates the effectiveness of Project ReCharge, an energy efficiency, STEM curriculum designed for middle and high school students. The project includes a five-unit curriculum, and monthly professional development spanning a year. The project was implemented in ten schools over three years. Four areas were explored in the study including (1) changes to student content knowledge, (2) changes to student attitudes towards STEM subjects and careers, (3) changes to teacher self-efficacy and beliefs, and (4) changes to teacher content knowledge. A content test for teachers and students, the STEM Semantics Survey, and STEBI-A were used to collect data on 4123 students and 47 teachers. Data were collected in a quasi-experimental design utilizing parametric and nonparametric techniques. Analyses suggest student content knowledge increased significantly from pretest to posttest for all years (Pretest: M = 11.38, SD = 4.97, Posttest: M = 16.67, SD = 5.83, t = 45.05, p < 0.001, d = 0.98). Increases to student attitudes in STEM varied by year and grade, but overall increases were found in science (N = 2362, z = -2.618, p = 0.030, eta 2 = 0.002), and math attitudes (N = 2348, z = -2.280, p = 0.023, eta2 = 0.002). High school students tended to show more increased attitudes in more subject areas than middle school students. No changes to teacher self-efficacy and beliefs were found, and increases to teacher content knowledge only occurred in the third year (N = 22, x2 = 5.158; p = 0.076, eta2 = 0.319).

  1. Utilization-focused evaluation of a STEM enrichment program

    NASA Astrophysics Data System (ADS)

    Carter, Sally

    The purpose of this study was to determine the impact and utilization of a STEM enrichment program (hereafter referred to as The Program). The Program consisted of two parts. First an educator resource center provided free educational materials throughout The Program’s home state. The second part of The Program was a network of education specialists who provided professional development for teachers, modeled lessons with students, and provided presentations for the general public. The problem addressed by this study was a lack of knowledge regarding the impact of The Program. The Program’s director requested a utilization-focused program evaluation to answer thirteen questions. Questions covered Program impact for five areas: overall impact on teachers, overall impact on students, overall impact of materials, overall impact of Program personnel, and overall impact on STEM education. A mixed-methods case study was designed to gather data. Quantitative data included Program archival data regarding the number of contacts and a survey distributed to teachers who had used The Program’s services on at least one occasion. Qualitative data included written comments gathered from the teacher surveys, seven teacher focus groups, and four Program personnel interviews. Data found an overall positive Program impact in all five areas. Both quantitative and qualitative data showed favorable perceptions by teachers and Program personnel. It is not known if data from this case study can be generalized to other STEM enrichment programs. Future research might include a study to determine if The Program’s model could be used to generate new STEM enrichment programs.

  2. Queer in STEM: Workplace Experiences Reported in a National Survey of LGBTQA Individuals in Science, Technology, Engineering, and Mathematics Careers.

    PubMed

    Yoder, Jeremy B; Mattheis, Allison

    2016-01-01

    A survey of individuals working in science, technology, engineering, and mathematics (STEM) fields who identify as lesbian, gay, bisexual, trans*, queer, or asexual (LGTBQA) was administered online in 2013. Participants completed a 58-item questionnaire to report their professional areas of expertise, levels of education, geographic location, and gender and sexual identities and rated their work and social communities as welcoming or hostile to queer identities. An analysis of 1,427 responses to this survey provided the first broad portrait of this population, and it revealed trends related to workplace practices that can inform efforts to improve queer inclusivity in STEM workplaces.

  3. Responsibilities of Health Care Professionals in Counseling and Educating Patients With Incurable Neurological Diseases Regarding "Stem Cell Tourism": Caveat Emptor.

    PubMed

    Bowman, Michelle; Racke, Michael; Kissel, John; Imitola, Jaime

    2015-11-01

    "Stem cell tourism" is a rising Internet-based industry that aims to offer unproven procedures to patients with incurable diseases. This unregulated activity is reaching the neurologist's office as well as across the world, as patients request information or clearance for such procedures. Herein, we posit the need for medical societies and licensing boards to bring this issue to the forefront of neurology because it has the potential to affect patient care with risk of morbidity and mortality, as well as to undermine public confidence in legitimate stem cell research for incurable neurological diseases such as multiple sclerosis and amyotrophic lateral sclerosis.

  4. STEM Pathways: Examining Persistence in Rigorous Math and Science Course Taking

    NASA Astrophysics Data System (ADS)

    Ashford, Shetay N.; Lanehart, Rheta E.; Kersaint, Gladis K.; Lee, Reginald S.; Kromrey, Jeffrey D.

    2016-12-01

    From 2006 to 2012, Florida Statute §1003.4156 required middle school students to complete electronic personal education planners (ePEPs) before promotion to ninth grade. The ePEP helped them identify programs of study and required high school coursework to accomplish their postsecondary education and career goals. During the same period Florida required completion of the ePEP, Florida's Career and Professional Education Act stimulated a rapid increase in the number of statewide high school career academies. Students with interests in STEM careers created STEM-focused ePEPs and may have enrolled in STEM career academies, which offered a unique opportunity to improve their preparedness for the STEM workforce through the integration of rigorous academic and career and technical education courses. This study examined persistence of STEM-interested (i.e., those with expressed interest in STEM careers) and STEM-capable (i.e., those who completed at least Algebra 1 in eighth grade) students ( n = 11,248), including those enrolled in STEM career academies, in rigorous mathematics and science course taking in Florida public high schools in comparison with the national cohort of STEM-interested students to measure the influence of K-12 STEM education efforts in Florida. With the exception of multi-race students, we found that Florida's STEM-capable students had lower persistence in rigorous mathematics and science course taking than students in the national cohort from ninth to eleventh grade. We also found that participation in STEM career academies did not support persistence in rigorous mathematics and science courses, a prerequisite for success in postsecondary STEM education and careers.

  5. Undergraduate women in STEM: Does participation in STEM extracurricular programs enhance success among students?

    NASA Astrophysics Data System (ADS)

    Price, Kasey Marie

    Women have been underrepresented in the STEM fields since the 1650's to today (Hunter, 2005). This study examined the extracurricular participation of undergraduate women, in Fall 2009, using both quantitative and qualitative methods, who were majoring in at least one (1) of the 49 STEM majors at Southeastern State University participated in STEM extracurricular programs and if any specific program contributed to success more than other programs. A second question was whether participation in an extracurricular program(s) influenced their success. Women who were older, had been enrolled more semesters, had more credit hours, and had families with higher incomes were more likely to be involved in STEM only or STEM and Non-STEM extracurricular activities. Additionally, students who completed a high level of high school math, had a higher high school GPA, had received a regular high school diploma, and who had mothers with a higher level of education were also more likely to be involved in STEM only or STEM and Non-STEM extracurricular activities. Students who had been enrolled in college seven (7) or more semesters, who had selected their current major within their first year of college, were more likely to be involved in STEM extracurricular activities. Students believe that their STEM extracurricular involvement helps them to be successful because it provided them with student relationships, opportunity for the future, advising relationships, mentorship, and exploration of the campus and larger community. This study may be useful for student affairs professionals and academics who take an active role in serving as advisors, mentors, and providers of STEM-related opportunities.

  6. Chronic Myeloproliferative Neoplasms Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Chronic Myeloproliferative Neoplasms (MPN) treatment varies widely depending on the specific diagnosis. Treatment options may include observation, phlebotomy, steroids, chemotherapy, immunotherapy, and stem cell transplant. Get detailed information about MPNs in this summary for clinicians.

  7. Chronic Lymphocytic Leukemia Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Chronic lymphocytic leukemia (CLL) treatment options can include observation, steroids, chemotherapy, targeted therapy, and/or stem cell transplant. Get detailed information about newly diagnosed and recurrent CLL and available treatment modalities in this summary for clinicians.

  8. Adult Acute Lymphoblastic Leukemia Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Adult acute lymphoblastic leukemia (ALL) treatment options include chemotherapy, radiation therapy, stem cell transplant, and targeted therapy. Get detailed information about the molecular genetics, prognosis, and treatment of ALL in this summary for clinicians.

  9. Ewing Sarcoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Ewing sarcoma is derived from a primordial bone marrow–derived mesenchymal stem cell. Get comprehensive information about the presentation, genomics, diagnostic evaluation, prognosis, and treatment of newly diagnosed and recurrent Ewing sarcoma in this summary for clinicians.

  10. Launching Astronomy: Standards and STEM Integration (LASSI)

    NASA Astrophysics Data System (ADS)

    French, Debbie; Burrows, Andrea C.; Myers, Adam D.

    2015-01-01

    While astronomy is prevalent in the Next Generation Science Standards, it is often relegated to the '4th nine-weeks' in middle and high school curricula. I.e., it is taught at the end of the year, if time permits. However, astronomy ties in many core ideas from chemistry, earth science, physics, and even biology (with astrobiology being an up-and-coming specialization) and mathematics. Recent missions to Mars have captured students' attention and have added excitement to the fields of engineering and technology. Using astronomy as a vehicle to teach science, technology, engineering, and mathematics (STEM) connects these disciplines in an engaging way. The workshop entitled, 'Launching Astronomy: Standards and STEM Integration,' (LASSI) is a year-long professional development (PD) opportunity for teachers in grades K-12 to use astronomy as a vehicle to teach STEM and implement science standards through astronomy. Eight teachers participated in a two-week summer workshop and six follow-up sessions are scheduled during the 2014-2015 school year. Additional teachers plan to participate in the upcoming follow-up sessions. We evaluate the effectiveness of the LASSI PD to identify and confront teachers' misconceptions in astronomy, and discuss whether teachers identified topics for which astronomy can be used as a vehicle for standards-based STEM curricula. Teachers from around Wyoming were invited to participate. Participating teachers were surveyed on the quality of the workshop, their astronomy content knowledge before and after listening to talks given by experts in the field, conducting standards-based inquiry activities, developing their own lessons, and their level of engagement throughout the workshop. Two-thirds of teachers planned to incorporate LASSI activities into their classrooms in this school year. Teachers' misconceptions and requests for astronomy-based curriculum were identified in the summer session. These will be addressed during the follow-up session. Ninety percent of teachers reported being highly engaged at least 75% of the time. The majority of teachers also anticipated using activities from LASSI in their classrooms.

  11. Response to: Dittrich et al.: Non-Embryo-Destructive Extraction of Pluripotent Embryonic Stem Cells – Overlooked Legal Prohibitions, Professional Legal Consequences and Inconsistencies in Patent Law

    PubMed Central

    Faltus, T.; Storz, U.

    2016-01-01

    The publication of “Non-embryo-destructive Extraction of Pluripotent Embryonic Stem Cells: Implications for Regenerative Medicine and Reproductive Medicine” by Dittrich et al. in Geburtshilfe und Frauenheilkunde 2015; 75: 1239–1242 1 describes various possibilities which could result from the non-embryo-destructive extraction of embryonic stem cells from human blastocysts. But implementing this method is more problematic, both legally and ethically, than the authors have represented it to be and is illegal in Germany. German patent DE 10 2004 062 184 on the non-embryo-destructive extraction of embryonic stem cells referred to by Dittrich et al. contravenes the higher-ranking case-law of the European Court of Justice. Ultimately, the non-embryo-destructive harvesting of embryonic stem cells with the aim of storing these cells for use in potential therapies as proposed by Dittrich et al. is prohibited in Germany and could lead to criminal prosecution. PMID:28094826

  12. The Potential Role of Science, Technology, Engineering, and Math Programs in Reducing Teen Dating Violence and Intimate Partner Violence.

    PubMed

    D'Inverno, Ashley Schappell; Kearns, Megan C; Reidy, Dennis E

    2016-12-01

    Science, technology, engineering, and math (STEM) are growing fields that provide job stability, financial security, and health prosperity for professionals in these fields. Unfortunately, females are underrepresented in STEM, which is potentially both a consequence and precipitant of gender inequity in the United States. In addition to the financial and health benefits, increasing the number of girls and women in STEM fields may also indirectly prevent and/or reduce teen dating violence and intimate partner violence by: (1) increasing women's financial independence, thereby reducing dependence on potentially abusive partners; (2) decreasing household poverty and financial stress, which may lead to reductions in relationship discord; and (3) increasing attitudes and beliefs about women as equals, thereby increasing gender equity. In this commentary, we discuss the potential role of primary and secondary school STEM programs in reducing violence against women. We review the literature on existing evaluations of STEM programs for educational outcomes, discuss the limitations of these evaluations, and offer suggestions for future research.

  13. Sources of adult mesenchymal stem cells for ligament and tendon tissue engineering.

    PubMed

    Dhinsa, Baljinder S; Mahapatra, Anant N; Khan, Wasim S

    2015-01-01

    Tendon and ligament injuries are common, and repair slowly with reduced biomechanical properties. With increasing financial demands on the health service and patients to recover from tendon and ligament injuries faster, and with less morbidity, health professionals are exploring new treatment options. Tissue engineering may provide the answer, with its unlimited source of natural cells that in the correct environment may improve repair and regeneration of tendon and ligament tissue. Mesenchymal stem cells have demonstrated the ability to self renew and have multilineage differentiation potential. The use of bone marrow-derived mesenchymal stem cells has been reported, however significant in vitro culture expansion is required due to the low yield of cells, which has financial implications. Harvesting of bone marrow cells also has associated morbidity. Several studies have looked at alternative sources for mesenchymal stem cells. Reports in literature from animal studies have been encouraging, however further work is required. This review assesses the potential sources of mesenchymal stem cells for tissue engineering in tendons and ligaments.

  14. Anxiety about professional future among young doctors.

    PubMed

    Bolanowski, Wojciech

    2005-01-01

    The interest is focused on today's interns who will soon become an essential part of the health care system. Obstacles they perceive at the beginning of the career may encourage them or, inversely, impede their professional development, enhance professional burnout or even lead to change of the profession. International literature, comprising publications on the situation in ten European countries, Canada and the USA, is reviewed. Numerous considerations have encouraged some attempts to measure "anxiety about professional future" (AAF). Seven factors that induce anxiety about professional future among students and young doctors are listed and briefly discussed: 1) Difficulties in getting a job and growing anxiety for maintaining the job; 2) Low wages; 3) Negative impact of work on private and family life, in particular, a conflict between the professional role and mother's role; 4) Excessive level of organizational stress; 5) Lack of (individual) resources to cope with stress; 6) Institutional and financial limitations for professional development; and 7) Worldwide evolution of the professional role and the status of doctor. A questionnaire was developed by the author and answers were collected from a representative sample of Polish interns (about 1000) and a small sample of French interns. A scale for measuring the anxiety was built with use of factor analysis. The resulting scale called AAF has proved to have good statistical properties. The mean value of the anxiety indicator proved to be high in Poland. Interns who are familiar with the doctor's daily duties, who feel economically independent and who have good self-valuation of the practical skills are characterized by a lower level of anxiety. AAF values in a sample of French interns was dramatically lower than those characteristic of Polish interns. The values of AAF for the interns can be related to the intensity of stress-inducing factors in the professional environment. Very high AAF values can stem from an excessive professional stress that may have a negative impact on individual careers and the whole health care system in Poland. Appropriate changes in the curriculum of medical studies (accompanied by legal regulations) might reduce excessive anxiety about future in graduating doctors in Poland. Such changes could include: (a) a greater involvement of students in the examination and treatment of patients and in "daily life" in health care institutions; (b) making more practice (or performing medical procedures) obligatory; (c) creating better opportunities to earn living in the medical professions (by performing procedures or by assisting professionals); and (d) making efforts in the field of practical education more rewarding (e.g., introducing rating for practice and incorporating it into fellowship schemes).

  15. The National Technical Association: A Hallmark for Access and Success

    NASA Astrophysics Data System (ADS)

    Jearld, A., Jr.

    2017-12-01

    Minority Technical Organizations (MTO) are under-utilized as a valuable resource that can help develop the next generation of scientists and engineers. For over 90 years, the National Technical Association (NTA) (www.ntaonline.org) has been the premiere technical association for scientists, engineers, architects, technologist, educators, and technical business entrepreneurs for people of color, offering professional development, mentoring and awards recognition to technical professionals. NTA and its partners are developing a diverse workforce by emphasizing enhanced access opportunities to skills development for youth among underrepresented STEM populations. Established in 1925 by Charles Summer Duke, the first African American to receive an engineering degree from Harvard University, NTA served as the model organization for more than 40 other minority technical organizations that began forming in the 1970's. NTA has served as consultants to the US government on the status of African Americans in science and engineering. The first technical organization to establish community based technical mentoring programs targeting minorities, NTA shares information and assists institutions in identifying minority talent. Members developed the first science and engineering curriculum at Historically Black Colleges and Universities (HBCU's), and are working to produce more students with geoscience degrees to ensure greater career placement with increased minority participation in the geosciences. NTA addresses the lack of access, support, and the need for networking through the longest running annual conference for technical practitioners of color. A hallmark of NTA has been access and success through inter-organizational collaborations with communities of scholars, highly experienced professionals and students to discuss the definition of what is successful geoscience education, research, and employment.

  16. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    NASA Astrophysics Data System (ADS)

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds of metrics for impact. Astronomy because of its strong networks of amateur scientists is in a good position to develop innovative public engagement via the arts and culture.

  17. Teachers engaging in Authentic Education Research as They Engage Students in Authentic Science Research: A Collaboration Among Scientists, Education Researchers and Practitioners

    NASA Astrophysics Data System (ADS)

    Schielack, J. F.; Herbert, B. E.

    2004-12-01

    The ITS Center for Teaching and Learning (http://its.tamu.edu) is a five-year NSF-funded collaborative effort to engage scientists, educational researchers, and educators in the use of information technology to enhance science teaching and learning at Grades 7 - 16. The ITS program combines graduate courses in science and science education leadership for both science and education graduate students with professional development experiences for classroom teachers. The design of the ITS professional development experience is based upon the assumption that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology to support inquiry in science classrooms has been shown to help achieve this objective. In particular, the professional development for teachers centers around support for implementing educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. As a design study that is "working toward a greater understanding of the "learning ecology," the research related to the creation and refinement of the ITS Center's collaborative environment for integrating professional development for faculty, graduate students, and classroom teachers is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, science education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. In this presentation, we will discuss the results of the formative evaluation process that has moved the ITS Center's collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). Phase II highlighted learning experiences over two summers focused on the exploration of environmentally-related science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum.

  18. Nicholas J. Grundl | NREL

    Science.gov Websites

    -3228 Research Interests Application of numerical methods to process problems Fuel and chemical biochemistry and numerical methods), University of Wisconsin at Madison, 2009-2014 Professional Experience Stem Cells Under Defined Conditions," Tissue Engineering Part C Methods (2013)

  19. Neuroblastoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Neuroblastoma treatment generally is based on whether the tumor is low, intermediate, or high risk. Treatment options include surgery, observation, radiation therapy, chemotherapy, stem cell rescue, and targeted therapy. Get detailed neuroblastoma treatment information in this summary for clinicians.

  20. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Plasma cell neoplasms (including multiple myeloma) treatment include observation, chemotherapy, radiation, stem cell rescue, targeted, and supportive therapies. Corticosteroids and immunomodulatory drugs may be used. Get detailed treatment information in this summary for clinicians.

  1. Childhood Hematopoietic Cell Transplantation (PDQ®)—Health Professional Version

    Cancer.gov

    Childhood hematopoietic cell transplantation involves the infusion of blood stem cells into a patient to reconstitute the blood system. Get detailed information about autologous and allogeneic transplant, HLA matching, preparative regimens, and complications in this summary for clinicians.

  2. Teaching Assistant Professional Development in Biology: Designed for and Driven by Multidimensional Data.

    PubMed

    Wyse, Sara A; Long, Tammy M; Ebert-May, Diane

    2014-01-01

    Graduate teaching assistants (TAs) are increasingly responsible for instruction in undergraduate science, technology, engineering, and mathematics (STEM) courses. Various professional development (PD) programs have been developed and implemented to prepare TAs for this role, but data about effectiveness are lacking and are derived almost exclusively from self-reported surveys. In this study, we describe the design of a reformed PD (RPD) model and apply Kirkpatrick's Evaluation Framework to evaluate multiple outcomes of TA PD before, during, and after implementing RPD. This framework allows evaluation that includes both direct measures and self-reported data. In RPD, TAs created and aligned learning objectives and assessments and incorporated more learner-centered instructional practices in their teaching. However, these data are inconsistent with TAs' self-reported perceptions about RPD and suggest that single measures are insufficient to evaluate TA PD programs. © 2014 Wyse et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Drilling Deep Into STEM Education with JOIDES Resolution Education and Outreach Officers

    NASA Astrophysics Data System (ADS)

    Christiansen, E. A.

    2015-12-01

    During International Ocean Discovery Program (IODP) expeditions, IODP scientists and Education/Outreach (E/O) Officers enter classrooms and informal science venues via live Internet video links between the JOIDES Resolution (JR) and land-based learning centers. Post-expedition, E/O Officers, serving as JR Ambassadors, deepen and broaden the learning experience by bringing STEM from the JR to the general public through targeted outreach events at those land-based sites. Youth and adult learners participate in scientific inquiry through interactive activities linked directly to the video broadcast experience. Outreach venues include museums, summer camps, and after-school programs; classroom visits from E/O Officers encompass kindergarten to undergraduate school groups and often include professional development for educators. Events are hands-on with simulations, expedition samples, core models, and equipment available for interaction. This program can serve as a model for linking virtual and real experiences; deepening the educational value of virtual field trip events; and bringing cutting edge science into both classrooms and informal science venues.

  4. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data collection, and subsequent data analysis. Their pedagogical skills in teaching STEM content were enhanced through the collaborative development of curriculum units, critique of curriculum plans by education faculty experts, and exploration of NASA educational resources. AREE also engaged educators in the NASA-sponsored Classroom of the Future's Virtual Design Center (http://vdc.cet.edu/overview.htm), which provides curriculum designers with research-based guidelines to help them design inquiry-based learning activities. The AREE Master Teachers are currently in process of a pilot implementation of their developed curricula, with results due at the end of October 2009. This session will report on program evaluation data and identify best practices for replication of the model. Three perspectives will be provided, including views from the NASA Flight Operations Director, AREE Project Manager, and University Science Education Faculty Mentor. Three AREE Master Educators will present examples of their curriculum materials.

  5. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  6. The patient work system: An analysis of self-care performance barriers among elderly heart failure patients and their informal caregivers

    PubMed Central

    Holden, Richard J.; Schubert, Christiane C.; Mickelson, Robin S.

    2014-01-01

    Human factors and ergonomics approaches have been successfully applied to study and improve the work performance of healthcare professionals. However, there has been relatively little work in “patient-engaged human factors,” or the application of human factors to the health-related work of patients and other nonprofessionals. This study applied a foundational human factors tool, the systems model, to investigate the barriers to self-care performance among chronically ill elderly patients and their informal (family) caregivers. A Patient Work System model was developed to guide the collection and analysis of interviews, surveys, and observations of patients with heart failure (n=30) and their informal caregivers (n=14). Iterative analyses revealed the nature and prevalence of self-care barriers across components of the Patient Work System. Person-related barriers were common and stemmed from patients’ biomedical conditions, limitations, knowledge deficits, preferences, and perceptions as well as the characteristics of informal caregivers and healthcare professionals. Task barriers were also highly prevalent and included task difficulty, timing, complexity, ambiguity, conflict, and undesirable consequences. Tool barriers were related to both availability and access of tools and technologies and their design, usability, and impact. Context barriers were found across three domains—physical-spatial, social-cultural, and organizational—and multiple “spaces” such as “at home,” “on the go,” and “in the community.” Barriers often stemmed not from single factors but from the interaction of several work system components. Study findings suggest the need to further explore multiple actors, context, and interactions in the patient work system during research and intervention design, as well as the need to develop new models and measures for studying patient and family work. PMID:25479983

  7. The patient work system: an analysis of self-care performance barriers among elderly heart failure patients and their informal caregivers.

    PubMed

    Holden, Richard J; Schubert, Christiane C; Mickelson, Robin S

    2015-03-01

    Human factors and ergonomics approaches have been successfully applied to study and improve the work performance of healthcare professionals. However, there has been relatively little work in "patient-engaged human factors," or the application of human factors to the health-related work of patients and other nonprofessionals. This study applied a foundational human factors tool, the systems model, to investigate the barriers to self-care performance among chronically ill elderly patients and their informal (family) caregivers. A Patient Work System model was developed to guide the collection and analysis of interviews, surveys, and observations of patients with heart failure (n = 30) and their informal caregivers (n = 14). Iterative analyses revealed the nature and prevalence of self-care barriers across components of the Patient Work System. Person-related barriers were common and stemmed from patients' biomedical conditions, limitations, knowledge deficits, preferences, and perceptions as well as the characteristics of informal caregivers and healthcare professionals. Task barriers were also highly prevalent and included task difficulty, timing, complexity, ambiguity, conflict, and undesirable consequences. Tool barriers were related to both availability and access of tools and technologies and their design, usability, and impact. Context barriers were found across three domains-physical-spatial, social-cultural, and organizational-and multiple "spaces" such as "at home," "on the go," and "in the community." Barriers often stemmed not from single factors but from the interaction of several work system components. Study findings suggest the need to further explore multiple actors, contexts, and interactions in the patient work system during research and intervention design, as well as the need to develop new models and measures for studying patient and family work. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Evaluating virtual STEM mentoring programs: The SAGANet.org experience

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Walker, S. I.; Miller, E.; Anbar, M.; Kacar, B.; Forrester, J. H.

    2014-12-01

    Many school districts within the United States continue to seek new ways of engaging students within Science, Technology, Engineering, and Mathematics (STEM) disciplines. SAGANet.org, a web-based 501c3 Astrobiology outreach initiative, works with a number of schools, partnering K-12 students and their families with professional scientist mentors from around the world to teach and inspire students using virtual technology platforms. Current programs include two mentoring partnerships: pairing scientist-mentors with at-risk youth at the Pittsburg Community School in Pittsburg CA, and pairing scientist-mentors with families from the Kyrene del Cielo Elementary School in Chandler AZ. These programs represent two very different models for utilizing the virtual media platform provided by SAGANet.org to engage K-12 students and their families in STEM. For the former, scientists mentor the students of the Pittsburg School as part of the formal in-class curriculum. For the latter, scientists work with K-5 students and their families through Cielo's Science & Engineering Discovery Room to develop a science project as part of an informal learning experience that is independent of the formal curriculum. In this presentation, we (1) discuss the challenges and successes of engaging these two distinct audiences through virtual media, (2) present the results of how these two very-different mentoring partnership impact K-12 students science self-efficacy, interest in science, and STEM career awareness, and (3) share the impact of the mentoring experience on the mentor's confidence and self-efficacy with communicating science to the public.

  9. Extragonadal Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Extragonadal germ cell tumors (GCT) treatment depends on the type and can include surgery, radiation, chemotherapy, and stem cell transplant. Get detailed information about the treatment of newly diagnosed and recurrent extragonadal GCTs in this summary for clinicians.

  10. Improving undergraduate STEM education: The efficacy of discipline-based professional development.

    PubMed

    Manduca, Cathryn A; Iverson, Ellen R; Luxenberg, Michael; Macdonald, R Heather; McConnell, David A; Mogk, David W; Tewksbury, Barbara J

    2017-02-01

    We sought to determine whether instructional practices used by undergraduate faculty in the geosciences have shifted from traditional teacher-centered lecture toward student-engaged teaching practices and to evaluate whether the national professional development program On the Cutting Edge (hereinafter Cutting Edge) has been a contributing factor in this change. We surveyed geoscience faculty across the United States in 2004, 2009, and 2012 and asked about teaching practices as well as levels of engagement in education research, scientific research, and professional development related to teaching. We tested these self-reported survey results with direct observations of teaching using the Reformed Teaching Observation Protocol, and we conducted interviews to understand what aspects of Cutting Edge have supported change. Survey data show that teaching strategies involving active learning have become more common, that these practices are concentrated in faculty who invest in learning about teaching, and that faculty investment in learning about teaching has increased. Regression analysis shows that, after controlling for other key influences, faculty who have participated in Cutting Edge programs and who regularly use resources on the Cutting Edge website are statistically more likely to use active learning teaching strategies. Cutting Edge participants also report that learning about teaching, the availability of teaching resources, and interactions with peers have supported changes in their teaching practice. Our data suggest that even one-time participation in a workshop with peers can lead to improved teaching by supporting a combination of affective and cognitive learning outcomes.

  11. Improving undergraduate STEM education: The efficacy of discipline-based professional development

    PubMed Central

    Manduca, Cathryn A.; Iverson, Ellen R.; Luxenberg, Michael; Macdonald, R. Heather; McConnell, David A.; Mogk, David W.; Tewksbury, Barbara J.

    2017-01-01

    We sought to determine whether instructional practices used by undergraduate faculty in the geosciences have shifted from traditional teacher-centered lecture toward student-engaged teaching practices and to evaluate whether the national professional development program On the Cutting Edge (hereinafter Cutting Edge) has been a contributing factor in this change. We surveyed geoscience faculty across the United States in 2004, 2009, and 2012 and asked about teaching practices as well as levels of engagement in education research, scientific research, and professional development related to teaching. We tested these self-reported survey results with direct observations of teaching using the Reformed Teaching Observation Protocol, and we conducted interviews to understand what aspects of Cutting Edge have supported change. Survey data show that teaching strategies involving active learning have become more common, that these practices are concentrated in faculty who invest in learning about teaching, and that faculty investment in learning about teaching has increased. Regression analysis shows that, after controlling for other key influences, faculty who have participated in Cutting Edge programs and who regularly use resources on the Cutting Edge website are statistically more likely to use active learning teaching strategies. Cutting Edge participants also report that learning about teaching, the availability of teaching resources, and interactions with peers have supported changes in their teaching practice. Our data suggest that even one-time participation in a workshop with peers can lead to improved teaching by supporting a combination of affective and cognitive learning outcomes. PMID:28246629

  12. Pollution! Find a STEM solution!

    NASA Astrophysics Data System (ADS)

    Takač, Danijela; Moćan, Marina

    2016-04-01

    Primary and secondary school Pantovčak is an innovative school in downtown Zagreb, Croatia. The school is involved in many projects concerning STEM education. Pollution! Find a STEM solution! is a two year long cross-curricular project that grew out of identified need to develop STEM and ICT skills more. Pisa results make evident that students' knowledge is poor and motivation for math and similar subjects is low. Implying priorities of European Commission, like e-learning, raises motivation and also develops basic skills and improves knowledge in science, math, physic, ICT. Main objectives are to increase students' interest in STEM education and careers and introduce them to all available new trends in technology, engineering and science in their region by visiting clean technology industries and strengthening links with them, to introduce some future digital jobs and prepare students for rapid technological changes by integrating ICT into classroom practice more, to highlight the importance of global environmental issues and improve the knowledge in the areas of sustainable development and renewable energy, to develop collaborative partnership between schools and the wider community in formal, non-formal and informal learning, to support multilingualism by publishing Open Educational Resources in 8 different languages and to strengthen the professional profile of the teaching profession. The project brings together 231 teachers and 2729 students from five different European countries in learning to think globally and work on activities that contribute to the community's well-being. There are altogether 33 activities, divided in 4 categories. STEM activities are focused on students building the devices for measuring air, light and noise pollution in their school and homes. They use the scientific method to analyze the data and compare the results with their peers to find a solution. Eskills, digital literacy and digital jobs are focused on introducing career opportunities in STEM and ICT, meetings with scientists and engineers, developing 21st century skills and eskills in order to make students more employable in the future. Clean technology activities will introduce students to, at least, 3 different clean technology and engineering facilities. Universe Awareness project's vision is to use the beauty and grandeur of the Universe to inspire young children and encourage them to develop an interest in science and technology. The program also aims to introduce children to the idea of global citizenship and tolerance at a crucial stage of their development - to show them that they are part of an international community. Workshops "Little scientists" consists of 5 modules for gifted students - during these modules the youngest students are introduced to scientific experiments. Experiments help children develop their skills at goal-setting, planning and problem-solving. The largest value of the project is that it is based on key competences that teachers and students of the 21st century should have, it integrates critical thinking, bust the English language use through exploring and using on-line communication, collaboration and publication. Children get more curious and motivated about sciences. Through those experiences they are connecting their learning to real world problems and solutions.

  13. Space Weather Outreach: Connection to STEM Standards

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.

    2008-12-01

    Many scientists are studying the Sun-Earth system and attempting to provide timely, accurate, and reliable space environment observations and forecasts. Research programs and missions serve as an ideal focal point for creating educational content, making this an ideal time to inform the public about the importance and value of space weather research. In order to take advantage of this opportunity, the Space Science Institute (SSI) is developing a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the exciting discoveries from this important scientific discipline. The Space Weather Outreach program has the following five components: (1) the Space Weather Center Website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. An important factor in the success of this program will be its alignment with STEM standards especially those related to science and mathematics. This presentation will describe the Space Weather Outreach program and how standards are being used in the development of each of its components.

  14. The American Institute of Aeronautics and Astronautics pre-college outreach program

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Bacon, L.; Copper, K. K.; Hansen, L. J.; Sanchez, M. J.

    2008-12-01

    Many United States, school children perceive science, technology, engineering, and mathematics (STEM) as difficult, boring and often irrelevant subjects. The possible reasons for this problem are endlessly debated. However, the economic, social, and overall national importance of producing graduates who are technically literate and enthusiastic in their support of a rational scientific world is essential to our nation. This apparent STEM crisis should motivate the many scientific and engineering societies to develop STEM outreach programs aimed at students, parents, teachers and schools (grades K-12). The American Institute of Aeronautics and Astronautics (AIAA) is among those organizations that have identified the need to educate students and teachers about STEM current events and their direct effects on the United States population in a way that motivates both. The AIAA has established a pre-college outreach program that has several major elements that will be described in this paper. Elements focused on the teachers include a pre-college Educator Associate Membership program, classroom grants to support hands-on learning activities, Educator of the Year awards and recognition program and two national workshop events. The first workshop event, Passport to the Future, is held annually in conjunction with the Joint Propulsion Conference. It is intended to provide summertime training in Aerospace science education to classroom teachers, in conjunction with a national professional conference. The second workshop, Education Alley, is held in the fall in conjunction with the “Space” series of conferences. This program is aimed at direct outreach to local students in the conference host city, providing fun, interesting, and educational events that promote STEM. The AIAA also encourages and supports pre-college outreach activities sponsored by the local AIAA sections through leadership training, activity and material support.

  15. Planetary Science Educational Materials for Out-of-School Time Educators

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings.

  16. Gimme an "E"!

    ERIC Educational Resources Information Center

    Hoisington, Cynthia; Winokur, Jeff

    2015-01-01

    Early childhood educators have long debated how science should be introduced and taught to preschoolers. In the current Science, Technology, Engineering, and Mathematics (STEM) education climate, this conversation has expanded to include the role of engineering in the preschool curriculum. Instructors and coaches in the professional development…

  17. Cervical Cancer Prevention (PDQ®)—Health Professional Version

    Cancer.gov

    Cervical cancer prevention stems from the knowledge that certain types of human papillomavirus (HPV) are responsible for nearly all cervical cancers. Get detailed information about the factors associated with cervical cancer risk and approaches for preventing it in this summary for clinicians.

  18. AIDS-Related Lymphoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    AIDS-related lymphoma treatment may include chemotherapy, radiation therapy, high-dose chemotherapy with stem cell transplant, and/or targeted therapy. Get detailed information about the diagnosis and treatment of newly diagnosed and recurrent HIV-related lymphoma in this summary for clinicians.

  19. AIDS-Related Lymphoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    AIDS-related lymphoma presents and is treated differently compared to lymphoma in non-HIV patients. Treatments include chemotherapy, radiation therapy, high-dose chemotherapy with stem cell transplant, and targeted therapy. Get detailed information about HIV-related lymphoma in this summary for clinicians.

  20. WebGURU: The Web-Based Guide to Research for Undergraduates

    ERIC Educational Resources Information Center

    Mabrouk, Patricia; McIntyre, Ryan; Virrankoski, Milena; Jeliffe, Kirsten

    2007-01-01

    Undergraduate research (UR) is widely promoted by faculty, administrators, institutions of higher learning, government laboratories, private industry, professional associations, and funding agencies as an effective method of training college students pursuing careers in science, technology, engineering, and mathematics (STEM) disciplines at…

Top