Mechanical Equivalent of Heat--Software for a Thermistor
ERIC Educational Resources Information Center
Boleman, Michael
2008-01-01
The Mechanical Equivalent of Heat Apparatus from PASCO scientific provides the means for doing a simple experiment to determine the mechanical equivalent of heat, "J." A necessary step of this experiment is to determine the temperature of an aluminum cylinder. By measuring the resistance of a thermistor embedded in the cylinder, one is able to…
Development and test of combustion chamber for Stirling engine heated by natural gas
NASA Astrophysics Data System (ADS)
Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu
2014-04-01
The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.
Mechanical and Metallurgical Evolution of Stainless Steel 321 in a Multi-step Forming Process
NASA Astrophysics Data System (ADS)
Anderson, M.; Bridier, F.; Gholipour, J.; Jahazi, M.; Wanjara, P.; Bocher, P.; Savoie, J.
2016-04-01
This paper examines the metallurgical evolution of AISI Stainless Steel 321 (SS 321) during multi-step forming, a process that involves cycles of deformation with intermediate heat treatment steps. The multi-step forming process was simulated by implementing interrupted uniaxial tensile testing experiments. Evolution of the mechanical properties as well as the microstructural features, such as twins and textures of the austenite and martensite phases, was studied as a function of the multi-step forming process. The characteristics of the Strain-Induced Martensite (SIM) were also documented for each deformation step and intermediate stress relief heat treatment. The results indicated that the intermediate heat treatments considerably increased the formability of SS 321. Texture analysis showed that the effect of the intermediate heat treatment on the austenite was minor and led to partial recrystallization, while deformation was observed to reinforce the crystallographic texture of austenite. For the SIM, an Olson-Cohen equation type was identified to analytically predict its formation during the multi-step forming process. The generated SIM was textured and weakened with increasing deformation.
Step - wise transient method - Influence of heat source inertia
NASA Astrophysics Data System (ADS)
Malinarič, Svetozár; Dieška, Peter
2016-07-01
Step-wise transient (SWT) method is an experimental technique for measuring the thermal diffusivity and conductivity of materials. Theoretical models and experimental apparatus are presented and the influence of the heat source capacity are investigated using the experiment simulation. The specimens from low density polyethylene (LDPE) were measured yielding the thermal diffusivity 0.165 mm2/s and thermal conductivity 0.351 W/mK with the coefficient of variation less than 1.4 %. The heat source capacity caused the systematic error of the results smaller than 1 %.
Investigation of the influence of a step change in surface roughness on turbulent heat transfer
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.
1991-01-01
The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.
Heat Transfer on a Flat Plate with Uniform and Step Temperature Distributions
NASA Technical Reports Server (NTRS)
Bahrami, Parviz A.
2005-01-01
Heat transfer associated with turbulent flow on a step-heated or cooled section of a flat plate at zero angle of attack with an insulated starting section was computationally modeled using the GASP Navier-Stokes code. The algebraic eddy viscosity model of Baldwin-Lomax and the turbulent two-equation models, the K- model and the Shear Stress Turbulent model (SST), were employed. The variations from uniformity of the imposed experimental temperature profile were incorporated in the computations. The computations yielded satisfactory agreement with the experimental results for all three models. The Baldwin- Lomax model showed the closest agreement in heat transfer, whereas the SST model was higher and the K-omega model was yet higher than the experiments. In addition to the step temperature distribution case, computations were also carried out for a uniformly heated or cooled plate. The SST model showed the closest agreement with the Von Karman analogy, whereas the K-omega model was higher and the Baldwin-Lomax was lower.
Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment
NASA Astrophysics Data System (ADS)
Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.
2012-04-01
Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the values obtained are matched with the overall evaporation, estimated through the scale in terms of weight loss. A numerical model able to solve the coupled heat-moisture diffusive equations is used to interpolate the obtained measures in the second and third step.
Power-Stepped HF Cross Modulation Experiments at HAARP
NASA Astrophysics Data System (ADS)
Greene, S.; Moore, R. C.; Langston, J. S.
2013-12-01
High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.
Heat Transfer Experiments on a Pulse Detonation Driven Combustor
2011-03-01
steps that need to take place before such a hybrid is successfully developed. PDEs obtain their increased efficiency by means of detonation , a pressure...combustion in the Brayton cycle. A PDE utilizes detonations , which offer much higher pressures at the site of fuel ignition, generating less...HEAT TRANSFER EXPERIMENTS ON A PULSE DETONATION DRIVEN COMBUSTOR THESIS Nicholas C. Longo, Captain, USAF AFIT/GAE/ENY/11-M18
A fundamental study of nucleate pool boiling under microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1991-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
Dependence of core heating properties on heating pulse duration and intensity
NASA Astrophysics Data System (ADS)
Johzaki, Tomoyuki; Nagatomo, Hideo; Sunahara, Atsushi; Cai, Hongbo; Sakagami, Hitoshi; Mima, Kunioki
2009-11-01
In the cone-guiding fast ignition, an imploded core is heated by the energy transport of fast electrons generated by the ultra-intense short-pulse laser at the cone inner surface. The fast core heating (˜800eV) has been demonstrated at integrated experiments with GEKKO-XII+ PW laser systems. As the next step, experiments using more powerful heating laser, FIREX, have been started at ILE, Osaka university. In FIREX-I (phase-I of FIREX), our goal is the demonstration of efficient core heating (Ti ˜ 5keV) using a newly developed 10kJ LFEX laser. In the first integrated experiments, the LFEX laser is operated with low energy mode (˜0.5kJ/4ps) to validate the previous GEKKO+PW experiments. Between the two experiments, though the laser energy is similar (˜0.5kJ), the duration is different; ˜0.5ps in the PW laser and ˜ 4ps in the LFEX laser. In this paper, we evaluate the dependence of core heating properties on the heating pulse duration on the basis of integrated simulations with FI^3 (Fast Ignition Integrated Interconnecting) code system.
NASA Astrophysics Data System (ADS)
Martel, C. J.; Phetteplace, G. E.
1982-05-01
This report presents a five-step procedure for evaluating the technical and economic feasibility of using heat pumps to recover heat from treatment plant effluent. The procedure is meant to be used at the facility planning level by engineers who are unfamiliar with this technology. An example of the use of the procedure and general design information are provided. Also, the report reviews the operational experience with heat pumps at wastewater plants located in Fairbanks, Alaska, Madison, Wisconsin, and Wilton, Maine.
NASA IN-STEP Cryo System Experiment flight test
NASA Astrophysics Data System (ADS)
Russo, S. C.; Sugimura, R. S.
The Cryo System Experiment (CSE), a NASA In-Space Technology Experiments Program (IN-STEP) flight experiment, was flown on Space Shuttle Discovery (STS 63) in February 1995. The experiment was developed by Hughes Aircraft Company to validate in zero- g space a 65 K cryogenic system for focal planes, optics, instruments or other equipment (gamma-ray spectrometers and infrared and submillimetre imaging instruments) that requires continuous cryogenic cooling. The CSE is funded by the NASA Office of Advanced Concepts and Technology's IN-STEP and managed by the Jet Propulsion Laboratory (JPL). The overall goal of the CSE was to validate and characterize the on-orbit performance of the two thermal management technologies that comprise a hybrid cryogenic system. These thermal management technologies consist of (1) a second-generation long-life, low-vibration, Stirling-cycle 65 K cryocooler that was used to cool a simulated thermal energy storage device (TRP) and (2) a diode oxygen heat pipe thermal switch that enables physical separation between a cryogenic refrigerator and a TRP. All CSE experiment objectives and 100% of the experiment success criteria were achieved. The level of confidence provided by this flight experiment is an important NASA and Department of Defense (DoD) milestone prior to multi-year mission commitment. Presented are generic lessons learned from the system integration of cryocoolers for a flight experiment and the recorded zero- g performance of the Stirling cryocooler and the diode oxygen heat pipe.
A Fundamental Study of Nucleate Pool Boiling Under Microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1996-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
Simultaneous Measurement of Thermal Conductivity and Specific Heat in a Single TDTR Experiment
NASA Astrophysics Data System (ADS)
Sun, Fangyuan; Wang, Xinwei; Yang, Ming; Chen, Zhe; Zhang, Hang; Tang, Dawei
2018-01-01
Time-domain thermoreflectance (TDTR) technique is a powerful thermal property measurement method, especially for nano-structures and material interfaces. Thermal properties can be obtained by fitting TDTR experimental data with a proper thermal transport model. In a single TDTR experiment, thermal properties with different sensitivity trends can be extracted simultaneously. However, thermal conductivity and volumetric heat capacity usually have similar trends in sensitivity for most materials; it is difficult to measure them simultaneously. In this work, we present a two-step data fitting method to measure the thermal conductivity and volumetric heat capacity simultaneously from a set of TDTR experimental data at single modulation frequency. This method takes full advantage of the information carried by both amplitude and phase signals; it is a more convenient and effective solution compared with the frequency-domain thermoreflectance method. The relative error is lower than 5 % for most cases. A silicon wafer sample was measured by TDTR method to verify the two-step fitting method.
Thermal energy management process experiment
NASA Technical Reports Server (NTRS)
Ollendorf, S.
1984-01-01
The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.
A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders
NASA Astrophysics Data System (ADS)
Stamatis, D.; Ermoline, A.; Dreizin, E. L.
2012-12-01
A multi-step reaction model is developed to describe heterogeneous processes occurring upon heating of an Al-CuO nanocomposite material prepared by arrested reactive milling. The reaction model couples a previously derived Cabrera-Mott oxidation mechanism describing initial, low temperature processes and an aluminium oxidation model including formation of different alumina polymorphs at increased film thicknesses and higher temperatures. The reaction model is tuned using traces measured by differential scanning calorimetry. Ignition is studied for thin powder layers and individual particles using respectively the heated filament (heating rates of 103-104 K s-1) and laser ignition (heating rate ∼106 K s-1) experiments. The developed heterogeneous reaction model predicts a sharp temperature increase, which can be associated with ignition when the laser power approaches the experimental ignition threshold. In experiments, particles ignited by the laser beam are observed to explode, indicating a substantial gas release accompanying ignition. For the heated filament experiments, the model predicts exothermic reactions at the temperatures, at which ignition is observed experimentally; however, strong thermal contact between the metal filament and powder prevents the model from predicting the thermal runaway. It is suggested that oxygen gas release from decomposing CuO, as observed from particles exploding upon ignition in the laser beam, disrupts the thermal contact of the powder and filament; this phenomenon must be included in the filament ignition model to enable prediction of the temperature runaway.
Du, Xiuyuan; Li, Baizhan; Liu, Hong; Yang, Dong; Yu, Wei; Liao, Jianke; Huang, Zhichao; Xia, Kechao
2014-01-01
This paper reports on studies of the effect of temperature step-change (between a cool and a neutral environment) on human thermal sensation and skin temperature. Experiments with three temperature conditions were carried out in a climate chamber during the period in winter. Twelve subjects participated in the experiments simulating moving inside and outside of rooms or cabins with air conditioning. Skin temperatures and thermal sensation were recorded. Results showed overshoot and asymmetry of TSV due to the step-change. Skin temperature changed immediately when subjects entered a new environment. When moving into a neutral environment from cool, dynamic thermal sensation was in the thermal comfort zone and overshoot was not obvious. Air-conditioning in a transitional area should be considered to limit temperature difference to not more than 5°C to decrease the unacceptability of temperature step-change. The linear relationship between thermal sensation and skin temperature or gradient of skin temperature does not apply in a step-change environment. There is a significant linear correlation between TSV and Qloss in the transient environment. Heat loss from the human skin surface can be used to predict dynamic thermal sensation instead of the heat transfer of the whole human body. PMID:25136808
Influence of different heat treatment methods of titania film on performance of DSSCs
NASA Astrophysics Data System (ADS)
More, Venumadhav; Mokurala, Krishna; Bhargava, Parag
2018-04-01
Titania mesoporous film is a key component of dye-sensitized solar cells (DSSCs) as it transfers electrons from dye molecule to external circuit through the transparent conducting oxide (TCO). Interparticle connectivity, porosity and cracks in the titania films play an important role in determining the performance of DSSCs. The heating schedule with respect to the repetitive coating to build up titania film thickness impacts the titania film characteristics. In the present study, experiments were designed to carry out heat treatments with expectation of improving connectivity and healing cracks. Repetitive screen printing was carried out with either heat treatment after each print step (multiple sintering) or the heat treatment was carried out just once after the desired thickness had been attained (single-step sintering). Interconnectivity of the titania particles in the sintered titania film was analyzed by impedance spectroscopy and nanoindentation. Titania films sintered by MS showed better performance in terms of higher efficiency for the corresponding DSSCs than those prepared using titania films sintered by SS.
NASA Astrophysics Data System (ADS)
de Groot, L. V.; Fabian, K.; Bakelaar, I. A.; Dekkers, M. J.
2014-12-01
Obtaining reliable estimates of the absolute palaeointensity of the Earth's magnetic field is notoriously difficult. Many methods to obtain paleointensities from suitable records such as lavas and archeological artifacts involve heating the samples. These heating steps are believed to induce 'magnetic alteration' - a process that is still poorly understood but prevents obtaining correct paleointensity estimates. To observe this magnetic alteration directly we imaged the magnetic domain state of titanomagnetite particles - a common carrier of the magnetic remanence in samples used for paleointensity studies. We selected samples from the 1971-flow of Mt. Etna from a site that systematically yields underestimates of the known intensity of the paleofield - in spite of rigorous testing by various groups. Magnetic Force Microscope images were taken before and after a heating step typically used in absolute palaeointensity experiments. Before heating, the samples feature distinct, blocky domains that sometimes seem to resemble a classical magnetite domain structure. After imparting a partial thermo-remanent magnetization at a temperature often critical to paleointensity experiments (250 °C) the domain state of the same titanomagnetite grains changes into curvier, wavy domains. Furthermore, these structures appeared to be unstable over time: after one-year storage in a magnetic field-free environment the domain states evolved into a viscous remanent magnetization state. Our observations may qualitatively explain reported underestimates from technically successful paleointensity experiments for this site and other sites reported previously. Furthermore the occurrence of intriguing observations such as 'the drawer storage effect' by Shaar et al (EPSL, 2011), and viscous magnetizations observed by Muxworthy and Williams (JGR, 2006) may be (partially) explained by our observations. The major implications of our study for all palaeointensity methods involving heating may be evident.
Microwave Therapy for Bone Tumors
NASA Astrophysics Data System (ADS)
Takakuda, Kazuo; Inaoka, Shuken; Saito, Hirokazu; Hassan, Moinuddin; Koyama, Yoshikazu; Kuroda, Hiroshi; Kanaya, Tomohiro; Kosaka, Toshifumi; Tanaka, Shigeo; Miyairi, Hiroo; Shinomiya, Kenichi
In vivo microwave treatments for bone tumor are designed, which enable us to conserve the activity and functionality of the matrix of living tissues. This treatment is composed of two steps. In the first step, the tumor was coagulated by the application of microwaves emitted from the antenna inserted into the tumor tissue, and then removed. In the second step, the surrounding tissue suspected to be invaded with transformed cells was covered with hydro gels and heated similarly. The tissue itself was heated by the conduction from the gels. The tissue temperature should be kept at 60°C for 30 minutes. This treatment should kill the whole cells within the tissues, but the mechanical strength and the biochemical activity of the matrix should be left intact. The matrix preserves the mechanical functions and ensures the maximum regeneration ability of the tissue. In this study, various hydro gels were examined and the most promising one was selected. Animal experiments were carried out and successful heating verified the applicability of the treatment.
Power-Stepped HF Cross-Modulation Experiments: Simulations and Experimental Observations
NASA Astrophysics Data System (ADS)
Greene, S.; Moore, R. C.
2014-12-01
High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. The interaction between the heating wave and the probing pulse depends on the ambient and modified conditions of the D-region ionosphere. Cross-modulation observations are employed as a measure of the HF-modified refractive index. We employ an optimized version of Fejer's method that we developed during previous experiments. Experiments were performed in March 2013 at the High Frequency Active Auroral Research Program (HAARP) observatory in Gakona, Alaska. During these experiments, the power of the HF heating signal incrementally increased in order to determine the dependence of cross-modulation on HF power. We found that a simple power law relationship does not hold at high power levels, similar to previous ELF/VLF wave generation experiments. In this paper, we critically compare these experimental observations with the predictions of a numerical ionospheric HF heating model and demonstrate close agreement.
NASA Technical Reports Server (NTRS)
Ochterbeck, J. M.; Peterson, G. P.
1991-01-01
An attempt is made to determine how a heat pipe freezes under various low load and/or no load conditions in both one-g and micro-g environments. Also of interest are the mechanisms that can be used to restart the heat pipe after freezing has occurred. Particular attention is given to step function power reductions and the resulting distribution of the working fluid after freezing has occurred and the effect of noncondensible gases on the frozen configuration and the restart characteristics.
Aqueous solvation from the water perspective.
Ahmed, Saima; Pasti, Andrea; Fernández-Terán, Ricardo J; Ciardi, Gustavo; Shalit, Andrey; Hamm, Peter
2018-06-21
The response of water re-solvating a charge-transfer dye (deprotonated Coumarin 343) after photoexcitation has been measured by means of transient THz spectroscopy. Two steps of increasing THz absorption are observed, a first ∼10 ps step on the time scale of Debye relaxation of bulk water and a much slower step on a 3.9 ns time scale, the latter of which reflecting heating of the bulk solution upon electronic relaxation of the dye molecules from the S 1 back into the S 0 state. As an additional reference experiment, the hydroxyl vibration of water has been excited directly by a short IR pulse, establishing that the THz signal measures an elevated temperature within ∼1 ps. This result shows that the first step upon dye excitation (10 ps) is not limited by the response time of the THz signal; it rather reflects the reorientation of water molecules in the solvation layer. The apparent discrepancy between the relatively slow reorientation time and the general notion that water is among the fastest solvents with a solvation time in the sub-picosecond regime is discussed. Furthermore, non-equilibrium molecular dynamics simulations have been performed, revealing a close-to-quantitative agreement with experiment, which allows one to disentangle the contribution of heating to the overall THz response from that of water orientation.
Technology Transfer at Edgar Mine: Phase 1; October 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad R.; Bauer, Stephen; Nakagawa, Masami
The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed asmore » a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.« less
Heat exchanger life extension via in-situ reconditioning
Holcomb, David E.; Muralidharan, Govindarajan
2016-06-28
A method of in-situ reconditioning a heat exchanger includes the steps of: providing an in-service heat exchanger comprising a precipitate-strengthened alloy wherein at least one mechanical property of the heat exchanger is degraded by coarsening of the precipitate, the in-service heat exchanger containing a molten salt working heat exchange fluid; deactivating the heat exchanger from service in-situ; in a solution-annealing step, in-situ heating the heat exchanger and molten salt working heat exchange fluid contained therein to a temperature and for a time period sufficient to dissolve the coarsened precipitate; in a quenching step, flowing the molten salt working heat-exchange fluid through the heat exchanger in-situ to cool the alloy and retain a supersaturated solid solution while preventing formation of large precipitates; and in an aging step, further varying the temperature of the flowing molten salt working heat-exchange fluid to re-precipitate the dissolved precipitate.
K/T age for the popigai impact event
NASA Technical Reports Server (NTRS)
Deino, A. L.; Garvin, J. B.; Montanari, S.
1991-01-01
The multi-ringed POPIGAI structure, with an outer ring diameter of over 100 km, is the largest impact feature currently recognized on Earth with an Phanerozoic age. The target rocks in this relatively unglaciated region consist of upper Proterozoic through Mesozoic platform sediments and igneous rocks overlying Precambrian crystalline basement. The reported absolute age of the Popigai impact event ranges from 30.5 to 39 Ma. With the intent of refining this age estimate, a melt-breccia (suevite) sample from the inner regions of the Popigai structure was prepared for total fusion and step-wise heating Ar-40/Ar-39 analysis. Although the total fusion and step-heating experiments suggest some degree of age heterogeneity, the recurring theme is an age of around 64 to 66 Ma.
den Besten, Heidy M W; Berendsen, Erwin M; Wells-Bennik, Marjon H J; Straatsma, Han; Zwietering, Marcel H
2017-07-17
Realistic prediction of microbial inactivation in food requires quantitative information on variability introduced by the microorganisms. Bacillus subtilis forms heat resistant spores and in this study the impact of strain variability on spore heat resistance was quantified using 20 strains. In addition, experimental variability was quantified by using technical replicates per heat treatment experiment, and reproduction variability was quantified by using two biologically independent spore crops for each strain that were heat treated on different days. The fourth-decimal reduction times and z-values were estimated by a one-step and two-step model fitting procedure. Grouping of the 20 B. subtilis strains into two statistically distinguishable groups could be confirmed based on their spore heat resistance. The reproduction variability was higher than experimental variability, but both variabilities were much lower than strain variability. The model fitting approach did not significantly affect the quantification of variability. Remarkably, when strain variability in spore heat resistance was quantified using only the strains producing low-level heat resistant spores, then this strain variability was comparable with the previously reported strain variability in heat resistance of vegetative cells of Listeria monocytogenes, although in a totally other temperature range. Strains that produced spores with high-level heat resistance showed similar temperature range for growth as strains that produced low-level heat resistance. Strain variability affected heat resistance of spores most, and therefore integration of this variability factor in modelling of spore heat resistance will make predictions more realistic. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, Dann A.; Blanchat, Thomas K.
It is necessary to improve understanding and develop temporally- and spatially-resolved integral scale validation data of the heat flux incident to a complex object in addition to measuring the thermal response of said object located within the fire plume for the validation of the SIERRA/FUEGO/SYRINX fire and SIERRA/CALORE codes. To meet this objective, a complex calorimeter with sufficient instrumentation to allow validation of the coupling between FUEGO/SYRINX/CALORE has been designed, fabricated, and tested in the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisonmore » between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. This report presents the data validation steps and processes, the results of the penlight radiant heat experiments (for the purpose of validating the CALORE heat transfer modeling of the complex calorimeter), and the results of the fire tests in FLAME.« less
Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments
NASA Astrophysics Data System (ADS)
Jeanloz, R.
2015-12-01
Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed samples may thus offer the closest approach to an isentrope, and therefore the most extreme compression at which matter can be studied at the "warm" temperatures of planetary interiors.
A new device for high-temperature in situ GISAXS measurements
NASA Astrophysics Data System (ADS)
Fritz-Popovski, Gerhard; Bodner, Sabine C.; Sosada-Ludwikowska, Florentyna; Maier, Günther A.; Morak, Roland; Chitu, Livia; Bruegemann, Lutz; Lange, Joachim; Krane, Hans-Georg; Paris, Oskar
2018-03-01
A heating stage originally designed for diffraction experiments is implemented into a Bruker NANOSTAR instrument for in situ grazing incidence small-angle x-ray scattering experiments. A controlled atmosphere is provided by a dome separating the sample environment from the evacuated scattering instrument. This dome is double shelled in order to enable cooling water to flow through it. A mesoporous silica film templated by a self-assembled block copolymer system is investigated in situ during step-wise heating in air. The GISAXS pattern shows the structural development of the ordered lattice of parallel cylindrical pores. The deformation of the elliptical pore-cross section perpendicular to the film surface was studied with increasing temperature. Moreover, the performance of the setup was tested by controlled in situ heating of a copper surface under controlled oxygen containing atmosphere.
Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl
2017-12-01
In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Juice production is a multibillion dollar industry and an economical way to use fruit past seasonal harvests. To evaluate how production steps influence not-from-concentrate (NFC) blueberry (Vaccinium sp.) juice recovery, bench top and pilot scale experiments were performed. In bench-top, southern h...
Energy--What to Do until the Computer Comes.
ERIC Educational Resources Information Center
Johnston, Archie B.
Drawing from Tallahassee Community College's (TCC's) experiences with energy conservation, this paper offers suggestions for reducing energy costs through computer-controlled systems and other means. After stating the energy problems caused by TCC's multi-zone heating and cooling system, the paper discusses the five-step process by which TCC…
A paleointensity technique for multidomain igneous rocks
NASA Astrophysics Data System (ADS)
Wang, Huapei; Kent, Dennis V.
2013-10-01
We developed a paleointensity technique to account for concave-up Arai diagrams due to multidomain (MD) contributions to determine unbiased paleointensities for 24 trial samples from site GA-X in Pleistocene lavas from Floreana Island, Galapagos Archipelago. The main magnetization carrier is fine-grained low-titanium magnetite of variable grain size. We used a comprehensive back-zero-forth (BZF) heating technique by adding an additional zero-field heating between the Thellier two opposite in-field heating steps in order to estimate paleointensities in various standard protocols and provide internal self-consistency checks. After the first BZF experiment, we gave each sample a total thermal remanent magnetization (tTRM) by cooling from the Curie point in the presence of a low (15 µT) laboratory-applied field. Then we repeated the BZF protocol, with the laboratory-applied tTRM as a synthetic natural remanent magnetization (NRM), using the same laboratory-applied field and temperature steps to obtain the synthetic Arai signatures, which should only represent the domain-state dependent properties of the samples. We corrected the original Arai diagrams from the first BZF experiment by using the Arai signatures from the repeated BZF experiment, which neutralizes the typical MD concave-up effect. Eleven samples meet the Arai diagram post-selection criteria and provide qualified paleointensity estimates with a mean value for site GA-X of 4.23 ± 1.29 µT, consistent with an excursional geomagnetic field direction reported for this site.
Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2001-01-01
The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the critical point, so getting heat out of the compressed bubble is observably slow. This gives the appearance of a backward heat flow, or heat flow from a cold surface to a warm fluid.
NASA Astrophysics Data System (ADS)
Shah, Syed Afaq Ali; Sayyad, Muhammad Hassan; Abdulkarim, Salem; Qiao, Qiquan
2018-05-01
A step-by-step heat treatment was applied to ruthenium-based N719 dye solution for its potential application in dye-sensitized solar cells (DSSCs). The effects were analyzed and compared with standard untreated devices. A significant increase in short circuit current density was observed by employing a step-by-step heating method for dye solution in DSSCs. This increase of J sc is attributed to the enhancement in dye adsorption by the surface of the semiconductor and the higher number of charge carriers generated. DSSCs fabricated by a heated dye solution have achieved an overall power conversion efficiency of 8.41% which is significantly higher than the efficiency of 7.31% achieved with DSSCs fabricated without heated dye. Electrochemical impedance spectroscopy and capacitance voltage studies were performed to understand the better performance of the device fabricated with heated dye. Furthermore, transient photocurrent and transient photovoltage measurements were also performed to gain an insight into interfacial charge carrier recombinations.
NASA Astrophysics Data System (ADS)
Sinha, Archana; Gupta, Rajesh
2017-10-01
Delamination significantly affects the performance and reliability of photovoltaic (PV) modules. Recently, an active infrared thermography approach using step heating has been exploited for the detection and characterisation of delamination in PV modules. However, step heating takes longer observation time and causes overheating problems. This paper presents the effects of different thermal excitation waveforms namely rectangular, half-sine and short pulse, on the detection and characterisation of delamination in PV module by experiments and simulations. For simulation, a 3-dimensional electro-thermal model of heat conduction, based on resistance-capacitance network approach, has been exploited to study the variation in maximum thermal contrast and peak contrast time with the delamination thickness and heating parameters. Results show that the rectangular waveform provides better detection of delamination due to higher absolute contrast, while the half-sine waveform allows better characterisation of delamination in the PV modules with low-cost and low-power heat source. The high-energy short pulse enabled quick visualisation of delamination, but has limited practical implementation. The advantages and limitations of each waveform have been highlighted to assess the specific requirement for appropriate choice in the non-destructive thermographic inspection of delamination in PV modules at the manufacturing units or outdoor fields.
Fusion of Escherichia coli heat-stable enterotoxin and heat-labile enterotoxin B subunit.
Guzman-Verduzco, L M; Kupersztoch, Y M
1987-11-01
The 3' terminus of the DNA coding for the extracellular Escherichia coli heat-stable enterotoxin (ST) devoid of transcription and translation stop signals was fused to the 5' terminus of the DNA coding for the periplasmic B subunit of the heat-labile enterotoxin (LTB) deleted of ribosomal binding sites and leader peptide. By RNA-DNA hybridization analysis, it was shown that the fused DNA was transcribed in vivo into an RNA species in close agreement with the expected molecular weight inferred from the nucleotide sequence. The translation products of the fused DNA resulted in a hybrid molecule recognized in Western blots (immunoblots) with antibodies directed against the heat-labile moiety. Anti-LTB antibodies coupled to a solid support bound ST and LTB simultaneously when incubated with ST-LTB cellular extracts. By [35S]cysteine pulse-chase experiments, it was shown that the fused ST-LTB polypeptide was converted from a precursor with an equivalent electrophoretic mobility of 20,800 daltons to an approximately 18,500-dalton species, which accumulated within the cell. The data suggest that wild-type ST undergoes at least two processing steps during its export to the culture supernatant. Blocking the natural carboxy terminus of ST inhibited the second proteolytic step and extracellular delivery of the hybrid molecule.
NASA Astrophysics Data System (ADS)
Agishev, B. Y.; Boltenko, E. A.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Komov, A. T.; Smorchova, Y. V.
2018-03-01
The effectiveness of the heat exchange intensifier “rib-twisted wire” is considered in this paper. The main goal is to study the influence of the wire coiling step t on heat transfer and hydraulic resistance for different values Ḣ of the dimensionless height of the edge Ḣ, as well as some results on heat exchange during bubbly boiling in an annular channel. Show: • a brief description and an image of the heat exchange intensifier “rib-twisted wire” • generalized results of studies of heat exchange and hydraulic resistance in the annular channel in the single-phase convection with different geometric characteristics of the intensifier; • empirical correlations of the generalized experimental results that allow to calculating the coefficient of hydraulic resistance and heat transfer in the range of regime parameters in the single-phase convection that is being studied. • some results of experiments in bubbly boiling regimes and near-critical thermal loads.
NASA Astrophysics Data System (ADS)
Santi, S. S.; Renanto; Altway, A.
2018-01-01
The energy use system in a production process, in this case heat exchangers networks (HENs), is one element that plays a role in the smoothness and sustainability of the industry itself. Optimizing Heat Exchanger Networks (HENs) from process streams can have a major effect on the economic value of an industry as a whole. So the solving of design problems with heat integration becomes an important requirement. In a plant, heat integration can be carried out internally or in combination between process units. However, steps in the determination of suitable heat integration techniques require long calculations and require a long time. In this paper, we propose an alternative step in determining heat integration technique by investigating 6 hypothetical units using Pinch Analysis approach with objective function energy target and total annual cost target. The six hypothetical units consist of units A, B, C, D, E, and F, where each unit has the location of different process streams to the temperature pinch. The result is a potential heat integration (ΔH’) formula that can trim conventional steps from 7 steps to just 3 steps. While the determination of the preferred heat integration technique is to calculate the potential of heat integration (ΔH’) between the hypothetical process units. Completion of calculation using matlab language programming.
NASA Astrophysics Data System (ADS)
Shinozuka, Machiko; Shimazaki, Natsumi; Ogawa, Emiyu; Machida, Naoki; Arai, Tsunenori
2014-02-01
We studied the relations between the time history of smooth muscle cells (SMCs) death rate and heating condition in vitro to clarify cell death mechanism in heating angioplasty, in particular under the condition in which intimal hyperplasia growth had been prevented in vivo swine experiment. A flow heating system on the microscope stage was used for the SMCs death rate measurement during or after the heating. The cells were loaded step-heating by heated flow using a heater equipped in a Photo-thermo dynamic balloon. The heating temperature was set to 37, 50-60°C. The SMCs death rate was calculated by a division of PI stained cell number by Hoechst33342 stained cell number. The SMCs death rate increased 5-10% linearly during 20 s with the heating. The SMCs death rate increased with duration up to 15 min after 5 s heating. Because fragmented nuclei were observed from approximately 5 min after the heating, we defined that acute necrosis and late necrosis were corresponded to within 5 min after the heating and over 5 min after the heating, respectively. This late necrosis is probably corresponding to apoptosis. The ratio of necrotic interaction divided the acute necrosis rate by the late necrosis was calculated based on this consideration as 1.3 under the particular condition in which intimal hyperplasia growth was prevented in vivo previous porcine experiment. We think that necrotic interaction rate is larger than expected rate to obtain intimal hyperplasia suppression.
Design and test of a compact optics system for the pool boiling experiment
NASA Technical Reports Server (NTRS)
Ling, Jerri S.; Laubenthal, James R.
1990-01-01
The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.
Thermal and optical modeling of "blackened" tips for diode laser surgery
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Skrypnik, Alexei V.; Kurnyshev, Vadim Y.
2016-04-01
This paper presents the results of thermal and optical modeling of "blackened" tips (fiber-optic thermal converter) with different structures: film and volumetric. Film converter is created by laser radiation action on a cork or paper and it is a one-step process. As a result, a carbonized cork or paper adhered to the distal end of the optical fiber absorbs light that leads to heating of the distal end of the optical fiber. We considered the peculiarities of volumetric converters formed by sintering (second step) of the target material transferred to the tip, at irradiating the target with laser radiation (first step). We investigated the interaction between 980 nm laser radiation and converters in the air and water. As a result of experiments and modeling, it was obtain, that converter temperature and power of converter destruction depend on the environment in which it is placed. We found that film converter in the air at average power of laser radiation of 0.30+/-0.05 W is heated to 900+/-50°C and destructed, and volumetric converter in the air at average power of laser radiation of 1.0+/-0.1 W is heated to 1000+/-50°C and destructed at reaching of 4.0+/-0.1 W only. We found that film converter in the water at average power of laser radiation of 1.0+/-0.1 W is heated to 550+/-50°C and destructed at reaching of 4.0+/-0.1 W only. Volumetric converter at average power of laser radiation of4.0+/-0.1 W is heated to 450+/-50°C and is not destructed up to 7.5+/-0.1 W, it is heated to 500+/-50°C in this case. Thus, volumetric converter is more resistant to action of laser heating.
Low Stretch Solid-Fuel Flame Transient Response to a Step Change in Gravity
NASA Technical Reports Server (NTRS)
Armstrong, J. B.; Olson, S. L.; T'ien, J. S.
2003-01-01
The effect of a step change in gravity level on the stability of low stretch diffusion flames over a solid fuel is studied both numerically and experimentally. Drop tower experiments have been conducted in NASA Glenn Research Center's 5.2 Zero Gravity Facility. In the experiments burning PMMA cylinders, a dynamic transition is observed when the steadily burning 1g flame is dropped and becomes a 0g flame. To understand the physics behind this dynamic transition, a transient stagnation point model has been developed which includes gas-phase radiation and solid phase coupling to describe this dynamic process. In this paper, the experimental results are compared with the model predictions. Both model and experiment show that the interior of the solid phase does not have time to change significantly in the few seconds of drop time, so the experimental results are pseudo-steady in the gas-phase, but the solid is inherently unsteady over long time scales. The model is also used to examine the importance of fractional heat losses on extinction, which clearly demonstrates that as the feedback from the flame decreases, the importance of the ongoing heat losses becomes greater, and extinction is observed when these losses represent 80% or more of the flame feedback.
Milkereit, Benjamin; Giersberg, Lydia; Kessler, Olaf; Schick, Christoph
2014-01-01
Time-temperature-precipitation (TTP) diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies. PMID:28788587
Milkereit, Benjamin; Giersberg, Lydia; Kessler, Olaf; Schick, Christoph
2014-03-28
Time-temperature-precipitation (TTP) diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e ., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.
A novel trapezoid fin pattern applicable for air-cooled heat sink
NASA Astrophysics Data System (ADS)
Chen, Chien-Hung; Wang, Chi-Chuan
2015-11-01
The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.
On computational experiments in some inverse problems of heat and mass transfer
NASA Astrophysics Data System (ADS)
Bilchenko, G. G.; Bilchenko, N. G.
2016-11-01
The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.
Sequential control of step-bunching during graphene growth on SiC (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Jianfeng; Kusunoki, Michiko; Yasui, Osamu
2016-08-22
We have investigated the relation between the step-bunching and graphene growth phenomena on an SiC substrate. We found that only a minimum amount of step-bunching occurred during the graphene growth process with a high heating rate. On the other hand, a large amount of step-bunching occurred using a slow heating process. These results indicated that we can control the degree of step-bunching during graphene growth by controlling the heating rate. We also found that graphene coverage suppressed step bunching, which is an effective methodology not only in the graphene technology but also in the SiC-based power electronics.
NASA Astrophysics Data System (ADS)
Boltenko, E. A.
2016-10-01
The results of the experimental study of the heat-transfer crisis on heat-release surfaces of annular channels with swirl and transit flow are presented. The experiments were carried out using electric heated annular channels with one and (or) two heat-release surfaces. For the organization of transit flow on a convex heat-release surface, four longitudinal ribs were installed uniformly at its perimeter. Swirl flow was realized using a capillary wound tightly (without gaps) on the ribs. The ratio between swirl and transit flows in the annular gap was varied by applying longitudinal ribs of different height. The experiments were carried out using a closed-type circulatory system. The experimental data were obtained in a wide range of regime parameters. Both water heated to the temperature less than the saturation temperature and water-steam mixture were fed at the inlet of the channels. For the measurement of the temperature of the heat-release surfaces, chromel-copel thermocouples were used. It was shown that the presence of swirl flow on a convex heatrelease surface led to a significant decrease in critical heat flows (CHF) compared to a smooth surface. To increase CHF, it was proposed to use the interaction of swirl flows of the heat carrier. The second swirl flow was transit flow, i.e., swirl flow with the step equal to infinity. It was shown that CHF values for a channel with swirl and transit flow in all the studied range of regime parameters was higher than CHF values for both a smooth annular channel and a channel with swirl. The empirical ratios describing the dependence of CHF on convex and concave heat-release surfaces of annular channels with swirl and transit flow on the geometrical characteristics of channels and the regime parameters were obtained. The experiments were carried out at the pressure p = 3.0-16.0 MPa and the mass velocity ρw = 250-3000 kg/(m2s).
2017-01-01
The drying of dichloromethane with a molecular sieve 3A packed bed process is modeled and experimentally verified. In the process, the dichloromethane is dried in the liquid phase and the adsorbent is regenerated by water desorption with dried dichloromethane product in the vapor phase. Adsorption equilibrium experiments show that dichloromethane does not compete with water adsorption, because of size exclusion; the pure water vapor isotherm from literature provides an accurate representation of the experiments. The breakthrough curves are adequately described by a mathematical model that includes external mass transfer, pore diffusion, and surface diffusion. During the desorption step, the main heat transfer mechanism is the condensation of the superheated dichloromethane vapor. The regeneration time is shortened significantly by external bed heating. Cyclic steady-state experiments demonstrate the feasibility of this novel, zero-emission drying process. PMID:28539701
Pretest reference calculation for the Heated Axisymmetric Pillar (WIPP Room H in situ experiment)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, H.S.; Stone, C.M.
A pretest reference calculation for the Heated Axisymmetric Pillar or Room H experiment is presented in this report. The Heated Axisymmetric Pillar is one of several large scale in situ experiments currently under construction near Carlsbad, New Mexico, at the site of the Waste Isolation Pilot Plant (WIPP). This test is an intermediate step in validating numerical techniques for design and performance calculations for radioactive waste repositories in salt. The test consists of a cylindrically shaped pillar, centrally located in an annular drift, which is uniformly heated by blanket heaters. These heaters produce a thermal output of 135 W/m/sup 2/.more » This load will be supplied for a period of three years. Room H is heavily instrumented for monitoring both temperature increases due to the thermal loading and deformations due to creep of the salt. Data from the experiment are not available at the present time, but the measurements for Room H will eventually be compared to the calculation presented in this report to assess and improve thermal and mechanical modeling capabilities for the WIPP. The thermal/structural model used in the calculation represents the state of the art at the present time. A large number of plots are included since an appropriate result is required for every Room H gauge location. 56 refs., 97 figs., 4 tabs.« less
Finite Element Modelling of the Apollo Heat Flow Experiments
NASA Astrophysics Data System (ADS)
Platt, J.; Siegler, M. A.; Williams, J.
2013-12-01
The heat flow experiments sent on Apollo missions 15 and 17 were designed to measure the temperature gradient of the lunar regolith in order to determine the heat flux of the moon. Major problems in these experiments arose from the fact that the astronauts were not able to insert the probes below the thermal skin depth. Compounding the problem, anomalies in the data have prevented scientists from conclusively determining the temperature dependent conductivity of the soil, which enters as a linear function into the heat flow calculation, thus stymieing them in their primary goal of constraining the global heat production of the Moon. Different methods of determining the thermal conductivity have yielded vastly different results resulting in downward corrections of up to 50% in some cases from the original calculations. Along with problems determining the conductivity, the data was inconsistent with theoretical predictions of the temperature variation over time, leading some to suspect that the Apollo experiment itself changed the thermal properties of the localised area surrounding the probe. The average temperature of the regolith, according to the data, increased over time, a phenomenon that makes calculating the thermal conductivity of the soil and heat flux impossible without knowing the source of error and accounting for it. The changes, possibly resulting from as varied sources as the imprint of the Astronauts boots on the lunar surface, compacted soil around the bore stem of the probe or even heat radiating down the inside of the tube, have convinced many people that the recorded data is unusable. In order to shed some light on the possible causes of this temperature rise, we implemented a finite element model of the probe using the program COMSOL Multi-physics as well as Matlab. Once the cause of the temperature rise is known then steps can be taken to account for the failings of the experiment and increase the data's utility.
Aeration control of thermophilic aerobic digestion using fluorescence monitoring.
Kim, Young-Kee; Oh, Byung-Keun
2009-01-01
The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.
Buyel, Johannes F; Hubbuch, Jürgen; Fischer, Rainer
2016-08-08
Plants not only provide food, feed and raw materials for humans, but have also been developed as an economical production system for biopharmaceutical proteins, such as antibodies, vaccine candidates and enzymes. These must be purified from the plant biomass but chromatography steps are hindered by the high concentrations of host cell proteins (HCPs) in plant extracts. However, most HCPs irreversibly aggregate at temperatures above 60 °C facilitating subsequent purification of the target protein. Here, three methods are presented to achieve the heat precipitation of tobacco HCPs in either intact leaves or extracts. The blanching of intact leaves can easily be incorporated into existing processes but may have a negative impact on subsequent filtration steps. The opposite is true for heat precipitation of leaf extracts in a stirred vessel, which can improve the performance of downstream operations albeit with major changes in process equipment design, such as homogenizer geometry. Finally, a heat exchanger setup is well characterized in terms of heat transfer conditions and easy to scale, but cleaning can be difficult and there may be a negative impact on filter capacity. The design-of-experiments approach can be used to identify the most relevant process parameters affecting HCP removal and product recovery. This facilitates the application of each method in other expression platforms and the identification of the most suitable method for a given purification strategy.
Influence of heating and acidification on the flavor of whey protein isolate.
White, S S; Fox, K M; Jervis, S M; Drake, M A
2013-03-01
Previous studies have established that whey protein manufacture unit operations influence the flavor of dried whey proteins. Additionally, manufacturers generally instantize whey protein isolate (WPI; ≥ 90% protein) by agglomeration with lecithin to increase solubility and wettability. Whey protein isolate is often subjected to additional postprocessing steps in beverage manufacturing, including acidification and heat treatment. These postprocessing treatments may further influence formation or release of flavors. The objective of the first study was to characterize the effect of 2 processing steps inherent to manufacturing of acidic protein beverages (acidification and heat treatment) on the flavor of non-instant WPI. The second study sought to determine the effect of lecithin agglomeration, a common form of instantized (INST) WPI used in beverage manufacturing, on the flavor of WPI after acidification and heat treatment. In the first experiment, commercial non-instantized (NI) WPI were rehydrated and evaluated as is (control); acidified to pH 3.2; heated to 85°C for 5 min in a benchtop high temperature, short time (HTST) pasteurizer; or acidified to 3.2 and heated to 85°C for 30s (AH-HTST). In the second experiment, INST and NI commercial WPI were subsequently evaluated as control, acidified, heated, or AH-HTST. All samples were evaluated by descriptive sensory analysis, solid-phase microextraction (SPME), and gas chromatography-mass spectrometry. Acidification of NI WPI produced higher concentrations of dimethyl disulfide (DMDS) and sensory detection of potato/brothy flavors, whereas heating increased cooked/sulfur flavors. Acidification and heating increased cardboard, potato/brothy, and malty flavors and produced higher concentrations of aldehydes, ketones, and sulfur compounds. Differences between INST and NI WPI existed before treatment; INST WPI displayed cucumber flavors not present in NI WPI. After acidification, INST WPI were distinguished by higher intensity of cucumber flavor and higher concentrations of E-2-nonenal. No perceivable differences were observed between INST and NI WPI after heating; sulfur and eggy flavors increased in both types of WPI. After treatment, AH-INST-HTST samples were differentiated from AH-NI-HTST by grassy/hay and grainy flavor and increased lipid oxidation products. Further processing of WPI in food applications has negative effects on the flavor contributions of WPI. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Characterization of double diffusive convection step and heat budget in the deep Arctic Ocean
NASA Astrophysics Data System (ADS)
Zhou, S.; Lu, Y.
2013-12-01
In this paper, we explore the hydrographic structure and heat budget in deep Canada Basin using data measured with McLane-Moored-Profilers (MMPs), bottom-pressure-recorders (BPRs), and conductivity-temperature-depth (CTD) profilers. From the bottom upward, a homogenous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75oN, 150oW). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ~1.8×10-5 m 2s-1 while that of the other steps is ~10-6 m 2s-1. The vertical heat flux through DDC steps is evaluated with different methods. We find that the heat flux (0.1-11 mWm-2) is much smaller than geothermal heating (~50 mWm-2), which suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, while those of heat flux and effective diffusivity are found to be approximately log-normal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuation close to the sea floor distributed asymmetrically and skewed towards positive values, which provides direct indication that geothermal heating is transferred into ocean. Both BPR and CTD data suggest that geothermal heating, not the warming of upper ocean, is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent the vertical heat transfer, geothermal heating will be unlikely to have significant effect on the middle and upper oceans.
Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean
NASA Astrophysics Data System (ADS)
Zhou, Sheng-Qi; Lu, Yuan-Zheng
2013-12-01
In this paper, we explore the hydrographic structure and heat budget in the deep Canada Basin by using data measured with McLane-Moored-Profilers (MMP), bottom pressure recorders (BPR), and conductivity-temperature-depth (CTD) profilers. Upward from the bottom, a homogeneous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75°N,150°W). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ˜1.8 × 10-5 m2s-1, while that of the other steps is ˜10-6 m2s-1. The vertical heat flux through the DDC steps is evaluated by using different methods. We find that the heat flux (0.1-11 mWm -2) is much smaller than geothermal heating (˜50 mWm -2). This suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, whereas those of heat flux and effective diffusivity are found to be approximately lognormal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuations close to the sea floor were distributed asymmetrically and skewed toward positive values, which provide a direct observation that geothermal heating was transferred into the ocean. Both BPR and CTD data suggest that geothermal heating and not the warming of the upper ocean is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent vertical heat transfer, geothermal heating is unlikely to have a significant effect on the middle and upper Arctic Ocean.
Exploration of photosensitive polyimide as the modification layer in thin film microcircuit
NASA Astrophysics Data System (ADS)
Liu, Lily; Song, Changbin; Xue, Bin; Li, Jing; Wang, Junxi; Li, Jinmin
2018-02-01
Positive type photosensitive polyimide is used as the modification layer in the thin film transistors production process. The photosensitive polyimide is not only used as the second insulating layer, it can also be used instead of a mask because of the photosensitivity. A suitable curing condition can help photosensitive polyimide form the high performance polyimide with orderly texture inside, and the performance of imidization depends on the precise control of temperature, time, and heat control during the curing process. Therefore, experiments of different stepped up heating tests are made, and the ability of protecting silicon dioxide is analyzed.
NASA Technical Reports Server (NTRS)
Hou, Gene
2004-01-01
The focus of this research is on the development of analysis and sensitivity analysis equations for nonlinear, transient heat transfer problems modeled by p-version, time discontinuous finite element approximation. The resulting matrix equation of the state equation is simply in the form ofA(x)x = c, representing a single step, time marching scheme. The Newton-Raphson's method is used to solve the nonlinear equation. Examples are first provided to demonstrate the accuracy characteristics of the resultant finite element approximation. A direct differentiation approach is then used to compute the thermal sensitivities of a nonlinear heat transfer problem. The report shows that only minimal coding effort is required to enhance the analysis code with the sensitivity analysis capability.
Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua
2014-01-01
This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.
Tsai, Shen-Ta; Jhuo, Yue-Hua
2014-01-01
This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 104, 1.24 × 105, and 1.50 × 105), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness. PMID:24592153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.
2014-09-01
We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while themore » second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X ⊥ /X ∥ becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L 2 ∥/X1L 2 ⊥ → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.« less
NASA Astrophysics Data System (ADS)
Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao
2018-04-01
The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.
NASA Astrophysics Data System (ADS)
Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao
2018-06-01
The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.
The development of the concepts of heat and temperature in 10-13 year-olds
NASA Astrophysics Data System (ADS)
Shayer, Michael; Wylam, Hugh
A crucial issue in the theory of science education at present is the problem of how much it is possible to generalize about steps in understanding achieved by different pupils in a given topic. Many Piagetians believe that there are qualitatively different steps followed in the same succession by all pupils: some Ausubelians believe that there is no such order, and that for each pupil the best criterion for the teacher is the pupil's present knowledge. One purpose of this study is to shed light on this issue. The study to be described made use of three inputs. The development of a technique of psychometrising Piaget by an English team based at London University provided a way of extending a study by Erickson (1977) of personal conceptual inventories to testing a sample of 200 children by a 68 item demonstrated group-test. In addition a team of curriculum developers had provided a tentative list of objectives for the teaching of Heat to Middle School students. The schools in which the study was carried out wished to know which of the objectives were more suitable for 9 or for 12 year-olds. The group-test utilized descriptors both from the Erickson study and from the list of curriculum objectives. In addition to the Heat test a Piagetian group-test (NFER, 1979) in the area of Volume and Heaviness was administered to see whether the development of concepts of Heat could be mapped onto Piagetian stages of development. Test-items in nine aspects of heat were written, with some of the experiments to be demonstrated to the class. These aspects included Conduction, Expansion, Composition of Heat, Temperature Scales, Changes of State, etc. Factor analysis of the data showed that one factor was sufficient to explain the common-factor variance of the heat scales, and that the Heat test was also unifactor with the Piagetian test. It was possible to describe Early Concrete, Late Concrete and Early Formal levels of understanding in the area of Heat and Temperature. In this particular case it appears that the hypothesis of a number of different developmental paths, dependent on previous experience, cannot be sustained. It is not claimed that this would be true of all cognitive development, particularly where culture-specific myths may be involved.
Study the effect of elevated dies temperature on aluminium and steel round deep drawing
NASA Astrophysics Data System (ADS)
Lean, Yeong Wei; Azuddin, M.
2016-02-01
Round deep drawing operation can only be realized by expensive multi-step production processes. To reduce the cost of processes while expecting an acceptable result, round deep drawing can be done at elevated temperature. There are 3 common problems which are fracture, wrinkling and earing of deep drawing a round cup. The main objective is to investigate the effect of dies temperature on aluminium and steel round deep drawing; with a sub-objective of eliminate fracture and reducing wrinkling effect. Experimental method is conducted with 3 different techniques on heating the die. The techniques are heating both upper and lower dies, heating only the upper dies, and heating only the lower dies. 4 different temperatures has been chosen throughout the experiment. The experimental result then will be compared with finite element analysis software. There is a positive result from steel material on heating both upper and lower dies, where the simulation result shows comparable as experimental result. Heating both upper and lower dies will be the best among 3 types of heating techniques.
Mission STS-134: Results of Shape Memory Foam Experiment
NASA Astrophysics Data System (ADS)
Santo, Loredana; Quadrini, Fabrizio; Mascetti, Gabriele; Dolce, Ferdinando; Zolesi, Valfredo
2013-10-01
Shape memory epoxy foams were used for an experiment aboard the International Space Station (ISS) to evaluate the feasibility of their use for building light actuators and expandable/deployable structures. The experiment named I-FOAM was performed by an autonomous device contained in the BIOKON container (by Kayser Italia) which was in turn composed of control and heating system, battery pack and data acquisition system. To simulate the actuation of simple devices in micro-gravity conditions, three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Micro-gravity does not affect the ability of the foams to recover their shape but it poses limits for the heating system design because of the difference in heat transfer on Earth and in orbit. A recovery about 70% was measured at a temperature of 110 °C for the bending and torsion configuration whereas poor recovery was observed for the compression case. Thanks to these results, a new experiment has been developed for a future mission by the same device: for the first time a shape memory composite will be recovered, and the actuation load during time will be measured during the recovery of an epoxy foam sample.
Iterative motion compensation approach for ultrasonic thermal imaging
NASA Astrophysics Data System (ADS)
Fleming, Ioana; Hager, Gregory; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad
2015-03-01
As thermal imaging attempts to estimate very small tissue motion (on the order of tens of microns), it can be negatively influenced by signal decorrelation. Patient's breathing and cardiac cycle generate shifts in the RF signal patterns. Other sources of movement could be found outside the patient's body, like transducer slippage or small vibrations due to environment factors like electronic noise. Here, we build upon a robust displacement estimation method for ultrasound elastography and we investigate an iterative motion compensation algorithm, which can detect and remove non-heat induced tissue motion at every step of the ablation procedure. The validation experiments are performed on laboratory induced ablation lesions in ex-vivo tissue. The ultrasound probe is either held by the operator's hand or supported by a robotic arm. We demonstrate the ability to detect and remove non-heat induced tissue motion in both settings. We show that removing extraneous motion helps unmask the effects of heating. Our strain estimation curves closely mirror the temperature changes within the tissue. While previous results in the area of motion compensation were reported for experiments lasting less than 10 seconds, our algorithm was tested on experiments that lasted close to 20 minutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, William L; Gunderson, Jake A; Dickson, Peter M
There has been a long history of interest in the decomposition kinetics of HMX and HMX-based formulations due to the widespread use of this explosive in high performance systems. The kinetics allow us to predict, or attempt to predict, the behavior of the explosive when subjected to thermal hazard scenarios that lead to ignition via impact, spark, friction or external heat. The latter, commonly referred to as 'cook off', has been widely studied and contemporary kinetic and transport models accurately predict time and location of ignition for simple geometries. However, there has been relatively little attention given to the problemmore » of localized ignition that results from the first three ignition sources of impact, spark and friction. The use of a zero-order single-rate expression describing the exothermic decomposition of explosives dates to the early work of Frank-Kamanetskii in the late 1930s and continued through the 60's and 70's. This expression provides very general qualitative insight, but cannot provide accurate spatial or timing details of slow cook off ignition. In the 70s, Catalano, et al., noted that single step kinetics would not accurately predict time to ignition in the one-dimensional time to explosion apparatus (ODTX). In the early 80s, Tarver and McGuire published their well-known three step kinetic expression that included an endothermic decomposition step. This scheme significantly improved the accuracy of ignition time prediction for the ODTX. However, the Tarver/McGuire model could not produce the internal temperature profiles observed in the small-scale radial experiments nor could it accurately predict the location of ignition. Those factors are suspected to significantly affect the post-ignition behavior and better models were needed. Brill, et al. noted that the enthalpy change due to the beta-delta crystal phase transition was similar to the assumed endothermic decomposition step in the Tarver/McGuire model. Henson, et al., deduced the kinetics and thermodynamics of the phase transition, providing Dickson, et al. with the information necessary to develop a four-step model that included a two-step nucleation and growth mechanism for the {beta}-{delta} phase transition. Initially, an irreversible scheme was proposed. That model accurately predicted the spatial and temporal cook off behavior of the small-scale radial experiment under slow heating conditions, but did not accurately capture the endothermic phase transition at a faster heating rate. The current version of the four-step model includes reversibility and accurately describes the small-scale radial experiment over a wide range of heating rates. We have observed impact-induced friction ignition of PBX 9501 with grit embedded between the explosive and the lower anvil surface. Observation was done using an infrared camera looking through the sapphire bottom anvil. Time to ignition and temperature-time behavior were recorded. The time to ignition was approximately 500 microseconds and the temperature was approximately 1000 K. The four step reversible kinetic scheme was previously validated for slow cook off scenarios. Our intention was to test the validity for significantly faster hot-spot processes, such as the impact-induced grit friction process studied here. We found the model predicted the ignition time within experimental error. There are caveats to consider when evaluating the agreement. The primary input to the model was friction work over an area computed by a stress analysis. The work rate itself, and the relative velocity of the grit and substrate both have a strong dependence on the initial position of the grit. Any errors in the analysis or the initial grit position would affect the model results. At this time, we do not know the sensitivity to these issues. However, the good agreement does suggest the four step kinetic scheme may have universal applicability for HMX systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preynas, M.; Laqua, H. P.; Otte, M.
Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experimentsmore » have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (ι/2π > 0) and tokamak (ι/2π = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (ι) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.« less
Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.
2015-12-01
The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.
NASA Astrophysics Data System (ADS)
Gerhard, J.; Zanoni, M. A. B.; Torero, J. L.
2017-12-01
Smouldering (i.e., flameless combustion) underpins the technology Self-sustaining Treatment for Active Remediation (STAR). STAR achieves the in situ destruction of nonaqueous phase liquids (NAPLs) by generating a self-sustained smouldering reaction that propagates through the source zone. This research explores the nature of the travelling reaction and the influence of key in situ and engineered characteristics. A novel one-dimensional numerical model was developed (in COMSOL) to simulate the smouldering remediation of bitumen-contaminated sand. This model was validated against laboratory column experiments. Achieving model validation depended on correctly simulating the energy balance at the reaction front, including properly accounting for heat transfer, smouldering kinetics, and heat losses. Heat transfer between soil and air was demonstrated to be generally not at equilibrium. Moreover, existing heat transfer correlations were found to be inappropriate for the low air flow Reynold's numbers (Re < 30) relevant in this and similar thermal remediation systems. Therefore, a suite of experiments were conducted to generate a new heat transfer correlation, which generated correct simulations of convective heat flow through soil. Moreover, it was found that, for most cases of interest, a simple two-step pyrolysis/oxidation set of kinetic reactions was sufficient. Arrhenius parameters, calculated independently from thermogravimetric experiments, allowed the reaction kinetics to be validated in the smouldering model. Furthermore, a simple heat loss term sufficiently accounted for radial heat losses from the column. Altogether, these advances allow this simple model to reasonably predict the self-sustaining process including the peak reaction temperature, the reaction velocity, and the complete destruction of bitumen behind the front. Simulations with the validated model revealed numerous unique insights, including how the system inherently recycles energy, how air flow rate and NAPL saturation dictate contaminant destruction rates, and the extremes that lead to extinction. Overall, this research provides unique insights into the complex interplay of thermochemical processes that govern the success of smouldering as well as other thermal remediation approaches.
Heat flux estimates of power balance on Proto-MPEX with IR imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Showers, M., E-mail: mshower1@vols.utk.edu; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; Biewer, T. M.
The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX’s performance may be identified, increasing its PMI research capabilities.
NASA Astrophysics Data System (ADS)
Uunk, Bertram; Wijbrans, Jan; Brouwer, Fraukje
2017-04-01
White mica 40Ar/39Ar dating is a proven powerful tool for constraining the timing and rate of metamorphism, deformation and exhumation. However, for high-pressure metamorphic rocks dating often results in wide age ranges, which are not in agreement with constraints from other isotopic systems, indicating that geological and chemical processes complicate straightforward 40Ar/39Ar dating. Despite hosting one of the largest geochronological datasets in the world, the Cycladic Blueschist Unit in Greece is presently one of the focal areas in the discussion on the interpretation of metamorphic 40Ar/39Ar ages. Previous phengite multi grain step heating experiments commonly yielded undulating age spectra ranging between 20 - 60 Ma. While some studies attempt to assign geological significance to these ages, others argue the ages are geologically meaningless and the result of the interplay between partial diffusive resetting and continued crystallization. By taking an alternative approach of multiple single grain fusion experiments, this study investigates age heterogeneity between samples of contrasting metamorphic facies, rheology and strain from the Cycladic islands of Syros and Sifnos. Comparing the size and shape of single grain fusion age distributions at the grain, rock, outcrop and island scale allows determination of the scale at which different age-forming processes operate. Resulting ages show a previously unreported consistent variation between different outcrops, moving from the eclogite-blueschist facies (55-45 Ma) to greenschist overprinting (40-30 Ma). This indicates that outcrop scale homogeneous resetting is the dominant processes for age formation in the CBU. Single grain age variation at the sample and outcrop scale is only limited to 10 Ma, indicating a smaller but observable role for local age perturbing processes of incomplete resetting, continued (re)crystallization or infiltration of excess argon. Some of the partially overprinted samples show homogeneous single grain age populations, indicating at least a partial role for efficient resetting by thermally activated diffusion at the outcrop scale. Traditional multi grain step heating experiments on the same samples yield flat plateaus for various single grain age distributions, indicating that age heterogeneities resolved by single grain fusion dating are mixed to a meaningless average in step heating experiments. In contrast, our approach leads to a better understanding of the processes responsible for age formation during high pressure metamorphism.
NASA Astrophysics Data System (ADS)
Paradis, Pierre-Luc
The global energy consumption is still increasing year after year even if different initiatives are set up to decrease fossil fuel dependency. In Canada 80% of the energy is used for space heating and domestic hot water heating in residential sector. This heat could be provided by solar thermal technologies despite few difficulties originating from the cold climate. The aim of this project is to design a solar evacuated tube thermal collector using air as the working fluid. Firstly, needs and specifications of the product are established in a clear way. Then, three concepts of collector are presented. The first one relies on the standard evacuated tube. The second one uses a new technology of tubes; both sides are open. The third one uses heat pipe to extract the heat from the tubes. Based on the needs and specification as criteria, the concept involving tubes with both sides open has been selected as the best idea. In order to simulate the performances of the collector, a model of the heat exchanges in an evacuated tube was developed in 4 steps. The first step is a model in steady state intended to calculate the stagnation temperature of the tube for a fixed solar radiation, outside temperature and wind speed. As a second step, the model is generalised to transient condition in order to validate it with an experimental setup. A root mean square error of 2% is then calculated. The two remainder steps are intended to calculate the temperature of airflow leaving the tube. In the same way, a first model in steady state is developed and then generalised to the transient mode. Then, the validation with an experimental setup gave a difference of 0.2% for the root mean square error. Finally, a preindustrial prototype intended to work in open loop for preheating of fresh air is presented. During the project, explosion of the both sides open evacuated tube in overheating condition blocked the construction of a real prototype for the test. Different path for further work are also identified. One of these is in relation with CFD simulation of the uniformity of the airflow inside of the collector. Another one is the analysis of the design with a design of experiment plan.
Source Term Experiments Project (STEP): Aerosol characterization system
NASA Astrophysics Data System (ADS)
Schlenger, B. J.; Dunn, P. F.
A series of four experiments is being conducted at Argonne National Laboratory's TREAT Reactor. They were designed to provide some of the necessary data regarding magnitude and release rates of fission products from degraded fuel pins, physical and chemical characteristics of released fission products, and aerosol formation and transport phenomena. These are in pile experiments, whereby the test fuel is heated by neutron induced fission and subsequent clad oxidation in steam environments that simulate as closely as practical predicted reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Aq/In/Cd control rod material.
NASA Astrophysics Data System (ADS)
Singh Dhillon, Navdeep; Pisano, Albert P.
2014-03-01
A novel two-port thermal-flux method has been proposed and demonstrated for degassing and charging two-phase microfluidic thermal transport systems with a degassed working fluid. In microscale heat pipes and loop heat pipes (mLHPs), small device volumes and large capillary forces associated with smaller feature sizes render conventional vacuum pump-based degassing methods quite impractical. Instead, we employ a thermally generated pressure differential to purge non-condensable gases from these devices before charging them with a degassed working fluid in a two-step process. Based on the results of preliminary experiments studying the effectiveness and reliability of three different high temperature-compatible device packaging approaches, an optimized compression packaging technique was developed to degas and charge a mLHP device using the thermal-flux method. An induction heating-based noninvasive hermetic sealing approach for permanently sealing the degassed and charged mLHP devices has also been proposed. To demonstrate the efficacy of this approach, induction heating experiments were performed to noninvasively seal 1 mm square silicon fill-hole samples with donut-shaped solder preforms. The results show that the minimum hole sealing induction heating time is heat flux limited and can be estimated using a lumped capacitance thermal model. However, further continued heating of the solder uncovers the hole due to surface tension-induced contact line dynamics of the molten solder. It was found that an optimum mass of the solder preform is required to ensure a wide enough induction-heating time window for successful sealing of a fill-hole.
Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije
Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less
Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples
Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije; ...
2015-09-01
Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less
Method of coating an iron-based article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magdefrau, Neal; Beals, James T.; Sun, Ellen Y.
A method of coating an iron-based article includes a first heating step of heating a substrate that includes an iron-based material in the presence of an aluminum source material and halide diffusion activator. The heating is conducted in a substantially non-oxidizing environment, to cause the formation of an aluminum-rich layer in the iron-based material. In a second heating step, the substrate that has the aluminum-rich layer is heated in an oxidizing environment to oxidize the aluminum in the aluminum-rich layer.
Heat transfer in a rotating cavity with a stationary stepped casing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirzaee, I.; Quinn, P.; Wilson, M.
1999-04-01
In the system considered here, corotating turbine disks are cooled by air supplied at the periphery of the system. The system comprises two corotating disks, connected by a rotating cylindrical hub and shrouded by a stepped, stationary cylindrical outer casing. Cooling air enters the system through holes in the periphery of one disk, and leaves through the clearances between the outer casing and the disks. The paper describes a combined computational and experimental study of the heat transfer in the above-described system. In the experiments, one rotating disk is heated, the hub and outer casing are insulated, and the othermore » disk is quasi-adiabatic. Thermocouples and fluxmeters attached to the heated disc enable the Nusselt numbers, Nu, to be determined for a wide range of rotational speeds and coolant flow rates. Computations are carried out using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} turbulence model. The flow structure is shown to be complex and depends strongly on the so-called turbulent flow parameter, {lambda}{sub T}, which incorporates both rotational speed and flow rate. For a given value of {lambda}{sub T}, the computations show that Nu increases as Re{sub {phi}}, the rotational Reynolds number, increases. Despite the complexity of the flow, the agreement between the computed and measured Nusselt numbers is reasonably good.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiali, E-mail: j.zhang@mpie.de; Morsdorf, Lutz, E-mail: l.morsdorf@mpie.de; Tasan, Cemal Cem, E-mail: c.tasan@mpie.de
In-situ scanning electron microscopy observations of the microstructure evolution during heat treatments are increasingly demanded due to the growing number of alloys with complex microstructures. Post-mortem characterization of the as-processed microstructures rarely provides sufficient insight on the exact route of the microstructure formation. On the other hand, in-situ SEM approaches are often limited due to the arising challenges upon using an in-situ heating setup, e.g. in (i) employing different detectors, (ii) preventing specimen surface degradation, or (iii) controlling and measuring the temperature precisely. Here, we explore and expand the capabilities of the “mid-way” solution by step-wise microstructure tracking, ex-situ, atmore » selected steps of heat treatment. This approach circumvents the limitations above, as it involves an atmosphere and temperature well-controlled dilatometer, and high resolution microstructure characterization (using electron channeling contrast imaging, electron backscatter diffraction, atom probe tomography, etc.). We demonstrate the capabilities of this approach by focusing on three cases: (i) nano-scale carbide precipitation during low-temperature tempering of martensitic steels, (ii) formation of transformation-induced geometrically necessary dislocations in a dual-phase steel during intercritical annealing, and (iii) the partial recrystallization of a metastable β-Ti alloy. - Highlights: • A multi-probe method to track microstructures during heat treatment is developed. • It enables the analysis of various complex phenomena, even those at atomistic scale. • It circumvents some of the free surface effects of classical in-situ experiments.« less
NASA Astrophysics Data System (ADS)
Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Kitagawa, Yoneyoshi; Sekine, Takashi; Takeuchi, Yasuki; Kurita, Takashi; Katoh, Yoshinori; Satoh, Nakahiro; Kurita, Norio; Kawashima, Toshiyuki; Komeda, Osamu; Hioki, Tatsumi; Motohiro, Tomoyoshi; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke; Iwamoto, Akifumi; Sakagami, Hitoshi
2017-10-01
Fast ignition (FI) is a form of inertial confinement fusion in which the ignition step and the compression step are separate processes resulting in a reduction of the symmetry requirement for hot spot generation. One of the problems of FI so far are the accessibility of an ignition laser pulse into the assembled core in which the driver energy is converted into relativistic electrons produced in the laser-plasma interaction. We have experimentally demonstrated that a tailored-pulse-assembled core with a diameter of 70 μ m, originally a deuterated polystyrene spherical shell of 500 μ m diameter, is flashed by directly counter irradiating 0.8 J/110 fs laser pulses [Y. MORI et al., PRL 2016]. This result indicates that once the assembled core is squeezed into the target center, the heating lasers can access the core's; edges and deposit their energy into the core. In this talk, we will discuss the heating effects in relation to formation of the assembled core.
Carbon and sulfur distributions and abundances in lunar fines
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.; Moore, G. W.
1973-01-01
Total sulfur abundances have been determined for 20 Apollo 14, 15, and 16 soil samples and one Apollo 14 breccia. Sulfur concentrations range from 474 to 844 microg S/g. Volatilization experiments on selected samples have been carried out using step-wise heating. Sample residues have been analyzed for their total carbon and sulfur abundances to establish the material balance in lunar fines for these two elements. Volatilization experiments have established that between 31 to 54 microg C/g remains in soils which have been heated at 1100 C for 24 hours under vacuum. The residual carbon is believed to be indigenous lunar carbon whereas all forms of carbon lost from samples below 1100 C is extralunar carbon. Total carbon and sulfur abundances taken from the literature have been used to show the depletion of volatile elements with increasing grade for the Apollo 14 breccias.
Improved silicon nitride for advanced heat engines
NASA Technical Reports Server (NTRS)
Yeh, H. C.; Wimmer, J. M.
1986-01-01
Silicon nitride is a high temperature material currently under consideration for heat engine and other applications. The objective is to improve the net shape fabrication technology of Si3N4 by injection molding. This is to be accomplished by optimizing the process through a series of statistically designed matrix experiments. To provide input to the matrix experiments, a wide range of alternate materials and processing parameters was investigated throughout the whole program. The improvement in the processing is to be demonstrated by a 20 percent increase in strength and a 100 percent increase in the Weibull modulus over that of the baseline material. A full characterization of the baseline process was completed. Material properties were found to be highly dependent on each step of the process. Several important parameters identified thus far are the starting raw materials, sinter/hot isostatic pressing cycle, powder bed, mixing methods, and sintering aid levels.
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.
2013-12-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
NASA Astrophysics Data System (ADS)
Yaparova, N.
2017-10-01
We consider the problem of heating a cylindrical body with an internal thermal source when the main characteristics of the material such as specific heat, thermal conductivity and material density depend on the temperature at each point of the body. We can control the surface temperature and the heat flow from the surface inside the cylinder, but it is impossible to measure the temperature on axis and the initial temperature in the entire body. This problem is associated with the temperature measurement challenge and appears in non-destructive testing, in thermal monitoring of heat treatment and technical diagnostics of operating equipment. The mathematical model of heating is represented as nonlinear parabolic PDE with the unknown initial condition. In this problem, both the Dirichlet and Neumann boundary conditions are given and it is required to calculate the temperature values at the internal points of the body. To solve this problem, we propose the numerical method based on using of finite-difference equations and a regularization technique. The computational scheme involves solving the problem at each spatial step. As a result, we obtain the temperature function at each internal point of the cylinder beginning from the surface down to the axis. The application of the regularization technique ensures the stability of the scheme and allows us to significantly simplify the computational procedure. We investigate the stability of the computational scheme and prove the dependence of the stability on the discretization steps and error level of the measurement results. To obtain the experimental temperature error estimates, computational experiments were carried out. The computational results are consistent with the theoretical error estimates and confirm the efficiency and reliability of the proposed computational scheme.
NASA Astrophysics Data System (ADS)
Watkins, Brenton; Fallen, Christopher; Secan, James
Results for HF modification experiments at the HAARP facility in Alaska are presented for experiments with the HF pump frequency near third and fourth electron gyro-harmonics. A UHF diagnostic radar with range resolution of 600 m was used to determine time-dependent altitudes of scattering from plasma turbulence during heating experiments. Experiments were conducted with multiple HF frequencies stepped by 20 kHz above and below the gyro-harmonic values. During times of HF heating the HAARP facility has sufficient power to enhance large-scale ionospheric densities in the lower ionosphere (about 150-200 km altitude) and also in the topside ionosphere (above about 350 km). In the lower ionosphere, time-dependent decreases of the altitude of radar scatter result from electron density enhancements. The effects are substantially different even for relatively small frequency steps of 20 kHz. In all cases the time-varying altitude decrease of radar scatter stops about 5-10 km below the gyro-harmonic altitude that is frequency dependent; we infer that electron density enhancements stop at this altitude where the radar signals stop decreasing with altitude. Experiments with corresponding total electron content (TEC) data show that for HF interaction altitudes above about 170 km there is substantial topside electron density increases due to upward electron thermal conduction. For lower altitudes of HF interaction the majority of the thermal energy is transferred to the neutral gas and no significant topside density increases are observed. By selecting an appropriate HF frequency a little greater than the gyro-harmonic value we have demonstrated that the ionospheric response to HF heating is a self-oscillating mode where the HF interaction altitude moves up and down with a period of several minutes. If the interaction region is above about 170 km this also produces a continuously enhanced topside electron density and upward plasma flux. Experiments using an FM scan with the HF frequency increasing near the gyro-harmonic value were conducted. The FM scan rate was sufficiently slow that the electron density was approximately in an equilibrium state. For these experiments the altitude of the HF interaction follows a near straight line downward parallel to the altitude-dependent gyro-harmonic level.
Heat recirculating cooler for fluid stream pollutant removal
Richards, George A.; Berry, David A.
2008-10-28
A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.
Antioxidants in heat-processed koji and the production mechanisms.
Okutsu, Kayu; Yoshizaki, Yumiko; Ikeda, Natsumi; Kusano, Tatsuro; Hashimoto, Fumio; Takamine, Kazunori
2015-11-15
We previously developed antioxidative heat-processed (HP)-koji via two-step heating (55 °C/2days → 75 °C/3 days) of white-koji. In this study, we isolated antioxidants in HP-koji and investigated their formation mechanisms. The antioxidants were identified to be 5-hydroxymethyl furfural (HMF) and 5-(α-D-glucopyranosyloxymethyl)-2-furfural (GMF) based on nuclear magnetic resonance spectral analysis. HMF and GMF were not present in intact koji, but were formed by heating at 75 °C. As production of these antioxidants was more effective by two-step heating than by constant heating at 55 °C or 75 °C, we presumed that the antioxidant precursors are derived enzymatically at 55°C and that the antioxidants are formed subsequently by thermal reaction at 75 °C. The heating assay of saccharide solutions revealed glucose and isomaltose as HMF and GMF precursors, respectively, and thus the novel finding of GMF formation from isomaltose. Finally, HMF and GMF were effectively formed by two-step heating from glucose and isomaltose present in koji. Copyright © 2015 Elsevier Ltd. All rights reserved.
ENGINEERING APPLICATIONS OF ANALOG COMPUTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, L.T.; Janicke, M.J.; Just, L.C.
1963-10-31
Six experiments from the fields of reactor engineering, heat transfer, and dynamics are presented to illustrate the engineering applications of analog computers. The steps required for producing the analog solution are shown, as well as complete information for duplicating the solution. Graphical results are provided. The experiments include: deceleration of a reactor control rod, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback, a vibrating system with two degrees of freedom, temperature distribution in a radiating fin, temperature distribution in an infinite slab considering variable thermal properties, and iodine -xenon buildup in a reactor. (M.C.G.)
Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger.
Legay, M; Simony, B; Boldo, P; Gondrexon, N; Le Person, S; Bontemps, A
2012-11-01
A new kind of ultrasonically-assisted heat exchanger has been designed, built and studied. It can be seen as a vibrating heat exchanger. A comprehensive description of the overall experimental set-up is provided, i.e. of the test rig and the acquisition system. Data acquisition and processing are explained step-by-step with a detailed example of graph obtained and how, from these experimental data, energy balance is calculated on the heat exchanger. It is demonstrated that ultrasound can be used efficiently as a heat transfer enhancement technique, even in such complex systems as heat exchangers. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Zhizhong; Niu, Xiaoping; Hu, Henry
In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.
NASA Astrophysics Data System (ADS)
Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do
2017-08-01
As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Bo Kyeong; Jang, Sung Wook; Kim, Eung Soo, E-mail: eskim@kyonggi.ac.kr
2015-07-15
The effects of the crystallization behaviour of CaMgSi{sub 2}O{sub 6} (diopside) glass-ceramics on their microwave dielectric properties were investigated as functions of the Cr{sub 2}O{sub 3} content and heat-treatment method used (one or two steps). The crystallization behaviours of the specimens were affected by the Cr{sub 2}O{sub 3} content as well as by the heat-treatment method employed, and were evaluated using X-ray diffraction and the combined Rietveld and reference intensity ratio (RIR) method. The dielectric constants (K) of the specimens did not change significantly with an increase in the Cr{sub 2}O{sub 3} content. The quality factor (Qf) of the specimensmore » increased for Cr{sub 2}O{sub 3} contents of up to 0.5 wt% Cr{sub 2}O{sub 3}, but then decreased for higher contents. These results could be attributed to the degree of crystallization. For the same Cr{sub 2}O{sub 3} content, the specimens that underwent a two-step heat treatment showed lower K values and higher Qf values than those heat-treated in one-step. These results could be attributed to the smaller crystallite size and higher degree of crystallization in the specimens obtained from the two-step heat treatment compared with those of the specimens heat-treated in one-step method.« less
Is sexual reproduction of high-mountain plants endangered by heat?
Ladinig, Ursula; Pramsohler, Manuel; Bauer, Ines; Zimmermann, Sonja; Neuner, Gilbert; Wagner, Johanna
2015-04-01
Strong solar irradiation in combination with still air and dry soil can cause prostrate high-mountain plants to heat up considerably and ultimately suffer heat damage. Such heat damage has been repeatedly shown for vegetative structures, but not for reproductive structures, which we expected to be particularly vulnerable to heat. Heat effects on cold-adapted plants may increase with rising global temperatures and the predicted increase in heat waves. We have tested the heat tolerance of reproductive versus vegetative shoots at different reproductive stages, comparing ten common plant species from different elevation belts in the European Alps. Plant samples were exposed to temperatures in 2-K steps of 30 min each between 42 and 56 °C. Heat damage was assessed by visual rating and vital staining. Reproductive shoots were on average 2.5 K less heat tolerant (LT50, i.e. the mean temperature causing 50 % heat damage, 47.2 °C) than vegetative shoots (mean LT50 49.7 °C). Initial heat injuries (mean LT10) were observed at 43-45 °C in heat-susceptible species and at 45-47 °C in more heat-tolerant species, in at least one reproductive stage. Generally, heat tolerance was significantly higher during fruiting than during the bud stages and anthesis. Prostrate species with acaulescent buds and flowers tolerated heat better than those with caulescent buds and flowers. Petals were the most heat-susceptible plant structure and mature pollen the most heat tolerant. Based on these data, heat tolerance of reproductive structures appears to be adapted to the prevailing maximum temperatures which the plants experience during different reproductive stages in their environment. During hot spells, however, heat tolerance thresholds may be exceeded. More frequent heat waves would decrease the reproductive output and, consequently, the competitiveness of heat-susceptible species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Young Ho; Han, Myoung Soo; Han, Jong Man
2007-05-17
Doubly curved thick plate forming in shipbuilding industries is currently performed by a thermal forming process, called as Line Heating by using gas flame torches. Due to the empirical manual work of it, the industries are eager for an alternative way to manufacture curved thick plates for ships. It was envisaged in this study to manufacture doubly curved thick plates by the multi-punch die forming. Experiments and finite element analyses were conducted to evaluate the feasibility of the reconfigurable discrete die forming to the thick plates. Single and segmented multiple step forming procedures were considered from both forming efficiency andmore » accuracy. Configuration of the multi-punch dies suitable for the segmented multiple step forming was also explored. As a result, Segmented multiple step forming with matched dies had a limited formability when the objective shapes become complicate, while a unmatched die configuration provided better possibility to manufacture large curved plates for ships.« less
Computation of Turbulent Recirculating Flow in Channels, and for Impingement Cooling
NASA Technical Reports Server (NTRS)
Chang, Byong Hoon
1992-01-01
Fully elliptic forms of the transport equations have been solved numerically for two flow configurations. The first is turbulent flow in a channel with transverse rectangular ribs, and the second is impingement cooling of a plane surface. Both flows are relevant to proposed designs for active cooling of hypersonic vehicles using supercritical hydrogen as the coolant. Flow downstream of an abrupt pipe expansion and of a backward-facing step were also solved with various near-wall turbulence models as benchmark problems. A simple form of periodicity boundary condition was used for the channel flow with transverse rectangular ribs. The effects of various parameters on heat transfer in channel flow with transverse ribs and in impingement cooling were investigated using the Yap modified Jones and Launder low Reynolds number k-epsilon turbulence model. For the channel flow, predictions were in adequate agreement with experiment for constant property flow, with the results for friction superior to those for heat transfer. For impingement cooling, the agreement with experiment was generally good, but the results suggest that improved modelling of the dissipation rate of turbulence kinetic energy is required in order to obtain improved heat transfer prediction, especially near the stagnation point. The k-epsilon turbulence model was used to predict the mean flow and heat transfer for constant and variable property flows. The effect of variable properties for channel flow was investigated using the same turbulence model, but comparison with experiment yielded no clear conclusions. Also, the wall function method was modified for use in the variable properties flow with a non-adiabatic surface, and an empirical model is suggested to correctly account for the behavior of the viscous sublayer with heating.
Effect of Scintillometer Height on Structure Parameter of the Refractive Index of Air Measurements
NASA Astrophysics Data System (ADS)
Gowda, P. H.; Howell, T. A.; Hartogensis, O.; Basu, S.; Scanlon, B. R.
2009-12-01
Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn2). Cn2 represents the turbulent strength of the atmosphere and describes the ability of the atmosphere to transport heat and humidity. The main objective of this study was to evaluate the effect of scintillometer height on Cn2 measurements and on the estimation of latent heat fluxes. The study was conducted during the 2009 summer growing season in the USDA-ARS Conservation and Production Research Laboratory (CPRL) at Bushland [350 11' N, 1020 06' W; 1,170 m elevation MSL], Texas. Field experiment consisted of two steps: (1) cross-calibration of scintillometers and (2) measurement of Cn2 at different heights. In the first step, three large aperture scintillometers (LAS) were deployed across two large lysimeter fields with bare soil surfaces. During the 3-week cross-calibration period, all three scintillometers were installed at a 2-m height with a path length of 420 m. Cn2 was monitored at a 1-min interval and averaged for 15-min periods. Cn2 measurements were synchronized with weather station and weighing lysimeter measurements. After the cross-calibration period, scintillometers were installed at 2-, 2.5- and 3-m heights, and Cn2 measurements were continued for another 3-week period. In addition to the Cn2 measurements, net radiation (Rn) and soil heat fluxes (G) were measured in both lysimeter fields. Cn2 values were corrected for inner scale dependence before cross calibration and estimation of sensible heat fluxes. Measurements of wind speed, air temperature, and relative humidity were used with Cn2 data to derive sensible heat fluxes. Latent heat fluxes were estimated as a residual from the energy balance and compared with lysimeter data. Results of cross calibration and effects of scintillometer height on the estimation of latent heat fluxes were reported and discussed.
NASA Technical Reports Server (NTRS)
1975-01-01
A general description of the leading edge/flat surface heating array is presented along with its components, assembly instructions, installation instructions, operation procedures, maintenance instructions, repair procedures, schematics, spare parts lists, engineering drawings of the array, and functional acceptance test log sheets. The proper replacement of components, correct torque values, step-by-step maintenance instructions, and pretest checkouts are described.
Heat damaged forages: effects on forage energy content
USDA-ARS?s Scientific Manuscript database
Traditionally, educational materials describing the effects of heat damage within baled hays have focused on reduced bioavailability of crude protein as a result of Maillard reactions. These reactions are not simple, but actually occur in complex, multi-step pathways. Typically, the initial step inv...
Publications - GMC 426 | Alaska Division of Geological & Geophysical
DGGS GMC 426 Publication Details Title: 40Ar/39Ar step heat analyses of core from the N. Kalikpik Test Layer, P.W., 2014, 40Ar/39Ar step heat analyses of core from the N. Kalikpik Test Well #1: Alaska
Thickness measurement by two-sided step-heating thermal imaging
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Tao, Ning; Sun, J. G.; Zhang, Cunlin; Zhao, Yuejin
2018-01-01
Infrared thermal imaging is a promising nondestructive technique for thickness prediction. However, it is usually thought to be only appropriate for testing the thickness of thin objects or near-surface structures. In this study, we present a new two-sided step-heating thermal imaging method which employed a low-cost portable halogen lamp as the heating source and verified it with two stainless steel step wedges with thicknesses ranging from 5 mm to 24 mm. We first derived the one-dimensional step-heating thermography theory with the consideration of warm-up time of the lamp, and then applied the nonlinear regression method to fit the experimental data by the derived function to determine the thickness. After evaluating the reliability and accuracy of the experimental results, we concluded that this method is capable of testing thick objects. In addition, we provided the criterions for both the required data length and the applicable thickness range of the testing material. It is evident that this method will broaden the thermal imaging application for thickness measurement.
Wind-US Code Physical Modeling Improvements to Complement Hypersonic Testing and Evaluation
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Yoder, Dennis A.; Towne, Charles S.; Engblom, William A.; Bhagwandin, Vishal A.; Power, Greg D.; Lankford, Dennis W.; Nelson, Christopher C.
2009-01-01
This report gives an overview of physical modeling enhancements to the Wind-US flow solver which were made to improve the capabilities for simulation of hypersonic flows and the reliability of computations to complement hypersonic testing. The improvements include advanced turbulence models, a bypass transition model, a conjugate (or closely coupled to vehicle structure) conduction-convection heat transfer capability, and an upgraded high-speed combustion solver. A Mach 5 shock-wave boundary layer interaction problem is used to investigate the benefits of k- s and k-w based explicit algebraic stress turbulence models relative to linear two-equation models. The bypass transition model is validated using data from experiments for incompressible boundary layers and a Mach 7.9 cone flow. The conjugate heat transfer method is validated for a test case involving reacting H2-O2 rocket exhaust over cooled calorimeter panels. A dual-mode scramjet configuration is investigated using both a simplified 1-step kinetics mechanism and an 8-step mechanism. Additionally, variations in the turbulent Prandtl and Schmidt numbers are considered for this scramjet configuration.
Report on SNL RCBC control options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponciroli, R.; Vilim, R. B.
The attractive performance of the S-CO 2 recompression cycle arises from the thermo-physical properties of carbon dioxide near the critical point. However, to ensure efficient operation of the cycle near the critical point, precise control of the heat removal rate by the Printed Circuit Heat Exchanger (PCHE) upstream of the main compressor is required. Accomplishing this task is not trivial because of the large variations in fluid properties with respect to temperature and pressure near the critical point. The use of a model-based approach for the design of a robust feedback regulator is being investigated to achieve acceptable control ofmore » heat removal rate at different operating conditions. A first step in this procedure is the development of a dynamic model of the heat exchanger. In this work, a one-dimensional (1-D) control-oriented model of the PCHE was developed using the General Plant Analyzer and System Simulator (GPASS) code. GPASS is a transient simulation code that supports analysis and control of power conversion cycles based on the S-CO 2 Brayton cycle. This modeling capability was used this fiscal year to analyze experiment data obtained from the heat exchanger in the SNL recompression Brayton cycle. The analysis suggested that the error in the water flowrate measurement was greater than required for achieving precise control of heat removal rate. Accordingly, a new water flowmeter was installed, significantly improving the quality of the measurement. Comparison of heat exchanger measurements in subsequent experiments with code simulations yielded good agreement establishing a reliable basis for the use of the GPASS PCHE model for future development of a model-based feedback controller.« less
Prediction of thickness distribution of thermoformed multilayer ABS/PMMA sheets
NASA Astrophysics Data System (ADS)
Jobey, Caroline; Allanic, Nadine; Mousseau, Pierre; Deterre, Rémi
2016-10-01
In thermoforming, one of the main difficulties is to avoid the presence of weak thickness in the most deformed zones. After the heating stage, a bubbling step, leading to a first rate of deformation, is often used. In this work, we assess how the initial bubbling deformation can be controlled in order to obtain a homogeneous final thickness of the product. Experiments are performed on a multilayer sheet product. An industrial mould, corresponding to a casing of a non-licensed car, was adapted on a lab thermoformer. After presenting experimental thermal profiles of the multilayer sheets measured during the heating stage, a first geometric model is investigated to predict the thickness distribution. Numerical results are compared with measurements.
Baugh, J; Moussa, O; Ryan, C A; Nayak, A; Laflamme, R
2005-11-24
The counter-intuitive properties of quantum mechanics have the potential to revolutionize information processing by enabling the development of efficient algorithms with no known classical counterparts. Harnessing this power requires the development of a set of building blocks, one of which is a method to initialize the set of quantum bits (qubits) to a known state. Additionally, fresh ancillary qubits must be available during the course of computation to achieve fault tolerance. In any physical system used to implement quantum computation, one must therefore be able to selectively and dynamically remove entropy from the part of the system that is to be mapped to qubits. One such method is an 'open-system' cooling protocol in which a subset of qubits can be brought into contact with an external system of large heat capacity. Theoretical efforts have led to an implementation-independent cooling procedure, namely heat-bath algorithmic cooling. These efforts have culminated with the proposal of an optimal algorithm, the partner-pairing algorithm, which was used to compute the physical limits of heat-bath algorithmic cooling. Here we report the experimental realization of multi-step cooling of a quantum system via heat-bath algorithmic cooling. The experiment was carried out using nuclear magnetic resonance of a solid-state ensemble three-qubit system. We demonstrate the repeated repolarization of a particular qubit to an effective spin-bath temperature, and alternating logical operations within the three-qubit subspace to ultimately cool a second qubit below this temperature. Demonstration of the control necessary for these operations represents an important step forward in the manipulation of solid-state nuclear magnetic resonance qubits.
Solar Decisions: A Microcomputer Program.
ERIC Educational Resources Information Center
Taylor, Charles O.; Gittinger, Jack D.
1985-01-01
A program is presented, designed for the Apple II, which enables users to compute heat loss of a building and determine the total heating cost, regardless of the type of fuel. Variables to be considered are explained and a step-by-step explanation of the program is included. (CT)
Biomass district heating methodology and pilot installations for public buildings groups
NASA Astrophysics Data System (ADS)
Chatzistougianni, N.; Giagozoglou, E.; Sentzas, K.; Karastergios, E.; Tsiamitros, D.; Stimoniaris, D.; Stomoniaris, A.; Maropoulos, S.
2016-11-01
The objective of the paper is to show how locally available biomass can support a small-scale district heating system of public buildings, especially when taking into account energy audit in-situ measurements and energy efficiency improvement measures. The step-by-step methodology is presented, including the research for local biomass availability, the thermal needs study and the study for the biomass district heating system, with and without energy efficiency improvement measures.
NASA Astrophysics Data System (ADS)
Togun, Hussein
2016-03-01
This paper presents a numerical investigate on CuO-water nano-fluid and heat transfer in a backward-facing step with and without obstacle. The range of Reynolds number varied from 75 to 225 with volume fraction on CuO nanoparticles varied from 1 to 4 % at constant heat flux was investigated. Continuity, momentum, and energy equations with finite volume method in two dimensions were employed. Four different configurations of backward-facing step (without obstacle, with obstacle of 1.5 mm, with obstacle of 3 mm, with obstacle of 4.5 mm) were considered to find the best thermal performance. The results show that the maximum augmentation in heat transfer was about 22 % for backward-facing step with obstacle of 4.5 mm and using CuO nanoparticles at Reynolds number of 225 compared with backward-facing step without obstacle. It is also observed that increase in size of recirculation region with increase of height obstacle on the channel wall has remarkable effect on thermal performance. The results also found that increases in Reynolds number, height obstacle, and volume fractions of CuO nanoparticles lead to increase of pressure drop.
Lee, Myeong Gi; Yoon, Won Byong; Park, Jae W
2017-06-01
Physical properties of Alaska pollock surimi paste were investigated as affected by pH (4.0 and 6.0-10.0) and heating conditions (slow and fast). The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. The effect of pH was strikingly high at pH 7.5 when gels were prepared using 2-step heating, indicating the pH dependence of endogenous transglutaminase. However, the highest gel strength was obtained at pH 8.0 when gels were prepared in fast heating. Whiteness value (L - 3b*) increased significantly (p < .05) as pH increased from 6.0 to 6.5, but thereafter decreased significantly (p < .05) as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance, probably due to the effect of reduced browning reaction. The uniqueness of this study was to measure the combined effect of pH and heating conditions on the gel texture and color. There were various studies dealing with pH or heating conditions independently. As the primary character for surimi seafood is gel texture and color. The highest values of gel strength and deformability, as shown by breaking force and penetration distance, were obtained at pH 7.5-8.0, while the lowest values were at pH 10.0 followed by pH 6.0 and pH 6.5, respectively. Two-step slow heating process increased the breaking strength value nearly two times higher than one-step fast heating. Whiteness value (L - 3b*) increased significantly as pH increased from 6.0 to 6.5, but thereafter decreased significantly as pH increased. L* value (lightness) and b* value (yellowness) continuously decreased as the pH is shifted from 6.0 to 10. Fast heated gels showed the lowest yellowness, resulting in whiter appearance. © 2016 Wiley Periodicals, Inc.
This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.
Kida, Nori; Mochizuki, Yasushi; Taguchi, Fumiaki
2007-01-01
In an investigation of the sporicidal activity of the KMT reagent, a vapor phase study was performed using five kinds of carriers contaminated with Geobacillus stearothermophilus spores. When 25 ml of the KMT reagent was vaporized in a chamber (capacity; approximately 95 liters), the 2-step heating method (vaporization by a combination of low temperature and high temperature) showed the most effective sporicidal activity in comparison with the 1-step heating method (rapid vaporization). The 2-step heating method appeared to be related to the sporicidal activity of vaporized KMT reagent, i.e., ethanol and iodine, which vaporized mainly when heated at a low temperature such as 55 C, and acidic water, which vaporized mainly when heated at a high temperature such as 300 C. We proposed that the KMT reagent can be used as a new disinfectant not only in the liquid phase but also in the vapor phase in the same way as peracetic acid and hydrogen peroxide.
Thermal properties of an erythritol derivative
NASA Astrophysics Data System (ADS)
Trhlikova, Lucie; Prikryl, Radek; Zmeskal, Oldrich
2016-06-01
Erythritol (C4H10O4) is a sugar alcohol (or polyol) that is commonly used in the food industry. Its molar mass is 122.12 g.mol-1 and mass density 1450 kg.m-3. Erythritol, an odorless crystalline powder, can also be characterized by other physical parameters like melting temperature (121 °C) and boiling temperature (329 °C). The substance can be used for the accumulation of energy in heat exchangers based on various oils or water. The PlusICE A118 product manufactured by the PCM Products Ltd. company (melting temperature Θ = 118 °C, specific heat capacity cp = 2.70 kJ.K-1.kg-1, mass density 1450 kg.m-3, latent heat capacity 340 kJ.kg-1, volumetric heat capacity 493 MJ.m-3) is based on an erythritol-type medium. Thermal properties of the PlusICE A118 product in both solid and liquid phase were investigated for this purpose in terms of potential applications. Temperature dependences of its thermal parameters (thermal diffusivity, thermal conductivity, and specific heat) were determined using a transient (step-wise) method. A fractal model of heat transport was used for determination of the above thermal parameters. This model is independent of geometry and type of sample heating. Moreover, it also considers heat losses. The experiment confirmed the formerly declared value of phase change temperature, about 120 °C.
Absolute Paleointensity Techniques: Developments in the Last 10 Years (Invited)
NASA Astrophysics Data System (ADS)
Bowles, J. A.; Brown, M. C.
2009-12-01
The ability to determine variations in absolute intensity of the Earth’s paleomagnetic field has greatly enhanced our understanding of geodynamo processes, including secular variation and field reversals. Igneous rocks and baked clay artifacts that carry a thermal remanence (TRM) have allowed us to study field variations over timescales ranging from decades to billions of years. All absolute paleointensity techniques are fundamentally based on repeating the natural process by which the sample acquired its magnetization, i.e. a laboratory TRM is acquired in a controlled field, and the ratio of the natural TRM to that acquired in the laboratory is directly proportional to the ancient field. Techniques for recovering paleointensity have evolved since the 1930s from relatively unsophisticated (but revolutionary for their time) single step remagnetizations to the various complicated, multi-step procedures in use today. These procedures can be broadly grouped into two categories: 1) “Thellier-type” experiments that step-wise heat samples at a series of temperatures up to the maximum unblocking temperature of the sample, progressively removing the natural remanence (NRM) and acquiring a laboratory-induced TRM; and 2) “Shaw-type” experiments that combine alternating field demagnetization of the NRM and laboratory TRM with a single heating to a temperature above the sample’s Curie temperature, acquiring a total TRM in one step. Many modifications to these techniques have been developed over the years with the goal of identifying and/or accommodating non-ideal behavior, such as alteration and multi-domain (MD) remanence, which may lead to inaccurate paleofield estimates. From a technological standpoint, perhaps the most significant development in the last decade is the use of microwave (de)magnetization in both Thellier-type and Shaw-type experiments. By using microwaves to directly generate spin waves within the magnetic grains (rather than using phonons generated by heating, which then exchange energy with the magnetic system), a TRM can be acquired with minimal heating of the bulk sample, thus potentially minimizing sample alteration. The theory of TRM acquisition is best developed for single-domain (SD) grains, and most paleointensity techniques are predicated on the assumption that the remanence is carried predominantly by SD material. Because the vast majority of geological materials are characterized by a larger magnetic grain size, efforts to expand paleointensity studies over the past decade have focused on developing TRM theories and paleointensity methods for pseudo-single-domain (PSD) and MD samples. Other workers have been exploring the potential of SD materials that were not traditionally used in paleointensity studies, such as ash flow tuffs, submarine basaltic glass, and single silicate crystals with magnetite inclusions. The latter has the potential to shed light on early Earth processes, given that the fine-grained inclusions may be resistant to alteration over long time scales. We will review the major paleointensity techniques in use today, with special attention paid to the advantages and disadvantages of each. Techniques will be illustrated with examples highlighting new paleointensity applications to geologic processes at a variety of timescales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Nicolai, Ph.; Ribeyre, X.
2015-09-15
An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation ofmore » state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.« less
NASA Astrophysics Data System (ADS)
Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu
2017-11-01
Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.
Distributing Radiant Heat in Insulation Tests
NASA Technical Reports Server (NTRS)
Freitag, H. J.; Reyes, A. R.; Ammerman, M. C.
1986-01-01
Thermally radiating blanket of stepped thickness distributes heat over insulation sample during thermal vacuum testing. Woven of silicon carbide fibers, blanket spreads heat from quartz lamps evenly over insulation sample. Because of fewer blanket layers toward periphery of sample, more heat initially penetrates there for more uniform heat distribution.
1993-12-01
of fluid T1 initial temperature of matrix and fluid Tf1 average inlet temperature after the step change Tii average inlet temperature before the step...respectively, of the regenerator. The horizontal distances shown with Tf1 , Tj, and T,2 illustrate the time interval for which the average values were...temperature was not a true step function, the investigator made an approximation. The approximation was based on an average temperature. Tf1 was the
Influence of stem temperature changes on heat pulse sap flux density measurements.
Vandegehuchte, Maurits W; Burgess, Stephen S O; Downey, Alec; Steppe, Kathy
2015-04-01
While natural spatial temperature gradients between measurement needles have been thoroughly investigated for continuous heat-based sap flow methods, little attention has been given to how natural changes in stem temperature impact heat pulse-based methods through temporal rather than spatial effects. By modelling the theoretical equation for both an ideal instantaneous pulse and a step pulse and applying a finite element model which included actual needle dimensions and wound effects, the influence of a varying stem temperature on heat pulse-based methods was investigated. It was shown that the heat ratio (HR) method was influenced, while for the compensation heat pulse and Tmax methods changes in stem temperatures of up to 0.002 °C s(-1) did not lead to significantly different results. For the HR method, rising stem temperatures during measurements led to lower heat pulse velocity values, while decreasing stem temperatures led to both higher and lower heat pulse velocities, and to imaginary results for high flows. These errors of up to 40% can easily be prevented by including a temperature correction in the data analysis procedure, calculating the slope of the natural temperature change based on the measured temperatures before application of the heat pulse. Results of a greenhouse and outdoor experiment on Pinus pinea L. show the influence of this correction on low and average sap flux densities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Thermodynamics of bread baking: A two-state model
NASA Astrophysics Data System (ADS)
Zürcher, Ulrich
2014-03-01
Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.
Method of manufacturing a niobium-aluminum-germanium superconductive material
Wang, J.L.F.; Pickus, M.R.; Douglas, K.E.
A method for manufacturing flexible Nb/sub 3/ (Al,Ge) multifilamentary superconductive material in which a sintered porous Nb compact is infiltrated with an Al-Ge alloy. It is deformed and heat treated in a series of steps at successively higher temperatures preferably below 1000/sup 0/C during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to serve as a temperature stabilizer for the superconductive material produced. These lower heat treatment temperatures favor formation of filaments with reduced grain size and with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.
NASA Astrophysics Data System (ADS)
Yi, Feng; DeLisio, Jeffery B.; Nguyen, Nam; Zachariah, Michael R.; LaVan, David A.
2017-12-01
The thermodynamics and evolved gases were measured during the rapid decomposition of copper oxide (CuO) thin film at rates exceeding 100,000 K/s. CuO decomposes to release oxygen when heated and serves as an oxidizer in reactive composites and chemical looping combustion. Other instruments have shown either one or two decomposition steps during heating. We have confirmed that CuO decomposes by two steps at both slower and higher heating rates. The decomposition path influences the reaction course in reactive Al/CuO/Al composites, and full understanding is important in designing reactive mixtures and other new reactive materials.
The Cadarache negative ion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massmann, P.; Bottereau, J.M.; Belchenko, Y.
1995-12-31
Up to energies of 140 keV neutral beam injection (NBI) based on positive ions has proven to be a reliable and flexible plasma heating method and has provided major contributions to most of the important experiments on virtually all large tokamaks around the world. As a candidate for additional heating and current drive on next step fusion machines (ITER ao) it is hoped that NBI can be equally successful. The ITER NBI parameters of 1 MeV, 50 MW D{degree} demand primary D{sup {minus}} beams with current densities of at least 15 mA/cm{sup 2}. Although considerable progress has been made inmore » the area of negative ion production and acceleration the high demands still require substantial and urgent development. Regarding negative ion production Cs seeded plasma sources lead the way. Adding a small amount of Cs to the discharge (Cs seeding) not only increases the negative ion yield by a factor 3--5 but also has the advantage that the discharge can be run at lower pressures. This is beneficial for the reduction of stripping losses in the accelerator. Multi-ampere negative ion production in a large plasma source is studied in the MANTIS experiment. Acceleration and neutralization at ITER relevant parameters is the objective of the 1 MV SINGAP experiment.« less
Behavior of Shape Memory Epoxy Foams in Microgravity: Experimental Results of STS-134 Mission
NASA Astrophysics Data System (ADS)
Santo, Loredana; Quadrini, Fabrizio; Squeo, Erica Anna; Dolce, Ferdinando; Mascetti, Gabriele; Bertolotto, Delfina; Villadei, Walter; Ganga, Pier Luigi; Zolesi, Valfredo
2012-09-01
Shape memory epoxy foams were used for an experiment on the International Space Station to evaluate the feasibility of their use for building multi-functional composite structures. A small equipment was designed and built to simulate the actuation of simple devices in micro-gravity conditions: three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Two systems were used for the experimentation to avoid damages of the flight model during laboratory tests; however a single ground experiment was performed also on the flight model before the mission. Micro-gravity does not affect the ability of the foams to recover their shape but it poses strong limits for the heating system design because of the difference in heat transfer on earth and in orbit. A full recovery of the foam samples was not achieved due to some limitations in the maximum allowable temperature on ISS for safety reasons: anyway a 70% recovery was also measured at a temperature of 110°C. Ground laboratory experiments showed that 100% recovery could be reached by increasing the maximum temperature to 120°C. Experiment results have provided many useful information for the designing of a new structural composite actuator by using shape memory foams.
NASA Astrophysics Data System (ADS)
Jafarimoghaddam, Amin; Aberoumand, Sadegh; Javaherdeh, Kourosh; Arani, Ali Akbar Abbasian; Jafarimoghaddam, Reza
2018-04-01
In this work, an experimental study on nanofluid preparation stability, thermo-physical properties, heat transfer performance and friction factor of Al/ Oil nanofluids has been carried out. Electrical Explosion Wire ( E.E.W) which is one of the most reliable one-step techniques for nanofluids preparation has been used. An annular tube has been considered as the test section in which the outer tube was subject to a uniform heat flux boundary condition of about 204 W. The utilized nanofluids were prepared in three different volume concentrations of 0.011%, 0.044% and 0.171%. A wide range of parameters such as Reynolds number Prandtl number, viscosity, thermal conductivity, density, specific heat, convective heat transfer coefficient, Nusselt number and the friction factor have been studied. The experiment was conducted in relatively low Reynolds numbers of less than 160 and within a hydrodynamically fully-developed regime. According to the results, thermal conductivity, density and viscosity increased depending on the volume concentrations and working temperatures while the specific heat declined. More importantly, it was observed that convective heat transfer coefficient and Nusselt number enhanced by 28.6% and 16.4%, respectively, for the highest volume concentration. Finally, the friction factor (which plays an important role in the pumping power) was found to be increased around 18% in the volume fraction of 0.171%.
NASA Astrophysics Data System (ADS)
Syed, Waheed Ul Haq; Pinkerton, Andrew J.; Liu, Zhu; Li, Lin
2007-07-01
The creation of iron-copper (Fe-Cu) alloys has practical application in improving the surface heat conduction and corrosion resistance of, for example, conformal cooling channels in steel moulds, but is difficult to achieve because the elements have got low inter-solubility and are prone to solidification cracking. Previous work by these authors has reported a method to produce a graded iron-nickel-copper coating in a single-step by direct diode laser deposition (DLD) of nickel wire and copper powder as a combined feedstock. This work investigates whether dual powder feeds can be used in that process to afford greater geometric flexibility and compares attributes of the 'nickel wire and copper powder' and 'nickel powder and copper powder' processes for deposition on a H13 tool steel substrate. In wire-powder deposition, a higher temperature developed in the melt pool causing a clad with a smooth gradient structure. The nickel powder in powder-powder deposition did not impart much heat into the melt pool so the melt pool solidified with sharp composition boundaries due to single metal melting in some parts. In wire-powder experiments, a graded structure was obtained by varying the flow rates of wire and powder. However, a graded structure was not realised in powder-powder experiments by varying either the feed or the directions. Reasons for the differences and flow patterns in the melt pools and their effect on final part properties of parts produced are discussed.
NASA Technical Reports Server (NTRS)
Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.;
2014-01-01
The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.
Alternative divertor target concepts for next step fusion devices
NASA Astrophysics Data System (ADS)
Mazul, I. V.
2016-12-01
The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.
Temporal heating profile influence on the immediate bond strength following laser tissue soldering.
Rabi, Yaron; Katzir, Abraham
2010-07-01
Bonding of tissues by laser heating is considered as a future alternative to sutures and staples. Increasing the post-operative bond strength remains a challenging issue for laser tissue bonding, especially in organs that have to sustain considerable tension or pressure. In this study, we investigated the influence of different temporal heating profiles on the strength of soldered incisions. The thermal damage following each heating procedure was quantified, in order to assess the effect of each heating profile on the thermal damage. Incisions in porcine bowel tissue strips (1 cmx4 cm) were soldered, using a 44% liquid albumin mixed with indocyanine green and a temperature controlled laser (830 nm) tissue bonding system. Heating was done either with a linear or a step temporal heating profile. The incisions were bonded by soldering at three points, separated by 2 mm. Set-point temperatures of T(set) = 60, 70, 80, 90, 100, 110, 150 degrees C and dwell times of t(d) = 10, 20, 30, 40 seconds were investigated. The bond strength was measured immediately following each soldering by applying a gradually increased tension on the tissue edges until the bond break. Bonds formed by linear heating were stronger than the ones formed by step heating: at T(set) = 80 degrees C the bonds were 40% stronger and at T(set) = 90 degrees C the bonds strength was nearly doubled. The bond strength difference between the heating methods was larger as T(set) increased. Linear heating produced stronger bonds than step heating. The difference in the bond strength was more pronounced at high set-point temperatures and short dwell times. The bond strength could be increased with either higher set-point temperature or a longer dwell time.
Kreslavski, Vladimir; Tatarinzev, Nikolai; Shabnova, Nadezhda; Semenova, Galina; Kosobryukhov, Anatoli
2008-10-09
The nature of photosynthetic recovery was investigated in 10-d-old wheat (Triticum aestivum L., cv. Moskovskaya-35) seedlings exposed to temperatures of 40 and 42 degrees C for 20 min and to temperature 42 degrees C for 40 min in the dark. The aftereffect of heat treatment was monitored by growing the heat-treated plants in low/moderate/high light at 20 degrees C for 72h. The net photosynthetic rates (P(N)) and the fluorescence ratios F(v)/F(m) were evaluated in intact primary leaves and the rates of cyclic and non-cyclic photophosphorylation were measured in the isolated thylakoids. At least two temporally separated steps were identified in the path of recovery from heat stress at 40 and 42 degrees C in the plants growing in high and moderate/high light, respectively. Both photochemical activity of the photosystem II (PSII) and the activity of CO(2) assimilation system were lowered during the first step in comparison with the corresponding activities immediately after heat treatment. During the second step, the photosynthetic activities completely or partly recovered. Recovery from heat stress at 40 degrees C was accompanied by an appreciably higher rate of cyclic photophosphorylation in comparison with control non-heated seedlings. In pre-heated seedlings, the tolerance of the PSII to photoinhibition was higher than in non-treated ones. The mode of acclimation to different light intensities after heat exposures is analyzed.
The thermal history of interplanetary dust particles collected in the Earth's stratosphere
NASA Technical Reports Server (NTRS)
Nier, A. O.; Schlutter, D. J.
1993-01-01
Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (approximately 40 micrometers in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.
Three-dimensional numerical study of heat transfer enhancement in separated flows
NASA Astrophysics Data System (ADS)
Kumar, Saurav; Vengadesan, S.
2017-11-01
The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.
Quantification of triglyceride content in oleaginous materials using thermo-gravimetry
Maddi, Balakrishna; Vadlamani, Agasteswar; Viamajala, Sridhar; ...
2017-10-16
Laboratory analytical methods for quantification of triglyceride content in oleaginous biomass samples, especially microalgae, require toxic chemicals and/or organic solvents and involve multiple steps. We describe a simple triglyceride quantification method that uses thermo-gravimetry. This method is based on the observation that triglycerides undergo near-complete volatilization/degradation over a narrow temperature interval with a derivative weight loss peak at 420 °C when heated in an inert atmosphere. Degradation of the other constituents of oleaginous biomass (protein and carbohydrates) is largely complete after prolonged exposure of samples at 320 °C. Based on these observations, the triglyceride content of oleaginous biomass was estimatedmore » by using the following two-step process. In Step 1, samples were heated to 320 °C and kept isothermal at this temperature for 15 min. In Step 2, samples were heated from 320 °C to 420 °C and then kept isothermal at 420 °C for 15 min. The results show that mass loss in step 2 correlated well with triglyceride content estimates obtained from conventional techniques for diverse microalgae and oilseed samples.« less
Quantification of triglyceride content in oleaginous materials using thermo-gravimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddi, Balakrishna; Vadlamani, Agasteswar; Viamajala, Sridhar
Laboratory analytical methods for quantification of triglyceride content in oleaginous biomass samples, especially microalgae, require toxic chemicals and/or organic solvents and involve multiple steps. We describe a simple triglyceride quantification method that uses thermo-gravimetry. This method is based on the observation that triglycerides undergo near-complete volatilization/degradation over a narrow temperature interval with a derivative weight loss peak at 420 °C when heated in an inert atmosphere. Degradation of the other constituents of oleaginous biomass (protein and carbohydrates) is largely complete after prolonged exposure of samples at 320 °C. Based on these observations, the triglyceride content of oleaginous biomass was estimatedmore » by using the following two-step process. In Step 1, samples were heated to 320 °C and kept isothermal at this temperature for 15 min. In Step 2, samples were heated from 320 °C to 420 °C and then kept isothermal at 420 °C for 15 min. The results show that mass loss in step 2 correlated well with triglyceride content estimates obtained from conventional techniques for diverse microalgae and oilseed samples.« less
Investigations of the small-scale thermal behavior of sol-gel thermites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Mial E.; Farrow, Matthew; Tappan, Alexander Smith
2009-02-01
Sol-gel thermites, formulated from nanoporous oxides and dispersed fuel particles, may provide materials useful for small-scale, intense thermal sources, but understanding the factors affecting performance is critical prior to use. Work was conducted on understanding the synthesis conditions, thermal treatments, and additives that lead to different performance characteristics in iron oxide sol-gel thermites. Additionally, the safety properties of sol-gel thermites were investigated, especially those related to air sensitivity. Sol-gel thermites were synthesized using a variety of different techniques and there appear to be many viable routes to relatively equivalent thermites. These thermites were subjected to several different thermal treatments undermore » argon in a differential scanning calorimeter, and it was shown that a 65 C hold for up to 200 minutes was effective for the removal of residual solvent, thus preventing boiling during the final thermal activation step. Vacuum-drying prior to this heating was shown to be even more effective at removing residual solvent. The addition of aluminum and molybdenum trioxide (MoO{sub 3}) reduced the total heat release per unit mass upon exposure to air, probably due to a decrease in the amount of reduced iron oxide species in the thermite. For the thermal activation step of heat treatment, three different temperatures were investigated. Thermal activation at 200 C resulted in increased ignition sensitivity over thermal activation at 232 C, and thermal activation at 300 C resulted in non-ignitable material. Non-sol-gel iron oxide did not exhibit any of the air-sensitivity observed in sol-gel iron oxide. In the DSC experiments, no bulk ignition of sol-gel thermites was observed upon exposure to air after thermal activation in argon; however ignition did occur when the material was heated in air after thermal treatment. In larger-scale experiments, up to a few hundred milligrams, no ignition was observed upon exposure to air after thermal activation in vacuum; however ignition by resistively-heated tungsten wire was possible. Thin films of thermite were fabricated using a dispersed mixture of aluminum and iron oxide particles, but ignition and propagation of these films was difficult. The only ignition and propagation observed was in a preheated sample.« less
NASA Astrophysics Data System (ADS)
Arslanturk, Cihat
2011-02-01
Although tapered fins transfer more rate of heat per unit volume, they are not found in every practical application because of the difficulty in manufacturing and fabrications. Therefore, there is a scope to modify the geometry of a constant thickness fin in view of the less difficulty in manufacturing and fabrication as well as betterment of heat transfer rate per unit volume of the fin material. For the better utilization of fin material, it is proposed a modified geometry of new fin with a step change in thickness (SF) in the literature. In the present paper, the homotopy perturbation method has been used to evaluate the temperature distribution within the straight radiating fins with a step change in thickness and variable thermal conductivity. The temperature profile has an abrupt change in the temperature gradient where the step change in thickness occurs and thermal conductivity parameter describing the variation of thermal conductivity has an important role on the temperature profile and the heat transfer rate. The optimum geometry which maximizes the heat transfer rate for a given fin volume has been found. The derived condition of optimality gives an open choice to the designer.
Modelling of heat transfer during torrefaction of large lignocellulosic biomass
NASA Astrophysics Data System (ADS)
Regmi, Bharat; Arku, Precious; Tasnim, Syeda Humaira; Mahmud, Shohel; Dutta, Animesh
2018-02-01
Preparation of feedstock is a major energy intensive process for the thermochemical conversion of biomass into fuel. By eliminating the need to grind biomass prior to the torrefaction process, there would be a potential gain in the energy requirements as the entire step would be eliminated. In regards to a commercialization of torrefaction technology, this study has examined heat transfer inside large cylindrical biomass both numerically and experimentally during torrefaction. A numerical axis-symmetrical 2-D model for heat transfer during torrefaction at 270°C for 1 h was created in COMSOL Multiphysics 5.1 considering heat generation evaluated from the experiment. The model analyzed the temperature distribution within the core and on the surface of biomass during torrefaction for various sizes. The model results showed similarities with experimental results. The effect of L/D ratio on temperature distribution within biomass was observed by varying length and diameter and compared with experiments in literature to find out an optimal range of cylindrical biomass size suitable for torrefaction. The research demonstrated that a cylindrical biomass sample of 50 mm length with L/D ratio of 2 can be torrefied with a core-surface temperature difference of less than 30 °C. The research also demonstrated that sample length has a negligible effect on core-surface temperature difference during torrefaction when the diameter is fixed at 25 mm. This information will help to design a torrefaction processing system and develop a value chain for biomass supply without using an energy-intensive grinding process.
Modelling of heat transfer during torrefaction of large lignocellulosic biomass
NASA Astrophysics Data System (ADS)
Regmi, Bharat; Arku, Precious; Tasnim, Syeda Humaira; Mahmud, Shohel; Dutta, Animesh
2018-07-01
Preparation of feedstock is a major energy intensive process for the thermochemical conversion of biomass into fuel. By eliminating the need to grind biomass prior to the torrefaction process, there would be a potential gain in the energy requirements as the entire step would be eliminated. In regards to a commercialization of torrefaction technology, this study has examined heat transfer inside large cylindrical biomass both numerically and experimentally during torrefaction. A numerical axis-symmetrical 2-D model for heat transfer during torrefaction at 270°C for 1 h was created in COMSOL Multiphysics 5.1 considering heat generation evaluated from the experiment. The model analyzed the temperature distribution within the core and on the surface of biomass during torrefaction for various sizes. The model results showed similarities with experimental results. The effect of L/D ratio on temperature distribution within biomass was observed by varying length and diameter and compared with experiments in literature to find out an optimal range of cylindrical biomass size suitable for torrefaction. The research demonstrated that a cylindrical biomass sample of 50 mm length with L/D ratio of 2 can be torrefied with a core-surface temperature difference of less than 30 °C. The research also demonstrated that sample length has a negligible effect on core-surface temperature difference during torrefaction when the diameter is fixed at 25 mm. This information will help to design a torrefaction processing system and develop a value chain for biomass supply without using an energy-intensive grinding process.
Method for heating a glass sheet
Boaz, Premakaran Tucker
1998-01-01
A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.
Water evaporation in silica colloidal deposits.
Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier
2013-10-15
The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.
Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.
2012-01-01
Background and Aims The involvement of two steps in the physical dormancy (PY)-breaking process previously has been demonstrated in seeds of Fabaceae and Convolvulaceae. Even though there is a claim for a moisture-controlled stepwise PY-breaking in some species of Geraniaceae, no study has evaluated the role of temperature in the PY-breaking process in this family. The aim of this study was to determine whether a temperature-controlled stepwise PY-breaking process occurs in seeds of the winter annuals Geranium carolinianum and G. dissectum. Methods Seeds of G. carolinianum and G. dissectum were stored under different temperature regimes to test the effect of storage temperature on PY-break. The role of temperature and moisture regimes in regulating PY-break was investigated by treatments simulating natural conditions. Greenhouse (non-heated) experiments on seed germination and burial experiments (outdoors) were carried out to determine the PY-breaking behaviour in the natural habitat. Key Results Irrespective of moisture conditions, sensitivity to the PY-breaking step in seeds of G. carolinianum was induced at temperatures ≥20 °C, and exposure to temperatures ≤20 °C made the sensitive seeds permeable. Sensitivity of seeds increased with time. In G. dissectum, PY-break occurred at temperatures ≥20 °C in a single step under constant wet or dry conditions and in two steps under alternate wet–dry conditions if seeds were initially kept wet. Conclusions Timing of seed germination with the onset of autumn can be explained by PY-breaking processes involving (a) two temperature-dependent steps in G. carolinianum and (b) one or two moisture-dependent step(s) along with the inability to germinate under high temperatures in G. dissectum. Geraniaceae is the third of 18 families with PY in which a two-step PY-breaking process has been demonstrated. PMID:22684684
Dryout and Rewetting in the Pool Boiling Experiment Flown on STS-72 (PBE-2 B) and STS-77 (PBE-2 A)
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.; Lee, Ho Sung; Keller, Robert B.
1998-01-01
Experiments were conducted in the microgravity of space in which a pool of liquid (R-113), initially at a precisely defined pressure and temperature, is subjected to a step imposed heat flux from a semi-transparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. A total of nine tests were conducted at three levels of heat flux and three levels of subcooling in each of the two space experiments in a GAS canister on the STS-77, -72, respectively. Three (3) modes of propagation of boiling across the heater surface and subsequent vapor bubble growths were observed, in addition to the two (2) modes observed in the previous microgravity pool boiling space flights on STS-47, -57, and -60. Of particular interest were the extremely dynamic or "explosive" growths, which were determined to be the consequence of the large increase in the liquid-vapor interface area associated with the appearance of a corrugated or rough interface. Predictions of circumstances for its onset have been carried out. Assumptions were necessary regarding the character of disturbances necessary for the instabilities to grow. Also, a new vapor bubble phenomena was observed in which small vapor bubbles migrated toward a larger bubble, eventually coalescing with this larger bubble. The heat transfer was enhanced approximately 30% as a result of these migrating bubbles, which is believed to be a vapor bubble manifestation of Marangoni convection and/or molecular momentum effects, sometimes referred to as vapor recoil. The circumstances of heat flux and liquid subcooling necessary to produce heater surface dryout for an initially stagnant liquid subjected to an imposed heat flux have been more closely identified.
Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys
NASA Astrophysics Data System (ADS)
Liu, K.; Ma, H.; Chen, X. Grant
2018-05-01
In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β ' -Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β ″-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10-9 s-1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.
Investigation of thermal-fluid mechanical characteristics of the Capillary Pump Loop
NASA Technical Reports Server (NTRS)
Kiper, Ali M.
1991-01-01
The main purpose is the experimental and analytical study of behavior of the Capillary Pump Loop (CPL) heat pipe system during the transient mode of operating by applying a step heat pulse to one or more evaporators. Prediction of the CPL behavior when subjected to pulse heat loading requires further study before the transient response of CPL system can be fully understood. The following tasks are discussed: (1) exploratory testing of a CPL heat pipe for transient operational conditions which could generate the type of oscillatory inlet temperature behavior observed in an earlier testing of NASA/GSFC CPL-2 heat pipe system; (2) analytical investigation of the CPL inlet section temperature oscillations; (3) design, construction and testing of a bench-top CPL test system for study of the CPL transient operation; and (4) transient analysis of a CPL heat pipe by applying a step power input to the evaporators.
New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys
NASA Astrophysics Data System (ADS)
Baker, Andrew H.; Collins, Peter C.; Williams, James C.
2017-07-01
The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.
Conducting Miller-Urey Experiments
NASA Technical Reports Server (NTRS)
Parker, Eric Thomas; Cleaves, Henderson James; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason; Zhou, Manshui; Bada, Jeffrey L.; Fernandez, Facundo M.
2014-01-01
In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200mmHg of CH4, and 200mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.
Method for heating a glass sheet
Boaz, P.T.
1998-07-21
A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.
Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system
NASA Technical Reports Server (NTRS)
Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Patten, A. B.; Hamilton, H. H., II
1983-01-01
An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gesta, E.; Intelligent Insect Control, 118 Chemin des Alouettes, Castelnau-le-Lez, 34170; Skovmand, O., E-mail: osk@insectcontrol.net
The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-settingmore » did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives’ ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.« less
One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ziheng, E-mail: ziheng.liu@unsw.edu.au; Hao, Xiaojing; Ho-Baillie, Anita
In this work, one-step aluminium-assisted crystallization of Ge on Si is achieved via magnetron sputtering by applying an in-situ low temperature (50 °C to 150 °C) heat treatment in between Al and Ge depositions. The effect of heat treatment on film properties and the growth mechanism of Ge epitaxy on Si are studied via X-ray diffraction, Raman and transmission electron microscopy analyses. Compared with the conventional two-step process, the one-step aluminium-assisted crystallization requires much lower thermal budget and results in pure Ge epitaxial layer, which may be suitable for use as a virtual substrate for the fabrication of III-V solar cells.
Mohammed, Muzaffer; Aslan, Kadir
2013-01-01
We demonstrate the design and the proof-of-concept use of a new, circular poly(methyl methacrylate)-based bioassay platform (PMMA platform), which affords for the rapid processing of 16 samples at once. The circular PMMA platform (5 cm in diameter) was coated with a silver nanoparticle film to accelerate the bioassay steps by microwave heating. A model colorimetric bioassay for biotinylated albumin (using streptavidin-labeled horse radish peroxidase) was performed on the PMMA platform coated with and without silver nanoparticles (a control experiment), and at room temperature and using microwave heating. It was shown that the simulated temperature profile of the PMMA platform during microwave heating were comparable to the real-time temperature profile during actual microwave heating of the constructed PMMA platform in a commercial microwave oven. The model colorimetric bioassay for biotinylated albumin was successfully completed in ~2 min (total assay time) using microwave heating, as compared to 90 min at room temperature (total assay time), which indicates a ~45-fold decrease in assay time. Our PMMA platform design afforded for significant reduction in non-specific interactions and low background signal as compared to non-silvered PMMA surfaces when employed in a microwave-accelerated bioassay carried out in a conventional microwave cavity.
Studies of the Ionospheric Turbulence Excited by the Fourth Gyroharmonic at HAARP
NASA Astrophysics Data System (ADS)
Milikh, G. M.; Najmi, A. C.; Mahmoudian, A.; Bernhardt, P. A.; Briczinski, S.; Siefring, C. L.; Yampolski, Y.; Alexander, K.; Sopin, A.; Zalizovski, A.; Chiang, K.; Psiaki, M. L.; Morton, Y.; Taylor, S.; Papadopoulos, K.
2014-12-01
We report the results of a set of experiments conducted during the HAARP June 2014 campaign, whose objective was to study the development of artificial ionospheric turbulence. During the experiments, the heating frequency was stepped up and down near the 4th gyroharmonic, and the power of the heating HF radiation was varied. Our diagnostics included: measurements of phase-derived Slant Total Electron Content using the L1/L2 signals from PRN 25 GPS satellite received at HAARP; measurements of Stimulated Electromagnetic Emission (SEE) conducted 15 km away from the HAARP site; detection of the HAARP HF radiation at Vernadsky station located in Antarctica ~15.6 Mm from HAARP; ionograms from HAARP's digisonde and reflectance data from Kodiak radar. Our observations showed: a distinct correlation between the broad upshifted maximum detected by the SEE and strong suppression of the HF signals detected at Vernadsky station; drift velocity of the ionospheric irregularities causing HF scattering detected at Vernadsky station corresponds to that measured by the Kodiak radar; the intensity of the scattered radar signals by Kodiak correlates with the amplitude of downshifted maximum observed by the SEE.
Brandt, Stephen B.; Rasskazov, S.V.; Brandt, I.S.; Ivanov, A.V.; Kunk, Michael J.
1997-01-01
Results of two routine 40Ar/39Ar stepwise heating experiments on a biotite and a basanite are interpreted in terms of Fick's and Arrhenius' laws. Both patterns represent a saddle-shaped 39Ar release. Argon isotope spectra are suggested to be controlled by the activation energy of diffusion E and the frequency factor D(o). The activation energy of 39Ar is lower than the one of 40Ar. This results in a preferable release of 40Ar relatively to 39Ar at high-temperature steps and an increasing high-temperature wing in the saddle-shaped age spectrum. At low temperatures, considerable losses and irregularities in release of mainly 39Ar are observed, which cause the decreasing low-temperature wing in the 'saddle'. The suggestion of argon losses (mainly of 39Ar) from a loose, 'unstable' zone of the mineral structures becomes justified. The n-irradiation of the samples and the shift of E of 39Ar towards lower values seems to explain the saddle-shaped age-spectra often encountered in 40Ar/39Ar-geochronometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brun, J.; Reynard-Carette, C.; Carette, M.
2015-07-01
The nuclear radiation energy deposition rate (usually expressed in W.g{sup -1}) is a key parameter for the thermal design of experiments, on materials and nuclear fuel, carried out in experimental channels of irradiation reactors such as the French OSIRIS reactor in Saclay or inside the Polish MARIA reactor. In particular the quantification of the nuclear heating allows to predicting the heat and thermal conditions induced in the irradiation devices or/and structural materials. Various sensors are used to quantify this parameter, in particular radiometric calorimeters also called in-pile calorimeters. Two main kinds of in-pile calorimeter exist with in particular specific designs:more » single-cell calorimeter and differential calorimeter. The present work focuses on these two calorimeter kinds from their out-of-pile calibration step (transient and steady experiments respectively) to comparison between numerical and experimental results obtained from two irradiation campaigns (MARIA reactor and OSIRIS reactor respectively). The main aim of this paper is to propose a steady numerical approach to estimate the single-cell calorimeter response under irradiation conditions. (authors)« less
Development of a Laser Probe for Argon Isotope Studies.
NASA Astrophysics Data System (ADS)
McConville, Paul
Available from UMI in association with The British Library. The first objective of this study was to develop a laser outgassing facility for argon isotope studies. Apart from the laser and construction of the laser sample port, existing vacuum and mass spectrometer systems were used. Laser performance and optimum operating conditions were investigated. The second objective was test and evaluate the laser extraction technique by studies of simple geological samples. Previous laser ^{40} Ar-^{39}Ar dating studies by other workers had not systematically established the basis or characteristics of the method. Results from laser and complementary stepped heating studies of the ^{40}Ar-^ {39}Ar dating standard hornblende, hb3gr; a phlogopite sample from the Palabora (Phalaborwa) Complex; and biotites in a thin section of the Hamlet Bjerg granite from East Greenland, verified that: (1) Laser extraction reproduced within experimental error the stepped heating ^{40}Ar-^ {39}Ar and K-Ar ages of simple samples. (2) The precision of the technique i.e. the amount of sample required to give reliable ages, was limited in the present experiments largely by the level of the blanks and backgrounds to 10-100 ug samples. (3) Sample outgassing appeared to be limited to the order of 10 um outside the physical size of the laser pit, consistent with other estimates of the spatial definition in the literature. This could be understood by thermal diffusion and the length of the laser pulse. (4) The efficiency of the laser pulse in melting and outgassing mineral samples was shown to be dependent on silicate latent heats and mineral absorption at the laser wavelength. In addition, the ^{40} Ar-^{39}Ar age of the geologically significant Palabora Complex was determined as (2053 +/- 5) Ma. Excess argon led to a discrepancy between the laser and stepped heating ages of biotite and muscovite, (405 +/- 5) Ma, and laser ages of feldspars (510 +/- 20) Ma in the Hamlet Bjerg granite. This illustrated one advantage of in situ laser age determinations on mineral grains in thin section. (Abstract shortened by UMI.).
Chen, Zhao; Wang, Hongye; Jiang, Xiuping
2015-02-01
The effectiveness of a two-step heat treatment for eliminating desiccation-adapted Salmonella spp. in aged chicken litter was evaluated. The aged chicken litter with 20, 30, 40, and 50% moisture contents was inoculated with a mixture of four Salmonella serotypes for a 24-h adaptation. Afterwards, the inoculated chicken litter was added into the chicken litter with the adjusted moisture content for a 1-h moist-heat treatment at 65 °C and 100% relative humidity inside a water bath, followed by a dry-heat treatment in a convection oven at 85 °C for 1 h to the desired moisture level (<10-12%). After moist-heat treatment, the populations of Salmonella in aged chicken litter at 20 and 30% moisture contents declined from ≈6.70 log colony-forming units (CFU)/g to 3.31 and 3.00 log CFU/g, respectively. After subsequent 1-h dry-heat treatment, the populations further decreased to 2.97 and 2.57 log CFU/g, respectively. Salmonella cells in chicken litter with 40% and 50% moisture contents were only detectable by enrichment after 40 and 20 min of moist-heat treatment, respectively. Moisture contents in all samples were reduced to <10% after a 1-h dry-heat process. Our results demonstrated that the two-step heat treatment was effective in reducing >5.5 logs of desiccation-adapted Salmonella in aged chicken litter with moisture content at or above 40%. Clearly, the findings from this study may provide the chicken litter processing industry with an effective heat treatment method for producing Salmonella-free chicken litter.
Singh, Ajay V; Gollner, Michael J
2016-06-01
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.
Singh, Ajay V.; Gollner, Michael J.
2016-01-01
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827
A new MRI land surface model HAL
NASA Astrophysics Data System (ADS)
Hosaka, M.
2011-12-01
A land surface model HAL is newly developed for MRI-ESM1. It is used for the CMIP simulations. HAL consists of three submodels: SiByl (vegetation), SNOWA (snow) and SOILA (soil) in the current version. It also contains a land coupler LCUP which connects some submodels and an atmospheric model. The vegetation submodel SiByl has surface vegetation processes similar to JMA/SiB (Sato et al. 1987, Hirai et al. 2007). SiByl has 2 vegetation layers (canopy and grass) and calculates heat, moisture, and momentum fluxes between the land surface and the atmosphere. The snow submodel SNOWA can have any number of snow layers and the maximum value is set to 8 for the CMIP5 experiments. Temperature, SWE, density, grain size and the aerosol deposition contents of each layer are predicted. The snow properties including the grain size are predicted due to snow metamorphism processes (Niwano et al., 2011), and the snow albedo is diagnosed from the aerosol mixing ratio, the snow properties and the temperature (Aoki et al., 2011). The soil submodel SOILA can also have any number of soil layers, and is composed of 14 soil layers in the CMIP5 experiments. The temperature of each layer is predicted by solving heat conduction equations. The soil moisture is predicted by solving the Darcy equation, in which hydraulic conductivity depends on the soil moisture. The land coupler LCUP is designed to enable the complicated constructions of the submidels. HAL can include some competing submodels (precise and detailed ones, and simpler ones), and they can run at the same simulations. LCUP enables a 2-step model validation, in which we compare the results of the detailed submodels with the in-situ observation directly at the 1st step, and follows the comparison between them and those of the simpler ones at the 2nd step. When the performances of the detailed ones are good, we can improve the simpler ones by using the detailed ones as reference models.
Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity
NASA Technical Reports Server (NTRS)
Oker, E.; Merte, H., Jr.
1973-01-01
Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.
Guillaume, Christophe L; Serghiou, George; Thomson, Andrew; Morniroli, Jean-Paul; Frost, Dan J; Odling, Nicholas; Jeffree, Chris E
2010-09-20
High pressure and temperature experiments on Ge-Sn mixtures to 24 GPa and 2000 K reveal segregation of Sn from Ge below 10 GPa whereas Ge-Sn agglomerates persist above 10 GPa regardless of heat treatment. At 10 GPa Ge reacts with Sn to form a tetragonal P4(3)2(1)2 Ge(0.9)Sn(0.1) solid solution on recovery, of interest for optoelectronic applications. Using electron diffraction and scanning electron microscopy measurements in conjunction with a series of tailored experiments promoting equilibrium and kinetically hindered synthetic conditions, we provide a step by step correlation between the semiconductor-metal and structural changes of the solid and liquid states of the two elements, and whether they segregate, mix or react upon compression. We identify depletion zones as an effective monitor for whether the process is moving toward reaction or segregation. This work hence also serves as a reference for interpretation of complex agglomerates and for developing successful synthesis conditions for new materials using extremes of pressure and temperature.
Cyclic process for producing methane from carbon monoxide with heat removal
Frost, Albert C.; Yang, Chang-lee
1982-01-01
Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.
Cyclic process for producing methane in a tubular reactor with effective heat removal
Frost, Albert C.; Yang, Chang-Lee
1986-01-01
Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.
First results of the ITER-relevant negative ion beam test facility ELISE (invited).
Fantz, U; Franzen, P; Heinemann, B; Wünderlich, D
2014-02-01
An important step in the European R&D roadmap towards the neutral beam heating systems of ITER is the new test facility ELISE (Extraction from a Large Ion Source Experiment) for large-scale extraction from a half-size ITER RF source. The test facility was constructed in the last years at Max-Planck-Institut für Plasmaphysik Garching and is now operational. ELISE is gaining early experience of the performance and operation of large RF-driven negative hydrogen ion sources with plasma illumination of a source area of 1 × 0.9 m(2) and an extraction area of 0.1 m(2) using 640 apertures. First results in volume operation, i.e., without caesium seeding, are presented.
NASA Astrophysics Data System (ADS)
Nabil, M. F.; Azmi, W. H.; Hamid, K. A.; Mamat, R.
2017-10-01
The need for high performance of heat transfer has been evaluated by finding different ways to enhance heat transfer rate in fluid. One of the methods is the combination of two or more nanoparticles and it is known as hybrid/composite nanofluids which can give better performance of heat transfer. Thus, the present study focused on combination of Titanium oxide (TiO2) and Silicon oxide (SiO2) nanoparticles dispersed in 60:40 volume ratio of water and ethylene glycol mixture as the base fluid. The TiO2-SiO2 hybrid nanofluids are prepared using two-step method for different concentration of 2.0%, 2.5% and 3.0%. The experimental determination of heat transfer coefficients are conducted in the Reynolds numbers range from 2000 to 10000 at a bulk temperature of 30°C. The experiments are undertaken for constant heat flux in a circular tube. The Nusselt number of composite TiO2- SiO2 nanofluids is observed to be higher than the base fluid. The finding on heat transfer coefficient shows that 3.0% volume concentration is the highest enhancement with 45.9% compared with base fluid. While at concentration 2.0% and 2.5%, the enhancement recorded were 29.4% and 33.2%, respectively. The friction factor of nanofluids shows a decreased with the increasing of Reynolds numbers. However, the friction factor slightly increased with the increased of concentration.
Lateral hopping of CO molecules on Pt(111) surface by femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Hayashi, M.; Ootsuka, Y.; Paulsson, M.; Persson, B. N. J.; Ueba, H.
2009-12-01
Theory of heat transfer between adsorbate vibrational degrees of freedom and ultrafast laser heated hot electrons including vibrational intermode coupling is applied to calculate two-pulse correlation, laser fluence dependence and time dependence of lateral hopping of CO molecules from a step to terrace site on a stepped Pt (111) surface. The intermode coupling is a key ingredient to describe vibrational heating of the frustrated translation mode responsible for the CO hopping. The calculated results are in good agreement with the experimental results, especially if we scale down the experimentally determined absorbed fluence. It is found that CO hopping is induced by indirect heating of the FT mode by the FR mode with a strong frictional coupling to hot electrons.
NASA Astrophysics Data System (ADS)
Ravanbakhsh, A.; Kulkarni, S. R.; Panitzsch, L.; L Richards, M.; Munoz Hernandez, A.; Seimetz, L.; Elftmann, R.; Mahesh, Y.; Boden, S.; Boettcher, S. I.; Kulemzin, A.; Martin-Garcia, C.; Prieto, M.; Rodriguez-Pacheco, J.; Sanchez Prieto, S.; Schuster, B.; Steinhagen, J.; Tammen, J.; Wimmer-Schweingruber, R. F.
2016-12-01
Solar Orbiter is ESA's next solar and heliospheric mission which is planned to be launched in October 2018. The Energetic Particle Detector (EPD) on board on Solar Orbiter will provide key measurements for the Solar Orbiter science objectives. The EPD suite consists of four sensors; STEP, SIS, EPT and HET. The University of Kiel in Germany is responsible for the design, development, and building of STEP, and the two identical units EPT-HET 1 and EPT-HET 2. ESA's Solar Orbiter will explore the heliosphere at heliocentric distances between 0.28AU and 0.9AU and with inclination up to 38deg with respect to the Sun's equator. The spacecraft uses a heat shield to protect the bus and externally mounted instruments from the solar flux at the close distances to the sun. All three EPD-Kiel units are mounted externally but in different positions on the spacecraft outer deck. Although being protected by the spacecraft heat shield from high solar flux, EPT-HET1 and EPT-HET-2 as well as STEP experience a harsh environmental condition during the course of the mission. In addition due to the highly demanding science requirements, the qualification and acceptance test requirements of these externally mounted units are quite challenging. In this paper we present the development status of the EPT-HET 1, EPT-HET 2 and STEP sensors focusing on the activities performed in phase D and the qualification and acceptance test campaigns. The main objective of these test campaigns is to ensure and demonstrate the compatibility between the scientific requirements and the harsh environment expected during the mission. This paper includes the results summary of the environmental tests on the EPT-HET and STEP Proto-Qualification Models (PQMs) as well as Proto-Flight Models (PFMs). Only an adequate selection of environmental qualification and acceptance campaigns will guarantee the success of the scientific space missions.
Supercritical Fluid Spray Application Process for Adhesives and Primers
2003-03-01
The basic scheme of SFE process consists of three steps. A solvent, typically carbon dioxide, first is heated and pressurized to a supercritical...passivation step to remove contaminants and to prevent recontamination. Bok et al. (25) describe a pressure pulsation mechanism to stimulate improved...in as a liquid, and then it is heated to above its critical temperature to become a supercritical fluid. The sample is injected and dissolved into
Magnetic properties of mechanically alloyed Mn-Al-C powders
NASA Astrophysics Data System (ADS)
Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.
2011-01-01
We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.
Adsorption of nitrogen, hydrogen, and deuterium on carbon nanotubes bundles
NASA Astrophysics Data System (ADS)
Vilches, Oscar E.; Tyburski, Adam; Wilson, Tate; Depies, Matt; Becquet, Daphne; Bienfait, Michel
2001-03-01
Adsorption isotherm measurements on bundles of closed ends carbon nanotubes will be reported, for temperatures between 77K and 96K for N2, H2, and D2, and between 28K and 40K for H2 and D2. Results show the two broad coverage vs. pressure steps reported by Migone's group [S.E.Weber et al., Phys. Rev. B61, 13150 (2000)] and Bienfait's group [M.Muris et al., Langmuir 16, 7019 (2000)] for other adsorbates using similar substrates. The calculated isosteric heat from the lower coverage step is about twice the isosteric heat of the higher coverage step for each of the molecules, with this higher step having somewhat smaller binding energy than the same molecules on graphite.
NASA Astrophysics Data System (ADS)
Rodriguez-Calvillo, P.; Leunis, E.; Van De Putte, T.; Jacobs, S.; Zacek, O.; Saikaly, W.
2018-04-01
The industrial production route of Grain Oriented Electrical Steels (GOES) is complex and fine-tuned for each grade. Its metallurgical process requires in all cases the abnormal grain growth (AGG) of the Goss orientation during the final high temperature annealing (HTA). The exact mechanism of AGG is not yet fully understood, but is controlled by the different inhibition systems, namely MnS, AlN and CuxS, their size and distribution, and the initial primary recrystallized grain size. Therefore, among other parameters, the initial heating stage during the HTA is crucial for the proper development of primary and secondary recrystallized microstructures. Cold rolled 0.3 mm Cu-bearing Grain Oriented Electrical Steel has been submitted to interrupted annealing experiments in a lab tubular furnace. Two different annealing cycles were applied:• Constant heating at 30°C/h up to 1000°C. Two step cycle with initial heating at 100°C/h up to 600°C, followed by 18 h soaking at 600°C and then heating at 30°C/h up to 1050°C. The materials are analyzed in terms of their magnetic properties, grain size, texture and precipitates. The characteristic magnetic properties are analyzed for the different extraction temperatures and Cycles. As the annealing was progressing, the coercivity values (Hc 1.7T [A/m]) decreased, showing two abrupt drops, which can be associated to the on-set of primary and secondary recrystallization. The primary recrystallized grain sizes and recrystallized fractions are fitted to a model using a non-isothermal approach. This analysis shows that, although the resulting grain sizes were similar, the kinetics for the two step annealing were faster due to the lower recovery. The on-set of secondary recrystallization was also shifted to higher temperatures in the case of the continuous heating cycle, which might end in different final grain sizes and final magnetic properties. In both samples, nearly all the observed precipitates are Al-Si-Mn nitrides, ranging from pure AlN to Si4Mn-nitride.
ADX: a high field, high power density, Advanced Divertor test eXperiment
NASA Astrophysics Data System (ADS)
Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team
2014-10-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.
Method of manufacturing a niobium-aluminum-germanium superconductive material
Wang, John L.; Pickus, Milton R.; Douglas, Kent E.
1980-01-01
A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.
Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces
NASA Technical Reports Server (NTRS)
Dussinger, Peter M.; Lindemuth, James E.
1997-01-01
The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.
NASA Astrophysics Data System (ADS)
Xavier, Prince K.; Petch, Jon C.; Klingaman, Nicholas P.; Woolnough, Steve J.; Jiang, Xianan; Waliser, Duane E.; Caian, Mihaela; Cole, Jason; Hagos, Samson M.; Hannay, Cecile; Kim, Daehyun; Miyakawa, Tomoki; Pritchard, Michael S.; Roehrig, Romain; Shindo, Eiki; Vitart, Frederic; Wang, Hailan
2015-05-01
An analysis of diabatic heating and moistening processes from 12 to 36 h lead time forecasts from 12 Global Circulation Models are presented as part of the "Vertical structure and physical processes of the Madden-Julian Oscillation (MJO)" project. A lead time of 12-36 h is chosen to constrain the large-scale dynamics and thermodynamics to be close to observations while avoiding being too close to the initial spin-up of the models as they adjust to being driven from the Years of Tropical Convection (YOTC) analysis. A comparison of the vertical velocity and rainfall with the observations and YOTC analysis suggests that the phases of convection associated with the MJO are constrained in most models at this lead time although the rainfall in the suppressed phase is typically overestimated. Although the large-scale dynamics is reasonably constrained, moistening and heating profiles have large intermodel spread. In particular, there are large spreads in convective heating and moistening at midlevels during the transition to active convection. Radiative heating and cloud parameters have the largest relative spread across models at upper levels during the active phase. A detailed analysis of time step behavior shows that some models show strong intermittency in rainfall and differences in the precipitation and dynamics relationship between models. The wealth of model outputs archived during this project is a very valuable resource for model developers beyond the study of the MJO. In addition, the findings of this study can inform the design of process model experiments, and inform the priorities for field experiments and future observing systems.
Building a sustainable future: Bioclimatic house
NASA Astrophysics Data System (ADS)
Gomez Mallen, Esther; Rivera Fusalba, Oriol
2010-05-01
The application of bioclimatic principles is a critical factor in reducing energy consumption and CO2 emissions. This poster develops a sequence of experiments and building working models in order to form students of secondary school and make progress towards real applications of new energy technologies. The activity has been carried out by 14 and 15-year-old students using a Power House building kit. Scientific method and Information and Communication Technologies (ICT) were used as an effective system of acquiring new knowledge. Students were asked to form cooperative groups. Firstly, each group had to choose the best location and orientation in the imaginary Dragon Island for the construction of the house. The house consisted of eight Styrofoam parts and one transparent plastic part. The Styrofoam parts formed the house structure (floor, walls and roof) with two interior chambers and the attached greenhouse. Once the house was assembled in a few steps, it was ready for the students to start adding more components. Students then conducted several experiments related to the heat and light energy of the Sun and the energy of the wind. Some of the experiments and building projects realized were: how to capture the Sun to heat the house by passive solar heating, how to collect the Sun's rays to heat water using a Sun Collector and how to extract electricity current from Sun Power station and from wind power plant. For most of the assays it was necessary to record the temperature and students used for that purpose a temperature sensor that comes with Multilog Pro, a portable, graphic data collection and analysis system. Groups of students were really engaged in the project and each of them ran a different test with the house. Finally they proved if their initial hypothesis was correct and they had to expose the results to the rest of the class members. Students demonstrated how we can transform and use renewable forms of energy. With the experiments students demonstrated that the air can circulate between the house and the greenhouse through the windows. The heated air in the greenhouse rose through the windows into the main house. It was cooled off as it delivered heat and returned again to the greenhouse. It happened naturally due to the materials and the configuration of the house. A solar collector gathered heat from the Sun in order to heat water until 40° C, what was enough for showering, laundry, and washing dishes. Solar cells and homemade wind power unit delivered electricity to light up a small light bulb. With these experiments and building kit we explored and used natural, renewable forms of energy. These are forms of energy that we can use without damaging our natural environment and ourselves. Perhaps this kit will give students the incentive to build something on a larger scale after they have learned from the smaller scale model devices.
CFD and Thermo Mechanical Analysis on Effect of Curved vs Step Surface in IC Engine Cylinder Head
NASA Astrophysics Data System (ADS)
Balaji, S.; Ganesh, N.; Kumarasamy, A.
2017-05-01
Current research in IC engines mainly focus on various methods to achieve higher efficiency and high specific power. As a single design parameter, combustion chamber peak spring pressure has increased more than before. Apart from the structural aspects of withstanding these loads, designer faces challenges of resolving thermal aspects of cylinder head. Methods to enhance the heat transfer without compromising load withstanding capability are being constantly explored. Conventional cylinder heads have got sat inner surface. In this paper we have suggested a modification in inner surface to enhance the heat transfer capability. To increase the heat transfer rate, inner same deck surface is configured as a curved and stepped surface instead of sat. We have reported the effectiveness of extend of curvature in the inner same deck surface in a different technical paper. Here, we are making a direct comparison between stepped and curved surface only. From this analysis it has been observed that curved surface reduces the ame deck temperature considerably without compromising the structural strength factors compared to step and sat surface.
Sahni, Ekneet K; Pikal, Michael J
2017-03-01
Although several mathematical models of primary drying have been developed over the years, with significant impact on the efficiency of process design, models of secondary drying have been confined to highly complex models. The simple-to-use Excel-based model developed here is, in essence, a series of steady state calculations of heat and mass transfer in the 2 halves of the dry layer where drying time is divided into a large number of time steps, where in each time step steady state conditions prevail. Water desorption isotherm and mass transfer coefficient data are required. We use the Excel "Solver" to estimate the parameters that define the mass transfer coefficient by minimizing the deviations in water content between calculation and a calibration drying experiment. This tool allows the user to input the parameters specific to the product, process, container, and equipment. Temporal variations in average moisture contents and product temperatures are outputs and are compared with experiment. We observe good agreement between experiments and calculations, generally well within experimental error, for sucrose at various concentrations, temperatures, and ice nucleation temperatures. We conclude that this model can serve as an important process development tool for process design and manufacturing problem-solving. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guimbal, P.; Huotilainen, S.; Taehtinen, S.
2015-07-01
As a prototype of future instrumented material experiments in the Jules Horowitz Reactor (JHR), the MELODIE project was launched in 2009 by the CEA in collaboration with VTT. Being designed as a biaxial creep experiment with online capability, MELODIE is able to apply an online-controlled biaxial loading on a LWR clad sample up to 120 MPa and to perform an online measurement of its biaxial deformation. An important experimental challenge was to perform reliably accurate measurements under the high nuclear heat load of in-core locations while keeping within their tight space. For that purpose, specific sensors were co-designed with andmore » built by IFE Halden. Manufacturing of the MELODIE components was completed one year ago. The complexity of its in-pile section and of the pressurization system requested a step-by-step tuning of the setup. The toughest part of this process dealt with the Diameter gauge which required a partial redesign to take into account unexpected and unwanted electromagnetic interactions with the hosting device. Final cold performance tests of the on-board instrumentation will be presented. The MELODIE device is now ready and irradiation should start in OSIRIS reactor this spring. (authors)« less
Investigation of Near Critical Point States of Molybdenum by Pulse Heating under Launching
NASA Astrophysics Data System (ADS)
Nikolaev, Dmitriy
2005-07-01
The near critical point states (NCPS) of the liquid-vapour phase transition of molybdenum were investigated. The heating of molybdenum foil samples in 1-D geometry was carried out by multiple-shocked He from the back side of the sample under dynamically created isobaric conditions [1]. The temperature of sample was measured by fast 4-channel optical pyrometer. The pressure was obtained from shock velosity in He, measured by streak camera on the step on transparent window. Two sets of experiments with various hystory of heating were carryed out, allowed us to evaluate spinode and binode lines, and the position of critical point on P-T plane: Tc=12500±1000 K, Pc=1±0.1 GPa. Work was supported by ISTC grant 2107, RFBR grant 04-02-16790. [1] V.Ya.Ternovoi, V.E.Fortov et.al. High Temp.-High Pres. 2002, v.34, pp.73-79[2] D.N.Nikolaev, A.N.Emelyanov et.al. in: SCCM-2003, AIP conf. proc. 706, ed.by M.D.Furnish, Y.M.Gupta et.al, pp.1231-1234
Luminescent Solar Concentrators in the Algal Industry
NASA Astrophysics Data System (ADS)
Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie
2013-03-01
Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.
NASA Astrophysics Data System (ADS)
Rexer, Theresa; Gustavsson, Björn; Grydeland, Tom; Rietveld, Mike; Leyser, Thomas; Brändström, Urban; Sergienko, Tima
2017-04-01
A high power, high frequency heating experiment of the polar ionosphere was conducted in Tromsø, Norway in March 2016. The wave-plasma interactions were observed with the European Incoherent SCATer UHF radar co-located with the heating facility. HF pulses in a 3 minute ON 3 minute OFF cycles were transmitted, sweeping frequencies in 10 and 20 kHz steps from just below to just above the 3rd and 4th multiples of the F-region gyro-frequency. Several interesting features have been found in the radar measurements of the backscatter from the heated plasma. In agreement with current theory we observed an enhanced ionline near the HF reflection height on the bottom-side of the F layer. Simultaneously, a less intense, but clearly visible, ionline enhancement was observed approximately 100 km above this bottom-side enhancement for several 3 minute sweep pulses. We present the observations and discuss the top-side enhanced ion-line in relation to Z and L-mode propagation through the F-region peak.
Toledo-Núñez, Citlali; Vera-Robles, L Iraís; Arroyo-Maya, Izlia J; Hernández-Arana, Andrés
2016-09-15
A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models. Copyright © 2016 Elsevier Inc. All rights reserved.
Churgin, Matthew A.; He, Liping; Murray, John I.; Fang-Yen, Christopher
2014-01-01
The spatial and temporal control of transgene expression is an important tool in C. elegans biology. We previously described a method for evoking gene expression in arbitrary cells by using a focused pulsed infrared laser to induce a heat shock response (Churgin et al 2013). Here we describe detailed methods for building and testing a system for performing single-cell heat shock. Steps include setting up the laser and associated components, coupling the laser beam to a microscope, and testing heat shock protocols. All steps can be carried out using readily available off-the-shelf components. PMID:24835576
Coefficient of performance of Stirling refrigerators
NASA Astrophysics Data System (ADS)
E Mungan, Carl
2017-09-01
Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.
Thermal Stability of Otto Fuel Prepolymer
NASA Technical Reports Server (NTRS)
Tompa, Albert S.; Sandagger, Karrie H.; Bryant, William F., Jr.; McConnell, William T.; Lacot, Fernando; Carr, Walter A.
2000-01-01
Otto Fuel II contains a nitrate ester, plasticizer, and 2-NDPA as a stabilizer. Otto Fuel with stabilizers from three vendors was investigated by dynamic and isothermal DSC using samples sealed in a glass ampoule and by Isothermal Microcalorimetry (IMC) using 10 gram samples aged at 75 C for 35 days. DSC kinetics did not show differences between the stabilizer; the samples had an activation energy of 36.7 +/- 0.6 kcal/mol. However, IMC analysis was sensitive enough to detect small differences between the stabilizer, namely energy of interaction values of 7 to 14 Joules. DSC controlled cooling and heating at 5 C/min from 30 to -60 to 40 C experiments were similar and showed a crystallization peak at -48 +/- 1 C during cooling, and upon heating there was a glass transition temperature step at approx. -54 +/- 0.5 C and a melting peak at -28 +/- 0.4 C.
Thermal Stability of Otto Fuel Prepolymer
NASA Technical Reports Server (NTRS)
Tompa, Albert S.; Sandagger, Karrie H.; Bryant, William F., Jr.; McConnell, William T.; Lacot, Fernando; Carr, Walter A.
2000-01-01
Otto Fuel II contains a nitrate ester, plasticizer, and 2-NPDA as a stabilizer. Otto Fuel with stabilizers from three vendors was investigated by dynamic and isothermal differential scanning calorimetry (DSC) using samples sealed in a glass ampoule and by Isothermal Microcalorimetry (IMC) using 10 gram samples aged at 75 C for 35 days. DSC kinetics did not show differences between the stabilizer; the samples had an activation energy of 36.7 +/- 0.6 kcal/mol. However, IMC analysis was sensitive enough to detect small differences between the stabilizer, namely energy of interaction values of 7 to 14 Joules. DSC controlled cooling and heating at 5 C/min from 30 to -60 to 40 C experiments were similar and showed a crystallization peak at -48 +/- 1 C during cooling, and upon heating there was a glass transition temperature step at approx. -54 +/- 0.5 C and a melting peak at -28 +/- 0.4 C.
Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere
Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.
1990-01-01
As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.
Method for imaging a concealed object
Davidson, James R [Idaho Falls, ID; Partin, Judy K [Idaho Falls, ID; Sawyers, Robert J [Idaho Falls, ID
2007-07-03
A method for imaging a concealed object is described and which includes a step of providing a heat radiating body, and wherein an object to be detected is concealed on the heat radiating body; imaging the heat radiating body to provide a visibly discernible infrared image of the heat radiating body; and determining if the visibly discernible infrared image of the heat radiating body is masked by the presence of the concealed object.
Seager, C.H.; Evans, J.T. Jr.
1998-11-24
A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.
Seager, Carleton H.; Evans, Jr., Joseph Tate
1998-01-01
A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.
NASA Astrophysics Data System (ADS)
Hannat, Ridha
The aim of this thesis is to apply a new methodology of optimization based on the dual kriging method to a hot air anti-icing system for airplanes wings. The anti-icing system consists of a piccolo tube placed along the span of the wing, in the leading edge area. The hot air is injected through small nozzles and impact on the inner wall of the wing. The objective function targeted by the optimization is the effectiveness of the heat transfer of the anti-icing system. This heat transfer effectiveness is regarded as being the ratio of the wing inner wall heat flux and the sum of all the nozzles heat flows of the anti-icing system. The methodology adopted to optimize an anti-icing system consists of three steps. The first step is to build a database according to the Box-Behnken design of experiment. The objective function is then modeled by the dual kriging method and finally the SQP optimization method is applied. One of the advantages of the dual kriging is that the model passes exactly through all measurement points, but it can also take into account the numerical errors and deviates from these points. Moreover, the kriged model can be updated at each new numerical simulation. These features of the dual kriging seem to give a good tool to build the response surfaces necessary for the anti-icing system optimization. The first chapter presents a literature review and the optimization problem related to the antiicing system. Chapters two, three and four present the three articles submitted. Chapter two is devoted to the validation of CFD codes used to perform the numerical simulations of an anti-icing system and to compute the conjugate heat transfer (CHT). The CHT is calculated by taking into account the external flow around the airfoil, the internal flow in the anti-icing system, and the conduction in the wing. The heat transfer coefficient at the external skin of the airfoil is almost the same if the external flow is taken into account or no. Therefore, only the internal flow is considered in the following articles. Chapter three concerns the design of experiment (DoE) matrix and the construction of a second order parametric model. The objective function model is based on the Box-Behnken DoE. The parametric model that results from numerical simulations serve for comparison with the kriged model of the third article. Chapter four applies the dual kriging method to model the heat transfer effectiveness of the anti-icing system and use the model for optimization. The possibility of including the numerical error in the results is explored. For the test cases studied, introduction of the numerical error in the optimization process does not improve the results. Dual kriging method is also used to model the distribution of the local heat flux and to interpolate the local heat flux corresponding to the optimal design of the anti-icing system.
Improved silicon carbide for advanced heat engines. I - Process development for injection molding
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.; Trela, Walter
1989-01-01
Alternate processing methods have been investigated as a means of improving the mechanical properties of injection-molded SiC. Various mixing processes (dry, high-sheer, and fluid) were evaluated along with the morphology and particle size of the starting beta-SiC powder. Statistically-designed experiments were used to determine significant effects and interactions of variables in the mixing, injection molding, and binder removal process steps. Improvements in mechanical strength can be correlated with the reduction in flaw size observed in the injection molded green bodies obtained with improved processing methods.
High pressure as an alternative processing step for ham production.
Pingen, Sylvia; Sudhaus, Nadine; Becker, André; Krischek, Carsten; Klein, Günter
2016-08-01
As high pressure processing (HPP) is becoming more and more important in the food industry, this study examined the application of HPP (500 and 600MPa) as a manufacturing step during simulated ham production. By replacing conventional heating with HPP steps, ham-like texture or color attributes could not be achieved. HPP products showed a less pale, less red appearance, softer texture and higher yields. However, a combination of mild temperature (53°C) and 500MPa resulted in parameters more comparable to cooked ham. We conclude that HPP can be used for novel food development, providing novel textures and colors. However, when it comes to ham production, a heating step seems to be unavoidable to obtain characteristic ham properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of Water Recovery Rate from the Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Hegde, U.; Gokoglu, S.
2013-01-01
Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and any remaining free water in the trash by evaporation. The temperature settings of the heated surfaces are usually kept above the saturation temperature of water but below the melting temperature of the plastic in the waste during this step to avoid any encapsulation of wet trash which would reduce the amount of recovered water by blocking the vapor escape. In this paper, we analyze the water recovery rate during Phase B where the trash is heated and water leaves the waste chamber as vapor, for operation of the HMC in reduced gravity. We pursue a quasi-one-dimensional model with and without sidewall heating to determine the water recovery rate and the trash drying time. The influences of the trash thermal properties, the amount of water loading, and the distribution of the water in the trash on the water recovery rates are determined.
NASA Astrophysics Data System (ADS)
Salatino, Maria
2017-06-01
In the current submm and mm cosmology experiments the focal planes are populated by kilopixel transition edge sensors (TESes). Varying incoming power load requires frequent rebiasing of the TESes through standard current-voltage (IV) acquisition. The time required to perform IVs on such large arrays and the resulting transient heating of the bath reduces the sky observation time. We explore a bias step method that significantly reduces the time required for the rebiasing process. This exploits the detectors' responses to the injection of a small square wave signal on top of the dc bias current and knowledge of the shape of the detector transition R(T,I). This method has been tested on two detector arrays of the Atacama Cosmology Telescope (ACT). In this paper, we focus on the first step of the method, the estimate of the TES %Rn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, E A; Zaug, J M; Burnham, A K
The effect of pressure on the thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low to moderate pressures (i.e. between ambient pressure and 1 GPa) and decelerates the decomposition at higher pressures.more » The decomposition acceleration is attributed to pressure enhanced autocatalysis whereas the deceleration at high pressures is attributed pressure inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both {beta} and {delta} phase HMX are sensitive to pressure in the thermally induced decomposition kinetics.« less
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Ludovisis, D.; Cha, S. S.
2006-01-01
Heat transfer of a two-layer fluid system has been of great importance in a variety of industrial applications. For example, the phenomena of immiscible fluids can be found in materials processing and heat exchangers. Typically in solidification from a melt, the convective motion is the dominant factor that affects the uniformity of material properties. In the layered flow, thermocapillary forces can come into an important play, which was first emphasized by a previous investigator in 1958. Under extraterrestrial environments without gravity, thermocapillary effects can be a more dominant factor, which alters material properties in processing. Control and optimization of heat transfer in an immiscible fluid system need complete understanding of the flow phenomena that can be induced by surface tension at a fluid interface. The present work is focused on understanding of the magnetic field effects on thermocapillary convection, in order to optimize material processing. That is, it involves the study of the complicated phenomena to alter the flow motion in crystal growth. In this effort, the Marangoni convection in a cavity with differentially heated sidewalls is investigated with and without the influence of a magnetic field. As a first step, numerical analyses are performed, by thoroughly investigating influences of all pertinent physical parameters. Experiments are then conducted, with preliminary results, for comparison with the numerical analyses.
Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates
Proctor, B P; Mitchell, T M; Hirth, G; Goldsby, D; Zorzi, F; Platt, J D; Di Toro, G
2014-01-01
To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite (“gouge”) at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ∼0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed. Key Points Gouge friction approaches that of bare surfaces at high normal stress Dehydration reactions and bulk melting in serpentinite in < 1 m of slip Flash heating causes dynamic frictional weakening in gouge and bare surfaces PMID:26167425
Investigation of multi-scale flash-weakening of rock surfaces during high speed slip
NASA Astrophysics Data System (ADS)
Barbery, M. R.; Saber, O.; Chester, F. M.; Chester, J. S.
2017-12-01
A significant reduction in the coefficient of friction of rock can occur if sliding velocity approaches seismic rates as a consequence of weakening of microscopic sliding contacts by flash heating. Using a high-acceleration and -speed biaxial apparatus equipped with a high-speed Infra-Red (IR) camera to capture thermographs of the sliding surface, we have documented the heterogeneous distribution of temperature on flash-heated decimetric surfaces characterized by linear arrays of high-temperature, mm-size spots, and streaks. Numerical models that are informed by the character of flash heated surfaces and that consider the coupling of changes in temperature and changes in the friction of contacts, supports the hypothesis that independent mechanisms of flash weakening operate at different contact scales. Here, we report on new experiments that provide additional constraints on the life-times and rest-times of populations of millimeter-scale contacts. Rock friction experiments conducted on Westerly granite samples in a double-direct shear configuration achieve velocity steps from 1 mm/s to 900 mm/s at 100g accelerations over 2 mm of displacement with normal stresses of 22-36 MPa and 30 mm of displacement during sustained high-speed sliding. Sliding surfaces are machined to roughness similar to natural fault surfaces and that allow us to control the characteristics of millimeter-scale contact populations. Thermographs of the sliding surface show temperatures up to 200 C on millimeter-scale contacts, in agreement with 1-D heat conduction model estimates of 180 C. Preliminary comparison of thermal modeling results and experiment observations demonstrate that we can distinguish the different life-times and rest-times of contacts in thermographs and the corresponding frictional weakening behaviors. Continued work on machined surfaces that lead to different contact population characteristics will be used to test the multi-scale and multi-mechanism hypothesis for flash weakening during seismic slip on rough fault surfaces.
Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas
NASA Astrophysics Data System (ADS)
Pablant, Novimir
2016-10-01
Results from the investigation of core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Neoclassical particle fluxes are not intrinsically ambipolar, which leads to the formation of a radial electric field that enforces ambipolarity. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity from the x-ray imaging crystal spectrometer (XICS) and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥ 5km /s (ΔEr 12kV / m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW . These experiments are examined in detail to explore the relationship between, heating power, response of the temperature and density profiles and the response of the radial electric field. Estimations of the core transport are based on power balance and utilize electron temperature (Te) profiles from the ECE and Thomson scattering, electron density profiles (ne) from interferometry and Thomson scattering, ion temperature (Ti) profiles from XICS, along with measurements of the total stored energy and radiated power. Also described are a set core impurity confinement experiments and results. Impurity confinement has been investigated through the injection of trace amount of argon impurity gas at the plasma edge in conjunction with measurements of the density of various ionization states of argon from the XICS and High Efficiency eXtreme-UV Overview Spectrometer (HEXOS) diagnostics. Finally the inferred Er and heat flux profiles are compared to initial neoclassical calculations using measured plasma profiles. On behalf of the W7-X Team.
Low-Pressure Alcohol Distillation
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Zur Burg, F. W.; Cody, J. C.
1984-01-01
Heat requirements lowered for process. Temperature requirements lowered enough to make solar heat absorbed by flat-plate collectors feasible energy source. Alcohol produced without adding other solvents, eliminating need for dehydration or hydrocarbon stripping as final step.
Cattani, F; Dolan, K D; Oliveira, S D; Mishra, D K; Ferreira, C A S; Periago, P M; Aznar, A; Fernandez, P S; Valdramidis, V P
2016-11-01
Bacillus sporothermodurans produces highly heat-resistant endospores, that can survive under ultra-high temperature. High heat-resistant sporeforming bacteria are one of the main causes for spoilage and safety of low-acid foods. They can be used as indicators or surrogates to establish the minimum requirements for heat processes, but it is necessary to understand their thermal inactivation kinetics. The aim of the present work was to study the inactivation kinetics under both static and dynamic conditions in a vegetable soup. Ordinary least squares one-step regression and sequential procedures were applied for estimating these parameters. Results showed that multiple dynamic heating profiles, when analyzed simultaneously, can be used to accurately estimate the kinetic parameters while significantly reducing estimation errors and data collection. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.
1996-01-01
A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is positioned vertically. The ground-based experiments are sufficient preliminary tests of theory and should be of significant interest regarding vapor deposited films in microgravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knebel, J.U.; Kuhn, D.; Mueller, U.
1997-12-01
This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase and two-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and themore » Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software package Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a first statement with regard to the feasibility of the sump cooling concept. 11 refs., 9 figs., 3 tabs.« less
Laser-induced thermal ablation of cancerous cell organelles.
Letfullin, Renat R; Szatkowski, Scott A
2017-07-01
By exploiting the physical changes experienced by cancerous organelles, we investigate the feasibility of destroying cancerous cells by single and multipulse modes of laser heating. Our procedure consists of two primary steps: determining the normal and cancerous organelles optical properties and simulating the heating of all of the major organelles in the cell to find the treatment modes for the laser ablation of cancerous organelles without harming healthy cells. Our simulations show that the cancerous nucleus can be selectively heated to damaging temperatures, making this nucleus a feasible therapeutic particle and removing the need for nanoparticle injection. Because of the removal of this extra step, the procedure we propose is simpler and safer for the patient.
Laboratory experimental investigation of heat transport in fractured media
NASA Astrophysics Data System (ADS)
Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta Maria
2017-01-01
Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays in relation to its potential for development in society worldwide. Most of its applications have already been investigated, such as heating and cooling of private and public buildings, road defrosting, cooling of industrial processes, food drying systems or desalination. Geothermal power development is a long, risky and expensive process. It basically consists of successive development stages aimed at locating the resources (exploration), confirming the power generating capacity of the reservoir (confirmation) and building the power plant and associated structures (site development). Different factors intervene in influencing the length, difficulty and materials required for these phases, thereby affecting their cost. One of the major limitations related to the installation of low enthalpy geothermal power plants regards the initial development steps that are risky and the upfront capital costs that are huge. Most of the total cost of geothermal power is related to the reimbursement of invested capital and associated returns. In order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants. In the literature there are very few studies on heat transport, especially on fractured media. This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation. Heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained thermal breakthrough curves, the Explicit Network Model (ENM) has been used, which is based on an adaptation of Tang's solution for the transport of the solutes in a semi-infinite single fracture embedded in a porous matrix. Parameter estimation, time moment analysis, tailing character and other dimensionless parameters have permitted a better understanding of the dynamics of heat transport and the efficiency of heat exchange between the fractures and the matrix. The results have been compared with the previous experimental studies on solute transport.
Shindo, Y; Kato, K; Tsuchiya, K; Hirashima, T; Suzuki, M
2009-01-01
In this paper, we discuss the improvement of the speed of AIMS (Automatic Impedance Matching System) to automatically make impedance matching for a re-entrant resonant cavity applicator for non-invasive deep brain tumors hyperthermia treatments. We have already discussed the effectiveness of the heating method using the AIMS, with experiments of heating agar phantoms. However, the operating time of AIMS was about 30 minutes. To develop the ATT System (Automatic Totally Tuning System) including the automatic frequency tuning system, we must improve this problem. Because, when using the ATTS, the AIMS is used repeatedly to find the resonant frequency. In order to improve the speed of impedance matching, we developed the new automatic impedance matching system program (AIMS2). In AIMS, the stepping motors were connected to the impedance matching unit's dials. These dials were turned to reduce the reflected power. AIMS consists of two phases: all range searching and detailed searching. We focused on the three factors affecting the operating speed and improved them. The first factor is the interval put between the turning of the motors and AD converter. The second factor is how the steps of the motor when operating all range searching. The third factor is the starting position of the motor when detail searching. We developed the simple ATT System (ATT-beta) based on the AIMS2. To evaluate the developed AIMS2 and ATT- beta, experiments with an agar phantom were performed. From these results, we found that the operating time of the AIMS2 is about 4 minutes, which was approximately 12% of AIMS. From ATT-beta results, it was shown that it is possible to tune frequency and automatically match impedance with the program based on the AIMS2.
Method of doping organic semiconductors
Kloc, Christian Leo [Constance, DE; Ramirez, Arthur Penn [Summit, NJ; So, Woo-Young [New Providence, NJ
2012-02-28
A method includes the steps of forming a contiguous semiconducting region and heating the region. The semiconducting region includes polyaromatic molecules. The heating raises the semiconducting region to a temperature above room temperature. The heating is performed in the presence of a dopant gas and the absence of light to form a doped organic semiconducting region.
Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS
NASA Astrophysics Data System (ADS)
Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur
2018-05-01
Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the appropriateness of soft computing technique as a practically constructive replacement for tedious analytical formulation and henceforth, effectively quantifies the modeling of TFGs.
NASA Astrophysics Data System (ADS)
Richou, M.; Gallay, F.; Böswirth, B.; Chu, I.; Lenci, M.; Loewenhoff, Th; Quet, A.; Greuner, H.; Kermouche, G.; Meillot, E.; Pintsuk, G.; Visca, E.; You, J. H.
2017-12-01
The divertor is the key in-vessel plasma-facing component being in charge of power exhaust and removal of impurity particles. In DEMO, divertor targets must survive an environment of high heat fluxes (˜up to 20 MW m-2 during slow transients) and neutron irradiation. One advanced concept for components in monoblock configuration concerns the insertion of a compositionally graded layer between tungsten and CuCrZr instead of the soft copper interlayer. As a first step, a thin graded layer (˜25 μm) was developed. As a second step, a thicker graded layer (˜500 μm), which is actually being developed, will also be inserted to study the compliant role of a macroscopic graded layer. This paper reports the results of cyclic high heat flux loading tests up to 20 MW m-2 and to heat flux higher than 25 MW m-2 that mock-ups equipped with thin graded layer survived without visible damage. First feedback on manufacturing steps is also presented. Moreover, the first results obtained on the development of the thick graded layer and its integration in a monoblock configuration are shown.
Heat and Mass Transfer Model in Freeze-Dried Medium
NASA Astrophysics Data System (ADS)
Alfat, Sayahdin; Purqon, Acep
2017-07-01
There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.
NASA Astrophysics Data System (ADS)
Hesheng, Shi; Junzhang, Zhu; Huaning, Qiu; yu, Shu; Jianyao, Wu; Zulie, Long
Timing of oil or gas emplacements is a new subject in isotopic geochronology and petroleum geology. Hamilton et al. expounded the principle of the illite K-Ar age: Illite is often the last or one of the latest mineral cements to form prior to hydrocarbon accumulation. Since the displacement of formation water by hydrocarbons will cause silicate diagenesis to cease, K-Ar ages for illite will constrain the timing of this event, and also constrain the maximum age of formation of the trap structure. In this study, the possibility of authigenic illites 40Ar- 39Ar dating has been investigated. The illite samples were separated from the Tertiary sandstones in three rich oil reservoir belts within the Huizhou sag by cleaning, fracturing by cycled cooling-heating, soxhlet-extraction with solvents of benzene and methanol and separating with centrifugal machine. If oil is present in the separated samples, ionized organic fragments with m/e ratios of 36 to 40 covering the argon isotopes will be yielded by the ion source of a mass spectrometer, resulting in wrong argon isotopic analyses and wrong 40Ar- 39Ar ages. The preliminary experiments of illite by heating did show the presence of ionized organic fragments with m/e ratios of 36 to 44. In order to clean up the organic gases completely and obtain reliable analysis results, a special purification apparatus has been established by Qiu et al. and proved valid by the sequent illite analyses. All the illite samples by 40Ar- 39Ar IR-laser stepwise heating yield stair-up age spectra in lower laser steps and plateaux in higher laser steps. The youngest apparent ages corresponding to the beginning steps are reasonable to be interpreted for the hydrocarbon accumulation ages. The weighted mean ages of the illites from the Zhuhai and Zhujiang Formations are (12.1 ± 1.1) Ma and (9.9 ± 1.2) Ma, respectively. Therefore, the critical emplacement of petroleum accumulation in Zhujiang Formation in Huizhou sag took place in ca 10 Ma. Late fault activity strengthened the entrance of hydrocarbon fluids into the oil systems based on the data of the studies of the fault evolvement history, petroleum system combinations, and homogeneous temperatures of fluid inclusions.
A Burning Plasma Experiment: the role of international collaboration
NASA Astrophysics Data System (ADS)
Prager, Stewart
2003-04-01
The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.
Pépino, Marc; Goyer, Katerine; Magnan, Pierre
2015-11-01
Temperature is the primary environmental factor affecting physiological processes in ectotherms. Heat-transfer models describe how the fish's internal temperature responds to a fluctuating thermal environment. Specifically, the rate coefficient (k), defined as the instantaneous rate of change in body temperature in relation to the difference between ambient and body temperature, summarizes the combined effects of direct thermal conduction through body mass, passive convection (intracellular and intercellular fluids) and forced convective heat transfer (cardiovascular system). The k-coefficient is widely used in fish ecology to understand how body temperature responds to changes in water temperature. The main objective of this study was to estimate the k-coefficient of brook charr equipped with internal temperature-sensitive transmitters in controlled laboratory experiments. Fish were first transferred from acclimation tanks (10°C) to tanks at 14, 19 or 23°C (warming experiments) and were then returned to the acclimation tanks (10°C; cooling experiments), thus producing six step changes in ambient temperature. We used non-linear mixed models to estimate the k-coefficient. Model comparisons indicated that the model incorporating the k-coefficient as a function of absolute temperature difference (dT: 4, 9 and 13°C) best described body temperature change. By simulating body temperature in a heterogeneous thermal environment, we provide theoretical predictions of maximum excursion duration between feeding and resting areas. Our simulations suggest that short (i.e. <60 min) excursions could be a common thermoregulatory behaviour adopted by cold freshwater fish species to sustain body temperature below a critical temperature threshold, enabling them to exploit resources in an unfavourable thermal environment. © 2015. Published by The Company of Biologists Ltd.
Integrated modelling framework for short pulse high energy density physics experiments
NASA Astrophysics Data System (ADS)
Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.
2016-03-01
Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.
Elkhalil, Hossam; Akkin, Taner; Pearce, John; Bischof, John
2012-10-01
The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., "ablation" in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation E(ab)). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm(3)/s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.
Characterization of fuels for second-generation PFBC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven, C.A.P.; Hupa, M.
1997-12-31
In second-generation PFBC technology a solid fuel is partly converted in a devolatilization step (in a carbonizer) to produce a char and a pressurized fuel gas, followed by PFB combustion of the char. The fuel gas is led to the combustion chamber of a gas turbine after it is mixed with the PFBC off-gas, thus increasing the temperature at the inlet of the expansion turbine. Clearly, the optimization of the carbonizer design and operation is essential to the process. Detailed information on the behavior of solid fuels under pressurized conditions is, however, largely limited to steam and/or carbon dioxide gasificationmore » reactivities, obtained at a different combination of process parameters, such as temperature, pressure, heating rate, particle size and gas atmosphere. In the present work, the effect of temperature, pressure and heating rates on the yields of volatiles and char residue reactivity has been measured for a set of fuels ranging from bituminous coal to wood. Laboratory conditions were typical for the carbonizer and combustion reactors in a second-generation PFBC system. A pressurized thermogravimetric reactor (PTGR) operated at heating rates of around 250 K/s and a pressurized grid heater (PGH) operated at heating rates up to 3,000 K/s were used to analyze fuel devolatilization and char reactivity against carbon dioxide or steam at temperatures between 800 and 1,100 C, and 1, 10 or 25 bar total pressure. For comparison, a few experiments were repeated without a separate devolatilization step. The behavior of the various fuels were compared and related to proximate and ultimate fuel analysis. Several empirical, engineering equations are given. A simple 2-parameter model which separates intrinsic surface reactivity and physical, structure effects, very well describes the time-conversion data of the char. It was found that the fuel O/C molar ratio is a very good index for char reactivity, when the char O/C ratio itself is unknown.« less
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min>2 that target the typical range of q 95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N. Conversely similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min>3 plasmas to higher β P with q 95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95, high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Xavier, Prince K.; Petch, Jon C.; Klingaman, Nicholas P.; ...
2015-05-26
We present an analysis of diabatic heating and moistening processes from 12 to 36 h lead time forecasts from 12 Global Circulation Models as part of the “Vertical structure and physical processes of the Madden-Julian Oscillation (MJO)” project. A lead time of 12–36 h is chosen to constrain the large-scale dynamics and thermodynamics to be close to observations while avoiding being too close to the initial spin-up of the models as they adjust to being driven from the Years of Tropical Convection (YOTC) analysis. A comparison of the vertical velocity and rainfall with the observations and YOTC analysis suggests thatmore » the phases of convection associated with the MJO are constrained in most models at this lead time although the rainfall in the suppressed phase is typically overestimated. Although the large-scale dynamics is reasonably constrained, moistening and heating profiles have large intermodel spread. In particular, there are large spreads in convective heating and moistening at midlevels during the transition to active convection. Radiative heating and cloud parameters have the largest relative spread across models at upper levels during the active phase. A detailed analysis of time step behavior shows that some models show strong intermittency in rainfall and differences in the precipitation and dynamics relationship between models. In conclusion, the wealth of model outputs archived during this project is a very valuable resource for model developers beyond the study of the MJO. Additionally, the findings of this study can inform the design of process model experiments, and inform the priorities for field experiments and future observing systems.« less
Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, C. T.; Heidbrink, W. W.; Collins, C.
2015-05-15
Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
A study to evaluate non-uniform phase maps in shape memory alloys using finite element method
NASA Astrophysics Data System (ADS)
Motte, Naren
The unique thermo-mechanical behavior of Shape Memory Alloys (SMAs), such as their ability to recover the original shape upon heating or being able to tolerate large deformations without undergoing plastic transformations, makes them a good choice for actuators. This work studies their application in the aerospace and defense industries where SMA components can serve as release mechanisms for gates of enclosures that have to be deployed remotely. This work provides a novel approach in evaluating the stress and heat induced change of phase in a SMA, in terms of the transformation strain tensor. In particular, the FEA tool ANSYS has been used to perform a 2-D analysis of a Cu-Al-Zn-Mn SMA specimen undergoing a nontraditional loading path in two steps with stress and heating loads. In the first load step, tensile displacement is applied, followed by the second load step in which the specimen is heated while the end displacements are held constant. A number of geometric configurations are examined under the two step loading path. Strain results are used to calculate transformation strain which provides a quantitative measure of phase at a material point; when transformation strain is zero, the material point is either twinned martensite, or austenite depending on the temperature. Transformation strain value of unity corresponds to detwinned martensite. A value between zero and one indicates mixed phase. In this study, through two step loading in conjunction with transformation strain calculations, a method for mapping transient non-uniform distribution of phases in an SMA is introduced. Ability to obtain drastically different phase distributions under same loading path by modifying the geometry is demonstrated. The failure behavior of SMAs can be designed such that the load level the crack initiates and the path it propagates can be customized.
NASA Astrophysics Data System (ADS)
Anvari, S. R.; Monirvaghefi, S. M.; Enayati, M. H.
2015-06-01
In this study, step-wise multilayer and functionally graded Ni-P coatings were deposited with electroless in which the content of phosphorus and nickel would be changed gradually and step-wise through the thickness of the coatings, respectively. To compare the properties of these coatings with Ni-P single-layer coatings, three types of coatings with different phosphorus contents were deposited. Heat treatment of coatings was performed at 400 °C for 1 h. The microstructure and phase transformation of coatings were characterized by SEM/EDS, TEM, and XRD. The mechanical properties of coatings were studied by nanoindentation test. According to the results of the single-layer coatings, low P coating had the maximum hardness and also the ratio of hardness ( H) to elasticity modulus ( E) for the mentioned coating was maximum. In addition, low and medium P coatings had crystalline and semi-crystalline structure, respectively. The mentioned coatings had <111> texture and after heat treatment their texture didn't change. While high P coating had amorphous structure, after heat treatment it changed to crystalline structure with <100> texture for nickel grains. Furthermore, the results showed that functionally graded and step-wise multilayer coatings were deposited successfully by using the same initial bath and changing the temperature and pH during deposition. Nanoindentation test results showed that the hardness of the mentioned coatings changed from 670 Hv near the substrate to 860 Hv near the top surface of coatings. For functionally graded coating the hardness profile had gradual changes, while step-wise multilayer coating had step-wise hardness profile. After heat treatment trend of hardness profiles was changed, so that near the substrate, hardness was measured 1400 Hv and changed to 1090 Hv at the top coat.
NASA Astrophysics Data System (ADS)
Lin, Lianghua; Liu, Zhiyi; Ying, Puyou; Liu, Meng
2015-12-01
Multi-step heat treatment effectively enhances the stress corrosion cracking (SCC) resistance but usually degrades the mechanical properties of Al-Zn-Mg-Cu alloys. With the aim to enhance SCC resistance as well as strength of Al-Zn-Mg-Cu alloys, we have optimized the process parameters during two-step aging of Al-6.1Zn-2.8Mg-1.9Cu alloy by Taguchi's L9 orthogonal array. In this work, analysis of variance (ANOVA) was performed to find out the significant heat treatment parameters. The slow strain rate testing combined with scanning electron microscope and transmission electron microscope was employed to study the SCC behaviors of Al-Zn-Mg-Cu alloy. Results showed that the contour map produced by ANOVA offered a reliable reference for selection of optimum heat treatment parameters. By using this method, a desired combination of mechanical performances and SCC resistance was obtained.
NASA Technical Reports Server (NTRS)
Hoffman, Thomas R.
1995-01-01
In recent years, Total Quality Management has swept across the country. Many companies and the Government have started looking at every aspect on how business is done and how money is spent. The idea or goal is to provide a service that is better, faster and cheaper. The first step in this process is to document or measure the process or operation as it stands now. For Lewis Research Center, this report is the first step in the analysis of heating plant operations. This report establishes the original benchmark that can be referred to in the future. The report also provides a comparison to other organization's heating plants to help in the brainstorming of new ideas. The next step is to propose and implement changes that would meet the goals as mentioned above. After the changes have been implemented the measuring process starts over again. This provides for a continuous improvement process.
First results from the energetic particle instrument on the OEDIPUS-C sounding rocket
NASA Astrophysics Data System (ADS)
Gough, M. P.; Hardy, D. A.; James, H. G.
The Canadian / US OEDIPUS-C rocket was flown from the Poker Flat Rocket Range November 6th 1995 as a mother-son sounding rocket. It was designed to study auroral ionospheric plasma physics using active wave sounding and prove tether technology. The payload separated into two sections reaching a separation of 1200m along the Earth's magnetic field. One section included a frequency stepped HF transmitter and the other included a synchronised HF receiver. Both sections included Energetic Particle Instruments, EPI, stepped in energy synchronously with the transmitter steps. On-board EPI particle processing in both payloads provided direct measurements of electron heating, wave-particle interactions via particle correlators, and a high resolution measurement of wave induced particle heating via transmitter synchronised fast sampling. Strong electron heating was observed at times when the HF transmitter frequency was equal to a harmonic of the electron gyrofrequency, f_ce, or equal to the upper hybrid frequency, f_uh.
Method for heating and forming a glass sheet
Boaz, Premakaran Tucker
1997-01-01
A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration.
Gu, Di; Shao, Nan; Zhu, Yanji; Wu, Hongjun; Wang, Baohui
2017-01-05
The STEP concept has successfully been demonstrated for driving chemical reaction by utilization of solar heat and electricity to minimize the fossil energy, meanwhile, maximize the rate of thermo- and electrochemical reactions in thermodynamics and kinetics. This pioneering investigation experimentally exhibit that the STEP concept is adapted and adopted efficiently for degradation of nitrobenzene. By employing the theoretical calculation and thermo-dependent cyclic voltammetry, the degradation potential of nitrobenzene was found to be decreased obviously, at the same time, with greatly lifting the current, while the temperature was increased. Compared with the conventional electrochemical methods, high efficiency and fast degradation rate were markedly displayed due to the co-action of thermo- and electrochemical effects and the switch of the indirect electrochemical oxidation to the direct one for oxidation of nitrobenzene. A clear conclusion on the mechanism of nitrobenzene degradation by the STEP can be schematically proposed and discussed by the combination of thermo- and electrochemistry based the analysis of the HPLC, UV-vis and degradation data. This theory and experiment provide a pilot for the treatment of nitrobenzene wastewater with high efficiency, clean operation and low carbon footprint, without any other input of energy and chemicals from solar energy. Copyright © 2016 Elsevier B.V. All rights reserved.
Core radial electric field and transport in Wendelstein 7-X plasmas
NASA Astrophysics Data System (ADS)
Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team
2018-02-01
The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.
Sulfate minerals: a problem for the detection of organic compounds on Mars?
Lewis, James M T; Watson, Jonathan S; Najorka, Jens; Luong, Duy; Sephton, Mark A
2015-03-01
The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.
NASA Astrophysics Data System (ADS)
Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2012-10-01
In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, Yoshihiro
Heat-conduction analysis under steady state without heat generation can easily be treated by the boundary element method. However, in the case with heat conduction with heat generation can approximately be solved without a domain integral by an improved multiple-reciprocity boundary element method. The convention multiple-reciprocity boundary element method is not suitable for complicated heat generation. In the improved multiple-reciprocity boundary element method, on the other hand, the domain integral in each step is divided into point, line, and area integrals. In order to solve the problem, the contour lines of heat generation, which approximate the actual heat generation, are used.
Sensitivity Equation Derivation for Transient Heat Transfer Problems
NASA Technical Reports Server (NTRS)
Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson
2004-01-01
The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.
ERTS-C (Landsat 3) cryogenic heat pipe experiment definition
NASA Technical Reports Server (NTRS)
Brennan, P. J.; Kroliczek, E. J.
1975-01-01
A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.
Viking Afterbody Heating Computations and Comparisons to Flight Data
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Wright, Michael J.; Allen, Gary A., Jr.
2006-01-01
Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/cm2 for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/cm2, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8- species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods.
Viking Afterbody Heating Computations and Comparisons to Flight Data
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Wright, Michael J.; Allen, Gary A., Jr.
2006-01-01
Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/sq cm for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/sq cm, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8-species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods.
Izutsu, Ken-ichi; Yomota, Chikako; Kawanishi, Toru
2011-12-01
The purpose of this study was to elucidate the effect of heat treatment on the miscibility of multiple concentrated solutes that mimic biopharmaceutical formulations in frozen solutions. The first heating thermal analysis of frozen solutions containing either a low-molecular-weight saccharide (e.g., sucrose, trehalose, and glucose) or a polymer (e.g., polyvinylpyrrolidone and dextran) and their mixtures from -70°C showed a single transition at glass transition temperature of maximally freeze-concentrated solution (T(g) ') that indicated mixing of the freeze-concentrated multiple solutes. The heat treatment of single-solute and various polymer-rich mixture frozen solutions at temperatures far above their T(g) ' induced additional ice crystallization that shifted the transitions upward in the following scan. Contrarily, the heat treatment of frozen disaccharide-rich solutions induced two-step heat flow changes (T(g) ' splitting) that suggested separation of the solutes into multiple concentrated noncrystalline phases, different in the solute compositions. The extent of the T(g) ' splitting depended on the heat treatment temperature and time. Two-step glass transition was observed in some sucrose and dextran mixture solids, lyophilized after the heat treatment. Increasing mobility of solute molecules during the heat treatment should allow spatial reordering of some concentrated solute mixtures into thermodynamically favorable multiple phases. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Hosseini, S. M. A.; Baran, I.; Akkerman, R.
2018-05-01
The laser-assisted tape winding (LATW) is an automated process for manufacturing fiber-reinforced thermoplastic tubular products, such as pipes and pressure vessels. Multi-physical phenomena such as heat transfer, mechanical bonding, phase changes and solid mechanics take place during the process. These phenomena need to be understood and described well for an improved product reliability. Temperature is one of the important parameters in this process to control and optimize the product quality which can be employed in an intelligent model-based inline control system. The incoming tape can overlap with the already wounded layer during the process based on the lay-up configuration. In this situation, the incoming tape can step-on or step-off to an already deposited layer/laminate. During the overlapping, the part temperature changes due to the variation of the geometry caused by previously deposited layer, i.e. a bump geometry. In order to qualify the temperature behavior at the bump regions, an experimental set up is designed on a flat laminate. Artificial bumps/steps are formed on the laminate with various thicknesses and fiber orientations. As the laser head experiences the step-on and step-off, the IR (Infra-Red) camera and the embedded thermocouples measure the temperature on the surface and inside the laminate, respectively. During the step-on, a small drop in temperature is observed while in step-off a higher peak in temperature is observed. It can be concluded that the change in the temperature during overlapping is due to the change in laser incident angle made by the bump geometry. The effect of the step thickness on the temperature peak is quantified and found to be significant.
Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
Stevenson, David T.; Troup, Robert L.
1985-01-01
Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.
Affordable Hybrid Heat Pump Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.
This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency overmore » heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.« less
Means of determining extrusion temperatures
McDonald, Robert E.; Canonico, Domenic A.
1977-01-01
In an extrusion process comprising the steps of fabricating a metal billet, heating said billet for a predetermined time and at a selected temperature to increase its plasticity and then forcing said heated billet through a small orifice to produce a desired extruded object, the improvement comprising the steps of randomly inserting a plurality of small metallic thermal tabs at different cross sectional depths in said billet as a part of said fabricating step, and examining said extruded object at each thermal tab location for determining the crystal structure at each extruded thermal tab thus revealing the maximum temperature reached during extrusion in each respective tab location section of the extruded object, whereby the thermal profile of said extruded object during extrusion may be determined.
Method for heating and forming a glass sheet
Boaz, P.T.
1997-08-12
A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration. 5 figs.
Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite
NASA Astrophysics Data System (ADS)
Willett, C. D.; Fox, M.; Shuster, D. L.
2015-12-01
Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K., (2009), GCA 73, 2347-2365.
Reaction pathways of propene pyrolysis.
Qu, Yena; Su, Kehe; Wang, Xin; Liu, Yan; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong
2010-05-01
The gas-phase reaction pathways in preparing pyrolytic carbon with propene pyrolysis have been investigated in detail with a total number of 110 transition states and 50 intermediates. The structure of the species was determined with density functional theory at B3PW91/6-311G(d,p) level. The transition states and their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The elementary reactions were explored in the pathways of both direct and the radical attacking decompositions. The energy barriers and the reaction energies were determined with accurate model chemistry method at G3(MP2) level after an examination of the nondynamic electronic correlations. The heat capacities and entropies were obtained with statistical thermodynamics. The Gibbs free energies at 298.15 K for all the reaction steps were reported. Those at any temperature can be developed with classical thermodynamics by using the fitted (as a function of temperature) heat capacities. It was found that the most favorable paths are mainly in the radical attacking chain reactions. The chain was proposed with 26 reaction steps including two steps of the initialization of the chain to produce H and CH(3) radicals. For a typical temperature (1200 K) adopted in the experiments, the highest energy barriers were found in the production of C(3) to be 203.4 and 193.7 kJ/mol. The highest energy barriers for the production of C(2) and C were found 174.1 and 181.4 kJ/mol, respectively. These results are comparable with the most recent experimental observation of the apparent activation energy 201.9 +/- 0.6 or 137 +/- 25 kJ/mol. Copyright 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas
2016-05-01
External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.
A note on supersonic flow control with nanosecond plasma actuator
NASA Astrophysics Data System (ADS)
Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.
2018-04-01
A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.
Thermal stability of helium bubble superlattice in Mo under TEM in-situ heating
NASA Astrophysics Data System (ADS)
Gan, Jian; Sun, Cheng; He, Lingfeng; Zhang, Yongfeng; Jiang, Chao; Gao, Yipeng
2018-07-01
Although the temperature window of helium ion irradiation for gas bubble superlattice (GBS) formation was found to be in the range of approximately 0.15-0.35 melting point in literature, the thermal stability of He GBS has not been fully investigated. This work reports the experiment using an in-situ heating holder in a transmission electron microscope (TEM). A 3.0 mm TEM disc sample of Mo (99.95% pure) was irradiated with 40 keV He ions at 300 °C to a fluence of 1.0E+17 ions/cm2, corresponding to a peak He concentration of approximately 10 at.%, in order to introduce He GBS. In-situ heating was conducted with a ramp rate of ∼25 °C/min, hold time of ∼30 min, and temperature step of ∼100 °C up to 850 °C (0.39Tm homologous temperature). The result shows good thermal stability of He GBS in Mo with no noticeable change on GBS lattice constant and ordering. The implication of this unique and stable ordered microstructure on mechanistic understanding of GBS and its advanced application are discussed.
Ng, Michelle Y T; Tan, Wen Siang; Abdullah, Norhafizah; Ling, Tau Chuan; Tey, Beng Ti
2006-10-01
Heat precipitation procedure has been regularly incorporated as a selective purification step in various thermostable proteins expressed in different hosts. This method is efficient in precipitation of most of the host proteins and also deactivates various host proteases that can be harmful to the desired gene products. In this study, introduction of heat treatment procedure in the purification of hepatitis B core antigen (HBcAg) produced in Escherichia coli has been investigated. Thermal treatment of the cell homogenate at 60 degrees C for 30 min prior to subsequent clarification steps has resulted in 1.4 times and 18% higher in purity and recovery yield, respectively, compared to the non-heat-treated cell homogenate. In direct capture of HBcAg by using anion-exchangers from unclarified feedstock, pre-conditioning the feedstock by heat treatment at 60 degrees C for 45 min has increased the recovery yield of HBcAg by 2.9-fold and 42% in purity compared to that treated for 10 min. Enzyme-linked immunosorbent assay (ELISA) analysis showed that the antigenicity of the core particles was not affected by the heat treatment process.
Grossman, Gershon; Perez-Blanco, Horacio
1984-01-01
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
Grossman, G.; Perez-Blanco, H.
1983-06-16
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
NASA Astrophysics Data System (ADS)
Harshan, Suraj
The main objective of the present thesis is the improvement of the TEB/ISBA (SURFEX) urban land surface model (ULSM) through comprehensive evaluation, sensitivity analysis, and optimization experiments using energy balance and radiative and air temperature data observed during 11 months at a tropical sub-urban site in Singapore. Overall the performance of the model is satisfactory, with a small underestimation of net radiation and an overestimation of sensible heat flux. Weaknesses in predicting the latent heat flux are apparent with smaller model values during daytime and the model also significantly underpredicts both the daytime peak and nighttime storage heat. Surface temperatures of all facets are generally overpredicted. Significant variation exists in the model behaviour between dry and wet seasons. The vegetation parametrization used in the model is inadequate to represent the moisture dynamics, producing unrealistically low latent heat fluxes during a particularly dry period. The comprehensive evaluation of the USLM shows the need for accurate estimation of input parameter values for present site. Since obtaining many of these parameters through empirical methods is not feasible, the present study employed a two step approach aimed at providing information about the most sensitive parameters and an optimized parameter set from model calibration. Two well established sensitivity analysis methods (global: Sobol and local: Morris) and a state-of-the-art multiobjective evolutionary algorithm (Borg) were employed for sensitivity analysis and parameter estimation. Experiments were carried out for three different weather periods. The analysis indicates that roof related parameters are the most important ones in controlling the behaviour of the sensible heat flux and net radiation flux, with roof and road albedo as the most influential parameters. Soil moisture initialization parameters are important in controlling the latent heat flux. The built (town) fraction has a significant influence on all fluxes considered. Comparison between the Sobol and Morris methods shows similar sensitivities, indicating the robustness of the present analysis and that the Morris method can be employed as a computationally cheaper alternative of Sobol's method. Optimization as well as the sensitivity experiments for the three periods (dry, wet and mixed), show a noticeable difference in parameter sensitivity and parameter convergence, indicating inadequacies in model formulation. Existence of a significant proportion of less sensitive parameters might be indicating an over-parametrized model. Borg MOEA showed great promise in optimizing the input parameters set. The optimized model modified using the site specific values for thermal roughness length parametrization shows an improvement in the performances of outgoing longwave radiation flux, overall surface temperature, heat storage flux and sensible heat flux.
Wire-packed heat exchangers for dilution refrigerators.
Polturak, E; Rappaport, M; Rosenbaum, R
1978-03-01
Very simple wire-packed step heat exchangers for dilution refrigerators are described. No sintering is used in fabrication. Flow impedances and thermal resistance between the liquid and the copper wires are low. A refrigerator with five wire-packed heat exchangers in addition to a countercurrent heat exchanger attains a temperature of 11.4 mK with a single mixing chamber and 6.1 mK with two mixing chambers. High cooling power is achieved at modest (3)He circulation rates.
Method for heating, forming and tempering a glass sheet
Boaz, Premakaran Tucker; Sitzman, Gary W.
1998-01-01
A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.
NASA Astrophysics Data System (ADS)
Pandey, Arun; Bandyopadhyay, M.; Sudhir, Dass; Chakraborty, A.
2017-10-01
Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.
NASA Astrophysics Data System (ADS)
Gao, Jing; You, Jiang; Huang, Zhihong; Cochran, Sandy; Corner, George
2012-03-01
Tissue-mimicking phantoms, including bovine serum albumin phantoms and egg white phantoms, have been developed for, and in laboratory use for, real-time visualization of high intensity focused ultrasound-induced thermal coagulative necrosis since 2001. However, until now, very few data are available concerning their thermophysical properties. In this article, a step-wise transient plane source method has been used to determine the values of thermal conductivity, thermal diffusivity, and specific heat capacity of egg white phantoms with elevated egg white concentrations (0 v/v% to 40 v/v%, by 10 v/v% interval) at room temperature (~20 °C). The measured thermophysical properties were close to previously reported values; the thermal conductivity and thermal diffusivity were linearly proportional to the egg white concentration within the investigation range, while the specific heat capacity decreased as the egg white concentration increased. Taking account of large differences between real experiment and ideal model, data variations within 20 % were accepted.
NASA Astrophysics Data System (ADS)
Behrens, Bernd-Arno; Chugreeva, Anna; Chugreev, Alexander
2018-05-01
Hot forming as a coupled thermo-mechanical process comprises numerous material phenomena with a corresponding impact on the material behavior during and after the forming process as well as on the final component performance. In this context, a realistic FE-simulation requires reliable mathematical models as well as detailed thermo-mechanical material data. This paper presents experimental and numerical results focused on the FE-based simulation of a hot forging process with a subsequent heat treatment step aiming at the prediction of the final mechanical properties and residual stress state in the forged component made of low alloy CrMo-steel DIN 42CrMo4. For this purpose, hot forging experiments of connecting rod geometry with a corresponding metallographic analysis and x-ray residual stress measurements have been carried out. For the coupled thermo-mechanical-metallurgical FE-simulations, a special user-defined material model based on the additive strain decomposition method and implemented in Simufact Forming via MSC.Marc solver features has been used.
Pandey, Arun; Bandyopadhyay, M; Sudhir, Dass; Chakraborty, A
2017-10-01
Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.
Construction material processed using lunar simulant in various environments
NASA Technical Reports Server (NTRS)
Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry
1995-01-01
The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.
Validation Database Based Thermal Analysis of an Advanced RPS Concept
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Emis, Nickolas D.
2006-01-01
Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.
Anomalous optical emission in hot dense oxygen
NASA Astrophysics Data System (ADS)
Santoro, Mario; Gregoryanz, Eugene; Mao, Ho-kwang; Hemley, Russell J.
2007-11-01
We report the observation of unusually strong, broad-band optical emission peaked between 590 and 650 nm when solid and fluid oxygen are heated by a near infrared laser at pressures from 3 to 46 GPa. In situ Raman spectra of oxygen were collected and corresponding temperatures were measured from the Stokes/anti-Stokes intensity ratios of vibrational transitions. The intense optical emission overwhelmed the Raman spectrum at temperatures exceeding 750 K. The spectrum was found to be much narrower than Planck-type thermal emission, and the intensity increase with input power was much steeper than expected for the thermal emission. The result places an important general caveat on calculating temperatures based on optical emission spectra in high-pressure laser-heating experiments. The intense emission in oxygen is photo-induced rather than being purely thermal, through multiphoton or multi-step single photon absorption processes related to the interaction with infrared radiation. The results suggest that short lived ionic species are induced by this laser-matter interaction.
DReAM: Demand Response Architecture for Multi-level District Heating and Cooling Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Saptarshi; Chandan, Vikas; Arya, Vijay
In this paper, we exploit the inherent hierarchy of heat exchangers in District Heating and Cooling (DHC) networks and propose DReAM, a novel Demand Response (DR) architecture for Multi-level DHC networks. DReAM serves to economize system operation while still respecting comfort requirements of individual consumers. Contrary to many present day DR schemes that work on a consumer level granularity, DReAM works at a level of hierarchy above buildings, i.e. substations that supply heat to a group of buildings. This improves the overall DR scalability and reduce the computational complexity. In the first step of the proposed approach, mathematical models ofmore » individual substations and their downstream networks are abstracted into appropriately constructed low-complexity structural forms. In the second step, this abstracted information is employed by the utility to perform DR optimization that determines the optimal heat inflow to individual substations rather than buildings, in order to achieve the targeted objectives across the network. We validate the proposed DReAM framework through experimental results under different scenarios on a test network.« less
Heat Pipe Materials Compatibility
NASA Technical Reports Server (NTRS)
Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.
1976-01-01
An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sogin, H.H.; Goldstein, R.J.
1960-02-01
Experiments were performed on mass transfer by forced convection from naphthalene strips on a flat plate to an air stream at ordinary temperature and pressure. Turbulence was induced in the boundary layer by means of a wire strip. In all cases there was a hydrodynamic starting length upstream of the strips. The ratio of this inert length to the total length was varied from about 0.80 to 0.96. The flow was practically incompressible with Reynolds number, based on the total length, varying from 175,000 to 486,000. The Schmidt number was 2.5. The experimental results fell in proximity to the Sebanmore » step function factor when they were reduced after the massmomentum analysis of Deissler and Loeffler for a surface of uniform vapor pressure. When Karman's formulation of the mass- momentum analogy was assumed, the data fell between the values predicted by the Seban and by the Rubesin expression for the step function factor. The results were well correlated by the Colburn analogy in conjunction with the Rubesin step function factor. (auth)« less
Characteristics of silica rice husk ash from Mojogedang Karanganyar Indonesia
NASA Astrophysics Data System (ADS)
Suryana, R.; Iriani, Y.; Nurosyid, F.; Fasquelle, D.
2018-05-01
Indonesia is one of the countries in the world as the most abundant rice producer. Many researchers have demonstrated that the highest composition in the rice husk ash (RHA) is silica. Some of the advantages in utilizing silica as the raw material is the manufacture of ceramics, zeolite synthesis, fabrication of glass, electronic insulator materials, and as a catalyst. The amount of silica from rice husk ash is different for each region. Therefore, the study of silica from RHA is still promising, especially rice organic fertilizers. In this study, the rice came from Mojogedang Karanganyar Indonesia. Rice husk was dried under the solar radiation. Then the rice husk was heated in two steps: the first step at a temperature of 300°C and the second step at a temperature of 1200°C with a holding time at 2 h and 1 h, respectively. Furthermore, the temperature of the second step was varied at 1400 °C and 1600 °C. This heating process produced RHA. The content of RHA was observed on the EDAX spectrums while the morphology was observed from SEM images. The crystal structure of RHA was determined from XRD spectrums. The EDAX spectrums showed that RHA composition was dominated by elements Si and O for all the heating temperature. SEM images showed an agglomeration towards larger domains as heating temperatures increase. Analysis of XRD spectra is polycrystalline silica formed with the significant crystal orientation at 101, 102 and 200. The intensity of 101 increases significantly with increasing temperature. It is concluded that the crystal growth in the direction of 101 is preferred.
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cai, Hui; Pan, Liping; He, Zhu; Liu, Shuang; Li, Baokuan
2016-12-01
The influence of the electrode immersion depth on the electromagnetic, flow and temperature fields, as well as the solidification progress in an electroslag remelting furnace have been studied by a transient three-dimensional coupled mathematical model. Maxwell's equations were solved by the electrical potential approach. The Lorentz force and Joule heating were added into the momentum and energy conservation equations as a source term, respectively, and were updated at each time step. The volume of fluid method was invoked to track the motion of the metal droplet and slag-metal interface. The solidification was modeled by an enthalpy-porosity formulation. An experiment was carried out to validate the model. The total amount of Joule heating decreases from 2.13 × 105 W to 1.86 × 105 W when the electrode immersion depth increases from 0.01 m to 0.03 m. The variation law of the slag temperature is different from that of the Joule heating. The volume average temperature rises from 1856 K to 1880 K when the immersion depth increases from 0.01 m to 0.02 m, and then drops to 1869 K if the immersion depth continuously increases to 0.03 m. As a result, the deepest metal pool, which is around 0.03 m, is formed when the immersion depth is 0.02 m.
High Energy Antimatter Telescope (HEAT) Balloon Experiment
NASA Technical Reports Server (NTRS)
Beatty, J. J.
1995-01-01
This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.
Solidification processing of alloys using an applied electric field
NASA Technical Reports Server (NTRS)
Mckannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)
1990-01-01
A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.
Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
Stevenson, D.T.; Troup, R.L.
1985-01-01
Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.
NASA Technical Reports Server (NTRS)
Mantel, Thierry
1994-01-01
The goal of the present study is to assess numerically the ability of single-step and two-step chemical models to describe the main features encountered during the interaction between a two-dimensional vortex pair and a premixed laminar flame. In the two-step mechanism, the reaction kinetics are represented by a first chain branching reaction A + X yields 2X and a second chain termination reaction X + X yields P. This paper presents the fundamental mechanisms occurring during vortex-flame interactions and the relative impact of the major parameters encountered in turbulent premixed flames and suspected of playing a role in quenching mechanism: (1) Influence of stretch is investigated by analyzing the contribution of curvature and tangential strain on the local structure of the flame. The effect of Lewis number on the flame response to a strained field is analyzed. (2) Radiative heat losses which are suspected to be partially or totally responsible for quenching are also investigated. (3) The effect of the diffusion of the radicals is studied using a two-step mechanism in which an intermediate species is present. The parameters of the two-step mechanism are entirely determined from physical arguments. (4) Precise quantitative comparisons between the DNS and the experimental results of Samaniego et al are performed. These comparisons concern the evolution of the minimum heat release rate found along the flame front during the interaction and the distribution of the heat release rate along the flame front.
Improving Malaysian cocoa quality through the use of dehumidified air under mild drying conditions.
Hii, Ching L; Law, Chung L; Cloke, Michael; Sharif, Suzannah
2011-01-30
Various studies have been conducted in the past to improve the quality of Malaysian cocoa beans. However, the processing methods still remain crude and lack technological advancement. In terms of drying, no previous study has attempted to apply advanced drying technology to improve bean quality. This paper presents the first attempt to improve the quality of cocoa beans through heat pump drying using constant air (28.6 and 40.4 °C) and stepwise (step-up 30.7-43.6-56.9 °C and step-down 54.9-43.9 °C) drying profiles. Comparison was made against hot air drying at 55.9 °C. Product quality assessment showed significant improvement in the quality of Malaysian cocoa beans. Quality was found to be better in terms of lower acidity (higher pH) and higher degree of browning (cut test) for cocoa beans dried using the step-up profile. All heat pump-dried samples showed flavour quality comparable to that of Ghanaian and better than that of Malaysian and Indonesian commercial samples. Step-up-dried samples showed the best flavour profile with high level of cocoa flavour, low in sourness and not excessive in bitterness and astringency. Dried cocoa samples from the step-up drying profile showed the best overall quality as compared with commercial samples from Malaysia, Indonesia and Ghana. The improvement of Malaysian cocoa bean quality is thus achievable through heat pump drying. 2010 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Brumfield, M. L. (Compiler)
1984-01-01
A plan to develop a space technology experiments platform (STEP) was examined. NASA Langley Research Center held a STEP Experiment Requirements Workshop on June 29 and 30 and July 1, 1983, at which experiment proposers were invited to present more detailed information on their experiment concept and requirements. A feasibility and preliminary definition study was conducted and the preliminary definition of STEP capabilities and experiment concepts and expected requirements for support services are presented. The preliminary definition of STEP capabilities based on detailed review of potential experiment requirements is investigated. Topics discussed include: Shuttle on-orbit dynamics; effects of the space environment on damping materials; erectable beam experiment; technology for development of very large solar array deployers; thermal energy management process experiment; photovoltaic concentrater pointing dynamics and plasma interactions; vibration isolation technology; flight tests of a synthetic aperture radar antenna with use of STEP.
1991-12-01
850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS TABLE G5 TENSILE RESULTS FOR IN905XL FORGING COMPANY TEST...HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS 12 TABLE G6 COMPRESSION RESULTS FOR IN905XL FORGING COMPANY TEST...LONG 58.0 11.4 DYNAMICS (*) (*): HEAT TREATED TO THE FOLLOWING SCHEDULE: STEP 1 - 850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH
ORGANIZATION 6, NOVA SCIENCE UNIT 7.
ERIC Educational Resources Information Center
1964
DIRECTIONS FOR CONDUCTING A SERIES OF SCIENCE EXPERIMENTS ARE PRESENTED. THE EXPERIMENTS CONCERN THE STUDY OF HEAT AND MOLECULAR MOTION, HEAT EXCHANGE IN A MIXTURE, SPECIFIC HEAT, HEAT AND SIZE, EXPANSION OF LIQUID, EXPANSION OF AIR, HEAT OF FUSION OF ICE, HEAT OF VAPORIZATION OF WATER, LIGHT AND SOUND, LAW OF REFLECTION, PLANE MIRROR IMAGES,…
NASA Astrophysics Data System (ADS)
Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong
2016-11-01
Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm2 V-1 s-1, a current on/off ratio of 2 × 105, a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec-1. Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.
NASA Astrophysics Data System (ADS)
Wang, Dianhai; Shi, Chengying; Cai, Xinghui
2018-05-01
In order to analyze the influence of the change of axial position on the performance of labyrinth gear, the Fluent is used to simulate the airflow in the labyrinth in this paper. The leakage coefficient and heat transfer coefficient of the sealing teeth under different axial positions are obtained. The comparisons of results shows that the change of the axial position of the stepped labyrinth seals and the bushing has little effect on the airflow inside the cavity, and the change of axial position has little influence on the leakage coefficient of labyrinth seal; The change in the axial position of the stepped labyrinth seals and the bushing does not lead to a significant effect on the heat transfer characteristics of the airflow and the cavity channel.
Biodiesel production from waste frying oil using waste animal bone and solar heat.
Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino
2016-01-01
A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dust-Particle Transport in Tokamak Edge Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K
2005-09-12
Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less
NASA Astrophysics Data System (ADS)
Escobar-Palafox, Gustavo; Gault, Rosemary; Ridgway, Keith
2011-12-01
Shaped Metal Deposition (SMD) is an additive manufacturing process which creates parts layer by layer by weld depositions. In this work, empirical models that predict part geometry (wall thickness and outer diameter) and some metallurgical aspects (i.e. surface texture, portion of finer Widmanstätten microstructure) for the SMD process were developed. The models are based on an orthogonal fractional factorial design of experiments with four factors at two levels. The factors considered were energy level (a relationship between heat source power and the rate of raw material input.), step size, programmed diameter and travel speed. The models were validated using previous builds; the prediction error for part geometry was under 11%. Several relationships between the factors and responses were identified. Current had a significant effect on wall thickness; thickness increases with increasing current. Programmed diameter had a significant effect on percentage of shrinkage; this decreased with increasing component size. Surface finish decreased with decreasing step size and current.
Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.
Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte
2017-09-20
Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.
Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa.
Glascoe, Elizabeth A; Zaug, Joseph M; Burnham, Alan K
2009-12-03
The effect of pressure on the global thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Global decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low-to-moderate pressures (i.e., between ambient pressure and 0.1 GPa) and decelerates the decomposition at higher pressures. The decomposition acceleration is attributed to pressure-enhanced autocatalysis, whereas the deceleration at high pressures is attributed to pressure-inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both the beta- and delta-polymorphs of HMX are sensitive to pressure in the thermally induced decomposition kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vita, C.; Brun, J.; Reynard-Carette, C.
2015-07-01
At present the Jules Horowitz Reactor is under construction in Cadarache research center of CEA 'French Alternative Energies and Atomic Energy Commission' center located in the south-east of France. This new Material Testing Reactor (MTR) will be operational in late 2019 and will allow the generation of a new experimental potential (up to 20 irradiation devices simultaneously) and new harsh conditions such as higher neutron fluxes (5.10{sup 14} n.cm{sup -2}.s{sup -1} for E≥1 MeV), faster material ageing and higher nuclear heating (up to 20 W/g for nominal capacity of 100 MW). In nuclear research field, the control and the measurementmore » of the nuclear heating (energy deposition rate per mass unit induced by the interactions of radiations with matter) is crucial to carry out accurate studies on ageing of materials and on the behavior of nuclear fuels under irradiation. Several experiments need to know precisely this key parameter in order to establish dedicated thermal conditions. The measurement of the nuclear heating inside MTRs is realized by three kinds of sensors: single-cell calorimeter, differential calorimeter and gamma thermometer. One scientific objective of the IN-CORE program, between CEA and Aix-Marseille University in 2009, is to improve the nuclear heating measurement. In this context a new multi-sensor device, called CARMEN, was made. This device contains in particular a differential calorimeter which was designed to measure the nuclear heating in the periphery of OSIRIS reactor (a MTR located at Saclay, France) up to 2 W/g and tested during two irradiation campaigns. Results obtained during these campaigns showed that temperatures reached inside the calorimeter are higher than ones obtained during the preliminary out-of-pile calibration experiments. For instance for 1.74 W/g, the in-pile temperature of the calorimeter rod is equal to 305 deg. C against 225 deg. C in laboratory conditions by simulating the nuclear heating by Joule Effect inside the calorimeter cell head. This discrepancy is higher than in previous experiments because the calorimeter owns a high sensitivity. Consequently, a new prototype was created and instrumented by other heat sources in order to impose an energy deposition on the calorimetric cell structure (in particular in the base) and to improve the calibration step in out-of-pile conditions. In this paper, on the first part a detailed description of the new calorimetric sensor will be given. On the second part, the experimental response of the sensor obtained for several internal heating conditions will be shown. The influence of these conditions on the calibration curve will be discussed. Then the response of this prototype will be also presented for different external cooling fluid conditions (in particular flow temperature). In this part, the comparison between the in-pile and out-of-pile experimental results will be performed. On the last part, these out-of-pile experiments will be completed by 2D axisymmetrical thermal simulations with the CEA code CAST3M using Finite Elements Method. After a comparison between experimental and numerical works, improvements of the sensor prototype will be studied (new heat sources). (authors)« less
Solar kerosene from H2O and CO2
NASA Astrophysics Data System (ADS)
Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.
2017-06-01
The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.
High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil
NASA Astrophysics Data System (ADS)
Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.
2016-04-01
A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.
Systematic variations of argon diffusion in feldspars and implications for thermochronometry
Cassata, William S.; Renne, Paul R.
2013-03-07
Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10more » °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression. Furthermore, the resulting implications for accurately extrapolating laboratory-derived diffusion parameters to natural settings and over geologic time are discussed. We find that considerable inaccuracies may exist in published thermal histories obtained using multiple diffusion domain (MDD) models fit to Arrhenius plots for exsolved alkali feldspar, where the inferred Ar partial retention zones may be spuriously hot.« less
Method for heating, forming and tempering a glass sheet
Boaz, P.T.; Sitzman, G.W.
1998-10-27
A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.
Optimization of a heat-pipe-cooled space radiator for use with a reactor-powered Stirling engine
NASA Technical Reports Server (NTRS)
Moriarty, Michael P.; French, Edward P.
1987-01-01
The design optimization of a reactor-Stirling heat-pipe-cooled radiator is presented. The radiator is a self-deploying concept that uses individual finned heat pipe 'petals' to reject waste heat from a Stirling engine. Radiator optimization methodology is presented, and the results of a parametric analysis of the radiator design variables for a 100-kW(e) system are given. The additional steps of optiminzing the radiator resulted in a net system mass savings of 3 percent.
Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys
NASA Astrophysics Data System (ADS)
Neira Arce, Alderson
To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective heating and cooling steps. The second method consisted of the solution of a prescribed domain, where each powder layer is discretized by an individual 3D element and the heat source is represented by a 1D element displaced by a temperature-coupling extrapolation routine. Two validation strategies were presented here; the first was used to confirm the accuracy of the proposed model strategy by setting up a controlled experiment; the second was used to validate the post-processing data obtained by the simulation by comparison with in-situ measured EBSM process temperature. Finally, a post-process part evaluation on surface finishing and part porosity was discussed including an assessment of the use of non-destructive inspection techniques such as 3D profilometry by axial chromatism for surface roughness, partial section analysis by serial block-face scanning electron microscopy (SBFSEM) and micro computed tomography (CT-Scan) for pore and inclusion detection.
Heatstroke model for desert dry-heat environment and observed organ damage.
ou Zhou, Ren; Liu, Jiang Wei; Zhang, Dong; Zhang, Qiong
2014-06-01
Heatstroke is one of the most common clinical emergencies. Heatstroke that occurred in a dry-heat environment such as desert is usually more seriously effective and often leads to death. However, the report of the pathophysiologic mechanisms about heatstroke in dry-heat environment of desert has not been seen. Our objectives are to establish a rat model of heatstroke of dry-heat environment of desert, to assess the different degrees of damage of organ, and to preliminarily discuss the mechanism of heatstroke in dry-heat environment of desert. The first step, we have established a rat heatstroke model of dry heat environment of desert. The second step, we have accessed changes in morphology and blood indicators of heatstroke rats in dry-heat environment of desert. The heatstroke rats have expressed the changing characteristics of mean arterial pressure, core temperature, and heart rate. The organ damage changed from mild to serious level, specifically in the morphology and blood enzymology parameters such as alanine aminotransferase, aspartate aminotransferase, creatinine, urea, uric acid, creatine kinase-MB, creatine kinase, and blood gas parameters such as base excess extracellular fluid and bicarbonate ions (HCO3-). We have successfully established the rat heatstroke model of dry-heat environment of desert. We have identified heatstroke rats that presented changing characteristics on physiological indicators and varying degrees of organ damage, which are aggravated by the evolution of heatstroke in dry-heat environment of desert. We have preliminarily discussed the mechanism of heatstroke in dry-heat environment of desert. Copyright © 2014 Elsevier Inc. All rights reserved.
Cryogenic Heat Pipe Experiment (CRYOHP)
NASA Technical Reports Server (NTRS)
Mcintosh, Roy
1992-01-01
The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.
NASA Astrophysics Data System (ADS)
Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi
2018-06-01
Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.
Analysis of microbiological contamination in mixed pressed ham and cooked sausage in Korea.
Park, Myoung-Su; Wang, Jun; Park, Joong-Hyun; Forghani, Fereidoun; Moon, Jin-San; Oh, Deog-Hwan
2014-03-01
The objective of this study was to investigate the microbial contamination levels (aerobic bacteria plate count [APC], coliforms, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes) in mixed pressed ham and cooked sausage. A total of 180 samples were collected from factories with and without hazard analysis critical control point (HACCP) systems at four steps: after chopping (AC), after mixing (AM), cooling after the first heating process, and cooling after the second heating process. For ham, APCs and coliform and E. coli counts increased when ingredients were added to the meat at the AC step. Final product APC was 1.63 to 1.85 log CFU/g, and coliforms and E. coli were not detected. S. aureus and L. monocytogenes were found in nine (15.0%) and six (10.0%) samples, respectively, but only at the AC and AM steps and not in the final product. Sausage results were similar to those for ham. The final product APC was 1.52 to 3.85 log CFU/g, and coliforms and E. coli were not detected. S. aureus and L. monocytogenes were found in 29 (24.2%) and 25 (20.8%) samples at the AC and AM steps, respectively, but not in the final product. These results indicate that the temperature and time of the first and second heating are of extreme importance to ensure the microbiological safety of the final product regardless of whether a HACCP system is in place. Microorganism contamination must be monitored regularly and regulations regarding sanitization during processing should be improved. Education regarding employee personal hygiene, environmental hygiene, prevention of cross-contamination, ingredient control, and step-by-step process control is needed to reduce the risk of food poisoning.
Origin of temperature plateaus in laser-heated diamond anvil cell experiments
NASA Astrophysics Data System (ADS)
Geballe, Zachary M.; Jeanloz, Raymond
2012-06-01
Many high-pressure high-temperature studies using laser-heated diamond cells have documented plateaus in the increase of temperature with increasing laser power or with time. By modeling heat transfer in typical laser-heated diamond anvil cell experiments, we demonstrate that latent heat due to melting or other phase transformation is unlikely to be the source of observed plateaus in any previously published studies, regardless of whether pulsed or continuous lasers were used. Rather, large increases (˜10-fold) in thermal conductivity can explain some of the plateaus, and modest increases in reflectivity (tens of percent) can explain any or all of them. Modeling also shows that the sub-microsecond timescale of heating employed in recent pulsed heating experiments is fast enough compared to heat transport into and through typical insulations, but too slow compared to heat transport into metallic laser absorbers themselves to allow the detection of a large plateau due to latent heat of fusion. Four new designs are suggested for future experiments that could use the simple observation of a latent heat-induced plateau to provide reliable high-pressure melting data.
First steps towards modeling of ion-driven turbulence in Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Warmer, F.; Xanthopoulos, P.; Proll, J. H. E.; Beidler, C. D.; Turkin, Y.; Wolf, R. C.
2018-01-01
Due to foreseen improvement of neoclassical confinement in optimised stellarators—like the newly commissioned Wendelstein 7-X (W7-X) experiment in Greifswald, Germany—it is expected that turbulence will significantly contribute to the heat and particle transport, thus posing a limit to the performance of such devices. In order to develop discharge scenarios, it is thus necessary to develop a model which could reliably capture the basic characteristics of turbulence and try to predict the levels thereof. The outcome will not only be affordable, using only a fraction of the computational cost which is normally required for repetitive direct turbulence simulations, but would also highlight important physics. In this model, we seek to describe the ion heat flux caused by ion temperature gradient (ITG) micro-turbulence, which, in certain heating scenarios, can be a strong source of free energy. With the aid of a relatively small number of state-of-the-art nonlinear gyrokinetic simulations, an initial critical gradient model (CGM) is devised, with the aim to replace an empirical model, stemming from observations in prior stellarator experiments. The novel CGM, in its present form, encapsulates all available knowledge about ion-driven 3D turbulence to date, also allowing for further important extensions, towards an accurate interpretation and prediction of the ‘anomalous’ transport. The CGM depends on the stiffness of the ITG turbulence scaling in W7-X, and implicitly includes the nonlinear zonal flow response. It is shown that the CGM is suitable for a 1D framework turbulence modeling.
Core radial electric field and transport in Wendelstein 7-X plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pablant, N. A.; Langenberg, A.; Alonso, A.
The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less
Core radial electric field and transport in Wendelstein 7-X plasmas
Pablant, N. A.; Langenberg, A.; Alonso, A.; ...
2018-02-12
The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less
Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy
NASA Technical Reports Server (NTRS)
Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact toroids called Field-Reversed Configurations. As reported earlier, it appears that the existing pulsed-power Shiva Star facility at the Air Force Research Laboratory in Albuquerque, NM can satisfy the heating requirements by means of imploding a thin metal cylinder (called a "liner") surrounding an FRC of the type presently being developed. The proposed next step is an integrated liner-on-plasma experiment in which an FRC would be heated to 10 keV by the imploding liner.
Status of National Spherical Torus Experiment Liquid Lithium Divertor
NASA Astrophysics Data System (ADS)
Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.
2009-11-01
Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.
Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U
Jaworski, M. A.; Brooks, A.; Kaita, R.; ...
2016-08-08
Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physicsmore » and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.« less
Simplified jet-A kinetic mechanism for combustor application
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman
1993-01-01
Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. For hydrocarbon oxidation, detailed mechanisms are only available for the simplest types of hydrocarbons such as methane, ethane, acetylene, and propane. These detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic (CFD) models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. To simulate these conditions a very sophisticated computer model is required, which requires large computer memory capacity and long run times. Therefore, gas turbine combustion modeling has frequently been simplified by using global reaction mechanisms, which can predict only the quantities of interest: heat release rates, flame temperature, and emissions. Jet fuels are wide-boiling-range hydrocarbons with ranges extending through those of gasoline and kerosene. These fuels are chemically complex, often containing more than 300 components. Jet fuel typically can be characterized as containing 70 vol pct paraffin compounds and 25 vol pct aromatic compounds. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented here. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.
Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs
2011-10-16
Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizingmore » available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.« less
Sulfate Minerals: A Problem for the Detection of Organic Compounds on Mars?
Watson, Jonathan S.; Najorka, Jens; Luong, Duy; Sephton, Mark A.
2015-01-01
Abstract The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500°C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550°C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000°C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars. Key Words: Mars—Life detection—Geochemistry—Organic matter—Jarosite. Astrobiology 15, 247–258. PMID:25695727
Garre, Alberto; Huertas, Juan Pablo; González-Tejedor, Gerardo A; Fernández, Pablo S; Egea, Jose A; Palop, Alfredo; Esnoz, Arturo
2018-02-02
This contribution presents a mathematical model to describe non-isothermal microbial inactivation processes taking into account the acclimation of the microbial cell to thermal stress. The model extends the log-linear inactivation model including a variable and model parameters quantifying the induced thermal resistance. The model has been tested on cells of Escherichia coli against two families of non-isothermal profiles with different constant heating rates. One of the families was composed of monophasic profiles, consisting of a non-isothermal heating stage from 35 to 70°C; the other family was composed of biphasic profiles, consisting of a non-isothermal heating stage followed by a holding period at constant temperature of 57.5°C. Lower heating rates resulted in a higher thermal resistance of the bacterial population. This was reflected in a higher D-value. The parameter estimation was performed in two steps. Firstly, the D and z-values were estimated from the isothermal experiments. Next, the parameters describing the acclimation were estimated using one of the biphasic profiles. This set of parameters was able to describe the remaining experimental data. Finally, a methodology for the construction of diagrams illustrating the magnitude of the induced thermal resistance is presented. The methodology has been illustrated by building it for a biphasic temperature profile with a linear heating phase and a holding phase. This diagram provides a visualization of how the shape of the temperature profile (heating rate and holding temperature) affects the acclimation of the cell to the thermal stress. This diagram can be used for the design of inactivation treatments by industry taking into account the acclimation of the cell to the thermal stress. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during...
A comparison of simple global kinetic models for coal devolatilization with the CPD model
Richards, Andrew P.; Fletcher, Thomas H.
2016-08-01
Simulations of coal combustors and gasifiers generally cannot incorporate the complexities of advanced pyrolysis models, and hence there is interest in evaluating simpler models over ranges of temperature and heating rate that are applicable to the furnace of interest. In this paper, six different simple model forms are compared to predictions made by the Chemical Percolation Devolatilization (CPD) model. The model forms included three modified one-step models, a simple two-step model, and two new modified two-step models. These simple model forms were compared over a wide range of heating rates (5 × 10 3 to 10 6 K/s) at finalmore » temperatures up to 1600 K. Comparisons were made of total volatiles yield as a function of temperature, as well as the ultimate volatiles yield. Advantages and disadvantages for each simple model form are discussed. In conclusion, a modified two-step model with distributed activation energies seems to give the best agreement with CPD model predictions (with the fewest tunable parameters).« less
TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis
NASA Astrophysics Data System (ADS)
Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.
2016-02-01
In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.
Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production.
Beneroso, D; Bermúdez, J M; Montes-Morán, M A; Arenillas, A; Menéndez, J A
2016-10-01
Herein a new process is proposed to produce a syngas-rich gas fraction (>80vol% H2+CO) from biowaste based on microwave heating within two differentiated steps in order to avoid tars production. The first step consists of the microwave pyrolysis of biowaste induced by a char-based susceptor at 400-800°C; tars, char and syngas-rich gas fractions being produced. The tars are then fed into the second step where a portion of the char from the first step is used as a bed material in a 0.3:1wt% ratio. This bed is heated up by microwaves up to 800°C, allowing thermal cracking of tars and additional syngas (>90vol% H2+CO) being then produced. This new concept arises as an alternative technology to the gasification of biowastes for producing syngas with no need for catalysts or gasifying reagents to minimise tars production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Caba, Aaron C.; Furrow, Keith W.
2000-01-01
This investigation completed the verification of a three-dimensional resin transfer molding/resin film infusion (RTM/RFI) process simulation model. The model incorporates resin flow through an anisotropic carbon fiber preform, cure kinetics of the resin, and heat transfer within the preform/tool assembly. The computer model can predict the flow front location, resin pressure distribution, and thermal profiles in the modeled part. The formulation for the flow model is given using the finite element/control volume (FE/CV) technique based on Darcy's Law of creeping flow through a porous media. The FE/CV technique is a numerically efficient method for finding the flow front location and the fluid pressure. The heat transfer model is based on the three-dimensional, transient heat conduction equation, including heat generation. Boundary conditions include specified temperature and convection. The code was designed with a modular approach so the flow and/or the thermal module may be turned on or off as desired. Both models are solved sequentially in a quasi-steady state fashion. A mesh refinement study was completed on a one-element thick model to determine the recommended size of elements that would result in a converged model for a typical RFI analysis. Guidelines are established for checking the convergence of a model, and the recommended element sizes are listed. Several experiments were conducted and computer simulations of the experiments were run to verify the simulation model. Isothermal, non-reacting flow in a T-stiffened section was simulated to verify the flow module. Predicted infiltration times were within 12-20% of measured times. The predicted pressures were approximately 50% of the measured pressures. A study was performed to attempt to explain the difference in pressures. Non-isothermal experiments with a reactive resin were modeled to verify the thermal module and the resin model. Two panels were manufactured using the RFI process. One was a stepped panel and the other was a panel with two 'T' stiffeners. The difference between the predicted infiltration times and the experimental times was 4% to 23%.
Discussion of thermal extraction chamber concepts for Lunar ISRU
NASA Astrophysics Data System (ADS)
Pfeiffer, Matthias; Hager, Philipp; Parzinger, Stephan; Dirlich, Thomas; Spinnler, Markus; Sattelmayer, Thomas; Walter, Ulrich
The Exploration group of the Institute of Astronautics (LRT) of the Technische Universitüt a München focuses on long-term scenarios and sustainable human presence in space. One of the enabling technologies in this long-term perspective is in-situ resource utilization (ISRU). When dealing with the prospect of future manned missions to Moon and Mars the use of ISRU seems useful and intended. The activities presented in this paper focus on Lunar ISRU. This basically incorporates both the exploitation of Lunar oxygen from natural rock and the extraction of solar wind implanted particles (SWIP) from regolith dust. Presently the group at the LRT is examining possibilities for the extraction of SWIPs, which may provide several gaseous components (such as H2 and N2) valuable to a human presence on the Moon. As a major stepping stone in the near future a Lunar demonstrator/ verification experiment payload is being designed. This experiment, LUISE (LUnar ISru Experiment), will comprise a thermal process chamber for heating regolith dust (grain size below 500m), a solar thermal power supply, a sample distribution unit and a trace gas analysis. The first project stage includes the detailed design and analysis of the extraction chamber concepts and the thermal process involved in the removal of SWIP from Lunar Regolith dust. The technique of extracting Solar Wind volatiles from Regolith has been outlined by several sources. Heating the material to a threshold value seems to be the most reasonable approach. The present paper will give an overview over concepts for thermal extraction chambers to be used in the LUISE project and evaluate in detail the pros and cons of each concept. The special boundary conditions set by solar thermal heating of the chambers as well as the material properties of Regolith in a Lunar environment will be discussed. Both greatly influence the design of the extraction chamber. The performance of the chamber concepts is discussed with respect to the desired target temperature using ESARAD/ESATAN software. Additionally a value for the homogeneity of heating the sample, as a measure for the effectiveness of the concept, will be presented and discussed.
Druyan, S; Ruzal, M; Shinder, D; Haron, A
2018-06-01
The prenatal circulatory system is adaptive and capable of plasticity designed for the needs of the growing tissue. When a broiler embryo is faced with hypoxic stress, the process of angiogenesis in tissues begins. Exposure to hypoxic conditions of 17% oxygen during the chorioallantoic membrane (CAM) development (E5 to E12) affected the circulatory system and contributed to an increase in the blood oxygen carrying capacity. The present study aimed to evaluate the effects of hypoxic exposure during CAM development on post-hatch performance of broilers and to examine whether hypoxic exposure improved sustainability of birds exposed to acute heat stress.Two consecutive trials, with male broilers from each of the incubation treatments-optimal conditions and exposure to hypoxia of 15 or 17% oxygen, for 12 h/day, during CAM development-were conducted. In experiment 1, 60 male chicks from each group were raised in individual cages. In experiment 2, 160 male chicks from each group were raised in 40-chick pens until marketing. On d 35, 20 birds from each group were transferred to individual cages kept at a temperature of 23°C for 72 h, and then birds were exposed to 35°C for 5 hours. Body temperatures were measured at 0, 2, and 5 h of the heat exposure. In both experiments BW, feed intake, and FCR were recorded. At marketing, chicks were slaughtered, and relative weights of breast muscle, abdominal fat pad, heart, and liver were calculated.Hypoxia treatment resulted in a FCR advantage. Food intake was similar in all treatments, but groups exposed to hypoxia grew better than controls until the age of 35 days. Hypoxia-treated groups had higher relative breast, heart, and liver weights than controls. Body temperatures of hypoxia-treated chickens remained lower during heat stress exposure, and their mortality rate was lower as well. Intermittent exposure to moderate hypoxia during CAM development confers advantages to broilers in feed utilization efficiency and in coping with heat stress. It may be considered as a mitigating step in incubation to facilitate broilers in achieving their full growth potential.
Pellet injection research on the HT-6M and HT-7 tokamaks
NASA Astrophysics Data System (ADS)
Yang, Yu; Bao, Yi; Li, Jiangang; Gu, Xuemao; He, Yexi
1999-11-01
A multishot in situ pellet injection system has been constructed in the Institute of Plasma Physics. Single- and multi-pellet injection experiments were performed on the HT-6M and superconducting HT-7 tokamaks. The system proved to be convenient and reliable to operate. Pellets were fired into ohmically and LHCD and ICRF heated plasmas. Single pellet injection in ohmic discharge was found to increase the central density of HT-7 by about one half, while two pellet injection increased the central density in a step-like fashion by one half with each shot. Peaking of the electron density profile and a hollow electron temperature profile were obtained.
3D Printer Coupon removal and stowage
2014-12-09
iss042e031282 (12/09/2014) ---US Astronaut Barry (Butch) Wilmore holding a 3D coupon works with the new 3D printer aboard the International Space Station. The 3D Printing experiment in zero gravity demonstrates that a 3D printer works normally in space. In general, a 3D printer extrudes streams of heated plastic, metal or other material, building layer on top of layer to create 3 dimensional objects. Testing a 3D printer using relatively low-temperature plastic feedstock on the International Space Station is the first step towards establishing an on-demand machine shop in space, a critical enabling component for deep-space crewed missions and in-space manufacturing.
ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-11-01
1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69more » rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in all respects except that it contained a partial blockage formed by attaching sleeves (or "balloons") to some of the rods. 6. SOURCE AND SCOPE OF DATA Phenomena Tested - Heat transfer in the core of a PWR during a re-flood phase of postulated large break LOCA. Test Designation - Achilles Rig. The programme includes the following types of experiments: - on an unballooned cluster: -- single phase air flow -- low pressure level swell -- low flooding rate re-flood -- high flooding rate re-flood - on a ballooned cluster containing 80% blockage formed by 16 balloon sleeves -- single phase air flow -- low flooding rate re-flood 7. DISCUSSION OF THE DATA RETRIEVAL PROGRAM N/A 8. DATA FORMAT AND COMPUTER Many Computers (M00019MNYCP00). 9. TYPICAL RUNNING TIME N/A 11. CONTENTS OF LIBRARY The ACHILLES package contains test data and associated data processing software as well as the documentation listed above. 12. DATE OF ABSTRACT November 2013. KEYWORDS: DATABASES, BENCHMARKS, HEAT TRANSFER, LOSS-OF-COLLANT ACCIDENT, PWR REACTORS, REFLOODING« less
NASA Astrophysics Data System (ADS)
Kwon, Dohoon; Jin, Lingxue; Jung, WooSeok; Jeong, Sangkwon
2018-06-01
Heat transfer coefficient of a mini-channel printed circuit heat exchanger (PCHE) with counter-flow configuration is investigated. The PCHE used in the experiments is two layered (10 channels per layer) and has the hydraulic diameter of 1.83 mm. Experiments are conducted under various cryogenic heat transfer conditions: single-phase, boiling and condensation heat transfer. Heat transfer coefficients of each experiments are presented and compared with established correlations. In the case of the single-phase experiment, empiricial correlation of modified Dittus-Boelter correlation was proposed, which predicts the experimental results with 5% error at Reynolds number range from 8500 to 17,000. In the case of the boiling experiment, film boiling phenomenon occurred dominantly due to large temperature difference between the hot side and the cold side fluids. Empirical correlation is proposed which predicts experimental results with 20% error at Reynolds number range from 2100 to 2500. In the case of the condensation experiment, empirical correlation of modified Akers correlation was proposed, which predicts experimental results with 10% error at Reynolds number range from 3100 to 6200.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
Multi-step heater deployment in a subsurface formation
Mason, Stanley Leroy [Allen, TX
2012-04-03
A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.
Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough
NASA Technical Reports Server (NTRS)
Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)
2001-01-01
A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.
Achary, Bhavana G; Campbell, Katie M; Co, Ivy S; Gilmour, David S
2014-05-01
The transcription regulation of the Drosophila hsp70 gene is a complex process that involves the regulation of multiple steps, including the establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in the regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that the depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented the full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally, we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.
2013-01-01
Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.
NASA Astrophysics Data System (ADS)
Marvel, Christopher J.; Sabol, Joseph C.; Pasang, Timotius; Watanabe, Masashi; Misiolek, Wojciech Z.
2017-04-01
It is well-known that ω-phase precipitates embrittle Ti-5553 alloys and that ω-phase embrittlement can be overcome with appropriate heat treatments. However, the microstructural evolution of electron-beam welded Ti-5553 is not as understood as compared to the cast or wrought material. This study compared the microstructures of as-welded and post-weld heat-treated specimens by scanning and transmission electron microscopy, and similarly compared the localized mechanical behavior of the fusion zones with microhardness testing and digital image correlation coupled tensile testing. The primary observations were that the embrittling ω-phase precipitates formed upon cooling, and could not be fully solutionized in a single-step treatment of 1077 K (804 °C) for 1 hour. It was also discovered that nanoscale α-phase precipitates nucleated after the single-step treatment, although they were small in number and sparsely distributed. However, a two-step heat treatment of 1077 K (804 °C) for 1 hour and 873 K (600 °C) for 4 hours completely solutionized the ω-phase and produced a dense network of 2- μm-wide α-phase plates, which significantly improved the mechanical properties. Overall, this study has shown that post-weld heat treatments improve the strength and ductility of electron-beam welded Ti-5553 alloys by controlling ω- and α-phase evolution.
NASA Astrophysics Data System (ADS)
Nouri-Borujerdi, Ali; Moazezi, Arash
2018-01-01
The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In the thick wall, the energy equation is obtained by Laplace equation. A multi-block approach is used to perform parallel computing to reduce the CPU time. Each block is modeled separately by sharing boundary conditions with neighbors. The developed program for modeling was written in FORTRAN language with OpenMP API. The obtained results showed that using of the multi-block parallel computing method is a simple robust scheme with high performance and high-order accurate. Moreover, the obtained results demonstrated that the increment of Reynolds number and obstacle height as well as decrement of horizontal distance between the obstacle and the step improve the heat transfer.
NASA Astrophysics Data System (ADS)
Herrero-Bervera, E.; Mojzsis, S. J.
2009-12-01
We have conducted a rock magnetic and absolute paleointensity determination of the red dacite of the Duffer Formation of the Pilbara craton, Australia. The age of the dated rock unit is 3452 Ma +/-16 Ma. Vector analyses of step-wise alternating field (NRM up to 100 mT) and thermal demagnetization (from NRM up to 650 o C) results yield three components of magnetization. Curie point determinations indicate three characteristic temperatures, one at 280 o C, a second one at 358 o C and a third one at 630 o C. Magnetic grain-size experiments were performed on small specimens with a variable field translation balance (VFTB). The coercivity of remanence (Hcr) suggests that the NRM is carried by high-coercivity grains that is more likely carried from a hematite fraction as is also shown by the high-temperature component with blocking temperatures above 450{o}C and up to at least 640 o C. The ratios of the hysteresis parameters plotted as a Day diagram show that most grain sizes are scattered within the PSD and MD domain ranges. In addition to the rock magnetic experiments we have performed absolute paleointensity experiments on the samples using the modified Thellier-Coe double heating method to determine the paleointensities. pTRM checks were performed systematically to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50 o C between room temperature and 590 o^ C. The paleointensity determinations were obtained from the slope of Arai diagrams. Special care was taken to interpret the Arai diagrams within the same range lower than 300 o C unless a clear and unique slope was present. Our paleointensity results indicate that the paleofield obtained was 6.5 micro-Teslas from a high temperature component ranging from 450 to 590 o^ C that has been interpreted to be the oldest magnetization yet recorded in paleomagnetic studies of the Duffer Formation. This primary high temperature component establishes the existence of the geomagnetic field at least 3.5 Ga ago with a relatively low absolute paleointensity during Archean times.
Sensitivity Analysis and Optimization of Enclosure Radiation with Applications to Crystal Growth
NASA Technical Reports Server (NTRS)
Tiller, Michael M.
1995-01-01
In engineering, simulation software is often used as a convenient means for carrying out experiments to evaluate physical systems. The benefit of using simulations as 'numerical' experiments is that the experimental conditions can be easily modified and repeated at much lower cost than the comparable physical experiment. The goal of these experiments is to 'improve' the process or result of the experiment. In most cases, the computational experiments employ the same trial and error approach as their physical counterparts. When using this approach for complex systems, the cause and effect relationship of the system may never be fully understood and efficient strategies for improvement never utilized. However, it is possible when running simulations to accurately and efficiently determine the sensitivity of the system results with respect to simulation to accurately and efficiently determine the sensitivity of the system results with respect to simulation parameters (e.g., initial conditions, boundary conditions, and material properties) by manipulating the underlying computations. This results in a better understanding of the system dynamics and gives us efficient means to improve processing conditions. We begin by discussing the steps involved in performing simulations. Then we consider how sensitivity information about simulation results can be obtained and ways this information may be used to improve the process or result of the experiment. Next, we discuss optimization and the efficient algorithms which use sensitivity information. We draw on all this information to propose a generalized approach for integrating simulation and optimization, with an emphasis on software programming issues. After discussing our approach to simulation and optimization we consider an application involving crystal growth. This application is interesting because it includes radiative heat transfer. We discuss the computation of radiative new factors and the impact this mode of heat transfer has on our approach. Finally, we will demonstrate the results of our optimization.
Menu driven heat treatment control of thin walled bodies
Kothmann, Richard E.; Booth, Jr., Russell R.; Grimm, Noel P.; Batenburg, Abram; Thomas, Vaughn M.
1992-01-01
A process for controlling the heating of a thin-walled body according to a predetermined temperature program by means of electrically controllable heaters, comprising: disposing the heaters adjacent one surface of the body such that each heater is in facing relation with a respective zone of the surface; supplying heat-generating power to each heater and monitoring the temperature at each surface zone; and for each zone: deriving (16,18,20), on the basis of the temperature values obtained in the monitoring step, estimated temperature values of the surface at successive time intervals each having a first selected duration; generating (28), on the basis of the estimated temperature values derived in each time interval, representations of the temperature, THSIFUT, which each surface zone will have, based on the level of power presently supplied to each heater, at a future time which is separated from the present time interval by a second selected duration; determining (30) the difference between THSIFUT and the desired temperature, FUTREFTVZL, at the future time which is separated from the present time interval by the second selected duration; providing (52) a representation indicating the power level which sould be supplied to each heater in order to reduce the difference obtained in the determining step; and adjusting the power level supplied to each heater by the supplying step in response to the value of the representation provided in the providing step.
NASA Astrophysics Data System (ADS)
Thienel, Lee; Stouffer, Chuck
1995-09-01
This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.
NASA Technical Reports Server (NTRS)
Thienel, Lee; Stouffer, Chuck
1995-01-01
This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.
Development of movable mask system to cope with high beam current
NASA Astrophysics Data System (ADS)
Suetsugu, Y.; Shibata, K.; Sanami, T.; Kageyama, T.; Takeuchi, Y.
2003-07-01
The KEK B factory (KEKB), a high current electron-positron collider, has a movable mask (or collimator) system to reduce the background noise in the BELLE detector coming from spent particles. The early movable masks, however, had severe problems of heating, arcing, and vacuum leaks over the stored beam current of several hundred mA. The cause is intense trapped higher order modes (HOMs) excited at the mask head, where the cross section of the beam chamber changed drastically. The mask head, made of copper-tungsten alloy or pure copper, was frequently damaged by hitting of the high energy beam at the same time. Since the problems of the mask were revealed, several kinds of improved masks have been designed employing rf technologies in dealing with the HOM and installed to the ring step by step. Much progress has come from adopting a trapped-mode free structure, where the mask was a bent chamber itself. Recently the further improved mask with a reduced HOM design or HOM dampers was developed to suppress the heating of vacuum components near the mask due to the HOM traveling from the mask. To avoid damage to the mask head, on the other hand, a titanium mask head was tried. The latest masks are working as expected now at the stored beam current of 1.5 A. Presented are the problems and experiences on the movable mask system for the KEKB, which are characteristic of and common in a high intensity accelerator.
Air Conditioning, Heating, and Refrigeration: Scope and Sequence.
ERIC Educational Resources Information Center
Nashville - Davidson County Metropolitan Public Schools, TN.
This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…
High heating rate thermal desorption for molecular surface sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S.; Van Berkel, Gary J.
2016-03-29
A method for analyzing a sample having at least one analyte includes the step of heating the sample at a rate of at least 10.sup.6 K/s to thermally desorb at least one analyte from the sample. The desorbed analyte is collected. The analyte can then be analyzed.
Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.
ERIC Educational Resources Information Center
Dixon, Anthony G.
1987-01-01
Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)
Preparation of the porous cerium dioxide film by two-step anodization and heat treating method
NASA Astrophysics Data System (ADS)
Liu, Xiaozhen; Zhu, Bolun; Liu, Yuze; Wang, Shanshan; Chen, Jie; Wang, Xiaoyu
2017-12-01
The porous cerium dioxide films were prepared with cerium foils as raw materials by two-step anodization and heat treating method. The anodic cerium oxide films were heat treated in 25∼400°C respectively. The cerium dioxide films were characterized with X-ray diffraction (XRD), Fourier transform infrared (FTIR) techniques, energy-dispersive analyses of X-ray (EDAX) and scanning electron microcopy (SEM), respectively. The anodic cerium oxide film is composed of Ce(OH)3, CeO2 and Ce2O3. When the anodic cerium oxide films were heat treated in 300°C∼400°C for 2h, Ce(OH)3 and Ce2O3 in the anodic cerium oxide films may be converted to CeO2, and the heat treated anodic cerium oxide films are the cerium dioxide films. Water, ethylene glycol and CO2 are adsorbed in the anodic cerium oxide film. The adsorbing water, ethylene glycol and CO2 in the anodic cerium oxide film are removed at 300°C. The cerium dioxide film has strong absorption in the range of 1600∼4000cm-1. The structure of the cerium dioxide film is the porous.
Heat Transfer in Adhesively Bonded Honeycomb Core Panels
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2001-01-01
The Swann and Pittman semi-empirical relationship has been used as a standard in aerospace industry to predict the effective thermal conductivity of honeycomb core panels. Recent measurements of the effective thermal conductivity of an adhesively bonded titanium honeycomb core panel using three different techniques, two steady-state and one transient radiant step heating method, at four laboratories varied significantly from each other and from the Swann and Pittman predictions. Average differences between the measurements and the predictions varied between 17 and 61% in the temperature range of 300 to 500 K. In order to determine the correct values of the effective thermal conductivity and determine which set of the measurements or predictions were most accurate, the combined radiation and conduction heat transfer in the honeycomb core panel was modeled using a finite volume numerical formulation. The transient radiant step heating measurements provided the best agreement with the numerical results. It was found that a modification of the Swann and Pittman semi-empirical relationship which incorporated the facesheets and adhesive layers in the thermal model provided satisfactory results. Finally, a parametric study was conducted to investigate the influence of adhesive thickness and thermal conductivity on the overall heat transfer through the panel.
Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Olson, William S.
2003-01-01
A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.
Size Effect of the 2-D Bodies on the Geothermal Gradient and Q-A Plot
NASA Astrophysics Data System (ADS)
Thakur, M.; Blackwell, D. D.
2009-12-01
Using numerical models we have investigated some of the criticisms on the Q-A plot of related to the effect of size of the body on the slope and reduced heat flow. The effects of horizontal conduction depend on the relative difference of radioactivity between the body and the country rock (assuming constant thermal conductivity). Horizontal heat transfer due to different 2-D bodies was numerically studied in order to quantify resulting temperature differences at the Moho and errors on the predication of Qr (reduced heat flow). Using the two end member distributions of radioactivity, the step model (thickness 10km) and exponential model, different 2-D models of horizontal scale (width) ranging from 10 -500 km were investigated. Increasing the horizontal size of the body tends to move observations closer towards the 1-D solution. A temperature difference of 50 oC is produced (for the step model) at Moho between models of width 10 km versus 500 km. In other words the 1-D solution effectively provides large scale averaging in terms of heat flow and temperature field in the lithosphere. For bodies’ ≤ 100 km wide the geotherms at shallower levels are affected, but at depth they converge and are 50 oC lower than that of the infinite plate model temperature. In case of 2-D bodies surface heat flow is decreased due to horizontal transfer of heat, which will shift the Q-A point vertically downward on the Q-A plot. The smaller the size of the body, the more will be the deviation from the 1-D solution and the more will be the movement of Q-A point downwards on a Q-A plot. On the Q-A plot, a limited points of bodies of different sizes with different radioactivity contrast (for the step and exponential model), exactly reproduce the reduced heat flow Qr. Thus the size of the body can affect the slope on a Q-A plot but Qr is not changed. Therefore, Qr ~ 32 mWm-2 obtained from the global terrain average Q-A plot represents the best estimate of stable continental mantle heat flow.
Tamura, Yuki; Kitaoka, Yu; Matsunaga, Yutaka; Hoshino, Daisuke; Hatta, Hideo
2015-01-01
Traumatic nerve injury or motor neuron disease leads to denervation and severe muscle atrophy. Recent evidence indicates that loss of mitochondria and the related reduction in oxidative capacity could be key mediators of skeletal muscle atrophy. As our previous study showed that heat stress increased the numbers of mitochondria in skeletal muscle, we evaluated whether heat stress treatment could have a beneficial impact on denervation-induced loss of mitochondria and subsequent muscle atrophy. Here, we report that daily heat stress treatment (mice placed in a chamber with a hot environment; 40°C, 30 min day−1, for 7 days) rescues the following parameters: (i) muscle atrophy (decreased gastrocnemius muscle mass); (ii) loss of mitochondrial content (decreased levels of ubiquinol–cytochrome c reductase core protein II, cytochrome c oxidase subunits I and IV and voltage-dependent anion channel protein); and (iii) reduction in oxidative capacity (reduced maximal activities of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase) in denervated muscle (produced by unilateral sciatic nerve transection). In order to gain a better understanding of the above mitochondrial adaptations, we also examined the effects of heat stress on autophagy-dependent mitochondrial clearance (mitophagy). Daily heat stress normalized denervation-activated induction of mitophagy (increased mitochondrial microtubule-associated protein 1A/1B-light chain3-II (LC3-II) with and without blocker of autophagosome clearance). The molecular basis of this observation was explained by the results that heat stress attenuated the denervation-induced increase in key proteins that regulate the following steps: (i) the tagging step of mitochondrial clearance (increased mitochondrial Parkin, ubiquitin-conjugated, P62/sequestosome 1 (P62/SQSTM1)); and (ii) the elongation step of autophagosome formation (increased Atg5–Atg12 conjugate and Atg16L). Overall, our results contribute to the better understanding of mitochondrial quality control and the mechanisms behind the attenuation of muscle wasting by heat stress in denervated skeletal muscle. PMID:25900738
Combined Steady-State and Dynamic Heat Exchanger Experiment
ERIC Educational Resources Information Center
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Effects of yolk contamination, shearing, and heating on foaming properties of fresh egg white.
Wang, G; Wang, T
2009-03-01
A series of experiments were conducted to evaluate effects of yolk contamination, shearing, and thermal treatment on foaming properties of liquid egg white. Samples obtained from industrial processing were also evaluated. Whipping and purging methods were both used to assess their effectiveness and sensitivity in evaluating foaming. A concentration as low as 0.022% (as-is basis) of yolk contamination caused significant reductions in foaming capacity and foaming speed. The neutral lipid fraction of egg yolk caused the major detrimental effect on foaming, and phospholipids fraction did not give significant foaming reduction at a concentration as high as 0.1%. High-speed and short-time shearing caused no apparent damage but longer shearing time significantly impaired foaming. Heat-induced foaming change is a function of temperature and holding time. Foaming was significantly reduced at a temperature of 55 degrees C for 10 min, whereas it did not change up to 3 min at a heating temperature of 62 to 64 degrees C. Industrial processing steps (pumping, pipe transfer, and storage) did not produce negative effects on foaming of the final products and the controlled pasteurization was actually beneficial for good foaming performance. Therefore, yolk contamination of the egg white was the major factor in reducing foaming properties of the white protein.
NASA Astrophysics Data System (ADS)
Song, Hye Yun
Additive manufacturing (AM) is the process for making 3-D objects by adding materials layer by layer. It can result in a marked reduction of the time and cost associated with designing and producing highly complex parts. Over the past decade, significant progress has been made in machine hardware and control software for process development to achieve dimensional accuracy and mitigate defects. On the other hand, the knowledge on microstructure-property relationship in the additively manufactured builds is still being established. In additive manufacturing, the interactions between the heat source and the material lead to a series of physical phenomena including localized heating, melting, solidification and micro-segregation, and cooling. Far-from-equilibrium microstructure can form as the material experiences a large number of repeated, rapid heating and cooling cycles (i.e. temperature gyrations) during depositions. The mechanical properties of additively manufactured parts are significantly influenced by their final microstructure. The overarching goal of the present research is to improve the fundamental understanding of microstructure-property relationship for AM parts. Specially, it is investigated the high-temperature creep strength of InconelRTM 718 (abbreviated as IN718 thereafter) fabricated by laser-powder bed fusion (L-PBF) AM. The specific objectives include (1) effect of support on the local microstructure, (2) microstructure evolution during post-built heat treatment, and (3) creep strength. Detailed microstructure characterization is performed using a multitude of tools including micro-hardness mapping, scanning electron microscope (SEM) along with electron backscatter diffraction (EBSD), and transmission electron microscope (TEM) for selected area diffraction (SAD) analysis and energy-dispersive X-ray spectroscopy (EDS). The characterized microstructure is correlated to the mechanical properties. Highlights of the research findings are discussed in the following. A support is a "temporary" structure typically built in-situ with the primary part to provide the structural support to the mass of overhanging features; it is subsequently removed after fabrication. During the building process, the existence of such support can affect the local heat flow from the build to the substrate, which in turn may influence the local microstructure. The first objective of this research is to develop a fundamental understanding of the effect of the support on the microstructure fabricated by L-PBF AM. Two groups of as-built samples, with support and without support, are studied. SEM along with EBSD is used to analyze the microstructure characteristics including the growth of the microstructures, the fraction of different microstructure and the misorientation among the microstructure grains. At the nano-scale resolution, TEM is used to identify the precipitate phases. In addition, the micro-hardness values are also measured for samples built with and without support. As a precipitation-strengthened alloy, the heat treatment is critical for IN718, since the desired mechanical properties, such as high-temperature tensile and creep strength, are only acquired by the formation of the strengthening precipitates, namely gamma' prime and gamma''. Currently, the industrial standards for the heat treatment of IN718 are developed for cast and wrought cases and not specifically for AM builds. Thus, it is essential to evaluate the effect of the heat treatment on the formation of the strengthening precipitates in IN718 builds fabricated by L-PBF AM, which is the focus of the second objective. Particularly, a modification to the industry standard heat treatment is developed to maximize the fraction of the strengthening precipitates in the IN718 builds. The microstructural characterizations are performed for several modified heat treatment cases including a homogenization step, solution annealing step and aging step. The micro-hardness values are measured for as-built conditions and several heat-treated conditions including the modified homogenization, solution anneal and aging steps. Finally, the oxidation behavior during the heat treatment is also discussed and compared to that for a piece of actual cast. The third objective of the present study is the evaluation of the mechanical properties of heat-treated IN718 builds produced by L-PBF AM. Particularly, creep test are performed to quantify the mechanical properties of the heat-treated IN718 builds. The creep samples are heat-treated using the following condition: homogenization at 1100 °C for 2 hours followed by air cooling (AC), and aging at 760 °C for 10 hours also followed by AC. For the creep test, the samples are loaded at a constant stress (690 MPa or 100 ksi) at 649 °C (1200 °F) in accordance to Aerospace Material Standards (AMS) 5663. The creep rate of the heat-treated AM sample is compared with the literature data for wrought cases. The relationship of creep strength to the characteristic of the microstructures in the heat-treated IN718 builds is discussed. In summary, the research results provide insights into the microstructure-creep-strength relationship for IN718 fabricated by additive manufacturing. Particularly, a modified post-built heat treatment is developed to maximize the formation of strengthening precipitates and achieve large grains in IN718, resulting in a markedly higher creep strength when compared to the literature data for wrought cases. Taken as a whole, the new knowledge generated in this dissertation is essential to ensure the performance of additively manufactured parts in structural applications.
NASA Technical Reports Server (NTRS)
Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.
1990-01-01
Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.
Fluid physics, thermodynamics, and heat transfer experiments in space
NASA Technical Reports Server (NTRS)
Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.
1975-01-01
An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.
1989-11-24
However, the combination of increasing circuit complexity, customization, size, speed and heat flux is leading to a crisis in packaging technology(1...material properties and tooling restrictions, * production by an economic single-step sintering technique with subsequent heat treatment, * achievement of...programme, page 16. Numerical Mlodelling of Heat Transfer at Interfaces: Finite Element Approaches, Testing and Examples I W. Schafer, MAGM
METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE
Tolley, W.B.; Smith, R.C.
1959-12-15
A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.
Investigation of Super Tube Structure and Performance (Postprint)
2010-04-01
thermosyphon is claimed as thermally superconductive and offers solid state mode of heat transport. A host of speculations about this claim was emerging...sealed structure and design of a conventional heat pipe or thermosyphon is claimed as thermally superconductive and offers solid state mode of heat...matrix. The tilt angle was varied to check for gravity dependence. Tests were run as step functions allowing the tube to reach steady state at a new
Role of the Heat Sink Layer Ta for Ultrafast Spin Dynamic Process in Amorphous TbFeCo Thin Films
NASA Astrophysics Data System (ADS)
Ren, Y.; Zhang, Z. Z.; Min, T.; Jin, Q. Y.
The ultrafast demagnetization processes (UDP) in Ta (t nm)/TbFeCo (20 nm) films have been studied using the time-resolved magneto-optical Kerr effect (TRMOKE). With a fixed pump fluence of 2 mJ/cm2, for the sample without a Ta underlayer (t=0nm), we observed the UDP showing a two-step decay behavior, with a relatively longer decay time (τ2) around 3.0 ps in the second step due to the equilibrium of spin-lattice relaxation following the 4f occupation. As a 10nm Ta layer is deposited, the two-step demagnetization still exists while τ2 decreases to ˜1.9ps. Nevertheless, the second-step decay (τ2=0ps) disappears as the Ta layer thickness is increased up to 20 nm, only the first-step UDP occurs within 500 fs, followed by a fast recovery process. The rapid magnetization recovery rate strongly depends on the pump fluence. We infer that the Ta layer provides conduction electrons involving the thermal equilibrium of spin-lattice interaction and serves as heat bath taking away energy from spins of TbFeCo alloy film in UDP.
NASA Astrophysics Data System (ADS)
Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.
2011-12-01
Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.
Pretreatment of coal during transport
Johnson, Glenn E.; Neilson, Harry B.; Forney, Albert J.; Haynes, William P.
1977-04-19
Many available coals are "caking coals" which possess the undesirable characteristic of fusing into a solid mass when heated through their plastic temperature range (about 400.degree. C.) which temperature range is involved in many common treatment processes such as gasification, hydrogenation, carbonization and the like. Unless the caking properties are first destroyed, the coal cannot be satisfactorily used in such processes. A process is disclosed herein for decaking finely divided coal during its transport to the treating zone by propelling the coal entrained in an oyxgen-containing gas through a heated transport pipe whereby the separate transport and decaking steps of the prior art are combined into a single step.
Experimental and Computational Investigations of Phase Change Thermal Energy Storage Canisters
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Kerslake, Thomas; Sokolov, Pavel; Tolbert, Carol
1996-01-01
Two sets of experimental data are examined in this paper, ground and space experiments, for cylindrical canisters with thermal energy storage applications. A 2-D computational model was developed for unsteady heat transfer (conduction and radiation) with phase-change. The radiation heat transfer employed a finite volume method. The following was found in this study: (1) Ground Experiments: the convection heat transfer is equally important to that of the radiation heat transfer; radiation heat transfer in the liquid is found to be more significant than that in the void; including the radiation heat transfer in the liquid resulted in lower temperatures (about 15 K) and increased the melting time (about 10 min.); generally, most of the heat flow takes place in the radial direction. (2) Space Experiments: radiation heat transfer in the void is found to be more significant than that in the liquid (exactly the opposite to the Ground Experiments); accordingly, the location and size of the void affects the performance considerably; including the radiation heat transfer in the void resulted in lower temperatures (about 40 K).
Overview of the TCV tokamak program: scientific progress and facility upgrades
NASA Astrophysics Data System (ADS)
Coda, S.; Ahn, J.; Albanese, R.; Alberti, S.; Alessi, E.; Allan, S.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Ariola, M.; Bernert, M.; Beurskens, M.; Bin, W.; Blanchard, P.; Blanken, T. C.; Boedo, J. A.; Bolzonella, T.; Bouquey, F.; Braunmüller, F. H.; Bufferand, H.; Buratti, P.; Calabró, G.; Camenen, Y.; Carnevale, D.; Carpanese, F.; Causa, F.; Cesario, R.; Chapman, I. T.; Chellai, O.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Costea, S.; Crisanti, F.; Cruz, N.; Czarnecka, A.; Decker, J.; De Masi, G.; De Tommasi, G.; Douai, D.; Dunne, M.; Duval, B. P.; Eich, T.; Elmore, S.; Esposito, B.; Faitsch, M.; Fasoli, A.; Fedorczak, N.; Felici, F.; Février, O.; Ficker, O.; Fietz, S.; Fontana, M.; Frassinetti, L.; Furno, I.; Galeani, S.; Gallo, A.; Galperti, C.; Garavaglia, S.; Garrido, I.; Geiger, B.; Giovannozzi, E.; Gobbin, M.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Graves, J. P.; Guirlet, R.; Hakola, A.; Ham, C.; Harrison, J.; Hawke, J.; Hennequin, P.; Hnat, B.; Hogeweij, D.; Hogge, J.-Ph.; Honoré, C.; Hopf, C.; Horáček, J.; Huang, Z.; Igochine, V.; Innocente, P.; Ionita Schrittwieser, C.; Isliker, H.; Jacquier, R.; Jardin, A.; Kamleitner, J.; Karpushov, A.; Keeling, D. L.; Kirneva, N.; Kong, M.; Koubiti, M.; Kovacic, J.; Krämer-Flecken, A.; Krawczyk, N.; Kudlacek, O.; Labit, B.; Lazzaro, E.; Le, H. B.; Lipschultz, B.; Llobet, X.; Lomanowski, B.; Loschiavo, V. P.; Lunt, T.; Maget, P.; Maljaars, E.; Malygin, A.; Maraschek, M.; Marini, C.; Martin, P.; Martin, Y.; Mastrostefano, S.; Maurizio, R.; Mavridis, M.; Mazon, D.; McAdams, R.; McDermott, R.; Merle, A.; Meyer, H.; Militello, F.; Miron, I. G.; Molina Cabrera, P. A.; Moret, J.-M.; Moro, A.; Moulton, D.; Naulin, V.; Nespoli, F.; Nielsen, A. H.; Nocente, M.; Nouailletas, R.; Nowak, S.; Odstrčil, T.; Papp, G.; Papřok, R.; Pau, A.; Pautasso, G.; Pericoli Ridolfini, V.; Piovesan, P.; Piron, C.; Pisokas, T.; Porte, L.; Preynas, M.; Ramogida, G.; Rapson, C.; Rasmussen, J. Juul; Reich, M.; Reimerdes, H.; Reux, C.; Ricci, P.; Rittich, D.; Riva, F.; Robinson, T.; Saarelma, S.; Saint-Laurent, F.; Sauter, O.; Scannell, R.; Schlatter, Ch.; Schneider, B.; Schneider, P.; Schrittwieser, R.; Sciortino, F.; Sertoli, M.; Sheikh, U.; Sieglin, B.; Silva, M.; Sinha, J.; Sozzi, C.; Spolaore, M.; Stange, T.; Stoltzfus-Dueck, T.; Tamain, P.; Teplukhina, A.; Testa, D.; Theiler, C.; Thornton, A.; Tophøj, L.; Tran, M. Q.; Tsironis, C.; Tsui, C.; Uccello, A.; Vartanian, S.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, N.; Vijvers, W. A. J.; Vlahos, L.; Vu, N. M. T.; Walkden, N.; Wauters, T.; Weisen, H.; Wischmeier, M.; Zestanakis, P.; Zuin, M.; the EUROfusion MST1 Team
2017-10-01
The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.
NASA Astrophysics Data System (ADS)
Ono, Y.; Tanabe, H.; Yamada, T.; Inomoto, M.; T, Ii; Inoue, S.; Gi, K.; Watanabe, T.; Gryaznevich, M.; Scannell, R.; Michael, C.; Cheng, C. Z.
2012-12-01
Recently, the TS-3 and TS-4 tokamak merging experiments revealed significant plasma heating during magnetic reconnection. A key question is how and where ions and electrons are heated during magnetic reconnection. Two-dimensional measurements of ion and electron temperatures and plasma flow made clear that electrons are heated inside the current sheet mainly by the Ohmic heating and ions are heated in the downstream areas mainly by the reconnection outflows. The outflow kinetic energy is thermalized by the fast shock formation and viscous damping. The magnetic reconnection converts the reconnecting magnetic field energy mostly to the ion thermal energy in the outflow region whose size is much larger than the current sheet size for electron heating. The ion heating energy is proportional to the square of the reconnection magnetic field component B_p^2 . This scaling of reconnection heating indicates the significant ion heating effect of magnetic reconnection, which leads to a new high-field reconnection heating experiment for fusion plasmas.
Motorcycle waste heat energy harvesting
NASA Astrophysics Data System (ADS)
Schlichting, Alexander D.; Anton, Steven R.; Inman, Daniel J.
2008-03-01
Environmental concerns coupled with the depletion of fuel sources has led to research on ethanol, fuel cells, and even generating electricity from vibrations. Much of the research in these areas is stalling due to expensive or environmentally contaminating processes, however recent breakthroughs in materials and production has created a surge in research on waste heat energy harvesting devices. The thermoelectric generators (TEGs) used in waste heat energy harvesting are governed by the Thermoelectric, or Seebeck, effect, generating electricity from a temperature gradient. Some research to date has featured platforms such as heavy duty diesel trucks, model airplanes, and automobiles, attempting to either eliminate heavy batteries or the alternator. A motorcycle is another platform that possesses some very promising characteristics for waste heat energy harvesting, mainly because the exhaust pipes are exposed to significant amounts of air flow. A 1995 Kawasaki Ninja 250R was used for these trials. The module used in these experiments, the Melcor HT3-12-30, produced an average of 0.4694 W from an average temperature gradient of 48.73 °C. The mathematical model created from the Thermoelectric effect equation and the mean Seebeck coefficient displayed by the module produced an average error from the experimental data of 1.75%. Although the module proved insufficient to practically eliminate the alternator on a standard motorcycle, the temperature data gathered as well as the examination of a simple, yet accurate, model represent significant steps in the process of creating a TEG capable of doing so.
Directional solidification processing of alloys using an applied electric field
NASA Technical Reports Server (NTRS)
McKannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)
1992-01-01
A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method is particularly suitable for use with nickel-based superalloys. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.
Experimental and numerical investigation of a scalable modular geothermal heat storage system
NASA Astrophysics Data System (ADS)
Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof
2017-04-01
Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days of heat extraction. The experiment was performed for the determination of heat losses during a complete thermal loading and extraction cycle. The storage could be charged with 54 kWh of heat energy during thermal loading. 36 kWh could be regained during the extraction period, which translates to a heat loss of 33% during the 10 days of operation. Heat exchanger fluid flow rates and supply temperature were measured during the experiment and used as input for the 3D finite element model. Numerically simulated temperature distribution in the storage, return temperature and heat balances were compared to the measured data and showed that the 3D model accurately reflects the storage behavior. Also the third experiment, consisting of six days of cyclic operation after five days of continuous thermal loading, a good agreement between observed and modelled heat storage behavior is found. In addition to determining the storage performance during cyclic operation, the experiment will also be used to further validate the numerical model. This abstract will present the laboratory setup as well as the experimental data obtained from the experiment. It will also present the modelling approach chosen for the numerical representation of the experiment and give a comparison between measured and modelled temperatures and heat balances for the modular heat storage system.
ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.
Hromadka, T.V.
1987-01-01
Besides providing an exact solution for steady-state heat conduction processes (Laplace-Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil-water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximate boundary generation.
USDA-ARS?s Scientific Manuscript database
Understanding factors that affect ammonia emissions from swine waste lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes)...
77 FR 70355 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... leakage zone) or heat damage to the APU power feeder cable, insulation blankets, or pressure bulkhead...) of the NPRM requires repair of the APU power feeder, insulation blankets, and clamps, if no primer... bulletin, which states, ``If visual indications of heat damage are found, do steps 6.c through 6.f...
The College and the Energy Crisis.
ERIC Educational Resources Information Center
Douglass, Donald D.
Ways in which colleges can conserve energy are discussed. Reduction in the use of heat and light can be accomplished by taking several steps, such as reducing the amount of fresh air introduced into heating systems, turning off ventilating fans at night, cutting temperatures back during vacation periods and breaks, lowering the temperature of the…
NASA Astrophysics Data System (ADS)
Sya’bandari, Y.; Firman, H.; Rusyati, L.
2018-05-01
The method used in this research was descriptive research for profiling the validation of SVT-MH to measure students’ critical thinking on matter and heat topic in junior high school. The subject is junior high school students of 7th grade (13 years old) while science teacher and expert as the validators. The instruments that used as a tool to obtain the data are rubric expert judgment (content, media, education) and rubric of readability test. There are four steps to validate SVT-MH in 7th grade Junior High School. These steps are analysis of core competence and basic competence based on Curriculum 2013, expert judgment (content, media, education), readability test and trial test (limited and larger trial test). The instrument validation resulted 30 items that represent 8 elements and 21 sub-elements to measure students’ critical thinking based on Inch in matter and heat topic. The alpha Cronbach (α) is 0.642 which means that the instrument is sufficient to measure students’ critical thinking matter and heat topic.
Investigating the use of a rational Runge Kutta method for transport modelling
NASA Astrophysics Data System (ADS)
Dougherty, David E.
An unconditionally stable explicit time integrator has recently been developed for parabolic systems of equations. This rational Runge Kutta (RRK) method, proposed by Wambecq 1 and Hairer 2, has been applied by Liu et al.3 to linear heat conduction problems in a time-partitioned solution context. An important practical question is whether the method has application for the solution of (nearly) hyperbolic equations as well. In this paper the RRK method is applied to a nonlinear heat conduction problem, the advection-diffusion equation, and the hyperbolic Buckley-Leverett problem. The method is, indeed, found to be unconditionally stable for the linear heat conduction problem and performs satisfactorily for the nonlinear heat flow case. A heuristic limitation on the utility of RRK for the advection-diffusion equation arises in the Courant number; for the second-order accurate one-step two-stage RRK method, a limiting Courant number of 2 applies. First order upwinding is not as effective when used with RRK as with Euler one-step methods. The method is found to perform poorly for the Buckley-Leverett problem.
Absolute Paleointensity Estimates using Combined Shaw and Pseudo-Thellier Experimental Protocols
NASA Astrophysics Data System (ADS)
Foucher, M. S.; Smirnov, A. V.
2016-12-01
Data on the long-term evolution of Earth's magnetic field intensity have a great potential to advance our understanding of many aspects of the Earth's evolution. However, paleointensity determination is one of the most challenging aspects of paleomagnetic research so the quantity and quality of existing paleointensity data remain limited, especially for older epochs. While the Thellier double-heating method remains to be the most commonly used paleointensity technique, its applicability is limited for many rocks that undergo magneto-mineralogical alteration during the successive heating steps required by the method. In order to reduce the probability of alteration, several alternative methods that involve a limited number of or no heating steps have been proposed. However, continued efforts are needed to better understand the physical foundations and relative efficiency of reduced/non-heating methods in recovering the true paleofield strength and to better constrain their calibration factors. We will present the results of our investigation of synthetic and natural magnetite-bearing samples using a combination of the LTD-DHT Shaw and pseudo-Thellier experimental protocols for absolute paleointensity estimation.
Comparison of liquid rocket engine base region heat flux computations using three turbulence models
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.
1993-01-01
The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.
Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi
2015-06-01
Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future.
Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi
2015-01-01
Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future. PMID:26055916
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
NASA Astrophysics Data System (ADS)
Jayakumar, J. S.; Kumar, Inder; Eswaran, V.
2010-12-01
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
2015-03-01
contemporary heat seeking missiles are rather flying computers—they cannot be fooled easily but can see the target in fog and clouds and even...usually not protected. Obviously, the IR countermeasure development is a step behind the heat seeking missile development, which means...horizontal reactor customized for low pressure operation (Fig. 3). The 3-inch diameter quartz tube was heated in a 3-zone resistive furnace. Quartz boat
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
Tóth, Szilvia Z; Schansker, Gert; Kissimon, Judit; Kovács, László; Garab, Gyozo; Strasser, Reto J
2005-02-01
Leaves of 7-day-old barley seedlings were subjected to heat pulses at 50 degrees C for 20 or 40s to inhibit partially or fully the oxygen evolution without inducing visible symptoms. By means of biophysical techniques, we investigated the time course and mechanism of photosystem II (PSII) recovery. After the heat treatment, the samples were characterized by typical heat stress symptoms: loss of oxygen evolution activity, strong decrease of Fv/Fm, induction of the K-step in the fluorescence induction transient, emergence of the AT-thermoluminescence-band and a dramatic increase in membrane permeability. In the first 4h in the light following the heat pulse, the AT-band and the K-step disappeared in parallel, indicating the loss of this restricted activity of PSII. This phase was followed by a recovery period, during which PSII-activity was gradually restored in the light. In darkness, no recovery, except for the membrane permeability, was observed. A model is presented that accounts for (i) the damage induced by the heat pulse on the membrane architecture and on the PSII donor side, (ii) the light-dependent removal of the impaired reaction centers from the disorganized membrane, and (iii) the subsequent light-independent restoration of the membrane permeability and the de novo synthesis of the PSII reaction centers in the light.
Experiments of Transient Condensation Heat Transfer on the Heat Flux Senor
NASA Astrophysics Data System (ADS)
Wang, Xuwen; Liu, Qiusheng; Zhu, Zhiqiang; Chen, Xue
2015-09-01
The influence of transient heat transfer in different condensation condition was investigated experimentally in the present paper. Getting condensation heat and mass transfer regularity and characteristics in space can provide theoretical basis for thermodynamic device such as heat pipes, loop heat pipes and capillary pumped loops as well as other fluid management engineering designing. In order to study the condensation process in space, an experimental study has been carried out on the ground for space experiment. The results show that transit heat transfer coefficient of film condensation is related to the condensation film width, the flow condition near the two phase interface and the pressure of the vapor and non-condensable gas in chamber. On the ground, the condensation heat flux on vertical surface is higher than it on horizontal surface. The transit heat flux of film condensation is affected by the temperature of superheated vapor, the temperature of condensation surface and non-condensable gas pressure. Condensation heat flux with vapor forced convection is many times more than it with natural convection. All of heat flux for both vapor forced convection and natural convection condensation in limited chamber declines dramatically over time. The present experiment is preliminary work for our future space experiments of the condensation and heat transfer process onboard the Chinese Spacecraft "TZ-1" to be launched in 2016.
SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhihong
Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society, Division of Plasma Physics (APS-DPP).« less
Camarillo-Cadena, Menandro; Garza-Ramos, Georgina; Peimbert, Mariana; Pérez-Hernández, Gerardo; Zubillaga, Rafael A
2011-06-01
β-glucosidase B (BglB), 1,4-β-D: -glucanohydrolase, is an enzyme with various technological applications for which some thermostable mutants have been obtained. Because BglB denatures irreversibly with heating, the stabilities of these mutants are assessed kinetically. It, therefore, becomes relevant to determine whether the measured rate constants reflect one or several elementary kinetic steps. We have analyzed the kinetics of heat denaturation of BglB from Paenibacillus polymyxa under various conditions by following the loss of secondary structure and enzymatic activity. The denaturation is accompanied by aggregation and an initial reversible step at low temperatures. At T ≥ T ( m ), the process follows a two-state irreversible mechanism for which the kinetics does not depend on the enzyme concentration. This behavior can be explained by a Lumry-Eyring model in which the difference between the rates of the irreversible and the renaturation steps increases with temperature. Accordingly, at high scan rates (≥1 °C min(-1)) or temperatures (T ≥ T ( m )), the measurable activation energy involves only the elementary step of denaturation.
Seed crystals and catalyzed epitaxy of single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Wang, Yuhuang
This thesis demonstrates the continued growth of single-walled carbon nanotubes (SWNTs) from seeded SWNTs in a way analogous to epitaxy or cloning; that is, the SWNTs grow as a seamless extension to the existing seeded SWNTs and have the same diameter and chirality as those of the SWNT seeds. The experiments were carried out in three key steps, including: (1) preparing a macroscopic array of open-ended SWNTs; (2) reductively docking transition metals as a catalyst to the nanometer-sized open ends; and then (3) heating the whole up to 700--850°C in the presence of a carbon feedstock such as ethanol or ethylene. The resulting SWNT ropes inherit the diameters and chirality from the seeded SWNTs, as indicated by the closely matched frequencies of Raman radial breathing modes before and after the growth. As a control, only sparse nanotubes grew from closed-ended SWNTs, ruling out spontaneous nucleation as a dominating mechanism in our experiments. This experiment proved for the first time the growth of SWNTs can be separated from the nucleation step. The ability to separate the typically inefficient nucleation step from the growth of SWNTs and to restart the growth opens the possibility of amplifying SWNTs with only the desired (n, m). The success in the continued growth was enabled with the creation of macroscopic arrays of open-ended SWNTs from a neat SWNT fiber. A variety of techniques including cryo-microtoming and surface etching chemistry have been developed to produce a macroscopic (˜1200mum2), aligned, and clean---largely free of amorphous carbon, oxides, and metal residuals---SWNT substrate with open-ended SWNTs aligned along the fiber axis. Alternatively, the fiber was milled perpendicular to the fiber axis with a gallium focused ion beam to produce a planar, free-standing, ultra-thin, "bed-of-nails" SWNT membrane---a single layer of parallel SWNTs densely packed and aligned along the normal of the membrane.
NASA Technical Reports Server (NTRS)
Marchese, Anthony J.; Dryer, Fredrick L.; Choi, Mun Y.
1994-01-01
In order to develop an extensive envelope of test conditions for NASA's space-based Droplet Combustion Experiment (DCE) as well those droplet experiments which can be performed using a drop tower, the transient vaporization and combustion of methanol and n-heptane droplets were simulated using a recently developed fully time-dependent, spherically symmetric droplet combustion model. The transient vaporization of methanol and n-heptane was modeled to characterize the instantaneous gas phase composition surrounding the droplet prior to the introduction of an ignition source. The results for methanol/air showed that the entire gas phase surrounding a 2 mm methanol droplet deployed in zero-g .quickly falls outside the lean flammability limit. The gas phase surrounding an identically-sized n-heptane droplet, on the other hand, remains flammable. The combustion of methanol was then modeled considering a detailed gas phase chemical kinetic mechanism (168 steps, 26 species) and the effect of the dissolution of flame-generated water into the liquid droplet. These results were used to determine the critical ignition diameter required to achieve quasi-steady droplet combustion in a given oxidizing environment. For droplet diameters greater than the critical ignition diameter, the model predicted a finite diameter at which the flame would extinguish. These extinction diameters were found to vary significantly with initial droplet diameter. This phenomenon appears to be unique to the transient heat transfer, mass transfer and chemical kinetics of the system and thus has not been reported elsewhere to date. The extinction diameter was also shown to vary significantly with the liquid phase Lewis number since the amount of water present in the droplet at extinction is largely governed by the rate at which water is transported into the droplet via mass diffusion. Finally, the numerical results for n-heptane combustion were obtained using both 2 step and 96 step semi-emperical chemical kinetic mechanisms. Neither mechanism exhibited the variation of extinction diameter with initial diameter.
Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage.
Tay, Cheryl S; Lee, Jason K W; Teo, Ya S; Foo, Phildia Q Z; Tan, Pearl M S; Kong, Pui W
2016-01-01
This study examined (1) if changes in gait characteristics could indicate the exertional heat stress experienced during prolonged load carriage, and (2) if gait characteristics were responsive to a heat mitigation strategy. In an environmental chamber replicating tropical climatic conditions (ambient temperature 32°C, 70% relative humidity), 16 males aged 21.8 (1.2) years performed two trials of a work-rest cycle protocol consisting two bouts of 4-km treadmill walks with 30-kg load at 5.3km/h separated by a 15-min rest period. Ice slurry (ICE) or room temperature water (29°C) as a control (CON) was provided in 200-ml aliquots. The fluids were given 10min before the start, at the 15(th) and 30(th) min of each work cycle, and during each rest period. Spatio-temporal gait characteristics were obtained at the start and end of each work-rest cycle using a floor-based photocell system (OptoGait) and a high-speed video camera at 120Hz. Repeated-measure analysis of variance (trial×time) showed that with time, step width decreased (p=.024) while percent crossover steps increased (p=.008) from the 40(th) min onwards. Reduced stance time variability (-11.1%, p=.029) step width variability (-8.2%, p=.001), and percent crossover step (-18.5%, p=.010) were observed in ICE compared with CON. No differences in step length and most temporal variables were found. In conclusion, changes in frontal plane gait characteristics may indicate exertional heat stress during prolonged load carriage, and some of these changes may be mitigated with ice slurry ingestion. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahmoudian, Alireza; Bernhardt, Paul; Ruohoniemi, J. Michael; Isham, Brett; Watkins, Brenton; Scales, Wayne
2016-07-01
Use of high frequency (HF) heating experiments has been extended in recent years as a useful methodology for plasma physicists wishing to remotely study the properties and behavior of the ionosphere as well as nonlinear plasma processes. Our recent work using high latitude heating experiments has lead to several important discoveries that have enabled assessment of active geomagnetic conditions, determination of minor ion species and their densities, ion mass spectrometry, electron temperature measurements in the heating ionosphere, as well a deeper understanding of physical processes associated with electron acceleration and formation of field aligned irregularities. The data recorded during two campaigns at HAARP in 2011 and 2012 will be presented. Several diagnostic instruments have been used to detect HAARP heater-generated ionospheric irregularities and plasma waves. These diagnostics include an ionosonde, MUIR (Modular UHF Ionospheric Radar at 446 MHz), SuperDARN HF backscatter radar and ground-based SEE receivers. Variation of the wideband/ narrowband SEE features, SuperDARN echoes, and enhanced ion lines were studied with pump power variation, pump frequency stepping near 3fce as well as changing beam angle relative to the magnetic zenith. In particular, formation of field-aligned irregularities (FAIs) and upper hybrid (UH) waves through oscillating two-stream instability (OSTI) and resonance instability is studied. During heating, Narrowband SEE (NSEE) showed enhancements that correlated with the enhanced MUIR radar ion lines. IA MSBS (Magnetized Stimulated Brillouin Scatter) lines are much narrower than Wideband SEE (WSEE) lines and as a result electron temperature calculated using NSEE line offset has potential to be more accurate. This technique may therefore complement the electron temperature calculation using ISR spectra. Strength of IA MSBS lines correlate with EHIL in the MUIR spectrum during HF pump frequency variation near 3fce. Therefore, NSEE could be used for similar diagnostic information, particularly temperature assessment during heating. More detailed physics-based modeling of such SEE is expected to provide further diagnostic information/capabilities. This work has demonstrated the tremendous future potential of Narrowband SEE (NSEE) as a powerful untapped ionospheric diagnostic which could provide complementary measurements for locations that ISR facilities are not available or as a complementary measurement for the waves and irregularities that cannot be observed by ISR.
Welding Metallurgy of Nickel-Based Superalloys for Power Plant Construction
NASA Astrophysics Data System (ADS)
Tung, David C.
Increasing the steam temperature and pressure in coal-fired power plants is a perpetual goal driven by the pursuit of increasing thermal cycle efficiency and reducing fuel consumption and emissions. The next target steam operating conditions, which are 760°C (1400°F) and 35 MPa (5000 psi) are known as Advanced Ultra Supercritical (AUSC), and can reduce CO2 emissions up to 13% but this cannot be achieved with traditional power plant construction materials. The use of precipitation-strengthened Nickel-based alloys (superalloys) is required for components which will experience the highest operating temperatures. The leading candidate superalloys for power plant construction are alloys 740H, 282, and 617. Superalloys have excellent elevated temperature properties due to careful microstructural design which is achieved through very specific heat treatments, often requiring solution annealing or homogenization at temperatures of 1100 °C or higher. A series of postweld heat treatments was investigated and it was found that homogenization steps before aging had no noticeable effect on weld metal microhardness, however; there were clear improvements in weld metal homogeneity. The full abstract can be viewed in the document itself.
Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field
NASA Astrophysics Data System (ADS)
Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi
High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason; Miyazono, Kohei; Gelovani, Juri G.; Kataoka, Kazunori; Brinker, C. Jeffrey; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata
2016-01-01
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407
Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2016-02-16
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.
Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi
2016-03-17
Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.
Design of evaporator of spacelab refrigerator/freezer
NASA Technical Reports Server (NTRS)
Hye, A.
1985-01-01
An Evaporator has been designed for NASA-Johnson Space Center Life Sciences to conduct experiments in Spacelab mission SLS-1 using different samples such as blood, urine, human tissues etc. Two units will fly - one as a Refrigerator (4 C) and the other as a Freezer (-22 C). The evaporator tube is dip brazed on a grooved flat plate. Aluminum heat sink is dip brazed on the other side of the plate. Freon R5O2 is pumped through the tube and air is circulated over the finned surface to transfer heat. As freon 5O2 is considered toxic, the whole freon tube is covered with an evaporator cover to contain any freon leakage to avoid exposure to crew members. This containment is under vacuum and this pressure is monitored along with the freon pressure to determine freon leakage so that necessary steps can be taken to stop contamination of the spacelab air. An stress analysis has been done and it is found to have adequate safety margin to meet the requirements of NASA safety and reliability standards.
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; ...
2016-02-02
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.
A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less
NASA Astrophysics Data System (ADS)
Zhang, Renping
2017-12-01
A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.
High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, J. M.; Samudrala, G. K.; Vohra, Y. K.
A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10 GPa and 300–650 K.« less
Prediction of fire growth on furniture using CFD
NASA Astrophysics Data System (ADS)
Pehrson, Richard David
A fire growth calculation method has been developed that couples a computational fluid dynamics (CFD) model with bench scale cone calorimeter test data for predicting the rate of flame spread on compartment contents such as furniture. The commercial CFD code TASCflow has been applied to solve time averaged conservation equations using an algebraic multigrid solver with mass weighted skewed upstream differencing for advection. Closure models include k-e for turbulence, eddy breakup for combustion following a single step irreversible reaction with Arrhenius rate constant, finite difference radiation transfer, and conjugate heat transfer. Radiation properties are determined from concentrations of soot, CO2 and H2O using the narrow band model of Grosshandler and exponential wide band curve fit model of Modak. The growth in pyrolyzing area is predicted by treating flame spread as a series of piloted ignitions based on coupled gas-fluid boundary conditions. The mass loss rate from a given surface element follows the bench scale test data for input to the combustion prediction. The fire growth model has been tested against foam-fabric mattresses and chairs burned in the furniture calorimeter. In general, agreement between model and experiment for peak heat release rate (HRR), time to peak HRR, and total energy lost is within +/-20%. Used as a proxy for the flame spread velocity, the slope of the HRR curve predicted by model agreed with experiment within +/-20% for all but one case.
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Dean, W. C., II
1975-01-01
The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.
1999-03-09
In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Dr. Haig Keshishian checks fruit fly larvae in a petri dish. The larvae are part of an experiment that is a secondary payload on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. Dr. Keshishian, from Yale University, is the principle investigator for the experiment. The larvae will be contained in incubators that are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B
An experiment to fly on mission STS-93 is prepared at Life Sciences Building, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Jake Freeman and Mark Rupert, with BioServe Space Technologies, check canisters, or incubators, that will hold fruit fly embryos and larvae for an experiment to fly on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. The incubators are part of the Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B.
Çepelioğullar, Özge; Pütün, Ayşe E
2014-10-01
In this study, thermochemical conversion of plastic wastes (PET and PVC) together with an agricultural waste (hazelnut shell) was investigated. In order to determine the thermal and kinetic behaviours, pyrolysis experiments were carried out from room temperature to 800 °C, with a heating rate of 10 °C min(-1) in the presence of a N2 atmosphere in a thermogravimetric analyzer. With the obtained thermogravimetric data, an appropriate temperature was specified for the pyrolysis of biomass-plastic wastes in a fixed-bed reactor. At the second step, pyrolysis experiments were carried out at the same conditions with the thermogravimetric analyzer, except the final temperature which was up to 500 °C in this case. After pyrolysis experiments, pyrolysis yields were calculated and characterization studies for bio-oil were investigated. Experimental results showed that co-pyrolysis has an important role in the determination of the pyrolysis mechanism and the process conditions while designing/implementing a thermochemical conversion method where biomass-plastic materials were preferred as raw materials. © The Author(s) 2014.
Processes of Heat Transfer in Rheologically Unstable Mixtures of Organic Origin
NASA Astrophysics Data System (ADS)
Tkachenko, S. I.; Pishenina, N. V.; Rumyantseva, T. Yu.
2014-05-01
The dependence of the coefficient of heat transfer from the heat-exchange surface to a rheologically unstable organic mixture on the thermohydrodynamic state of the mixture and its prehistory has been established. A method for multivariant investigation of the process of heat transfer in compound organic mixtures has been proposed; this method makes it possible to evaluate the character and peculiarities of change in the rheological structure of the mixture as functions of the thermohydrodynamic conditions of its treatment. The possibility of evaluating the intensity of heat transfer in a biotechnological system for production of energy carriers at the step of its designing by multivariant investigation of the heat-transfer intensity in rheologically unstable organic mixtures with account of their prehistory has been shown.
Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliasson, B.; Stenflo, L.; Department of Physics, Linkoeping University, SE-581 83 Linkoeping
2008-10-15
We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuirmore » wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.« less
Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator.
An, Kyongmo; Olsson, Kevin S; Weathers, Annie; Sullivan, Sean; Chen, Xi; Li, Xiang; Marshall, Luke G; Ma, Xin; Klimovich, Nikita; Zhou, Jianshi; Shi, Li; Li, Xiaoqin
2016-09-02
The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y_{3}Fe_{5}O_{12}, has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Cabello, Adán
2018-03-01
We consider an ideal experiment in which unlimited nonprojective quantum measurements are sequentially performed on a system that is initially entangled with a distant one. At each step of the sequence, the measurements are randomly chosen between two. However, regardless of which measurement is chosen or which outcome is obtained, the quantum state of the pair always remains entangled. We show that the classical simulation of the reduced state of the distant system requires not only unlimited rounds of communication, but also that the distant system has infinite memory. Otherwise, a thermodynamical argument predicts heating at a distance. Our proposal can be used for experimentally ruling out nonlocal finite-memory classical models of quantum theory.
Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide
NASA Astrophysics Data System (ADS)
Dal Martello, E.; Tranell, G.; Gaal, S.; Raaness, O. S.; Tang, K.; Arnberg, L.
2011-10-01
The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2-5 mm) or as powder (size, 10-20 μm), mixed and agglomerated as pellets (size, 1-3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid-gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.
An experiment to fly on mission STS-93 is prepared at Life Sciences Building, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Dr. Haig Keshishian checks fruit fly larvae in a petri dish. The larvae are part of an experiment that is a secondary payload on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. Dr. Keshishian, from Yale University, is the principle investigator for the experiment. The larvae will be contained in incubators that are part of a Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high- temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B.
A phonon thermodynamics approach of gold nanofluids synthesized in solution plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, YongKang, E-mail: yk@rd.numse.nagoya-u.ac.jp; Aburaya, Daiki, E-mail: daiki@rd.numse.nagoya-u.ac.jp; Antoaneta Bratescu, Maria, E-mail: maria@rd.numse.nagoya-u.ac.jp
2014-03-17
The phonon thermodynamics theory for liquids was applied to explain the thermal characteristics of gold nanofluids synthesized by a simple, one-step, and chemical-free method using an electrical discharge in a liquid environment termed solution plasma process. The specific heat capacity of nanofluids was measured with a differential scanning calorimeter using the ratio between the differential heat flow rate and the heating rate. The decrease of the specific heat capacity with 10% of gold nanofluids relative to water was explained by the decrease of Frenkel relaxation time with 22%, considering a solid-like state model of liquids.
Methods for deoxygenating biomass-derived pyrolysis oil
Baird, Lance Awender; Brandvold, Timothy A.
2015-06-30
Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.
Interactions between moist heating and dynamics in atmospheric predictability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straus, D.M.; Huntley, M.A.
1994-02-01
The predictability properties of a fixed heating version of a GCM in which the moist heating is specified beforehand are studied in a series of identical twin experiments. Comparison is made to an identical set of experiments using the control GCM, a five-level R30 version of the COLA GCM. The experiments each contain six ensembles, with a single ensemble consisting of six 30-day integrations starting from slightly perturbed Northern Hemisphere wintertime initial conditions. The moist heating from each integration within a single control ensemble was averaged over the ensemble. This averaged heating (a function of three spatial dimensions and time)more » was used as the prespecified heating in each member of the corresponding fixed heating ensemble. The errors grow less rapidly in the fixed heating case. The most rapidly growing scales at small times (global wavenumber 6) have doubling times of 3.2 days compared to 2.4 days for the control experiments. The predictability times for the most energetic scales (global wavenumbers 9-12) are about two weeks for the fixed heating experiments, compared to 9 days for the control. The ratio of error energy in the fixed heating to the control case falls below 0.5 by day 8, and then gradually increases as the error growth slows in the control case. The growth of errors is described in terms of budgets of error kinetic energy (EKE) and error available potential energy (EAPE) developed in terms of global wavenumber n. The diabatic generation of EAPE (G[sub APE]) is positive in the control case and is dominated by midlatitude heating errors after day 2. The fixed heating G[sub APE] is negative at all times due to longwave radiative cooling. 36 refs., 9 figs., 1 tab.« less
Carbothermal Reduction of Quartz with Carbon from Natural Gas
NASA Astrophysics Data System (ADS)
Li, Fei; Tangstad, Merete
2017-04-01
Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.
NASA Astrophysics Data System (ADS)
Kitt, S.; Grothkopf, U.
2010-10-01
This paper explains the procedures involved in creating a database of scientific papers that use observational data and linking the records to the observations residing in a data archive. Based on our experiences with the ESO Telescope Bibliography, we describe the workflow we apply in order to retrieve relevant articles, assign tags to describe the observing facilities that generated the data, and identify the correct program identification numbers (IDs). These program identifiers are particularly important as they link the published papers and the underlying data and enable scientists to access the data for new studies. With the understanding that the difficulty of compiling correct and complete data varies, depending on the information readily provided in the published literature, this paper proposes an evolution of search options for finding appropriate ID numbers. To explore the process and its various stages, we use the analogy of the "cookbook." These search methodologies might be labeled fast, medium, and slow heat recipes within our culinary theme. We provide a step-by-step guide in order to assist other bibliography compilers, in particular those who are new to the field.
NASA Astrophysics Data System (ADS)
Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.
2017-08-01
An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.
Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F; van Bokhoven, Jeroen A
2017-08-01
An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.
One-step method for the production of nanofluids
Kostic, Milivoje [Chicago, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John R [Downers Grove, IL; Choi, Stephen U. S. [Napersville, IL
2010-05-18
A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.
Dynamic thermoregulation of the sample in flow cytometry.
Graves, Steven W; Habbersett, Robert C; Nolan, John P
2002-05-01
Fine control of temperature is an important capability for any analytical platform. A circulating water bath has been the traditional means of maintaining constant temperature in the sample chamber of a flow cytometer, but this approach does not permit rapid changes in sample temperature. This unit explains the use of Peltier modules for regulation of sample temperature. The heat pumping generated by the passage of current through properly matched semiconductors, known as the Peltier effect, makes it possible for these thermoelectric modules to both heat and cool. The authors describe the construction of a Peltier module based thermoregulation unit in step-by-step detail and present a demonstration of flow cytometry measurements as a function of temperature.
Abnormal Grain Growth Suppression in Aluminum Alloys
NASA Technical Reports Server (NTRS)
Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)
2015-01-01
The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.
Manufacturing Ethyl Acetate From Fermentation Ethanol
NASA Technical Reports Server (NTRS)
Rohatgi, Naresh K.; Ingham, John D.
1991-01-01
Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.
Two-step sulfonation process for the conversion of polymer fibers to carbon fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.
Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Namburu, Raju R.
1989-01-01
Numerical simulations are presented for hyperbolic heat-conduction problems that involve non-Fourier effects, using explicit, Lax-Wendroff/Taylor-Galerkin FEM formulations as the principal computational tool. Also employed are smoothing techniques which stabilize the numerical noise and accurately predict the propagating thermal disturbances. The accurate capture of propagating thermal disturbances at characteristic time-step values is achieved; numerical test cases are presented which validate the proposed hyperbolic heat-conduction problem concepts.
NASA Technical Reports Server (NTRS)
Sucec, J.
1975-01-01
Solutions for the surface temperature and surface heat flux are found for laminar, constant property, slug flow over a plate convectively cooled from below, when the temperature of the fluid over the plate varies arbitrarily with time at the plate leading edge. A simple technique is presented for handling arbitrary fluid temperature variation with time by approximating it by a sequence of ramps or steps for which exact analytical solutions are available.
Shock-Induced Heating In A Rocket Engine
NASA Technical Reports Server (NTRS)
Lagnado, Ronald R.; Raiszadeh, Farhad
1989-01-01
Misalignments give rise to hotspots on walls. Report discusses numerical simulation of flow in and near small, ringlike cavity in wall of Space Shuttle main engine at junction of main combustion chamber and nozzle. Purpose to study effects of misalignments between combustion chamber and nozzle on transfer of heat into surfaces chamber, cavity, and nozzle. Depending on specific misalignment flow encounters forward-or backward-facing step leaving chamber and entering nozzle. Results in serious losses of performance and excessive heating of walls.
Laser heating of aqueous samples on a micro-optical-electro-mechanical system
Beer, Neil Reginald; Kennedy, Ian
2013-12-17
A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.
Laser heating of aqueous samples on a micro-optical-electro-mechanical system
Beer, Neil Reginald; Kennedy, Ian
2013-02-05
A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.
Orbital foamed material extruder
NASA Technical Reports Server (NTRS)
Tucker, Dennis S. (Inventor)
2009-01-01
This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.
New eutectic alloys and their heats of transformation
NASA Technical Reports Server (NTRS)
Farkas, D.; Birchenall, C. E.
1985-01-01
Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.
Conceptual design of liquid droplet radiator shuttle-attached experiment
NASA Technical Reports Server (NTRS)
Pfeiffer, Shlomo L.
1989-01-01
The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.
In-space experiment on thermoacoustic convection heat transfer phenomenon-experiment definition
NASA Technical Reports Server (NTRS)
Parang, M.; Crocker, D. S.
1991-01-01
The definition phase of an in-space experiment in thermoacoustic convection (TAC) heat transfer phenomenon is completed and the results are presented and discussed in some detail. Background information, application and potential importance of TAC in heat transfer processes are discussed with particular focus on application in cryogenic fluid handling and storage in microgravity space environment. Also included are the discussion on TAC space experiment objectives, results of ground support experiments, hardware information, and technical specifications and drawings. The future plans and a schedule for the development of experiment hardware (Phase 1) and flight tests and post-flight analysis (Phase 3/4) are also presented. The specific experimental objectives are rapid heating of a compressible fluid and the measurement of the fluid temperature and pressure and the recording and analysis of the experimental data for the establishment of the importance of TAC heat transfer process. The ground experiments that were completed in support of the experiment definition included fluid temperature measurement by a modified shadowgraph method, surface temperature measurements by thermocouples, and fluid pressure measurements by strain-gage pressure transducers. These experiments verified the feasibility of the TAC in-space experiment, established the relevance and accuracy of the experimental results, and specified the nature of the analysis which will be carried out in the post-flight phase of the report.
Properties of pTRM in Multidomain Grains and Their Implications for Palaeointensity Measurements
NASA Astrophysics Data System (ADS)
Biggin, A. J.; Michalk, D. M.
2009-05-01
As a consequence of their ubiquity in natural materials, much effort has been expended on trying to understand how 'multidomain' (sensu lato) grains behave in palaeointensity experiments. The known properties of multidomain thermoremanence (MD TRM) will be reviewed here and their implications for various types of palaeointensity experiments will be considered. The Dekkers-Boehnel and (quasi-) perpendicular palaeointensity methods tend to produce more accurate measurements from samples containing MD remanences than do Thellier-Thellier protocols. This is because they apply only a single type of thermal remagnetisation treatment and avoid the interleaving of demagnetisation and remagnetisation treatments which always produces non-ideal behaviour when MD grains are present in the sample. However, this benefit of using a single-heating technique does not apply if the TRM of the sample being measured carries a secondary (e.g. viscous) overprint. A kinematic model of MD TRM predicts that, if a substantial demagnetisation treatment is required to isolate the primary TRM of a sample, then even single-heating methods will produce non-ideal behaviour in the experiment. This effect probably explains why some recently made palaeointensity measurements performed using the Dekkers- Boehnel method on Mexican lavas appeared to produce over-high results. One way around this problem might be to perform the measurements of the remanence in the experiment at temperature instead of always cooling the sample to room temperature. This could enable the optimal experimental behaviour to be preserved in spite of a significant overprint but requires specialist equipment which is not available in all labs. In many palaeointensity experiments, it is simply not possible to avoid all the non-ideal effects associated with MD grains. Furthermore, there is the potential for sources of bias other than MD effects to impact on a palaeointensity experiment (thermochemical alteration being the most obvious) and the design of the experiment should take these into account also. Nonetheless, there are some steps that can be followed in any experiment in order to reduce the amount of bias that MD effects might have on the palaeointensity and these will be outlined.
NASA Astrophysics Data System (ADS)
Sethuram, D.; Srisailam, Shravani; Rao Ponangi, Babu
2018-04-01
Austempered Ductile Iron(ADI) is an exciting alloy of iron which offers the design engineers the best combination high strength-to-weight ratio, low cost design flexibility, good toughness, wear resistance along with fatigue strength. The two step austempering procedure helps in simultaneously improving the tensile strength as-well as the ductility to more than that of the conventional austempering process. Extensive literature survey reveals that it’s mechanical and wear behaviour are dependent on heat treatment and alloy additions. Current work focuses on characterizing the two-step ADI samples (TSADI) developed by novel heat treatment process for resistance to corrosion and wear. The samples of Ductile Iron were austempered by the two-Step Austempering process at temperatures 300°C to 450°C in the steps of 50°C.Temperaturesare gradually increased at the rate of 14°C/Hour. In acidic medium (H2SO4), the austempered samples showed better corrosive resistance compared to conventional ductile iron. It has been observed from the wear studies that TSADI sample at 350°C is showing better wear resistance compared to ductile iron. The results are discussed in terms of fractographs, process variables and microstructural features of TSADI samples.
Balasubramanian, Saravana K; Coger, Robin N
2005-01-01
Bioartificial liver devices (BALs) have proven to be an effective bridge to transplantation for cases of acute liver failure. Enabling the long-term storage of these devices using a method such as cryopreservation will ensure their easy off the shelf availability. To date, cryopreservation of liver cells has been attempted for both single cells and sandwich cultures. This study presents the potential of using computational modeling to help develop a cryopreservation protocol for storing the three dimensional BAL: Hepatassist. The focus is upon determining the thermal and concentration profiles as the BAL is cooled from 37 degrees C-100 degrees C, and is completed in two steps: a cryoprotectant loading step and a phase change step. The results indicate that, for the loading step, mass transfer controls the duration of the protocol, whereas for the phase change step, when mass transfer is assumed negligible, the latent heat released during freezing is the control factor. The cryoprotocol that is ultimately proposed considers time, cooling rate, and the temperature gradients that the cellular space is exposed to during cooling. To our knowledge, this study is the first reported effort toward designing an effective protocol for the cryopreservation of a three-dimensional BAL device.
Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.S. Brodsky
A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transportmore » properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.« less
NASA Astrophysics Data System (ADS)
Zhang, Ding; Han, Xiaoyan; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.
2013-01-01
We showed our work on modeling turbine blade crack detection in Sonic Infrared (IR) Imaging with a method of creating flat crack surface in finite element analysis (FEA) in last year's QNDE paper. This modeling has been carried out continuously as part of model-assisted study on crack detection in aircraft engine turbine blades. We have presented that Sonic IR Imaging NDE is a viable method to detect defects in various structures. It combines ultrasound excitation for frictional heating in defects and infrared imaging to sense this heating, and thus to identify the defects. It is a fast wide-area imaging technology. It only takes a second to image a large area of a target sample. When an aircraft is in flight, the turbine engine blades operate under high temperature and high cyclic stresses. Thus, fatigue cracks can form after many hours of operation. Sonic IR Imaging can be used to detect such cracks. However, we still need to better understand contributions of parameters/factors in the crack detection process with Sonic IR Imaging. FEA modeling can help us to reveal certain aspects through the data it produces where experimental work cannot achieve. Upon the model we presented last year, a two-step simulation process was designed to simulate the important aspects in our experiments. These include a newly designed model for the ultrasound transducer which delivers mechanical energy to the sample and the implementation of static force while engaging the transducer to the sample. In this paper, we present the ideas and the results from the new model.
NASA Astrophysics Data System (ADS)
Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.
2010-04-01
Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2×1022 m-2 (E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.
Other factors to consider in the formation of chloropropandiol fatty esters in oil processes.
Ramli, Muhamad Roddy; Siew, Wai Lin; Ibrahim, Nuzul Amri; Kuntom, Ainie; Abd Razak, Raznim Arni
2015-01-01
This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.
Scaling of an Optically Pumped Mid-Infrared Rubidium Laser
2015-03-26
v AFIT-ENP-MS-15-M-104 Abstract An optically pumped mid-infrared rubidium (Rb) pulsed laser has been demonstrated in a heat pipe ... Heat Pipe Assembly ........................................................................................12 Figure 3.3. Rb Number Density vs. Heat ...the first experiments that used a heat pipe as the gain cell. This experiment would influence the work of Sharma (Sharma, 1981:210). 9 Krupke
Liao, Ching-Hsing; Fett, William F
2003-05-15
Three major foodborne outbreaks of salmonellosis in 1998 and 1999 were linked to the consumption of raw alfalfa sprouts. In this report, an improved method is described for isolation of Salmonella from alfalfa seed lots, which had been implicated in these outbreaks. From each seed lot, eight samples each containing 25 g of seed were tested for the presence of Salmonella by the US FDA Bacteriological Analytical Manual (BAM) procedure and by a modified method applying two successive pre-enrichment steps. Depending on the seed lot, one to four out of eight samples tested positive for Salmonella by the standard procedure and two to seven out of eight samples tested positive by the modified method. Thus, the use of two consecutive pre-enrichment steps led to a higher detection rate than a single pre-enrichment step. This result indirectly suggested that Salmonella cells on contaminated seeds might be injured and failed to fully resuscitate in pre-enrichment broth containing seed components during the first 24 h of incubation. Responses of heat-injured Salmonella cells grown in buffered peptone water (BPW) and in three alfalfa seed homogenates were investigated. For preparation of seed homogenates, 25 g of seeds were homogenized in 200 ml of BPW using a laboratory Stomacher and subsequently held at 37 degrees C for 24 h prior to centrifugation and filtration. While untreated cells grew at about the same rate in BPW and in seed homogenates, heat-injured cells (52 degrees C, 10 min) required approximately 0.5 to 4.0 h longer to resuscitate in seed homogenates than in BPW. This result suggests that the alfalfa seed components or fermented metabolites from native bacteria hinder the repair and growth of heat-injured cells. This study also shows that an additional pre-enrichment step increases the frequency of isolation of Salmonella from naturally contaminated seeds, possibly by alleviating the toxic effect of seed homogenates on repair or growth of injured cells.
Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor
NASA Astrophysics Data System (ADS)
Urban, Brook
Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of the initial feed mass was recovered as bio-oil. However, the mass of high calorific lipid-derived components in the collected bio-oils remained nearly constant at reaction temperatures above 415°C; between 80-90% of the feedstock lipids were recovered in the bio-oil fraction. In addition, multi-step fractional flash pyrolysis experiments were performed to assess the possibility of producing higher quality bio-oils since a large fraction of protein and carbohydrates degrade at lower temperatures (320-400°C). A low temperature pyrolysis step was first performed and was followed by pyrolysis of the residues at higher temperature. This fractional pyrolysis approach which produced higher quality bio-oil with low water- and nitrogen- content from the higher temperature steps.
Boundary Waves on the Ice Surface Created by Currents
NASA Astrophysics Data System (ADS)
Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.
2013-12-01
The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on ice surfaces, such as the surface of glaciers and underside of river ice (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar ice caps on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar ice caps are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar ice caps may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on ice surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and ice is a factor which determines the direction of migration of boundary waves formed on ice surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat ice layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of ice at the bottom (ice surface). The ice surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and ice, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and ice, and a heat balance equation at the flow-ice interface. It is assumed that the interfacial heat fluxes of the liquid and ice are determined by the temperature profile, and the Reynolds stress and the turbulent heat flux are expressed by the eddy diffusivity of momentum and the eddy diffusivity of heat, respectively. In addition, the liquid can be divided into two layers; viscous sublayer and turbulent layer. In order to determine the velocity and temperature profile in the liquid, we employ the Prandtl-Taylor analogy which assumes that the velocity profile follows a linear law in the viscous sublayer and a logarithmic law in the turbulent layer, and the eddy diffusivity of heat is described by the eddy diffusivity of momentum and Prandtl number of the liquid. Finally, we obtain the temperature profiles (because the heat transfer equation for the ice reduces to the Laplace equation, the temperature profile in the ice can be easily estimated) and interfacial heat fluxes.
Critical fluid thermal equilibration experiment (19-IML-1)
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
1992-01-01
Gravity sometimes blocks all experimental techniques of making a desired measurement. Any pure fluid possesses a liquid-vapor critical point. It is defined by a temperature, pressure, and density state in thermodynamics. The critical issue that this experiment attempts to understand is the time it takes for a sample to reach temperature and density equilibrium as the critical point is approached; is it infinity due to mass and thermal diffusion, or do pressure waves speed up energy transport while mass is still under diffusion control. The objectives are to observe: (1) large phase domain homogenization without and with stirring; (2) time evolution of heat and mass after temperature step is applied to a one phase equilibrium sample; (3) phase evolution and configuration upon going two phase from a one phase equilibrium state; (4) effects of stirring on a low g two phase configuration; (5) two phase to one phase healing dynamics starting from a two phase low g configuration; and (6) effects of shuttle acceleration events on spatially and temporally varying compressible critical fluid dynamics.
1999-03-09
In the KSC Life Sciences Building, Hangar L, Cape Canaveral Air Station, Jake Freeman and Mark Rupert, with BioServe Space Technologies, check canisters, or incubators, that will hold fruit fly embryos and larvae for an experiment to fly on mission STS-93. The experiment will examine the effects of microgravity and space flight on the development of neural connections between specific motor neurons and their targets in muscle fibers. The incubators are part of the Commercial Generic Bioprocessing Apparatus (CGBA), which can start bioprocessing reactions by mixing or heating a sample and can also initiate multiple-step, sequential reactions in a technique called phased processing. The primary payload of mission STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. The target launch date for STS-93 is July 9, aboard Space Shuttle Columbia, from Launch Pad 39B
Fuel gain exceeding unity in an inertially confined fusion implosion.
Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R
2014-02-20
Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.
NASA Astrophysics Data System (ADS)
Uunk, Bertram; Postma, Onno; Wijbrans, Jan; Brouwer, Fraukje
2017-04-01
Metamorphic minerals and veins commonly trap attending hydrous fluids in fluid inclusions, which yield a wealth of information on the history of the hosting metamorphic system. When these fluids are sufficiently saline, the KCl in the inclusions can be used as a K/Ar geochronologic system, potentially dating inclusion incorporation. Whilst primary fluid inclusions (PFIs) can date fluid incorporation during mineral or vein growth, secondary fluid inclusion trails (SFIs) can provide age constraints on later fluid flow events. At VU Amsterdam, a new in-vacuo crushing apparatus has been designed to extract fluid inclusions from minerals for 40Ar/39Ar analysis. Separates are crushed inside a crusher tube connected to a purification line and a quadrupole mass spectrometer. In-vacuo crushing is achieved by lifting and dropping a steel pestle using an externally controlled magnetic field. As the gas can be analyzed between different crushing steps, the setup permits stepwise crushing experiments. Additionally, crushed powder can be heated by inserting the crusher tube in an externally controlled furnace. Dating by 40Ar/39Ar stepwise crushing has the added advantage that, during neutron irradiation to produce 39Ar from 39K, 38Ar and 37Ar are also produced from 38Cl and 40Ca, respectively. Simultaneous analysis of these argon isotopes permits constraining the chemistry of the argon source sampled during the experiment. This allows a distinction between different fluid or crystal lattice sources. Garnet from three samples of the HP metamorphic Cycladic Blueschist Unit on Syros, Greece was stepwise crushed to obtain fluid inclusion ages. Initial steps for all three experiments yield significant components of excess argon, which are interpreted to originate from grain boundary fluids and secondary fluid inclusions trails. During subsequent steps, age results stabilize to a plateau age. One garnet from North Syros yields an unusually old 80 Ma plateau age. However, isochrons indicate the presence of excess argon in the PFIs and isochron ages overlap with other isotopic constraints on the age of garnet growth during eclogite metamorphism (55-50 Ma) in the underlying metabasite. Garnet from two samples from the center of Syros yields younger ages overlapping with greenschist overprinting (25-30 Ma). Further studies will indicate whether these younger ages reflect a young garnet growth age or a young fluid flow event affecting older garnet crystals. The stepwise crushing and heating approach shows to be effective in dating fluid inclusions in natural mineral systems. As many metamorphic processes occur under influence or in the presence of fluids, this method should greatly expand our possibilities to date crustal processes.
NASA Astrophysics Data System (ADS)
Bennett, Barbara Ellen
The effects of calcination heating rate and ultimate calcination temperature upon calcined coke and subsequent graphitic material microstructures were studied for materials prepared from three different precursors. The pitch precursors used were Mitsubishi AR pitch (a synthetic, 100% mesophase pitch), the NMP-extracted portion of a raw coal, and the NMP-extracted fraction of a coal liquefaction residue obtained from an HTI pilot plant. These materials were all green-coked under identical conditions. Optical microscopy confirmed that the Mitsubishi coke was very anisotropic and the HTI coke was nearly as anisotropic. The coke produced from the direct coal extract was very isotropic. Crystalline development during calcination heating was verified by high-temperature x-ray diffraction. Experiments were performed to ascertain the effects of varying calcination heating rate and ultimate temperature. It was determined that calcined coke crystallite size increased with increasing temperature for all three materials but was found to be independent of heating rate. The graphene interplanar spacing decreased with increasing temperature for the isotropic NMP-extract material but increased with increasing temperature for the anisotropic materials---Mitsubishi and HTI cokes. Graphene interplanar spacing was also found to be independent of heating rate. Calcined coke real densities were, likewise, found to be independent of heating rate. The anisotropic cokes (Mitsubishi and HTI) exhibited increasing real density with increasing calcination temperature. The NMP-extract coke increased in density up to 1050°C and then suffered a dramatic reduction in real density when heated to 1250°C. This is indicative of puffing. Since there was no corresponding disruption in the crystalline structure, the puffing phenomena was determined to be intercrystalline rather than intracrystalline. After the calcined cokes were graphitized (under identical conditions), the microstructures were re-evaluated. The crystalline properties of the graphitic materials appeared to be independent of calcination conditions---both heating rate and final temperature---for all samples prepared from any given precursor. The calcination step did not influence the microstructure or graphitizability of any of the three materials. The crystallinity of a graphitic material appears to be dictated by the properties of the green coke and cannot be altered by manipulating calcination conditions.
NASA Astrophysics Data System (ADS)
Bezaeva, N. S.; Swanson-Hysell, N.; Tikoo, S.; Badyukov, D. D.; Kars, M. A. C.; Egli, R.; Chareev, D. A.; Fairchild, L. M.
2016-12-01
Understanding how shock waves generated during hypervelocity impacts affect rock magnetic properties is key for interpreting the paleomagnetic records of lunar rocks, meteorites, and cratered planetary surfaces. Laboratory simulations of impacts show that ultra-high shocks may induce substantial post-shock heating of the target material. At high pressures (>10 GPa), shock heating occurs in tandem with mechanical effects, such as grain fracturing and creation of crystallographic defects and dislocations within magnetic grains. This makes it difficult to conclude whether shock-induced changes in the rock magnetic properties of target materials are primarily associated with mechanical or thermal effects. Here we present novel experimental methods to discriminate between mechanical and thermal effects of shock on magnetic properties and illustrate it with two examples of spherically shocked terrestrial basalt and diabase [1], which were shocked to pressures of 10 to >160 GPa, and investigate possible explanations for the observed shock-induced magnetic hardening (i.e., increase in remanent coercivity Bcr). The methods consist of i) conducting extra heating experiments at temperatures resembling those experienced during high-pressure shock events on untreated equivalents of shocked rocks (with further comparison of Bcr of shocked and heated samples) and ii) quantitative comparison of high-resolution first-order reversal curve (FORC) diagrams (field step: 0.5-0.7 mT) for shocked, heated and untreated specimens. Using this approach, we demonstrated that the shock-induced coercivity hardening in our samples is predominantly due to solid-state, mechanical effects of shock rather than alteration associated with shock heating. Indeed, heating-induced changes in Bcr in the post-shock temperature range were minor. Visual inspection of FORC contours (in addition to detailed analyses) reveals a stretching of the FORC distribution of shocked sample towards higher coercivities, consistent with shock-induced hardening. However, shock does not alter the intrinsic shape of coercivity and the shape of FORC contours (apart from field scaling) while heating does, which is seen as a significant alteration of FORC contours. Reference: [1] Swanson-Hysell N. L. et al. 2014. G3 15:2039-2047.
NASA Astrophysics Data System (ADS)
Naik, Rudra, Dr.; Rama Narasihma, K., Dr.; Anikivi, Atmanand
2018-04-01
The present work reported here involves the experimental investigation and performance evaluation of wick assisted and axially square grooved heat pipes of outer diameter 8mm, inner diameter 4mm with a length of 150mm.The objective of this work is to design, fabricate and test the heat pipes with and without an axial square groove for horizontal and gravity assisted conditions. The performance of the heat pipes was measured in terms of thermal resistance and heat transfer coefficients. In the present investigation four different working fluids were chosen namely acetone, ethanol, methanol and distilled water. Experiments were conducted by varying the heat load from 2 W to 10 W for different fill charge ratios in the range of 25% to 75% of evaporator volume for wick assisted heat pipe and 8 W to 18 W for axially square grooved heat pipe. From the experiments, it was found that there is a steady increase in temperature with the increase in heat input. The overall heat transfer coefficient was found to increase with the increase heat load for wick assisted heat pipe. In case of axially square grooved heat pipe, an attempt was made to experiment the heat pipe in different orientations. The maximum heat transfer coefficient of 7000 W/m2 °C is found for Acetone at 180° orientation.
Investigation on the cold rolling and structuring of cold sprayed copper-coated steel sheets
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.; Senge, S.; Hirt, G.
2017-03-01
A current driving force of research is lightweight design. One of the approaches to reduce the weight of a component without causing an overall stiffness decrease is the use of multi-material components. One of the main challenges of this approach is the low bonding strength between different materials. Focusing on steel-aluminum multi-material components, thermally sprayed copper coatings can come into use as a bonding agent between steel sheets and high pressure die cast aluminum to improve the bonding strength. This paper presents a combination of cold gas spraying of copper coatings and their subsequent structuring by rolling as surface pretreatment method of the steel inserts. Therefore, flat rolling experiments are performed with samples in “as sprayed” and heat treated conditions to determine the influence of the rolling process on the bond strength and the formability of the coating. Furthermore, the influence of the rolling on the roughness and the hardness of the coating was examined. In the next step, the coated surface was structured, to create a surface topology suited for a form closure connection in a subsequent high-pressure die casting process. No cracks were observed after the cold rolling process with a thickness reduction of up to ε = 14 % for heat treated samples. Structuring of heat treated samples could be realized without delamination and cracking.
Ground Based Studies of Thermocapillary Flows in Levitated Drops
NASA Technical Reports Server (NTRS)
Sadhal, Satwindar Singh; Trinh, Eugene H.
1996-01-01
Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.
NASA Astrophysics Data System (ADS)
Valencia, A.; Hinojosa, L.
The incompressible laminar flow of air and heat transfer in a channel with a backward-facing step is studied for steady cases and for pulsatile inlet conditions. For steady flows the influence of the inlet velocity profile, the height of the step and the Reynolds number on the reattachment length is investigated. A parabolic entrance profile was used for pulsatile flow. It was found with amplitude of oscillation of one by Re=100 that the primary vortex breakdown through one pulsatile cycle. The wall shear rate in the separation zone varied markedly with pulsatile flows and the wall heat transfer remained relatively constant. The time-average pulsatile heat transfer at the walls was greater as with steady flow with the same mean Reynolds number. Zusammenfassung Es wird eine zweidimensionale numerische Untersuchung des instationären Wärmeübergangs und Druckverlustes im laminar durchströmten Spaltkanal mit einer plötzlichen Kanalerweiterung dargelegt und zwar für stationäre und periodische Geschwindigkeitsprofile am Eintritt des Kanals. Für stationäre Strömungen wurden die Form des Eintrittsprofils, die Reynoldszahl und die Kanalerweiterung variiert. Als Lösung der Navier/Stokes-und der Energiegleichungen mit periodischen Randbedingungen resultiert eine oszillierende Strömung, die das Aufplatzen des Primärwirbels in einer Schwingungsperiode zur Folge hat. Der Einfluß dieser Oszillation auf den Wärmeübergang und den Strömungsverlust wurde für die maximale Amplitude und für Re=100 eingehend untersucht.
Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection
NASA Astrophysics Data System (ADS)
Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.
2017-11-01
The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.
LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility
NASA Technical Reports Server (NTRS)
Robinson, G. A., Jr.
1979-01-01
The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.
Direct fabrication of /sup 238/PuO/sub 2/ fuel forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burney, G.A.; Congdon, J.W.
1982-07-01
The current process for the fabrication of /sup 238/PuO/sub 2/ heat sources includes precipitation of small particle plutonium oxalate crystals (4 to 6 ..mu..m diameter), a calcination to PuO/sub 2/, ball milling, cold pressing, granulation (60 to 125 ..mu..m), and granule sintering prior to hot pressing the fuel pellet. A new two-step direct-strike Pu(III) oxalate precipitation method which yields mainly large well-developed rosettes (50 to 100 ..mu..m diameter) has been demonstrated in the laboratory and in the plant. These large rosettes are formed by agglomeration of small (2 to 4 ..mu..m) crystals, and after calcining and sintering, were directly hotmore » pressed into fuel forms, thus eliminating several of the powder conditioning steps. Conditions for direct hot pressing of the large heat-treated rosettes were determined and a full-scale General Purpose Heat Source pellet was fabricated. The pellet had the desired granule-type microstructure to provide dimensional stability at high temperature. 27 figures.« less
NASA Astrophysics Data System (ADS)
Huo, Lin; Cheng, Xing-Hua; Yang, Tao
2015-05-01
This paper presents a study of aerothermoelastic response of a C/SiC panel, which is a primary structure for ceramic matrix composite shingle thermal protection system for hypersonic vehicles. It is based on a three dimensional thermal protection shingle panel on a quasi-waverider vehicle model. Firstly, the Thin Shock Layer and piston theory are adopted to compute the aerodynamic pressure of rigid body and deformable body, and a series of engineering methods are used to compute the aerodynamic heating. Then an aerothermoelastic loosely-coupled time marching strategy and self-adapting aerodynamic heating time step are developed to analyze the aerothermoelastic response of the panel, with an aerodynamic heating and temperature field coupling parameter selection method being adopted to increase the efficiency. Finally, a few revealing conclusions are reached by analyzing how coupling at different degrees influences the quasi-static aerothermoelastic response of the panel and how aerodynamic pressure of rigid body time step influences the quasi-static aerothermoelastic response on a glide trajectory.
Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell
NASA Astrophysics Data System (ADS)
Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.
The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.
A Simple Calorimetric Experiment that Highlights Aspects of Global Heat Retention and Global Warming
ERIC Educational Resources Information Center
Burley, Joel D.; Johnston, Harold S.
2007-01-01
In this laboratory experiment, general chemistry students measure the heating curves for three different systems: (i) 500 g of room-temperature water heated by a small desk lamp, (ii) 500 g of an ice-water mixture warmed by conduction with room-temperature surroundings, and (iii) 500 g of an ice-water mixture heated by a small desk lamp and by…
NASA Astrophysics Data System (ADS)
Jiansen, He; Xingyu, Zhu; Yajie, Chen; Chadi, Salem; Michael, Stevens; Hui, Li; Wenzhi, Ruan; Lei, Zhang; Chuanyi, Tu
2018-04-01
The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.
Laine, R.M.; Hirschon, A.S.; Wilson, R.B. Jr.
1987-12-29
A process is described for the preparation of a multimetallic catalyst for the hydrodenitrogenation of an organic feedstock, which process comprises: (a) forming a precatalyst itself comprising: (1) a first metal compound selected from compounds of nickel, cobalt or mixtures thereof; (2) a second metal compound selected from compounds of chromium, molybdenum, tungsten, or mixtures thereof; and (3) an inorganic support; (b) heating the precatalyst of step (a) with a source of sulfide in a first non-oxidizing gas at a temperature and for a time effective to presulfide the precatalyst; (c) adding in a second non-oxidizing gas to the sulfided precatalyst of step (b) an organometallic transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the metal components; and (d) optionally heating the chemically combined catalyst of step (b) in vacuum at a temperature and for a time effective to remove residual volatile organic materials. 12 figs.
Laser-induced Self-organizing Microstructures on Steel for Joining with Polymers
NASA Astrophysics Data System (ADS)
van der Straeten, Kira; Burkhardt, Irmela; Olowinsky, Alexander; Gillner, Arnold
The combination of different materials such as thermoplastic composites and metals is an important way to improve lightweight construction. As direct connections between these materials fail due to their physical and chemical properties, other joining techniques are required. A new joining approach besides fastening and adhesive joining is a laser-based two-step process. Within the first step the metal surface is modified by laser-microstructuring. In order to enlarge the boundary surface and create undercuts, random self-organizing microstructures are generated on stainless steel substrates. In a second process step both joining partners, metal and composite, are clamped together, the steel surface is heated up with laser radiation and through heat conduction the thermoplastic matrix is melted and flows into the structures. After cooling-down a firm joint between both materials is created. The presented work shows the influence of different laser parameters on the generation of the microstructures. The joint strength is investigated through tensile shear strength tests.
Investigation of Sensible and Latent Heat Storage System using various HTF
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Manoj, A.; Keerthan, J. S.; Stallan, Joseph Paul; Amithkishore, P.
2017-05-01
The objective of the work is investigating the latent heat storage system by varying heat transfer fluid (HTF). In this experiment, the effect of using different heat transfer fluids on the combined system is studied while using a low melting phase change material (PCM) i.e., paraffin wax. The heat transfer fluids chosen are water (low boiling fluid) and Therminol-66 (High boiling fluid). A comparison is made between the heat transfers by employing both the Heat transfer fluids. In the beginning, water is made to flow as the HTF and the charging process is undertaken followed by the discharging process by utilizing the different encapsulation materials namely, copper, aluminium and brass. These processes are then repeated for therminol-66 as HTF. At the end of the experiment it was concluded that even though therminol-66 enhances the latent heat storage capacity, water offers a higher sensible heat storage capacity, making it a better HTF for low melting PCM. Similar to above said process the experiments can be conducted for high and medium range melting point PCM with variation of HTF.
Laser heating of aqueous samples on a micro-optical-electro-mechanical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Neil Reginald; Kennedy, Ian
2013-12-17
A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channelmore » wherein the carrier fluid is not appreciably heated by the laser beam.« less
NASA Astrophysics Data System (ADS)
Zahid, M. Z. A. Mohd; Muhamad, K.
2017-09-01
The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.
One step sintering of homogenized bauxite raw material and kinetic study
NASA Astrophysics Data System (ADS)
Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying
2016-10-01
A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.
One-step method for the production of nanofluids
Kostic, Milivoje [Sycamore, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John [Downers Grove, IL; Choi, Stephen U. S. [Naperville, IL
2011-08-16
A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.
Carbon activation process for increased surface accessibility in electrochemical capacitors
Doughty, Daniel H.; Eisenmann, Erhard T.
2001-01-01
A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.
NASA Technical Reports Server (NTRS)
Anton, Claire E. (Inventor)
1993-01-01
Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.
NASA Astrophysics Data System (ADS)
Umer, Asim; Naveed, Shahid; Ramzan, Naveed
2016-10-01
Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).
Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.
Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H
2011-07-01
In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.
NASA Astrophysics Data System (ADS)
Herrero-Bervera, Emilio; Krasa, David; Van Kranendonk, Martin J.
2016-09-01
We have conducted a whole-rock type magnetic and absolute paleointensity determination of the red dacite of the Duffer Formation from the Pilbara Craton, Australia. The age of the dated rock unit is 3467 ± 5 Ma (95% confidence). Vector analyses results of the step-wise alternating field demagnetization (NRM up to 100 mT) and thermal demagnetization (from NRM up to 650 °C) yield three components of magnetization. Curie point determinations indicate three characteristic temperatures, one at 150-200 °C, a second one at ∼450 °C and a third one at ∼580 °C. Magnetic grain-size experiments were performed on small specimens with a variable field translation balance (VFTB). The coercivity of remanence (Hcr) suggests that the NRM is carried by low-coercivity grains that are associated with a magnetite fraction as is shown by the high-temperature component with blocking temperatures above 450 °C and up to at least 580 °C. The ratios of the hysteresis parameters plotted as a modified Day diagram show that most grain sizes are scattered within the Single Domain (SD) and the Superparamagnetic and Single Domain SP-SD domain ranges. In addition to the rock magnetic experiments we have performed absolute paleointensity experiments on the samples using the modified Thellier-Coe double heating method to determine the paleointensities. Partial-TRM (p-TRM) checks were performed systematically to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50 °C between room temperature and 590 °C. The paleointensity determinations were obtained from the slope of Arai diagrams. Our paleointensity results indicate that the paleofield obtained was ∼6.4 ± 0.68 (N = 11) micro-Teslas with a Virtual Dipole Moment (VDM) of 1.51 ± 0.81 × 1022 Am2, from a medium-to high-temperature component ranging from 300 to 590 °C that has been interpreted to be the oldest magnetization yet recorded in paleomagnetic studies of the Duffer Formation. The absolute paleointensity is relatively low and we interpret this low-paleofield bias a result of a thermochemical remanent magnetization (TCRM) process that indicates a possible underestimate of the paleofield by a factor of four for the red dacite of the Duffer Fm.
Numerical analysis of transient laminar forced convection of nanofluids in circular ducts
NASA Astrophysics Data System (ADS)
Sert, İsmail Ozan; Sezer-Uzol, Nilay; Kakaç, Sadık
2013-10-01
In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analysis, Al2O3/water nanofluid is assumed as a homogenous single-phase fluid. For the effective thermal conductivity of nanofluids, Hamilton-Crosser model is used together with a model for Brownian motion in the analysis which takes the effects of temperature and the particle diameter into account. Temperature distributions across the tube for a step jump of wall temperature and also wall heat flux are obtained for various times during the transient calculations at a given location for a constant value of Peclet number and a particle diameter. Variations of thermal conductivity in turn, heat transfer enhancement is obtained at various times as a function of nanoparticle volume fractions, at a given nanoparticle diameter and Peclet number. The results are given under transient and steady-state conditions; steady-state conditions are obtained at larger times and enhancements are found by comparison to the base fluid heat transfer coefficient under the same conditions.
Microgravity ignition experiment
NASA Technical Reports Server (NTRS)
Motevalli, Vahid; Elliott, William; Garrant, Keith
1992-01-01
The purpose of this project is to develop a flight ready apparatus of the microgravity ignition experiment for the GASCan 2 program. This involved redesigning, testing, and making final modifications to the existing apparatus. The microgravity ignition experiment is intended to test the effect of microgravity on the time to ignition of a sample of alpha-cellulose paper. An infrared heat lamp is used to heat the paper sample within a sealed canister. The interior of the canister was redesigned to increase stability and minimize conductive heat transfer to the sample. This design was fabricated and tested and a heat transfer model of the paper sample was developed.
Steps towards understanding deep atmospheric heating in flares
NASA Technical Reports Server (NTRS)
Mauas, Pablo J. D.; Machado, Marcos E.
1986-01-01
Different aspects of the heating of the deep solar atmosphere during flares, including temperature minimum enhancements and white light emission, are discussed. The proper treatment of H(-) radiative losses is discussed, and compared with previous studies, as well as a quantitative analysis of the ionizing effect of nonthermal particles and ultraviolet radiation. It is concluded that temperature minimum heating may be a natural consequence of the global radiation transport in flares. The implications of these results are discussed within the context of homogeneous and inhomogeneous models of the solar atmosphere.
Boeing CST-100 Starliner Base Heat Shield Installation
2018-03-15
On March 15, the base heat shield for Boeing’s CST-100 Starliner was freshly installed on the bottom of Spacecraft 1 in the High Bay of the Commercial Crew and Cargo Processing Facility at Kennedy Space Center. This is the spacecraft that will fly during the Pad Abort Test. The next step involves installation of the back shells and forward heat shield, and then the crew module will be mated to the service module for a fit check. Finally, the vehicle will head out to White Sands Missile Range in New Mexico for testing.
1994-01-01
re- plexes. This feature is commonly observed when the moved by room temperature evaporation under par- heating rate is different from previous cooling...It is apparent from fig. 1 that some shallow teflon dishes. Prior to use, the acetonitrile overshoot (an apparent endotherm ) is observed just was...or tial vacuum ( - 20 mm) and the final preparation heating rates that the material has experienced. Con- step consisted of heating the samples to
2013-01-01
Background The freshwater planarian Schmidtea mediterranea has emerged as a powerful model for studies of regenerative, stem cell, and germ cell biology. Whole-mount in situ hybridization (WISH) and whole-mount fluorescent in situ hybridization (FISH) are critical methods for determining gene expression patterns in planarians. While expression patterns for a number of genes have been elucidated using established protocols, determining the expression patterns for particularly low-abundance transcripts remains a challenge. Results We show here that a short bleaching step in formamide dramatically enhances signal intensity of WISH and FISH. To further improve signal sensitivity we optimized blocking conditions for multiple anti-hapten antibodies, developed a copper sulfate quenching step that virtually eliminates autofluorescence, and enhanced signal intensity through iterative rounds of tyramide signal amplification. For FISH on regenerating planarians, we employed a heat-induced antigen retrieval step that provides a better balance between permeabilization of mature tissues and preservation of regenerating tissues. We also show that azide most effectively quenches peroxidase activity between rounds of development for multicolor FISH experiments. Finally, we apply these modifications to elucidate the expression patterns of a few low-abundance transcripts. Conclusion The modifications we present here provide significant improvements in signal intensity and signal sensitivity for WISH and FISH in planarians. Additionally, these modifications might be of widespread utility for whole-mount FISH in other model organisms. PMID:23497040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos Mavrikakis; James A. Dumesic; Rahul P. Nabar
2006-09-29
Work continued on the development of a microkinetic model of Fischer-Tropsch synthesis (FTS) on supported and unsupported Fe catalysts. The following aspects of the FT mechanism on unsupported iron catalysts were investigated on during this third year: (1) the collection of rate data in a Berty CSTR reactor based on sequential design of experiments; (2) CO adsorption and CO-TPD for obtaining the heat of adsorption of CO on polycrystalline iron; and (3) isothermal hydrogenation (IH) after Fischer Tropsch reaction to identify and quantify surface carbonaceous species. Rates of C{sub 2+} formation on unsupported iron catalysts at 220 C and 20more » atm correlated well to a Langmuir-Hinshelwood type expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be rate-determining steps. From desorption of molecularly adsorbed CO at different temperatures the heat of adsorption of CO on polycrystalline iron was determined to be 100 kJ/mol. Amounts and types of carbonaceous species formed after FT reaction for 5-10 minutes at 150, 175, 200 and 285 C vary significantly with temperature. Mr. Brian Critchfield completed his M.S. thesis work on a statistically designed study of the kinetics of FTS on 20% Fe/alumina. Preparation of a paper describing this work is in progress. Results of these studies were reported at the Annual Meeting of the Western States Catalysis and at the San Francisco AIChE meeting. In the coming period, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on unsupported Fe catalysts with/without K and Pt promoters by SSITKA method. This study will help us to (1) understand effects of promoter and support on elementary kinetic parameters and (2) build a microkinetics model for FTS on iron. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on models of defected Fe surfaces, most significantly the stepped Fe(211) surface. Binding Energies (BE's), preferred adsorption sites and geometries of all the FTS relevant stable species and intermediates were evaluated. Each elementary step of our reaction model was fully characterized with respect to its thermochemistry and comparisons between the stepped Fe(211) facet and the most-stable Fe(110) facet were established. In most cases the BE's on Fe(211) reflected the trends observed earlier on Fe(110), yet there were significant variations imposed on the underlying trends. Vibrational frequencies were evaluated for the preferred adsorption configurations of each species with the aim of evaluating the entropy-changes and preexponential factors for each elementary step. Kinetic studies were performed for the early steps of FTS (up to CH{sub 4} formation) and CO dissociation. This involved evaluation of the Minimum Energy Pathway (MEP) and activation energy barrier for the steps involved. We concluded that Fe(211) would allow for far more facile CO dissociation in comparison to other Fe catalysts studied so far, but the other FTS steps studied remained mostly unchanged.« less
Is the Water Heating Curve as Described?
ERIC Educational Resources Information Center
Riveros, H. G.; Oliva, A. I.
2008-01-01
We analysed the heating curve of water which is described in textbooks. An experiment combined with some simple heat transfer calculations is discussed. The theoretical behaviour can be altered by changing the conditions under which the experiment is modelled. By identifying and controlling the different parameters involved during the heating…
The stepping behavior analysis of pedestrians from different age groups via a single-file experiment
NASA Astrophysics Data System (ADS)
Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang
2018-03-01
The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.
NASA Astrophysics Data System (ADS)
Souma, Kazuyoshi; Tanaka, Kenji; Suetsugi, Tadashi; Sunada, Kengo; Tsuboki, Kazuhisa; Shinoda, Taro; Wang, Yuqing; Sakakibara, Atsushi; Hasegawa, Koichi; Moteki, Qoosaku; Nakakita, Eiichi
2013-10-01
5 August 2008, a localized heavy rainfall event caused a rapid increase in drainpipe discharge, which killed five people working in a drainpipe near Zoshigaya, Tokyo. This study compared the effects of artificial land cover and anthropogenic heat on this localized heavy rainfall event based on three ensemble experiments using a cloud-resolving model that includes realistic urban features. The first experiment CTRL (control) considered realistic land cover and urban features, including artificial land cover, anthropogenic heat, and urban geometry. In the second experiment NOAH (no anthropogenic heat), anthropogenic heat was ignored. In the third experiment NOLC (no land cover), urban heating from artificial land cover was reduced by keeping the urban geometry but with roofs, walls, and roads of artificial land cover replaced by shallow water. The results indicated that both anthropogenic heat and artificial land cover increased the amount of precipitation and that the effect of artificial land cover was larger than that of anthropogenic heat. However, in the middle stage of the precipitation event, the difference between the two effects became small. Weak surface heating in NOAH and NOLC reduced the near-surface air temperature and weakened the convergence of horizontal wind and updraft over the urban areas, resulting in a reduced rainfall amount compared with that in CTRL.
Development of a PDXP platform on NIF
NASA Astrophysics Data System (ADS)
Whitley, Heather; Schneider, Marilyn; Garbett, Warren; Pino, Jesse; Shepherd, Ronnie; Brown, Colin; Castor, John; Scott, Howard; Ellison, C. Leland; Benedict, Lorin; Sio, Hong; Lahmann, Brandon; Petrasso, Richard; Graziani, Frank
2016-10-01
Over the past several years, we have conducted theoretical investigations of electron-ion coupling and electronic transport in plasmas. In the regime of weakly coupled plasmas, we have identified models that we believe describe the physics well, but experimental measurements are still needed to validate the models. We are developing spectroscopic experiments to study electron-ion equilibration and electron heat transport using a polar direct drive exploding pusher (PDXP) platform at the National Ignition Facility (NIF). Initial measurements are focused on characterizing the laser-target coupling, symmetry of the PDXP implosion, and overall neutron and x-ray signals. We present images from the first set of shots and make comparisons with simulations from ARES and discuss next steps in the platform development. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697489.
Genomic Selection Improves Heat Tolerance in Dairy Cattle
Garner, J. B.; Douglas, M. L.; Williams, S. R. O; Wales, W. J.; Marett, L. C.; Nguyen, T. T. T.; Reich, C. M.; Hayes, B. J.
2016-01-01
Dairy products are a key source of valuable proteins and fats for many millions of people worldwide. Dairy cattle are highly susceptible to heat-stress induced decline in milk production, and as the frequency and duration of heat-stress events increases, the long term security of nutrition from dairy products is threatened. Identification of dairy cattle more tolerant of heat stress conditions would be an important progression towards breeding better adapted dairy herds to future climates. Breeding for heat tolerance could be accelerated with genomic selection, using genome wide DNA markers that predict tolerance to heat stress. Here we demonstrate the value of genomic predictions for heat tolerance in cohorts of Holstein cows predicted to be heat tolerant and heat susceptible using controlled-climate chambers simulating a moderate heatwave event. Not only was the heat challenge stimulated decline in milk production less in cows genomically predicted to be heat-tolerant, physiological indicators such as rectal and intra-vaginal temperatures had reduced increases over the 4 day heat challenge. This demonstrates that genomic selection for heat tolerance in dairy cattle is a step towards securing a valuable source of nutrition and improving animal welfare facing a future with predicted increases in heat stress events. PMID:27682591
Future heat waves and surface ozone
NASA Astrophysics Data System (ADS)
Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica
2018-06-01
A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).
Scaling Study of Reconnection Heating in Torus Plasma Merging Experiments
NASA Astrophysics Data System (ADS)
Ono, Yasushi; Akimitsu, Moe; Sawada, Asuka; Cao, Qinghong; Koike, Hideya; Hatano, Hironori; Kaneda, Taishi; Tanabe, Hiroshi
2017-10-01
We have been investigating toroidal plasma merging and reconnection for high-power heating of spherical tokamak (ST) and field-reversed configuration (FRC), using TS-3 (ST, FRC: R =0.2m, 1985-), TS-4 (ST, FRC: R =0.5m, 2000-), UTST (ST: R =0.45m, 2008-) and MAST (ST: R =0.9m, 2000-) devices. The series of merging experiments made clear the promising scaling and characteristics of reconnection heating: (i) its ion heating energy that scales with square of the reconnecting magnetic field Brec, (ii) its energy loss lower than 10%, (iii) its ion heating energy (in the downstream) 10 time larger than its electron heating energy (at around X-point) and (iv) low dependence of ion heating on the guide (toroidal) field Bg. The Brec2-scalingwas obtained when the current sheet was compressed to the order of ion gyrodadius. When the sheet was insufficiently compressed, the measured ion temperature was lower than the scaling prediction. Based on this scaling, we realized significant ion heating up to 1.2keV in MAST after 2D elucidation of ion heating up to 250eV in TS-3 [3,4]. This promising scaling leads us to new high Brec reconnection heating experiments for future direct access to burning plasma: TS-U (2017-) in Univ. Tokyo and ST-40 in Tokamak Energy Inc. (2017-). This presentation reviews major progresses in those toroidal plasma merging experiments for physics and fusion applications of magnetic reconnection.
ERIC Educational Resources Information Center
AAI Corp., Baltimore, MD.
In the middle of January 1974, AAI Corporation received a contract to conduct a solar heating proof-of-concept experiment (POCE) for a public school building. On March 1, 1974, the experiment began as Timonium Elementary School, in Maryland, became the first school in the United States to be heated by solar energy. In this brief period, the…
A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment
NASA Technical Reports Server (NTRS)
Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.
1992-01-01
A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.
NASA Astrophysics Data System (ADS)
Hosseinian, A.; Meghdadi Isfahani, A. H.
2018-04-01
In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.
Calculation tool for transported geothermal energy using two-step absorption process
Kyle Gluesenkamp
2016-02-01
This spreadsheet allows the user to calculate parameters relevant to techno-economic performance of a two-step absorption process to transport low temperature geothermal heat some distance (1-20 miles) for use in building air conditioning. The parameters included are (1) energy density of aqueous LiBr and LiCl solutions, (2) transportation cost of trucking solution, and (3) equipment cost for the required chillers and cooling towers in the two-step absorption approach. More information is available in the included public report: "A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings"
"Cooking the sample": radiofrequency induced heating during solid-state NMR experiments.
d'Espinose de Lacaillerie, Jean-Baptiste; Jarry, Benjamin; Pascui, Ovidiu; Reichert, Detlef
2005-09-01
Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time-temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as "microwave" heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oterkus, Selda; Madenci, Erdogan, E-mail: madenci@email.arizona.edu; Agwai, Abigail
This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.
Production of glass or glass-ceramic to metal seals with the application of pressure
Kelly, Michael D.; Kramer, Daniel P.
1987-11-10
In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.
A conjugate heat transfer procedure for gas turbine blades.
Croce, G
2001-05-01
A conjugate heat transfer procedure, allowing for the use of different solvers on the solid and fluid domain(s), is presented. Information exchange between solid and fluid solution is limited to boundary condition values, and this exchange is carried out at any pseudo-time step. Global convergence rate of the procedure is, thus, of the same order of magnitude of stand-alone computations.
Apparatus for continuous feed material melting
Surma, Jeffrey E.; Perez, Jr., Joseph M.
1998-01-01
The apparatus of the present invention is a melter housing having a pretreat chamber heated with a feed material heater that is partially isolated from a melter chamber. The method of the present invention has the steps of introducing feed material into a pretreat chamber and heating the feed material to a softening temperature of the feed material, and passing the pretreated feed material to a melter chamber.
Production of glass or glass-ceramic to metal seals with the application of pressure
Kelly, M.D.; Kramer, D.P.
1985-01-04
In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell Feder and Mahmoud Z. Yousef
Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken frommore » the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later. __________________________________________________« less
Tank Pressure Control Experiment: Thermal Phenomena in Microgravity
NASA Technical Reports Server (NTRS)
Hasan, Mohammad M.; Lin, Chin S.; Knoll, Richard H.; Bentz, Michael D.
1996-01-01
The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83% by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/sq m). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 C, respectively. The boiling process during the entire heating period, as well as the jet-induced mixing process for the first 2 min of the mixing period, was also recorded on video. The unique features of the experimental results are the sustainability of high liquid superheats for long periods and the occurrence of explosive boiling at low heat fluxes (0.86 to 1.1 kW/sq m). For a heat flux of 0.97 kW/sq m, a wall superheat of 17.9 C was attained in 10 min of heating. This superheat was followed by an explosive boiling accompanied by a pressure spike of about 38% of the tank pressure at the inception of boiling. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Steady nucleate boiling continued after the explosive boiling. The jet-induced fluid mixing results were obtained for jet Reynolds numbers of 1900 to 8000 and Weber numbers of 0.2 to 6.5. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number.
High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.
A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less
Shrinking water's no man's land by lifting its low-temperature boundary
NASA Astrophysics Data System (ADS)
Seidl, Markus; Fayter, Alice; Stern, Josef N.; Zifferer, Gerhard; Loerting, Thomas
2015-04-01
Investigation of the properties and phase behavior of noncrystalline water is hampered by rapid crystallization in the so-called "no man's land." We here show that it is possible to shrink the no man's land by lifting its low-temperature boundary, i.e., the pressure-dependent crystallization temperature Tx(p ) . In particular, we investigate two types of high-density amorphous ice (HDA) in the pressure range of 0.10 -0.50 GPa and show that the commonly studied unannealed state, uHDA, is up to 11 K less stable against crystallization than a pressure-annealed state called eHDA. We interpret this finding based on our previously established microscopic picture of uHDA and eHDA, respectively [M. Seidl et al., Phys. Rev. B 88, 174105 (2013), 10.1103/PhysRevB.88.174105]. In this picture the glassy uHDA matrix contains ice Ih-like nanocrystals, which simply grow upon heating uHDA at pressures ≤0.20 GPa . By contrast, they experience a polymorphic phase transition followed by subsequent crystal growth at higher pressures. In comparison, upon heating purely glassy eHDA, ice nuclei of a critical size have to form in the first step of crystallization, resulting in a lifted Tx(p ) . Accordingly, utilizing eHDA enables the study of amorphous ice at significantly higher temperatures at which we regard it to be in the ultraviscous liquid state. This will boost experiments aiming at investigating the proposed liquid-liquid phase transition.
High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil
Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; ...
2016-04-07
A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less
Mechanisms of Ocean Heat Uptake
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi
An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.
Students' Design of Experiments: An Inquiry Module on the Conduction of Heat
ERIC Educational Resources Information Center
Hatzikraniotis, E.; Kallery, M.; Molohidis, A.; Psillos, D.
2010-01-01
This article examines secondary students' design of experiments after engagement in an innovative and inquiry-oriented module on heat transfer. The module consists of an integration of hands-on experiments, simulated experiments and microscopic model simulations, includes a structured series of guided investigative tasks and was implemented for a…
Study on characteristics of printed circuit board liberation and its crushed products.
Quan, Cui; Li, Aimin; Gao, Ningbo
2012-11-01
Recycling printed circuit board waste (PCBW) waste is a hot issue of environmental protection and resource recycling. Mechanical and thermo-chemical methods are two traditional recycling processes for PCBW. In the present research, a two-step crushing process combined with a coarse-crushing step and a fine-pulverizing step was adopted, and then the crushed products were classified into seven different fractions with a standard sieve. The liberation situation and particle shape in different size fractions were observed. Properties of different size fractions, such as heating value, thermogravimetric, proximate, ultimate and chemical analysis were determined. The Rosin-Rammler model was applied to analyze the particle size distribution of crushed material. The results indicated that complete liberation of metals from the PCBW was achieved at a size less than 0.59 mm, but the nonmetal particle in the smaller-than-0.15 mm fraction is liable to aggregate. Copper was the most prominent metal in PCBW and mainly enriched in the 0.42-0.25 mm particle size. The Rosin-Rammler equation adequately fit particle size distribution data of crushed PCBW with a correlation coefficient of 0.9810. The results of heating value and proximate analysis revealed that the PCBW had a low heating value and high ash content. The combustion and pyrolysis process of PCBW was different and there was an obvious oxidation peak of Cu in combustion runs.
Heat transfer from nanoparticles: a corresponding state analysis.
Merabia, Samy; Shenogin, Sergei; Joly, Laurent; Keblinski, Pawel; Barrat, Jean-Louis
2009-09-08
In this contribution, we study situations in which nanoparticles in a fluid are strongly heated, generating high heat fluxes. This situation is relevant to experiments in which a fluid is locally heated by using selective absorption of radiation by solid particles. We first study this situation for different types of molecular interactions, using models for gold particles suspended in octane and in water. As already reported in experiments, very high heat fluxes and temperature elevations (leading eventually to particle destruction) can be observed in such situations. We show that a very simple modeling based on Lennard-Jones (LJ) interactions captures the essential features of such experiments and that the results for various liquids can be mapped onto the LJ case, provided a physically justified (corresponding state) choice of parameters is made. Physically, the possibility of sustaining very high heat fluxes is related to the strong curvature of the interface that inhibits the formation of an insulating vapor film.
NASA Technical Reports Server (NTRS)
Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.
1992-01-01
The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a n-Heptane Phase Change Material (PCM) canister. A total of 388 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe of axially grooved stainless steel heat pipe diode was demonstrated before the EDS batteries lost power. The inability of the HEPP's radiator to cool below 190 K in flight prevented freezing of the PCM and the opportunity to conduct transport tests with the heat pipes. Post flight tests showed that the heat pipes and the PCM are still functioning. This paper presents a summary of the flight data analysis for the HEPP and its related support systems. Pre and post-flight thermal vacuum tests results are presented for the HEPP thermal control system along with individual heat pipe performance and PCM behavior. Appropriate SIG related systems data will also be included along with a 'lessons learned' summary.
How Efficient is a Laboratory Burner in Heating Water?
ERIC Educational Resources Information Center
Jansen, Michael P.
1997-01-01
Describes an experiment in which chemistry students determine the efficiency of a laboratory burner used to heat water. The reaction is assumed to be the complete combustion of methane, CH4. The experiment is appropriate for secondary school chemistry students familiar with heats of reaction and simple calorimetry. Contains pre-laboratory and…
In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil
NASA Astrophysics Data System (ADS)
Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.
2017-03-01
We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
Graphene-like carbon synthesized from popcorn flakes
NASA Astrophysics Data System (ADS)
Mendoza, D.; Flores, C. B.; Berrú, R. Y. Sato
2015-01-01
The synthesis of graphene-like carbon using popcorn kernels as a renewable resource is presented. In a first step popcorn kernels were heated to produce popcorn flakes with a spongy appearance consisting of a polygonal cellular structure. In a second step, the flakes were treated at high temperature in an inert atmosphere to produce carbonization. Raman spectroscopy shows graphene-like structure with a high degree of disorder.
Making the Most of Your Energy Dollars in Home Heating & Cooling. NBS Consumer Information Series 8.
ERIC Educational Resources Information Center
Jacobs, Madeleine; Petersen, Stephen R.
This pamphlet is a homeowner's guide to home weatherization. It provides a step-by-step energy audit that anyone can use to help determine the insulation needs of their home. This is not a "how-to-do-it" booklet, but is a guide by which homeowners can determine the best combination of improvements for their house, climate, and fuel…
1985-01-01
envisionment) produced by GIZMO . ? In the envisionment, I s indicates the set of quantity—conditioned individuals that exists during a situa- tion...envisionment step by step . In START, the initial state, GIZMO deduces that heat flow occurs, since there is assumed to be a temperature difference between the...stov e GIZMO implements the basic operations of qualitative process theory, including an envisioner for makin g predictions and a program for
Modeling of N2 and O optical emissions for ionosphere HF powerful heating experiments
NASA Astrophysics Data System (ADS)
Sergienko, T.; Gustavsson, B.
Analyses of experiments of F region ionosphere modification by HF powerful radio waves show that optical observations are very useful tools for diagnosing of the interaction of the probing radio wave with the ionospheric plasma Hitherto the emissions usually measured in the heating experiment have been the 630 0 nm and the 557 7 nm lines of atomic oxygen Other emissions for instance O 844 8 nm and N2 427 8 nm have been measured episodically in only a few experiments although the very rich optical spectrum of molecular nitrogen potentially involves important information about ionospheric plasma in the heated region This study addresses the modeling of optical emissions from the O and the N2 triplet states first positive second positive Vegard-Kaplan infrared afterglow and Wu-Benesch band systems excited under a condition of the ionosphere heating experiment The auroral triplet state population distribution model was modified for the ionosphere heating conditions by using the different electron distribution functions suggested by Mishin et al 2000 2003 and Gustavsson at al 2004 2005 Modeling results are discussed from the point of view of efficiency of measurements of the N2 emissions in future experiments
NASA Astrophysics Data System (ADS)
Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo
2013-05-01
Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.