Science.gov

Sample records for step index fiber

  1. Baseband frequency response of a graded-index fiber excited by a step-index fiber.

    PubMed

    Horiguchi, T; Tanifuji, T; Tokuda, M

    1980-08-01

    Input modal power distribution and baseband frequency response of a graded-index fiber have been investigated theoretically and experimentally, when the fiber was excited by a step-index fiber. It is found that the bandwidth of the graded-index fiber is measured with good reproducibility and accuracy by using the step-index fiber as an exciter. An appropriate choice of step-index fiber parameters is made with respect to the test graded-index fiber.

  2. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    PubMed

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  3. Rayleigh backscattering from the fundamental mode in step-index multimode optical fibers.

    PubMed

    Bisyarin, M A; Kotov, O I; Hartog, A H; Liokumovich, L B; Ushakov, N A

    2017-01-10

    The Rayleigh backscattering produced by an incident fundamental mode in a multimode step-index optical fiber was analyzed using a recently developed diffraction technique. The complete set of backward propagating modes, both radial and azimuthal, was determined and regarded. For this type of fiber, normalized mode functions were constructed in an explicit form, thus providing a unified power scale to characterize the relationships between various excited modes. The dependencies of the mode excitation efficiencies on the technical parameters of the fiber and the frequency of the launched radiation were studied. A comparison of the mode excitation efficiencies was performed with those in the fiber with quadratic refractive index profiles.

  4. UV-transmitting step-index fluorophosphate glass fiber fabricated by the crucible technique

    NASA Astrophysics Data System (ADS)

    Galleani, Gustavo; Ledemi, Yannick; de Lima Filho, Elton Soares; Morency, Steeve; Delaizir, Gaëlle; Chenu, Sébastien; Duclere, Jean René; Messaddeq, Younes

    2017-02-01

    In this study, we report on the fabrication process of highly pure step-index fluorophosphate glass optical fibers by a modified crucible technique. High-purity fluorophosphate glasses based on 10 mol% of barium metaphosphate and 90 mol% of metal fluorides (AlF3sbnd CaF2sbnd MgF2sbnd SrF2) have been studied in order to produce step-index optical fibers transmitting in the deep-ultraviolet (DUV) region. The characteristic temperatures, viscosity around softening temperature and optical transmission in the UV-visible region of the prepared bulk glasses were characterized in a first step. The selected glass compositions were then used to prepare core-cladding optical preforms by using a modified built-in casting technique. While uncontrolled crystallization of the fiber was observed during the preform stretching by using the conventional method, we successfully obtained crystal-free fiber by using a modified crucible technique. In this alternative approach, the produced core-cladding preforms were inserted into a home-designed fused silica crucible assembly and heated at 643 °C to allow glass flowing throughout the crucible, preventing the formation of crystals. Single index fluorophosphate glass fibers were fabricated following the same process as well. The optical attenuation at 244 nm and in the interval 350-1750 nm was measured on both single index and step-index optical fibers. Their potential for using in DUV applications is discussed.

  5. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.

    PubMed

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio; Markos, Christos; Nielsen, Kristian; Rasmussen, Henrik K; Bang, Ole

    2016-01-25

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured POFs.

  6. Statistical analysis of intrinsic and extrinsic coupling losses for step-index polymer optical fibers.

    PubMed

    Werzinger, Stefan; Bunge, Christian-Alexander

    2015-08-24

    The intrinsic and extrinsic coupling losses of step-index polymer optical fibers are statistically examined by Monte Carlo simulations. In contrast to most existing models that linearly scale individual losses, a comprehensive analytic coupling loss model is used that also considers the interdependencies between mismatches in numerical aperture and core diameter, as well as radial and longitudinal offsets. As a typical example, the coupling losses of A4a.2 step-index multimode fibers are analyzed for an equilibrium mode distribution. The results show considerably less conservative coupling loss estimations than with traditional models, improving link power budgeting.

  7. Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers.

    PubMed

    Strutynski, Clement; Froidevaux, Paul; Désévédavy, Frédéric; Jules, Jean-Charles; Gadret, Grégory; Bendahmane, Abdelkrim; Tarnowski, Karol; Kibler, Bertrand; Smektala, Frédéric

    2017-01-15

    We report numerical and experimental demonstrations of flexible group-velocity dispersion regimes in step-index tellurite fibers by fine control of the fiber core diameter. Our simple fiber design allowed us to explore various nonlinear propagation regimes beyond 2 μm, which involved careful control of four-wave mixing processes. Combined with the recent development of 2 μm fiber lasers, we present an easy way to tailor supercontinuum generation and related coherence features in the high-demand 1.5-3.5 μm spectral region.

  8. Plasmon resonances on gold nanowires directly drawn in a step-index fiber.

    PubMed

    Tyagi, H K; Lee, H W; Uebel, P; Schmidt, M A; Joly, N; Scharrer, M; Russell, P St J

    2010-08-01

    We report the successful production of high-quality gold wires, with diameters down to 260nm, by direct fiber drawing from a gold-filled fused-silica cane. The stack-and-draw technique makes it straightforward to incorporate a conventional step-index core, adjacent to the gold wire, in the cane. In the drawn fiber, strong coupling of light from the glass core to SPP resonances on the gold wire is observed at specific well-defined wavelengths. Such embedded wires have many potential applications, for example, as nanoscale electrodes, in nonlinear optical plasmonics, and as near-field scanning optical microscope tips.

  9. Efficiency of various modulation types in Step Index Polymer Optical Fiber

    NASA Astrophysics Data System (ADS)

    Siuzdak, Jerzy; Stepniak, Grzegorz

    2014-11-01

    Efficiency of PAM, CAP/QAM and OFDM/DMT modulation for Step Index Polymer Optical Fiber channel is analyzed theoretically. It is shown that for the same transmitted optical power and same BER they offer similar data throughputs. However, when the light source has limited dynamics the crucial factor is the peak to average power ratio of the modulating signal. This is the greatest for OFDM/DMT and smaller for CAP and PAM. Consequently, the efficiency for PAM and CAP should be comparable whereas that of DMT - inferior. This conclusion was confirmed by experimental results.

  10. Equilibrium modal power distribution measurement of step-index hard plastic cladding and graded-index silica multimode fibers

    NASA Astrophysics Data System (ADS)

    Tao, Ruichen; Hayashi, Takehiro; Kagami, Manabu; Kobayashi, Shigeru; Yasukawa, Manabu; Yang, Hui; Robinson, David; Baghsiahi, Hadi; Fernández, F. Aníbal; Selviah, David R.

    2015-03-01

    A stable reproducible optical standard source for measuring multimode optical fiber attenuation is required as recent round robin measurements of such fibers at several international companies and national standards organizations showed significant variation when using a source having only the encircled flux in the near field emerging from it defined. The paper presents and compares the far field modal power distributions for (i) 2 km and 3 km step-index multimode Hard Plastic Cladding Fibers, HPCF, (SI-MMF) with 200 μm silica core diameter, 0.37 numerical aperture (NA) and polymer cladding, (ii) a 10 m silica graded-index multimode fiber (GI-MMF) with 50 μm core diameter and 0.2 NA, and (ii) a near field Encircled Flux Mode Convertor or "modcon". A free space method for measuring the far field using a Lightemitting diode (LED) centered at 850 nm wavelength with 40 nm 10 dB-bandwidth and a charge-coupled device (CCD) camera is compared with a f-theta multi-element lens based far field pattern (FFP) system. Mandrels of different diameter and different numbers of turns of the fiber around them were used to achieve an equilibrium mode distribution (EMD) for the GI-MMF. The paper defines encircled angular flux (EAF) as the fraction of the total optical power radiating from a multimode optical fiber core within a certain solid angle in the far field. The paper calculates the EAF when the solid angle increases from the far field centroid.

  11. Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers.

    PubMed

    Chemnitz, Mario; Wei, Jingxuan; Jain, Chhavi; Rodrigues, Bruno P; Wieduwilt, Torsten; Kobelke, Jens; Wondraczek, Lothar; Schmidt, Markus A

    2016-08-01

    We reveal the potential of step-index fibers consisting of a metaphosphate glass core and a silica cladding as an ultrafast octave-spanning supercontinuum source. The hybrid waveguide was fabricated by pressure-assisted melt filling and possesses a sophisticated dispersion behavior with two zero-dispersion points in the proximity of the Erbium laser bands. The fiber generates an octave-spanning supercontinuum from 0.7 to 2.4 μm if pumped at 1.56 μm with 30 fs pulses and energies as low as 300 pJ. Numerical simulations reveal soliton fission and double dispersive wave generation as the dominant broadening effect. This study highlights phosphate glasses as a promising new candidate for the next generation of broadband photonic devices, as they allow for high rare earth-doping levels and dispersion posttuning via plasmonic nanoparticle growth.

  12. Wavelength conversion performance in a tellurite step-index optical fiber

    NASA Astrophysics Data System (ADS)

    Tuan, Tong Hoang; Zhang, Lei; Suzuki, Takenobu; Ohishi, Yasutake

    2016-12-01

    We demonstrated in this work the wavelength conversion performance based on the four-wave mixing process in a new tellurite step-index fiber as short as 1 m. The fiber was pumped by a femtosecond pulsed laser near the zero dispersion wavelength of the fundamental mode which was close to that of the material dispersion in the near-infrared region. When the pump and signal wavelengths were at 1795 and 1434 nm, respectively, the generated idler was obtained at 2400 nm and the conversion wavelength spacing could be as broad as 966 nm. In addition, a 17.5-dB signal gain at 1550 nm and 1.1-dB idler at 1757 nm were obtained when the pump was tuned to 1647 nm.

  13. Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers.

    PubMed

    Ramsay, Jacob; Dupont, Sune; Johansen, Mikkel; Rishøj, Lars; Rottwitt, Karsten; Moselund, Peter Morten; Keiding, Søren Rud

    2013-05-06

    Using femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN fiber. As a consequence of intermodal scattering and the difference in group velocity for the modes, the supercontinuum splits up spatially and temporally. Experimental results indicate that a significant part of the radiation propagates in HOMs. Conventional simulations of super-continuum generation do not include scattering into HOMs, and including this provides an extra degree of freedom for tailoring supercontinuum sources.

  14. Transmission of laser pulses with high output beam quality using step-index fibers having large cladding

    DOEpatents

    Yalin, Azer P; Joshi, Sachin

    2014-06-03

    An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was <6 mJ, and the duration of the laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.

  15. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm.

    PubMed

    Salem, Reza; Jiang, Zack; Liu, Dongfeng; Pafchek, Robert; Gardner, David; Foy, Paul; Saad, Mohammed; Jenkins, Doug; Cable, Alex; Fendel, Peter

    2015-11-30

    A nearly two-octave wide coherent mid-infrared supercontinuum is demonstrated in a dispersion-engineered step-index indium fluoride fiber pumped near 2 µm. The pump source is an all-fiber femtosecond laser with 100 fs pulse width, 570 mW average power and 50 MHz repetition rate. The supercontinuum spectrum spans from 1.25 µm to 4.6 µm. Numerical modelling of the supercontinuum spectra show good agreement with the measurements. The coherence of the supercontinuum is calculated using a numerical model and shows a high degree of coherence across the generated bandwidth allowing it to be used for frequency comb applications.

  16. 1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA.

    PubMed

    Hudson, Darren D; Baudisch, Matthias; Werdehausen, Daniel; Eggleton, Benjamin J; Biegert, Jens

    2014-10-01

    Using a 3.1-μm optical parametric chirped-pulse amplifier (OPCPA), we generate a supercontinuum in a step-index chalcogenide fiber that spans from 1.6 to 5.9 μm at the -20  dB points. The rugged step-index geometry allows for long-term operation, while the spectral bandwidth is limited by the transmission of the As2S3 fiber.

  17. Experimental investigation of PAM, CAP and DMT modulations efficiency over a double-step-index polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Stepniak, G.; Siuzdak, J.

    2014-08-01

    Investigated was the transmission over step index POF that is 50 m/100 m long with a red DVD laser as a source and a Si p-i-n commercial photo-detector. The maximum bit rates of three modulation formats: PAM, CAP and DMT were sought. Their constellation sizes and symbol rates were varied in order to maximize FEC limited throughputs for each modulation whereas the laser operating point and relevant optical powers were maintained constant for all the modulations. The maximum throughputs were similar for PAM and CAP, namely 3.3/2 Gbit/s for PAM, and 3.15/2.1 for CAP for 50/100 m fiber, respectively. The bit rates for DMT were 2.65/1.65 Gbit/s for the respective lengths of the fiber. We attribute the inferior performance of DMT to its high value of peak to average power ratio.

  18. Mid-infrared supercontinuum generation up to 4.6 µm using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm

    NASA Astrophysics Data System (ADS)

    Salem, Reza; Jiang, Zack; Liu, Dongfeng; Pafchek, Robert; Foy, Paul; Saad, Mohammed; Jenkins, Doug; Cable, Alex; Fendel, Peter

    2016-03-01

    We report mid-infrared supercontinuum (SC) generation in a dispersion-engineered step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 μm. The SC spans 1.8 octaves from 1.25 μm to 4.6 μm with an average output power of 270 mW. The pump source is an all-fiber femtosecond laser that generates sub-100 fs pulses at 50 MHz repetition rate with 570 mW average power. The indium fluoride fiber used for SC generation is designed to have a zerodispersion wavelength close to 1.9 μm. Two fiber lengths of 30 cm and 55 cm are selected for the SC generation experiments based on the numerical modelling results. The measured spectra and the numerical modelling results are presented showing good agreement for both lengths. The femtosecond pumping regime is a key requirement for generating a coherent SC. We show by modelling that the SC is coherent for a pump with the same pulse width and energy as our fiber laser and added quantum-limited noise. The results are promising for the realization of coherent and high-repetition-rate SC sources, two conditions that are critical for spectroscopy applications using FTIR spectrometers. Additionally, the entire SC system is built using optical fibers with similar core diameters, which enables integration into a compact platform.

  19. 1.5-14  μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber.

    PubMed

    Zhao, Zheming; Wang, Xunsi; Dai, Shixun; Pan, Zhanghao; Liu, Shuo; Sun, Lihong; Zhang, Peiqing; Liu, Zijun; Nie, Qiuhua; Shen, Xiang; Wang, Rongping

    2016-11-15

    We have experimentally demonstrated midinfrared (MIR) supercontinuum (SC) generation in a low-loss Te-based chalcogenide (ChG) step-index fiber. The fiber, fabricated by an isolated extrusion method, has an optical loss of 2-3 dB/m at 6.2-10.3 μm and 3.2 dB/m at 10.6 μm, the lowest value reported for any Te-based ChG step-index fiber. A MIR SC spectrum (∼1.5 to 14 μm) is generated from the 23-cm fiber pumped by a 4.5 μm laser (∼150  fs, 1 kHz). To the best of our knowledge, this is the first SC experimental demonstration in Te-based ChG fiber and the broadest MIR SC generation pumped in the normal dispersion regime in the optical fibers.

  20. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  1. Supercontinuum generation in a step-index chalcogenide fiber with AsSe2 core and As2S5 cladding

    NASA Astrophysics Data System (ADS)

    Gao, Weiqing; Xu, Qiang; Li, Xue; Zhang, Wei; Hu, Jigang; Li, Yuan; Chen, Xiangdong; Yuan, Zijun; Liao, Meisong; Li, Xia; Bi, Wanjun; Cheng, Tonglei; Suzuki, Takenobu; Ohishi, Yasutake

    2016-12-01

    We demonstrate the supercontinuum (SC) generation in a chalcogenide step-index fiber with AsSe2 core and As2S5 cladding. The characteristics of fiber are analyzed using the full-vectorial mode solver technique. The fiber has two zero-dispersion wavelengths at 2898 and 5140 nm. The evolving of SC spectra with fiber length and pump wavelength is investigated experimentally. The maximum SC range covering one octave from 1550 to 3300 nm is obtained when the 20 cm long fiber is pumped by 2000 nm pulses in normal dispersion region. The fiber can push forward the nonlinear application based on the stimulated Raman effect, stimulated Brillouin effect, four-wave mixing, supercontinuum generation, and so on in the mid-infrared waveband. The SCs are simulated by the nonlinear Schrödinger equation. The simulated results agree well with the experiments.

  2. Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber.

    PubMed

    Cheng, Tonglei; Nagasaka, Kenshiro; Tuan, Tong Hoang; Xue, Xiaojie; Matsumoto, Morio; Tezuka, Hiroshige; Suzuki, Takenobu; Ohishi, Yasutake

    2016-05-01

    We experimentally demonstrate mid-infrared (MIR) supercontinuum (SC) generation spanning ∼2.0 to 15.1 μm in a 3 cm-long chalcogenide step-index fiber. The pump source is generated by the difference frequency generation with a pulse width of ∼170  fs, a repetition rate of ∼1000  Hz, and a wavelength range tunable from 2.4 to 11 μm. To the best of our knowledge, this is the broadest MIR SC generation observed so far in optical fibers. It facilitates fiber-based applications in sensing, medical, and biological imaging areas.

  3. Investigation and comparison of analytical, numerical, and experimentally measured coupling losses for multi-step index optical fibers.

    PubMed

    Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba; Arrue, Jon; Poisel, Hans; Losada, María

    2005-05-30

    The aim of the present paper is to provide a comprehensive analysis of the coupling losses in multi-step index (MSI) fibres. Their light power acceptance properties are investigated to obtain the corresponding analytical expressions taking into account longitudinal, transverse, and angular misalignments. For this purpose, a uniform power distribution is assumed. In addition, we perform several experimental measurements and computer simulations in order to calculate the coupling losses for two different MSI polymer optical fibres (MSI-POFs). These results serve us to validate the theoretical expressions we have obtained.

  4. Fiber optic refractive index monitor

    SciTech Connect

    Weiss, Jonathan David

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  5. Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber.

    PubMed

    Tuniz, Alessandro; Chemnitz, Mario; Dellith, Jan; Weidlich, Stefan; Schmidt, Markus A

    2017-02-08

    We propose and experimentally demonstrate a monolithic nanowire-enhanced fiber-based nanoprobe for the broadband delivery of light (550-730 nm) to a deep subwavelength scale using short-range surface plasmons. The geometry is formed by a step index fiber with an integrated gold nanowire in its core and a protruding gold nanotip with sub-10 nm apex radius. We present a novel coupling scheme to excite short-range surface plasmons, whereby the radially polarized hybrid mode propagating inside the nanowire section excites the plasmonic mode close to the fiber endface, which is in turn superfocused down to nanoscale dimensions at the tip apex. We show that in this all-integrated fiber-plasmonic coupling scheme the wire length can be orders of magnitude longer than the attenuation length of short-range plasmon polaritons, yielding a broadband plasmon excitation and reducing demands in fabrication. We observe that the scattered light in the far-field from the nanotip is axially polarized and preferentially excited by a radially polarized input, unambiguously revealing that it originates from a short-range plasmon propagating on the nanotip, in agreement with simulations. This novel excitation scheme will have important applications in near-field microscopy and nanophotonics and potentially offers significantly improved resolution compared to current delivery near-field probes.

  6. 0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser.

    PubMed

    Yang, Linyong; Zhang, Bin; Yin, Ke; Yao, Jinmei; Liu, Guangchen; Hou, Jing

    2016-06-13

    An ultra-broadband supercontinuum was generated in a short piece of step-index germania-core fiber using a fiber laser with a peak power of 4.4 kW. The pure germania core made this fiber capable of propagating light towards the desirable mid-infrared region. The spectral broadening characteristics towards the mid-infrared region under different lengths of germania-core fiber were investigated using pump pulses of 4.4 kW and 1.1 ns at 1550 nm. The large nonlinear refractive index of germania and the small core size of germania-core fiber produced a nonlinear coefficient as high as 11.8 (W km)-1 at 1550 nm, which was beneficial for supercontinuum generation. The pump wavelength was located in the anomalous dispersion regime and close to the zero dispersion wavelength of this germania-core fiber, 1.426 μm. Eventually, an ultra-broadband supercontinuum source with a spectrum spanning from 0.6 to 3.2 μm was obtained and had a total output power of 350 mW at an optimized germania-core fiber length of 0.8 m. This work is the first demonstration, to the best of our knowledge, of a germania-core fiber-based ultra-broadband supercontinuum source that spans from the visible region to the mid-infrared region.

  7. Compact 3-8  μm supercontinuum generation in a low-loss As2Se3 step-index fiber.

    PubMed

    Robichaud, Louis-Rafaël; Fortin, Vincent; Gauthier, Jean-Christophe; Châtigny, Stéphane; Couillard, Jean-François; Delarosbil, Jean-Luc; Vallée, Réal; Bernier, Martin

    2016-10-15

    A mid-infrared supercontinuum source spanning from 3 to 8 μm is demonstrated using a low-loss As2Se3 commercial step-index fiber. A maximum average output power of 1.5 mW is obtained at a low repetition rate of 2 kHz. Thanks to the low NA step-index fiber, the output is single mode for wavelengths above ∼5  μm. The pump source consists of an erbium-doped ZrF4-based in-amplifier supercontinuum source spanning from 3 to 4.2 μm. The effects of both the pump power and As2Se3 fiber length on the output characteristics are studied. To the best of our knowledge, this is the first compact supercontinuum source ever reported to reach 8 μm in a standard step-index fiber.

  8. Fiber optic phase stepping system for interferometry

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1991-01-01

    A closed loop phase control system using an all-fiber optical configuration has been developed for use in phase-stepping interferometry. This system drives the relative phase of two interfering beams through a sequence of pi/2 rad increments so that the initial relative phase of these beams can be determined. This phase-stepping system uses optical fibers to provide spatially uniform phase steps from a flexible, easily aligned optical configuration. In addition, this system uses phase feedback to eliminate phase modulator errors and to compensate for phase drifts caused by environmental disturbances.

  9. Attenuation and bit error rate for four co-propagating spatially multiplexed optical communication channels of exactly same wavelength in step index multimode fibers

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Chakravarty, Abhijit

    2011-06-01

    Spatial domain multiplexing (SDM) utilizes co-propagation of exactly the same wavelength in optical fibers to increase the bandwidth by integer multiples. Input signals from multiple independent single mode pigtail laser sources are launched at different input angles into a single multimode carrier fiber. The SDM channels follow helical paths and traverse through the carrier fiber without interfering with each other. The optical energy from the different sources is spatially distributed and takes the form of concentric circular donut shaped rings, where each ring corresponds to an independent laser source. At the output end of the fiber these donut shaped independent channels can be separated either with the help of bulk optics or integrated concentric optical detectors. This presents the experimental setup and results for a four channel SDM system. The attenuation and bit error rate for individual channels of such a system is also presented.

  10. Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source.

    PubMed

    Yao, Jinmei; Zhang, Bin; Yin, Ke; Yang, Linyong; Hou, Jing; Lu, Qisheng

    2016-06-27

    A supercontinuum (SC) source spanning from 2 to 4 μm is demonstrated in As2S3-chalcogenide fibers pumped by a nanosecond supercontinuum pump source in the normal dispersion region. In this experiment, two pieces of 3-m-long step-index As2S3 fiber with different core diameters of 7 μm and 9 μm are pumped by a 1.9-2.5 μm nanosecond supercontinuum source. The zero dispersion wavelengths are both beyond 6.6 μm, thus cascaded stimulated Raman scattering is believed to be the dominant mechanism responsible for spectral broadening. With a low peak pump power of ~2.9 kW, both of the output spectra have extended to 4 μm with enhanced power distribution in the MIR region. The maximum output power of the mid-infrared supercontinua is ~140 mW. To the best of our knowledge, it is the first supercontinuum extenting to 4 μm in an As2S3 fiber pumped by shortwave-infrared SC pluses in the normal dispersion region.

  11. Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber

    NASA Astrophysics Data System (ADS)

    Butterworth, J. H.; Jayasuriya, D.; Li, Q. Q.; Furniss, D.; Moneim, N. A.; Barney, E.; Sujecki, S.; Benson, T. M.; Sanghera, J. S.; Seddon, A. B.

    2014-02-01

    In the 21st century, cancer has become a common and feared illness. Early detection is crucial for delivering the most effective treatment of patients, yet current diagnostic tests depend upon the skill of a consultant clinician and histologist for recognition of the cancerous cells. Therefore it is necessary to develop a medical diagnostic system which can analyze and image tissue instantly, removing the margin of human error and with the additional benefit of being minimally invasive. The molecular fingerprint of biological tissue lies within the mid-infrared (IR) region of the electromagnetic spectrum, 3-25μm wavelength. This can be used to determine a tissue spectral map and provide information about the absence or existence of disease, potentially in real-time and in vivo. However, current mid-IR broadband sources are not bright enough to achieve this. One alternative is to develop broadband, mid-IR, supercontinuum generation (SCG). Chalcogenide glass optical fibers have the potential to provide such mid-IR SC light. A popular chalcogenide glass fiber type is based on Ge-As-Se. For biomedical applications it is prudent to avoid the use of arsenic, on account of its toxicity. This paper investigates replacing arsenic with antimony, towards Ge-Sb-Se smallcore optical fibers for SCG. Physical properties of candidate glass pairs are investigated for glass stability via differential thermal analysis etc. and fiber optical loss measurements of associated fibers are assessed. These results are compared to analogous arsenic-containing chalcogenide glasses and optical fibers, and conclusions are drawn focusing on whether there is potential for antimony chalcogenide glass to be used for SCG for mid-infrared medical diagnostics.

  12. Uncladded sensing fiber for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V.; Gangwar, R. K.; Pathak, A. K.; Singh, V. K.

    2016-05-01

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  13. Fiber optic liquid refractive index sensor

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2015-08-01

    In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 µm and the cladding of fiber was removed by simple chemical method. To perform this experiment a 2×2 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

  14. Speckle interferometry using fiber optic phase stepping

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1989-01-01

    A system employing closed-loop phase-stepping is used to measure the out-of-plane deformation of a diffusely reflecting object. Optical fibers are used to provide reference and object beam illumination for a standard two-beam speckle interferometer, providing set-up flexibility and ease of alignment. Piezoelectric fiber-stretchers and a phase-measurement/servo system are used to provide highly accurate phase steps. Intensity data is captured with a charge-injection-device camera, and is converted into a phase map using a desktop computer. The closed-loop phase-stepping system provides 90 deg phase steps which are accurate to 0.02 deg, greatly improving this system relative to open-loop interferometers. The system is demonstrated on a speckle interferometer, measuring the rigid-body translation of a diffusely reflecting object with an accuracy + or - 10 deg, or roughly + or - 15 nanometers. This accuracy is achieved without the use of a pneumatically mounted optics table.

  15. Speckle Interferometry Using Fiber Optic Phase Stepping

    NASA Astrophysics Data System (ADS)

    Mercer, Carolyn R.; Beheim, Glenn

    1990-04-01

    A system employing closed-loop phase-stepping is used to measure the out-of-plane deformation of a diffusely reflecting object. Optical fibers are used to provide reference and object beam illumination for a standard two-beam speckle interferom-eter, providing set-up flexibility and ease of alignment. Piezoelectric fiber-stretchers and a phase-measurement/servo system are used to provide highly accurate phase steps. Intensity data is captured with a charge-injection-device camera, and is converted into a phase map using a desktop computer. The closed-loop phase-stepping system provides 90° phase steps which are accurate to 0.02°, greatly improving this system relative to open-loop interferometers. The sys-tem is demonstrated on a speckle interferometer, measuring the rigid-body translation of a diffusely reflecting object with an accuracy of -±100, or roughly ±15 nm. This accuracy is achieved without the use of a pneumatically mounted optics table.

  16. Fiber inline Michelson interferometer fabricated by one-step femtosecond laser micromachining for sensing applications

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Wu, Hongbin; Wang, Cong; Yu, Yingyu; Wang, Sumei; Xiao, Hai

    2013-12-01

    A fiber inline Michelson interferometer fiber optic sensor was presented for sensing applications, including high temperature performance and refractive index change. The sensor was fabricated using one-step femtosecond (fs) laser micromachining technique. A step structure at the tip of a single mode optical fiber was formed during the micromachining process. The device had a loss of 16 dB and an interference visibility exceeding 18 dB. The capability of this device for temperature sensing up to 1000 °C and refractive index sensing application in various concentrations of ethanol solution were all demonstrated.

  17. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  18. Optical similaritons in a tapered graded-index nonlinear-fiber amplifier with an external source

    SciTech Connect

    Raju, Thokala Soloman; Panigrahi, Prasanta K.

    2011-09-15

    We analytically explore a wide class of optical similariton solutions to the nonlinear Schroedinger equation appropriately modified to model beam propagation in a tapered, graded-index nonlinear-fiber amplifier with an external source. Under certain physical conditions, we reduce the coupled nonlinear Schroedinger equations to a single-wave equation that aptly describes similariton propagation through asymmetric twin-core fiber amplifiers. The asymmetric twin-core fiber is composed of two adjoining, closely spaced, single-mode fibers in which the active one is a tapered, graded-index nonlinear-fiber and the passive one is a step-index fiber. We obtain these self-similar waves for different choices of tapered index profile, using a Moebius transformation. Our procedure is applicable for both self-focusing and self-defocusing nonlinearities.

  19. Improved analytical model for the field of index-guiding microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar; Sharma, Anurag

    2016-05-01

    We present an improved version of our earlier developed analytical field model for the fundamental mode of index-guiding microstructured optical fibers (MOFs), to obtain better accuracy in the simulated results. Using this improved field model, we have studied the splice losses between an MOF and a traditional step-index single-mode fiber (SMF). Comparisons with available experimental and numerical simulation results have also been included.

  20. Polymer microstructured fibers by one-step extrusion

    NASA Astrophysics Data System (ADS)

    Mignanelli, M.; Wani, K.; Ballato, J.; Foulger, S.; Brown, P.

    2007-05-01

    For the first time to our knowledge, polymer-based microstructured fibers with complex cross-sections are directly produced via melt extrusion. Two principal types of fibers were fabricated: a microstructured fiber of a single polymer with a hexagonal array of air holes and a bicomponent fiber consisting of approximately 60 coaxial rings. From the latter, strong visible iridescence was observed and is shown to exhibit a mechanochromic response. This approach, the mainstay of the textile trade for decades, offers a means of continuous high-volume low-cost manufacturing of polymer (and conceivably soft-glass) fibers. For example, in the present effort, 128 coaxially microstructured fibers were fabricated simultaneously at rates exceeding 1200 m/min from industrially mainstream polymers. This approach offers an important step forward towards commoditizing microstructured fibers and open new doors for optical engineering in fashion, marking/identification, and numerous military applications.

  1. Polymer microstructured fibers by one-step extrusion.

    PubMed

    Mignanelli, M; Wani, K; Ballato, J; Foulger, S; Brown, P

    2007-05-14

    For the first time to our knowledge, polymer-based microstructured fibers with complex cross-sections are directly produced via melt extrusion. Two principal types of fibers were fabricated: a microstructured fiber of a single polymer with a hexagonal array of air holes and a bicomponent fiber consisting of approximately 60 coaxial rings. From the latter, strong visible iridescence was observed and is shown to exhibit a mechanochromic response. This approach, the mainstay of the textile trade for decades, offers a means of continuous high-volume low-cost manufacturing of polymer (and conceivably soft-glass) fibers. For example, in the present effort, 128 coaxially microstructured fibers were fabricated simultaneously at rates exceeding 1200 m/min from industrially mainstream polymers. This approach offers an important step forward towards commoditizing microstructured fibers and open new doors for optical engineering in fashion, marking/identification, and numerous military applications.

  2. Power transmission coefficients for multi-step index optical fibres.

    PubMed

    Aldabaldetreku, Gotzon; Zubia, Joseba; Durana, Gaizka; Arrue, Jon

    2006-02-20

    The aim of the present paper is to provide a single analytical expression of the power transmission coefficient for leaky rays in multi-step index (MSI) fibres. This expression is valid for all tunnelling and refracting rays and allows us to evaluate numerically the power attenuation along an MSI fibre of an arbitrary number of layers. We validate our analysis by comparing the results obtained for limit cases of MSI fibres with those corresponding to step-index (SI) and graded-index (GI) fibres. We also make a similar comparison between this theoretical expression and the use of the WKB solutions of the scalar wave equation.

  3. Capturing a reflective cross-sectional image of an optical fiber with partially coherent laser light to measure the refractive index profile of a multimode optical fiber.

    PubMed

    Sheu, Fang-Wen; Jhang, Heng-Jian

    2013-01-28

    We focused partially coherent laser light onto an optical fiber end-face and captured a high-quality reflective cross-sectional image of the fiber. By analyzing the reflected light intensity distribution of the captured fiber image, we can achieve refractive-index profiling of a step-index multimode optical fiber. The measurement error caused by the reflected light from the other fiber end-face positioned in air can be greatly improved by inserting that end of the fiber into water. This simple and easy technique for fiber index profiling by employing reduced-coherence laser light is very useful in determining the refractive index profiles of various multimode optical fibers.

  4. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    PubMed Central

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  5. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    PubMed Central

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  6. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    DTIC Science & Technology

    2014-12-23

    High-Energy Pulse Propagation in Graded -Index Multimode Optical Fibers for Mode-Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...integration of large-core graded -index multimode fibers (GIMFs) in ultrafast mode-locked fiber lasers to dramatically increase the pulse energy...optical fibers, graded -index multimode fibers, nonlinear switching, waveguides, mode-locked fiber lasers, ultra-short pulse fiber lasers 16. SECURITY

  7. Refractive index fiber sensor based on Brillouin fast light

    NASA Astrophysics Data System (ADS)

    Chen, Jiali; Gan, Jiulin; Zhang, Zhishen; Yang, Tong; Deng, Huaqiu; Yang, Zhongmin

    2014-01-01

    A new type of refractive index fiber sensor was invented by combining the evanescent-field scattering sensing mechanism with the Brillouin fast light scheme. Superluminal light was realized using Brillouin lasing oscillation in a fiber ring cavity. The refractive index of the solution around the microfiber within the cavity is related to the group velocity of the fast light. This fast light refractive index sensor offers an alternative for high-accuracy sensing applications.

  8. A step-defined sedentary lifestyle index: <5000 steps/day.

    PubMed

    Tudor-Locke, Catrine; Craig, Cora L; Thyfault, John P; Spence, John C

    2013-02-01

    Step counting (using pedometers or accelerometers) is widely accepted by researchers, practitioners, and the general public. Given the mounting evidence of the link between low steps/day and time spent in sedentary behaviours, how few steps/day some populations actually perform, and the growing interest in the potentially deleterious effects of excessive sedentary behaviours on health, an emerging question is "How many steps/day are too few?" This review examines the utility, appropriateness, and limitations of using a reoccurring candidate for a step-defined sedentary lifestyle index: <5000 steps/day. Adults taking <5000 steps/day are more likely to have a lower household income and be female, older, of African-American vs. European-American heritage, a current vs. never smoker, and (or) living with chronic disease and (or) disability. Little is known about how contextual factors (e.g., built environment) foster such low levels of step-defined physical activity. Unfavorable indicators of body composition and cardiometabolic risk have been consistently associated with taking <5000 steps/day. The acute transition (3-14 days) of healthy active young people from higher (>10 000) to lower (<5000 or as low as 1500) daily step counts induces reduced insulin sensitivity and glycemic control, increased adiposity, and other negative changes in health parameters. Although few alternative values have been considered, the continued use of <5000 steps/day as a step-defined sedentary lifestyle index for adults is appropriate for researchers and practitioners and for communicating with the general public. There is little evidence to advocate any specific value indicative of a step-defined sedentary lifestyle index in children and adolescents.

  9. Refractive Index Measurement of Fibers Through Fizeau Interferometry

    DTIC Science & Technology

    2013-08-01

    3 Table 2. Lasers used in interferometer for fiber refractive index measurement. Manufacturer Model Wavelength Laserglow Technologies , Inc...1.4605, well within the acceptable range of error. A similarly precise listed value for S-2 glass was not found, but the manufacturer lists the...internally manufactured fibers. The interferometer is shown to produce accurate, repeatable results for fibers with a cross-sectional area of over

  10. How current ginning processes affect fiber length uniformity index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop cotton ginning methods that improve fiber characteristics that are compatible with the newer and more efficient spinning technologies. A literature search produced recent studies that described how current ginning processes affect HVI fiber length uniformity index. Resul...

  11. Spectral characteristics of draw-tower step-chirped fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Idrisov, Ravil F.; Varzhel, Sergey V.; Kulikov, Andrey V.; Meshkovskiy, Igor K.; Rothhardt, Manfred; Becker, Martin; Schuster, Kay; Bartelt, Hartmut

    2016-06-01

    This paper presents research results on the spectral properties of step-chirped fiber Bragg grating arrays written during the fiber drawing process into a birefringent optical fiber with an elliptical stress cladding. The dependences of resonance shift of the step-chirped fiber Bragg grating on bending, on applied tensile stress and on temperature have been investigated. A usage of such step-chirped fiber Bragg gratings in fiber-optic sensing elements creation has been considered.

  12. 3D refractive index measurements of special optical fibers

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  13. Refractive index sensor based on tapered multicore fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Pei, Li; Li, Chao; Lin, Heng

    2017-01-01

    A novel refractive index (RI) sensor based on middle-tapered multicore fiber (TMCF) is proposed and experimentally demonstrated. The sensing structure consists of two singlemode fibers (SMF) and simply spliced a section tapered four-core fiber between them. The light injected from the SMF into the multicore fiber (MCF) will excite multiple cladding mode, and interference between these modes can be affected by the surrounding refractive index (SRI), which also dictates the wavelength shift of the transmission spectrum. Our experimental investigations achieved a sensitivity around 171.2 nm/RIU for a refractive index range from 1.3448 to 1.3774. All sensors fabricated in this paper show good linearity in terms of the spectral wavelength shift versus changes in RI.

  14. Exposed core microstructured optical fiber Bragg gratings: refractive index sensing.

    PubMed

    Warren-Smith, Stephen C; Monro, Tanya M

    2014-01-27

    Bragg gratings have been written in exposed-core microstructured optical fibers for the first time using a femtosecond laser. Second and third order gratings have been written and both show strong reflectivity at 1550 nm, with bandwidths as narrow as 60 pm. Due to the penetration of the guided field outside the fiber the Bragg reflections are sensitive to the external refractive index. As different modes have different sensitivities to refractive index but the same temperature sensitivity the sensor can provide temperature-compensated refractive index measurements. Since these Bragg gratings have been formed by physical ablation, these devices can also be used for high temperature sensing, demonstrated here up to 800°C. The fibers have been spliced to single mode fiber for improved handling and integration with commercial interrogation units.

  15. Osteogenic index of step exercise depending on choreographic movements, session duration, and stepping rate

    PubMed Central

    Santos‐Rocha, R A; Oliveira, C S; Veloso, A P

    2006-01-01

    Background Step exercise has been promoted as a low impact physical activity recommended for the improvement of cardiorespiratory and muscular fitness. This recreational activity might also be recommended to improve bone health since mechanical load plays an important role in the normal development of the skeleton. Methods Our main purpose was to characterised 100 step sessions and to calculated osteogenic index (OI) according to Turner and Robling: OI (one session) = peak ground reaction force(BW)*ln(number of loading cycles+1). Results Main results (mean±SD) were as follows: OI was 12.0±0.8; peak ground reaction force (GRF) was 1.40±0.10 times body weight (BW); session duration was 38.6±8.3 min; stepping rate was 134.6±4.7 beats per minute (bpm); the movements performed most often were marching, knee hop, side leg, L step, and over the top; and the number of loading cycles was 4194.1±1055.2. OI and GRF increased significantly when stepping rate was higher than 135 bpm. This stepping rate might be used as a reference for higher intensity classes. A frequency of two to three sessions per week of step exercise is recommended. Conclusions Despite the benefits that have been stated when step classes are structured correctly and adapted to the participants, further research is needed concerning biomechanical load, exercise prescription, and injury prevention. PMID:16920771

  16. Theory of biaxial graded-index optical fiber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kawalko, Stephen F.

    1990-01-01

    A biaxial graded-index fiber with a homogeneous cladding is studied. Two methods, wave equation and matrix differential equation, of formulating the problem and their respective solutions are discussed. For the wave equation formulation of the problem it is shown that for the case of a diagonal permittivity tensor the longitudinal electric and magnetic fields satisfy a pair of coupled second-order differential equations. Also, a generalized dispersion relation is derived in terms of the solutions for the longitudinal electric and magnetic fields. For the case of a step-index fiber, either isotropic or uniaxial, these differential equations can be solved exactly in terms of Bessel functions. For the cases of an istropic graded-index and a uniaxial graded-index fiber, a solution using the Wentzel, Krammers and Brillouin (WKB) approximation technique is shown. Results for some particular permittivity profiles are presented. Also the WKB solutions is compared with the vector solution found by Kurtz and Streifer. For the matrix formulation it is shown that the tangential components of the electric and magnetic fields satisfy a system of four first-order differential equations which can be conveniently written in matrix form. For the special case of meridional modes, the system of equations splits into two systems of two equations. A general iterative technique, asymptotic partitioning of systems of equations, for solving systems of differential equations is presented. As a simple example, Bessel's differential equation is written in matrix form and is solved using this asymptotic technique. Low order solutions for particular examples of a biaxial and uniaxial graded-index fiber are presented. Finally numerical results obtained using the asymptotic technique are presented for particular examples of isotropic and uniaxial step-index fibers and isotropic, uniaxial and biaxial graded-index fibers.

  17. Fiber in-line Michelson Interferometer for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Liao, C. R.; Wang, D. N.; Wang, Min; Yang, Minghong; Wang, Yiping

    2013-09-01

    A fiber in-line Michelson interferometer based on open micro-cavity is demonstrated, which is fabricated by femtosecond laser micromachining and thin film coating technique. In refractive index sensing, this interferometer operates in a reflection mode of detection, exhibits compact sensor head, good mechanical reliability, wide operation range and high sensitivity of 975nm/RIU (refractive index unit) at the refractive index value of 1.484.

  18. Optical-fiber vibration sensor using step interferometry.

    PubMed

    Ferrari, J A; García, P

    1996-10-01

    An all-fiber vibration sensor based on step interferometry is described. The sensor consists of a modified Michelson interferometer in which the ends of the reference and signal arms are assembled and fixed together to produce regular distributed interference fringes. Five photodetectors with relative phase shifts of π/2 placed on the fringes acquire five intensity patterns simultaneously. One reconstructs the vibration amplitude by using the well-known five-step algorithm. A vibration sensor with these characteristics was constructed, and its performance was investigated.

  19. Self-similar propagation in a graded-index nonlinear-fiber amplifier with an external source

    SciTech Connect

    Raju, Thokala Soloman; Panigrahi, Prasanta K.

    2010-04-15

    We present exact analytical solutions describing spatial bright, trigonometric, and kink-type of self-similar waves, as well as the trains of such waves to the nonlinear Schroedinger equation appropriately modified to model beam propagation in graded-index, nonlinear fiber amplifier with an external source. We show that this model is appropriate for the self-similar propagation in asymmetric twin-core fiber amplifier. The asymmetric twin-core fiber is composed of two adjoining, closely spaced, single mode fibers in which the active one is a graded-index nonlinear fiber and the passive one is a step-index fiber. We obtain these self-similar waves using a Moebius transformation. Our procedure is applicable both for self-focusing and self-defocusing Kerr nonlinearities.

  20. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

    NASA Astrophysics Data System (ADS)

    El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

    2016-02-01

    The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

  1. Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique

    NASA Astrophysics Data System (ADS)

    El Sayed, A.; Pilz, Soenke; Ryser, Manuel; Romano, Valerio

    2016-04-01

    The refractive index distribution in the core-cladding region of an optical fiber plays an important role in determining the transmission and dispersion properties of the waveguide. The refracted near-field technique (RNF) is among the most widespread techniques used for measuring the refractive index profile of optical fibers and is based on illuminating the end-facet of a fiber with a focused beam whose vertex angle greatly exceeds the acceptance angle of the fiber, which is immersed in an index matching liquid. What one observes are then the refracted unguided rays rather than the guided rays. Nevertheless, the standard refracted near-field technique cannot be applied to a wide range of optical fibers e.g. if their shapes are not axially symmetric. In this work we demonstrate a modified method which allows 2-D imaging of the refractive index profile and thereby overcoming the axial symmetric limitation of the standard RNF. The new system is operating at 630 nm and based on the same principle of the RNF, but the optical path is reversed so that the light at the fiber end-facet is collected by an objective lens and detected by a CCD camera. The method does not require scanning over the fiber end-facet. Thus the system is faster and less sensitive to vibrations and external conditions compared to the standard RNF, furthermore it allows averaging to improve the signal to noise ratio. The spatial resolution of the system is determined by the numerical aperture of the objective and by the resolution of the CCD camera. To calibrate the setup, a reference multi-step index fiber provided by National Physical Laboratory was used.

  2. Refractive index modulation in photo-thermo-refractive fibers

    NASA Astrophysics Data System (ADS)

    Rotari, Eugeniu; Glebova, Larissa; Glebov, Leonid

    2005-04-01

    Refractive index decrement was discovered in a fiber made from photo-thermo-refractive (PTR) glass. PTR glass is a fluorosilicate glass doped with cerium and silver which demonstrates refractive index change after UV exposure and thermal development due to precipitation of NaF nanocrystals in the irradiated areas. This glass is widely used for volume holographic optical elements recording. Photosensitivity in PTR optical fibers has been shown after exposure to radiation at 325 nm for about 1 J/cm2 followed by thermal development at 520°C. Refractive index difference between exposed and unexposed areas was about 1000 ppm. A Bragg mirror at 1088 nm was recorded in such fiber which showed narrow band reflection within 1 nm.

  3. Single Step Sintered Calcium Phosphate Fibers from Avian EGG Shell

    NASA Astrophysics Data System (ADS)

    Dadhich, Prabhash; Das, Bodhisatwa; Dhara, Santanu

    2013-11-01

    Different forms of calcium-phosphate (Hydoxyapatite, α-TCP, β-TCP, CDHA) minerals are found to be major component of bone tissue. Development of calcium-phosphate (CaP) based fibrous microstructures is of significant research interest worldwide owing to its improved mechanical properties and higher interconnectivity. Here we represent a method for single step sintered wet-spun Fibers of calcium phosphate from avian egg shells for biomedical applications. Raw egg shell powder was mixed with chitosan solution and Phosphoric acid. The mixture is milled in a ball mill overnight and then filtered. The slurry was de-aired using 100 microliter 1-octanol per 100 ml of slurry as antifoaming and wet spun in coagulation bath. Fiber was dried overnight and sintered at different temperatures for microstructure and phase analysis. Both green and sintered Fibers were physico-chemical characterized by SEM, EDX, XRD, TGA, DSC, FTIR, and stereo-zoom microscopy. The fibers obtained in this procedure are found to have highly porous interconnected structures which can provide good cell adhesion and therefore can be used for bioactive scaffold making.

  4. In-fiber Michelson interferometer based on double-cladding fiber for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Pang, Fufei; Liu, Huanhuan; Chen, Na; Liu, Yunqi; Zeng, Xianglong; Chen, Zhenyi; Wang, Tingyun

    2009-10-01

    An in-fiber Michelson interferometer is proposed based on a double-cladding (DC) special fiber. With the DC special fiber, light wave can be partially coupled into outer cladding. The in-fiber Michelson interferometer can be constructed by splicing a length of DC fiber into standard single mode fiber (SMF). The interferometer is very sensitive to ambient refractive index change because fiber cladding is as one of interference arms. A sensitivity of 36nm/RIU has been achieved in the range of 1.33~1.40 in this work. The proposed technique has the dominant advantage of simple fabrication process, which can be expected to have wide applications in biosensors and chemical sensors.

  5. Photonic crystal fiber tip interferometer for refractive index sensing.

    PubMed

    Mileńko, Karolina; Hu, Dora Juan Juan; Shum, Perry Ping; Zhang, Taishi; Lim, Jun Long; Wang, Yixin; Woliński, Tomasz R; Wei, Huifeng; Tong, Weijun

    2012-04-15

    In this paper we present an interferometer based on photonic crystal fiber (PCF) tip ended with a solid silica-sphere for refractive index sensing. The sensor is fabricated by splicing one end of the holey PCF to a single mode fiber (SMF) and applying arc at the other end to form a solid sphere. The sensor has been experimentally tested for refractive index and temperature sensing by monitoring its wavelength shift. Measurement results show that the sensor has the resolution of the order of 8.7×10(-4) over the refractive index range of 1.33-1.40, and temperature sensitivity of the order of 10 pm/°C in the range of 20-100 °C.

  6. Fiber-optic refractive index sensor based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hlubina, Petr; Ciprian, Dalibor; Kadulova, Miroslava

    2015-01-01

    A fiber-optic refractive index sensor based on surface plasmon resonance (SPR) in a thin metal film deposited on an unclad core of a multimode fiber is presented. The sensing element of the SPR fiber-optic sensor is a bare core of a step-index optical fiber made of fused silica with a deposited gold film. First, a model of the SPR fiber-optic sensor based on the theory of attenuated total internal reflection is presented. The analysis is carried out in the frame of optics of multilayered media. The sensing scheme uses a wavelength interrogation method and the calculations are performed over a broad spectral range. Second, in a practical realization of the sensor with a double-sided sputtered gold film, a reflection-based sensing scheme to measure the refractive indices of liquids is considered. The refractive index of a liquid is sensed by measuring the position of the dip in the reflected spectral intensity distribution. As an example, the aqueous solutions of ethanol with refractive indices in a range from 1.333 to 1.364 are measured.

  7. Effective index numerical modelling of microstructured chalcogenide-glass fiber for frequency conversion to the mid-infrared band

    NASA Astrophysics Data System (ADS)

    Bourdon, Pierre; Durécu, Anne; Alhenc-Gelas, Claire; Di Bianca, Laura; Canat, Guillaume; Druon, Frédéric

    2013-02-01

    Chalcogenide glass fibers offer broad transparency range up to the mid-infrared and high nonlinear coefficients making them excellent candidates for four wave mixing frequency conversion. However, the use of microstructured airchalcogenide fibers is mandatory to achieve phase-matching in such a fiber. Numerical modelling of the phase matching condition can be done using the simplified effective index model, initially developed and extensively used to design airsilica fibers. In this paper, we investigate the use of the effective index model in the case of microstructured As2S3 and As2Se3 fibers. One essential step in the method is to evaluate the core radius of a step-index fiber equivalent to the microstructured fiber. Using accurate reference results provided by finite-element computation, we compare the different formulae of the effective core radius proposed in the literature and validated for air-silica fibers. As expected, some discrepancies are observed, especially for the highest wavelengths. We propose new coefficients for these formulae so that the effective index method can be used for numerical modelling of propagation in air-chalcogenide fibers up to 5 μm wavelength. We derive a new formula providing both high accuracy of the effective core radius estimate whatever the microstucture geometry and wavelength, as well as uniqueness of its set of coefficients. This analysis reveals that the value of the effective core radius in the effective index model is only dependent on the microstructure geometry, not on the fiber material. Thus, it can be used for air-silica or air-chalcogenide fibers indifferently.

  8. Surface plasmon polariton propagation near an index step

    NASA Astrophysics Data System (ADS)

    Leskova, T. A.; Maradudin, A. A.; Zierau, W.

    2005-05-01

    In this work, we study theoretically the scattering of p-polarized light of frequency ω from, and its transmission through, a system consisting of a dielectric medium (prism) characterized by a dielectric constant ɛ0 in the region x3 > D; a metal film characterized by a complex, frequency-dependent dielectric function ɛ1(ω) in the region 0 < x3 < D; a dielectric film characterized by a dielectric constant ɛ2 in the region ζ(x1) < x3 < 0; and vacuum (ɛ3 = 1) in the region x3 < ζ(x1). The light, whose plane of incidence is the x1x3-plane, is incident through the prism. For the surface profile function ζ(x1) we assume the form ζ(x1) = -dθ(x1)θ(L - x1), where θ(x1) is the Heaviside unit step function. Thus, we have a dielectric film of thickness d and dielectric constant ɛ2 covering the part of the lower surface (x3 = 0) of the metal film defined by 0 < x1 < L. The reduced Rayleigh equation for the amplitude of the light scattered back into the prism, R(q|k), is derived, as is the reduced Rayleigh equation for the amplitude of the light transmitted into the vacuum, T(q|k). These integral equations are solved numerically and the results are used to calculate the intensity of the scattered field in the near- and far-field regions, and the intensity of the transmitted light in the near-field region, for several values of L and of the wavelength of the incident light. The results provide information about the scattering of the surface plasmon polariton at the metal-vacuum interface, excited by the incident light, by index steps on that interface, which can be used to determine the thickness of the dielectric film d, its extent L, and its dielectric constant ɛ2.

  9. Analysis of dual-end-pumped Nd3+-doped index-crossover gain guided-index antiguided fiber laser

    NASA Astrophysics Data System (ADS)

    Shen, Xiao; Wei, Wei; Zou, Hui; Zhang, Liaolin

    2016-05-01

    A dual-end pumped Nd3+-doped index-crossover gain guided-index antiguided (IGG-IAG) fiber laser is analyzed in theory. Pump light propagation and output laser characteristics are both explored by solving the related rate equations. Simulation results show that pump power confined in the IGG-IAG fiber core is larger and more uniform than that of the gain-guided and index-antiguided(GG-IAG) fiber, and the optimum fiber length and the output power of the IGG-IAG fiber laser are both larger than that of GG-IAG fiber laser. The relationship between threshold pump power and doped concentration, fiber length, fiber radius is researched respectively. The analysis results give out a method for the optimal design of the IGG-IAG fiber laser.

  10. A step-by-step regressed pediatric kidney depth formula validated by a reasonable index

    PubMed Central

    Hongwei, Si; Yingmao, Chen; Li, Li; Guangyu, Ma; Liuhai, Shen; Zhifang, Wu; Mingzhe, Shao; Sijin, Li

    2017-01-01

    Abstract In predicting pediatric kidney depth, we are especially interested in that the errors of most estimates are within a narrow range. Therefore, this study was intended to use the proportion of estimates within a range of −5 to 5 mm (P5 mm) to evaluate the formulas and tried to regress a kidney depth formula for children. The enrolled children aged from 1 to 19 years were randomly sampled into group A and group B (75% and 25% of all recruits, respectively). Using data of the group A, the test formula was regressed by nonlinear regression and subsequently Passing & Bablok regression, and validated in group B. The Raynaud, Gordon, Tonnesen, Taylor, and the test formulas were evaluated in the 2 groups. Accuracy was evaluated by bias, absolute bias, and P5 mm; and precision was evaluated by correlation coefficient. In addition, root-mean square error was used as a mixed index for both accuracy and precision. Body weight, height, and age did not have significant differences between the 2 groups. In the nonlinear regression, coefficients of the formula (kidney depth = a × weight/height + b × age) from group A were in narrower 95% confidence intervals. After the Passing & Bablok regression, biases of left and right kidney estimates were significantly decreased. In the evaluation of formulas, the test formula was obviously better than other formulas mentioned above, and P5 mm for left and right kidneys was about 60%. Among children younger than 10 years, P5 mm was even more than 70% for left and right kidney depths. To predict pediatric kidney depth, accuracy and precision of a step-by-step regressed formula were better than the 4 “standard” formulas. PMID:28353617

  11. Analysis of the use of tapered graded-index polymer optical fibers for refractive-index Sensors.

    PubMed

    Arrue, J; Jiménez, F; Aldabaldetreku, G; Durana, G; Zubia, J; Lomer, M; Mateo, J

    2008-10-13

    The behavior of tapered graded-index polymer optical fibers is analyzed computationally for different refractive indices of the surrounding medium. This serves to clarify the main parameters affecting their possible performance as refractive-index sensors and extends an existing study of similar structures in glass fibers. The ray-tracing method is employed, its specific implementation is explained, and its results are compared with experimental ones, both from our laboratory and from the literature. The results show that the current commercial graded-index polymer optical fibers can be used to measure a large range of refractive indices with several advantages over glass fibers.

  12. Interferometric fiber-optic gyroscope performance owing to temperature-induced index fluctuations in the fiber: effect on bias modulation

    NASA Astrophysics Data System (ADS)

    Knudsen, Sverre; Bløtekjær, Kjell

    1995-06-01

    An analysis of the noise floor owing to temperature-induced index fluctuations in the fiber of a dynamically biased interferometric fiber-optic gyroscope is presented. A comparison with shot noise indicates that, for a harmonic bias modulation, thermal noise in the fiber dominates for fiber lengths longer than \\similar 1 - 2km when practical source power levels are considered. The noise can be reduced or eliminated by the proper choice of modulation frequency or waveform.

  13. Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing

    NASA Astrophysics Data System (ADS)

    Osório, Jonas H.; Oliveira, Ricardo; Aristilde, Stenio; Chesini, Giancarlo; Franco, Marcos A. R.; Nogueira, Rogério N.; Cordeiro, Cristiano M. B.

    2017-03-01

    In this paper, we report, to our knowledge, the first extended study of the inscription of Bragg gratings in surface-core fibers and their application in refractive index and directional curvature sensing. The research ranges from fiber fabrication and grating inscription in untapered and tapered fibers to the performance of simulations and sensing measurements. Maximum sensitivities of 40 nm/RIU and 202.7 pm/m-1 were attained in refractive index and curvature measurements respectively. The obtained results compares well to other fiber Bragg grating based devices. Ease of fabrication, robustness and versatility makes surface-core fibers an interesting platform when exploring fiber sensing devices.

  14. Refractive index sensing using ultrasonically crushed polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Shimada, Shumpei; Lee, Heeyoung; Shizuka, Makoto; Tanaka, Hiroki; Hayashi, Neisei; Matsumoto, Yukihiro; Tanaka, Yosuke; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro

    2017-01-01

    We demonstrate power-based refractive index (RI) sensing using an ultrasonically crushed polymer optical fiber (POF). This structure can be easily and cost-effectively fabricated within a short time (i.e., ˜1 s) without the need to employ external heat sources or chemicals. The only requirement is to simply press a horn connected to an ultrasonic transducer against part of the POF. The RI dependence of the transmitted power shows linear trends in RI ranges of ˜1.32 to ˜1.36 [coefficient: -62 dB/RIU (RI unit)] and ˜1.40 to ˜1.44 (coefficient: -257 dB/RIU). The temperature dependence of the transmitted power is also investigated.

  15. Towards Silk Fiber Optics: Refractive Index Characterization, Fiber Spinning, and Spinneret Analysis

    NASA Astrophysics Data System (ADS)

    Spitzberg, Joshua David

    Of the many biologically derived materials, whose historical record of use by humans underscores an ex-vivo utility, silk is interesting for it's contemporary repurposing from textile to biocompatible substrate. And while even within this category silk is one of several materials studied for novel repurposing, it has the unique character of being evolutionarily developed specifically for fiber spinning in vivo. The work discussed here is inspired by taking what nature has given, to explore the in vitro spinning of silk towards biocompatible fiber optics applications. A common formulation of silk used in biomedical studies for re-forming it into the various structures begins with the silkworm cocoon, which is degummed and dissolved into an aqueous solution of its miscible protein, fibroin, and post-treated to fabricate solid structures. In the first aim, the optical refractive index (RI) of various post-treatment methods is discussed towards determining RI design techniques. The methods considered in this work for re-forming a solid fiber from the reconstituted silk fibroin (RSF) solution borrow from the industrial techniques of gel spinning, and dry-spinning. In the second aim, methods are applied to RSF and quality of the spun fibers discussed. A feature common to spinning techniques is passing the (silk) material through a spinneret of specific shape. In the third aim, fluid flow through a simplified native silkworm spinneret is modeled towards bio-inspired lessons in design. In chapter 1 the history, reconstitution, are discussed towards understanding the fabrication of several optical device examples. Chapter 2 then prefaces the experiments and measurements in fiber optics by reviewing electromagnetic theory of waveguide function, and loss factors, to be considered in actual device fabrication. Chapter 3 presents results and discussion for the first aim, understanding design principles for the refractive index of RSF. From this point, industrial fiber

  16. PHOSPHITE STABILIZATION EFFECTS ON TWO-STEP MELT-SPUN FIBERS OF POLYLACTIDE. (R826733)

    EPA Science Inventory

    The effects of molecular weight stabilization on mechanical properties of polylactide (PLA) fibers are investigated. The textile-grade PLA contains a 98:02 ratio of L:D stereocenters and fibers are produced by the two step method, involving a primary quench and cold drawing. M...

  17. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    SciTech Connect

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-10-10

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  18. Transfer function of long spliced graded-index fibers with mode scramblers.

    PubMed

    Ikeda, M; Kitayama, K

    1978-01-01

    Transfer functions of long spliced graded-index fibers are described. The transfer function of a spliced graded-index fiber is determined with the steady state mode exciter and the mode scramblers loaded just after each splicing. Under these conditions, the total transfer function calculated by the linear combination of each fiber's transfer function is in good agreement with the measurement results. It has been found that the transmission bandwidth can be widened by using mode scramblers.

  19. A refractive index sensor based on taper Michelson interferometer in multimode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong

    2016-11-01

    A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.

  20. Photonic crystal cavity on optical fiber facet for refractive index sensing.

    PubMed

    Wang, Bowen; Siahaan, Timothy; Dündar, Mehmet A; Nötzel, Richard; van der Hoek, Marinus J; He, Sailing; van der Heijden, Rob W

    2012-03-01

    Using a micromanipulation technique, a planar photonic crystal nanocavity made from a thin semiconductor membrane is released from the host semiconductor and attached to the end facet of a standard single-mode optical fiber. The cavity spectrum can be read out through the fiber by detecting the photoluminescence of embedded quantum dots. The modified fiber end serves as a fiber-optic refractive index sensor.

  1. Augmenting data rate performance for higher order modulation in triangular index profile multicore fiber interconnect

    NASA Astrophysics Data System (ADS)

    Mishra, Jitendra K.; Priye, Vishnu; Rahman, B. M. A.

    2016-07-01

    A triangular profile multicore fiber (MCF) optical interconnect (OI) is investigated to augment performance that typically degrades at high data rates for higher order modulation in a short reach transmission system. Firstly, probability density functions (PDFs) variation with inter-core crosstalk is calculated for 8-core MCF OI with different index profile in the core and it was observed that the triangular profile MCF OI is the most crosstalk tolerant. Next, symbol error probability (SEP) for higher order quadrature phase shift keying (QPSK) modulated signal due to inter-core crosstalk is analytically obtained and their dependence on typical characteristic parameters are examined. Further, numerical simulations are carried out to compare the error performance of QPSK for step index and triangular index MCF OI by generating eye diagram at 40 Gbps per channel. Finally, it is shown that MCF OI with triangular index profile supporting QPSK has double spectral efficiency with tolerable trade off in SEP as compared with those of binary phase shift keying (BPSK) at high data rates which is scalable up to 5 Tbps.

  2. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Oliveira, Ricardo; Osório, Jonas H.; Aristilde, Stenio; Bilro, Lúcia; Nogueira, Rogerio N.; Cordeiro, Cristiano M. B.

    2016-07-01

    We report the development of an optical fiber sensor capable of simultaneously measuring strain, temperature and refractive index. The sensor is based on the combination of two fiber Bragg gratings written in a standard single-mode fiber, one in an untapered region and another in a tapered region, spliced to a no-core fiber. The possibility of simultaneously measuring three parameters relies on the different sensitivity responses of each part of the sensor. The results have shown the possibility of measuring three parameters simultaneously with a resolution of 3.77 μɛ, 1.36 °C and 5  ×  10-4, respectively for strain, temperature and refractive index. On top of the multiparameter ability, the simple production and combination of all the parts involved on this optical-fiber-based sensor is an attractive feature for several sensing applications.

  3. Low-Bending-Loss Single-Mode Fibers for Fiber-to-the-Home

    NASA Astrophysics Data System (ADS)

    Himeno, Kuniharu; Matsuo, Shoichiro; Guan, Ning; Wada, Akira

    2005-11-01

    Recent progress on low-bending-loss single-mode optical fibers for fiber-to-the-home (FTTH) is reviewed. Designing and manufacturing for three types of fibers-a step-index-profile fiber, a trench-index-profile fiber, and a holey fiber-are discussed. The trench-index-profile fibers and the holey fibers are confirmed to be candidates for indoor wiring because of their low bending losses, as well as splice losses.

  4. One-step optogenetics with multifunctional flexible polymer fibers.

    PubMed

    Park, Seongjun; Guo, Yuanyuan; Jia, Xiaoting; Choe, Han Kyoung; Grena, Benjamin; Kang, Jeewoo; Park, Jiyeon; Lu, Chi; Canales, Andres; Chen, Ritchie; Yim, Yeong Shin; Choi, Gloria B; Fink, Yoel; Anikeeva, Polina

    2017-04-01

    Optogenetic interrogation of neural pathways relies on delivery of light-sensitive opsins into tissue and subsequent optical illumination and electrical recording from the regions of interest. Despite the recent development of multifunctional neural probes, integration of these modalities in a single biocompatible platform remains a challenge. We developed a device composed of an optical waveguide, six electrodes and two microfluidic channels produced via fiber drawing. Our probes facilitated injections of viral vectors carrying opsin genes while providing collocated neural recording and optical stimulation. The miniature (<200 μm) footprint and modest weight (<0.5 g) of these probes allowed for multiple implantations into the mouse brain, which enabled opto-electrophysiological investigation of projections from the basolateral amygdala to the medial prefrontal cortex and ventral hippocampus during behavioral experiments. Fabricated solely from polymers and polymer composites, these flexible probes minimized tissue response to achieve chronic multimodal interrogation of brain circuits with high fidelity.

  5. Multipoint refractive index and temperature fiber optic sensor based on cascaded no core fiber-fiber Bragg grating structures

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xu, Shan; Zhao, Junfa; Li, Hongqiang; Bai, Hua; Miao, Changyun

    2017-02-01

    A multipoint fiber optic sensor based on two cascaded multimode interferometer (MMI) and fiber Bragg grating (FBG) structures is proposed and demonstrated for simultaneous measurement of refractive index (RI) and temperature. The MMI is fabricated by splicing a section of no-core fiber (NCF) with two single-mode fibers. The suitable NCF lengths of 19.1 and 38.8 mm are selected by simulations to achieve wavelength division multiplexing. The two MMIs are sensitive to RI and temperature with the maximal RI sensitivities of 429.42228 and 399.20718 nm/RIU in the range of 1.333 to 1.419 and the temperature sensitivities of 10.05 and 10.22 pm/°C in the range of 26.4°C to 100°C, respectively. However, the FBGs are only sensitive to the latter with the sensitivities of 10.4 and 10.73 pm/°C. Therefore, dual-parameter measurement is obtained and cross-sensitivity issue can be solved. The distance between the two sensing heads is up to 12 km, which demonstrates the feasibility of long-distance measurement. During measurement, there is no mutual interference to each sensing head. The experimental results show that the average errors of RI are 7.61×10-4 RIU and 6.81×10-4 RIU and the average errors of temperature are 0.017°C and 0.012°C, respectively. This sensor exhibits the advantages of high RI sensitivity, dual-parameter and long-distance measurement, low cost, and easy and repeatable fabrication.

  6. Effective refractive index modulation based optical fiber humidity sensor employing etched fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Mundendhar, Pathi; Khijwania, Sunil K.

    2015-09-01

    Relative humidity (RH) sensor employing etched fiber Bragg grating (FBG) is reported where RH variations are captured using effective-index-modulation, rather than traditional strain-modulation. Additionly, linear sensor response over wide dynamic range with optimum characteristics is focused. Comprehensive experimental investigation is carried out for the sensor that comprises uniformly etched cladding in the FBG region. Obtained results are observed to be in agreement with the theoretical analysis. Sensor response is observed to be linear over dynamic range 3-94%RH with ~ 0.082 pm/%RH sensitivity, ~0.6%RH resolution, ~ +/-2.5%RH accuracy, ~ +/-0.2 pm average discrepancy and ~ 0.2s response time during humidification/desiccation.

  7. Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index.

    PubMed

    Chen, Chengkun; Laronche, Albane; Bouwmans, Géraud; Bigot, Laurent; Quiquempois, Yves; Albert, Jacques

    2008-06-23

    Several strong narrowband resonances are observed in the transmission spectra of fiber Bragg gratings photo-written in photonic crystal fiber that has a refractive index-neutral germanium/fluorine co-doped core. Experimental results for the strain, temperature and refractive index sensitivities of these mode resonances are reported and compared to those of conventional single mode fiber. In particular, we identify three kinds of resonances whose relative sensitivities to strain, temperature and refractive index are markedly different and present numerical simulations to explain these properties. Potential multiparameter optical sensor applications of these mode resonances are briefly discussed.

  8. Analysis of intrinsic coupling loss in multi-step index optical fibres.

    PubMed

    Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba; Arrue, Jon; Jiménez, Felipe; Mateo, Javier

    2005-05-02

    The main goal of the present paper is to provide a comprehensive analysis of the intrinsic coupling loss for multi-step index (MSI) fibres and compare it with those obtained for step- and graded-index fibres. We investigate the effects of tolerances to each waveguide parameter typical in standard manufacturing processes by carrying out several simulations using the ray-tracing method. The results obtained will serve us to identify the most critical waveguide variations to which fibre manufactures will have to pay closer attention to achieve lower coupling losses.

  9. Two-dimensional refractive index and stresses profiles of a homogenous bent optical fiber.

    PubMed

    Ramadan, W A; Wahba, H H; Shams El-Din, M A

    2014-11-01

    We present a significant contribution to the theory of determining the refractive index profile of a bent homogenous optical fiber. In this theory we consider two different processes controlling the index profile variations. The first is the linear index variation due to stress along the bent radius, and the second is the release of this stress on the fiber surface. This release process is considered to have radial dependence on the fiber radius. These considerations enable us to construct the index profile in two dimensions normal to the optical axis, considering the refraction of light rays traversing the fiber. This theory is applied to optical homogenous bent fiber with two bending radii when they are located orthogonal to the light path of the object arm in the holographic setup (like the Mach-Zehnder interferometer). Digital holographic phase shifting interferometry is employed in this study. The recorded phase shifted holograms have been combined, reconstructed, and processed to extract the phase map of the bent optical fiber. A comparison between the extracted optical phase differences and the calculated one indicates that the refractive index profile variation should include the above mentioned two processes, which are considered as a response for stress distribution across the fiber's cross section. The experimentally obtained refractive index profiles provide the stress induced birefringence profile. Thus we are able to present a realistic induced stress profile due to bending.

  10. Design of reflective optical fiber sensor for determining refractive index and sugar concentration of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Wulan Sari, Nila; Riatun

    2016-02-01

    A reflective optical fiber sensor designed for measuring refractive index and sugar concentration of aqueous solutions is described. Two strains of parallel polymer optical fibers (POF) were wrapped in a bundle such that one of their fiber's end cross-sections had the same distance to the mirror surface. The light coming out from one strain of the fiber was reflected by the mirror to the second fiber. Sugar concentration of the aqueous solution filling the space between the fiber ends and the mirror was varied (1.0 M, 1.5 M, 2.0 M, 2.5 M, 3.0 M, 4.0 M, and 5.0 M). It was shown from the experiment that light intensity detected by photo-detector is linearly related to the percentage of the dissolved sugar in the solution as well as the variation of the sugar solution refractive index (R2 = 0.987).

  11. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    PubMed Central

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  12. Reconstruction of fiber grating refractive-index profiles from complex bragg reflection spectra.

    PubMed

    Huang, D W; Yang, C C

    1999-07-20

    Reconstruction of the refractive-index profiles of fiber gratings from their complex Bragg reflection spectra is experimentally demonstrated. The amplitude and phase of the complex reflection spectrum were measured with a balanced Michelson interferometer. By integrating the coupled-mode equations, we built the relationship between the complex coupling coefficient and the complex reflection spectrum as an iterative algorithm for reconstructing the index profile. This method is expected to be useful for reconstructing the index profiles of fiber gratings with any apodization, chirp, or dc structures. An apodized chirped grating and a uniform grating with a depression of index modulation were used to demonstrate the technique.

  13. One-step Tape Casting of Composites via Slurry on Fiber

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III

    2001-01-01

    A process by which metal matrix composites can be made was presented. The process involves putting a powder slurry on fibers to make a precursor green tape. These green tapes are cut, stacked and hot pressed to form the fully dense composite. A computer program was presented which enables complete quantification and control of the process. Once some easily obtained properties of the slurry and its behavior are determined (such as the shrinkage from the wet to green state, and the density of the green tape) modification of the fiber spacing and blade height give the maker precise control of fiber volume fraction, and fiber architecture in the composite. The process was shown to be accurate and flexible through the production of a wide variety of volume fraction fiber composites made from a wide variety of fibers and powders. The most time consuming step of the tape casting process (other than hot pressing) was winding the fiber on the drum. The tape casting techniques developed resulted in high quality metal matrix composites, with ultimate tensile strength in the range of 215 ksi (1477 MPa), a strain at failure of 1.15 percent, and in fatigue at room temperature 0 to 120 ksi, n = 0.3 Hz, a 4-ply Ti-24Al-11Nb/SCS-6, 32 vol% fiber tape cast composite lasted 202,205 cycles with a maximum strain on the 100th cycle of 0.43 percent.

  14. Streak camera measurements of laser pulse temporal dispersion in short graded-index optical fibers

    SciTech Connect

    Lerche, R.A.; Phillips, G.E.

    1981-08-28

    Streak camera measurements were used to determine temporal dispersion in short (5 to 30 meter) graded-index optical fibers. Results show that 50-ps, 1.06-..mu..m and 0.53-..mu..m laser pulses can be propagated without significant dispersion when care is taken to prevent propagation of energy in fiber cladding modes.

  15. Measurement of the nonlinear refractive index of tellurite glass fiber by using induced grating autocorrelation technique

    NASA Astrophysics Data System (ADS)

    Traore, Aboubakar

    Nonlinear phenomena in optical fibers have been attracting considerable attention because of the rapid growth of the fiber optics communication industry. The increasing demand in internet use and the expansion of telecommunications in the developing world have triggered the need for high capacity and ultra-fast communication devices and also the need to increase the number of transmission channels in the fibers. Wavelength Division Multiplexing (WDM) and Dense Wavelength Division Multiplexing (DWDM) systems are capable of transmitting large volumes of data at very high rates into huge numbers of optical transmission channels. This ability is limited by the gain bandwidth of Silica based fiber optics amplifiers already installed in the communication networks. Tellurite based fiber amplifiers offer the necessary bandwidth for amplification of WDM and DWDM channels. To investigate the nonlinear properties of the optical fibers in this research, we used a 10 picoseconds pulse width passively mode-locked Nd:Vanadate ( Nd:YVO4) laser operating at 1342nm with a repetition rate of 76 MHz. We accurately measured the nonlinear refractive index of single mode silica fibers utilizing the Induced Grating Autocorrelation (IGA) technique. IGA technique was extended furthermore to study nonlinear effects in multimode fibers, and for the first time, we successfully measured the nonlinear refractive index (n2) of a multimode silica fiber. Confident of the ability of IGA technique for determining n 2 of multimode silica fibers, we measured the nonlinear refractive index of multimode Tellurite glass fibers with length as short as 0.5 meter. The goal of this work is to provide accurate and reliable information on the nonlinear optical properties of Tellurite glass fibers, novel fibers with promising future for developing ultrafast and high transmission capacity communication devices.

  16. Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer.

    PubMed

    Deng, Ming; Tang, Chang-Ping; Zhu, Tao; Rao, Yun-Jiang; Xu, Lai-Cai; Han, Meng

    2010-03-20

    We have constructed a novel refractive index (RI) sensor based on a fiber optic Fabry-Perot interferometer (FPI) by splicing a section of hollow core fiber between a single-mode fiber and a photonic crystal fiber (PCF). Owing to the air holes in the cladding of the PCF, various substances, such as liquids and gases with different RI, can enter or leave the in-fiber air cavity, which makes the device usable as a refractometer. In this paper, the fiber optic FPI sensor has been used to monitor the RI changes of air with different pressures, and the experimental results show that such a sensor has an RI sensitivity of 805.1 microm/RIU, and hysteresis is not observed. Moreover, the easy fabrication method gives the in-fiber refractometer many potential applications in the sensing field.

  17. Cyclic Steps and Antidunes : Relating Their Features to a Suspension Index

    NASA Astrophysics Data System (ADS)

    Yokokawa, M.; Kishima, Y.; Parker, G.

    2010-12-01

    Cyclic Steps and Antidunes : Relating Their Features to a Suspension Index Miwa Yokokawa (1), Yasushi Kishima (1), Gary Parker (2, 3) 1: Osaka Institute of Technology, Hirakata, Osaka, Japan 2: Dept. of Civil & Environmental Engineering, University of Illinois, Urbana, Illinois, U.S.A. 3: Dept. of Geology, University of Illinois, Urbana, Illinois, U.S.A. There are very few comparative studies of the differences in hydraulic conditions and morphologic features of bed- and water-surface-waves associated with cyclic steps and antidunes. In this study, the features of both the bed and the water surface, as well as hydraulic conditions are examined over the spectrum from antidune to cyclic steps. Experiments were performed using a flume at the Osaka Institute of Technology. The resultant features of the bedforms are as follows. In the case of antidunes, bed waves and water surface waves are in phase except when they collapse. Antidunes show several kinds of behavior; migrating downstream, standing, or migrating upstream. Upstream-migrating antidunes are divided into non-breaking, and breaking-types. Breaking antidunes appear alternatively with the plane bed state. Cyclic steps migrate upstream regularly associated with trains of hydraulic jumps, which divide each step. There is a significant change in water depth at the hydraulic jump, so that the phasing between the bed waves and water surface waves break at the each hydraulic jump. There is a kind of compromise between cyclic steps and antidunes, which we designate as “intermediate steps”. They move upstream and are associated with regular trains of hydraulic jumps. The jumps, however, occasionally collapse toward upstream. When this happens, bed waves move rapidly upstream; low-amplitude water surface waves and bed waves become in phase all over the bed shortly after the collapse. Then after some time, water surface waves become sufficiently prominent to yield regular hydraulic jumps. This cycle is then repeated

  18. Multiplexed refractive index-based sensing using optical fiber microcavities

    NASA Astrophysics Data System (ADS)

    Warren-Smith, Stephen C.; André, Ricardo M.; Dellith, Jan; Bartelt, Hartmut

    2016-04-01

    Optical fibers are promising tools for performing biological and biomedical sensing due to their small cross section and potential for multiplexing. In particular, fabricating ultra-small sensing devices is of increasing interest for measuring biological material such as cells. A promising direction is the use of interferometric techniques combined with optical fiber post-processing. In this work we present recent progress in the development of Fabry-Perot micro-cavities written into optical fiber tapers using focused ion beam (FIB) milling. We first demonstrate that FIB milled optical fiber microcavities are sensitive enough to measure polyelectrolyte layer deposition. We then present new results on the fabrication and optical characterization of serially-multiplexed dual cavity micro-sensors. Two cavities were written serially along the fiber with two different cavity lengths, producing a total of four reflecting surfaces and thus six possible interferometric pairs/cavities. By using fast Fourier transform it is possible to obtain de-multiplexed measurements for each cavity. This will be particularly important for bioassays where positive and negative controls are required to be measured within close spatial proximity.

  19. Estimated glycemic index and dietary fiber content of cookies elaborated with extruded wheat bran.

    PubMed

    Reyes-Pérez, Faviola; Salazar-García, María Guadalupe; Romero-Baranzini, Ana Lourdes; Islas-Rubio, Alma Rosa; Ramírez-Wong, Benjamín

    2013-03-01

    The increasing demand for high-fiber products has favored the design of numerous bakery products rich in fiber such as bread, cookies, and cakes. The objective of this study was to evaluate the dietary fiber and estimated glycemic index of cookies containing extruded wheat bran. Wheat bran was subjected to extrusion process under three temperature profiles: TP1;(60, 75, 85 and 100 °C), TP2;(60, 80, 100 and 120 °C), and TP3;(60, 80, 110 and 140 °C) and three moisture contents: (15, 23, and 31 %). Cookies were elaborated using extruded wheat bran (30 %), separated into two fractions (coarse and fine). The dietary fiber content of cookies elaborated with extruded wheat bran was higher than the controls; C0 (100 % wheat flour) and C1 (30 % of no extruded bran coarse fraction) and C2 (30 % of no extruded bran fine fraction). The higher values of dietary fiber were observed on cookies from treatments 5 (TP1, 31 % moisture content and coarse fraction) and 11 (TP2, 31 % moisture content and coarse fraction). The estimated glycemic index of cookies ranged from 68.54 to 80.16. The dietary fiber content of cookies was increased and the lowest glycemic index corresponded to the cookies elaborated with extruded wheat bran. Cookie made with the treatment 11 had a better dietary fiber content and lower estimated glycemic index.

  20. Tailored dispersion profile in controlling optical solitons in a tapered parabolic index fiber

    NASA Astrophysics Data System (ADS)

    Prakash, S. Arun; Malathi, V.; Mani Rajan, M. S.

    2016-03-01

    We investigate the soliton dynamics in tapered parabolic index fibers via symbolic computation for a variety of dispersion profiles to inspect how a specific dispersion profile controls the optical soliton. By means of AKNS procedure, Lax pair is constructed for nonlinear Schrödinger equation with variable coefficients. Using obtained Lax pair, multi-soliton solutions are generated via Darboux transformation technique. Using multi-soliton solutions, soliton dynamics in tapered parabolic index fiber with the hyperbolic, Gaussian, exponential, and linear profiles are discussed. Results obtained in this study will be of certain potential application on construction of the nonlinear optical devices by soliton control. Results obtained in this study will be of certain value to the studies on the propagation and application of the soliton in the tapered parabolic index fiber and dispersion-managed fiber system.

  1. Temporal and spectral compression of pulses in fibers with a running refractive index wave

    NASA Astrophysics Data System (ADS)

    Zolotovskii, I. O.; Lapin, V. A.; Sementsov, D. I.; Fotiadi, A. A.

    2016-04-01

    For pulses propagating in fibers with a running refractive index wave, the pulse power could be drastically increased due to decrease of the pulse duration. We report temporal and spectral compression of the pulses and conditions for formation of soliton-like chirped pulses in nonlinear fibers with a running refractive index wave. We demonstrate 100- fold compression of the wave packets propagating in media with a running refractive index wave (down to sub-picosecond durations) achieved on lengths shorter than 10 cm. In addition, the modulation instability of wave packets will be studied in such media.

  2. Refractive index insensitive temperature sensor based on waist-enlarged few mode fiber bitapers

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Wang, Si-wen; Fu, Xing-hu; Fu, Guang-wei; Jin, Wa; Bi, Wei-hong

    2017-01-01

    A refractive index insensitive temperature sensor based on waist-enlarged few mode fiber (FMF) bitapers is presented. The first section of FMF is spliced between two single-mode fibers. In fusion process, the waist-enlarged FMF bitapers can be obtained by large current discharging repeatedly. The refractive index and temperature sensing mechanisms are analyzed. For the sensors with different sizes, the refractive index and temperature experiments have been performed. The results show that in the refractive index ranges of 1.335 0—1.346 6 and 1.348 2—1.419 3, the refractive index insensitivity is verified. In a temperature range of 31.9—90 °C, the sensor sensitivity can be up to 85.57 pm/°C. In addition, it has a compact structure. Therefore, the sensor can avoid the cross sensitivity for measuring the refractive index and temperature simultaneously.

  3. Refractive index sensing characterization of a singlemode-claddingless-singlemode fiber structure based fiber ring cavity laser.

    PubMed

    Liu, Zhi-bo; Tan, Zhongwei; Yin, Bin; Bai, Yunlong; Jian, Shuisheng

    2014-03-10

    This paper firstly demonstrated the refractive index (RI) characteristics of a singlemode-claddingless-singlemode fiber structure filter based fiber ring cavity laser sensing system. The experiment shows that the lasing wavelength shifts to red side with the ambient RI increase. Linear and parabolic fitting are both done to the measurements. The linear fitting result shows a good linearity for applications in some areas with the determination coefficient of 0.993. And a sensitivity of ~131.64nm/RIU is experimentally achieved with the aqueous solution RI ranging from 1.333 to 1.3707, which is competitively compared to other existing fiber-optic sensors. While the 2 order polynomial fitting function, which determination relationship is higher than 0.999, can be used to some more rigorous monitoring. The proposed fiber laser has a SNR of ~50dB, and 3dB bandwidth ~0.03nm.

  4. UV-curable low index hybrid glass as hard cladding for silica fibers

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Wojcik, Jan

    2005-09-01

    UV-curable hybrid glass materials, when applied as thin coatings on optical fibers are already known to result in fibers enhanced mechanical strength as well as thermal and environmental stability [1]. These materials, when fully cured offer refractive index in the range 1.470-1.50 measured at 1300 nm. In search for low optical loss and lower refractive index claddings the hybrid glass composition was altered to result in UV curable two component formulation HG-LI (1+2) of refractive index 1. 380 The goal of this study was fabrication and valuation of the optical, mechanical and thermal properties of the silica fibers cladded with this novel hybrid glass material. The silica fibers were drawn and cladded by HG-LI-(1+2) and HG-LI-2. For control fibers, soft silicone resin and hard silicone resin were used as cladding for the same silica preform rod. The basic optical (spectral attenuation) and mechanical characteristics (tensile strength, n parameter) for hybrid glass cladded fibers were performed. Thermo Gravimetric Analysis (TGA) was performed as well. The results showed that hybrid glass cladding has the onset decomposition temperature exceeding 300 °C, whereas the NA values of the silica fiber cladded by HG-LI-(1+2) and HG-Li-2 were 0.31 and 0.33, respectively.

  5. Spectral and spatial characterization of perfluorinated graded-index polymer optical fibers for the distribution of optical wireless communication cells.

    PubMed

    Hajjar, Hani Al; Montero, David S; Lallana, Pedro C; Vázquez, Carmen; Fracasso, Bruno

    2015-02-10

    In this paper, the characterization of a perfluorinated graded-index polymer optical fiber (PF-GIPOF) for a high-bitrate indoor optical wireless system is reported. PF-GIPOF is used here to interconnect different optical wireless access points that distribute optical free-space high-bitrate wireless communication cells. The PF-GIPOF channel is first studied in terms of transmission attenuation and frequency response and, in a second step, the spatial power profile distribution at the fiber output is analyzed. Both characterizations are performed under varying restricted mode launch conditions, enabling us to assess the transmission channel performance subject to potential connectorization errors within an environment where the end users may intervene by themselves on the home network infrastructure.

  6. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  7. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

    PubMed

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-10-08

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  8. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

    PubMed Central

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-01-01

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity. PMID:27740607

  9. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.

    PubMed

    Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

    2014-03-31

    Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

  10. Fiber inline Michelson interferometer fabricated by CO2 laser irradiation for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Wu, Hongbin; Yuan, Lei; Zhao, Longjiang; Cao, Zhitao; Wang, Peng

    2014-03-01

    A compact Michelson interferometer (MI) in a single-mode fiber (SMF) is successfully formed by CO2 laser irradiation to measure refractive index (RI) values. The fiber inline MI mainly consists of two parts: one is the waist region in fiber formed by CO2 laser irradiation and the other one is the fiber tip end facet with pure gold sputter coating. Based on the MI theory, the interference signal is generate between the core mode and the cladding mode excited by the core mode at the waist region. Reflective spectra at two different interference lengths of 5mm and 15mm are given and the calculated lengths based on theory are well verified. After the measurements of matching liquids with seven different refractive indices, the RI sensitivity of the MI sample is tested of -197.3+/-19.1nm/RIU (refractive index unit), which suggests well potential application in RI sensing.

  11. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  12. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  13. Estimation of nonlinear refractive index in various silica-based glasses for optical fibers

    NASA Astrophysics Data System (ADS)

    Kato, T.; Suetsugu, Y.; Nishimura, M.

    1995-11-01

    The dependence of the nonlinear refractive index n2 on glass compositions for optical fibers is clarified. The relation between n2 and germanium- or fluorine-doped SiO2 is calculated on the basis of the measurement of n 2 at 1.55 mu m with the improved cross-phase-modulation method, taking into account the radial distribution of the optical power in the fibers.

  14. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber.

    PubMed

    Tian, Zhaobing; Yam, Scott S-H; Loock, Hans-Peter

    2008-05-15

    A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.

  15. Determination of Diameter and Index of Refraction of Textile Fibers by Laser Backscattering

    SciTech Connect

    H. Okuda; B. Stratton; L. Meixler; P. Efthimion; D.Mansfield

    2003-07-24

    A new method was developed to determine both diameters and indices of refraction and hence the birefringence of cylindrical textile and industrial fibers and bundles by measuring intensity patterns of the scattered light over an interval of scattering angles. The measured intensity patterns are compared with theoretical predictions (Mie theory) to determine fiber diameter and index of refraction. It is shown that the method is simple and accurate and may be useful as an on-line, noncontact diagnostic tool in real time.

  16. A multi-D-shaped optical fiber for refractive index sensing.

    PubMed

    Chen, Chien-Hsing; Tsao, Tzu-Chein; Tang, Jaw-Luen; Wu, Wei-Te

    2010-01-01

    A novel class of multi-D-shaped optical fiber suited for refractive index measurements is presented. The multi-D-shaped optical fiber was constructed by forming several D-sections in a multimode optical fiber at localized regions with femtosecond laser pulses. The total number of D-shaped zones fabricated could range from three to seven. Each D-shaped zone covered a sensor volume of 100 μm depth, 250 μm width, and 1 mm length. The mean roughness of the core surface obtained by the AFM images was 231.7 nm, which is relatively smooth. Results of the tensile test indicated that the fibers have sufficient mechanical strength to resist damage from further processing. The multi-D-shaped optical fiber as a high sensitive refractive-index sensor to detect changes in the surrounding refractive index was studied. The results for different concentrations of sucrose solution show that a resolution of 1.27 × 10(-3)-3.13 × 10(-4) RIU is achieved for refractive indices in the range of 1.333 to 1.403, suggesting that the multi-D-shaped fibers are attractive for chemical, biological, and biochemical sensing with aqueous solutions.

  17. Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Reed, William A.; Yan, Man F.; Schnitzer, Mark J.

    2002-10-01

    We describe the design, construction, and application of what are believed to be the smallest fiber-optic probes used to date during imaging or diagnosis involving low-coherence interferometry (LCI). The probes use novel fiber-optic gradient-index (GRIN) lenses fabricated by a recently developed modified chemical-vapor-deposition (MCVD) process that avoids on-axis aberrations commonly marring MCVD-fabricated GRIN substrate. Fusing GRIN fiber lenses onto single-mode fiber yields automatically aligned all-fiber probes that insert into tissue through hypodermic needles as small as 31-gauge (inner diameter, 127 μm). We demonstrate the use of such probes with LCI by measuring microscopic brain motions in vivo.

  18. Electronic and thermal refractive index changes in ytterbium-doped fiber amplifiers.

    PubMed

    Kuznetsov, M S; Antipov, O L; Fotiadi, A A; Mégret, P

    2013-09-23

    We develop a theoretical framework to analyze the mechanism of refractive index changes (RIC) in double-clad Yb³⁺ doped optical fibers under resonant core or clad pumping, and with signal amplification. The model describes and compares thermal and electronic contributions to the phase shifts induced on the amplified signal at 1064 nm and the probe signal at 1550 nm, i.e. located inside and outside of the fiber amplification band, respectively. The ratio between the thermal and electronic phase shifts is evaluated as a function of the pump pulse duration, the gain saturation, the amplified beam power and for a variety of fiber parameters.

  19. Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor

    SciTech Connect

    Le Coq, D.; Boussard-Pledel, C.; Fonteneau, G.; Pain, T.; Bureau, B.; Adam, J.L

    2003-10-30

    Double index chalcogenide fibers, based on tellurium, arsenic, and selenium, have been made by an original technique. This technique, based on the build-in-casting method, is achieved in a sealed silica ampoule. In view of the low attenuation obtained in the mid-infrared (IR), these fibers are used to implement Fiber Evanescent Wave Spectroscopy (FEWS). As the IR light is only propagated through the core of the waveguide, a chemical etching is applied in order to remove the glassy cladding of the sensing zone. IR spectra of ethanol and chloroform, recorded with such sensor, are presented showing the high sensitivity of the method.

  20. Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing.

    PubMed

    Sun, Bing; Chen, Ming-Yang; Zhang, Yong-Kang; Yang, Ji-Chang; Yao, Jian-quan; Cui, Hai-Xia

    2011-02-28

    We propose a novel photonic crystal fiber refractive index sensor which is based on the selectively resonant coupling between a conventional solid core and a microstructured core. The introduced microstructured core is realized by filling the air-holes in the core with low index analyte. We show that a detection limit (DL) of 2.02×10⁻⁶ refractive index unit (RIU) and a sensitivity of 8500 nm/RIU can be achieved for analyte with refractive index of 1.33.

  1. Resonantly guided modes in microstructured optical fibers with a circular array of high-index rods.

    PubMed

    Ohtera, Yasuo; Hirose, Haruka; Yamada, Hirohito

    2013-08-01

    A microstructured optical fiber with a new type of waveguiding mechanism is proposed. The fiber consists of a circular rod array of high index material (n=3.48) embedded in a low index background (n=1.44). The rod array exhibits guided-mode resonance (GMR) for cylindrical waves arriving from inside the array, and thus functions as a highly reflective circular wall. Through finite-difference time-domain (FDTD) simulations, we confirmed light confinement and guidance near the GMR wavelength. Basic optical characteristics such as dispersion relations, loss spectra, and mode field profiles were calculated.

  2. Nonadiabatic Landau-Zener tunneling in waveguide arrays with a step in the refractive index.

    PubMed

    Khomeriki, Ramaz; Ruffo, Stefano

    2005-03-25

    Landau-Zener tunneling is discussed in connection with optical waveguide arrays. Light injected in a specific band of the Bloch spectrum in the propagation constant can be transmitted to another band, changing its physical properties. This can be achieved using two coupled waveguide arrays with different refractive indices. The step in the refractive index causes wave "acceleration" and thus induces strongly nonadiabatic Landau-Zener tunneling. Theoretically, the analysis is performed by considering a Schrödinger equation in a periodic potential with a step. The region of physical parameters where this phenomenon can occur is analytically determined and a realistic experimental setup is suggested. Its application could allow the realization of light filters.

  3. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber.

    PubMed

    Guo, Huiyong; Liu, Fang; Yuan, Yinquan; Yu, Haihu; Yang, Minghong

    2015-02-23

    For the online writing of ultra-weak fiber Bragg gratings (FBGs) in the drawing optical fibers, the effects of the intensity profile, pulse fluctuation and pulse width of the excimer laser, as well as the transverse and longitudinal vibrations of the optical fiber have been investigated. Firstly, using Lorentz-Loren equation, Gladstone-Dale mixing rule and continuity equation, we have derived the refractive index (RI) fluctuation along the optical fiber and the RI distribution in the FBG, they are linear with the gradient of longitudinal vibration velocity. Then, we have prepared huge amounts of ultra-weak FBGs in the non-moving optical fiber and obtained their reflection spectra, the measured reflection spectra shows that the intensity profile and pulse fluctuation of the excimer laser, as well as the transverse vibration of the optical fiber are little responsible for the inconsistency of ultra-weak FBGs. Finally, the effect of the longitudinal vibration of the optical fiber on the inconsistency of ultra-weak FBGs has been discussed, and the vibration equations of the drawing optical fiber are given in the appendix.

  4. Preparation of native cellulose-AgCl fiber with antimicrobial activity through one-step electrospinning.

    PubMed

    Wang, Shaojun; Zhang, Xiaomin; Luo, Ting; Zhu, Jin; Su, Shengpei

    2017-02-01

    The native Cellulose-AgCl fiber have been firstly fabricated by one-step electrospinning of cellulose solution with poly(vinyl pyrrolidone) (PVP) and AgNO3. X-ray diffraction, Scanning electron microscopy (SEM), Energy dispersive spectrometer, Thermo-gravimetric analysis and Fourier transform infrared are used to characterize the crystal structure, morphology and composition of cellulose-AgCl nanocomposites. The results of SEM indicate that the size of AgCl in cellulose fiber matrix is able to be adjusted by the addition of Polyvinylpyrrolidone (PVP). The antimicrobial activity of the nanocomposites fiber is also tested against the model microbes E. coli (Gram-negative) and S. aureus (Gram-positive). The results indicate that cellulose-AgCl nanocomposites have a good antimicrobial activity, which is improving with the decrease of AgCl size in fiber matrix. This work provides a novel and simple way to adjust the AgCl size in electrospinning cellulose matrix which can be applied as functional biomaterials.

  5. Walk Ratio (Step Length/Cadence) as a Summary Index of Neuromotor Control of Gait: Application to Multiple Sclerosis

    ERIC Educational Resources Information Center

    Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi

    2011-01-01

    In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…

  6. Effects of para-fluorine substituent of polystyrene on gradient-index fiber-optic properties

    NASA Astrophysics Data System (ADS)

    Koike, Kotaro; Suzuki, Akifumi; Makino, Kenji; Koike, Yasuhiro

    2015-01-01

    To study the effects of fluorine substituent of polystyrene (PSt) on gradient-index fiber-optic properties, a poly(para-fluorostyrene) (P(p-FSt))-based graded-index plastic optical fiber (GI POF) is fabricated, and its properties are compared with those of a PSt-based GI POF. The para-fluorine substitution positively affects the glass transition temperature (Tg) of the core, wavelength dispersion of the optimum refractive index profile, bandwidth, and attenuation. The core Tg of the P(p-FSt)-based GI POF is 88 °C, which is higher than that of the PSt-based GI POF by 9 °C when both fibers have an identical numerical aperture (NA = 0.2). The optimum refractive index profile coefficient for the P(p-FSt)-based GI POF varies from 2.2 to 2.1 in the 600-800 nm range, whereas that for the PSt-based GI POF varies from 2.6 to 2.3 in the same wavelength region. The bandwidth of the P(p-FSt)-based GI POF is intrinsically higher than that of PSt-based GI POF. Moreover, the fiber attenuation of the P(p-FSt)-based GI POF was significantly smaller than that of the PSt-based GI POF over the source wavelength range. Our study demonstrates that P(p-FSt) has favorable properties as a GI POF base material.

  7. Characterization of refractive index change and fabrication of long period gratings in pure silica fiber by femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Ahmed, Farid; Joe, Hang-Eun; Min, Byung-Kwon; Jun, Martin B. G.

    2015-11-01

    Ultrafast laser induced refractive index (RI) change in the core of a standard telecommunication fiber is quantified using the spectral shift of an in-fiber Bragg grating (FBG) based Fabry-Perot cavity. Measured RI change is used to design and then fabricate long period grating (LPG) in pure silica core single mode fiber (SMF) employing identical laser irradiation conditions used in core index characterization. A core length of 100 μm within the 10 mm long cavity structure is scanned with ultrafast laser pulses, and the corresponding spectral shift is used to calculate index modification. The index change of 0.000449 found in characterization process is used to simulate the LPG in pure silica fiber. Identical index modulation written in pure silica fiber by femtosecond laser radiation provides a rejection band that is in good agreement with the simulation results. The fabricated LPG sensors are also characterized for ambient temperature and RI.

  8. A reflective fiber-optic refractive index sensor based on multimode interference in a coreless silica fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Xinlei; Chen, Ke; Mao, Xuefeng; peng, Wei; Yu, Qingxu

    2015-04-01

    A reflective fiber-optic refractive index (RI) sensor based on multimode interference (MMI) is presented and investigated in this paper. The sensor is made by splicing a small section of coreless silica fiber (CSF) to the standard single mode fiber (SMF). A wide-angle beam propagation method (WA-BPM) is employed for numerical simulation and design of the proposed RI sensor. Based on the simulation results, a RI sensor with a length of 1.7 cm of CSF is fabricated and experimentally studied. Experimental results show that the characteristic wavelength shift has an approximately linear relationship with the RI of the sample. A sensitivity of 141 nm/RIU (refractive index unit) and a resolution of 2.8×10-5 are obtained in the RI range from 1.33 to 1.38. As the RI value is higher than 1.38, the sensitivity of the sensor increase rapidly as the RI increase and a maximum sensitivity of 1561 nm/RIU can be achieved, corresponding to a resolution of 2.6×10-6. The experimental results fit well with the numerical simulation results.

  9. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing

    PubMed Central

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M.

    2015-01-01

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33–1.37) suitable for biosensing applications. PMID:26426022

  10. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    PubMed

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-09-29

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.

  11. Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid

    NASA Astrophysics Data System (ADS)

    Qazi, Hummad Habib; Mohammad, Abu Bakar bin; Ahmad, Harith; Zamani Zulkifli, Mohd; Wadi Harun, Sulaiman

    2016-04-01

    A new fabrication method is introduced for the production of D-shaped optical fiber. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of single-mode optical fiber in order to obtain a D-shaped cross section. Adjusting specific mechanical parameters allows for control of the volume of the D-shaped zone, while the fiber surface smoothness is governed by selection of polishing film grit size. To meet the accuracy and repeatability requirements, optical power loss is monitored during the entire polishing process in situ and in real time. This proposed technique possesses advantages of rapidity, safety, simplicity, repeatability and stability with high precision in comparison with contemporary methods for production. Sensor performance tests on the fiber reveal a linear response with linearity up to R2 = 0.984 for surrounding refractive index in the range of 1.320-1.342 refractive index, which corresponds to different concentrations of the glucose solution test environment. The produced D-shaped optical fiber has potential sensing and monitoring applications in chemical, environmental, biological and biochemical fields.

  12. LLNL Measurements of Graded-Index Multi-Mode Fiber (ITF 47)

    SciTech Connect

    Saito, T.T.

    2000-05-01

    The Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, located in the Nuclear City of Snezhinsk, east of the Ural mountains and the Lawrence Livermore National Laboratories have been investigating the possibility of establishing a commercial optical fiber manufacturing facility. These discussions began in the summer of 1998. At that time three samples (single mode and multi-mode) of optical fiber were left at the Sandia National Laboratory. Sandia measured two of the segments and sent them to LLNL. The optical loss at 1550 nm and 1300 nm were higher than commercially available fiber. The measurements were complicated because the geometry of the fibers also did not meet specification. Since the core was not adequately centered coupling of optical energy into the fiber being tested varied widely depending on which end of the fiber was used for insertion. The results of these measurements were summarized in the informal report dated June 11, 1999, which was hand carried by Dr. Paul Herman during his July 1999 visit. During the July visit a 1.2-km long section of graded-index multimode fiber, ITF 47, was given to Herman. We had requested samples longer than the earlier ones (which were {approx}0.1 km long) in order that a cutback method could be used for the transmission measurements. The optical loss using the cutback technique and the transmission spectral measurements in the 600-1700 mn region are reported. Also physical measurements are reported of the fiber's diameter, concentricity, ellipticity and tensile strength (proof test). The test results are summarized in Table 1, ''Comparative Data for Multi-mode Optical Fiber.'' The table includes the values from the Industrial specification TIA/EIA 402AAAB, the commercial specification for Corning's 50/125 CPC6, the values measured on ITF-47 and provided by C-70, and LLNL's values for ITF-47 as well as the multimode values from the June 1999 samples.

  13. Fabrication quality analysis of a fiber optic refractive index sensor created by CO2 laser machining.

    PubMed

    Chen, Chien-Hsing; Yeh, Bo-Kuan; Tang, Jaw-Luen; Wu, Wei-Te

    2013-03-26

    This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10(-4) RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10(-5) RIU, and greater linearity at R2 = 0.999.

  14. An optical fiber multiplexing interferometric system for measuring remote and high precision step height

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-02-01

    In this paper, an optical fiber multiplexing interferometric system including a Fizeau interferometer and a Michelson interferometer is designed for remote and high precision step height measurement. The Fizeau interferometer which is inserted in the remote sensing field is used for sensing the measurand, while the Michelson interferometer which is stabilized by a feedback loop works in both modes of low coherence interferometry and high coherence interferometry to demodulate the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by using the symmetrical peak-searching method to address the peak of the low coherence interferogram precisely and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  15. Remote and high precision step height measurement with an optical fiber multiplexing interferometric system

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-03-01

    An optical fiber multiplexing low coherence and high coherence interferometric system, which includes a Fizeau interferometer as the sensing element and a Michelson interferometer as the demodulating element, is designed for remote and high precision step height measurement. The Fizeau interferometer is placed in the remote field for sensing the measurand, while the Michelson interferometer which works in both modes of low coherence interferometry and high coherence interferometry is employed for demodulating the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by searching precisely the peak of the low coherence interferogram symmetrically from two sides of the low coherence interferogram and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  16. Contactless optical fiber refractive index sensor for liquid and solid samples

    NASA Astrophysics Data System (ADS)

    Moreno-Hernández, Carlos; Monzón-Hernández, D.; Villatoro, Joel

    2016-05-01

    We report on a contactless optical fiber refractive index (RI) sensor that can be used to measure the RI of solid or liquid samples. The sensor is simple to construct and consists of a Fabry-Perot interferometer (FPI) with long cavity. The cavity of our FPI consists of a tapered optical fiber tip and an external flat mirror. The output beam of the fiber tip is partially reflected from different interfaces of the sample present in the interferometer cavity. Each of such reflections interferes with the beam internally reflected by the fiber tip. Thus, a multiple-beam FPI is formed whose reflection spectrum is composed by the superposition of several two-beam interferences. The analysis of the multiple interference spectra was carried out in the Fourier domain. Several glass samples, water-sucrose and water-glycerol solutions were prepared and tested. Since the fiber tip is not in direct contact with the sample under test the measurement is simple and immediate. To our-knowledge, this is the first time that a fiber optic sensor can be used to measure the RI of solid and liquid samples without any modification.

  17. LLNL Measurements of Graded-Index Multi-Mode Optical Fiber (ITF 47)

    NASA Astrophysics Data System (ADS)

    Saito, T. T.

    2000-05-01

    The Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, located in the Nuclear City of Snezhinsk, east of the Ural mountains and the Lawrence Livermore National Laboratories have been investigating the possibility of establishing a commercial optical fiber manufacturing facility. These discussions began in the summer of 1998. At that time three samples (single mode and multi-mode) of optical fiber were left at the Sandia National Laboratory. Sandia measured two of the segments and sent them to LLNL. The optical loss at 1550 nm and 1300 nm were higher than commercially available fiber. The measurements were complicated because the geometry of the fibers also did not meet specification. Since the core was not adequately centered coupling of optical energy into the fiber being tested varied widely depending on which end of the fiber was used for insertion. The results of these measurements were summarized in the informal report dated June 11, 1999, which was hand carried by Dr. Paul Herman during his July 1999 visit. During the July visit a 1.2-km long section of graded-index multimode fiber, ITF 47, was given to Herman. We had requested samples longer than the earlier ones (which were (approx) 0.1 km long) in order that a cutback method could be used for the transmission measurements. The optical loss using the cutback technique and the transmission spectral measurements in the 600-1700 mn region are reported. Also physical measurements are reported of the fiber's diameter, concentricity, ellipticity and tensile strength (proof test).

  18. Cladded self-written multimode step-index waveguides using a one-polymer approach.

    PubMed

    Günther, Axel; Petermann, Ann Britt; Gleissner, Uwe; Hanemann, Thomas; Reithmeier, Eduard; Rahlves, Maik; Meinhardt-Wollweber, Merve; Morgner, Uwe; Roth, Bernhard

    2015-04-15

    Low-loss optical-coupling structures are highly relevant for applications in fields as diverse as information and communication technologies, integrated circuits, or flexible and highly-functional polymer sensor networks. For this suitable and reliable production methods are crucial. Self-written waveguides are an interesting solution. In this work, we present a simple and efficient one-polymer approach for self-written optical connections between light-guiding structures such as single-mode and multi-mode optical fibers or waveguides that relies on self focusing of the light inside a photopolymerizing mixture. The optical connections are produced in a two-step process by writing into monomer resin using cw laser light in the blue wavelength range and subsequent UV curing. Since only one photopolymerizing resin is required, we reduced the fabrication complexity compared to previous approaches to obtain a waveguide embedded in a rigid cladding material. We discuss the production method, the results obtained as function of relevant process parameters such as writing speed or curing time, and evaluate optical properties and coupling efficiencies.

  19. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064  nm.

    PubMed

    Lopez-Galmiche, G; Sanjabi Eznaveh, Z; Eftekhar, M A; Antonio Lopez, J; Wright, L G; Wise, F; Christodoulides, D; Amezcua Correa, R

    2016-06-01

    We observe efficient supercontinuum generation that extends into the visible spectral range by pumping a low differential mode group delay graded index multimode fiber in the normal dispersion regime. For a 28.5 m long fiber, the generated spectrum spans more than two octaves, starting from below 450 nm and extending beyond 2400 nm. The main nonlinear mechanisms contributing to the visible spectrum generation are attributed to multipath four-wave mixing processes and periodic spatio-temporal breathing dynamics. Moreover, by exploiting the highly multimodal nature of this system, we demonstrate versatile generation of visible spectral peaks in shorter fiber spans by altering the launching conditions. A nonlinearly induced mode cleanup was also observed at the pump wavelength. Our results could pave the way for high brightness, high power, and compact, multi-octave continuum sources.

  20. Coreless side polished fiber as ultra-sensitive refractive index sensor

    NASA Astrophysics Data System (ADS)

    Dong, Huazhuo; Guan, Junwen; Yu, Jianhui; Lu, Huihui; Luo, Yunhan; Zhang, Jun; Chen, Zhe; Wu, Zhuoqi

    2016-04-01

    A novel type of coreless side-polished fiber (CSPF) was investigated numerically and experimentally for sensing refractive index (RI). Numerical simulations and experiments found that multi-mode interference can be excited at the transitional section of coreless side-polished fiber, leading to resonant dips in transmission spectrum through such a CSPF. A red shift of such dips was observed due to increase in surrounding RI, whereby the CSPF can be used as RI sensor. Interestingly, by such a simple CSPF structure, ultra-high sensitivity of 7225nm/RIU for RI range of 1.432 to 1.434 was achieved in our experiment. As the CSPF can act as a versatile platform, the high sensitivity of the CSPF will open new opportunities for other high sensitive sensors and fiber devices.

  1. Refractive index sensors based on the fused tapered special multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  2. Fiber optic based multiparametric spectroscopy in vivo: Toward a new quantitative tissue vitality index

    NASA Astrophysics Data System (ADS)

    Kutai-Asis, Hofit; Barbiro-Michaely, Efrat; Deutsch, Assaf; Mayevsky, Avraham

    2006-02-01

    In our previous publication (Mayevsky et al SPIE 5326: 98-105, 2004) we described a multiparametric fiber optic system enabling the evaluation of 4 physiological parameters as indicators of tissue vitality. Since the correlation between the various parameters may differ in various pathophysiological conditions there is a need for an objective quantitative index that will integrate the relative changes measured in real time by the multiparametric monitoring system into a single number-vitality index. Such an approach to calculate tissue vitality index is critical for the possibility to use such an instrument in clinical environments. In the current presentation we are reporting our preliminary results indicating that calculation of an objective tissue vitality index is feasible. We used an intuitive empirical approach based on the comparison between the calculated index by the computer and the subjective evaluation made by an expert in the field of physiological monitoring. We used the in vivo brain of rats as an animal model in our current studies. The rats were exposed to anoxia, ischemia and cortical spreading depression and the responses were recorded in real time. At the end of the monitoring session the results were analyzed and the tissue vitality index was calculated offline. Mitochondrial NADH, tissue blood flow and oxy-hemoglobin were used to calculate the vitality index of the brain in vivo, where each parameter received a different weight, in each experiment type based on their significance. It was found that the mitochondrial NADH response was the main factor affected the calculated vitality index.

  3. Bend and refractive index sensing based on the tuning fork fiber

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Li, Xuyou; Yu, Yingying; He, Kunpeng

    2015-08-01

    A fiber-optic based on the tuning fork structure is investigated for bend and refractive index (RI). The new bend/RI sensor based on the tuning fork structure is ease of fabrication, low cost, and simple signal acquisition. The operation principle relies on the power coupling of two cores inputted into light simultaneously. The beam-propagation method (BPM) is employed for modeling the propagation of light along the optical fiber sensing device proposed. The simulation results show that it exhibits very high sensitivity, accuracy and wide dynamic range in making curvature and RI measurements. The bending sensitivity is about 0.01184 W/m-1 at curvatures ranging from 0 to 50 m-1, the RI sensitivity is about -1.5557, -22.3031 and -102.44878 W/RIU at refractive indexes ranging from 1.33-1.418, 1.418-1.45 and 1.45-1.456, respectively.

  4. Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers.

    PubMed

    Li, Shu-Guang; Liu, Si-Ying; Song, Zhao-Yuan; Han, Yin; Cheng, Tong-Lei; Zhou, Gui-Yao; Hou, Lan-Tian

    2007-08-01

    We demonstrate an absorption transmission spectrum of CH(4) in a 16.9 cm long index-guiding photonic crystal fiber (PCF) fabricated in our laboratory. One of the main factors to improve the sensitivity is to increase the fraction of power in PCF cladding air holes. We study the fraction of power in PCF cladding air holes as a function of the index-guiding PCF parameters. We found that a PCF with small spacing and a large air-filling ratio has a higher fraction of power in its cladding air holes. At the same time the mode area in this PCF is small and would generate strong nonlinear effects in the fiber. If we use a PCF in which the core is formed by missing seven air holes, it is immediately obvious that the PCF used as a sensor has higher sensitivity and a larger mode area.

  5. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing

    NASA Astrophysics Data System (ADS)

    Li, Benye; Jiang, Lan; Wang, Sumei; Tsai, Hai-Lung; Xiao, Hai

    2011-11-01

    An improved point-by-point inscription method is proposed to fabricate long period fiber gratings (LPFGs) by using a laser operating at 800 nm with 35 fs duration pulses. The sensitivity to misalignment between the core and the focus is reduced by scanning a rectangular part on the fiber. LPFGs with an attenuation depth of 20 dB are achieved within the wavelength range of 1465-1575 nm. Characterization of the temperature sensitivity and thermal stability of the LPFGs is presented. A 5.6 nm wavelength shift and a 1.2 dB decrease in the attenuation peak are observed following heat treatment at 600 °C for 4 h. The fabricated LPFGs are used as refractive index sensors. The effect of heat treatment on the response of the LPFGs to refractive index changes is also studied.

  6. Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology.

    PubMed

    Zhao, Ying; Pang, Fufei; Dong, Yanhua; Wen, Jianxiang; Chen, Zhenyi; Wang, Tingyun

    2013-11-04

    The atomic layer deposition (ALD) technology is introduced to enhance the sensitivity of optical fiber cladding mode to surrounding refractive index (SRI) variation. The highly uniform Al2O nanofilm was deposited around the double cladding fiber (DCF) which presents cladding mode resonant feature. With the high refractive index coating, the cladding mode resonant spectrum was tuned. And the sensitivity enhancement for SRI sensor was demonstrated. Through adjusting the deposition cycles, a maximum sensitivity of 723 nm/RIU was demonstrated in the DCF with 2500 deposition cycles at the SRI of 1.34. Based on the analysis of cladding modes reorganization, the cladding modes transition of the coated DCF was investigated theoretically. With the high performance nanofilm coating, the proposed SRI sensor is expected to have wide applications in chemical sensors and biosensors.

  7. Tunable mode coupler in the microfluidic channel for the fiber optics refractive index sensor

    NASA Astrophysics Data System (ADS)

    Gao, R.; Li, G.; Zhou, Y.; Jiang, Y.

    2014-11-01

    We propose and demonstrate a highly sensitive optical fiber microfluidic refractometer. A microhole is fabricated in the photonic crystal fiber (PCF) by using femtosecond laser beam, which combines the tunable mode coupler and microfluidic channel. The mode field diameter of the guided light is changed with the refractive index in the microfluidic channel, which results in the tunable coupling ratio between the core and the cladding in the PCF. Therefore, the refractive index of the liquid in the microfluidic channel is detected by interrogating the fringe visibility of the reflection spectrum. These experiments results demonstrate that the sensor is insensitive with the temperature and strain, and a RI sensitivity of up to 150.7 dB/RIU is achieved, establishing the tunable mode coupler as a sensitive and versatile sensor.

  8. Closed-loop phase stabilizing and phase stepping methods for fiber-optic projected-fringe digital interferometry.

    PubMed

    Chao, Zhang; Fa-Jie, Duan

    2011-11-01

    Closed-loop active homodyne control can be used to make an interferometer steady against phase fluctuating followed by, for example, temperature gradients. This technology is introduced to stabilize π/2 -rad phase steps in a full-field interferometer. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Fresnel reflections from the distal fiber ends undergo a double pass in the fibers and interference at the fourth port of the coupler which formed a Michelson interferometer. We suggested two means of ac phase tracking (PTAC) and dc phase tracking (PTDC) to maintain the interference intensity at quadrature by feedback control. Stepping between quadrature positions forces a π/2 -rad phase step. A method based on the ratio of harmonic of the interference signal was proposed to estimate phase step accuracy. A root-mean-square phase stability of 1.5 mrad and phase step accuracy of 2.6 mrad were measured with PTAC and a root-mean-square phase stability of 2 mrad and phase step accuracy of 13.8 mrad were measured with PTDC for the fiber-optic projected-fringe digital interferometry following the same condition. It worked well in two hours without resetting the integrator.

  9. Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample.

    PubMed

    Moreno-Hernández, Carlos; Monzón-Hernández, David; Hernández-Romano, Iván; Villatoro, Joel

    2015-08-24

    We demonstrate the capability of an air cavity Fabry-Perot interferometer (FPI), built with a tapered lead-in fiber tip, to measure three parameters simultaneously, distance, group refractive index and thickness of transparent samples introduced in the cavity. Tapering the lead-in fiber enhances the light coupling back efficiency, therefore is possible to enlarge the air cavity without a significant deterioration of the fringe visibility. Fourier transformation, used to analyze the reflected optical spectrum of our FPI, simplify the calculus to determine the position, thickness and refractive index. Samples made of 7 different glasses; fused silica, BK7, BalF5, SF2, BaF51, SF15, and glass slides were used to test our FPI. Each sample was measured nine times and the results for position, thickness and refractive index showed differences of ± 0.7%, ± 0.1%, and ± 0.16% respectively. The evolution of thickness and refractive index of a block of polydimethylsiloxane (PDMS) elastomer due to temperature changes in the range of 25°C to 90°C were also measured. The coefficients of the thermal expansion and thermo-optic estimated were α = 4.71x10(-4)/°C and dn/dT = -4.66 x10(-4) RIU/°C, respectively.

  10. Changes in Gait Variability From First Steps to Adulthood: Normative Data for the Gait Variability Index.

    PubMed

    Gouelle, Arnaud; Leroux, Julien; Bredin, Jonathan; Mégrot, Fabrice

    2016-01-01

    The process of learning to walk is ongoing throughout childhood. The Gait Variability Index (GVI; A. Gouelle et al., 2013) has been proposed to quantify the variability of spatiotemporal parameters (STP) during gait. The authors' aim was to evaluate the GVI and STP of healthy children and teenagers to (a) determine changes in the GVI with age and to derive normal values in children and (b) to evaluate the influence of STP on the GVI. A total of 140 typically developing children from 1 to 17 years old were categorized into 7 groups of 20 based on age. Spatiotemporal gait parameters were recorded using an electronic walkway. GVI increased and STP changed with age. In the children-teenagers group, the GVI was positively related to step length, speed, and negatively to cadence. Following normalization by lower limb length, correlations were no longer significant. In contrast, raw base of support was not correlated with the GVI but normalized base of support was. A multiple linear regression showed that only age had a direct impact on the GVI, indicating that gait continues to change after 6-7 years. These changes were only demonstrated by the GVI, highlighting its usefulness for the evaluation of gait in young populations.

  11. Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature.

    PubMed

    Wang, Ruohui; Qiao, Xueguang

    2014-11-10

    We present a hybrid miniature optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature. The interferometer is fabricated by cascading two short sections of capillary tubes with different inner diameters. One extrinsic interferometer is based on the air gap cavity formed by the capillary tube with large diameter. Another section of capillary tube with small inner diameter performs as an intrinsic interferometer and also provides a channel enabling gas to enter and leave the extrinsic cavity freely. The experiment shows that the different dips or peaks in fringe exhibit different responses to the changes in gas refractive index and temperature. Owing to this feature, simultaneous measurement of the gas refractive index and temperature can be realized.

  12. TCF-MMF-TCF fiber structure based interferometer for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Fu, Haiwei; Li, Huidong; Shao, Min; Zhao, Na; Liu, Yinggang; Li, Yan; Yan, Xu; Liu, Qinpeng

    2015-06-01

    A liquid refractive index (RI) sensor based on in-fiber Mach-Zehnder interferometer (MZI) by sandwiching multi-mode fiber (MMF) between two short sections of thinned core fiber (TCF) is proposed in this paper. The first section of TCF excites the high-order modes and the second section TCF couples the core mode and high-order modes into lead-out SMF to form intermodal interference. The sensor with MMF length of 20 mm and TCFs length of 1 mm was fabricated. The transmission spectrum variation of the sensor with respect to surrounding refractive index (SRI) has been studied by experiment. The results show that the central wavelength of dips/peaks shifting had a good linearity with SRI. The RI sensitivity of the sensor is 130.00 nm/RIU over the RI range of 1.3333-1.4182. The RI sensitivity increase to 433.60 nm/RIU after etching the MMF cladding of the sensor. The sensor keeps low dependence on temperature before and after etching.

  13. Packaged symmetric/asymmetric corrugated long period fiber gratings for refractive index sensing applications

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Yu; Chan, Wen-Lin; Chuo, Shih-Min; Chang, Jer-Haur; Chen, Li-Lun; Wang, Lon A.

    2009-10-01

    We demonstrate a new method that could make possible the mass production of symmetric and asymmetric corrugated long period fiber gratings (C-LPFG) by utilizing hot embossing and imprint lithography on polycarbonate (PC). The poly-dimethylsiloxane (PDMS) is imprinted on PC to create the periodic revealed region of fiber for hydrofluoric acid (HF) etching. The asymmetric C-LPFGs show some unique optical characteristics of two separate dips due to their asymmetric structures. After the torsion, the second dip would be gone and the first one would begin to shift toward shorter wavelength. It is assumed that the asymmetric C-LPFG behaves similar to the symmetric one with the torsion of a full circle. A C-LPFG was well packaged by fixing itself in the PC and having some open area close to the fiber to receive the liquid under test. The corrugated structures close to the fiber core were covered by the liquid that the packaged refractive index sensor has the sensitivity of 26.7 nm/RIU.

  14. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications.

    PubMed

    Tan, Y C; Tou, Z Q; Chow, K K; Chan, C C

    2015-11-30

    We present a pilot demonstration of an optical fiber based refractive index (RI) sensor involving the deposition of graphene onto the surface of a segment of a photonic crystal fiber (PCF) in a fiber-based Mach-Zehnder Interferometer (MZI). The fabrication process is relatively simple and only involves the fusion splicing of a PCF between two single mode fibers. The deposition process relies only on the cold transfer of graphene onto the PCF segment, without the need for further physical or chemical treatment. The graphene overlay modified the sensing scheme of the MZI RI sensor, allowing the sensor to overcome limitations to its detectable RI range due to free spectral range issues. This modification also allows for continuous measurements to be obtained without the need for reference values for the range of RIs studied and brings to light the potential for simultaneous dual parameter sensing. The sensor was able to achieve a RI sensitivity of 9.4 dB/RIU for the RIs of 1.33-1.38 and a sensitivity of 17.5 dB/RIU for the RIs of 1.38-1.43. It also displayed good repeatability and the results obtained were consistent with the modeling.

  15. Trench-embedding fiber taper sensor fabricated by a femtosecond laser for gas refractive index sensing.

    PubMed

    Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Peng; Zhang, Fei; Lu, Yongfeng

    2014-02-20

    A fiber in-line, multimode coupling interferometer with a trench-embedding, fiber taper probe is proposed and fabricated by femtosecond-laser-induced water breakdown. The reflection-type taper probe is used for gas refractive index (RI) detection from 1.0001143 to 1.0002187 and temperature sensing from 50°C to 500°C. The largest RI sensitivity of the taper probe embedded with a trench at a width of 18.4 μm is 669.502  nm/RIU for hybrid nitrogen and helium. Temperature sensitivity is 9.97  pm/°C and it shows good linearity through the whole testing range. The new-type multimode interferometer is appropriate for high-accuracy gas RI detection of micrometer-scale spaces and wide-range temperature compensation can be realized.

  16. High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong

    2016-05-01

    In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.

  17. In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber.

    PubMed

    Zhang, Nan; Humbert, Georges; Wu, Zhifang; Li, Kaiwei; Shum, Perry Ping; Zhang, Nancy Meng Ying; Cui, Ying; Auguste, Jean-Louis; Dinh, Xuan Quyen; Wei, Lei

    2016-11-28

    An in-line optofluidic refractive index (RI) sensing platform is constructed by splicing a side-channel photonic crystal fiber (SC-PCF) with side-polished single mode fibers. A long-period grating (LPG) combined with an intermodal interference between LP01 and LP11 core modes is used for sensing the RI of the liquid in the side channel. The resonant dip shows a nonlinear wavelength shift with increasing RI over the measured range from 1.3330 to 1.3961. The RI response of this sensing platform for a low RI range of 1.3330-1.3780 is approximately linear, and exhibits a sensitivity of 1145 nm/RIU. Besides, the detection limit of our sensing scheme is improved by around one order of magnitude by introducing the intermodal interference.

  18. Efficient generation of broad Raman sidebands in an index-guided photonic crystal fiber.

    PubMed

    Li, Ying; Hou, Jing; Jiang, Zongfu; Leng, Jinyong

    2013-04-01

    The efficient generation of broad Raman sidebands is experimentally demonstrated in a short piece of index-guided photonic crystal fiber, which is pumped by a high-peak-power pulse near the zero-dispersion wavelength and seeded by a continuous-wave Stokes signal centered at 1117 nm. The Raman sidebands generated via stimulated Raman scattering and cascaded four-wave mixing contain five Stokes and six anti-Stokes peaks and span from 827 to 1398 nm, and the 3 dB linewidth for each peak is smaller than 1 nm. However, the pure Raman sidebands are largely dependent on the pulse pump power as well as the fiber length.

  19. Monitoring of high refractive index edible oils using coated long period fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Coelho, Luís.; Viegas, Diana; Santos, José Luís.; de Almeida, Jose Manuel M. M.

    2015-05-01

    Monitoring the quality of high refractive index edible oils is of great importance for the human health. Uncooked edible oils in general are healthy foodstuff, olive oil in particular, however, they are frequently used for baking and cooking. High quality edible oils are made from seeds, nuts or fruits by mechanical processes. Nevertheless, once the mechanical extraction is complete, up to 15% of the oil remains in oil pomace and in the mill wastewater, which can be extracted using organic solvents, often hexane. Optical fiber sensors based on long period fiber gratings (LPFG) have very low wavelength sensitivity when the surround refractive index is higher than the refractive index of the cladding. Titanium dioxide (TiO2) coated LPFG could lead to the realization of high sensitivity chemical sensor for the food industry. In this work LPFG coated with a TiO2 thin film were successfully used for to detect small levels of hexane diluted in edible oils and for real time monitoring the thermal deterioration of edible oils. For a TiO2 coating of 30 nm a wavelength sensitivity of 1361.7 nm/RIU (or 0.97 nm / % V/V) in the 1.4610-1.4670 refractive index range was achieved, corresponding to 0 to 12 % V/V of hexane in olive oil. A sensitivity higher than 638 nm/RIU at 225 ºC was calculated, in the 1.4670-1.4735 refractive index range with a detection limit of thermal deterioration of about 1 minute.

  20. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing.

    PubMed

    Yadav, T K; Narayanaswamy, R; Abu Bakar, M H; Kamil, Y Mustapha; Mahdi, M A

    2014-09-22

    We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.

  1. Experimental analysis of distributed pump absorption and refractive index changes in Yb-doped fibers using acousto-optic interaction.

    PubMed

    Alcusa-Sáez, E P; Díez, A; Andrés, M V

    2015-03-01

    In-fiber acousto-optic interaction is used to characterize the refractive index changes at the C band in a single-mode ytterbium-doped optical fiber under 980 nm pumping. The transmission notch created by the acoustic-induced coupling between the core mode and a cladding mode shifts to longer wavelengths when the pump is delivered to the fiber. The electronic contribution to the refractive index change is quantified from the wavelength shift. Using a time-resolved acousto-optic method, we investigate the distribution of pump absorption, and the resulting refractive index change profile, along sections of ytterbium-doped fiber exceeding 1 m long under different pump power levels.

  2. Use of optical fibers in spectrophotometry

    NASA Technical Reports Server (NTRS)

    Ramsey, Lawrence W.

    1988-01-01

    The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers.

  3. A simple numerical method for the cutoff frequency of a single-mode fiber with an arbitrary index-profile

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Ghatak, A. K.

    1981-06-01

    A simple numerical method for calculating the cutoff frequency of single-mode operation in optical fibers with an arbitrary index-profile is presented. The method does not involve any approximation other than the scalar approximation and is applicable even to numerical data from index-profile measurements. The calculations are simple and can be carried out even on a programmable calculator.

  4. Fluorescence imaging of lattice re-distribution on step-index direct laser written Nd:YAG waveguide lasers

    SciTech Connect

    Martínez de Mendívil, Jon; Pérez Delgado, Alberto; Lifante, Ginés; Jaque, Daniel; Ródenas, Airán; Benayas, Antonio; Aguiló, Magdalena; Diaz, Francesc; Kar, Ajoy K.

    2015-01-14

    The laser performance and crystalline micro-structural properties of near-infrared step-index channel waveguides fabricated inside Neodymium doped YAG laser ceramics by means of three-dimensional sub-picosecond pulse laser direct writing are reported. Fluorescence micro-mapping of the waveguide cross-sections reveals that an essential crystal lattice re-distribution has been induced after short pulse irradiation. Such lattice re-distribution is evidenced at the waveguide core corresponding to the laser written refractive index increased volume. The waveguides core surroundings also present diverse changes including slight lattice disorder and bi-axial strain fields. The step-index waveguide laser performance is compared with previous laser fabricated waveguides with a stress-optic guiding mechanism in absence of laser induced lattice re-distribution.

  5. Refractive index and strain sensor made of S-tapered photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Wu, Yun; Huang, Yuewu; Wang, Jinzhong; Liu, Lihua; Zhao, Liancheng

    2015-06-01

    An experimental investigation on an S-tapered photonic crystal fiber interferometer is presented in this paper. The sensor exhibits highly surrounding refractive index sensitive, which is 4.7 × 10-3 RIU (refractive index unit) in 1.33-1.39 and 1.45 × 10-3 RIU in 1.39-1.44 commensurable with general sensors. Attribute to the S-shape's distortion, red shifts are measured in axial strain test. In addition, insensitivity (4.3 pm/°C) in low temperature and sensitivity (22.4 pm/°C) in high temperature are confirmed by experiments. These properties combined with a simple fabrication process and a durable structure.

  6. One-step fabrication of carbon fiber derived from waste paper and its application for catalyzing tri-iodide reduction

    NASA Astrophysics Data System (ADS)

    Xu, Shunjian

    2017-01-01

    Two carbon fibers were first fabricated by one-step pyrolysis of papers (filter paper and facial tissue), and then employed as catalytic materials for counter electrodes in dye-sensitized solar cells (DSCs) to investigate their potential application. The results show that the microstructure transformation and main weight loss of both the papers are mainly happened in the temperature range of 300–400 °C. After pyrolysis at 800°C, the weight remaining of the filter paper and facial tissue is 1.92% and 4.95%, respectively. The obtained carbon fibers belong to an amorphous carbon consisting of the randomly oriented stacks of graphene sheets. The diameters of both the carbon fibers are about 10 μm, on which there are a certain amount of fine carbon nanofibers. The amorphous microstructure and unique fine nanofibers of the carbon fibers induce more excellent catalytic activity for triiodide ion reduction compared with the biochar (derived from poplar leaf) and the graphite. As a result, the carbon fiber based DSCs display obviously higher efficiency than the biochar or graphite based ones. The conversion efficiency of the DSCs employing the filter paper derived carbon fiber, facial tissue derived carbon fiber, biochar and graphite is 4.72%, 4.70%, 1.33% and 0.77%, respectively.

  7. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

    PubMed

    Liao, C R; Hu, T Y; Wang, D N

    2012-09-24

    We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C.

  8. In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber.

    PubMed

    Andrews, Nicholas L P; Ross, Rachel; Munzke, Dorit; van Hoorn, Camiel; Brzezinski, Andrew; Barnes, Jack A; Reich, Oliver; Loock, Hans-Peter

    2016-06-27

    We describe an in-fiber interferometer based on a gas-filled hollow-core photonic crystal fiber. Expressions for the sensitivity, figure of merit and refractive index resolution are derived, and values are experimentally measured and theoretically validated using mode field calculations. The refractive indices of nine monoatomic and molecular gases are measured with a resolution of δns < 10-6.

  9. Perovskite Hollow Fibers with Precisely Controlled Cation Stoichiometry via One-Step Thermal Processing.

    PubMed

    Zhu, Jiawei; Zhang, Guangru; Liu, Gongping; Liu, Zhengkun; Jin, Wanqin; Xu, Nanping

    2017-03-06

    The practical applications of perovskite hollow fibers (HFs) are limited by challenges in producing these easily, cheaply, and reliably. Here, a one-step thermal processing approach is reported for the efficient production of high performance perovskite HFs, with precise control over their cation stoichiometry. In contrast to traditional production methods, this approach directly uses earth-abundant raw chemicals in a single thermal process. This approach can control cation stoichiometry by avoiding interactions between the perovskites and polar solvents/nonsolvents, optimizes sintering, and results in high performance HFs. Furthermore, this method saves much time and energy (≈ 50%), therefore pollutant emissions are greatly reduced. One successful example is Ba0.5Sr0.5Co0.8Fe0.2O3-δ HFs, which are used in an oxygen-permeable membrane. This exhibits high oxygen permeation flux values that exceed desired commercial targets and compares favorably with previously reported oxygen-permeable membranes. Studies on other perovskites have produced similarly successful results. Overall, this approach could lead to energy efficient, solid-state devices for industrial application in energy and environmental fields.

  10. Imaging of rat brain using short graded-index multimode fiber

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Kanno, Takahiro; Ishihara, Syoutarou; Suto, Hiroshi; Takahashi, Toshihiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2014-03-01

    Clinically it is important to image structures of brain at deeper areas with low invasions, for example, the pathological information is not obtained enough from the white matter. Preliminarily we have measured transmission images of rat brain using the short graded-index multimode fiber (SMMF) with the diameter of 140μm and length of 5mm. SMMF (core diameter, 100μm) was cut using a fiber cleaver and was fixed in a jig. Fiber lengths inside and outside jig were 3mm and 2mm, respectively. The jig was attached at the 20x objective lens. The conventional optical microscope was used to measure images. In basic characteristics, it was confirmed that the imaging conditions almost corresponded to calculations with the ray-transfer matrix and the spatial resolution was evaluated at about 4.4μm by measuring the test pattern. After euthanasia the rat parietal brain was excised with thickness around 1.5mm and was set on the slide glass. The tissue was illuminated through the slide glass by the bundle fiber with Halogen lamp. The tip of SMMF was inserted into the tissue by lifting the sample stage. The transmission image at each depth from 0.1mm to 1.53mm was measured. Around the depth of 1.45mm, granular structures with sizes of 4-5μm were recognized and corresponded to images by HE stained tissue. Total measurement time was within 2 hours. The feasibilities to image the depth of 5 mm with SMMF have been shown.

  11. Sex, body mass index, and dietary fiber intake influence the human gut microbiome.

    PubMed

    Dominianni, Christine; Sinha, Rashmi; Goedert, James J; Pei, Zhiheng; Yang, Liying; Hayes, Richard B; Ahn, Jiyoung

    2015-01-01

    Increasing evidence suggests that the composition of the human gut microbiome is important in the etiology of human diseases; however, the personal factors that influence the gut microbiome composition are poorly characterized. Animal models point to sex hormone-related differentials in microbiome composition. In this study, we investigated the relationship of sex, body mass index (BMI) and dietary fiber intake with the gut microbiome in 82 humans. We sequenced fecal 16S rRNA genes by 454 FLX technology, then clustered and classified the reads to microbial genomes using the QIIME pipeline. Relationships of sex, BMI, and fiber intake with overall gut microbiome composition and specific taxon abundances were assessed by permutational MANOVA and multivariate logistic regression, respectively. We found that sex was associated with the gut microbiome composition overall (p=0.001). The gut microbiome in women was characterized by a lower abundance of Bacteroidetes (p=0.03). BMI (>25 kg/m2 vs. <25 kg/m2) was associated with the gut microbiome composition overall (p=0.05), and this relationship was strong in women (p=0.03) but not in men (p=0.29). Fiber from beans and from fruits and vegetables were associated, respectively, with greater abundance of Actinobacteria (p=0.006 and false discovery rate adjusted q=0.05) and Clostridia (p=0.009 and false discovery rate adjusted q=0.09). Our findings suggest that sex, BMI, and dietary fiber contribute to shaping the gut microbiome in humans. Better understanding of these relationships may have significant implications for gastrointestinal health and disease prevention.

  12. Mitigating the hydraulic compression of nanofiltration hollow fiber membranes through a single-step direct spinning technique.

    PubMed

    Ong, Yee Kang; Chung, Tai-Shung

    2014-12-02

    Most nanofiltration (NF) membranes have been made through complicated multistep or thin-film composite processes. They also suffer the compaction issue that reduces permeate flux in pressure-driven filtration processes. A single-step coextrusion hollow fiber fabrication technique via immiscibility induced phase separation (I(2)PS) process is presented in this study to fabricate NF hollow fiber membranes. A protective layer is concurrently formed on top of the selective layer during the phase inversion process. The fabricated hollow fiber membrane has a narrow pore size distribution with a molecular weight cutoff (MWCO) of 470 Da. The outer layer of the I(2)PS hollow fiber is found to serve as a buffering layer that mitigates hydraulic compression on the compaction of dense-selective layer and sublayer and helps to retain membrane performance during nanofiltration operations. The newly fabricated NF hollow fiber membrane exhibits an average pure water permeability of 3.2 L m(-2) h(-1) bar(-1) and shows good rejections toward the testing dyes. This study may offer a simple, direct, and cost-effective approach to fabricate NF hollow fiber membranes.

  13. Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor.

    PubMed

    Yuan, Wu; Wang, Fei; Savenko, Alexey; Petersen, Dirch Hjorth; Bang, Ole

    2011-07-01

    We introduce a highly compact fiber-optic Fabry-Pérot refractive index sensor integrated with a fluid channel that is fabricated directly near the tip of a 32 μm in diameter single-mode fiber taper. The focused ion beam technique is used to efficiently mill the microcavity from the fiber side and finely polish the end facets of the cavity with a high spatial resolution. It is found that a fringe visibility of over 15 dB can be achieved and that the sensor has a sensitivity of ~1731 nm/RIU (refractive index units) and a detection limit of ~5.78 × 10(-6) RIU. This miniature integrated all-in-fiber optofludic sensor may find use in minimal-invasive biomedical applications.

  14. High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing.

    PubMed

    Yang, J; Jiang, L; Wang, S; Li, B; Wang, M; Xiao, H; Lu, Y; Tsai, H

    2011-10-01

    A taper-based Mach-Zehnder interferometer (MZI) embedded in a thinned optical fiber is demonstrated as a highly sensitive refractive index (RI) sensor. A RI sensitivity of 2210.84 nm/RIU (refractive index unit) is obtained at the external RI of 1.40, which is ten times higher than that of normal taper- and long-period fiber grating (LPFG)-based sensors. The sensitivity can be further improved by decreasing the diameter of the thinned fiber and increasing the interferometer length of the MZI. The proposed MZIs have lower temperature sensitivities compared with normal fiber sensors, which is a desirable merit for RI sensors to reduce the cross sensitivity caused by thermal drift.

  15. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications

    PubMed Central

    Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio

    2016-01-01

    We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33–1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10−3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41–1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost. PMID:27983608

  16. Design and analysis of a refractive index sensor based on dual-core large-mode-area fiber

    NASA Astrophysics Data System (ADS)

    Kamakshi, Koppole; Rastogi, Vipul; Kumar, Ajeet

    2013-08-01

    We present a novel co-axial dual core large-mode-area (LMA) fiber design for refractive index sensing. In a dual-core fiber there is resonant coupling between the two cores, which is strongly affected by the refractive index (RI) of the outermost region. The transmittance of the fiber, therefore, varies sharply with the refractive index of surrounding medium. This characteristic of the proposed structure has been utilized to design a RI sensor. We have analyzed the structure by using the transfer matrix method. Our numerical results show that the proposed sensor is highly sensitive with the resolution of 2.0 × 10-6 around nex = 1.44376. Effect of design parameters on sensitivity of the proposed sensor has also been investigated.

  17. Beam shaping for kilowatt fiber-coupled diode lasers by using one-step beam cutting-rotating of prisms.

    PubMed

    Wu, Yulong; Dong, Zhiyong; Chen, Yongqi; Qi, Yaoyao; Yuan, Xiandan; Qi, Yunfei; Xu, Li; Lin, Xuechun; Zou, Yonggang; Zhao, Pengfei

    2016-12-01

    The beam quality mismatch of laser diode stacks in both axes limits many direct applications for fiber or solid laser pumping and material processing. In this paper, a one-step cutting-rotating beam shaping system has been designed to homogenize the beam quality of two polarization-multiplexing laser diode stacks. Coupling laser diode stacks consisting of eight bars into a standard fiber with a core diameter of 600 μm and an NA of 0.22 is achieved. The simulative result shows that the system will have an output power over 1056 W. By using the technique, the production of compact and high brightness fiber-coupling diode lasers can be directly used for laser cladding and laser surface hardening processes.

  18. Multi-step adhesive cementation versus one-step adhesive cementation: push-out bond strength between fiber post and root dentin before and after mechanical cycling.

    PubMed

    Amaral, Marina; Rippe, Marilia Pivetta; Bergoli, Cesar Dalmolin; Monaco, Carlo; Valandro, Luiz Felipe

    2011-01-01

    This study evaluated the effects of mechanical cycling on resin push-out bond strength to root dentin, using two strategies for fiber post cementation. Forty bovine roots were embedded in acrylic resin after root canal preparation using a custom drill of the fiber post system. The fiber posts were cemented into root canals using two different strategies (N = 20): a conventional adhesive approach using a three-step etch-and-rinse adhesive system combined with a conventional resin cement (ScotchBond Multi Purpose Plus + RelyX ARC ), or a simplified adhesive approach using a self-adhesive resin cement (RelyX U100). The core was built up with composite resin and half of the specimens from each cementation strategy were submitted to mechanical cycling (45 degree angle; 37 degrees C; 88 N; 4 Hz; 700,000 cycles). Each specimen was cross-sectioned and the disk specimens were pushed-out. The means from every group (n = 10) were statistically analyzed using a two-way ANOVA and a Tukey test (P = 0.05). The cementation strategy affected the push-out results (P < 0.001), while mechanical cycling did not (P = 0.3716). The simplified approach (a self-adhesive resin cement) had better bond performance despite the conditioning. The self-adhesive resin cement appears to be a good option for post cementation. Further trials are needed to confirm these results.

  19. Efficient excitation of surface plasmons in metal nanorods using large longitudinal component of high index nano fibers.

    PubMed

    Ruan, Yinlan; Afshar, Shahraam V; Monro, Tanya M

    2011-07-04

    We report theoretical calculations of the mode fields of high index lead silicate and silicon nano fibers, and show that their strong longitudinal component enables efficient excitation of surface plasmons within a silver nanorod placed at the fiber tip. An excitation efficiency 1600 times higher than that of the standard single mode fibers has been achieved using a 350nm diameter silicon fiber at 1.1μm wavelength, while a factor of 640 times higher efficiency is achieved for a 400nm diameter lead silicate F2 glass fiber. The strong localized field emerging from the end of the rod serves as a nano-scale source with adjustable beam width, and such sources offer a new approach to high-resolution microscopy, particle manipulation and sensing.

  20. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing.

    PubMed

    Rodenas, Airan; Kar, Ajoy K

    2011-08-29

    We report the ultrafast fabrication of high-contrast step-index channel waveguides in Nd(3+):YCa(4)O(BO(3))(3) borate laser crystals by means of 3D direct laser writing. Guiding up to 3.4 μm wavelength is demonstrated for the first time in a laser written crystalline waveguide. Modeling the measured fundamental modes at the wavelengths of 1.9 µm and 3.4 µm allowed us to estimate the high laser-induced refractive index increments (index contrasts) to be 0.010 (0.59%), and 0.005 (0.29%), respectively. Confocal µ-Raman spectral imaging of the waveguides cross-sections confirmed that the cores have very well defined step profiles, and that the increase in the refractive index can be linked to the localized creation of permanent intrinsic defects. These results indicate that this crystalline waveguides are a potential candidate for the development of 3D active waveguide circuits, due to the laser and electro-optic properties of rare earth doped borate crystals.

  1. In-fiber modal interferometer based on dual-concentric-core photonic crystal fiber and its strain, temperature and refractive index characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Feng, Suchun; zou, Hui; Lu, Wenliang; Jian, Shuisheng

    2011-06-01

    An in-fiber modal interferometer is demonstrated by splicing a section of homemade dual-concentric-core photonic crystal fiber (DCCPCF) and two segments of single-mode fibers (SMFs) with collapsing the air holes in the splice regions. By analyzing the transmission spectra and the spatial frequency spectra of the interferometers, it's observed that the main interfering modes are the high-order ring modes, which are different from the previously reported interferometers using the single-, few- or multi-mode fibers. The influences of the lengths of DCCPCF and the first collapsed region on the interferometers were investigated experimentally. The strain, temperature and refractive index characteristics of the interferometer were analyzed.

  2. S-tapered photonic crystal fiber interferometers for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Wu, Yun; Wang, Jinzhong; Zhao, Liancheng; Shi, Huizhong

    2013-03-01

    An experimental investigation on an S-tapered photonic crystal fiber interferometer is presented. The whole fabrication process was carried out using a standard splicing machine. The interferometer shows a compact and stable structure with a waist diameter of 110 μm, taper length of 280 μm, and axial offset of 40 μm. The transmission spectra indicated that it is highly sensitive to the surrounding refractive index (RI) and insensitive to temperature. Resolutions of 3.3×10-4 and 8.0×10-5 RI units were achieved in the 1.33 to 1.38 and 1.38 to 1.44 range, respectively. Furthermore, its temperature dependence was only 4 pm/°C.

  3. An Ultrasensitive Long-Period Fiber Grating-Based Refractive Index Sensor with Long Wavelengths

    PubMed Central

    Li, Qiu-Shun; Zhang, Xu-Lin; Shi, Jian-Guo; Xiang, Dong; Zheng, Lan; Yang, Yan; Yang, Jun-Hui; Feng, Dong; Dong, Wen-Fei

    2016-01-01

    The response of a novel long-period fiber grating (LPFG) with a period of 180 µm to a surrounding refractive index (RI) was investigated. The results displayed that, with the increase in RI of the surrounding media of cladding glass in the grating region, the resonant peak located at 1336.4 nm in the transmission spectrum gradually shifts towards a shorter wavelength, while the resonant peak located at 1618 nm gradually shifted towards a longer wavelength. Moreover, the resonant peak at 1618 nm is much more sensitive to the surrounding RI than that of the one at 1336.4 nm. Compared with the conventional LPFG and other types of wavelength-interrogated RI sensors, such as ring resonators, surface plasmon resonance sensors, and Fabry–Perot interferometric sensors, this novel LPFG possesses a higher sensitivity, which achieved 10,792.45 nm/RIU (RI unit) over a RI range of 1.4436–1.4489. PMID:28009844

  4. Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing.

    PubMed

    Wang, Jian-Neng; Tang, Jaw-Luen

    2012-01-01

    We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal interference pattern which shifts differently when the cladding/core surface of the PCF is immersed with different RI of the surrounding medium. Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10(-4)-8.88 × 10(-4) RIU or 1.02 × 10(-4)-9.04 × 10(-4) RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications.

  5. First steps in developing a multimetric macroinvertebrate index for the Ohio River

    USGS Publications Warehouse

    Applegate, J.M.; Baumann, P.C.; Emery, E.B.; Wooten, M.S.

    2007-01-01

    The causes of degradation of aquatic systems are often complex and stem from a variety of human influences. Comprehensive, multimetric biological indices have been developed to quantify this degradation and its effect on aquatic communities, and measure subsequent recovery from anthropogenic stressors. Traditionally, such indices have concentrated on small-to medium-sized streams. Recently, however, the Ohio River Fish Index (ORFIn) was created to assess biotic integrity in the Ohio River. The goal of the present project was to begin developing a companion Ohio River multimetric index using benthic macroinvertebrates. Hester-Dendy multiplate samplers were used to evaluate benthic macroinvertebrate assemblages in relation to a gradient of water quality disturbance, represented by varying distances downstream of industrial and municipal wastewater outfalls in the Ohio River. In August 1999 and 2000, samplers were set every 100 m downstream of outfalls (12 outfalls in 1999, 22 in 2000) for 300-1000 m, as well as at upstream reference sites. Candidate metrics (n = 55) were examined to determine which have potential to detect changes in water quality downstream of outfalls. These individual measures of community structure were plotted against distance downstream of each outfall to determine their response to water quality disturbance. Values at reference and outfall sites were also compared. Metrics that are ecologically relevant and showed a response to outfall disturbance were identified as potentially valuable in a multimetric index. Multiple box plots of index scores indicated greater response to outfall disturbance during periods of low-flow, and longitudinal river-wide trends. Evaluation of other types of anthropogenic disturbance, as well as continued analysis of the effects of chemical water quality on macroinvertebrate communities in future years will facilitate further development of a multimetric benthic macroinvertebrate index to evaluate biotic integrity in

  6. Methanol decomposition on low index and stepped CeO2 surfaces from GGA+U

    NASA Astrophysics Data System (ADS)

    Reimers, Walter G.; Branda, María M.

    2017-02-01

    GGA + U calculations have been carried out to study the complete methanol decomposition on the more stable Ceria surfaces, i.e. (111), (221), (331) and (110). These results have shown that the methanol adsorption is exothermic on oxidized as well as on the partially reduced surfaces though the adsorption energy is greater for the latest. The first dehydrogenation step of methanol is highly probable for all the studied sites with activation barriers smaller than 0.2 eV. The first dehydrogenation reaction could also occur by breaking the Csbnd H methyl bond, but we found that this reaction is very unlikely. Reaction and activation energies for the second dehydrogenation - from methoxy to formaldehyde, are very similar for perfect (111) and stepped surfaces but these activation barriers are not negligible, almost ten times as many the first step barriers. Next, the formaldehyde decomposition to formyl and CO species on perfect CeO2(111) have an important energetic cost, therefore these reactions could occur only on stepped surfaces.

  7. A proposal of T-structure fiber-optic refractive index sensor based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Ming; Zhao, Chun-Liu; Wang, Yan-Ru; Jin, Shangzhong

    2016-06-01

    We present a compact and novel "T" structure optical fiber refractive index sensor proposal based on surface plasmon resonance. "T" structure sensing head consists of a single mode fiber (SMF) with a plasmonic facet and a cladding partly removed single mode fiber (CPR-SMF) with a gap. The gold film is deposited on the end of SMF instead of the side of the CPR-SMF. The simulation results show that the SPR based on the "T" structure can be excited effectively. The SPR transmission spectrum shifts towards longer wavelength with the sensing sample refractive index increasing largely. When we divide the refractive index range of the sensing sample to two parts, the linear relationships between the SPR wavelength and the refractive index can be used. The resolutions can be highly up to 7.115×10-6 RIU and 3.525×10-6 RIU for the refractive index ranges of 1.3333-1.36 and 1.37-1.4, respectively. The proposed "T" structure sensor works well for achieving the refractive index measurement with high sensitivity and wide range for samples with a tiny amount.

  8. Designing a graded index depressed clad non-zero dispersion shifted optical fiber for wide band transmission system

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipankar; Ghosh, Debashri; Basu, Mousumi

    2008-02-01

    Non-zero dispersion shifted fibers (NZ-DSFs) find extensive use in wavelength division multiplexed (WDM) system as it reduces the non-linear effects like four-wave mixing (FWM) generation. A depressed clad graded index fiber with a central dip in the refractive index profile, as well as without dip, has been modeled to perform as an NZ-DSF using the spot size optimization technique. The performance characteristics of the proposed NZ-DSF have been studied by changing different fiber parameters; such as inner core radius (a), relative refractive index differences ([Delta]+), normalized end position of depressed clad (C), depression parameter ([rho]), etc. for a given value of Petermann-2 spot size . By suitably adjusting the fiber parameters, the effective core areas (Aeff) as simulated here are very large (~80 [mu]m2) so that the effect of non-linearities upon them can be minimized. These NZ-DSFs have also been optimized for WDM transmission system. The dispersion slopes of the proposed fibers with and without dip have been estimated which are comparable with the reported results.

  9. A One-Step Immunostaining Method to Visualize Rodent Muscle Fiber Type within a Single Specimen

    PubMed Central

    Sawano, Shoko; Komiya, Yusuke; Ichitsubo, Riho; Ohkawa, Yasuyuki; Nakamura, Mako; Tatsumi, Ryuichi; Ikeuchi, Yoshihide; Mizunoya, Wataru

    2016-01-01

    In this study, we present a quadruple immunostaining method for rapid muscle fiber typing of mice and rats using antibodies specific to the adult myosin heavy chain (MyHC) isoforms MyHC1, 2A, 2X, and 2B, which are common marker proteins of distinct muscle fiber types. We developed rat monoclonal antibodies specific to each MyHC isoform and conjugated these four antibodies to fluorophores with distinct excitation and emission wavelengths. By mixing the four types of conjugated antibodies, MyHC1, 2A, 2X, and 2B could be distinguished within a single specimen allowing for facile delineation of skeletal muscle fiber types. Furthermore, we could observe hybrid fibers expressing MyHC2X and MyHC2B together in single longitudinal muscle sections from mice and rats, that was not attained in previous techniques. This staining method is expected to be applied to study muscle fiber type transition in response to environmental factors, and to ultimately develop techniques to regulate animal muscle fiber types. PMID:27814384

  10. Long period fiber grating based refractive index sensor with enhanced sensitivity using Michelson interferometric arrangement

    NASA Astrophysics Data System (ADS)

    Singh, Amit

    2015-06-01

    The long period fiber grating (LPFG) is widely used as a sensor due to its high sensitivity and resolution. However, the broad bandwidth of the attenuation bands formed by the mode coupling between the fundamental core mode and the cladding modes constitutes a difficulty when the device is used as a conventional sensor. To overcome this limitation, a Michelson interferometer-type sensor configuration has been developed, using an LPFG grating pair formed by coating a mirror at the distal end of the LPFG. This sensor configuration is more convenient to use and is able to overcome the limitations of the single LPFG based sensor as the shifts in the attenuation bands being more easily detectable due to the formation of the sharp spectral fringe pattern in the LPFG based Michelson interferometer. In this work, I studied the LPFG based Michelson interferometer as the refractive index sensor and discussed the sensitivity enhancement of the LPFG based Michelson interferometer as a refractive index sensor by employing higher order cladding modes and by reducing the cladding radius. The results demonstrated the HE17 mode with a cladding radius of 62.5 μm, in the range of surrounding refractive index (SRI) of 1-1.45, and its resonant peak showed a wavelength shift of 26.99 nm/RIU. When the cladding region was further reduced to 24 μm, the resonant peak showed a wavelength shift of 569.88 nm/RIU, resulting in a sensitivity enhancement of nearly 21 times. However, as the cladding region was etched further, then the HE17 order cladding mode and higher mode would be cut off. Therefore, the implementation of high sensitivity for SRI sensing with the reduced cladding in the LPFG based Michelson interferometer is dependent on the proper combination of the cladding radius and cladding mode order.

  11. Accurate mode characterization of graded-index multimode fibers for the application of mode-noise analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yueai; Rahman, B. M. A.; Ning, Ya Nong; Grattan, K. T. V.

    1995-03-01

    Guided modes in graded-index multimode optical fibers are accurately analyzed with the vector H-field finite-element method, aided by the use of the WKB method. As a result, exact mode-propagation constants and the corresponding modal eigenfield distributions are provided for the study of the modal noise that is due to the mode-coupling effect.

  12. Content analysis of uterine cervix images: initial steps towards content based indexing and retrieval of cervigrams

    NASA Astrophysics Data System (ADS)

    Gordon, Shiri; Zimmerman, Gali; Long, Rodney; Antani, Sameer; Jeronimo, Jose; Greenspan, Hayit

    2006-03-01

    This work is motivated by the need for visual information extraction and management in the growing field of medical image archives. In particular the work focuses on a unique medical repository of digital cervicographic images ("Cervigrams") collected by the National Cancer Institute (NCI) in a longitudinal multi-year study carried out in Guanacaste, Costa Rica. NCI together with the National Library of Medicine (NLM) is developing a unique Web-based database of the digitized cervix images to study the evolution of lesions related to cervical cancer. Such a database requires specific tools that can analyze the cervigram content and represent it in a way that can be efficiently searched and compared. We present a multi-step scheme for segmenting and labeling regions of medical and anatomical interest within the cervigram, utilizing statistical tools and adequate features. The multi-step structure is motivated by the large diversity of the images within the database. The algorithm identifies the cervix region within the image. It than separates the cervix region into three main tissue types: the columnar epithelium (CE), the squamous epithelium (SE), and the acetowhite (AW), which is visible for a short time following the application of acetic acid. The algorithm is developed and tested on a subset of 120 cervigrams that were manually labeled by NCI experts. Initial segmentation results are presented and evaluated.

  13. Dietary fiber and the glycemic index: a background paper for the Nordic Nutrition Recommendations 2012

    PubMed Central

    Øverby, Nina Cecilie; Sonestedt, Emily; Laaksonen, David E.; Birgisdottir, Bryndis Eva

    2013-01-01

    The aim of this study is to review recent data on dietary fiber (DF) and the glycemic index (GI), with special focus on studies from the Nordic countries regarding cardiometabolic risk factors, type 2 diabetes, cardiovascular disease, cancer, and total mortality. In this study, recent guidelines and scientific background papers or updates on older reports on DF and GI published between 2000 and 2011 from the US, EU, WHO, and the World Cancer Research Fund were reviewed, as well as prospective cohort and intervention studies carried out in the Nordic countries. All of the reports support the role for fiber-rich foods and DF as an important part of a healthy diet. All of the five identified Nordic papers found protective associations between high intake of DF and health outcomes; lower risk of cardiovascular disease, type 2 diabetes, colorectal and breast cancer. None of the reports and few of the Nordic papers found clear evidence for the GI in prevention of risk factors or diseases in healthy populations, although association was found in sub-groups, e.g. overweight and obese individuals and suggestive for prevention of type 2 diabetes. It was concluded that DF is associated with decreased risk of different chronic diseases and metabolic conditions. There is not enough evidence that choosing foods with low GI will decrease the risk of chronic diseases in the population overall. However, there is suggestive evidence that ranking food based on their GI might be of use for overweight and obese individuals. Issues regarding methodology, validity and practicality of the GI remain to be clarified. PMID:23538683

  14. Raman Fiber Lasers and Amplifiers Based on Multimode Graded-Index Fibers and Their Application to Beam Cleanup

    DTIC Science & Technology

    2007-06-01

    Scattering UV —Ultraviolet xvii List of Symbols Roman Symbols a radius of fiber core Ap,s amplitude of pump and Stokes waves m spA...written directly to the ends of the RFL with an ultraviolet ( UV ) laser [14] or written to separate pieces of fiber and then spliced onto the ends...beam [17,18,19,20,21]. This has led at least one author to suggest the output beam of a Raman fiber amplifier (RFA) will be nearly diffraction

  15. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center.

    PubMed

    Park, Jiyoung; Lee, Sejin; Kim, Soan; Oh, Kyunghwan

    2011-01-31

    A new type of index-guided photonic crystal fiber is proposed to enhance chemical sensing capability by introducing a hollow high index ring defect that consists of the central air hole surrounded by a high index GeO2 doped SiO2 glass ring. Optical properties of the fundamental guided mode were numerically analyzed using the full-vector finite element method varying the design parameters of both the defects in the center and the hexagonal air-silica lattice in the cladding. Enhanced evanescent wave interaction in the holey region and lower confinement loss by an order of magnitude were achieved simultaneously, which shows a high potential in hyper sensitive fiber-optic chemical sensing applications.

  16. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels.

    PubMed

    Polynkin, PaveL; Polynkin, Alexander; Peyghambarian, N; Mansuripur, Masud

    2005-06-01

    We report a simple optical sensing device capable of measuring the refractive index of liquids propagating in microfluidic channels. The sensor is based on a single-mode optical fiber that is tapered to submicrometer dimensions and immersed in a transparent curable soft polymer. A channel for liquid analyte is created in the immediate vicinity of the taper waist. Light propagating through the tapered section of the fiber extends into the channel, making the optical loss in the system sensitive to the refractive-index difference between the polymer and the liquid. The fabrication process and testing of the prototype sensing devices are described. The sensor can operate both as a highly responsive on-off device and in the continuous measurement mode, with an estimated accuracy of refractive-index measurement of approximately 5 x 10(-4).

  17. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    PubMed

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.

  18. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    EPA Science Inventory

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  19. Refractometers for different refractive index range by surface plasmon resonance sensors in multimode optical fibers with different metals

    NASA Astrophysics Data System (ADS)

    Zuppella, P.; Corso, Alain J.; Pelizzo, Maria G.; Cennamo, N.; Zeni, L.

    2016-09-01

    We have realized a plasmonic sensor based on Au/Pd metal bilayer in a multimode plastic optical fiber. This metal bilayer, based on a metal with high imaginary part of the refractive index and gold, shows interesting properties in terms of sensitivity and performances, in different refractive index ranges. The development of highly sensitive platforms for high refractive index detection (higher than 1.38) is interesting for chemical applications based on molecularly imprinted polymer as receptors, while the aqueous medium is the refractive index range of biosensors based on bio-receptors. In this work we have presented an Au/Pd metal bilayer optimized for 1.38-1.42 refractive index range.

  20. Volatile profile of cashew apple juice fibers from different production steps.

    PubMed

    Nobre, Ana Carolina de Oliveira; de Almeida, Áfia Suely Santos da Silva; Lemos, Ana Paula Dajtenko; Magalhães, Hilton César Rodrigues; Garruti, Deborah dos Santos

    2015-05-27

    This study aimed to determine the volatile profile of cashew apple fibers to verify which compounds are still present after successive washings and thus might be responsible for the undesirable remaining cashew-like aroma present in this co-product, which is used to formulate food products like vegetarian burgers and cereal bars. Fibers were obtained from cashew apple juice processing and washed five times in an expeller press. Compounds were analyzed by the headspace solid-phase micro extraction technique (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), using a DB-5 column. Sensory analysis was also performed to compare the intensity of the cashew-like aroma of the fibers with the original juice. Altogether, 80 compounds were detected, being esters and terpenes the major chemical classes. Among the identified substances, 14 were classified as odoriferous in the literature, constituting the matrix used in the Principal Component Analysis (PCA). Odoriferous esters were substantially reduced, but many compounds were extracted by the strength used in the expeller press and remained until the last wash. Among them are the odoriferous compounds ethyl octanoate, γ-dodecalactone, (E)-2-decenal, copaene, and caryophyllene that may contribute for the mild but still perceptible cashew apple aroma in the fibers that have been pressed and washed five times. Development of a deodorization process should include reduction of pressing force and stop at the second wash, to save water and energy, thus reducing operational costs and contributing to process sustainability.

  1. All-solid very large mode area ytterbium-doped silica microstructured fiber based on accurate control on cladding index.

    PubMed

    Wei, Huifeng; Chen, Kangkang; Yang, Yucheng; Li, Jinyan

    2016-04-18

    We have demonstrated a new approach for developing very large mode area silica-based microstructured Ytterbium (Yb)-doped fibers. The microstructured region acting as pump cladding around the core is composed by periodically arranged low-index Fluorine-doped silica inclusions with an extremely low filling ratio of 0.088. To the best of our knowledge, we achieved the most accurate controlling on cladding index by 1 × 10-5 via our passively doped cladding (PDC) method. Two fibers with 127μm and 50μm core diameter respectively were fabricated from the same final preform designed by this approach. It is verified that our 50μm core diameter fiber can maintain robust single mode behavior at 1064nm wavelength. The advantage of an all-solid structure along with a much simpler fabrication process makes our approach very suitable for realizing very large mode area fibers for high power fiber laser application.

  2. Refractive index sensor based on photonic crystal fiber: effect of analyte channel diameter

    NASA Astrophysics Data System (ADS)

    Lopez-Bautista, Maria C.; Martynyuk, Alexander E.; Khotiaintsev, Sergei

    2017-01-01

    We analyzed the resonant coupling in the low-refractive-index sensor based on a directional coupler implemented in a microstructured optical fiber with a composite core and the parallel analyte channel in the form of a hollow-core waveguide. We showed the possibility of an 8-fold increase in the analyte channel radius that is equivalent to a 64-fold increase in its cross section, in comparison to the existing design. With an increase in the analyte channel radius, the resonance frequencies of the composite core mode and the satellite waveguide modes shift to longer wavelengths, while the dispersion curves of the high-order modes of the satellite waveguide tend to merge and their resonances become less pronounced than the resonances of the low-order modes. With an increase in the analyte channel radius from 2 to 16 μm, the sensor sensitivity increases by 40% and the detection limit becomes lower by a factor of 2. Such an increase in the analyte channel radius also eliminates the need in a high-pressure pump for filling the channel with analyte and thus makes this sensor much more practical than was previously thought.

  3. Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Jiarong; Yan, Peiguang; Yu, Yongqin; Ou, Zhilong; Wang, Jishun; Chen, Xue; Du, Chenlin

    2013-06-01

    Mach-Zehnder interferometer strain sensors made from pieces of photonic crystal fiber spliced to standard single mode fibers are fabricated with different lengths. High strain sensitivity of 2.1 pm/μɛ at 1550 nm is achieved with the length of 45 mm. The interference is induced by the core mode and the high order core mode due to the special air hole structure of PCF, which is independent of the surrounding refractive index. The temperature sensitivity (˜13.24 pm/°C) is relatively low. This structure is good in avoiding cross sensitivity in strain measurement and is fabricated with a simple process and low cost.

  4. Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media.

    PubMed

    Tian, Fei; He, Zonghu; Du, Henry

    2012-02-01

    We have used the finite-difference frequency-domain (FDFD) method to simulate the core mode to cladding mode couplings in long-period gratings (LPGs) in photonic crystal fiber (PCF). Four sets of LPG-PCF have been fabricated with respective periodicities of 590, 540, 515, and 490 μm, resulting in corresponding resonance wavelengths (RWs) of 1241, 1399, 1494, and 1579 nm. We show both theoretically and experimentally that the longer the RW, the more sensitive the LPG-PCF is to the index change in Ar. We demonstrate a robust sensitivity of 517 nm per refractive index unit using the LPG-PCF at 1579 nm RW.

  5. Phase-stepping fiber-optic projected fringe system for surface topography measurements

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor); Beheim, Glenn (Inventor)

    1992-01-01

    A projected fringe interferometer for measuring the topography of an object is presented. The interferometer periodically steps the phase angle between a pair of light beams emanating from a common source. The steps are pi/2 radians (90 deg) apart, and at each step a video image of the fringes is recorded and stored. Photodetectors measure either the phase and theta of the beams or 2(theta). Either of the measures can be used to control one of the light beams so that the 90 deg theta is accurately maintained. A camera, a computer, a phase controller, and a phase modulator established closed-loop control of theta. Measuring the phase map of a flat surface establishes a calibration reference.

  6. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  7. Coupling efficiency of ultra-small gradient-index fiber probe

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Sun, Jianmei; Sun, Fan; Zhu, Jun; Yuan, Zhiwen; Asundi, Anand

    2017-04-01

    In this paper, the coupling efficiency of ultra-small GRIN fiber probe is studied for its focusing performance. Based on the light transmission characteristics of a Gaussian beam and the principle of optical imaging, with the analytical methods, the theoretical formula is deduced for the coupling efficiency of ultra-small GRIN fiber probe. Experiments were set-up and conducted for verification. Per the experimental results, for an ultra-small GRIN fiber probe with the focal length of 0.4 mm, the coupling efficiency measured at the focusing position was 57%, and above 44% within the 0-0.6 mm range. However, for a single-mode fiber, the coupling efficiency dropped to 17% when the distance increased to 0.2 mm. Thus, the ultra-small GRIN fiber probe boasts a superior focusing performance and coupling efficiency. This paper provides a theoretical basis for the application and research on ultra-small GRIN fiber probe.

  8. Response of a fiber-optic Fabry-Pérot interferometer to refractive index and absorption changes: modeling and experiments

    NASA Astrophysics Data System (ADS)

    Pluciński, Jerzy; Karpienko, Katarzyna

    2016-11-01

    This paper describes how the refractive index and the absorption of investigated substances change the spectrum of the optical radiation at the output of the fiber-optic Fabry-Pérot interferometer. The modeling of the operation of the interferometer takes into account not only the spectra of the refractive index and the absorption of the medium that is inside the cavity, but also spectra of the refractive indices of the core and the cladding of the optical fiber connected to the interferometer cavity and the parameters of the mirrors forming the cavity. The physical phenomena related to the beam diffraction inside the cavity (i.e. the beam divergence, the curvature of the wavefront, and the phase shift caused by the Gouy effect) are taken into account, too. The spectra obtained from simulations were compared to the spectra registered during measurements. The preliminary results indicate that the fiber-optic Fabry-Pérot interferometer can measure both the refractive index and the absorption of investigated substances with high accuracy.

  9. Near-field intensity pattern at the output of silica-based graded-index multimode fibers under selective excitation with a single-mode fiber.

    PubMed

    Tsekrekos, C P; Smink, R W; de Hon, B P; Tijhuis, A G; Koonen, A M

    2007-04-02

    Selective excitation of graded-index multimode fibers (GI-MMFs) with a single-mode fiber (SMF) has gained increased interest for telecommunication applications. It has been proposed as a way to enhance the transmission bandwidth of GI-MMF links and/or create parallel communication channels over the same GI-MMF. Although the effect of SMF excitation on the transmission bandwidth has been investigated, its impact on the near-field intensity pattern at the output face of the GI-MMF has not been systematically addressed. We have carried out an analysis of the near-field intensity pattern at the output face of silica-based GI-MMFs excited by a radially offset SMF. Simulation results exhibit all of the features displayed by experimental ones. It turns out that differential mode attenuation and delay, full intra-group mode mixing, and small deviations in the refractive index profile of the GI-MMF do not affect the overall shape of the near-field intensity, which is determined by the radial offset of the input SMF. This can be exploited in mode group diversity multiplexing links. The effect of defects in the refractive index profile, such as a central dip or peak, is also examined.

  10. Surface-core fiber gratings

    NASA Astrophysics Data System (ADS)

    Osório, Jonas H.; Oliveira, Ricardo; Mosquera, L.; Franco, Marcos A. R.; Heidarialamdarloo, Jamshid; Bilro, Lúcia; Nogueira, Rogério N.; Cordeiro, Cristiano M. B.

    2015-09-01

    In this paper, we report, to our knowledge, the first demonstration of the induction of long-period and Bragg gratings on surface-core optical fibers. Surface-core fibers described herein were fabricated from commercial silica tubes and germanium-doped silica rods by employing a very simple procedure. Being the core on the fiber surface, it can be sensitive to refractive index variations in the environment in which the fiber is immersed. Thus, results concerning the sensitivity of these gratings to environmental refractive index variations are presented. Besides, simulation data are presented for comparison to the experimental behavior and for projecting future steps in this research.

  11. Chalcogenide Glass Fibers for Infrared Sensing and Space Optics

    NASA Astrophysics Data System (ADS)

    Bureau, Bruno; Maurugeon, Sébastien; Charpentier, Frederic; Adam, Jean-Luc; Boussard-Plédel, Catherine; Zhang, Xiang-Hua

    This review deals with chalcogenide glasses and fibers. Chemical compositions and physical properties are given for specific glasses well suited for fiber drawing. Fabrication techniques of glass perform are described. Single-index and step-index single-mode fibers are characterized in terms of optical losses in the infrared. Examples of applications of chalcogenide fibers are given, as well as optical sensors in the fields of environment, microbiology and health, and as mode-filters for infrared interferometry in space.

  12. Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor.

    PubMed

    Shuai, Binbin; Xia, Li; Liu, Deming

    2012-11-05

    We present and numerically characterize a liquid-core photonic crystal fiber based plasmonic sensor. The coupling properties and sensing performance are investigated by the finite element method. It is found that not only the plasmonic mode dispersion relation but also the fundamental mode dispersion relation is rather sensitive to the analyte refractive index (RI). The positive and negative RI sensitivity coexist in the proposed design. It features a positive RI sensitivity when the increment of the SPP mode effective index is larger than that of the fundamental mode, but the sensor shows a negative RI sensitivity once the increment of the fundamental mode gets larger. A maximum negative RI sensitivity of -5500nm/RIU (Refractive Index Unit) is achieved in the sensing range of 1.50-1.53. The effects of the structural parameters on the plasmonic excitations are also studied, with a view of tuning and optimizing the resonant spectrum.

  13. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.

    PubMed

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S

    2014-07-21

    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 < x < 0.1) were cycled in an infrared-imaging furnace with high-temperature (up to 1500 °C) partial reduction and lower-temperature (∼800 °C) reoxidation via CO2 splitting to produce CO. Increases in Zr content improve reducibility and sintering resistance, and, for x≤ 0.05, do not significantly slow reoxidation kinetics for CO production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.

  14. Dual-Charged Hollow Fiber Membranes for Low-Pressure Nanofiltration Based on Polyelectrolyte Complexes: One-Step Fabrication with Tailored Functionalities.

    PubMed

    Gherasim, Cristina Veronica; Luelf, Tobias; Roth, Hannah; Wessling, Matthias

    2016-07-27

    A new nanofiltration (NF) hollow fiber membrane is developed by using two oppositely charged polyelectrolytes coagulating into a polyelectrolyte complex (PEC) onto polyether sulfone base polymer. The particular membrane architecture emerges during a single-step procedure, allowing setting both the porous negatively charged support of the hollow fiber and the separation layer containing also the positive polyelectrolyte (PEI/PDADMAC) through a single layer dry-jet wet spinning process. The novelty is two-pronged: the composition of the hollow fiber membrane itself and its fabrication procedure (one-step fabrication of membranes employing polyelectrolytes). These result in highly permeable hollow fiber membranes with a stable separation layer and performance at par with the membranes reported in literature obtained by multistep processes. More importantly, the membranes are obtained through a simple, very fast (one-step), and less expensive procedure. The best performance among these newly obtained hollow-fiber membranes is achieved by PD5% hollow fiber (MWCO of 300 Da), which showed 7.6 L/m(2)·h·bar permeability and ∼90% rejection of MgCl2, MgSO4, and Na2SO4 at 2 bar pressure. Thus, the resulting membranes not only have the advantages of the hollow-fiber configuration, but perform very well at extremely low pressures (the lowest reported in the literature). The broad impact of the results presented in this Article lies in the potential to dramatically reduce both the fabrication (duration and complexity) and the price and desalination costs of highly performing NF hollow fiber membranes. These might result in interesting potential applications and open new directions toward designing efficient functional NF hollow fibers for water desalination.

  15. Development of dual-wavelength fiber ring laser and its application to step-height measurement using self-mixing interferometry.

    PubMed

    Ma, S; Xie, F; Chen, L; Wang, Y Z; Dong, L L; Zhao, K Q

    2016-03-21

    A dual-wavelength erbium-doped fiber (EDF) ring laser was developed and its application to step-height measurement using two-wavelength self-mixing interferometry (SMI) was demonstrated. The fiber laser can emit two different wavelengths without any laser mode competition. It is composed of two EDF laser cavities and employs fiber Bragg gratings to determine which wavelengths are emitted. The step heights can be measured using SMI of the two wavelengths, and the maximum height that can be measured is half the synthetic wavelength of the two wavelengths. A step height of 1mm was constructed using two gauge blocks and then measured using the laser. The measurement was repeated ten times, and the standard deviation of the measurements was 2.4nm.

  16. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index.

    PubMed

    Choi, Hae Young; Mudhana, Gopinath; Park, Kwan Seob; Paek, Un-Chul; Lee, Byeong Ha

    2010-01-04

    We propose and demonstrate a cross-talk free simultaneous measurement system for temperature and external refractive index (ERI) implemented by dual-cavity Fabry-Perot (FP) fiber interferometer. The sensing probe consists of two cascaded FP cavities formed with a short piece of multimode fiber (MMF) and a micro-air-gap made of hollow core fiber (HOF). The fabricated sensor head was ultra-compact; the total length of the sensing part was less than 600 mum. Since the reflection spectrum of the composite FP structures is given by the superposition of each cavity spectrum, the spectrum measured in the wavelength domain was analyzed in the Fourier or spatial frequency domain. The experimental results showed that temperature could be determined independently from the spatial frequency shift without being affected by the ERI, while the ERI could be also measured solely by monitoring the intensity variation in the spatial frequency spectrum. The ERI and the temperature sensitivities were approximately 16 dB/RIU for the 1.33-1.45 index range, and 8.9 nm/ degrees C at low temperature and 14.6 nm/ degrees C at high temperature, respectively. In addition, it is also demonstrated that the proposed dual-cavity FP sensor has potential for compensating any power fluctuation that might happen in the input light source.

  17. Improved Optical Fiber Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  18. Solitonic supercontinuum of femtosecond mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths

    NASA Astrophysics Data System (ADS)

    Kedenburg, S.; Steinle, T.; Mörz, F.; Steinmann, A.; Nguyen, D.; Rhonehouse, D.; Zong, J.; Chavez-Pirson, A.; Giessen, H.

    2016-11-01

    We present a detailed experimental parameter study on mid-IR supercontinuum generation in W-type index tellurite fibers, which reveals how the core diameter, pump wavelength, fiber length, and pump power dramatically influence the spectral broadening. As pump source, we use femtosecond mid-IR pulses from a post-amplified optical parametric oscillator tunable between 1.7 μm and 4.1 μm at 43 MHz repetition rate. We are able to generate red-shifted dispersive waves up to a wavelength of 5.1 μm by pumping a tellurite fiber in the anomalous dispersion regime between its two zero dispersion wavelengths. Distinctive soliton dynamics can be identified as the main broadening mechanism resulting in a maximum spectral width of over 2000 nm with output powers of up to 160 mW. We experimentally demonstrated that efficient spectral broadening with considerably improved power proportion in the important first atmospheric transmission window between 3 and 5 μm can be achieved in robust W-type tellurite fibers pumped at long wavelengths by ultra-fast lasers.

  19. Reflective long-period fiber grating-based sensor with Sagnac fiber loop mirror for simultaneous measurement of refractive index and temperature.

    PubMed

    Yuan, Jianying; Zhao, Chun-Liu; Zhou, Yumeng; Yu, Xiangdong; Kang, Juan; Wang, Jianfeng; Jin, Shangzhong

    2014-10-10

    In this paper, we propose a reflective long-period grating-based sensor with a Sagnac fiber loop mirror (SFLM) for simultaneous measurement of refractive index (RI) and temperature. By cascading the SFLM to the end of a long-period fiber grating (LPFG), the LPFG works as a reflection operation, which is convenient in some applications. Further, the SFLM and the LPFG have different sensitivities to RI and temperature. As a result, RI and temperature measurement can be simultaneously achieved by monitoring the wavelength shifts of the LPFG and the SFLM's dips in the reflection spectrum. Experimental results show that the temperature sensitivity can reach 1.533 nm/°C, and the RI sensitivity is from 16.864 nm/RIU (refractive index unit) to 113.142 nm/RIU when the RI range is from 1.333 to 1.430. The application for 40 km long-distance RI and temperature measurement shows that the sensor has potential application in long-distance sensing.

  20. Novel bending-resistant design of two-layer low-index trench fiber with parabolic-profile core.

    PubMed

    Sun, Jiang; Kang, Zexin; Wang, Jing; Liu, Chao; Jian, Shuisheng

    2014-07-28

    A novel design, two-layer low-index trench fiber with parabolic-profile core, is proposed and investigated numerically in this paper. Based on scalar FD-BPM algorithm, the excellent performance over other types of structures and great potential in mode area enlargement are demonstrated. The effective mode area of our design (D = 100μm) is approximately 890 μm2. Both the high order mode (HOM) suppression and bending resistance of our design are better than that of Multi-Trench Fiber (MTF). The mode loss ratio and effective mode area are independent on the bending radius. Due to the circular symmetry of our proposed configuration design, the bending property is not varied with the changing of bending directions.

  1. Optimized graded index two-mode optical fiber with low DMD, large A(eff) and low bending loss.

    PubMed

    Sato, Kiminori; Maruyama, Ryo; Kuwaki, Nobuo; Matsuo, Shoichiro; Ohashi, Masaharu

    2013-07-15

    An optimized two-mode optical fiber (TMF) with the graded index (GI) profile is designed and fabricated. We clarify an appropriate region of GI-TMF satisfying DMD = 0 ps/km, the large effective area A(eff), and the low bending loss for LP(11) at 1550 nm. According to our fiber design, GI-TMF is successfully fabricated to have the large effective area A(eff) of 150 μm(2) for LP(01) mode, and low DMD below 36 ps/km including zero in the C-band. We expect that our design GI-TMF is suitable for MDM and can reduce MIMO-DSP complexity.

  2. Simultaneous measurement of refractive index and temperature with micro silica sphere cavity hybrid Fabry Perot optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Ranjbar Naeini, O. R.; Latifi, H.; Zibaii, M. I.

    2015-09-01

    In this article, a novel Micro Silica Sphere Cavity Hybrid Fabry Perot optical fiber sensor is reported where refractive index (RI) and temperature can be simultaneously measured. The sensor is based on Micro Silica Sphere that was fabricated using a capillary tube. The micro silica sphere and optical fiber form a Hybrid Fabry Perot cavity. The temperature cross sensitivity of this sensor is small enough to be used for accurate RI measurement. The temperature sensitivity and RI sensitivity are -0.0028 dBm/ºC, -0.0044 dBm/ºC , -24.09 dBm/RIU and -20.6 dBm/RIU respectively, using two selected resonances.

  3. State of polarization and propagation factor of a stochastic electromagnetic beam in a gradient-index fiber.

    PubMed

    Zhu, Shijun; Liu, Lin; Chen, Yahong; Cai, Yangjian

    2013-11-01

    With the help of a tensor method, we investigate the evolution properties of the state of polarization of an electromagnetic Gaussian Schell-model beam propagating through a gradient-index (GRIN) fiber. We find that the Stokes parameters and the polarization ellipse exhibit periodicity. The initial beam parameters affect the values of the Stokes parameters and the parameters of the polarization ellipse. Furthermore, based on the second-order moments of the Wigner distribution function, the explicit expression for the propagation factor (known as the M(2) factor) in the GRIN fiber is derived. It is shown that the M(2) factor remains invariant on propagation and is determined only by the initial beam parameters.

  4. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei

    2016-06-01

    A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.

  5. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures.

    PubMed

    Behera, Saraswati; Joseph, Joby

    2016-08-01

    This Letter demonstrates a single-step optical realization method for hexagonal and square lattice-based dual periodic motheye and gradient-index-array photonic structures over large areas. Computed phase mask of gradient interference patterns are used as inputs to a phase-only spatial light modulator (SLM), and the first-order diffracting beams are coherently superposed with the help of a 2f-2f Fourier filtering setup to avoid complex optical geometry for generation and control of individual beams. The simulated interference patterns are verified experimentally through a CMOS camera. The fabricated micro-structures on a positive photoresist are shown to have a major periodicity of 638 μm and minor periodicity of 25.2 μm, with the air hole diameter varying from 22.7 to 6.9 μm along the X and Y axes. The depth of the fabricated structure gradually varies from 4.203 μm at the center to 1.818 μm at the corner. These structures may be scaled down to submicron features that can show improved anti-reflection properties for solar energy harvesting and GRIN lens for optical wavelength region.

  6. One-step patterning of double tone high contrast and high refractive index inorganic spin-on resist

    SciTech Connect

    Zanchetta, E.; Della Giustina, G.; Brusatin, G.

    2014-09-14

    A direct one-step and low temperature micro-fabrication process, enabling to realize large area totally inorganic TiO₂ micro-patterns from a spin-on resist, is presented. High refractive index structures (up to 2 at 632 nm) without the need for transfer processes have been obtained by mask assisted UV lithography, exploiting photocatalytic titania properties. A distinctive feature not shared by any of the known available resists and boosting the material versatility, is that the system behaves either as a positive or as negative tone resist, depending on the process parameters and on the development chemistry. In order to explain the resist double tone behavior, deep comprehension of the lithographic process parameters optimization and of the resist chemistry and structure evolution during the lithographic process, generally uncommon in literature, is reported. Another striking property of the presented resist is that the negative tone shows a high contrast up to 19, allowing to obtain structures resolution down to 2 μm wide. The presented process and material permit to directly fabricate different titania geometries of great importance for solar cells, photo-catalysis, and photonic crystals applications.

  7. High efficient coupling between wedged-shaped fiber and planar lightwave circuit chip using gradient refractive-index media

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Qu, Shuting; Xiao, Jinbiao; Sun, Xiaohan

    2006-10-01

    Planar lightwave circuit (PLC) chips based on III-V semiconductor MQW rib waveguide promise to be not only a solution to information access, but also direct the issues of bandwidth, pin count, reliability and complexity. Nanopositioning and precision alignment addresses vital importance in high-efficient connectivity between PLC chips and fiber arrays. Refractive-index mismatching between fused silica and III-V compound is one of the most serious problem which remains unsolved on one hand as well as mode field mismatching which can be mitigated in other hand through gradient geometry structure such as tapered spot size converter (SSC) and specialty fibers such as wedge-shaped fiber (WSF). Spherical gradient refractive-index (SGRIN) media intervened between WSF and MQW rib waveguide is put forward. The GRIN media virtually eliminates the reflection losses associated with the fused silica-air interface and III-V semiconductor-air interface. The beam spot emitted from WSF are observed by digital camera and the fundamental mode of MQW rib waveguide was calculated out. Lightwave propagation and mode field evolution in the WSF-SGRIN-PLC system is simulated by FDTD method with the coupling loss of 8.54dB at a wavelength of 1.55μm. An LED signal is injected into WSF, transmitted along GRIN media and PLC waveguide and output through single mode fiber (SMF). Optical power meter-based measurement verifies the whole system coupling loss to be consistent with the numeric estimation. The approach provides an experimental prototype for coupling and packaging technique of integrated photonic devices, hence supplying foundation for photonic network.

  8. Effect of macronutrients and fiber on postprandial glycemic responses and meal glycemic index and glycemic load value determinations.

    PubMed

    Meng, Huicui; Matthan, Nirupa R; Ausman, Lynne M; Lichtenstein, Alice H

    2017-02-15

    Background: The potential confounding effect of different amounts and proportions of macronutrients across eating patterns on meal or dietary glycemic index (GI) and glycemic load (GL) value determinations has remained partially unaddressed.Objective: The study aimed to determine the effects of different amounts of macronutrients and fiber on measured meal GI and GL values.Design: Four studies were conducted during which participants [n = 20-22; women: 50%; age: 50-80 y; body mass index (in kg/m(2)): 25-30)] received food challenges containing different amounts of the variable nutrient in a random order. Added to the standard 50 g available carbohydrate from white bread was 12.5, 25, or 50 g carbohydrate; 12.5, 25, or 50 g protein; and 5.6, 11.1, or 22.2 g fat from rice cereal, tuna, and unsalted butter, respectively, and 4.8 or 9.6 g fiber from oat cereal. Arterialized venous blood was sampled for 2 h, and measured meal GI and GL and insulin index (II) values were calculated by using the incremental area under the curve (AUCi) method.Results: Adding carbohydrate to the standard white-bread challenge increased glucose AUCi (P < 0.0001), measured meal GI (P = 0.0066), and mean GL (P < 0.0001). Adding protein (50 g only) decreased glucose AUCi (P = 0.0026), measured meal GI (P = 0.0139), and meal GL (P = 0.0140). Adding fat or fiber had no significant effect on these variables. Adding carbohydrate (50 g), protein (50 g), and fat (11.1 g) increased the insulin AUCi or II; fiber had no effect.Conclusions: These data indicate that uncertainty in the determination of meal GI and GL values is introduced when carbohydrate-containing foods are consumed concurrently with protein (equal amount of carbohydrate challenge) but not with carbohydrate-, fat-, or fiber-containing foods. Future studies are needed to evaluate whether this uncertainty also influences the prediction of average dietary GI and GL values for eating patterns. This trial was registered at clinicaltrials

  9. Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber.

    PubMed

    Liang, Hu; Zhang, Weigang; Geng, Pengcheng; Liu, Yange; Wang, Zhi; Guo, Junqi; Gao, Shecheng; Yan, Suyuan

    2013-04-01

    A double-filled photonic crystal fiber (PCF) was fabricated by filling liquids of different indexes into two air holes in the cladding. The core mode coupled to the local cladding modes LP(01) and LP(11) in the 1310 and 1550 nm wavebands, respectively. Due to the unique characteristics of the mode coupling, the resonant peaks in different resonance areas shifted to the opposite directions with the variations of the temperature or the force. The double-filled PCFs achieved in this work showed useful applications in the simultaneous measurement of both the temperature and the force.

  10. In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement.

    PubMed

    Kim, Dae Woong; Zhang, Yan; Cooper, Kristie L; Wang, Anbo

    2005-09-10

    We present two novel schemes for refractometry based on a long-period fiber grating- (LPG-) based Michelson interferometer. These schemes are designed to overcome the measurement dependence of previously demonstrated LPG-based refractometry on the immersion depth. The first utilizes an unshielded LPG and the second, a shielded one. Both schemes were tested over a certain refractive-index range, and the measurement of glucose concentration in water was experimentally demonstrated. In addition, the temperature sensitivity of the two schemes is discussed.

  11. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis.

    PubMed

    Dong, Yongkang; Xu, Pengbai; Zhang, Hongying; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2014-11-03

    A narrow bandwidth (2GHz) π-phase-shift flattop fiber Bragg grating (FBG) is proposed to achieve Brillouin optical time-domain analysis (BOTDA) for perfluorinated graded-index polymer optical fibers (GI-POFs) for the first time to best of our knowledge. Using the technique of BOTDA, we explore the evolution of mode coupling in perfluorinated GI-POFs by analyzing the Brillouin frequency shift (BFS) variation along the whole fiber, and compare them with that of silica graded index multimode fibers (GI-MMFs). The characteristics of mode coupling of GI-POFs and GI-MMFs were also investigated in terms of the speckle patterns at the output face of the two fibers. The results show that compared with silica GI-MMFs, GI-POFs exhibit more efficient mode coupling and the excellent ablility of mode scrambling regardless of alignment conditions.

  12. Analysis of performance index of fiber-optic liquid-level sensor based on an extrinsic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Lü, Tao; Li, Zhengjia; Xia, Danqing

    2008-12-01

    A novel configuration of fiber-optic liquid-level sensor based on an extrinsic Fabry-Perot cavity is presented and demonstrated in this paper. The main principle of this sensor is that output intensity will vary linearly in a locally special linear region with liquid-level increasing and cavity length decreasing. The experimental results prove that the actual curve of extrinsic Fabry-Perot cavity is approximate cosine curve, and that the peak values of the fringes slowly decrease with increased cavity length. Consequently, cavity length loss influences on performance indexes of extrinsic Fabry-Perot cavity optical fiber sensors operating in linear region such as measurement range, sensitivity, minimum resolution, and linearity. To obtain high finesse and throughout for reducing the complexity of signal processing system, the loss must be kept as small as possible by selecting an appropriate cavity length in view of different sensing surface and reflectivity. Otherwise, the sensor with too small initial cavity length can output more intensity, perform wider range of measurands, possess higher minimum resolution, and is more sensitive, but the linearity becomes worse and the measurement errors are maybe unavoidable to rise. On the contrary, with bigger original cavity length, the things are opposite. Hence, the original cavity length and the end reflectivity must be selected appropriately to meet with the requirements for performance indexes of the liquid-level sensor in realistic circumstance.

  13. A Reliable Split-Step Fourier Method for the Propagation Equation of Ultra-Fast Pulses in Single-Mode Optical Fibers

    SciTech Connect

    Deiterding, Ralf; Glowinski, R.; Oliver, Hilde; Poole, Stephen W

    2013-01-01

    The extension to the split-step Fourier method (SSFM) for Schrodinger-type pulse propagation equations that we propose in this article is designed with the accurate simulation of pulses in the femto-second regime in single-mode communication fibers in mind. We show that via an appropriate operator splitting scheme, Kerr nonlinearity and the self-steepening and stimulated Raman scattering terms can be combined into a single sub-step consisting of an inhomogeneous quasilinear first-order hyperbolic system for the real-valued quantities intensity and phase. First- and second-order accurate shock-capturing upwind schemes have been developed specifically for this nonlinear sub-step, which enables the accurate and oscillation-free simulation of signals under the influence of Raman scattering and extreme self-steepening with the SSFM. Benchmark computations of ultra-fast Gaussian pulses in fibers with strong nonlinearity demonstrate the superior approximation properties of the proposed approach.

  14. High-sensitivity refractive index sensor based on large-angle tilted fiber grating with carbon nanotube deposition

    NASA Astrophysics Data System (ADS)

    Badmos, Abdulyezir A.; Sun, Qizhen; Yan, Zhijun; Arif, Raz N.; Zhang, Junxi; Rozhin, Alex; Zhang, Lin

    2016-04-01

    This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of 207.38nm/RIU, 241.79nm/RIU at RI range 1.344-1.374 and 113.09nm/RIU, 144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of 65.728dBm/RIU and 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor.

  15. Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition.

    PubMed

    Śmietana, Mateusz; Koba, Marcin; Mikulic, Predrag; Bock, Wojtek J

    2016-05-30

    In this work we report experimental results on optimizing the refractive index (RI) sensitivity of long-period gratings (LPGs) by fiber cladding etching and thin aluminum oxide (Al2O3) overlay deposition. The presented LPG takes advantage of work in the dispersion turning point (DTP) regime as well as the mode transition (MT) effect for higher-order cladding modes (LP09 and LP010). The MT was obtained by depositing Al2O3 overlays with single-nanometer precision using the Atomic Layer Deposition method (ALD). Etching of both the overlay and the fiber cladding was performed using hydrofluoric acid (HF). For shallow etching of the cladding, i.e., DTP observed at next = 1.429 and 1.439 RIU for an LPG with no overlay, followed by deposition of an overlay of up to 167 nm in thickness, HF etching allowed for post-deposition fine-tuning of the overlay thickness resulting in a significant increase in RI sensitivity mainly at the DTP of the LP09 cladding mode. However, at an external RI (next) above 1.39 RIU, the DTP of LP010 was noticed, and its RI sensitivity exceeded 9,000 nm/RIU. Deeper etching of the cladding, i.e., DTP observed for next above 1.45 RIU, followed by the deposition of thicker overlays (up to 201 nm in thickness) allowed the sensitivity to reach values of over 40,000 nm/RIU in a narrow RI range. Sensitivity exceeding 20,000 nm/RIU was obtained in an RI range suitable for label-free biosensing applications.

  16. F/Yb-codoped sol-gel silica glasses: toward tailoring the refractive index for the achievement of high-power fiber lasers.

    PubMed

    El Hamzaoui, Hicham; Bouwmans, Geraud; Cassez, Andy; Bigot, Laurent; Capoen, Bruno; Bouazaoui, Mohamed; Vanvincq, Olivier; Douay, Marc

    2017-04-01

    Accurate control of both the doping distribution inside the fiber core and the low refractive index contrast between the fiber core and cladding materials is essential for the development of high-power fiber lasers based on the use of single-mode large-mode-area (LMA) optical fibers. Herein, sol-gel monolithic F/Yb3+-codoped silica glasses were prepared from porous large silica xerogels doped with ytterbium salt solution, which had been subjected to fluorination with hexafluoroethane gas, before subsequent sintering. The fluorine content inside the doped glass has been varied by adjusting the fluorination duration. The space homogeneity of fluorine and ytterbium concentrations in the cylindrical preforms has been checked by chemical analysis and Raman spectroscopy. Moreover, the glass with the lowest fluorine content has been successfully integrated as a core material in a microstructured optical fiber made using the stack-and-draw method. This fiber was tested in an all-fiber cavity laser architecture to evaluate potential lasing performances of the F/Yb3+-codoped silica glass. It presents a maximum efficiency of 70.4%, achieved at 1031 nm from a 1.16 m length fiber. These results confirm the potentialities of the obtained F/Yb3+-codoped glasses for the fabrication of LMA optical fiber lasers.

  17. Loss properties due to Rayleigh scattering in different types of fiber.

    PubMed

    Zhi, Wang; Guobin, Ren; Shuqin, Lou; Shuisheng, Jian

    2003-01-13

    The effects of fiber structure on Rayleigh scattering were investigated in detail. Some step-index fibers such as GeO2- and F-doped silica-based fibers and total-internal-reflection photonic crystal fiber are examined. The Rayleigh scattering loss (RSL) depends on the fiber materials and index profiles, and different types of fiber have different dependencies on those parameters because of the different optical power confinement factors in every layer. On the basis of these results, the RSL can be optimized by adjusting the fiber structure or by selecting different materials.

  18. Excitation of higher order modes in optical fibers with parabolic index profile.

    PubMed

    Chen, C L

    1988-06-01

    A large number of modes can be supported by multimode fibers. There are applications where higher order modes are preferred. Microbend intensity sensors are good examples. The sensitivity of these sensors is greatly increased if higher order modes are excited. In this work, a simple method to excite higher order modes preferentially is suggested. It consists of thin-film gratings deposited directly onto the fiber end. By controlling the film thickness or transparency of the grating structure, a desired transmission coefficient T(r,Phi) is synthesized. The desired mode can be excited preferentially by incident Gaussian beams without the aid of additional optical components. Binary intensity and binary phase gratings have been studied. Numerical investigation reveals that the phase gratings are more effective for the preferential excitation of higher order modes than the intensity gratings. In fact, by using binary phase gratings and in optimal excitation conditions as much as 81.1, 76.9, 74.6, 73.3, and 72.3% of the power in the incoming, linearly polarized, fundamental Gaussian beam can be converted to LP(02), LP(03), LP(04), LP(05), and LP(06) modes, respectively, excluding Fresnel loss.

  19. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing.

    PubMed

    Liu, Yi; Qu, Shiliang

    2014-01-20

    The Fabry-Perot interferometer (FPI) cavity in a single-mode fiber with two open faces was fabricated by using the method of femtosecond laser-induced water breakdown. Then the FPI cavity was annealed by the arc discharge to greatly smooth its internal surface. The whole fabrication process features simple operation and high efficiency. The fabricated FPI cavity exhibits a perfect interferometer spectrum with reflection loss of only -3 dB and fringe visibility of almost 30 dB. It can be used as a perfectly reliable liquid refractive index sensor, as it exhibits high sensitivity (1147.48 nm/RIU), good linearity (99.93%), good repeatability, high actual measurement accuracy (1.29×10(-4)RIU), large measurement range, and good temperature insensitive characteristic.

  20. Effects of Carbohydrate and Dietary Fiber Intake, Glycemic Index and Glycemic Load on HDL Metabolism in Asian Populations.

    PubMed

    Yanai, Hidekatsu; Katsuyama, Hisayuki; Hamasaki, Hidetaka; Abe, Shinichi; Tada, Norio; Sako, Akahito

    2014-10-01

    High-density lipoprotein (HDL) is a lipoprotein which has anti-atherogenic property by reverse cholesterol transport from the peripheral tissues to liver. Low HDL-cholesterol (HDL-C) levels are associated with the development of coronary artery diseases (CADs). Various epidemiological studies have suggested that the development of CAD increase in individuals with less than 40 mg/dL of HDL-C. In spite of accumulation of evidences which suggest a significant association between low HDL-C and cardiovascular diseases, effects of dietary factors on HDL metabolism remained largely unknown. There may be interracial differences in effects of dietary factors on HDL metabolism. Here we reviewed published articles about effects of carbohydrate and dietary fiber intake, glycemic index (GI) and glycemic load (GL), on HDL-C metabolism, regarding meta-analyses and clinical studies performed in Asian population as important articles. Low carbohydrate intake, GI and GL may be beneficially associated with HDL metabolism. Dietary fiber intake may be favorably associated with HDL metabolism in Asian populations.

  1. Fabry-Perot based strain insensitive photonic crystal fiber modal interferometer for inline sensing of refractive index and temperature.

    PubMed

    Dash, Jitendra Narayan; Jha, Rajan

    2015-12-10

    We report a highly stable, compact, strain insensitive inline microcavity-based solid-core photonic crystal fiber (SCPCF) modal interferometer for the determination of the refractive index (RI) of an analyte and its temperature. The interferometer is fabricated by splicing one end of SCPCF with single-mode fiber (SMF) and the other end with hollow-core PCF. This is followed by cleaving the part of the solid glass portion possibly present after the microcavity. The formation of the cavities at the end faces of the SCPCF results in reduction of the period of the interference pattern that helps in achieving distinctiveness in the measurement. Three sensor heads have been fabricated, and each has a different length of the collapsed region formed by splicing SMF with SCPCF. The response of the sensors is found to be sensitive to the length of this collapsed region between SMF and SCPCF with a sensitivity of 53 nm/RI unit (RIU) and resolution of 1.8×10(-4) RIU. The temperature response of the sensor is found to be linear, having a temperature sensitivity of 12 pm/°C. In addition to these findings, the effect of strain on the proposed structure is analyzed in both wavelength and intensity interrogation.

  2. A Highly Sensitive Fiber-Optic Fabry–Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement

    PubMed Central

    Li, Xuefeng; Shao, Yujiao; Yu, Yuan; Zhang, Yin; Wei, Shaowen

    2016-01-01

    In this study, a new type of highly sensitive fiber-optic Fabry–Perot interferometer (FFPI) is proposed with a high sensitivity on a wide refractive index (RI) measurement range based on internal reflection mirrors of micro-cavity. The sensor head consists of a single-mode fiber (SMF) with an open micro-cavity. Since light reflections of gold thin films are not affected by the RI of different measuring mediums, the sensor is designed to improve the fringe visibility of optical interference through sputtering the gold films of various thicknesses on the inner surfaces of the micro-cavity, as a semi-transparent mirror (STM) and a total-reflection mirror (TRM). Experiments have been carried out to verify the feasibility of the sensor’s design. It is shown that the fabricated sensor has strong interference visibility exceeding 15 dB over a wide measurement range of RI, and the sensor sensitivity is higher than 1160 nm/RIU, and RI resolution is better than 1.0 × 10−6 RIU. PMID:27258273

  3. Refractive index sensing characteristics of D-shape double core photonic crystal fiber based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Shi-tao; Guo, Xuan

    2016-10-01

    A refractive index (RI) sensor and its sensing characteristics based on surface plasmon resonance (SPR) of D-shape double core photonic crystal fiber (DC-PCF) are researched theoretically in this letter. The basic sensor principle is the SPR light intensity modulation of polished D-shape DC-PCF. The influence of the polished angle and depth on the DC-PCF SPR characteristics is discussed extensively by using the finite element method (FEM). The effects of the coated metal type and its layer thickness on the resonant intensity are also analyzed. The relationship between the analyte RI and resonant wavelength is numerically simulated. The theoretical results show that the sensor's RI sensitivity exhibits about 2000 nm/RIU with the structure parameters of 60° polished angle, 58.5μm polished depth and 70nm thickness of the silver layer. Furthermore, if the single wavelength laser is chosen, the detection of the two core light intensity difference will improve the ability of resistance to environmental interference. The simple sensor structure and high sensitivity can make this technology for online refractive index measurement in widespread areas.

  4. 3D laser-written silica glass step-index high-contrast waveguides for the 3.5 μm mid-infrared range.

    PubMed

    Martínez, Javier; Ródenas, Airán; Fernandez, Toney; Vázquez de Aldana, Javier R; Thomson, Robert R; Aguiló, Magdalena; Kar, Ajoy K; Solis, Javier; Díaz, Francesc

    2015-12-15

    We report on the direct laser fabrication of step-index waveguides in fused silica substrates for operation in the 3.5 μm mid-infrared wavelength range. We demonstrate core-cladding index contrasts of 0.7% at 3.39 μm and propagation losses of 1.3 (6.5) dB/cm at 3.39 (3.68) μm, close to the intrinsic losses of the glass. We also report on the existence of three different laser modified SiO₂ glass volumes, their different micro-Raman spectra, and their different temperature-dependent populations of color centers, tentatively clarifying the SiO₂ lattice changes that are related to the large index changes.

  5. Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference.

    PubMed

    Cheng, Tonglei; Kanou, Yasuhire; Deng, Dinghuan; Xue, Xiaojie; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake

    2014-06-02

    A hybrid four-hole AsSe2-As2S5 microstructured optical fiber (MOF) with a large refractive index difference is fabricated by the rod-in-tube drawing technique. The core and the cladding are made from the AsSe2 glass and As2S5 glass, respectively. The propagation loss is ~1.8 dB/m and the nonlinear coefficient is ~2.03 × 10(4) km(-1)W(-1) at 2000 nm. Raman scattering is observed in the normal dispersion regime when the fiber is pumped by a 2 μm mode-locked picosecond fiber laser. Additionally, soliton is generated in the anomalous dispersion regime when the fiber is pumped by an optical parametric oscillator (OPO) at the pump wavelength of ~3000 nm.

  6. Experimental measurement of effective refractive index difference for few mode polarization maintaining fibers using S2 method

    NASA Astrophysics Data System (ADS)

    Guo, Wenting; Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian

    2016-10-01

    Polarization maintaining fibers (PMFs) can keep linear polarization state against external perturbations by inducing a high effective refractive index difference (Δneff) along one polarization axis. For few mode polarization maintaining fibers (FM-PMFs), Δneff is applicable between both orthogonal linear polarization modes (e.g. LP01x and LP01y) and orthogonal degenerated modes (e.g. LP11a and LP11b), which can enable advanced functionalities in multiple-input multiple- output-free spatial division multiplexing systems and optical fiber sensing systems. Therefore, the measurement of Δneff for polarization modes and degenerated modes is very important for determining the quality of a FM-PMF. However, measurement of the Δneff for FM-PMFs can be complicated due to the requirement for generating and demultiplexing of the higher order modes (HOMs). In this paper, we propose to measure the Δneff of FM-PMFs using Spatially and Spectrally resolved imaging (S2) method for the first time. The presented method is simply by employing a tunable laser and an IR CCD camera, can avoid any mode converter or mode multiplexer/demultiplexer, featuring a rapid testing speed. A proof-of-concept experiment is carried out to measure FM-PMFs with a length of 1.1m and 5m. The Δneff between the orthogonal polarization modes (i.e. LP11ax-11ay, LP11bx-11by, LP21ax-21ay, and LP21bx-21by) are characterized as 7.05×10-4, 6.91×10-4, 1.02×10-3 and 1.04×10-3 respectively. The Δneff of the orthogonal degenerated modes (i.e. LP11ax-11bx, LP11ay-11by, LP21ax-21bx and LP21ay-21by) are also characterized to be 1.39×10-4, 1.24×10-4, 5.61×10-5 and 6.53×10-5 respectively.

  7. Egestion of asbestos fibers in Tetrahymena results in early morphological abnormalities. A step in the induction of heterogeneous cell lines?

    PubMed

    Hjelm, K K

    1989-01-01

    In Tetrahymena populations exposed to crocidolite asbestos fibers, many cells develop morphological abnormalities within 1-2 hours. The abnormalities are mainly large or small protrusions or indentations, or flattened parts of the cell surface and most often located in the posterior part of the cell. They are formed repeatedly in all cells but are also continuously repaired so that the fraction of cells affected represents an equilibrium between these two processes. Their formation is connected with egestion of the large bundles of fibers formed by phagocytosis. Such effects of egestion of fibers do not seem to have been reported previously. Egestion of a bundle of fibers is much slower than for other types of undigestible residues. In contrast to normal exocytosis occurring invariably at the cytoproct, egestion of asbestos often occurs in the posterior part of the cell outside the cytoproct. To my knowledge this is the first reported case of either very slow or extra-cytoproctal egestion in Tetrahymena. Cells with large abnormalities have a greater tendency to develop into "early heterogeneous" cells than the average abnormal cell. Some of these give rise to hereditarily stable heterogeneous cell lines of Tetrahymena. The morphological abnormalities are probably caused by mechanical action of the crocidolite fibers resulting in local damage of the cytoskeletal elements responsible for normal cell shape. The heterogenous cell lines may arise when cellular structures carrying non-genic cytotactically inherited information are modified. The relevance of these ideas to the induction of cancer by asbestos is briefly discussed.

  8. Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber.

    PubMed

    Krupa, K; Louot, C; Couderc, V; Fabert, M; Guenard, R; Shalaby, B M; Tonello, A; Pagnoux, D; Leproux, P; Bendahmane, A; Dupiol, R; Millot, G; Wabnitz, S

    2016-12-15

    We experimentally demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to spectrally flat supercontinuum generation with a uniform bell-shaped spatial beam profile extending from the visible to the mid-infrared at 2500 nm. We study the development of the supercontinuum along the multimode fiber by the cut-back method, which permits us to analyze the competition between the Kerr-induced geometric parametric instability and stimulated Raman scattering. We also performed a spectrally resolved temporal analysis of the supercontinuum emission.

  9. Is the Kidney Donor Risk Index a step forward in the assessment of deceased donor kidney quality?

    PubMed

    Lee, Alison P K; Abramowicz, Daniel

    2015-08-01

    The allocation of deceased donor kidneys has become more complex because of the increasing spectrum of donors and recipients age and comorbidities. Several scoring systems have been proposed to evaluate the donor quality of deceased donor kidneys, based on clinical, pathological or combined parameters to predict the risk of renal allograft failure. Nonetheless, besides the dichotomous extended criteria donor (ECD) score, none of the others have been used in clinical practice because of numerous reasons, ranging from lack of robust validation to the technical challenges associated with the evaluation of donor biopsies. Recently, the Kidney Donor Risk Index (KDRI) and Profile Index (KDPI) were introduced in the USA as a refined version of the ECD score. This scoring system is based on 10 donor factors, therefore providing a finely granulated evaluation of donor quality without the need of a kidney biopsy.Here, we review the advantages and drawbacks of the main scoring systems, and we describe the components of the KDRI and KDPI. It is an easily accessible online tool, based solely on donor factors readily available at the moment of the donor offer. Importantly, the KDPI has also been made part of the 'longevity matching' allocation in the USA, where the best kidneys are allocated to the recipients with the longest predicted post-transplant survival. The KDRI should provide us with a robust qualitative evaluation of deceased donor quality, and therefore will probably play a role in deceased donor kidney allocation policies across Europe in the near future. Hopefully, the KDRI and the KDPI should help transplant programmes to better allocate the scarce resource of deceased donor kidneys.

  10. Walking the Line: A Fibronectin Fiber-Guided Assay to Probe Early Steps of (Lymph)angiogenesis

    PubMed Central

    Mitsi, Maria; Schulz, Martin Michael Peter; Gousopoulos, Epameinondas; Ochsenbein, Alexandra Michaela; Detmar, Michael; Vogel, Viola

    2015-01-01

    Angiogenesis and lymphangiogenesis are highly complex morphogenetic processes, central to many physiological and pathological conditions, including development, cancer metastasis, inflammation and wound healing. While it is described that extracellular matrix (ECM) fibers are involved in the spatiotemporal regulation of angiogenesis, current angiogenesis assays are not specifically designed to dissect and quantify the underlying molecular mechanisms of how the fibrillar nature of ECM regulates vessel sprouting. Even less is known about the role of the fibrillar ECM during the early stages of lymphangiogenesis. To address such questions, we introduced here an in vitro (lymph)angiogenesis assay, where we used microbeads coated with endothelial cells as simple sprouting sources and deposited them on single Fn fibers used as substrates to mimic fibrillar ECM. The fibers were deposited on a transparent substrate, suitable for live microscopic observation of the ensuing cell outgrowth events at the single cell level. Our proof-of-concept studies revealed that fibrillar Fn, compared to Fn-coated surfaces, provides far stronger sprouting and guidance cues to endothelial cells, independent of the tested mechanical strains of the Fn fibers. Additionally, we found that VEGF-A, but not VEGF-C, stimulates the collective outgrowth of lymphatic endothelial cells (LEC), while the collective outgrowth of blood vascular endothelial cells (HUVEC) was prominent even in the absence of these angiogenic factors. In addition to the findings presented here, the modularity of our assay allows for the use of different ECM or synthetic fibers as substrates, as well as of other cell types, thus expanding the range of applications in vascular biology and beyond. PMID:26689200

  11. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips.

    PubMed

    André, Ricardo M; Warren-Smith, Stephen C; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M I; Latifi, H; Marques, Manuel B; Bartelt, Hartmut; Frazão, Orlando

    2016-06-27

    Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 μm to just a few μm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and -1316 nm/RIU, respectively.

  12. Refractive index sensitivity of optical fiber lossy-mode resonance sensors based on atomic layer deposited TiOx thin overlay

    NASA Astrophysics Data System (ADS)

    Burnat, Dariusz; Koba, Marcin; Wachnicki, Łukasz; Gierałtowska, Sylwia; Godlewski, Marek; Śmietana, Mateusz

    2016-05-01

    This work presents an optical fiber refractive index sensors based on lossy-mode resonance (LMR) effect supported by titanium oxide (TiOx) thin overlay. The TiOx overlays of different thickness were deposited on core of polymer-clad silica (PCS) fibers using atomic layer deposition (ALD) method. Based on numerical simulations, a number of structures differing in the location of exposed core area and the thickness of TiOx coatings were designed. For fabricated structures the spectral response to external refractive index (next) was measured. The maximum sensitivity reaches 634.2 nm/RIU (next range: 1.357 - 1.402 RIU; TiOx coating thickness: 260.9 nm; investigated spectral range: 500-800 nm) and it highly depends on the thin-film thickness.

  13. Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber.

    PubMed

    Wang, Ying; Wang, D N; Liao, C R; Hu, Tianyi; Guo, Jiangtao; Wei, Huifeng

    2013-02-01

    A temperature-insensitive micro Fabry-Pérot (FP) cavity based on simplified hollow-core (SHC) photonic crystal fiber (PCF) is demonstrated. Such a device is fabricated by splicing a section of SHC PCF with single mode fibers at both cleaved ends. An extremely low temperature sensitivity of ~0.273 pm/°C is obtained between room temperature and 900°C. By drilling vertical micro-channels using a femtosecond laser, the micro FP cavity can be filled with liquids and functions as a sensitive refractometer and the refractive index sensitivity obtained is ~851.3 nm/RIU (refractive index unit), which indicates an ultra low temperature cross-sensitivity of ~3.2×10(-7) RIU/°C.

  14. Migration of additive molecules in a polymer filament obtained by melt spinning: Influence of the fiber processing steps

    SciTech Connect

    Gesta, E.; Skovmand, O.; Espuche, E. Fulchiron, R.

    2015-12-17

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-setting did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives’ ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.

  15. Making Optical-Fiber Chemical Detectors More Sensitive

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    Calculations based on exact theory of optical fiber shown how to increase optical efficiency and sensitivity of active-cladding step-index-profile optical-fiber fluorosensor using evanescent wave coupling. Optical-fiber fluorosensor contains molecules fluorescing when illuminated by suitable light in presence of analyte. Fluorescence coupled into and launched along core by evanescent-wave interaction. Efficiency increases with difference in refractive indices.

  16. Nanosecond laser damage of optical multimode fibers

    NASA Astrophysics Data System (ADS)

    Mann, Guido; Krüger, Jörg

    2016-07-01

    For pulse laser materials processing often optical step index and gradient index multimode fibers with core diameters ranging from 100 to 600 μm are used. The design of a high power fiber transmission system must take into account limitations resulting from both surface and volume damage effects. Especially, breakdown at the fiber end faces and selffocusing in the fiber volume critically influence the fiber performance. At least operation charts are desirable to select the appropriate fiber type for given laser parameters. In industry-relevant studies the influence of fiber core diameter and end face preparation on laser-induced (surface) damage thresholds (LIDT) was investigated for frequently used all-silica fiber types (manufacturer LEONI). Experiments on preform material (initial fiber material) and compact specimens (models of the cladding and coating material) accompanied the tests performed in accordance with the relevant LIDT standards ISO 21254-1 and ISO 21254-2 for 1-on-1 and S-on-1 irradiation conditions, respectively. The relation beam diameter vs. LIDT was investigated for fused silica fibers. Additionally, laser-induced (bulk) damage thresholds of fused silica preform material F300 (manufacturer Heraeus) in dependence on external mechanical stress simulating fiber bending were measured. All experiments were performed with 10-ns laser pulses at 1064 and 532 nm wavelength with a Gaussian beam profile.

  17. Pretreatment based on two-step steam explosion combined with an intermediate separation of fiber cells--optimization of fermentation of corn straw hydrolysates.

    PubMed

    Zhang, Yuzhen; Fu, Xiaoguo; Chen, Hongzhang

    2012-10-01

    Pretreatment is necessary for lignocellulose to achieve a highly efficient enzymatic hydrolysis and fermentation. However, coincident with pretreatment, compounds inhibiting microorganism growth are formed. Some tissues or cells, such as thin-walled cells that easily hydrolyze, will be excessively degraded because of the structural heterogeneity of lignocellulose, and some inhibitors will be generated under the same pretreatment conditions. Results showed, compared with one-step steam explosion (1.2 MPa/8 min), two-step steam explosion with an intermediate separation of fiber cells (ISFC) (1.1 Mpa/4 min-ISFC-1.2 MPa/4 min) can increase enzymatic hydrolyzation by 12.82%, reduce inhibitor conversion by 33%, and increase fermentation product (2,3-butanediol) conversion by 209%. Thus, the two-step steam explosion with ISFC process is proposed to optimize the hydrolysis process of lignocellulose by modifying the raw material from the origin. This novel process reduces the inhibitor content, promotes the biotransformation of lignocellulose, and simplifies the process of excluding the detoxification unit operation.

  18. Revision to the humidity correction equation in the calculation formulae of the air refractive index based on a phase step interferometer with three frequency-stabilized lasers

    NASA Astrophysics Data System (ADS)

    Chen, Qianghua; Zhang, Mengce; Liu, Shuaijie; He, Yongxi; Luo, Huifu; Luo, Jun; Lv, Weiwei

    2016-12-01

    At present the formulae proposed by G Boensch and E Potulski in 1998 (Boensch and Potulski 1998 Metrologia 35 133-9) are mostly used to calculate the air refractive index. However, the humidity correction equation in the formulae is derived by using the light source of a Cd lamp whose light frequency stability is poor and at a narrow temperature range, around 20 °C. So it is no longer suitable in present optical precision measurements. To solve this problem, we propose a refractive index measurement system based on phase step interferometer with three frequency stabilized lasers (532 nm, 633 nm, 780 nm), corrected coefficients of the humidity are measured and a corresponding revised humidity correction equation is acquired. Meanwhile, the application temperature range is extended from 14.6 °C to 25.0 °C. The experiment comparison results at the temperature of 22.2-23.2 °C show the accuracy by the presented equation is better than that of Boensch and Potulski.

  19. Refractive index detection range adjustable liquid-core fiber optic sensor based on surface plasmon resonance and a nano-porous silica coating

    NASA Astrophysics Data System (ADS)

    Chen, Yuzhi; Li, Xuejin; Zhou, Huasheng; Hong, Xueming; Geng, Youfu

    2016-09-01

    A liquid-core fiber optic surface plasmon resonance sensor with an adjustable nano-porous silica coating is first presented in this paper. By adjusting the refractive index of the nano-porous silica coating, the sensor can be used in different refractive index detection ranges. A low refractive index interval of 1.33-1.34 and a high refractive index interval of 1.42-1.44 are taken as examples to be investigated. Results show that our sensor works well in these two intervals by using appropriate nano-porous silica coatings. The highest sensitivities of the low and high refractive index intervals are obtained to be 5840 nm/RIU and 5120 nm/RIU, respectively. In addition, the sensing performances and the working wavelengths can be adjusted to meet different working requirements by changing the refractive index of the nano-porous silica coating. We also take the single mode incidence cases to explain the effects of different single incident light modes on the sensing performances.

  20. Glycemic index, glycemic load, dietary carbohydrate, and dietary fiber intake and risk of liver and biliary tract cancers in Western Europeans

    PubMed Central

    Fedirko, V.; Lukanova, A.; Bamia, C.; Trichopolou, A.; Trepo, E.; Nöthlings, U.; Schlesinger, S.; Aleksandrova, K.; Boffetta, P.; Tjønneland, A.; Johnsen, N. F.; Overvad, K.; Fagherazzi, G.; Racine, A.; Boutron-Ruault, M. C.; Grote, V.; Kaaks, R.; Boeing, H.; Naska, A.; Adarakis, G.; Valanou, E.; Palli, D.; Sieri, S.; Tumino, R.; Vineis, P.; Panico, S.; Bueno-de-Mesquita, H. B(as).; Siersema, P. D.; Peeters, P. H.; Weiderpass, E.; Skeie, G.; Engeset, D.; Quirós, J. R.; Zamora-Ros, R.; Sánchez, M. J.; Amiano, P.; Huerta, J. M.; Barricarte, A.; Johansen, D.; Lindkvist, B.; Sund, M.; Werner, M.; Crowe, F.; Khaw, K. T.; Ferrari, P.; Romieu, I.; Chuang, S. C.; Riboli, E.; Jenab, M.

    2013-01-01

    Background The type and quantity of dietary carbohydrate as quantified by glycemic index (GI) and glycemic load (GL), and dietary fiber may influence the risk of liver and biliary tract cancers, but convincing evidence is lacking. Patients and methods The association between dietary GI/GL and carbohydrate intake with hepatocellular carcinoma (HCC; N = 191), intrahepatic bile duct (IBD; N = 66), and biliary tract (N = 236) cancer risk was investigated in 477 206 participants of the European Prospective Investigation into Cancer and Nutrition cohort. Dietary intake was assessed by country-specific, validated dietary questionnaires. Hazard ratios and 95% confidence intervals were estimated from proportional hazard models. HBV/HCV status was measured in a nested case–control subset. Results Higher dietary GI, GL, or increased intake of total carbohydrate was not associated with liver or biliary tract cancer risk. For HCC, divergent risk estimates were observed for total sugar = 1.43 (1.17–1.74) per 50 g/day, total starch = 0.70 (0.55–0.90) per 50 g/day, and total dietary fiber = 0.70 (0.52–0.93) per 10 g/day. The findings for dietary fiber were confirmed among HBV/HCV-free participants [0.48 (0.23–1.01)]. Similar associations were observed for IBD [dietary fiber = 0.59 (0.37–0.99) per 10 g/day], but not biliary tract cancer. Conclusions Findings suggest that higher consumption of dietary fiber and lower consumption of total sugars are associated with lower HCC risk. In addition, high dietary fiber intake could be associated with lower IBD cancer risk. PMID:23123507

  1. Polymer Clad Silica Fibers for Tailoring Modal Area and Dispersion

    PubMed Central

    Rishøj, Lars; Jones, Maxwell; Demas, Jeffrey; Gregg, Patrick; Prabhakar, Gautam; Yan, Lu; Hawkins, Thomas; Ballato, John; Ramachandran, Siddharth

    2016-01-01

    We demonstrate higher-order-mode (Aeff up to ~2000 μm2) propagation in a 100 μm outer diameter pure-silica fiber with a low-index polymer jacket commonly used for fiber-laser pump-guidance. This simple structure obviates the need for complex designs deemed necessary for realizing large-mode-area fibers. Modes ranging from HE1,12 to HE1,22 were found to propagate stably over 15 m in this fiber. The index step is approximately 4 times larger than that obtained with fluorine down doping, thus the fiber supports even higher order modes, which may have implications for building rare earth doped fiber lasers or achieving enhanced dispersion tunability for high-energy fiber nonlinear phenomena. PMID:27472625

  2. Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm.

    PubMed

    Feng, Xian; Poletti, Francesco; Camerlingo, Angela; Parmigiani, Francesca; Horak, Peter; Petropoulos, Periklis; Loh, Wei H; Richardson, David J

    2009-10-26

    We report the fabrication of an all-solid highly nonlinear microstructured optical fiber. The structured preform was made by glass extrusion using two types of commercial lead silicate glasses that provide high index-contrast. Effectively single-moded guidance was observed in the fiber at 1.55 microm. The effective nonlinearity and the propagation loss at this wavelength were measured to be 120 W(-1)km(-1) and 0.8 dB/m, respectively. Numerical simulations indicate that the fiber is dispersion-shifted with a zero-dispersion-wavelength of 1475 nm and a dispersion slope of 0.16 ps/nm(2)/km respectively at 1.55 microm. These predictions are consistent with the experimentally determined dispersion of + 12.5 ps/nm/km at 1.55 microm. Tunable and efficient four-wave-mixing based wavelength conversion was demonstrated at wavelengths around 1.55 microm using a 1.5m-length of the fiber.

  3. Space-division-multiplexed transmission of 3x3 multiple-input multiple-output wireless signals over conventional graded-index multimode fiber.

    PubMed

    Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2016-12-12

    In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds of scenarios, including fiber-only transmission and fiber-wireless hybrid transmission, were investigated by measuring error vector magnitude (EVM) performance for each stream and condition number (CN) of the channel matrix. The experimental results show that, SDM-based MMF link could offer a CN< 20dB well-conditioned MIMO channel over up to 1km fiber length within 0-6GHz, achieving as low as 2.38%, 2.97% and 2.11% EVM performance for 1km MMF link at 2.4GHz, 5.8GHz, and 200m MMF link followed by 1m air distance at 2.7GHz, respectively. These results indicate the possibility to distribute wireless MIMO signals over existing in-building commercially-available MMFs with enormous cost-saving.

  4. Six mode selective fiber optic spatial multiplexer.

    PubMed

    Velazquez-Benitez, A M; Alvarado, J C; Lopez-Galmiche, G; Antonio-Lopez, J E; Hernández-Cordero, J; Sanchez-Mondragon, J; Sillard, P; Okonkwo, C M; Amezcua-Correa, R

    2015-04-15

    Low-loss all-fiber photonic lantern (PL) mode multiplexers (MUXs) capable of selectively exciting the first six fiber modes of a multimode fiber (LP01, LP11a, LP11b, LP21a, LP21b, and LP02) are demonstrated. Fabrication of the spatial mode multiplexers was successfully achieved employing a combination of either six step or six graded index fibers of four different core sizes. Insertion losses of 0.2-0.3 dB and mode purities above 9 dB are achieved. Moreover, it is demonstrated that the use of graded index fibers in a PL eases the length requirements of the adiabatic tapered transition and could enable scaling to large numbers.

  5. Increased sensitivity of femtosecond laser micro-machined in-fiber Mach-Zehnder interferometer for small-scale refractive index sensing

    NASA Astrophysics Data System (ADS)

    Debowska, Anna K.; Koba, Marcin; Janik, Monika; Bock, Wojtek J.; Śmietana, Mateusz

    2016-05-01

    In this paper we focus on refractive index (RI) sensing properties of a micro-size In-fiber Mach-Zehnder Interferometer (μIMZI). The μIMZI structure was fabricated as a precisely controlled side opening of a single-mode fiber using a femtosecond laser. The sensitivity to RI change in the micro-cavity has been measured and two RI sensitivity regions have been found for RI 1.33-1.36 and 1.37-1.40 RIU. The sensitivity in the first region is over 12,000 nm/RIU, and in the higher RI region is close to 50% higher. The obtained structures are an excellent solution for RI sensing with negligible temperature cross-sensitivity, especially where small amounts of liquid are available, e.g. in lab-on-chip, microfluidics.

  6. Heterogeneous trench-assisted few-mode multi-core fiber with graded-index profile and square-lattice layout for low differential mode delay.

    PubMed

    Tu, Jiajing; Saitoh, Kunimasa; Amma, Yoshimichi; Takenaga, Katsuhiro; Matsuo, Shoichiro

    2015-07-13

    We propose a kind of heterogeneous trench-assisted graded-index few-mode multi-core fiber with square-lattice layout. For each core in the fiber, effective area (A(eff)) of LP(01) mode and LP(11) mode can achieve about 110 μm(2) and 220 μm(2). Absolute value of differential mode delay (|DMD|) is smaller than 100 ps/km over C + L bands, which can decrease the complexity of digital signal processing at the receiver end. Considering the upper limit of cladding diameter (D(cl)) and cable cutoff wavelength of LP(21) mode in the cores located at the inner layer, we set core pitch (Λ) as 43 μm. In this case, D(cl) is about 220.4 μm, inter-core crosstalk (XT) is lower than -40 dB/500 km and the relative core multiplicity factor (RCMF) reaches 15.93.

  7. Accurate Estimate of Some Propagation Characteristics for the First Higher Order Mode in Graded Index Fiber with Simple Analytic Chebyshev Method

    NASA Astrophysics Data System (ADS)

    Dutta, Ivy; Chowdhury, Anirban Roy; Kumbhakar, Dharmadas

    2013-03-01

    Using Chebyshev power series approach, accurate description for the first higher order (LP11) mode of graded index fibers having three different profile shape functions are presented in this paper and applied to predict their propagation characteristics. These characteristics include fractional power guided through the core, excitation efficiency and Petermann I and II spot sizes with their approximate analytic formulations. We have shown that where two and three Chebyshev points in LP11 mode approximation present fairly accurate results, the values based on our calculations involving four Chebyshev points match excellently with available exact numerical results.

  8. Effects of refractive index changes on four-wave mixing bands in Er-doped photonic crystal fibers pumped at 976 nm.

    PubMed

    Velázquez-Ibarra, L; Díez, A; Andrés, M V; Lucio, J L

    2012-04-01

    An experimental study of the effects of an auxiliary 976 nm pump signal on the four-wave mixing parametric bands generated with a 1064 nm pump in a normal dispersion Er-doped photonic crystal fiber is presented. The four-wave mixing signal and idler bands shift to shorter and longer wavelengths, respectively, with increasing 976 nm pump power. It is shown that the wavelength-dependent resonant refractive index change in the erbium-doped core under 976 nm pumping is at the origin of the effect.

  9. Improve the flame retardancy of cellulose fibers by grafting zinc ion.

    PubMed

    Zhang, KeKe; Zong, Lu; Tan, Yeqiang; Ji, Quan; Yun, Weicai; Shi, Ran; Xia, Yanzhi

    2016-01-20

    Zinc ion as the only flame retardant of cellulose fibers was successfully grafted onto cellulose fibers. Grafting maleic anhydride onto cellulose fibers via homogeneous acylation reaction between N,N-dimethyl formamide (DMF) as the first step. Then, graft zinc ion onto the formed cellulose fibers was conducted with zinc carbonate. The resulting copolymers were characterized by FTIR. Flame retardancy and thermal degradation of zinc-ion-modified cellulose fibers (cellulose-Zn fibers) was investigated by limiting oxygen index (LOI), cone calorimeter (CONE), XRD, TG and SEM. Zinc ion could effectively improve flame retardancy and thermal degradation when its content increases up to 4.96 wt%.

  10. Single-step sub-200  fs mid-infrared generation from an optical parametric oscillator synchronously pumped by an erbium fiber laser.

    PubMed

    Metzger, Bernd; Pollard, Benjamin; Rimke, Ingo; Büttner, Edlef; Raschke, Markus B

    2016-09-15

    We demonstrate the single-step generation of mid-infrared femtosecond laser pulses in a AgGaSe2 optical parametric oscillator that is synchronously pumped by a 100 MHz repetition rate sub-90 fs erbium fiber laser. The tuning range of the idler beam in principle covers ∼3.5 to 17 μm, only dependent on the choice of cavity and mirror design. As an example, we experimentally demonstrate idler pulse generation from 4.8 to 6.0 μm optimized for selective vibrational resonant molecular spectroscopy. We find an oscillation threshold as low as 150 mW of pump power. At 300 mW pump power and a central wavelength of ∼5.0  μm, we achieve an average infrared power of up to 17.5 mW, with a photon conversion efficiency of ∼18%. A pulse duration of ∼180  fs is determined from a nonlinear cross-correlation with residual pump light. The single-step nonlinear conversion leads to a high power stability with <1% average power drift at <0.5%  rms noise over 1 h.

  11. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre

    NASA Astrophysics Data System (ADS)

    Petersen, Christian Rosenberg; Møller, Uffe; Kubat, Irnis; Zhou, Binbin; Dupont, Sune; Ramsay, Jacob; Benson, Trevor; Sujecki, Slawomir; Abdel-Moneim, Nabil; Tang, Zhuoqi; Furniss, David; Seddon, Angela; Bang, Ole

    2014-11-01

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. To date, the limitations of mid-infrared light sources such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation have precluded mid-infrared applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central wavelength of either 4.5 μm or 6.3 μm into short pieces of ultra-high numerical-aperture step-index chalcogenide glass optical fibre generates a mid-infrared supercontinuum spanning 1.5 μm to 11.7 μm and 1.4 μm to 13.3 μm, respectively. This is the first experimental demonstration to truly reveal the potential of fibres to emit across the mid-infrared molecular ‘fingerprint region’, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control.

  12. Humidity coefficient correction in the calculation equations of air refractive index by He-Ne laser based on phase step interferometry.

    PubMed

    Chen, Qianghua; Liu, Jinghai; He, Yongxi; Luo, Huifu; Luo, Jun; Wang, Feng

    2015-02-10

    The refractive index of air (RIA) is an important parameter in precision measurement. The revisions to Edlen's equations by Boensch and Potulski [Metrologia 35, 133 (1998)] are mostly used to calculate the RIA at present. Since the humidity correction coefficients in the formulas were performed with four wavelengths of a Cd(114) lamp (644.0, 508.7, 480.1, and 467.9 nm) and at the temperature range of 19.6°C-20.1°C, the application is restricted when an He-Ne laser is used as the light source, which is mostly applied in optical precision measurement, and the environmental temperature is far away from 20°C as well. To solve this problem, a measurement system based on phase step interferometry for measuring the effect of the humidity to the RIA is presented, and a corresponding humidity correction equation is derived. The analysis and comparison results show that the uncertainty of the presented equation is better than that of Boensch and Potulski's. It is more suitable in present precision measurements by He-Ne laser, and the application temperature range extends to 14.6°C-24.0°C as well.

  13. Space-efficient fiber ribbon composed of reduced-cladding single-mode fibers

    NASA Astrophysics Data System (ADS)

    Chang, J. H.; Bae, S. H.; Kim, Hoon; Ouh, C. H.; Jung, C. H.; Cho, H. S.; Chung, Y. C.

    2016-09-01

    We develop a space-efficient single-mode fiber (SMF) having a cladding diameter of only 82 μm. This SMF has the depressed-cladding index profile and its mode-field diameter, cutoff wavelength, and macro bending loss are designed to be similar to those of the conventional step-index SMF. We fabricate this reduced-cladding SMF and measure its optical and mechanical characteristics. The results show that this fiber satisfies major specifications of the ITU-T G.654 recommendations. We also fabricate a fiber ribbon by using twelve of these reduced-cladding SMFs. Compared to a commercial fiber ribbon made of twelve standard SMFs having 125-μm cladding diameter, this fiber ribbon can improve the spatial efficiency by ∼75%.

  14. Simulation-guided design and fabrication of long-period gratings in photonic crystal fiber as refractive index transduction platform for multi-parameter sensing

    NASA Astrophysics Data System (ADS)

    He, Zonghu

    2011-12-01

    Fiber optic sensing technology based on conventional, all-solid optical fiber has been broadly used for chemical and biological sensing and detection. The advent of photonic crystal fiber (PCF) offers transformative opportunities due to its unique waveguiding and microstructural features. Incorporating long period gratings (LPG) in PCF has the potential to further catapult LPG-PCF based sensing technology in terms of greatly improved sensing capabilities and significantly expanded field of applications. This doctoral dissertation aims to synergistically integrate LPG and index guiding PCF as refractive index transduction platform to explore its potential for multi-parameter sensing and measurements. The phase matching conditions, core mode to cladding mode coupling, and power overlap were theoretically simulated to aid in the design and fabrication of the LPG-PCF platform using CO2 laser. For sensing of aqueous solutions, we developed a novel means of LPG fabrication while maintaining a steady liquid flow in the PCF air channels. This approach greatly improves the quality and reproducibility of the fabrication process. More importantly, it helps preserve the general resonance coupling condition when an aqueous analyte solution is probed. We have theoretically predicted and experimentally achieved a sensitivity of ˜10-7 refractive index unit using our fabricated LPG-PCF platform due to the strong overlap between the cladding mode evanescent field and the analyte within the PCF air channels. For label-free biosensing, we integrated the LPG-PCF with a home-build microfluidic flow cell that can be optically coupled with the sensing platform while allowing continuous flow of the reagents. As a result, we have demonstrated the ability to monitor a series of surface binding events in situ. Our LPG-PCF is able to consistently detect monolayer biomolecular binding events with a measured resonance wavelength shift of about 0.75 nm per nanometer thick layer formed. Overall

  15. ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation studies

    NASA Astrophysics Data System (ADS)

    Pawar, Dnyandeo; Kitture, Rohini; Kale, S. N.

    2017-03-01

    ZnO nanoparticles-coated Fabry-Perot interferometer based optical fiber sensor is demonstrated to detect different gasoline blend concentrations in ethanol. Different gasoline blends (with ethanol varying from 0% (E0) to 100% (E100)) have been subjected to the sensor to observe the change in refractive index of the material that leads to the wavelength shift and fringe visibility change of the interference spectrum. The sensor shows the remarkable response with different gasoline blend mixtures within the time span of 0-60 s in terms of wavelength and Intensity (power) shift. The maximum wavelength shift of 12.1 nm is observed for E0 mixture and least of 3 nm for E100 in 60 s, respectively. A fast response time and recovery time of 5 s and 9 s, respectively, are obtained for E0 mixture. The results are related to the formation of interference pattern due the ZnO-mediated-Fabry-Perot cavity, changes in refractive index with the change in external gaseous environment, changes in fringe visibility of the spectrum and the interaction of oxygen vacancies on ZnO surface with the gasoline moieties. The rates of sensing and recovery times are related to the Reid vapor pressures of ethanol and gasoline. Hence a dual scale of sensing, both in terms of wavelength shift (refractive index) and intensity shift (fringe visibility) has been proposed for gasoline blend sensing.

  16. Biodegradable polymer optical fiber (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Chenji; Kalaba, Surge; Shan, Dingying; Xu, Kaitian; Yang, Jian; Liu, Zhiwen

    2016-10-01

    Biocompatible and even biodegradable polymers have unique advantages in various biomedical applications. Recent years, photonic devices fabricated using biocompatible polymers have been widely studied. In this work, we manufactured an optical fiber using biodegradable polymer POC and POMC. This step index optical fiber is flexible and easy to handle. Light was coupled into this polymer fiber by directly using objective. The fiber has a good light guiding property and an approximate loss of 2db/cm. Due to the two layer structure, our fiber is able to support applications inside biological tissue. Apart from remarkable optical performance, our fiber was also found capable of performing imaging. By measuring the impulse response of this multimode polymer fiber and using the linear inversion algorithm, concept proving experiments were completed. Images input into our fiber were able to be retrieved from the intensity distribution of the light at the output end. Experiment result proves the capability of our optical fiber to be used as a fiber endoscopy no needs to remove.

  17. Modulation transfer function of the imaging probe using an 8.8 mm-long and 125 μm-thick graded- index short multimode fiber

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Shouji, Kou; Nishidate, Izumi

    2017-02-01

    We measured the modulation transfer function (MTF) of a short multimode fiber (SMMF) probe and proposed the optical model including the thin random phase screen (TRPS) to explain degradations of imaging characteristics. SMMF is a graded index multimode fiber for optical communication. That length is 8.8 mm and the diameter of core is 50 μm. With the wavelength of 780 nm, for spatial frequencies from128 lp/mm to 228 lp/mm MTFs were measured at 0.179-0.062 in reflection images and these contrasts were 19% to contrasts without TRPS. With parameters of σϕ of 1.5 rad and W of 2-3.5 μm calculated results almost correspond to measured ones. Dependences of contrasts on wavelength were also measured. With the spatial frequency of 200 lp/mm, at the wavelength of 0.8 μm the contrast decreased to 17% due to TRPS and at that of 0.5 μm the contrast decreased to 6%. Measured dependences of contrasts on wavelength with the spatial frequency of 228 lp/mm approximately correspond to calculation results with 200 lp/mm. These basic characteristics are useful to design the imaging optics by means of SMMF.

  18. The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Mandia, David J.; Zhou, Wenjun; Ward, Matthew J.; Joress, Howie; Sims, Jeffrey J.; Giorgi, Javier B.; Albert, Jacques; Barry, Seán T.

    2015-10-01

    The combined effect of nanoscale dielectric and metallic layers prepared by atomic layer deposition (ALD) and chemical vapor deposition (CVD) on the refractometric properties of tilted optical fiber Bragg gratings (TFBG) is studied. A high index intermediate layer made up of either 50 nm or 100 nm layers of Al2O3 (refractive index near 1.62) was deposited by ALD and followed by thin gold layers (30-65 nm) deposited from a known single-source gold (I) iminopyrrolidinate CVD precursor. The fabricated devices were immersed in different surrounding refractive indices (SRI) and the spectral transmission response of the TFBGs was measured. Preliminary results indicate that the addition of the dielectric Al2O3 pre-coating enhances the SRI sensitivity by up to 75% but this enhancement is highly dependent on the polarization and dielectric thickness. In fact, the sensitivity decreases by up to 50% for certain cases. These effects are discussed with support from TFBG simulations and models, by quantifying the penetration of the evanescently coupled light out of the fiber through the various coating layers. Additional characterization studies have been carried out on these samples to further correlate the optical behaviour of the coated TFBGs with the physical properties of the gold and Al2O3 layers, using atomic force microscopy x-ray photoelectron spectroscopy and an ensemble of other optical and x-ray absorption spectroscopy techniques. The purity, roughness, and morphology of gold thin films deposited by CVD onto the dielectric-TFBG surface are also provided.

  19. The effect of ALD-grown Al₂O₃ on the refractive index sensitivity of CVD gold-coated optical fiber sensors.

    PubMed

    Mandia, David J; Zhou, Wenjun; Ward, Matthew J; Joress, Howie; Sims, Jeffrey J; Giorgi, Javier B; Albert, Jacques; Barry, Seán T

    2015-10-30

    The combined effect of nanoscale dielectric and metallic layers prepared by atomic layer deposition (ALD) and chemical vapor deposition (CVD) on the refractometric properties of tilted optical fiber Bragg gratings (TFBG) is studied. A high index intermediate layer made up of either 50 nm or 100 nm layers of Al2O3 (refractive index near 1.62) was deposited by ALD and followed by thin gold layers (30-65 nm) deposited from a known single-source gold (I) iminopyrrolidinate CVD precursor. The fabricated devices were immersed in different surrounding refractive indices (SRI) and the spectral transmission response of the TFBGs was measured. Preliminary results indicate that the addition of the dielectric Al2O3 pre-coating enhances the SRI sensitivity by up to 75% but this enhancement is highly dependent on the polarization and dielectric thickness. In fact, the sensitivity decreases by up to 50% for certain cases. These effects are discussed with support from TFBG simulations and models, by quantifying the penetration of the evanescently coupled light out of the fiber through the various coating layers. Additional characterization studies have been carried out on these samples to further correlate the optical behaviour of the coated TFBGs with the physical properties of the gold and Al2O3 layers, using atomic force microscopy x-ray photoelectron spectroscopy and an ensemble of other optical and x-ray absorption spectroscopy techniques. The purity, roughness, and morphology of gold thin films deposited by CVD onto the dielectric-TFBG surface are also provided.

  20. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology.

    PubMed

    Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng

    2016-06-01

    A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  1. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology

    PubMed Central

    Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng

    2016-01-01

    A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281

  2. Single-mode fiber laser based on core-cladding mode conversion.

    PubMed

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  3. Sol-gel-based doped granulated silica for the rapid production of optical fibers

    NASA Astrophysics Data System (ADS)

    Romano, Valerio; Pilz, Soenke; Etissa, Dereje

    2014-03-01

    In the recent past we have studied the granulated silica method as a versatile and cost effective way of fiber preform production. We have used the sol-gel technology combined with a laser-assisted remelting step to produce high homogeneity rare earth or transition metal-activated microsized particles for the fiber core. For the fiber cladding pure or index-raised granulated silica has been employed. Silica glass tubes, appropriately filled with these granular materials, are then drawn to fibers, eventually after an optional quality enhancing vitrification step. The process offers a high degree of compositional flexibility with respect to dopants; it further facilitates to achieve high concentrations even in cases when several dopants are used and allows for the implementation of fiber microstructures. By this "rapid preform production" technique, that is also ideally suited for the preparation of microstructured optical fibers, several fibers have been produced and three of them will be presented here.

  4. Active fibers from sol-gel derived granulated silica: state of the art and potential

    NASA Astrophysics Data System (ADS)

    Romano, Valerio; Sandoz, Frederic

    2010-10-01

    In the recent past we have studied the granulated silica method as a versatile and cost effective way of fiber preform production. We have used the sol-gel technology combined with a laser-assisted remelting step to produce high homogeneity Rare Earth or Transition Metal - activated microsized particles for the fiber core. For the fiber cladding pure or index-raised granulated Silica has been employed. Silica glass tubes, appropriately filled with these granular materials, are then drawn to fibers, eventually after an optional quality enhancing vitrification step. The process offers a high degree of compositional flexibility with respect to dopants; it further facilitates to achieve high concentrations even in cases when several dopants are used. By this "rapid preform production" technique, that is also ideally suited for the preparation of microstructured optical fibers, several fibers ranging from broadband emitters, PCFs and large mode area fibers have been produced and will be presented here.

  5. Mode-dependent attenuation of optical fibers: excess loss.

    PubMed

    Olshansky, R; Nolan, D A

    1976-04-01

    A theory is presented for calculating the excess loss produced by random perturbations of optical fibers. The theory is applicable to perturbations whose longitudinal spatial frequencies are below the range required for mode coupling. To illustrate the method, losses due to diameter variations are calculated for the case of a step-index optical fiber. The diameter variations are found to produce a strong attenuation of the higher order modes. The total excess loss is approximately wavelength independent.

  6. Fiber Optic Solutions for Short Pulse Lasers

    SciTech Connect

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter grows

  7. Packaging aluminum impacting on optical fiber with Singlemode-Multimode-Singlemode (SMS) fiber structure

    NASA Astrophysics Data System (ADS)

    Sari, Damayanti; Hatta, Agus; Pratama, Detak Yan

    2016-11-01

    Bare fiber strain sensor and packaged strain sensor of a step-index singimode-multimode-singlemode (SMS) fiber structure are investigated numerically and experimentally. Strain sensor packaging was done to protect optical fiber from the damaged. Sensor performance was investigated by using operation wavelength 1550 nm it is demonstrated that for strain measurement from 0-1060 μɛ Based on the numerical test the sensitivity of bare fiber strain sensor on the length of 44.35 mm is 0.0023 dBm/μɛ while the result of the experiment test is 0.0022 dBm/ μɛ. Based on the numerical test of packaged fiber strain sensor the sensitivity is 0.0021 dBm/ μɛ while the result of the experiment is 0.0015 dBm/ μɛ.

  8. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidium and Giardia spp.

    PubMed Central

    Rhodes, Eric R.; Villegas, Leah Fohl; Shaw, Nancy J.; Miller, Carrie; Villegas, Eric N.

    2012-01-01

    Cryptosporidium and Giardia species are two of the most prevalent protozoa that cause waterborne diarrheal disease outbreaks worldwide. To better characterize the prevalence of these pathogens, EPA Method 1623 was developed and used to monitor levels of these organisms in US drinking water supplies 12. The method has three main parts; the first is the sample concentration in which at least 10 L of raw surface water is filtered. The organisms and trapped debris are then eluted from the filter and centrifuged to further concentrate the sample. The second part of the method uses an immunomagnetic separation procedure where the concentrated water sample is applied to immunomagnetic beads that specifically bind to the Cryptosporidium oocysts and Giardia cysts allowing for specific removal of the parasites from the concentrated debris. These (oo)cysts are then detached from the magnetic beads by an acid dissociation procedure. The final part of the method is the immunofluorescence staining and enumeration where (oo)cysts are applied to a slide, stained, and enumerated by microscopy. Method 1623 has four listed sample concentration systems to capture Cryptosporidium oocysts and Giardia cysts in water: Envirochek filters (Pall Corporation, Ann Arbor, MI), Envirochek HV filters (Pall Corporation), Filta-Max filters (IDEXX, Westbrook, MA), or Continuous Flow Centrifugation (Haemonetics, Braintree, MA). However, Cryptosporidium and Giardia (oo)cyst recoveries have varied greatly depending on the source water matrix and filters used1,14. A new tangential flow hollow-fiber ultrafiltration (HFUF) system has recently been shown to be more efficient and more robust at recovering Cryptosporidium oocystsand Giardia cysts from various water matrices; moreover, it is less expensive than other capsule filter options and can concentrate multiple pathogens simultaneously1-3,5-8,10,11. In addition, previous studies by Hill and colleagues demonstrated that the HFUF significantly improved

  9. Measurement of refractive index profile of non-symmetric, complex silica preforms with high refractive index differences

    NASA Astrophysics Data System (ADS)

    Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel

    2016-04-01

    Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.

  10. Study of laser-induced damage to large core silica fiber by Nd:YAG and Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Hokansson, Adam; Whelan, Dan; Clancy, Michael

    2009-02-01

    As a continuation of our earlier study at 2.1 μm wavelength, we have investigated the laser damage to several types of step-index, large core (1500 μm) silica fibers at two new wavelengths by high power long pulsed Nd:YAG (1064 nm) and Alexandrite (755 nm) lasers. It was observed that fibers with different designs showed a significant difference in performance at these wavelengths. We will also report a correlation of damage to the fibers between the two laser wavelengths. The performance analyses of different fiber types under the given test conditions will enable optimization of fiber design for specific applications.

  11. Interlaboratory comparison of radiation-induced attenuation in optical fibers

    SciTech Connect

    Friebele, E.J.; Lyons, P.B.; Blackburn, J.C.; Henschel, H.; Johan, A.; Krinsky, J.A.; Robinson, A.; Schneider, W.; Smith, D.; Taylor, E.W.; Los Alamos National Lab., NM; Harry Diamond Labs., Adelphi, MD; Fraunhofer-Institut fuer Naturwissenschaftlich-Technische Trendanalysen , Euskirchen; Direction des Recherches, Etudes et Techni

    1989-08-01

    A comparison of the losses induced in step index multimode, graded index multimode and single mode fibers by pulsed radiation exposure has been made among 12 laboratories over a period of 5 years. The recoveries of the incremental attenuations from 10{sup -9} to 10{sup 1} s are reported. Although a standard set of measurement parameters was attempted, differences between the laboratories are evident; possible origins for these are discussed. 18 refs., 18 figs., 7 tabs.

  12. Security: Step by Step

    ERIC Educational Resources Information Center

    Svetcov, Eric

    2005-01-01

    This article provides a list of the essential steps to keeping a school's or district's network safe and sound. It describes how to establish a security architecture and approach that will continually evolve as the threat environment changes over time. The article discusses the methodology for implementing this approach and then discusses the…

  13. Finite element modeling of microstructured optical fibers: leaky modes, twisted geometries, and spatial Kerr solitons

    NASA Astrophysics Data System (ADS)

    Nicolet, André; Zolla, Frédéric; Renversez, Gilles; Ould Agha, Yacoub; Drouart, Fabien

    2008-11-01

    Microstructured optical fibers have much more degrees of freedom concerning the geometries and index contrasts than step-index fibers. This richness opens totally new fields of application for fiber optics. The finite element method appears as an extremely versatile tool to compute the propagation modes in such systems as it allows to take into account arbitrary geometries of the cross section and also anisotropic and inhomogeneous (i.e. not only piecewise constant) dielectric permittivities. In this paper, we review some more advanced features: how to compute leaky modes (crucial for the understanding of such kind of fibers) by using perfectly matched layers, how to use helicoidal coordinate systems to determine the influence of a twist on the modes via a two-dimensional model (using equivalent materials), and how to compute spatial solitons in fibers involving Kerr optical medium by taking into account the refractive index inhomogeneities caused by the nonlinearity.

  14. Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration.

    PubMed

    Yokota, Toshifumi; Lu, Qi-Long; Morgan, Jennifer E; Davies, Kay E; Fisher, Rosie; Takeda, Shin'ichi; Partridge, Terence A

    2006-07-01

    Duchenne muscular dystrophy and the mdx mouse myopathies reflect a lack of dystrophin in muscles. However, both contain sporadic clusters of revertant fibers (RFs) that express dystrophin. RF clusters expand in size with age in mdx mice. To test the hypothesis that the expansion of clusters is achieved through the process of muscle degeneration and regeneration, we analyzed muscles of mdx mice in which degeneration and regeneration were inhibited by the expression of micro-dystrophins or utrophin transgenes. Postnatal RF expansion was diminished in direct correlation to the protective effect of the transgene expression. Similarly, expansion of RFs was inhibited when muscle regeneration was blocked by irradiation. However, in irradiated muscles, irradiation-tolerant quiescent muscle precursor cells reactivated by notexin effectively restored RF expansion. Our observations demonstrate that revertant events occur initially within a subset of muscle precursor cells. The proliferation of these cells, as part of the regeneration process, leads to the expansion of RF clusters within degenerating muscles. This expansion of revertant clusters depicts the cumulative history of regeneration, thus providing a useful index for functional evaluation of therapies that counteract muscle degeneration.

  15. Biconical tapered optical fiber biosensor for measuring refractive index of a-amino acids in aqueous D-glucose and sucrose solution

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Karami, M.; Gholami, M.; Hosseini, S. M.; Ghezelayagh, M. H.

    2010-04-01

    A single-mode biconical tapered optical fiber (BTOF) sensor was utilized for sensing the variation of refractive index (RI) with concentration of D-glucose in double distilled deionized water and measuring of RI of amino acids (AAs) in carbohydrate solutions. This method showed a rewarding ability in understanding the basis of biomolecular interactions in biological systems. The BTOF is fabricated by heat pulling method, utilizing a CO2 laser. The detection limit of the BTOF was 50 ppb for the D-glucose concentration ranging from 0 to 80 ppm, and RI detection limit corresponding to these concentrations in the range at 1.3333 to 1.3404 was 5.4×10-6 as a refractometer sensor. The response of the BTOF shows that the different kinds of interactions of various groups of AAs such as L-alanine, L-leucine, and L-cystein with D-glucose, sucrose and water molecules depend on functional groups in AAs such as OH, SH;CH2;NH3+ ,COO-. These results can be interpreted in terms of solute-solute and solute-solvent interactions and structure making/breaking ability of solutes in the given solution.

  16. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    PubMed

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  17. Fabrication of large flattened mode optical fiber for high power laser

    NASA Astrophysics Data System (ADS)

    Das, S.; Pal, A.; Paul, M. C.; Sen, R.

    2010-12-01

    Large flattened mode optical fiber with raised index ring around the outer edge of the fiber core has been fabricated through modified chemical vapour deposition process to raise the threshold for non-linear interaction in high power laser fiber. The conversion of the fundamental mode shape from a Bessel function to a top hat function, enhances the effective area of the core intersected by the mode without increasing the physical size of the core. The shape of the fundamental mode is observed to be strongly dependent on the width of the raised index ring from the modal analysis. Suitable fiber parameters have also been estimated through the modal field analysis. Fabrication process steps have been optimized to achieve the desired fiber parameters. Modal field distribution, transmission properties and bending loss of the fabricated fibers have been characterized.

  18. Spectrally efficient polymer optical fiber transmission

    NASA Astrophysics Data System (ADS)

    Randel, Sebastian; Bunge, Christian-Alexander

    2011-01-01

    The step-index polymer optical fiber (SI-POF) is an attractive transmission medium for high speed communication links in automotive infotainment networks, in industrial automation, and in home networks. Growing demands for quality of service, e.g., for IPTV distribution in homes and for Ethernet based industrial control networks will necessitate Gigabit speeds in the near future. We present an overview on recent advances in the design of spectrally efficient and robust Gigabit-over-SI-POF transmission systems.

  19. Bending losses of trench-assisted few-mode optical fibers.

    PubMed

    Zheng, Xingjuan; Ren, Guobin; Huang, Lin; Li, Haisu; Zhu, Bofeng; Zheng, Heling; Cao, Min

    2016-04-01

    A semianalytical method based on the perturbation theory is developed to calculate the bending losses of individual modes of few-mode fibers (FMFs); it is applicable for optical fibers with arbitrary circularly symmetric index profile, especially for trench-assisted fibers. The bending performance of trench-assisted step-index FMFs and parabolic-index FMFs are investigated with three key parameters (i.e., the refractive index difference of trench-cladding, the width of the trench, and the distance of the core-trench). Then, a performance index is defined to estimate the bending performance for FMFs. It is shown that changing the distance of the trench-core, for each order of mode, there is a minimum bending loss, which can be used for fiber optimization. This optimization position (core-trench distance) decreases as the mode order increases. It is found that the bending performance of parabolic-index FMFs is better than that of step-index FMFs with fixed core radius and cutoff wavelength. The conclusions are helpful for understanding the mechanism of bending loss for FMFs, and make contributions to designing and manufacturing of few-mode bend-insensitive fibers.

  20. Multimode optical fiber

    SciTech Connect

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  1. Laser-direct writing of single mode and multi-mode polymer step index waveguide structures for optical backplanes and interconnection assemblies

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher

    2015-01-01

    A laser direct writing (LDW) method is implemented as a cost efficient polymer waveguide (WG) fabrication method for prototyping large substrates for optical backplanes and optical interconnection assemblies. The LDW setup utilizes a 3-axis air-bearing motion platform to reduce WG fabrication error to within ±0.15 μm. A UV laser diode coupled single mode fiber with a focusing lens module is capable of LDW WGs at both multimode (50 μm) and single mode (6 μm) dimensions. Correlation between LDW parameters and fabricated WG dimensions using Dow Corning® OE-4140 UV-Cured Optical Elastomer (ncore = 1.5142, nclad = 1.5064) is discussed theoretically and confirmed experimentally for both applications. A theoretical model is developed and utilized for producing LDW multi-mode (0.04 dB/cm, λ = 850 nm) and single mode (0.55 dB/cm, λ = 1310 nm) WGs. Measured propagation losses of LDW WGs are comparable to losses of photolithographic multi-mode (0.04 dB/cm @ 850 nm) and single mode (0.59 dB/cm @ 1310 nm) WG builds. LDW multi-mode and single mode WG radial bend and crossing losses are evaluated for advanced optical communication channel routing capabilities and do not exhibit significant deviations from photolithographic-manufactured WG device loss.

  2. Mode coupling in multimode plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    1999-10-01

    In this thesis, we report the results of our experimental and theoretical studies of mode coupling in multi-mode optical fibers. We demonstrate that strong mode coupling in poly(methyl methacrylate) (PMMA) based multi-mode plastic optical fibers (POFs) effectively increases the bandwidth performance by a factor of as much as an order of magnitude. We investigate in detail the physical mechanisms of mode coupling. The most important feature of an optical fiber waveguide is its bandwidth, which defines its information carrying capacity. A major limitation on the bandwidth of multi- mode glass and plastic optical fibers is modal dispersion, in which different optical modes propagate at different velocities and the dispersion grows linearly with length. Modal dispersion in an optical fiber waveguide is reduced through mode coupling by allowing the energy packets of a signal pulse at different times to occupy different modes as they are propagating down the waveguide. With mode coupling, pulse broadening varies only as a characteristic square root function of the fiber length as opposed to following the usual linear dependence The bandwidths of both step index (SI) and graded index (GI) POF samples are carefully measured in the time domain and determined to be 80 +/- 10 MHz per 100m for SI POF and 3.0 +/- 0.4 GHz per 100m for GI POF. The index profiles are first directly measured by standard high accuracy techniques, such as the near field method, the refracted near field ray method, and the transverse interferometric method (TIM), and then probed with the highly sensitive differential mode delay (DMD) measurement. We developed a highly efficient numerical methodology based on the Streifer-Kurtz WKB theory for solving the scalar wave equation in fiber waveguides and implemented the new method in MathematicaTM to simulate fiber optical transmission characteristics for an arbitrary given index profile, such as the DMD profile, impulse response, and bandwidth performance

  3. Next Step for STEP

    SciTech Connect

    Wood, Claire; Bremner, Brenda

    2013-08-09

    The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measures being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.

  4. Influence of fiber bending and strain on the modal content

    NASA Astrophysics Data System (ADS)

    Schulze, Christian; Flamm, Daniel; Duparré, Michael; Schröter, Siegmund

    2012-02-01

    Today multimode optical fibers are used to transport and generate high brilliant beams of considerable power. External perturbation of the fiber, e.g., induced by bending or strain, will influence the guided light, i.e., change modal content and beam properties. We present a detailed experimental investigation of fiber bending and strain induced changes of the modal content, based on the Correlation Filter Method that performs a modal decomposition with computer-generated holograms. Using this technique the modal amplitudes and phases can be monitored in real-time, i.e., currently with up to 30 Hz, such that variations in the modal composition can be observed instantaneously. The fast measurement rate can be used for adjustment purposes, e.g., to evaluate quantitatively the change of beam quality with varying bending diameter. We have applied our method to different kinds of multimode fibers such as step-index, photonic crystal and multicore fibers, whereas the results for a step-index and a multicore large mode area fiber are exemplarily presented, including the impact of bending on the beam quality.

  5. Influence of the size of a micro-cavity fabricated in an optical fiber using the femtosecond laser in a form of in-line Mach-Zehnder interferometer on its refractive index sensitivity

    NASA Astrophysics Data System (ADS)

    Janik, Monika; Koba, Marcin; Bock, Wojtek J.; Śmietana, Mateusz

    2016-12-01

    This paper discusses refractive index (n) measurement capabilities of micro-cavity with various diameters (d = 40, 54 and 60μm) fabricated in optical fibers by a femtosecond laser. The bottom of the cavity intersected the fiber's core and the Mach-Zehnder interferometer effect was induced, allowing the measurement of the n of the liquid filling the cavity. After filling the cavity, a set of minima can be observed in fiber transmission spectrum which shift with change in n. Fabricated sensors exhibit high and linear sensitivity, which in the range of n=1.3333 to 1.3500 RIU barely depends on the cavity diameter in case of first observed minima. Next for different micro-cavity diameters the minima do not overlap in refractive index domain thus it is impossible to compare them in terms of the sensitivity. The highest sensitivity of up to more than 27 000 nm/RIU was obtained for the smallest cavity and the third observed minimum.

  6. Silyl-acetylene polymers for use as precursors to silicon carbide fibers

    SciTech Connect

    Meyer, M.K.

    1991-12-20

    The steps involved in production of silicon carbide fiber using silyl acetylene polymer precursors can be separated into four processing steps: polymer synthesis, fiber spinning, fiber crosslinking, and pyrolysis. Practical experimental considerations in each step are discussed.

  7. Hough-transform-based circle detection using an array of multimode optical fibers

    NASA Astrophysics Data System (ADS)

    Li, Yao; Eichmann, George

    1987-02-01

    The generation of an optical Hough transform (OHT) to detect a circle is proposed. The method is based on the use of a 2D multimode step-index optical fiber array. Both the position and radius of a circle can be detected. Some of the OHT performance parameters are also discussed.

  8. Multimode interference and a white light scanning Michelson interferometer with a 400-mm sapphire fiber sensing head

    NASA Astrophysics Data System (ADS)

    Li, Tianchu; May, Russell G.; Wang, Anbo; Claus, Richard O.

    1998-08-01

    In this paper we present the analysis of multimode (MM) interference induced by MM fiber interferometers and report the development of a white light scanning fiber Michelson interferometer with a sapphire fiber sensing head for the measurement of position-distance at high temperatures. The 'mode fading' effect in standard graded 50/125 micrometers fiber and independent 'inter-mode interference' in 100 micrometers step index profile fiber are discussed. By means of the 'mode selecting' technique, proposed and developed in this work, we demonstrated white light fringes with signal to noise ratios of more than 12 with a sensing head composed of a 400 mm long lead sapphire fiber and an uncoated sapphire target fiber.

  9. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  10. High energy particle tracking using scintillating fibers and solid state photomultipliers

    SciTech Connect

    Petroff, M.D.; Atac, M.

    1989-01-01

    The Solid State Photomultiplier (SSPM) recently developed at the Rockwell International Science Center, coupled with fast scintillating fibers can have a rate capacity of 10/sup 8/ tracks per second per cm/sup 2/ of fiber cross section in systems for tracking of high energy ionizing particles. Relative to other approaches the SSPM can provide substantial improvements in spatial and temporal tracking accuracy. Results of preliminary experiments with 0.225 /times/ 0.225 mm/sup 2/ cross section step-index-of-refraction fiber exposed to electrons from a beta source are presented. The experiments involved pulse height analysis of SSPM photon detection pulses induced by coincident scintillations in two adjacent fibers traversed by the same electron. The data for two different scintillating fibers tested indicate that meter long fibers of this type, optimally coupled to SSPMs, will be effective in detecting minimum ionizing particles. 4 refs., 3 figs., 1 tab.

  11. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing.

    PubMed

    Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang

    2012-03-12

    The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity

  12. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling.

    PubMed

    Fukuda, Daiji; Fujii, Go; Numata, Takayuki; Amemiya, Kuniaki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Inoue, Shuichiro; Zama, Tatsuya

    2011-01-17

    We have realized a high-detection-efficiency photon number resolving detector at an operating wavelength of about 850 nm. The detector consists of a titanium superconducting transition edge sensor in an optical cavity, which is directly coupled to an optical fiber using an approximately 300-nm gap. The gap reduces the sensitive area and heat capacity of the device, leading to high photon number resolution of 0.42 eV without sacrificing detection efficiency or signal response speed. Wavelength dependent efficiency in fiber-coupled devices, which is due to optical interference between the fiber and the device, is also decreased to less than 1% in this configuration. The overall system detection efficiency is 98%±1% at wavelengths of around 850 nm, which is the highest value ever reported in this wavelength range.

  13. Simulating Optical Fibers.

    ERIC Educational Resources Information Center

    Edgar, Dale

    1988-01-01

    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  14. Theory of fiber-optic, evanescent-wave spectroscopy and sensors

    NASA Astrophysics Data System (ADS)

    Messica, A.; Greenstein, A.; Katzir, A.

    1996-05-01

    A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.

  15. Ultra broadband mid-IR supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide graded-index photonic crystal fiber: design and analysis.

    PubMed

    Chaitanya, A G N; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-12-20

    In this paper, we report design and numerical analysis of a Ge11.5As24Se64.5 based chalcogenide glass graded-index photonic crystal fiber structure for mid-IR ultra broadband supercontinuum generation. The proposed dispersion engineered photonic crystal fiber offers a zero dispersion wavelength at a pump wavelength of 2.8 μm. To simulate the supercontinuum generation spectrum, the orders of dispersion coefficient up to the ninth order are considered. Simulated results indicate that an ultra broadband supercontinuum spectrum spanning 1-16 μm has been achieved using a 10 mm long photonic crystal fiber structure pumped with 50 fs secant hyperbolic pulses of 3 kW at a -30  dB spectral intensity level. To the best of our knowledge, this is the first time such broad supercontinuum spectrum has been reported. This ultra broadband mid-IR supercontinuum spectrum is applicable in many diverse fields, including medical, defense, metrology, and spectroscopy.

  16. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  17. Dependence of bending losses on cladding thickness in plastic optical fibers.

    PubMed

    Durana, Gaizka; Zubia, Joseba; Arrue, Jon; Aldabaldetreku, Gotzon; Mateo, Javier

    2003-02-20

    Our main goal is to provide a comprehensive explanation of the existing differences in bending losses arising from having step-index multimode plastic optical fibers with different cladding thickness and under different types of conditions, namely, the variable bend radius R, the number of fiber turns, or the fiber diameter. For this purpose, both experimental and numerical result of bending losses are presented for different cladding thicknesses and conditions. For the measurements, two cladding thicknesses have been considered: one finite and another infinite. A fiber in air has a finite cladding thickness, and rays are reflected at the cladding-air interface, whereas a fiber covered by oil is equivalent to having an infinite cladding, since the very similar refractive index of oil prevents reflections from occurring at the cladding-oil interface. For the sake of comparison, numerical simulations based on ray tracing have been performed for finite-cladding step-index multimode waveguides. The numerical results reinforce the experimental data, and both the experimental measurements and the computational simulations turn out to be very useful to explain the behavior of refracting and tunneling rays along bent multimode waveguides and along finite-cladding fibers.

  18. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  19. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  20. Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging

    NASA Astrophysics Data System (ADS)

    Jayasuriya, D.; Wilson, B.; Furniss, D.; Tang, Z.; Barney, E.; Benson, T. M.; Seddon, A. B.

    2016-03-01

    Novel chalcogenide glass-based fiber opens up the mid-infrared (MIR) range for real-time monitoring and control in medical diagnostics and chemical processing. Fibers with long wavelength cut-off are of interest here. Sulfide, selenide and telluride based chalcogenide glass are candidates, but there are differences in their glass forming region, thermal stability and in the short and long wavelength cut-off positions. In general sulfide and selenide glasses have greater glass stability, but shorter long-wavelength cut-off edge, compared to telluride glasses; selenide-telluride glasses are a good compromise. Low optical loss selenide-telluride based long wavelength fibers could play a substantial role in improving medical diagnostic systems, chemical sensing, and processing, and in security and agriculture. For biological tissue, the molecular finger print lies between ~3-15 μm wavelengths in the MIR region. Using MIR spectral mapping, information about diseased tissue may be obtained with improved accuracy and in vivo using bright broadband MIR super-continuum generation (SCG) fiber sources and low optical loss fiber for routing. The Ge-As-Se-Te chalcogenide glass system is a potential candidate for both MIR SCG and passive-routing fiber, with good thermal stability, wide intrinsic transparency from ~1.5 to 20 μm and low phonon energy. This paper investigates Ge-As-Se-Te glass system pairs for developing high numerical aperture (NA) small-core, step-index optical fiber for MIR SCG and low NA passive step-index optical fiber for an in vivo fiber probe. Control of fiber geometry of small-core optical fiber and methods of producing the glass material are also included in this paper.

  1. High-power monolithic fiber amplifiers based on advanced photonic crystal fiber designs

    NASA Astrophysics Data System (ADS)

    Sipes, Donald L.; Tafoya, Jason D.; Schulz, Daniel S.; Alkeskjold, Thomas Tanggaard; Weirich, Johannes; Olausson, Christina B.

    2014-03-01

    We report on the development and performance of a fully monolithic PCF amplifier that has achieved over 400 W with near diffraction limited beam quality with an approximately 1GHz phase modulated input. The key components for these amplifiers are an advanced PCF fiber design that combines segmented acoustically tailored (SAT) fiber that is gain tailored, a novel multi fiber-coupled laser diode stack and a monolithic 6+1x1 large fiber pump/signal multiplexer. The precisely aligned 2-D laser diode emitter array found in laser diode stacks is utilized by way of a simple in-line imaging process with no mirror reflections to process a 2-D array of 380-450 elements into 3 400/440μm 0.22NA pump delivery fibers. The fiber combiner is an etched air taper design that transforms low numerical aperture (NA), large diameter pump radiation into a high NA, small diameter format for pump injection into an air-clad large mode area PCF, while maintaining a constant core size through the taper for efficient signal coupling and throughput. The fiber combiner has 6 400/440/0.22 core/clad/NA pump delivery fibers and a 25/440 PM step-index signal delivery fiber on the input side and a 40/525 PM undoped PCF on the output side. The etched air taper transforms the six 400/440 μm 0.22 NA pump fibers to the 525 μm 0.55 NA core of the PCF fiber with a measured pump combining efficiency of over 95% with a low brightness drop. The combiner also operates as a stepwise mode converter via a 30 μm intermediate core region in the combiner between the 20 μm core of the input fiber and the 40 μm fiber core of the PCF with a measured signal efficiency of 60% to 70% while maintaining polarization with a measured PER of 20 dB. These devices were integrated in to a monolithic fiber amplifier with high efficiency and near diffraction limited beam quality.

  2. Drawing robust infrared optical fibers from preforms produced by efficient multimaterial stacked coextrusion

    NASA Astrophysics Data System (ADS)

    Tao, Guangming; Abouraddy, Ayman F.

    2014-03-01

    The utilization of infrared chalcogenide glass (ChG) fibers has long been hampered by the unfavorable mechanical characteristics typical of these glasses. Furthermore, the usual pathways to producing such fibers necessitate large-scale synthesis of high-purity glass, which represents a challenge in an academic environment, and thus presents an obstacle to the transfer of research results from academia to industry. Here we present our recent progress on multimaterial coextrusion technology that allows for high-efficiency disc-to-fiber manufacturing. A one-step extrusion from two glass discs (10-mm-diameter and 3-mm-thick) and a thermoplastic disc results in a robust step-index preform that is thermally drawn in an ambient atmosphere into continuous lengths of fiber with core diameters on the order of tens of micrometers. These results offer an alternative methodology that overcomes many of the traditional obstacles while potentially reducing the production cost.

  3. Fiber bundle phase conjugate mirror

    DOEpatents

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  4. Measurement of fiber orientation in short-fiber composites

    SciTech Connect

    Gonzalez, L.M.; Cumbrera, F.L.; Sanchez-Bajo, F.; Pajares, A. . Dept. de Fisica)

    1994-03-01

    The degree of fiber orientation in short-fiber composites plays an important role in determining many properties of these materials. In order to predict the toughening of a composite by using fiber reinforcements, the authors must consider the orientation of fibers as described probabilistically by the distribution function f([psi]), where [psi] is the angle which each fiber makes with the normal to the crack face. Here, a method for the characterization of the fiber orientation is built up in successive steps. In a first step the measurements of a planar array of fibers is afforded by extracting the important statistical information contained in a calculated Fraunhofer diffraction pattern of the fiber distribution. Subsequently, a method is proposed allowing us to derive the relevant f([psi]) distribution from the two-dimensional characterization of two orthogonal plane sections of the composite.

  5. Effect of constructional parameters on the performance of a surface plasmon resonance sensor based on a multimode polymer optical fiber.

    PubMed

    Gasior, Katarzyna; Martynkien, Tadeusz; Urbanczyk, Waclaw

    2014-12-10

    We experimentally studied the influence of different constructional parameters on the performance of surface plasmon resonance (SPR) sensors based on a commercially available polymer step-index multimode fiber. For the first time, to the best of our knowledge, we experimentally investigated the influence of polishing depth on the characteristics of SPR sensors based on a straight multimode fiber. We also examined the impact of sensing length on the spectral position and strength of the SPR in side-polished straight fibers. To clarify literature contradictions concerning the effect of fiber bending on SPR, we experimentally investigated the performance of U-bent SPR sensing probes based on multimode fibers. We have shown that the SPR can be significantly amplified by bending the polymer fiber with stripped cladding. We also demonstrated that the side-polishing of U-bent sensing probes has little impact on their performance.

  6. PHOEBE - step by step manual

    NASA Astrophysics Data System (ADS)

    Zasche, P.

    2016-03-01

    An easy step-by-step manual of PHOEBE is presented. It should serve as a starting point for the first time users of PHOEBE analyzing the eclipsing binary light curve. It is demonstrated on one particular detached system also with the downloadable data and the whole procedure is described easily till the final trustworthy fit is being reached.

  7. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers.

    PubMed

    Ouzounov, Dimitre G; Ahmad, Faisal R; Müller, Dirk; Venkataraman, Natesan; Gallagher, Michael T; Thomas, Malcolm G; Silcox, John; Koch, Karl W; Gaeta, Alexander L

    2003-09-19

    The measured dispersion of a low-loss, hollow-core photonic band-gap fiber is anomalous throughout most of the transmission band, and its variation with wavelength is large compared with that of a conventional step-index fiber. For an air-filled fiber, femtosecond self-frequency--shifted fundamental solitons with peak powers greater than 2megawatts can be supported. For Xe-filled fibers, nonfrequency-shifted temporal solitons with peak powers greater than 5.5 megawatts can be generated, representing an increase in the power that can be propagated in an optical fiber of two orders of magnitude. The results demonstrate a unique capability to deliver high-power pulses in a single spatial mode over distances exceeding 200 meters.

  8. Microstructured fibers for broadband wavefront filtering in the mid-IR

    NASA Astrophysics Data System (ADS)

    Flanagan, Joanne C.; Richardson, D. J.; Foster, M. J.; Bakalski, I.

    2006-11-01

    The European Space Agency's space-based Darwin mission aims to directly detect extrasolar Earth-like planets using nulling interferometry. However, in order to accomplish this using current optical technology, the interferometer input beams must be filtered to remove local wavefront errors. Although short lengths of single-mode fiber are ideal wavefront filters, Darwin's operating wavelength range of 4 - 20 µm presents real challenges for optical fiber technology. In addition to the fact that step-index fibers only offer acceptable coupling efficiency over about one octave of optical bandwidth, very few suitable materials are transparent within this wavelength range. Microstructured optical fibers offer two unique properties that hold great promise for this application; they can be made from a single-material and offer endlessly single-mode guidance. Here we explore the advantages of using a microstructured fiber as a broadband wavefront filter for 4 - 20 µm.

  9. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber.

    PubMed

    Jain, D; Sidharthan, R; Moselund, P M; Yoo, S; Ho, D; Bang, O

    2016-11-14

    We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped fiber based master oscillator power amplifier. The effect of repetition frequency of pump source and length of germania-doped fiber has also been investigated. Further, germania doped fiber has been pumped by conventional supercontinuum source based on silica photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300 nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of germania doped fiber for mid-infrared supercontinuum generation. These measurements ensure the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source based on silica and germania fiber ever demonstrated to the date.

  10. Mode couplings and elasto-optic effects study in a proposed mechanical microperturbed multimode optical fiber sensor.

    PubMed

    Bichler, Anthony; Lecler, Sylvain; Serio, Bruno; Fischer, Sylvain; Pfeiffer, Pierre

    2012-11-01

    A step index multimode optical fiber with a perturbation on a micrometer scale, inducing a periodic deformation of the fiber section along its propagation axis, is theoretically investigated. The studied microperturbation is mechanically achieved using two microstructured jaws squeezing the straight fiber. As opposed to optical fiber microbend sensors, the optical axis of the proposed transducer is not bended; only the optical fiber section is deformed. Further, the strain applied on the fiber produces a periodical elliptical modification of the core and a modulation of the index of refraction. As a consequence of the micrometer scale perturbation period, the resulting mode coupling occurs directly between guided and radiated modes. To simulate the transmission induced by these kinds of perturbations, simplified models considering only total mode couplings are often used. In order to investigate the range of validity of this approximation, results are compared to the electromagnetic mode couplings rigorously computed for the first time, to our knowledge, with a large multimode fiber (more than 6000 linear polarized modes) using the Marcuse model. In addition, in order to have a more complete modeling of the proposed transducer, the anisotropic elasto-optic effects in the stressed multimode fiber are considered. In this way, the transmission of the microperturbed optical fiber transmission and, therefore, the behavior of the transducer are physically explained and its applications as a future stretching sensor are discussed.

  11. Modeling compact high power fiber lasers and vecsels

    NASA Astrophysics Data System (ADS)

    Li, Hongbo

    Compact high power fiber lasers and the vertical-external-cavity surface-emitting lasers (VECSELs) are promising candidates for high power laser sources with diffraction-limited beam quality and are currently the subject of intensive research and development. Here three large mode area fiber lasers, namely, the photonic crystal fiber (PCF) laser, the multicore fiber (MCF) laser, and the multimode interference (MMI) fiber laser, as well as the VECSEL are modeled and designed. For the PCF laser, the effective refractive index and the effective core radius of the PCF are investigated using vectorial approaches and reformulated. Then, the classical step-index fiber theory is extended to PCFs, resulting in a highly efficient vectorial effective-index method for the design and analysis of PCFs. The new approach is employed to analyze the modal properties of the PCF lasers with depressed-index cores and to effectively estimate the number of guided modes for PCFs. The MCF laser, consisting of an active MCF and a passive coreless fiber, is modeled using the vectorial mode expansion method developed in this work. The results illustrate that the mode selection in the MCF laser by the coreless fiber section is determined by the MMI effect, not the Talbot effect. Based on the MMI and self-imaging in multimode fibers, the vectorial mode expansion approach is employed to design the first MMI fiber laser demonstrated experimentally. For the design and modeling of VECSELs, the optical, thermal, and structural properties of common material systems are investigated and the most reliable material models are summarized. The nanoscale heat transport theory is applied for the first time, to the best of my knowledge, to design and model VECSELs. In addition, the most accurate strain compensation approach is selected for VECSELs incorporating strained quantum wells to maintain structural stability. The design principles for the VECSEL subcavity are elaborated and applied to design a 1040nm

  12. Research on gradient index material containing silver ions

    NASA Astrophysics Data System (ADS)

    Su, Zhimei; Liu, Tong; Kang, Lijun; Li, Yulin; Wang, Lili; Kong, Yu'e.; Li, Tonghai

    2006-01-01

    Since the gradient index material has important applications at photoelectric system, imaging system, and integrated-optical system. Now, researches on gradient index material containing silver ions are more popular, it is difficult to get glass with high silver content as silver ion is extruded from molten glass at the molten temperature. Two-step ion-exchange process including Ag +- Na + and Na + - Ag + ion-exchange is used to get gradient index. This paper is based on the research in our lab, by adjusting the glass composition to get a series of sodium-rich glass then drawing the fusioned glass into fiber with diameter of 1mm used for ion-exchange. We used mixed molten salt for ion- exchange, then we researched on the choice of silver salt, the advantage and disadvantage of mixed molten salt and single molten salt, and the coloring up problem after ion-exchange.

  13. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  14. Infrared single mode chalcogenide glass fiber for space.

    PubMed

    Houizot, P; Boussard-Plédel, C; Faber, A J; Cheng, L K; Bureau, B; Van Nijnatten, P A; Gielesen, W L M; Pereira do Carmo, J; Lucas, J

    2007-09-17

    An important measuring technique under study for the DARWIN planet finding mission, is nulling interferometry, enabling the detection of the weak infrared emission lines of an orbiting planet. This technique requires a perfect wavefront of the light beams to be combined in the interferometer. By using a single mode waveguide before detection, wavefront errors are filtered and a virtually perfect plane wavefront is obtained. In this paper the results on the development and the optical characterisation of suitable infrared transmitting chalcogenide glasses and mid-IR guiding optical fibers are reported. Two different perform techniques for manufacturing core-cladding chalcogenide fibers are described. Two types of step index fibers, prepared with Te(2)As(3)Se(5) chalcogenide glasses, offer single mode guidance at 10.6 mum.

  15. Splicing plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Carson, Susan D.; Salazar, Roberto A.

    1991-12-01

    Polymethylmethacrylate (PMMA) plastic optical fiber (500 micrometers diameter, fluoropolymer cladding) has been spliced using a fused silica sleeve and a variety of solvent/PMMA solutions as adhesives. Mechanical splicing using index matching fluid has also been investigated. To ensure good bonding and minimize scattering, fiber ends are polished prior to application of adhesive. Using an LED ((lambda) max approximately 640 nm), losses are routinely less than 1.0 dB/splice, and some adhesive formulations have exhibited losses as low as 0.2 dB/splice. Five-meter fibers with as many as ten splices/fiber have been monitored over a period of several months. No fiber has exhibited an increase in optical loss with time.

  16. Optical fiber metamagnetics.

    PubMed

    Wang, Xi; Venugopal, Gayatri; Zeng, Jinwei; Chen, Yinnan; Lee, Dong Ho; Litchinitser, Natalia M; Cartwright, Alexander N

    2011-10-10

    To date, magnetic and negative-index metamaterials at optical frequencies were realized on bulk substrates in the form of thin films with thicknesses on the order of, or less than, optical wavelengths. In this work, we design and experimentally demonstrate, for the first time, fiber-coupled magnetic metamaterials integrated on the transverse cross-section of an optical fiber. Such fiber-metamaterials integration may provide fundamentally new solutions for photonic-on-a-chip systems for sensing, subwavelength imaging, image processing, and biomedical applications.

  17. Optical fiber tip templating using direct focused ion beam milling.

    PubMed

    Micco, A; Ricciardi, A; Pisco, M; La Ferrara, V; Cusano, A

    2015-11-04

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a 'double-layer' photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology.

  18. Optical fiber tip templating using direct focused ion beam milling

    PubMed Central

    Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Cusano, A.

    2015-01-01

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a ‘double-layer’ photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology. PMID:26531887

  19. Stepped nozzle

    DOEpatents

    Sutton, George P.

    1998-01-01

    An insert which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment.

  20. Stepped nozzle

    DOEpatents

    Sutton, G.P.

    1998-07-14

    An insert is described which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment. 5 figs.

  1. Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers.

    PubMed

    Ye, Feihong; Tu, Jiajing; Saitoh, Kunimasa; Morioka, Toshio

    2014-09-22

    An analytical expression for the mode coupling coefficient in homogeneous trench-assisted multi-core fibers is derived, which has a simple relationship with the one in normal step-index structures. The amount of inter-core crosstalk reduction (in dB) with trench-assisted structures compared to the one with normal step-index structures can then be written by a simple expression. Comparison with numerical simulations confirms that the obtained analytical expression has very good accuracy for crosstalk estimation. The crosstalk properties in trench-assisted multi-core fibers, such as crosstalk dependence on core pitch and wavelength-dependent crosstalk, can be obtained by this simple analytical expression.

  2. Transversely anisotropic optical fiber: Variatioonal analysis of a nonstandard eigen problem

    NASA Astrophysics Data System (ADS)

    Lindell, I. V.; Oksanen, M. I.

    1982-12-01

    The variational principle for nonstandard eigenvalue problems is applied to guided wave propagation in an anisotropic dielectric waveguide. A stationary functional is derived for the general dielectric waveguide with transverse anisotropy. The functional is tested for an isotropic step index single mode fiber. For simple trial functions with only two parameters, good accuracy is obtained. For two types of transversely anisotropic step index fibers, relations between the propagation factor, anisotropy parameter, dielectric parameter and frequency are calculated. The functional does not assume weak guidance condition nor perturbational anisotropy and, hence, is also applicable for other dielectric waveguides. A small computer or a programmable calculator is adequate. The spurious modes causing confusion in the finite element method of calculation do not appear with the method.

  3. Low scattering loss fiber with segmented-core and depressed inner cladding structure

    NASA Astrophysics Data System (ADS)

    Pournoury, Marzieh; Moon, Dae Seung; Nazari, Tavakol; Kassani, Sahar Hosseinzadeh; Do, Mun-Hyun; Lee, Yeong Seop; Oh, Kyunghwan

    2014-04-01

    In this paper, using the FEM method new low-loss fiber is proposed to minimize Rayleigh scattering with a segmented-core and depressed inner-cladding. The optical loss of the designed fiber is calculated based on Rayleigh scattering losses. Rayleigh scattering loss (RSL) has been estimated by Rayleigh scattering coefficient (RSC) and power distribution in the fiber. We have shown loss of less than 0.3 dB/km at 1310 nm, 0.18 dB/km at 1550 nm for step-index fibers which consist of conventional glass compositions such as SiO2, GeO2-SiO2, F-SiO2 while satisfying all of ITU-G.652.D attributes.

  4. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOEpatents

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  5. All optical space-to-time mapping using modal dispersion of multimode fiber

    NASA Astrophysics Data System (ADS)

    Tan, Zhongwei; Sun, Jian; Li, Ying; Ren, Wenhua; Li, Tangjun

    2017-04-01

    We experimentally demonstrate an all optical space-to-time mapping process using modal dispersion of large core high numerical aperture step-index multimode fiber in this paper. We use light beam with different input angle to excite various modes in a span of multimode fiber. The input optical pulses are stretched in time by modal dispersion and received by a large area, high speed photodiode. Through this process, the spatial information is directly mapped into device's temporal response. It has high speed, broad bandwidth and low system latency. Comparing with the widely used spectral imaging technology, this device is weak dependent of the input signal wavelength and optical carrier bandwidth.

  6. Single mode fiber array for planet detection using a visible nulling interferometer

    NASA Technical Reports Server (NTRS)

    Liu, Duncan; Levine, B. Martin; Shao, Michael; Aguayo, Franciso

    2005-01-01

    We report the design, fabrication, and testing of a coherent large mode field diameter fiber array to be used as a spatial filter in a planet finding visible nulling interferometer. The array is a key component of a space instrument for visible-light detection and spectroscopy of Earth like extrasolar planets. In this concept, a nulling interferometer is synthesized from a pupil image of a single aperture which is then spatially filtered by a coherent array of single mode fibers to suppress the residual scattered star light. The use of the fiber array preserves spatial information between the star and planet. The fiber array uses a custom commercial large mode field or low NA step-index single mode fiber to relax alignment tolerances. A matching custom micro lens array is used to couple light into the fibers, and to recollimate the light out of the fiber array. The use of large mode field diameter fiber makes the fabrication of a large spatial filter array with 300 to 1000 elements feasible.

  7. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers.

    PubMed

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-03-03

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10(-3) and 10(-1) S·cm(-1) at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.

  8. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers

    NASA Astrophysics Data System (ADS)

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-03-01

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10‑3 and 10‑1 S·cm‑1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.

  9. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers

    PubMed Central

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-01-01

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10−3 and 10−1 S·cm−1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording. PMID:28256608

  10. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  11. Author Indexing.

    ERIC Educational Resources Information Center

    Diodato, Virgil P.

    1981-01-01

    Discusses the effectiveness of using author-supplied indexing to increase subject control in information retrieval, and describes a study which compared author indexing for articles published in "American Mathematical Society" journals to indexing of the same articles by an editor of "Mathematical Reviews." Nine references are…

  12. Radiation effects and propagation in optical fibers and components

    SciTech Connect

    Gedam, S.G.

    1987-01-01

    The power series expansion method was used to solve the wave equation in step-index optical fiber. The cut off frequencies were calculated using 200 coefficients. The cutoff frequencies of TM modes were found to differ from those of TE modes. This difference, which is the error due to the approximations made, was calculated as a function of the relative refractive index difference. A polarization control system was designed to be used in a coherent optical communication system, to restore the state of polarization (SOP) of the light output of a singlemode fiber. Rotating quarter wave and half wave plates were used to compensate for the changes in SOP. The sensitivity of the system was greatly improved by utilizing the heterodyne principle. The effects of neutron irradiation were studied on fiber optic materials (glasses), optical fibers, and photodetectors. In case of the heavy metal fluoride glasses, a red shift was found in the UV edge, which increased with neutron fluence. A very small amount of recovery was observed after three weeks. The shift could be due to the occurrence of color centers on irradiation and/or due to the shift in the Urbach edge itself.

  13. Numerical analysis of 2.7 μm lasing in Er3+-doped tellurite fiber lasers

    NASA Astrophysics Data System (ADS)

    Wang, Weichao; Li, Lixiu; Chen, Dongdan; Zhang, Qinyuan

    2016-08-01

    The laser performance of Er3+-doped tellurite fiber lasers operating at 2.7 μm due to 4I11/2 → 4I13/2 transition has been theoretically studied by using rate equations and propagation equations. The effects of pumping configuration and fiber length on the output power, slope efficiency, threshold, and intracavity pump and laser power distributions have been systematically investigated to optimize the performance of fiber lasers. When the pump power is 20 W, the maximum slope efficiency (27.62%), maximum output power (5.219 W), and minimum threshold (278.90 mW) are predicted with different fiber lengths (0.05-5 m) under three pumping configurations. It is also found that reasonable output power is expected for fiber loss below 2 dB/ m. The numerical modeling on the two- and three-dimensional laser field distributions are further analyzed to reveal the characteristics of this multimode step-index tellurite fiber. Preliminary simulation results show that this Er3+-doped tellurite fiber is an excellent alternative to conventional fluoride fiber for developing efficient 2.7 μm fiber lasers.

  14. Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad

    NASA Astrophysics Data System (ADS)

    Sójka, L.; Tang, Z.; Furniss, D.; Sakr, H.; Oladeji, A.; Bereś-Pawlik, E.; Dantanarayana, H.; Faber, E.; Seddon, A. B.; Benson, T. M.; Sujecki, S.

    2014-04-01

    We present a study of mid-infrared photoluminescence in the wavelength range 3.5-5.5 μm emitted from Pr3+: GeAsGaSe core/GeAsGaSe cladding chalcogenide fiber. The Pr3+ doped fiber optic preform is fabricated using extrusion and is successfully drawn to low optical loss, step-index fiber. Broadband mid-infrared photoluminescence is observed from the fiber, both under 1.55 μm or 1.94 μm wavelength excitation. Absorption, and emission, spectra of bulk glass and fiber are presented. Luminescent lifetimes are measured for the fiber and the Judd-Ofelt parameters are calculated. The radiative transition rates calculated from Judd-Ofelt theory are compared with experimental lifetimes. The observed strong broadband emission suggests that this type of fiber is a good candidate for further development to realize both fiber lasers and amplified spontaneous emission fiber sources in the mid-infrared region.

  15. Numerical analysis of 2.7 μm lasing in Er3+-doped tellurite fiber lasers

    PubMed Central

    Wang, Weichao; Li, Lixiu; Chen, Dongdan; Zhang, Qinyuan

    2016-01-01

    The laser performance of Er3+-doped tellurite fiber lasers operating at 2.7 μm due to 4I11/2 → 4I13/2 transition has been theoretically studied by using rate equations and propagation equations. The effects of pumping configuration and fiber length on the output power, slope efficiency, threshold, and intracavity pump and laser power distributions have been systematically investigated to optimize the performance of fiber lasers. When the pump power is 20 W, the maximum slope efficiency (27.62%), maximum output power (5.219 W), and minimum threshold (278.90 mW) are predicted with different fiber lengths (0.05–5 m) under three pumping configurations. It is also found that reasonable output power is expected for fiber loss below 2 dB/ m. The numerical modeling on the two- and three-dimensional laser field distributions are further analyzed to reveal the characteristics of this multimode step-index tellurite fiber. Preliminary simulation results show that this Er3+-doped tellurite fiber is an excellent alternative to conventional fluoride fiber for developing efficient 2.7 μm fiber lasers. PMID:27545663

  16. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  17. Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Jung, Eun Joo; Lee, Woo-Jin; Kim, Myoung Jin; Hwang, Sung Hwan; Rho, Byung Sup

    2014-01-01

    We have demonstrated a refractive index sensor based on a fiber optic Fabry-Perot (FP) interferometer with an open air cavity fabricated using a one-step mechanical sawing technique. The sensor head consists of a short FP cavity near the fiber patch cord tip, which was assembled by joining a ceramic ferrule and a single-mode fiber together. Owing to the open air cavity in the sensor head, various liquid samples with different refractive index can fill in-line air cavity, which makes the device usable as a refractometer. Moreover, due to the sensor head encircled with the robust ceramic ferrule, the device is attractive for sensing measurement in harsh environments. The sensor was tested in different refractive index solutions. The experimental result shows that the attenuation peak wavelength of the sensor is shifted toward a shorter wavelength with increasing refractive index, and the refractive index sensitivity is ˜92.5 nm/refractive index unit (RIU) and 73.75 dB/RIU. The proposed sensor can be used as an in-line refractometer for many potential applications in the sensing field.

  18. Fiber biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  19. In-line fiber optic interferometric sensors in single-mode fibers.

    PubMed

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented.

  20. Chiral fiber sensors

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.

    2010-04-01

    We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.

  1. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  2. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  3. Health Benefits of Fiber Fermentation.

    PubMed

    Dahl, Wendy J; Agro, Nicole C; Eliasson, Åsa M; Mialki, Kaley L; Olivera, Joseph D; Rusch, Carley T; Young, Carly N

    2017-02-01

    Although fiber is well recognized for its effect on laxation, increasing evidence supports the role of fiber in the prevention and treatment of chronic disease. The aim of this review is to provide an overview of the health benefits of fiber and its fermentation, and describe how the products of fermentation may influence disease risk and treatment. Higher fiber intakes are associated with decreased risk of cardiovascular disease, type 2 diabetes, and some forms of cancer. Fiber may also have a role in lowering blood pressure and in preventing obesity by limiting weight gain. Fiber is effective in managing blood glucose in type 2 diabetes, useful for weight loss, and may provide therapeutic adjunctive roles in kidney and liver disease. In addition, higher fiber diets are not contraindicated in inflammatory bowel disease or irritable bowel syndrome and may provide some benefit. Common to the associations with disease reduction is fermentation of fiber and its potential to modulate microbiota and its activities and inflammation, specifically the production of anti-inflammatory short chain fatty acids, primarily from saccharolytic fermentation, versus the deleterious products of proteolytic activity. Because fiber intake is inversely associated with all-cause mortality, mechanisms by which fiber may reduce chronic disease risk and provide therapeutic benefit to those with chronic disease need further elucidation and large, randomized controlled trials are needed to confirm causality.Teaching Points• Strong evidence supports the association between higher fiber diets and reduced risk of cardiovascular disease, type 2 diabetes, and some forms of cancer.• Higher fiber intakes are associated with lower body weight and body mass index, and some types of fiber may facilitate weight loss.• Fiber is recommended as an adjunctive medical nutritional therapy for type 2 diabetes, chronic kidney disease, and certain liver diseases.• Fermentation and the resulting shifts in

  4. High Performance Graded Index Polymer Optical Fibers

    DTIC Science & Technology

    1998-05-11

    tested have NAs of near 0.2, they are underfilled by the input light. An underfilled launch condition tends to produce higher bandwidth than an...include extrinsic features such as micro bends, diameter variations, micro voids and cracks in addition to intrinsic static and dynamic density

  5. Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows

    NASA Astrophysics Data System (ADS)

    Hsu, Paul S.; Patnaik, Anil K.; Gord, James R.; Meyer, Terrence R.; Kulatilaka, Waruna D.; Roy, Sukesh

    2010-10-01

    The objective of this work is to investigate the feasibility of intense laser-beam propagation through optical fibers for temperature and species concentration measurements in gas-phase reacting flows using coherent anti-Stokes Raman scattering (CARS) spectroscopy. In particular, damage thresholds of fibers, nonlinear effects during beam propagation, and beam quality at the output of the fibers are studied for the propagation of nanosecond (ns) and picosecond (ps) laser beams. It is observed that ps pulses are better suited for fiber-based nonlinear optical spectroscopic techniques, which generally depend on laser irradiance rather than fluence. A ps fiber-coupled CARS system using multimode step-index fibers is developed. Temperature measurements using this system are demonstrated in an atmospheric pressure, near-adiabatic laboratory flame. Proof-of-concept measurements show significant promise for fiber-based CARS spectroscopy in harsh combustion environments. Furthermore, since ps-CARS spectroscopy allows the suppression of non-resonant background, this technique could be utilized for improving the sensitivity and accuracy of CARS thermometry in high-pressure hydrocarbon-fueled combustors.

  6. Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing.

    PubMed

    Zhu, Yinian; Du, Henry; Bise, Ryan

    2006-04-17

    We present the design of a solid-core microstructured optical fiber with steering-wheel pattern of large holes in cladding as platform for evanescent-field sensing. Both geometry and optical properties of the fiber are numerical computed and analyzed in consideration of manufacturability using sol-gel casting technique as well as by evaluating a triangular lattice of holes with three rings in the design structure so that effective parameters can be established using effective step-index model. We predict less than 0.7 dB/m confinement loss at 850 nm, 29%, 13.7%, and 7.2% of light intensity overlap in air holes at 1500 nm, 1000 nm, and 850 nm wavelength, respectively, in such fiber. With the low loss and high mode-field overlap, the steering-wheel structured fiber is well suited for evanescent-field sensing and detection of chemical and biological species.

  7. Tunable random fiber laser

    SciTech Connect

    Babin, S. A.; Podivilov, E. V.; El-Taher, A. E.; Harper, P.; Turitsyn, S. K.

    2011-08-15

    An optical fiber is treated as a natural one-dimensional random system where lasing is possible due to a combination of Rayleigh scattering by refractive index inhomogeneities and distributed amplification through the Raman effect. We present such a random fiber laser that is tunable over a broad wavelength range with uniquely flat output power and high efficiency, which outperforms traditional lasers of the same category. Outstanding characteristics defined by deep underlying physics and the simplicity of the scheme make the demonstrated laser a very attractive light source both for fundamental science and practical applications.

  8. Chemiluminescent optical fiber immunosensor for detecting cholera antitoxin

    NASA Astrophysics Data System (ADS)

    Marks, Robert S.; Bassis, Effim; Bychenko, Alexei; Levine, Myron M.

    1997-12-01

    A chemiluminescent-based optical fiber immunosensor is developed to detect the presence of jejunal cholera antitoxin IgA immunoglobulins. This was accomplished using optical fiber tips, conjugated with the cholera toxin B subunit. The cholera antitoxin analyte is marked by a secondary antibody labeled with horseradish peroxidase. A photoelectronic setup is designed specifically to monitor the signal. This immunosensor system is shown to be specific, sensitive, and fast to run, without requiring a purification step. The lowest titer detected was 1:1,310,720. When the luminol-containing buffer solution was replaced by air, thus dramatically lowering the index of refraction of the surrounding medium, sensitivity increased and cholera antitoxin was detected at an additional titer dilution at 1:2,621,440.

  9. Fiber Bragg grating inscription with UV femtosecond exposure and two beam interference for fiber laser applications

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Brückner, Sven; Lindner, Eric; Rothhardt, Manfred; Unger, Sonja; Kobelke, Jens; Schuster, Kay; Bartelt, Hartmut

    2010-06-01

    Fiber Bragg grating based fiber lasers are promising for stable all fiber laser solutions. Standard methods for fiber Bragg gratings in fiber lasers apply germanium doped passive fibers which are connected to the amplifier section of the fiber laser with a splice. The connection is usually recoated using a low-index polymer coating to maintain guidance properties for the pump light. At high pump powers the spliced connections are affected by absorbed pump light and are prone to thermal degradation. Fiber Bragg gratings made with femtosecond laser exposure allow the direct inscription of resonator mirrors for fiber lasers into the amplifying section of the fiber laser. Such a technology has a number of advantages. The number of splices in the laser cavity is reduced. Fiber Bragg grating inscription does not relay on hydrogenation to increase the photosensitivity of the fiber. This is of special interest since hydrogen loading in large mode area fibers is a time consuming procedure due to the diffusion time of hydrogen in silica glass. Finally, one gets direct access to fiber Bragg gratings in air-clad fibers. In this paper we use a two beam interferometric inscription setup in combination with an frequency tripled femtosecond laser for grating inscription. It allows to write fiber Bragg gratings in rare earth doped fibers with a reflection wavelength span that covers the Ytterbium amplification band. Reflections with values higher than 90% have been realized.

  10. Fiber Techniques

    ERIC Educational Resources Information Center

    Nalle, Leona

    1976-01-01

    Describes a course in fiber techniques, which covers design methods involving fibers and fabric, that students in the Art Department at Sleeping Giant Junior High School had the opportunity to learn. (Author/RK)

  11. Suspended micro/nanofiber hierarchical biological scaffolds fabricated using non-electrospinning STEP technique.

    PubMed

    Wang, Ji; Nain, Amrinder S

    2014-11-18

    Extracellular matrix (ECM) is a fibrous natural cell environment, possessing complicated micro- and nanoarchitectures, which provide extracellular signaling cues and influence cell behaviors. Mimicking this three-dimensional microenvironment in vitro is a challenge in developmental and disease biology. Here, suspended multilayer hierarchical nanofiber assemblies (diameter from micrometers to less than 100 nm) with accurately controlled fiber orientation and spacing are demonstrated as biological scaffolds fabricated using the non-electrospinning STEP (Spinneret based Tunable Engineered Parameter) fiber manufacturing technique. Micro/nanofiber arrays were manufactured with high parallelism (relative angles between fibers were maintained less than 6°) and well controlled interfiber spacing (<15%). Using these controls, we demonstrate a bottom up hierarchical assembly of suspended six layer structures of progressively reduced diameters and spacing from several polymer systems. We then demonstrate use of STEP scaffolds to study single and multicell arrangement at high magnifications. Specifically, using double layer divergent (0°-90°) suspended nanofibers assemblies, we show precise quantitative control of cell geometry (change in shape index from 0.15 to 0.57 at similar cell areas), and through design of scaffold porosity (80 × 80 μm(2) to 5 × 5 μm(2)) quadruple the cell attachment density. Furthermore, using unidirectional or crisscross patterns of sparse and dense fiber arrays, we are able to control the cell spread area from ∼400 to ∼700 μm(2), while the nucleus shape index increases from 0.75 to 0.99 with cells nearly doubling their focal adhesion cluster lengths (∼15 μm) on widely spaced nanofiber arrays. The platform developed in this study allows a wide parametric investigation of biophysical cues which influence cell behaviors with implications in tissue engineering, developmental biology, and disease biology.

  12. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  13. A transmission line model for propagation in elliptical core optical fibers

    SciTech Connect

    Georgantzos, E.; Boucouvalas, A. C.; Papageorgiou, C.

    2015-12-31

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.

  14. Sensor applications of two-mode fiber in the Michelson interferometer configuration

    NASA Astrophysics Data System (ADS)

    Hlubina, Petr; Prochazka, Pavel

    1994-11-01

    The classical coherence formalism and guided-mode field representation is used to discuss the operation of few-mode fiber waveguide excited by a low-coherence, cross-spectrally pure, spatially coherent source in Michelson interferometer configuration as a sensor, even if a suppressed interference pattern at its exit face exists. In the case of a low- coherence excitation of few-mode fiber waveguide the principle of coherence modulation can be used, that is, the optical path difference between guided modes that exceeds the source coherence length can be compensated in Michelson interferometer configuration. The analysis of temporal coherence in a particular case of two-mode, weakly-guiding, step-index fiber waveguide takes also into consideration the effect of second-order modal dispersion; the potential applications to low- coherence source based interferometric sensors are discussed.

  15. Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber

    NASA Astrophysics Data System (ADS)

    Wang, Long; Chong, Andy; Haus, Joseph W.

    2017-01-01

    We report fiber laser simulations with a fiber compatible, self-focusing, saturable absorber (SA) device. The SA device consists of two tapered fiber ends separated by a bulk, nonlinear medium. An optical beam transmitted from one tapered fiber end, propagate through the nonlinear medium (chalcogenide glass As40 S e60) and couples back into the other tapered fiber end. Pulse propagation in the fiber laser cavity is performed using the Split Step Method. Stable pulses are generated with energies around 0.3 nJ and a transform limited pulse width around 200 fs.

  16. A new miniaturized fiber positioning node for LAMOST

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Gu, Yonggang; Shen, Yuran; Zhai, Chao

    2016-07-01

    To distribute more fiber positioning nodes on the LAMOST focal plate, two steps are proposed to miniaturize the fiber positioning node in this paper. The first step is to miniaturize the mechanical device of the fiber positioning node. The second step is to redesign the entire wireless driving board using smaller and performance-higher devices. As a result, the size of the new miniaturized fiber positioning node has to be reduced by above 40% and the dense of fiber positioning nodes on focal plate increases by 20% at least.

  17. Carbon fiber production using high pressure treatment of a precursor material

    SciTech Connect

    Lewis, I.C.; Moore, A.W.

    1983-09-06

    A process for producing a carbon fiber includes the steps of heat treating a selected precursor material under high pressure, thereafter solvent extracting the treated precursor material to obtain mesophase pitch, spinning the mesophase pitch into at least one pitch fiber, thermosetting the pitch fiber, and carbonizing the pitch fiber to obtain the carbon fiber.

  18. Fiber Optic Velocity Interferometry

    SciTech Connect

    Neyer, Barry T.

    1988-04-01

    This paper explores the use of a new velocity measurement technique that has several advantages over existing techniques. It uses an optical fiber to carry coherent light to and from a moving target. A Fabry-Perot interferometer, formed by a gradient index lens and the moving target, produces fringes with a frequency proportional to the target velocity. This technique can measure velocities up to 10 km/s, is accurate, portable, and completely noninvasive.

  19. Electrospinning of continuous aligned polymer fibers

    NASA Astrophysics Data System (ADS)

    Sundaray, Bibekananda; Subramanian, V.; Natarajan, T. S.; Xiang, Rong-Zheng; Chang, Chia-Cheng; Fann, Wun-Shain

    2004-02-01

    Electrospinning is a technique employed for preparing polymer fibers having diameters in the range of 10 μm-10 nm using high electrostatic field. In this letter, we report the formation of aligned polymer fibers, several centimeters in length, with separation between the fibers in the range of 5-100 μm. Achieving alignment is an important step toward the exploitation of these fibers in applications. We have employed about 4500 V and a separation distance of about 1-3 cm between the electrodes. Smaller distance between electrodes, we believe, provides better control on the formation of the fibers.

  20. Recycling optical fibers for sensing

    NASA Astrophysics Data System (ADS)

    André, Paulo; Domingues, Fátima; Alberto, Nélia; Marques, Carlos; Antunes, Paulo

    2016-04-01

    Optical fiber sensors has become one of the most promising sensing technologies. Within all the optical fiber sensing technologies, the Fabry-Perot interferometer (FPI) micro-cavities are one of the most attractive, due to the size, linearity and higher sensitivity. In this work we present the recent results, achieved by our group, regarding the production of optical sensors, by recycling optical fibers destroyed through the catastrophic fuse effect. This enabled the production of FPI sensors, in a cost effective way, tailored for the monitoring of several physical parameters, such as relative humidity (RH), refractive index (RI) and hydrostatic pressure.

  1. A rigorous analysis of the power distribution in plastic clad annular core optical fibers

    NASA Astrophysics Data System (ADS)

    Choudhury, P. K.; Yoshino, Toshihiko

    Using Maxwell's field equations, an analytical investigation is presented of the relative power distributions in the different sections of a step-index plastic clad annular core optical fiber (ACF) operating in the infrared region of the electromagnetic (EM) spectrum. It is assumed that the fiber cross-section is made of two concentric circles, and the EM waves propagate through the annular region. The chosen fiber materials are widely used in low cost optical links. The wave equations are solved in the different sections of the fiber, and the general expressions for power in the core and the cladding regions are finally deduced. Plots are shown of the variation of fractional power (or the power confinement factor) in all the fiber sections against the propagation constants of sustained modes. The cases of three lowest azimuthal modal indices (i.e. meridional as well as skew modes) are described. It is observed that the confinement of power in the core section is increased for ACFs of larger cross-sectional dimensions. Also, a fairly uniform distribution of power over the sustained modes remains for large sized fibers, and this uniformity is greatly affected in ACFs of smaller dimensions. It is suggested that, because of strong evanescent fields, ACFs can be of potential use in chemical sensing. Apart from this, it is also presumed that these may be useful in the areas of communications. The improved mechanical strength adds the potentiality of ACFs.

  2. Fiber Bragg grating inscription in novel highly strains sensitive microstructured fiber

    NASA Astrophysics Data System (ADS)

    Stepien, K.; Tenderenda, T.; Murawski, M.; Szymanski, M.; Szostkiewicz, L.; Becker, M.; Rothhardt, M.; Bartelt, H.; Mergo, P.; Poturaj, K.; Jaroszewicz, L. R.; Nasilowski, T.

    2014-05-01

    Microstructured optical fibers (MOF) sometimes also referred to as photonic crystal fibers (PCF) have been a subject of extensive research for over a decade. This is mainly due to the fact that by changing the microstructure geometry (e.g. distribution and size of the air-holes) fiber properties can be significantly modified to better fit specific applications. In this manuscript we present a novel fiber design with three large air-holes neighboring the core and report on how the air-hole diameter influences the effective refractive index strain sensitivity. As direct measurement of the effective refractive index change may be complex and challenging, we propose to use fiber Bragg gratings (FBG) in our sensing set up. The Bragg wavelength is a function of the effective refractive index, hence the external strain changes can be monitored through the Bragg wavelength shift with a simple optical spectrometer. Furthermore we also include an analysis of the fibers temperature sensitivity.

  3. Mid-infrared supercontinuum generation based on cascaded Raman scattering in a few-mode As2S3 fiber pumped by a thulium-doped fiber laser.

    PubMed

    Yao, Jinmei; Zhang, Bin; Yin, Ke; Yang, Linyong; Hou, Jing; Lu, Qisheng

    2016-06-27

    By pumping a 1.7-m-long As2S3 fiber at 2050 nm directly, a fiber-based mid-infrared supercontinuum (SC) source with an output power of 366 mW is demonstrated. This is the first experimental demonstration to obtain such a mid-infrared SC in a piece of chalcogenide fiber pumped at 2 μm directly. The cut-off wavelength of the As2S3 fiber is 3.5 μm, indicating that it could support several modes at around 2 μm. It is found that nonlinear spectral broadening mechanisms in the few-mode chalcogenide fiber could be affected through adjusting the butt-coupling position. That is because different positions will excite different modes that correspondingly possess different nonlinearity and dispersion characteristics. When stimulated Raman scattering (SRS) corresponding to the excitation of the fundamental mode becomes dominant in this few-mode fiber, an efficient cascaded SRS-based SC is obtained with five Stokes peaks ranging from 2 μm to 3.4 μm. Results from numerical simulation are in accord with the experimental results, showing that it is feasible to obtain an SRS based mid-infrared SC in a step-index As2S3 fiber by using a 2 μm high peak power picosecond laser to pump directly.

  4. INDEXING MECHANISM

    DOEpatents

    Kock, L.J.

    1959-09-22

    A device is presented for loading and unloading fuel elements containing material fissionable by neutrons of thermal energy. The device comprises a combination of mechanical features Including a base, a lever pivotally attached to the base, an Indexing plate on the base parallel to the plane of lever rotation and having a plurality of apertures, the apertures being disposed In rows, each aperture having a keyway, an Index pin movably disposed to the plane of lever rotation and having a plurality of apertures, the apertures being disposed in rows, each aperture having a keyway, an index pin movably disposed on the lever normal to the plane rotation, a key on the pin, a sleeve on the lever spaced from and parallel to the index pin, a pair of pulleys and a cable disposed between them, an open collar rotatably attached to the sleeve and linked to one of the pulleys, a pin extending from the collar, and a bearing movably mounted in the sleeve and having at least two longitudinal grooves in the outside surface.

  5. Gap soliton propagation in optical fiber gratings

    NASA Astrophysics Data System (ADS)

    Mohideen, U.; Slusher, R. E.; Mizrahi, V.; Erdogan, T.; Kuwata-Gonokami, M.; Lemaire, P. J.; Sipe, J. E.; Martijn de Sterke, C.; Broderick, Neil G. R.

    1995-08-01

    Intense optical pulse propagation in a GeO2 -doped silica glass fiber grating results in nonlinear pulse propagation velocities and increased transmission at wavelengths where the grating reflects light in the linear limit. These nonlinear pulse propagation effects are predicted by numerical simulations of gap soliton propagation. The large linear refractive-index variations used for the fiber gratings in these experiments permit the propagation of gap solitons in short lengths of fiber.

  6. Long period gratings in photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Ju, Jian; Jin, Wei

    2012-03-01

    The authors review the recent advances in fabricating long-period gratings (LPGs) in photonic crystal fibers (PCFs). The novel light-guiding properties of the PCFs allow the demonstration of novel sensors and devices based on such LPGs. The sensitivity of these PCF LPGs to temperature, strain and refractive index is discussed and compared with LPGs made on conventional single-mode fibers. In-fiber devices such as tunable band rejection filters, Mach-Zehnder interferometers are discussed.

  7. Fiber link design for the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"

    NASA Astrophysics Data System (ADS)

    Fżrész, Gábor; Pawluczyk, Rafal; Fournier, Paul; Simcoe, Robert; Woods, Deborah F.

    2016-08-01

    We describe the design of the fiber-optic coupling and light transfer system of the WISDOM (WIYN Spectrograph for DOppler Monitoring) instrument. As a next-generation Precision Radial Velocity (PRV) spectrometer, WISDOM incorporates lessons learned from HARPS about thermal, pressure, and gravity control, but also takes new measures to stabilize the spectrograph illumination, a subject that has been overlooked until recently. While fiber optic links provide more even illumination than a conventional slit, careful engineering of the interface is required to realize their full potential. Conventional round fiber core geometries have been used successfully in conjunction with optical double scramblers, but such systems still retain a memory of the input illumination that is visible in systems seeking sub-m/s PRV precision. Noncircular fibers, along with advanced optical scramblers, and careful optimization of the spectrograph optical system itself are therefore necessary to study Earth-sized planets. For WISDOM, we have developed such a state-of-the-art fiber link concept. Its design is driven primarily by PRV requirements, but it also manages to preserve high overall throughput. Light from the telescope is coupled into a set of six, 32 μm diameter octagonal core fibers, as high resolution is achieved via pupil slicing. The low-OH, step index, fused silica, FBPI-type fibers are custom designed for their numerical aperture that matches the convergence of the feeding beam and thus minimizes focal ratio degradation at the output. Given the demanding environment at the telescope the fiber end tips are mounted in a custom fused silica holder, providing a perfect thermal match. We used a novel process, chemically assisted photo etching, to manufacture this glass fiber holder. A single ball-lens scrambler is inserted into the 25m long fibers. Employing an anti-reflection (AR) coated, high index, cubic-zirconia ball lens the alignment of the scrambler components are

  8. Wavefront shaping for single fiber fluorescence endoscopy

    NASA Astrophysics Data System (ADS)

    Caravaca-Aguirre, Antonio M.; Piestun, Rafael

    2016-03-01

    Recent advances in wavefront control, spatial light modulators, and computational power enable the use of a single multimode fiber as a fluorescence scanning microscope. We explore multimode fibers with different characteristics (diameter, index profile, etc.) and compare their performance regarding robustness against external perturbations and quality of the scanning focus.

  9. Fiber optic level sensor for cryogens

    NASA Technical Reports Server (NTRS)

    Sharma, M.

    1981-01-01

    Sensor is useful in cryogenic environments where liquids of very low index of refraction are encountered. It is "yes/no" indication of whether liquid is in contact with sensor. Sharp bends in fiber alter distribution of light among propagation modes. This amplifies change in light output observed when sensor contacts liquid, without requiring long fiber that would increse insertion loss.

  10. Experiments on room temperature optical fiber-fiber direct bonding

    NASA Astrophysics Data System (ADS)

    Hao, Jinping; Yan, Ping; Xiao, Qirong; Wang, Yaping; Gong, Mali

    2012-08-01

    High quality permanent connection between optical fibers is a significant issue in optics and communication. Studies on room temperature optical large diameter fiber-fiber direct bonding, which is essentially surface interactions of glass material, are presented here. Bonded fiber pairs are obtained for the first time through the bonding technics illustrated here. Two different kinds of bonding technics are provided-fresh surface (freshly grinded and polished) bonding and hydrophobic surface (activated by H2SO4 and HF) bonding. By means of fresh surface bonding, a bonded fiber pair with light transmitting efficiency of 98.1% and bond strength of 21.2 N is obtained. Besides, in the bonding process, chemical surface treatment of fibers' end surfaces is an important step. Therefore, various ways of surface treatment are analyzed and compared, based on atomic force microscopy force curves of differently disposed surfaces. According to the comparison, fresh surfaces are suggested as the prior choice in room temperature optical fiber-fiber bonding, owing to their larger adhesive force, attractive force, attractive distance, and adhesive range.

  11. Growth of single-crystal YAG fiber optics.

    PubMed

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  12. The glycemic index: methodology and use.

    PubMed

    Kendall, Cyril W C; Augustin, Livia S A; Emam, Azadeh; Josse, Andrea R; Saxena, Nishta; Jenkins, David J A

    2006-01-01

    The glycemic index concept owes much to the dietary fiber hypothesis that fiber would reduce the rate of nutrient absorption and increase the value of carbohydrate foods in the maintenance of health and treatment of disease. However, properties and components of food other than its fiber content contribute to the glycemic and endocrine responses postprandially. The aim of the glycemic index classification of foods was therefore to assist in the physiological classification of carbohydrate foods which, it was hoped, would be of relevance in the prevention and treatment of chronic diseases such as diabetes. Over the past two decades low glycemic index diets have been reported to improve glycemic control in diabetic subjects, to reduce serum lipids in hyperlipidemic subjects and possibly to aid in weight control. In large cohort studies, low glycemic index or glycemic load diets (glycemic index multiplied by total carbohydrate) have also been associated with higher levels of high-density lipoprotein cholesterol, reduced C-reactive protein concentrations and with a decreased risk of developing diabetes and cardiovascular disease. More recently, some case-control and cohort studies have also found positive associations between the dietary glycemic index and the risk of colon, breast and other cancers. While the glycemic index concept continues to be debated and there remain inconsistencies in the data, sufficient positive findings have emerged to suggest that the glycemic index is an aspect of diet of potential importance in the treatment and prevention of chronic diseases.

  13. Determinants of airborne fiber size in the glass fiber production industry.

    PubMed

    Quinn, Margaret M; Smith, Thomas J; Schneider, Thomas; Eisen, Ellen A; Wegman, David H

    2005-01-01

    Size distributions of airborne fiber exposures should be characterized for studies of respiratory disease because size determines the region of the lung where a fiber will deposit and its ability to produce toxic effects in cells. Yet fiber size is not measured precisely with standard air sampling methods. Specific fiber dimensions hypothesized to have biologic activity have been proposed, but these have not been evaluated in epidemiologic studies because there has not been a way to account for fiber size in historical air monitoring data. In this study, methods were developed to predict fibrous aerosol size fractions generated during glass wool fiber production using regression models and factors related to bulk fiber products and processing. A set of air samples representing a range of products and process applications was collected in eight fiber glass production facilities. The samples were analyzed more intensively than standard methods require. For each air sample, total fiber size distributions were measured using electron microscopy and two proportions were then calculated: (1) fibers meeting the size criteria of the standard NIOSH Method 7400 B rules method (pB), and (2) fibers meeting the size criteria for a biologically based exposure index, the hypothetically active fiber (HAF1) index (pH1). The fiber size proportions were used as dependent variables in regression models with production process factors. It was found that two factors, the nominal diameter of the bulk fiber product and whether oil was applied to it, determine more than 80% of the variability in the proportions (for the pB model, R2 = 0.86; for the pH1 model, R2 = 0.82). Using these two predicted proportions, it is possible to estimate the concentration of fibers in the biologically based HAF1 size fraction from a standard fiber concentration measurement. The models developed here can be used to size-adjust historical fiber concentration measurements for use in epidemiologic studies of

  14. Supercontinuum Generation in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Dudley, J. M.; Taylor, J. R.

    2010-04-01

    1. Introduction and history J. R. Taylor; 2. Supercontinuum generation in microstructure fiber - an historical note J. K. Ranka; 3. Nonlinear fiber optics overview J. C. Travers, M. H. Frosz and J. M. Dudley; 4. Fiber supercontinuum generation overview J. M. Dudley; 5. Silica fibers for supercontinuum generation J. C. Knight and W. Wadsworth; 6. Supercontinuum generation and nonlinearity in soft glass fibers J. H. V. Price and D. J. Richardson; 7. Increasing the blue-shift of a picosecond pumped supercontinuum M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen and O. Bang; 8. Continuous wave supercontinuum generation J. C. Travers; 9. Theory of supercontinuum and interactions of solitons with dispersive waves D. V. Skryabin and A. V. Gorbach; 10. Interaction of four-wave mixing and stimulated Raman scattering in optical fibers S. Coen, S. G. Murdoch and F. Vanholsbeeck; 11. Nonlinear optics in emerging waveguides: revised fundamentals and implications S. V. Afshar, M. Turner and T. M. Monro; 12. Supercontinuum generation in dispersion varying fibers G. Genty; 13. Supercontinuum generation in chalcogenide glass waveguides Dong-Il Yeom, M. R. E. Lamont, B. Luther Davies and B. J. Eggleton; 14. Supercontinuum generation for carrier-envelope phase stabilization of mode-locked lasers S. T. Cundiff; 15. Biophotonics applications of supercontinuum generation C. Dunsby and P. M. W. French; 16. Fiber sources of tailored supercontinuum in nonlinear microspectroscopy and imaging A. M. Zheltikov; Index.

  15. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  16. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  17. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  18. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  19. Cavity-enhanced spectroscopy in optical fibers.

    PubMed

    Gupta, Manish; Jiao, Hong; O'Keefe, Anthony

    2002-11-01

    Cavity-enhanced methods have been extended to fiber optics by use of fiber Bragg gratings (FBGs) as reflectors. High-finesse fiber cavities were fabricated from FBGs made in both germanium/boron-co-doped photosensitive fiber and hydrogen-loaded Corning SMF-28 fiber. Optical losses in these cavities were determined from the measured Fabry-Perot transmission spectra and cavity ring-down spectroscopy. For a 10-m-long single-mode fiber cavity, ring-down times in excess of 2 ms were observed at 1563.6 nm, and individual laser pulses were resolved. An evanescent-wave access block was produced within a fiber cavity, and an enhanced sensitivity to optical loss was observed as the external medium's refractive index was altered.

  20. Multi-wavelength fiber laser based on a fiber Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Estudillo-Ayala, J. M.; Jauregui-Vazquez, D.; Haus, J. W.; Perez-Maciel, M.; Sierra-Hernandez, J. M.; Avila-Garcia, M. S.; Rojas-Laguna, R.; Lopez-Dieguez, Y.; Hernandez-Garcia, J. C.

    2015-12-01

    In this work we report experimental studies of an erbium-doped fiber laser design that simultaneously emits up to three wavelengths. The laser cavity configuration has an all-fiber, Fabry-Perot interferometer, based on the insertion of air cavities in the fiber, near one end of a conventional single-mode fiber. The laser emissions have a side-mode suppression ratio over 25 dB, wavelength variations around 0.04 nm, and 2 dB power fluctuations. By using a simple, controlled fiber curvature technique cavity losses are varied over a section of convectional single-mode fiber and the laser output is switched between single-, dual-, and triple-wavelength emission. Moreover, by applying a refractive index change over the fiber filter the emission wavelengths are shifted. The fiber laser offers a compact, simple, and low-cost design for a multiple wavelength outputs that can be adopted in future applications.

  1. Beyond Crossing Fibers: Bootstrap Probabilistic Tractography Using Complex Subvoxel Fiber Geometries

    PubMed Central

    Campbell, Jennifer S. W.; MomayyezSiahkal, Parya; Savadjiev, Peter; Leppert, Ilana R.; Siddiqi, Kaleem; Pike, G. Bruce

    2014-01-01

    Diffusion magnetic resonance imaging fiber tractography is a powerful tool for investigating human white matter connectivity in vivo. However, it is prone to false positive and false negative results, making interpretation of the tractography result difficult. Optimal tractography must begin with an accurate description of the subvoxel white matter fiber structure, includes quantification of the uncertainty in the fiber directions obtained, and quantifies the confidence in each reconstructed fiber tract. This paper presents a novel and comprehensive pipeline for fiber tractography that meets the above requirements. The subvoxel fiber geometry is described in detail using a technique that allows not only for straight crossing fibers but for fibers that curve and splay. This technique is repeatedly performed within a residual bootstrap statistical process in order to efficiently quantify the uncertainty in the subvoxel geometries obtained. A robust connectivity index is defined to quantify the confidence in the reconstructed connections. The tractography pipeline is demonstrated in the human brain. PMID:25389414

  2. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  3. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers.

    PubMed

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2016-07-25

    Raman fiber lasers have been proposed as potential candidates for scaling beyond the power limitations imposed on near diffraction-limited rare-earth doped fiber lasers. One limitation is the modal instability (MI) and we explore the physics of this phenomenon in Raman fiber amplifiers (RFAs). By utilizing the conservation of number of photons and conservation of energy in the absence of loss, the 3 × 3 governing system of nonlinear equations describing the pump and the signal modal content are decoupled and solved analytically for cladding-pumped RFAs. By comparing the extracted signal at MI threshold for the same step index-fiber, it is found that the MI threshold is independent of the length of the amplifier or whether the amplifier is co-pumped or counter-pumped; dictated by the integrated heat load along the length of fiber. We extend our treatment to gain-tailored RFAs and show that this approach is of limited utility in suppressing MI. Finally, we formulate the physics of MI in core-pumped RFAs where both pump and signal interferences participate in writing the time-dependent index of refraction grating.

  4. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  5. Multiplexed displacement fiber sensor using thin core fiber exciter.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  6. Distributed fiber optical HC leakage and pH sensing techniques for implementation into smart structures

    NASA Astrophysics Data System (ADS)

    Buerck, Jochen M.; Vogel, Bernhard H.; Roth, Siegmar; Ebrahimi, Sasan; Kraemer, Karl

    2004-07-01

    Interaction of target molecules with the evanescent wave of light guided in optical fibers is among the most promising sensing schemes for building up smart chemical sensor technologies. If the technique of optical time domain reflectometry (OTDR) is combined with silicone-clad quartz glass fibers distributed chemical sensing is possible. Hydrocarbon (HC) detection and location is done by automated identification of the position of the corresponding step drop (light loss) in the backscatter signal induced by local refractive index increase in the silicone cladding due to a penetrating HC compound. A commercially available mini-OTDR was adapted to sensing fibers of up to nearly 2-kilometer length and location of typical HC fuels could be demonstrated. The instrument is applicable for fuel leakage monitoring in large technical installations such as tanks or pipelines with spatial resolution down to 1 m. A similar technique using measurements in the Vis spectral range is being developed for health monitoring of large structures, e.g., for early detection of corrosion caused by water ingress and pH changes in reinforced concrete. Here, a pH indicator dye and a phase transfer reagent are immobilized in the originally hydrophobic fiber cladding, leading to a pH induced absorption increase and a step drop signal in the backscatter curve. The configuration of the distributed sensing cables, the instrumental setups, and examples for HC and pH sensing are presented.

  7. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  8. Interferometric Fiber Optic Sensors

    PubMed Central

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961

  9. Interferometric fiber optic sensors.

    PubMed

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  10. Benefits of glass fibers in solar fiber optic lighting systems.

    PubMed

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  11. Step by Step: Avoiding Spiritual Bypass in 12-Step Work

    ERIC Educational Resources Information Center

    Cashwell, Craig S.; Clarke, Philip B.; Graves, Elizabeth G.

    2009-01-01

    With spirituality as a cornerstone, 12-step groups serve a vital role in the recovery community. It is important for counselors to be mindful, however, of the potential for clients to be in spiritual bypass, which likely will undermine the recovery process.

  12. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  13. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  14. Beam quality after propagation of Nd:YAG laser light through large-core optical fibers.

    PubMed

    Kuhn, A; Blewett, I J; Hand, D P; Jones, J D

    2000-12-20

    Laser beam characteristics are altered during propagation through large-core optical fibers. The distribution of modes excited by the input laser beam is modified by means of mode coupling on transmission through the fiber, leading to spatial dispersion of the profile and, ultimately and unavoidably, to degradation in the quality of the delivered beam unless the beam is spatially filtered with consequent power loss. Furthermore, a mismatch between the intensity profile of a typical focused high-power laser beam and the profile of the step-index fiber gives rise to additional beam-quality degradation. Modern materials processing applications demand ever higher delivered beam qualities (as measured by a parameter such as M(2)) to achieve greater machining precision and efficiency, a demand that is currently in conflict with the desire to utilize the convenience and flexibility of large-core fiber-optic beam delivery. We present a detailed experimental investigation of the principal beam-quality degradation effects associated with fiber-optic beam delivery and use numerical modeling to aid an initial discussion of the causes of such degradation.

  15. Fireblocking Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PBI was originally developed for space suits. In 1980, the need for an alternative to asbestos and stricter government anti-pollution standards led to commercialization of the fire blocking fiber. PBI is used for auto racing driver suits and aircraft seat covers. The fiber does not burn in air, is durable and easily maintained. It has been specified by a number of airliners and is manufactured by Hoechst-Celanese Corporation.

  16. Dietary fiber.

    PubMed

    Madar, Z; Thorne, R

    1987-01-01

    Studies done on dietary fiber (DF) over the past five years are presented in this Review. The involvement of dietary fiber in the control of plasma glucose and lipid levels is now established. Two dietary fiber sources (soybean and fenugreek) were studied in our laboratory and are discussed herein. These sources were found to be potentially beneficial in the reduction of plasma glucose in non-insulin dependent diabetes mellitus subjects. They are shown to be acceptable by human subjects and are easy to use either in a mixture of milk products and in cooking. The mechanism by which dietary fiber alters the nutrient absorption is also discussed. The effect of DF on gastric emptying, transit time, adsorption and glucose transport may contribute to reducing plasma glucose and lipid levels. DF was found to be effective in controlling blood glucose and lipid levels of pregnant diabetic women. Dietary fiber may also be potentially beneficial in the reduction of exogenous insulin requirements in these subjects. However, increased consumption of DF may cause adverse side effects; the binding capabilities of fiber may affect nutrient availability, particularly that of minerals and prolonged and high DF dosage supplementation must be regarded cautiously. This is particularly true when recommending such a diet for pregnant or lactating women, children or subjects with nutritional disorders. Physiological effects of DF appear to depend heavily on the source and composition of fiber. Using a combination of DF from a variety of sources may reduce the actual mass of fiber required to obtain the desired metabolic effects and will result in a more palatable diet. Previously observed problems, such as excess flatus, diarrhea and mineral malabsorption would also be minimized.

  17. Nanocomposite Fibers

    DTIC Science & Technology

    2003-01-01

    attempts to prepare carbon nanotube , CNT, containing fiber material. Modulus and tenacity tests on experimentally prepared nanosilica filled PET...individual entities of nanofibers, such as carbon nanotubes and SiC whiskers, silica and clay, into polymers with the goal of producing new forms of...if carbon nanotube (CNT) particle implanted fibers are used, one would expect a great increase in the electrical conductivity of the so-reinforced

  18. Optical fiber laser

    SciTech Connect

    Hakimi, F.; Po, H.; Snitzer, E.

    1987-07-14

    An optical fiber laser is described comprising: a gain cavity including a single mode optical fiber of given length having a core with a given index of refraction and a cladding surrounding the core and having an index of refraction lower than that of the core. The core comprises a host glass having incorporated a laser gain material with a fluorescence spectrum having at least one broadband region in which there is at least one peak emission line; filter means optically coupled to one end of the gain cavity and reflective to radiation emitted from the gain material over a predetermined wavelength interval about the peak emission line to provide feedback in the gain cavity; an etalon filter section butt coupled to the remaining end of the gain cavity optical fiber, the etalon filter section comprising a pair of filters spaced apart in parallel by a predetermined length of material transparent to any radiation emitted from the gain cavity. The predetermined length of the transparent material is such that the etalon filter section is no longer than the distance over which the wave train energy from the fiber core remains substantially planar so that the etalon filter section is inside the divergent region to enhance feedback in the gain cavity; and means for pumping energy into the gain cavity to raise the interval energy level such that only a small part of the ion population, corresponding to a predetermined bandwidth about the peak emission line, is raised above laser threshold. The laser emits radiation only over narrow lines over a narrow wavelength interval centered about the peak emission line.

  19. Liquid-filled hollow core microstructured polymer optical fiber.

    PubMed

    Cox, F M; Argyros, A; Large, M C J

    2006-05-01

    Guidance in a liquid core is possible with microstructured optical fibers, opening up many possibilities for chemical and biochemical fiber-optic sensing. In this work we demonstrate how the bandgaps of a hollow core microstructured polymer optical fiber scale with the refractive index of liquid introduced into the holes of the microstructure. Such a fiber is then filled with an aqueous solution of (-)-fructose, and the resulting optical rotation measured. Hence, we show that hollow core microstructured polymer optical fibers can be used for sensing, whilst also fabricating a chiral optical fiber based on material chirality, which has many applications in its own right.

  20. Advanced fiber lasers and related all-fiber devices

    NASA Astrophysics Data System (ADS)

    Srinivasan, Balaji

    2000-11-01

    :ZBLAN. The demonstration of substantial second order nonlinearities (~1 pm/V) at UNM using thermal- assisted poling in normally symmetry forbidden silica glass has inspired worldwide research efforts aimed at achieving similar nonlinearities in fibers. All-fiber electro-optic devices based on such poled fibers are anticipated to enhance the performance of various lasers, including modelocked and tunable fiber lasers. This dissertation presents the first demonstration of stable, electro-optically tunable fiber Bragg gratings (FBGs) with a tuning range of 20 pm (2.5 GHz), which should enable applications such as reconfigurable add/drop filters and actively modelocked all-fiber lasers. Two key steps in the fabrication of the tunable FBGs viz. the fabrication of thermally stable FBGs, and a novel method for in-situ monitoring of fiber polishing are also demonstrated. Finally, this dissertation discusses issues related to the demonstration of all-fiber electro- optically tunable polarization rotators and their possible impact on future advanced fiber lasers.

  1. Fiber inline Michelson interferometer fabricated by a femtosecond laser.

    PubMed

    Yuan, Lei; Wei, Tao; Han, Qun; Wang, Hanzheng; Huang, Jie; Jiang, Lan; Xiao, Hai

    2012-11-01

    A fiber inline Michelson interferometer was fabricated by micromachining a step structure at the tip of a single-mode optical fiber using a femtosecond laser. The step structure splits the fiber core into two reflection paths and produces an interference signal. A fringe visibility of 18 dB was achieved. Temperature sensing up to 1000°C was demonstrated using the fabricated assembly-free device.

  2. Estimation of ovular fiber production in cotton

    DOEpatents

    Van`t Hof, J.

    1998-09-01

    The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means. 4 figs.

  3. Estimation of ovular fiber production in cotton

    DOEpatents

    Van't Hof, Jack

    1998-09-01

    The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means.

  4. Demonstration of uniform multicore fiber Bragg gratings.

    PubMed

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon; Bland-Hawthorn, Joss

    2014-12-15

    Fiber Bragg gratings in multicore fibers have significant potential as compact and robust filters for research and commercial applications. With the aid of an innovative, flat-fielded Mach-Zehnder interferometer, we demonstrate deep (>30 dB) narrow (100 pm at 3 dB; 90 pm at 10 dB) notches in the outer 6 cores of a 7-core fiber at a constant wavelength ( ± 15 pm). This is a crucial step in the development of FBGs operating within multimode fibers that carry an arbitrary number of spatial modes.

  5. A Step Circuit Program.

    ERIC Educational Resources Information Center

    Herman, Susan

    1995-01-01

    Aerobics instructors can use step aerobics to motivate students. One creative method is to add the step to the circuit workout. By incorporating the step, aerobic instructors can accommodate various fitness levels. The article explains necessary equipment and procedures, describing sample stations for cardiorespiratory fitness, muscular strength,…

  6. Investigating the transverse optical structure of spider silk micro-fibers using quantitative optical microscopy

    NASA Astrophysics Data System (ADS)

    Little, Douglas J.; Kane, Deb M.

    2016-10-01

    The transverse optical structure of two orb-weaver (family Araneidae) spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This "excess contrast" indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1-4×10-4 and 6-7×10-4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively). The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.

  7. Investigating the transverse optical structure of spider silk micro-fibers using quantitative optical microscopy

    NASA Astrophysics Data System (ADS)

    Little, Douglas J.; Kane, Deb M.

    2017-01-01

    The transverse optical structure of two orb-weaver (family Araneidae) spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This "excess contrast" indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1-4×10-4 and 6-7×10-4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively). The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.

  8. Acta Clinica Croatica: progress of a journal step by step.

    PubMed

    Ramljak, Gordana

    2014-03-01

    The journal Acta Clinica Croatica (ACC) was founded in 1962 under the title Anali Bolnice Dr. M. Stojanović. In 1995, the title of the journal was changed into its present form and ever since all papers have been published in English. In 2000, the electronic (online) edition of the ACC was released in addition to the print version. The paper presents development of the journal from 1962 to 2012 based on the analysis of the following SCOPUS citation index parameters: type and number of documents published in the journal; number of citations; and number of domestic and foreign authors. The studied period was analyzed in three time segments: the period from 1995 to 1999, the period from 2000 to 2006 and the period from 2007 to 2012. The same parameters were analyzed in the Web of Science/SCI-Expanded bibliographic and citation index for the 2007-2012 period. The increasing number of documents, authors (both domestic and foreign) and citations demonstrates gradual rise in the quality, visibility and impact of the journal. The fifty years of experience show that a goal, at first very distant and almost unachievable, may be reached by progressing step by step.

  9. Effective index model predicts modal frequencies of vertical-cavity lasers

    SciTech Connect

    SERKLAND,DARWIN K.; HADLEY,G. RONALD; CHOQUETTE,KENT D.; GEIB,KENT M.; ALLERMAN,ANDREW A.

    2000-04-18

    Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.

  10. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  11. Pragmatic Approach to Subject Indexing: A New Concept.

    ERIC Educational Resources Information Center

    Dutta, S.; Sinha, P. K.

    1984-01-01

    Describes adoption at Sorghum and Millets Information Center (India) of Pragmatic Approach to Subject Index (PASI), computer-manipulative indexing procedure in which key words are arranged in meaningful sequence. Indexing problems, search for suitable system, PASI indexing steps, and computerization are discussed. Thirteen references and…

  12. Soft capacitor fibers using conductive polymers for electronic textiles

    NASA Astrophysics Data System (ADS)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-11-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60-100 nF m-1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L-1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage.

  13. WANTED: Fully Automated Indexing.

    ERIC Educational Resources Information Center

    Purcell, Royal

    1991-01-01

    Discussion of indexing focuses on the possibilities of fully automated indexing. Topics discussed include controlled indexing languages such as subject heading lists and thesauri, free indexing languages, natural indexing languages, computer-aided indexing, expert systems, and the need for greater creativity to further advance automated indexing.…

  14. Modal noise impact in radio over fiber multimode fiber links.

    PubMed

    Gasulla, I; Capmany, J

    2008-01-07

    A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise.

  15. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  16. The segal crystallinity index as it relates to crystallite size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are composed of crystals of cellulose that yield a diffraction pattern, although fibers from varying sources and histories are said to have different degrees of crystallinity. There are many methods to assess this crystallinity. One of the most popular is the Segal Crystallinity Index ...

  17. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  18. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, Jeffrey D.

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  19. Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles.

    PubMed

    Chen, Jiangping; Shi, Se; Su, Rongxin; Qi, Wei; Huang, Renliang; Wang, Mengfan; Wang, Libing; He, Zhimin

    2015-05-26

    In this study, we developed a reflective localized surface plasmon resonance (LSPR) optical fiber sensor, based on silver nanoparticles (Ag NPs). To enhance the sensitivity of the LSPR optical sensor, two key parameters were optimized, the length of the sensing area and the coating time of the Ag NPs. A sensing length of 1.5 cm and a 1-h coating time proved to be suitable conditions to produce highly sensitive sensors for biosensing. The optimized sensor has a high refractive index sensitivity of 387 nm/RIU, which is much higher than that of other reported individual silver nanoparticles in solutions. Moreover, the sensor was further modified with antigen to act as a biosensor. Distinctive wavelength shifts were found after each surface modification step. In addition, the reflective LSPR optical fiber sensor has high reproducibility and stability.

  20. Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip

    DOEpatents

    Kittrell, W. Carter; Wang, Yuhuang; Kim, Myung Jong; Hauge, Robert H.; Smalley, Richard E.; Marek leg, Irene Morin

    2010-06-01

    The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.

  1. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  2. The NLM Indexing Initiative's Medical Text Indexer.

    PubMed

    Aronson, Alan R; Mork, James G; Gay, Clifford W; Humphrey, Susanne M; Rogers, Willie J

    2004-01-01

    The Medical Text Indexer (MTI) is a program for producing MeSH indexing recommendations. It is the major product of NLM's Indexing Initiative and has been used in both semi-automated and fully automated indexing environments at the Library since mid 2002. We report here on an experiment conducted with MEDLINE indexers to evaluate MTI's performance and to generate ideas for its improvement as a tool for user-assisted indexing. We also discuss some filtering techniques developed to improve MTI's accuracy for use primarily in automatically producing the indexing for several abstracts collections.

  3. Golgi-Cox Staining Step by Step

    PubMed Central

    Zaqout, Sami; Kaindl, Angela M.

    2016-01-01

    Golgi staining remains a key method to study neuronal morphology in vivo. Since most protocols delineating modifications of the original staining method lack details on critical steps, establishing this method in a laboratory can be time-consuming and frustrating. Here, we describe the Golgi-Cox staining in such detail that should turn the staining into an easily feasible method for all scientists working in the neuroscience field. PMID:27065817

  4. Longitudinal strain sensing with photonic crystal fibers and fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Tenderenda, T.; Murawski, M.; Szymanski, M.; Szostkiewicz, L.; Becker, M.; Rothhardt, M.; Bartelt, H.; Mergo, P.; Poturaj, Kl; Makara, M.; Skorupski, K.; Marc, P.; Jaroszewicz, L. R.; Nasilowski, T.

    2014-03-01

    Photonic crystal fibers (PCF), sometimes also referred to as microstructured fibers (MSF), have been a subject of extensive research for over a decade. This is mainly due to the fact that by changing the geometry and distribution of the air holes the fiber properties can be significantly modified and tailored to specific applications. In this paper we present the results of a numerical analysis of the influence of the air-hole distribution on the sensitivity of the propagated modes' effective refractive index to externally applied longitudinal strain. We propose an optimal strain sensitive fiber design, with a number of fibers drawn and experimentally evaluated to confirm the theoretical results. Furthermore as the direct measurement of the effective refractive index change may be complex and challenging in field environment, we propose to use fiber Bragg gratings (FBG) in our sensing set-up. As the Bragg wavelength is a function of the effective refractive index, the external strain changes can be monitored through the Bragg wavelength shift with a simple optical spectrometer. Moreover, since the PCF is also optimized for low-loss splicing with standard single mode fiber, our novel sensor head can be used with standard off-the-shelf components in complex multiplexed sensing arrays, with the measured signal transmitted to and from the sensor head by standard telecom fibers, which significantly reduces costs.

  5. Multigigabit short-reach communication over microstructured polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Surkova, Galina; Kruglov, Roman; Lwin, Richard; Leon-Saval, Sergio G.; Argyros, Alexander; Poisel, Hans; Zadorin, Anatoly

    2017-03-01

    In contrast to conventional polymer optical fibers (POF) microstructured POF (mPOF) provide an additional opportunity to control the optical properties of the propagating signals. A particular arrangement of the air holes allows to reduce the number of waveguide modes and thus overcome the bandwidth limitation which is inherent for step-index POF. In this paper we report on the implementation of a 50 m data transmission link based on mPOF with a single ring of holes and a core diameter of 180 μm. A bit rate of 7 Gb/s was achieved at a bit-error ratio (BER) of 10-3 employing on-off keying modulation technique and an offline-processed symbol-spaced decision feedback equalizer. Discrete multitone modulation provided a bit rate of 8.07 Gb/s at BER of 10-3.

  6. Structural characterization of hair fiber by optical coherence tomography (OCT)

    NASA Astrophysics Data System (ADS)

    Freitas, Anderson Zanardi; Robes Velasco, Maria Valeria; Paulo Raele, Marcus; Kaneko, Telma Mary; Vieira, Nilson Dias, Jr.; Baby, Andre Rolim

    2008-09-01

    In this work we use the optical coherence tomography (OCT) technique to produce in vitro transversal section images of human hair. It was possible to identify in the A-scan protocol its principal structures: cuticle, cortex and medulla. The mean diameter of medulla was 29 +/- 7 μm and hair diameter was 122 +/- 16 μm in our samples of standard Afro-ethnic hair. We also compared the OCT signal before and after chemical treatment with 18% w/w ammonium thioglycolate solution. After chemical treatment, it was not possible to identify the main structures of hair fiber, due the index matching promoted by deleterious action of chemical agent. A tridimensional image was built starting from 601 cross-sectional images (slices). Each slice was taken in steps of 6.0 μm at 8 frames per second, and the whole 3D image was built in 60 seconds.

  7. Information on stepping motors

    NASA Astrophysics Data System (ADS)

    Fongarland, G.

    1982-04-01

    The principles of the stepping motors which are often used in servomechanisms are reviewed. Variable reluctance as well as permanent magnet stepping motors are considered. Their operation is explained which includes permanent rotation, starting, stopping, and resonance effects. Several application examples, drawn from problems in automation, are outlined.

  8. STEP Experiment Requirements

    NASA Technical Reports Server (NTRS)

    Brumfield, M. L. (Compiler)

    1984-01-01

    A plan to develop a space technology experiments platform (STEP) was examined. NASA Langley Research Center held a STEP Experiment Requirements Workshop on June 29 and 30 and July 1, 1983, at which experiment proposers were invited to present more detailed information on their experiment concept and requirements. A feasibility and preliminary definition study was conducted and the preliminary definition of STEP capabilities and experiment concepts and expected requirements for support services are presented. The preliminary definition of STEP capabilities based on detailed review of potential experiment requirements is investigated. Topics discussed include: Shuttle on-orbit dynamics; effects of the space environment on damping materials; erectable beam experiment; technology for development of very large solar array deployers; thermal energy management process experiment; photovoltaic concentrater pointing dynamics and plasma interactions; vibration isolation technology; flight tests of a synthetic aperture radar antenna with use of STEP.

  9. Catalytic property of fiber media supported palladium containing alloy nanoparticles and electrospun ceramic fibers biodurability study

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Ung

    of small alumina fibers, including fiber sizes, surface morphologies, crystalline, phases, and surface areas with respect to submicron sized alumina fibers formed by calcination of electrospun polymeric fibers. Therefore, in this work, sub-micron sized alumina fibers were fabricated by electrospinning and calcination of a polymer template fiber. In the calcination step, different controlled temperature heating cycles were conducted to obtain fibers of different crystalline structures. Their biodurabilities were evaluated in two types of artificial lung fluids (i.e., mimicking the airway and alveolar macrophages). Though the variation in the soak temperature, their dissolution half times were not significantly affected. The solubility half-times of the alumina fibers were shortest for fibers calcined at the fastest temperature ramp rate (though soak temperature did not have an effect).

  10. Miniature fiber optic surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Slavik, Radan; Brynda, Eduard; Homola, Jiri; Ctyroky, Jiri

    1999-01-01

    A novel design of surface plasmon resonance fiber optic sensor is reported which leads to a compact, highly miniaturized sensing element with excellent sensitivity. The sensing device is based on a side-polished single-mode optical fiber with a thin metal overlayer supporting surface plasmon waves. The strength of interaction between a fiber mode and a surface plasmon wave depends strongly on the refractive index near the sensing surface. Therefore, refractive index changes associated with biospecific interaction between antibodies immobilized on the sensor and antigen molecules can be monitored by measuring light intensity variations. Detection of horse radish peroxidase (HRP) of the concentration of 100 ng/ml has been accomplished using the fiber optic sensor with a matrix of monoclonal antibodies against HRP immobilized on the sensor surface.

  11. Exposed-core chalcogenide microstructured optical fibers for chemical sensing

    NASA Astrophysics Data System (ADS)

    Troles, Johann; Toupin, Perrine; Brilland, Laurent; Boussard-Plédel, Catherine; Bureau, Bruno; Cui, Shuo; Mechin, David; Adam, Jean-Luc

    2013-05-01

    Chemical bonds of most of the molecules vibrate at a frequency corresponding to the near or mid infrared field. It is thus of a great interest to develop sensitive and portable devices for the detection of specific chemicals and biomolecules for various applications in health, the environment, national security and so on. Optical fibers define practical sensing tools. Chalcogenide glasses are known for their transparency in the infrared optical range and their ability to be drawn as fibers. They are consequently good candidates to be used in biological/chemical sensing. For that matter, in the past decade, chalcogenide glass fibers have been successfully implemented in evanescent wave spectroscopy experiments, for the detection of bio-chemical species in various fields of applications including microbiology and medicine, water pollution and CO2 detection. Different types of fiber can be used: single index fibers or microstructured fibers. Besides, in recent years a new configuration of microstructured fibers has been developed: microstructured exposed-core fibers. This design consists of an optical fiber with a suspended micron-scale core that is partially exposed to the external environment. This configuration has been chosen to elaborate, using the molding method, a chalcogenide fiber for chemical species detection. The sensitivity of this fiber to detect molecules such as propan-2-ol and acetone has been compared with those of single index fibers. Although evanescent wave absorption is inversely proportional to the fiber diameter, the result shows that an exposed-core fiber is much more sensitive than a single index fiber having a twice smaller external diameter.

  12. Thermally Compensated Fiber Bragg Grating Mount

    DTIC Science & Technology

    2007-01-25

    more sensor channels at different wavelengths. Normally, the FBGls thermal sensitivity is dominated by the thermo-optic effect on the fibers index of...specifically designed to be sensitive to pressure, and the depth changes of a towed hydrophone array would also cause significant changes in the FBGs if wound...zirconium tungstate . The negative coefficient of thermal expansion is preferably about -9xi0-6OC-. An optic fiber including a FBG is wound onto the

  13. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    DOEpatents

    Wang, Anbo

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  14. A tunable optofluidic circular liquid fiber

    NASA Astrophysics Data System (ADS)

    Li, Lei; Wu, Wei; Shi, Yang; Gong, Enze; Yang, Yi

    2016-01-01

    This paper presents a tunable optofluidic circular liquid fiber through the numerical simulation. Fiber is a significant optical device and has been widely applied on optical fiber communication. But the fiber based solid has limited tunability. Compared to solid fiber, the fiber based liquid material is relatively infrequent. Cause for the liquid optical device has more freedom tunable properties than solid counterpart, it has attracted more interest. The traditional optofluidic waveguide is designed like a sandwich in planar channel. This two-dimensional (2D) structure liquid waveguide will face huge transmission loss in the perpendicular direction of the flow streams. In this paper, a curving microchannel is designed inside the microchip to produce centrifugal effect. Two different liquids are injected into the chip by external pumps. In a particular situation, the core flow will be totally surrounded by the cladding flow. So the liquid can form an optical waveguide. Its structure is similar to an optical fiber which high refractive index (RI) liquid is core of the waveguide and the low RI liquid is cladding of the waveguide. Profit from the reconfigurability of liquid material, this liquid fiber has excellent tunability. The diameter of the core flow can be tuned in a wider range by changing the volume ratio of the flows through the finite element analysis. It is predictable that such a tunable liquid fiber may find wider applications in lab-on-a-chip systems and integrated optical devices.

  15. Comparison of different methods for rigorous modeling of photonic crystal fibers.

    PubMed

    Szpulak, Marcin; Urbanczyk, Waclaw; Serebryannikov, Evgenii; Zheltikov, Aleksei; Hochman, Amit; Leviatan, Yehuda; Kotynski, Rafal; Panajotov, Krassimir

    2006-06-12

    We present a summary of the simulation exercise carried out within the EC Cost Action P11 on the rigorous modeling of photonic crystal fiber (PCF) with an elliptically deformed core and noncircular air holes with a high fill factor. The aim of the exercise is to calculate using different numerical methods and to compare several fiber characteristics, such as the spectral dependence of the phase and the group effective indices, the birefringence, the group velocity dispersion and the confinement losses. The simulations are performed using four rigorous approaches: the finite element method (FEM), the source model technique (SMT), the plane wave method (PWM), and the localized function method (LFM). Furthermore, we consider a simplified equivalent fiber method (EFM), in which the real structure of the holey fiber is replaced by an equivalent step index waveguide composed of an elliptical glass core surrounded by air cladding. All these methods are shown to converge well and to provide highly consistent estimations of the PCF characteristics. Qualitative arguments based on the general properties of the wave equation are applied to explain the physical mechanisms one can utilize to tailor the propagation characteristics of nonlinear PCFs.

  16. Analysis of bend insensitive liquid core optical fiber for broadband network and fiber-to-the-home applications

    NASA Astrophysics Data System (ADS)

    Palodiya, Vikram; Raghuwanshi, Sanjeev Kumar

    2016-02-01

    In this paper, we analyze the guided properties of liquid core optical fibers for fiber-to-thehome application. Fiber to the Home is advance technology to give unlimited bandwidth and high speed broadband network for communication. Fiber to the Home technology refers to the installation and use of bend insensitive optical fiber cables. The liquid core optical fiber has a simple core and cladding structure. This fiber achieves high relative refractive index difference among the core and cladding is proving to be bending insensitive. The single mode condition and the group velocity dispersion, mode field diameter and the bending loss of single mode fiber are studied theoretically. Compare with traditional silica optical fiber. Liquid core optical fiber has much smaller bending loss of than traditional silica fibers. Liquid core optical fiber shows unique properties, such as more confided guided mode, low bending loss and large non linear parameters in the visible and infrared region. This type of fiber used in fiber -to-the-home applications, Broadband network and also for sensing applications.

  17. Effective indexing for face recognition

    NASA Astrophysics Data System (ADS)

    Sochenkov, I.; Sochenkova, A.; Vokhmintsev, A.; Makovetskii, A.; Melnikov, A.

    2016-09-01

    Face recognition is one of the most important tasks in computer vision and pattern recognition. Face recognition is useful for security systems to provide safety. In some situations it is necessary to identify the person among many others. In this case this work presents new approach in data indexing, which provides fast retrieval in big image collections. Data indexing in this research consists of five steps. First, we detect the area containing face, second we align face, and then we detect areas containing eyes and eyebrows, nose, mouth. After that we find key points of each area using different descriptors and finally index these descriptors with help of quantization procedure. The experimental analysis of this method is performed. This paper shows that performing method has results at the level of state-of-the-art face recognition methods, but it is also gives results fast that is important for the systems that provide safety.

  18. Polyimide Fibers

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor); Fay, Catharine C. (Inventor); Working, Dennis C. (Inventor)

    1997-01-01

    A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3.4'-ODA and ODPA, and endcapped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340? C. to 360? C. and at heights of 100.5 inches, 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi; and a mean elongation in the range of 14 to 103%.

  19. Polyimide Fibers

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor); Fay, Catharine C. (Inventor); Working, Dennis C. (Inventor)

    1998-01-01

    A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3.4'-ODA and ODPA, and end- capped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340 C. to 360 C. and at heights of 100.5 inches. 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi, and a mean elongation in the range of 14 to 103%.

  20. The Next Giant Step

    NASA Video Gallery

    Artist Robert McCall painted "The Next Giant Step" in 1979 to commemorate the heroism and courage of spaceflight pioneers. Located in the lobby of Johnson's building 2, the mural depicts America's ...

  1. CEIP Next Steps

    EPA Pesticide Factsheets

    The Clean Energy Incentive Program (CEIP) next steps document details the EPA’s outreach strategy for stakeholder input on the design and implementation of the CEIP. Additionally, this document lists provisions on the CEIP where stakeholder input is sought

  2. Environmental stability of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.; Jaworske, D. A.

    1985-01-01

    Graphite fibers intercalated with bromine, iodine monochloride, ferric chloride, and cupric chloride were subjected to stability tests under four environments which are encountered by engineering materials in the aerospace industry: ambient laboratory conditions, as would be experienced during handling operations and terrestrial applications; high vacuum, as would be experienced in space applications; high humidity, as would be experienced in marine applications; and high temperature, as would be experienced in some processing steps and applications. Monitoring the resistance of the fibers at ambient laboratory conditions revealed that only the ferric chloride intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were stable for long periods under high vacuum. Ferric chloride, cupric chloride, and iodine monochloride intercalated fibers were sensitive to high humidity conditions. All intercalated fibers began to degrade above 250 C. The order of their thermal stability, from lowest to highest, was cupric chloride, iodine monochloride, bromine, and ferric chloride. Of the four types of intercalated fibers tested, the bromine intercalated fibers appear to have the most potential for application, based on environmental stability.

  3. External reflection from omnidirectional dielectric mirror fibers.

    PubMed

    Hart, Shandon D; Maskaly, Garry R; Temelkuran, Burak; Prideaux, Peter H; Joannopoulos, John D; Fink, Yoel

    2002-04-19

    We report the design and fabrication of a multilayered macroscopic fiber preform and the subsequent drawing and optical characterization of extended lengths of omnidirectional dielectric mirror fibers with submicrometer layer thickness. A pair of glassy materials with substantially different indices of refraction, but with similar thermomechanical properties, was used to construct 21 layers of alternating refractive index surrounding a tough polymer core. Large directional photonic band gaps and high reflection efficiencies comparable to those of the best metallic reflectors were obtained. Potential applications of these fibers include woven fabrics for radiation barriers, spectral authentication of cloth, and filters for telecommunications.

  4. Ordered bundles of infrared-transmitting AgClBr fibers: optical characterization of individual fibers.

    PubMed

    Rave, E; Nagli, L; Katzir, A

    2000-09-01

    Silver halide (AgCl(x) Br(1-x)) crystals were extruded to form polycrystalline fibers that are highly transparent in the spectral range 3-30 mum. Ordered bundles consisting of as many as 9000 fibers were fabricated by multiple extrusion steps. The transmission loss of an individual fiber in the 100-fiber bundles was 0.12 dB/cm, and the cross talk between neighboring fibers in the 900-fiber bundles was 25%. Thermal images of bodies at room temperature have been transmitted through the bundles. Such ordered bundles provide a solution for the problem of thermal imaging in regions where there is no line of sight between a thermal camera and a warm object.

  5. Indexing Consistency and Quality.

    ERIC Educational Resources Information Center

    Zunde, Pranas; Dexter, Margaret E.

    A measure of indexing consistency is developed based on the concept of 'fuzzy sets'. It assigns a higher consistency value if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on indexing consistency…

  6. Graded Activation in Frog Muscle Fibers

    PubMed Central

    Costantin, L. L.; Taylor, S. R.

    1973-01-01

    The membrane potential of frog single muscle fibers in solutions containing tetrodotoxin was controlled with a two-electrode voltage clamp. Local contractions elicited by 100-ms square steps of depolarization were observed microscopically and recorded on cinefilm. The absence of myofibrillar folding with shortening to striation spacings below 1.95 µm served as a criterion for activation of the entire fiber cross section. With depolarizing steps of increasing magnitude, shortening occurred first in the most superficial myofibrils and spread inward to involve axial myofibrils as the depolarization was increased. In contractions in which the entire fiber cross section shortened actively, both the extent of shortening and the velocity of shortening at a given striation spacing could be graded by varying the magnitude of the depolarization step. The results provide evidence that the degree of activation of individual myofibrils can be graded with membrane depolarization. PMID:4540418

  7. Consumption of total fiber and types of fiber are associated with a lower prevalence of obesity and abdominal adiposity in US adults. NHANES 1999-2006.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this cross-sectional study, an inverse association was found between intakes of total dietary fiber and five types of fiber with Body Mass Index, waist circumference, and percent obese, and with increased waist circumference. Intake of vegetable fiber was not associated with any of the weight mea...

  8. Carbon fiber manufacturing via plasma technology

    DOEpatents

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  9. Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation.

    PubMed

    Li, Wei; Sigley, Justin; Pieters, Marlien; Helms, Christine Carlisle; Nagaswami, Chandrasekaran; Weisel, John W; Guthold, Martin

    2016-03-29

    The major structural component of a blood clot is a mesh of fibrin fibers. Our goal was to determine whether fibrinogen glycation and fibrin fiber diameter have an effect on the mechanical properties of single fibrin fibers. We used a combined atomic force microscopy/fluorescence microscopy technique to determine the mechanical properties of individual fibrin fibers formed from blood plasma. Blood samples were taken from uncontrolled diabetic patients as well as age-, gender-, and body-mass-index-matched healthy individuals. The patients then underwent treatment to control blood glucose levels before end blood samples were taken. The fibrinogen glycation of the diabetic patients was reduced from 8.8 to 5.0 mol glucose/mol fibrinogen, and the healthy individuals had a mean fibrinogen glycation of 4.0 mol glucose/mol fibrinogen. We found that fibrinogen glycation had no significant systematic effect on single-fiber modulus, extensibility, or stress relaxation times. However, we did find that the fiber modulus, Y, strongly decreases with increasing fiber diameter, D, as Y∝D(-1.6). Thin fibers can be 100 times stiffer than thick fibers. This is unusual because the modulus is a material constant and should not depend on the sample dimensions (diameter) for homogeneous materials. Our finding, therefore, implies that fibrin fibers do not have a homogeneous cross section of uniformly connected protofibrils, as is commonly thought. Instead, the density of protofibril connections, ρPb, strongly decreases with increasing diameter, as ρPb∝D(-1.6). Thin fibers are denser and/or have more strongly connected protofibrils than thick fibers. This implies that it is easier to dissolve clots that consist of fewer thick fibers than those that consist of many thin fibers, which is consistent with experimental and clinical observations.

  10. The influence of the fiber drawing process on intrinsic stress and the resulting birefringence optimization of PM fibers

    NASA Astrophysics Data System (ADS)

    Just, Florian; Spittel, Ron; Bierlich, Jörg; Grimm, Stephan; Jäger, Matthias; Bartelt, Hartmut

    2015-04-01

    The propagation properties of optical fibers can be significantly influenced by intrinsic stress. These effects are often undesired but in some cases essential for certain applications, e.g. in polarization maintaining (PM) fibers. In this paper, we present systematic studies on the influence of the fiber drawing process on the generated stress and demonstrate an approach to significantly increase the stress induced birefringence of PM-fibers. It is shown that the thermal stress caused by the material composition is superimposed with the mechanical stress caused by the fiber fabrication process. This intrinsic stress has a strong effect on the optical and mechanical properties of the glass and thus influences the fiber stability and modal behavior. By applying a thermal annealing step, the mechanical stress due to the fiber drawing process can be canceled. It is shown that this annealing step compensates the stress reducing influence of the drawing process on the birefringence of PM-fibers with panda structure. The comparison of the intrinsic stress states after fabrication with the state after the additional high temperature annealing step clearly shows that it is possible to improve the overall birefringence of panda fibers using appropriate preparation steps.

  11. Fiber optic sensors for smart taxiways

    NASA Astrophysics Data System (ADS)

    Janzen, Douglas D.; Fuerstenau, Norbert; Goetze, Wolfgang

    1995-09-01

    Fiber-optic sensors could offer advantages in the field of airport ground traffic monitoring: immunity to electromagnetic interference, installation without costly and time consuming airfield closures, and low loss, low noise optical connection between sensors and signal processing equipment. This paper describes fiber-optic sensors developed for airport taxiway monitoring and the first steps toward their installation in an experimental surface movement guidance and control system at the Braunschweig airport. Initial results obtained with fiber- optic light barriers and vibration sensors are reported. The feasibility of employing interferometric strain gauges for this application will be discussed based on sensor characteristics obtained through measurements of strain in an aircraft structure in flight.

  12. Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Oh, Gyungseok; Chung, Euiheon; Yun, Seok H.

    2013-12-01

    Optical fiber-based high-resolution fluorescence imaging techniques have promising applications in clinical practice and preclinical research using animals. Here we review the instrumentation and applications of microendoscopy based on various types of optical fibers. Single-mode fibers and double-clad fibers have been widely used for delivering light from light sources to tissues and collecting light from tissues to photodetectors. Coherent fiber bundles, cylindrical graded-index lenses, and multi-mode fibers have been employed in both beam-scanning and non-scanning microscopy. With continuing advances of optical fiber technologies, further innovations in optical microendoscopy are expected.

  13. Integrated fiber optic probe for dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Khan, Romel R.; Suh, Kwang

    1993-01-01

    An integrated fiber optic probe, comprising a monomode optical fiber fusion spliced to a short length of a graded-index multimode fiber, is fabricated for use as a coherent receiver in dynamic light scattering. The multimode fiber is cleaved to provide a gradient-index fiber lens with a focal length of 125 microns and an f-number close to unity. An integrated fiber receiver is used to measure the intensity-intensity autocorrelation data from a 0.05 percent by weight concentration of an aqueous suspension of polystyrene latex spheres. Analysis of 100 independent data sets indicates that the particle size can be recovered with an accuracy of +/- 1 percent.

  14. Continuous Fiber Ceramic Composites (CFCC)

    SciTech Connect

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  15. Controlled chemical stabilization of polyvinyl precursor fiber, and high strength carbon fiber produced therefrom

    DOEpatents

    Naskar, Amit K.

    2016-12-27

    Method for the preparation of carbon fiber, which comprises: (i) immersing functionalized polyvinyl precursor fiber into a liquid solution having a boiling point of at least 60.degree. C.; (ii) heating the liquid solution to a first temperature of at least 25.degree. C. at which the functionalized precursor fiber engages in an elimination-addition equilibrium while a tension of at least 0.1 MPa is applied to the fiber; (iii) gradually raising the first temperature to a final temperature that is at least 20.degree. C. above the first temperature and up to the boiling point of the liquid solution for sufficient time to convert the functionalized precursor fiber to a pre-carbonized fiber; and (iv) subjecting the pre-carbonized fiber produced according to step (iii) to high temperature carbonization conditions to produce the final carbon fiber. Articles and devices containing the fibers, including woven and non-woven mats or paper forms of the fibers, are also described.

  16. Comparative study of optical fiber cure-monitoring methods

    NASA Astrophysics Data System (ADS)

    Crosby, Peter A.; Powell, Graham R.; Fernando, Gerard F.; Waters, David N.; France, Chris M.; Spooncer, Ronald C.

    1997-06-01

    This paper reports on a comparative study undertaken for different types of optical fiber sensor developed to monitor the cure of an epoxy resin system. The optical fiber sensors used to monitor the cure process were based on transmission spectroscopy, evanescent wave spectroscopy and refractive index monitoring. The transmission sensor was prepared by aligning two optical fibers within a specially prepared sleeve with a gap between the optical fiber end-faces. During cure, resin from the specimen flowed into the gap between the optical fibers allowing transmission spectra of the resin to be obtained. The evanescent wave sensor was prepared by stripping the cladding from a high refractive index core optical fiber. The prepared sensor was embedded in the sample and attenuated total reflectance spectra recorded from the resin/core boundary. Refractive index monitoring was undertaken using a high refractive index core optical fiber which had a small portion of its cladding removed. The prepared sensor was embedded in the resin specimen and light from a single wavelength source was launched into the fiber. Changes in the guiding characteristics of the sensor due to refractive index changes at the resin/core boundary were used to monitor the progress of the cure reaction. The transmission and evanescent wave spectroscopy sensors were used to follow changes in characteristic near-infrared absorption bands of the resin over the range 1450 - 1700 nm during the cure reaction. Consequently these techniques required tunable wavelength sources covering specific wavelength ranges. However, the refractive index based sensor used a single wavelength source. Therefore the equipment costs for this type of sensor were considerably less. Additionally, the refractive index sensor did not require a single wavelength source at any particular wavelength and could be applied to any spectral region in which the optical fiber would transmit light. The advantages and disadvantages of these

  17. Radiation Effects on Ytterbium-doped Optical Fibers

    DTIC Science & Technology

    2014-06-02

    the radiation response of RE-doped fibers, focusing on YDFs is also provided. 2.2 Rare-earth doped optical fibers The concept of total internal ...light. The glass core has the highest refractive index while the refractive index of the cladding is lower in order to allow for total internal ...Optiques Soumises a Divers Environnments Radiatifs. L’Universite Jean Monnet de Saint-Étienne, PhD Dissertation. Girard, S., & Marcandella, C. (2010

  18. Evaluation of Small Form Factor Fiber Optic Interconnects for the NASA Electronics Parts and Packaging Program (NEPP)

    NASA Technical Reports Server (NTRS)

    Ott, Melanie; Thomes, W. Joe; Blair, Diana; Chuska, Rick; Switzer, Rob

    2010-01-01

    The Diamond AVIM optical fiber connector has been used for over a decade in flight environments. AVIM which stands for Aviation Intermediate Maintenance is always referenced as a fiber optic connector type from the DIN (Deutsches Institut fur Normung) family of optical fiber connectors. The newly available Mini AVIM and DMI (Definition Multimedia Interface) connectors also by Diamond provide similar features as the high performance AVIM with the added benefits of being small form factor for board mount and internal box use where long connectors and strain relief can not be accommodated. Transceiver, fiber laser technology and receiver optic technology based on small sized constraints will benefit the most by the reduction in connector form factor. It is for this reason that the Mini AVIM is being evaluated for multimode and single mode optical fiber use in both fiber based and cable based packaging configurations. In a fiber based termination, there are no cable materials to bond to the connector. The only bonding that is conducted is the mounting of the fiber with epoxy to the connector ferrules (which are called DMI ferrules). In a cable configuration, the compatibility of the connector subcomponents along with the upjacketing materials of the cable around the fiber needs to be considered carefully for termination fabrication. Cabled terminations will show greater insertion loss and high probability of failures during thermal cycling testing. This is due to the stressing of the combination of materials that each have different Coefficients of Thermal Expansion (CTE's) and that are bonded together to the connector subcomponents. As the materials flex during thermal excursions, forces are applied to the termination and can make the system fail if the grouping of materials (per their CTE's) are not compatible and this includes cable materials, epoxies, ferrule and connector body components. For this evaluation, multimode 100 micron core step index fiber was used for

  19. Fabrication and sensing characteristics of helical long-period fiber gratings written in the rotated fiber by CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Liu, Yunqi; Song, Hongliang; Wang, Tingyun

    2015-09-01

    A helical long-period grating (HLPG) was fabricated by twisting a conventional single-mode fiber when CO2 laser beam was sweeping along the fiber axis. A grating with a contrast of 20 dB can be written in the fiber with a length of 1 cm. The spectral and sensing characteristics were investigated experimentally. The maximum sensitivity to surrounding refractive index and temperature measurement was measured to be 995 nm/RIU and 53 pm/°C, respectively.

  20. Silicone polymer waveguide bridge for Si to glass optical fibers

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.

    2015-03-01

    Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.

  1. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  2. Impact of fiber core diameter on dispersion and multiplexing in multimode-fiber links.

    PubMed

    Appaiah, Kumar; Vishwanath, Sriram; Bank, Seth R

    2014-07-14

    Large-core silica multimode fibers, whose core diameters are generally 50 μm or 62.5 μm, form the bulk of short and medium haul optical fiber links in existence today, owing to their low cost and ease of deployment. However, modal dispersion significantly limits the maximum data rates that they support. Recently, the ability to multiplex several streams of data through optical fibers has spawned the development of few-mode multimode fibers. These fibers possess the low-dispersion characteristics of single-mode fibers and the ability to multiplex several data streams using multiple-input multiple-output (MIMO) techniques and mode-specific filtering to increase data rates. While fibers with larger core diameters possess a larger number of spatial modes, they do not support data rates as high as few-mode fibers. In this paper, we describe a simulation based approach to characterize the tradeoffs between fiber diameter, achievable data rates and alignment tolerances of coherent links that employ graded-index multimode fibers (MMFs) of various dimensions, using the information theoretic outage capacity as the metric. The simulations used fibers' intermodal coupling characteristics to measure its multiplexing abilities and dispersion limitations with mode-specific filters and launch and detection spatial filter arrays. The simulations indicate that the bandwidth-length product achievable over few-mode fibers with MIMO techniques can exceed 250 Gb/s-km, while heavy mode spreading and limited mode selectivity limits the bandwidth-length product to under 25 Gb/s-km in fibers core diameters larger than 50 μm.

  3. Modeling and analysis of fiber-optic mode transducers - Single fiber with periodic perturbations

    NASA Astrophysics Data System (ADS)

    Huang, Weiping; Xu, Chenglin; Chaudhuri, Sujeet K.

    1991-11-01

    The fiber-optic LP01-LP11 mode transducers are analyzed by a scalar coupled-mode theory with vector correction. The authors deal with fiber-optic mode transducers made of a single fiber with periodic perturbations due to microbends, acoustic waves, or a photoinduced index grating. Both the couplings caused by the index perturbations and by the vector property of the fields (polarization effect) are taken into account in the analysis. Approximate analytical solutions to the coupled-mode equations are obtained. The power exchange among the modes along the fiber and spectral properties of the mode transducers are examined. The functions of the mode transducers used as wavelength filters and polarizers are studied.

  4. Fiber-Coupled Acousto-Optical-Filter Spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, Kenneth H.; Li, Frank Yanan

    1993-01-01

    Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.

  5. Toxin detection using a fiber-optic-based biosensor

    NASA Astrophysics Data System (ADS)

    Ogert, Robert A.; Shriver-Lake, Lisa C.; Ligler, Frances S.

    1993-05-01

    Using an evanescent wave fiber optic-based biosensor developed at Naval Research Laboratory, ricin toxin can be detected in the low ng/ml range. Sensitivity was established at 1 - 5 ng/ml using a two-step assay. The two-step assay showed enhanced signal levels in comparison to a one-step assay. A two-step assay utilizes a 10 minute incubation of an immobilized affinity purified anti-ricin antibody fiber optic probe in the ricin sample before placement in a solution of fluorophore-labeled goat anti-ricin antibodies. The specific fluorescent signal is obtained by the binding of the fluorophore-labeled antibodies to ricin which is bound by the immobilized antibodies on the fiber optic probe. The toxin can be detected directly from urine and river water using this fiber optic assay.

  6. Carbon-fiber technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Parker, J. A.

    1980-01-01

    The state of the art of PAN based carbon fiber manufacture and the science of fiber behavior is surveyed. A review is given of the stabilization by oxidation and the subsequent carbonization of fibers, of the apparent structure of fibers deduced from scanning electron microscopy, from X-ray scattering, and from similarities with soft carbons, and of the known relations between fiber properties and heat treatment temperature. A simplified model is invoked to explain the electrical properties of fibers and recent quantum chemical calculations on atomic clusters are used to elucidate some aspects of fiber conductivity. Some effects of intercalation and oxidative modification of finished fibers are summarized.

  7. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  8. Advanced specialty fiber designs for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  9. Pulse Compression using a Tapered Microstructure Optical Fiber

    DTIC Science & Technology

    2006-04-01

    Pulse compression using a tapered microstructure optical fiber Jonathan Hu, Brian S. Marks, and Curtis R. Menyuk University of Maryland Baltimore...R. Menyuk , ”Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems,” J. Lightwave Technol. 21, 61–68 (2003

  10. Continuous, linearly intermixed fiber tows and composite molded article thereform

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    2000-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a carbon fiber tow; (b) forming a thermoplastic polymeric fiber tow; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  11. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    1999-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  12. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    2001-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  13. Accurate numerical simulation of short fiber optical parametric amplifiers.

    PubMed

    Marhic, M E; Rieznik, A A; Kalogerakis, G; Braimiotis, C; Fragnito, H L; Kazovsky, L G

    2008-03-17

    We improve the accuracy of numerical simulations for short fiber optical parametric amplifiers (OPAs). Instead of using the usual coarse-step method, we adopt a model for birefringence and dispersion which uses fine-step variations of the parameters. We also improve the split-step Fourier method by exactly treating the nonlinear ellipse rotation terms. We find that results obtained this way for two-pump OPAs can be significantly different from those obtained by using the usual coarse-step fiber model, and/or neglecting ellipse rotation terms.

  14. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  15. Responses of microstructure optical fibers to strain and pressure

    NASA Astrophysics Data System (ADS)

    Jin, W.; Pang, M.

    2010-11-01

    The phase/birefringence sensitivities of the fundamental mode of air-silica microstructure optical fibers to strain and pressure are investigated. Theoretical models are built for both hollow-core photonic bandgap fibers and solid-core highly non-linear photonic crystal fibers to study the effects of axial strain, lateral pressure, and acoustic pressure on the fiber length and the effective refractive indexes of the fundamental mode. Numerical simulation shows that the phase/birefringence sensitivity to pressure of a hollow-core photonic bandgap fiber depends strongly on the thickness of the outer solid-silica layer and the air-filling ratio of the microstructure inner-cladding, and the normalized phase sensitivity to acoustic pressure can be 35 dB higher than that of the conventional single mode fiber. Potential applications of the microstructure optical fibers for high sensitivity hydrophones and novel polarization controllers are discussed.

  16. Optical fiber internal-mirror-based fiber in-line Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Gong, H.; Wang, D. N.; Xu, B.; Ni, K.; Liu, H.; Zhao, C. L.

    2016-05-01

    An optical fiber in-line Mach-Zehnder interferometer based on a fiber internal mirror constructed by use of a hollow ellipsoid fabricated by femtosecond laser micromachining and fusion splicing technique is demonstrated. The interface of the hollow ellipsoid surface and air can act as an internal mirror. The device has been used for refractive index, bending and high temperature measurement and simultaneous multiple parameter sensing.

  17. Computing discharge using the index velocity method

    USGS Publications Warehouse

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    techniques in which the mean cross-sectional velocity for the standard section is related to the measured index velocity. Most ratings are simple-linear regressions, but more complex ratings may be necessary in some cases. Once the rating is established, validation measurements should be made periodically. Over time, validation measurements may provide additional definition to the rating or result in the creation of a new rating. The computation of discharge is the last step in the index velocity method, and in some ways it is the most straight-forward step. This step differs little from the steps used to compute discharge records for stage-discharge gaging stations. The ratings are entered into database software used for records computation, and continuous records of discharge are computed.

  18. Germanate Glass Fiber Lasers for High Power

    DTIC Science & Technology

    2016-01-04

    germanate based glasses with a specific focus on glass stability during thermal- cycling which is representative of the steps required to fabricate a doped...evidence of crystallisation after thermal cycling , and is of a low enough loss to realize a fiber laser. The glass stability is demonstrated by...specific focus on glass stability during thermal- cycling which is representative of the steps required to fabricate a doped micro-structured germanate

  19. A proposed fiber-optic neutron monitor

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan D.

    2013-02-01

    An interferometric fiber-optic sensor is proposed as a neutron detector. The basic mechanism is the absorption of neutrons by the constituent atoms of the fiber: silicon, germanium, and oxygen. As a result, the isotopic mass of these elements increases and thereby decreases certain infrared vibrational frequencies. These changes impact the refractive index of the core and cladding of the fiber and therefore the propagation constant of the fundamental mode of the singlemode fibers constitutes the interferometer. This neutron-induced shift in the propagation constant produces a corresponding shift in the phase of the light emerging from one fiber of a Mach-Zehnder interferometer. A review of the basics of singlemode fibers is presented, and the changes in indexes and the propagation constant are calculated under varying shifts in isotopic mass. Reference is made to the computational tool available for a simulated sensor response. Some neutron absorption cross-sections as functions of neutron kinetic energy are presented, along with a possible design of the sensor.

  20. Resonant Biochemical Sensors Based on Photonic Bandgap Waveguides and Fibers

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, Maksim

    I describe photonic bandgap (PBG) fiber-based resonant optical sensors of analyte's refractive index which have recently invoked strong interest due to the development of novel fiber types and of techniques for the activation of fiber microstructure with functional materials. Particularly, I consider two sensors types. One employs hollow-core photonic bandgap fibers where the core-guided mode is confined in the analyte's filled core through resonant effect in the surrounding periodic reflector. The other employs metallized photonic bandgap waveguides and fibers, where core-guided mode is phase-matched with a plasmon wave propagating at the fiber/analyte interface. In resonant sensors, one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte's refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers-Kronig relation, this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte's refractive index ( {10^{ - 6}} - {10^{ - 4}}{ RIU} ) and in the imaginary part of the analyte's refractive index in the vicinity of absorption lines. Although the operational principle of almost all PBG fiber-based sensors relies on strong sensitivity of the PBG fiber losses to the value of the analyte's refractive index, particular transduction mechanisms for biodetection vary significantly. Finally, I detail various sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for biosensing applications.